
MAT Learners for Tree Series – an Abstract
Data Type and Two Realizations

Frank Drewes1, Johanna Högberg1, and Andreas Maletti2,?

1 Department of Computing Science, Ume̊a University
S–901 87 Ume̊a, Sweden, {drewes,johanna}@cs.umu.se

2 Universitat Rovira i Virgili, Departament de Filologies Romàniques
Av. Catalunya 35, 43002 Tarragona, Spain, andreas.maletti@urv.cat

Abstract. We propose abstract observation tables, an abstract data
type for learning deterministic weighted tree automata in Angluin’s min-
imal adequate teacher (MAT) model, and show that every correct imple-
mentation of abstract observation tables yields a correct MAT learner.
Besides the “classical” observation table, we show that abstract observa-
tion tables can also be implemented by observation trees. The advantage
of the latter is that they often require fewer queries to the teacher.

1 Introduction

We study the problem of learning deterministic weighted (bottom-up) tree au-
tomata (dwta) [5, 7] over a semifield S. A weighted tree automaton computes a
recognizable tree series [4], i.e., a function that maps trees to values in S. This is
accomplished by assigning a weight in S to every transition. The weight of a com-
putation (also called a run) is the product of all its transitions, multiplied with
an additional final weight that is associated with the final state reached. Finally,
the weight of a tree is the sum of the weights of all its runs. In other words, the
addition of the semifield is used to handle nondeterminism. Ordinary bottom-up
tree automata correspond to the special case obtained by choosing the Boolean
semifield as S. We recommend [14] for an introduction to recognizable tree series.

As mentioned above, this article is devoted to the problem of algorithmically
learning dwta, also called grammatical inference. The general setting considered
in grammatical inference is characterized by a series ψ (or, in the traditional
case, a language) for which, a priori, no explicit representation is available. The
learning algorithm (henceforth called the learner) only has access to some re-
stricted information. Its goal is to derive, from this information, an automaton
computing ψ.

There exist various learning models that make this general picture more pre-
cise. Most of them fall into one of the following categories: Gold’s learning from
examples with identification in the limit [16], Valiant’s probably approximately
correct (PAC) learning [23], and Angluin’s query learning [2]. In this article, we
focus on the most prominent type of query learning, proposed in [1], in which

? Supported by the Ministerio de Educación y Ciencia (MEC) grant JDCI-2007-760.

1

the learner has access to an oracle called minimal adequate teacher (MAT).
Angluin’s original model was designed for learning ordinary deterministic finite
automata (dfa). Its first generalization to bottom-up tree automata was proposed
by Sakakibara in [21] and later improved in [12].

In the weighted case, if ψ is the target tree series, then a MAT is an oracle
able to answer two types of queries. A coefficient query passes a tree t to the
MAT and receives ψ(t) as the answer. An equivalence query passes a dwta A, the
hypothesis, to the MAT. If A computes ψ, a special token is returned. Otherwise,
the answer is a counterexample, i.e., a tree t such that A(t) 6= ψ(t). One of the
first extensions of the MAT learner for dfa to stochastic automata appears in [9].
This algorithm is extended in [20] to certain cancellative semirings [15], which
makes the algorithm applicable to string transducers. The first extension to
dwta is found in [13]. This learner generalizes the learner in [12] from bottom-up
tree automata to ‘all-accepting’ dwta, and was in turn extended to general dwta
in [19]. In both cases, the weight structure is a semifield (i.e., a semiring, in which
multiplicative inverses exist). All those algorithms learn deterministic devices.
In [17], the first MAT learner for nondeterministic weighted tree automata over
fields was presented. An overview of MAT learners for weighted and unweighted
tree automata can be found in [10].

Typically, MAT learnability results are based on Myhill-Nerode-like char-
acterizations of recognizability. In essence, the learner learns (representatives of)
equivalence classes, which it refines in the light of the counterexamples provided
by the teacher. This process terminates when the equivalence has converged to
the Myhill-Nerode equivalence. The learners in [12, 13, 19] are all very simi-
lar. Following Angluin’s original approach, they maintain an observation table,
whose rows are indexed by trees representing the states and transitions of an
automaton. The columns are indexed by contexts (trees with a “hole”) whose
purpose is to separate the discovered equivalence classes from each other. From
the table, the learner repeatedly constructs a dwta consistent with the informa-
tion in the table and asks an equivalence query. If the MAT accepts the dwta,
then the learning process has converged. Otherwise, the counterexample received
is inspected by a technique known as contradiction backtracking [22]. This will
either reveal a tree not yet in the table, that represents a new transition, or a
context that separates previously equivalent trees in the table, thus making the
learner discover a new state.

In [18, Chapter 8], Kearns and Vazirani give a rough description of Angluin’s
original learner (for regular string languages), in which the observation table
has been replaced by a tree-like data structure. As we shall see in Section 5, a
generalized version of these observation trees can be used even in the case of
dwta, thus yielding an alternative version of the learner in [19]. In Section 6, we
shall see that this learner often asks fewer coefficient queries, and thus promises
advantages in practical applications.

Looking at all these different but closely related learners and their correct-
ness proofs, one cannot but realize that the same algorithms and arguments are
repeated over and over again, with only slight differences. Thus, rather than

2

cloning [19] to come up with a version using observation trees, we propose an
abstract data type, called abstract observation table (aot), in Section 3 of this
paper. This captures in a formally precise way the abstract properties of observa-
tion tables that are needed to obtain a correct MAT learner. In this way, we hope
to be able to contribute to a better understanding of the formal basis of MAT
learning and the degrees of freedom one has when implementing it. To obtain a
concrete realization of abstract observation tables, one needs to implement an
interface consisting of a few abstract routines that have to satisfy certain condi-
tions. The learning algorithm itself is hidden within the aot, and its correctness
is established once and for all (depending on the correct implementation of the
interface, of course). In this way, the common parts of the correctness proofs of
different realizations of the learner are encapsulated. What remains to be con-
sidered in each individual case is what is specific to the particular realization at
hand.

We provide two such realizations. Firstly, the learner in [19] can easily be
seen to be an instance of the aot. Secondly, in Section 5, we instantiate aots as
observation trees and give a correctness proof (which becomes easy thanks to
the results of Section 3). As mentioned above, we expect observation trees to
have the advantage of requiring fewer coefficient queries than observation tables,
even though the theoretical best and worst cases coincide. To confirm this, we
have implemented both learners and have conducted a set of experiments whose
results are reported in Section 6. Finally, we show in Section 6 how to optimize
the equivalence test derived from [6, Corollary 5.6] to run in linear time in
the product of the number of transitions of the two dwta. The straightforward
algorithm derived from [6, Corollary 5.6] runs in linear time in the product of
the size of the transition tables, which could be exponentionally larger than the
number of actual transitions.

In summary, the structure of this paper is the following. In the next sec-
tion, the necessary preliminaries around trees, tree series, and MAT learning are
gathered. In Section 3, we present the aot and prove its correctness. This is the
first major contribution of this paper. In Section 4, we show briefly that the
learner in [19] is an instance of the aot. Section 5 introduces the instance based
on observation trees. Together with Section 6, which confirms that observation
trees often use fewer coefficient queries than observation tables, this is the second
major contribution of the paper. In addition, Section 6 presents the algorithm
for deciding the equivalence of dwta over semifields that we have used in our
experiments for the purpose of implementing the teacher. This represents the
final major contribution.

2 Preliminaries

The set of natural numbers (including 0) is denoted by N. For every k ∈ N the set
{1, . . . , k} is denoted by [k]. For a set S, the set of all finite sequences (or strings)
over S, including the empty sequence ε, is denoted by S∗. The cardinality of S
and the length of w ∈ S∗ are denoted by |S| and |w|, respectively.

3

The index of an equivalence relation≡ on a set A is the number of equivalence
classes induced by ≡; i.e., the cardinality of the quotient set A/≡.

Given a function f : A→ B and pairs (a1, b1), . . . , (an, bn), where the ai are
pairwise distinct, we let f〈a1 := b1, . . . , an := bn〉 denote the function g : A′ → B′

with A′ = A ∪ {a1, . . . , an} and B′ = B ∪ {b1, . . . , bn} such that g(ai) = bi
for i ∈ [n], and g(a) = f(a) for all a ∈ A \ {a1, . . . , an}. If f is a func-
tion with empty domain, then we also write 〈a1 := b1, . . . , an := bn〉 instead of
f〈a1 := b1, . . . , an := bn〉.

A (commutative) semiring S = 〈S,+, ·, 0, 1〉 consists of a set S together with
binary addition and multiplication operations + and ·, respectively, as well as
distinct elements 0, 1 ∈ S such that (i) 〈S,+, 0〉 and 〈S, ·, 1〉 are commutative
monoids, (ii) multiplication distributes over addition, and (iii) 0 is absorbing
with respect to multiplication. The product a1 · . . . ·ak of finitely many elements
a1, . . . , ak ∈ S is denoted by

∏k
i=1 ai or equivalently

∏
i∈[k] ai (note that the order

is irrelevant since we consider only semirings with commutative multiplication).
We say that S is a semifield if every element a ∈ S \ {0} has a multiplicative
inverse, which is denoted by a−1 (i.e., a · a−1 = 1). Throughout the rest of this
paper, we let S be a semifield, which we simply denote by its domain S. In fact,
since we will only consider deterministic weighted tree automata, we will not
need the addition of S. For sequences α, β ∈ S∗, we write α ∼ β if β is a multiple
of α; i.e., if there exists a ∈ S \ {0} such that a · α = β (where multiplication is
extended to a function on S × S∗ → S∗ in the obvious way). Note that ∼ is an
equivalence relation due to the fact that S has multiplicative inverses.

Alphabets, Trees, and Contexts

A ranked set is a set Σ =
⋃
k∈NΣk of labels (also called symbols) consisting of

(not necessarily disjoint) subsets Σk. The labels in Σk are said to have rank k.
We write f (k) to indicate that f ∈ Σk. The set TΣ of all trees over Σ consists
of all mappings t : N → Σ (called trees) with the following properties:

– The set N of nodes of t is a finite and non-empty prefix-closed subset of N∗.
Thus, for every vw ∈ N with v, w ∈ N∗, it holds that v ∈ N .

– For all v ∈ N , there is k ∈ N such that t(v) ∈ Σk and {i ∈ N | vi ∈ N} = [k].

For a tree t : N → Σ, we also write nodes(t) for N . The height of t is de-
noted by hg(t); i.e., hg(t) = max{|v| | v ∈ nodes(t)}. Given a tree t and a
node v ∈ nodes(t), the subtree of t rooted at v is denoted by t/v. It is de-
fined by nodes(t/v) = {w ∈ N∗ | vw ∈ nodes(t)} and (t/v)(w) = t(vw) for all
w ∈ nodes(t/v). The set leaves(t) of all leaves of t is the set

leaves(t) = {v ∈ nodes(t) | v1 /∈ N} .

We shall denote a tree t as f [t1, . . . , tk] if t(ε) = f (k) and t/i = ti for all i ∈ [k].
In the special case where k = 0 (i.e., nodes(t) = {ε}), the brackets may be
omitted, thus denoting t as f . For a set T of trees, the set of all trees of the
form f [t1, . . . , tk] such that k ∈ N, f ∈ Σk, and t1, . . . , tk ∈ T is denoted byΣ(T).

4

We will frequently decompose a tree into a context and a subtree. For this
purpose, let us reserve the special symbol 2 of rank 0 (and no other rank) that
does not occur in Σ. A tree c ∈ TΣ∪{2} in which 2 occurs exactly once is
called a context (over Σ). The set of all contexts over Σ is denoted by CΣ .
Given a context c ∈ CΣ and a tree t, we denote by ct the concatenation of
c and t at 2, which is obtained by substituting t for the unique leaf labelled 2

in c. More precisely, if v ∈ nodes(c) is the unique node such that c(v) = 2,
then nodes(ct) = nodes(c) ∪ {vw | w ∈ nodes(t)} with ct(w) = c(w) for all
w ∈ nodes(c) \ {v}, and ct/v = t.

For every k ∈ N, t, t1, . . . , tk ∈ TΣ , and v1, . . . , vk ∈ nodes(t) such that vi is
not a prefix of vj for any i, j ∈ [k], we denote by t[v1 ← t1, . . . , vk ← tk] the tree
obtained by replacing t/vi by ti for every i ∈ [k].

Tree Series and Weighted Tree Automata

A tree series over S is a mapping ψ : TΣ → S. Its support is

supp(ψ) = {t ∈ TΣ | ψ(t) 6= 0} .

A tree t ∈ TΣ is called live (in ψ) if there exists c ∈ CΣ such that ct ∈ supp(ψ).
Such a context c is also called a sign of life for t (in ψ).

We now recall the definition of deterministic weighted (bottom-up finite-
state) tree automata [4, 5, 7] (dwta, for short) over S. Such a dwta is a tuple
A = (Σ,Q, δ, λ) where

– Σ is the finite input ranked set,

– Q is the finite set of states, considered as symbols of rank 0 and no other
rank,

– δ : Σ(Q)→ Q× (S \ {0}) is the partial transition function, and

– λ : Q→ S is the final weight mapping.

Intuitively, δ(f [q1, . . . , qk]) = (q, a) determines the behaviour of the dwta in the
situation, in which it processes an occurrence of the symbol f of rank k and
the k subtrees t1, . . . , tk of f have already been processed in states q1, . . . , qk,
respectively. Then the dwta continues in state q and charges the weight a.

The transition function δ extends to trees in a straightforward way, which
yields the partial function δ̂ : TΣ∪Q → Q × (S \ {0}) such that δ̂(q) = (q, 1) for
every q ∈ Q and, for every f [t1, . . . , tk] with f ∈ Σk and t1, . . . , tk ∈ TΣ∪Q:

– If δ̂(ti) = (qi, ai) for every i ∈ [k] and δ(f [q1, . . . , qk]) = (q, a) are all defined,

then δ̂(f [t1, . . . , tk]) = (q, a ·
∏k
i=1 ai).

– Otherwise, δ̂(f [t1, . . . , tk]) is undefined.

The tree series computed by A is given as follows. For all t ∈ TΣ , if δ̂(t) = (q, a),
then A(t) = a · λ(q). Otherwise, A(t) = 0.

5

Example 1. The following dwta will be used as a running example throughout
the paper. Consider the tropical semifield T = (Z∪{−∞},min,+,−∞, 0), where
‘min’ and ‘+’ are ordinary minimum and addition, resp., on Z extended by −∞.
Note that ‘+’ is the multiplicative operation in this semifield. Moreover, as men-
tioned above, the additive operation ‘min’ will not be needed, so we are actually
using the group (Z,+, 0) enriched by an absorbing “error element” −∞.

Let ∆ = {f (2), g(1), e(0)}. To save space in later discussions of this exam-
ple, we shall denote trees and contexts without brackets. Thus, for instance,
f [e, g[g[e]] will simply be denoted as f e gge.

We define the tree series χ : T∆ → T as follows. For every t ∈ T∆, we have
t ∈ supp(χ) [i.e., (χ, t) 6= −∞] if and only if

(a) t 6= e,
(b) no node labeled g has an f -labeled node as its child, and
(c) the children of each f -labeled node have equal root labels.

On all trees t that fulfill these conditions, χ(t) is equal to the number of nodes
labeled f whose first subtree equals ge.

The states in a dwta Acount = (∆,Q, δ, λ) recognizing χ will have to dis-
tinguish between the tree e, the tree ge, the remaining monadic trees, and the
trees having the root f . In other words, we need four states qe, qg, qm, qf . The
transition function reflects the meaning of these states. It charges a weight of 0
except when an f -labeled node is processed whose first subtree is ge, in which
case the weight 1 is charged:

δ(e) = (qe, 0)

δ(gqe) = (qg, 0) δ(f qe qe) = (qf , 0) δ(f qg qm) = (qf , 1)

δ(gqg) = (qm, 0) δ(f qg qg) = (qf , 1) δ(f qm qg) = (qf , 0)

δ(gqm) = (qm, 0) δ(f qf qf) = (qf , 0) δ(f qm qm) = (qf , 0) .

The final weight of the states qg, qm, and qf is 0, while λ(qe) = −∞ to make

sure that Acount(e) = −∞. The dwta is illustrated in Figure 1. Note also that δ̂ is
undefined on all trees violating condition (b) or (c). Hence, only trees satisfying
all three conditions are in the support. To be continued.

Every dwta can be made total without affecting the tree series computed,
where a dwta A is total if δ is a total function. This is achieved by adding a non-
final (i.e., final weight 0) sink state that is the target of all missing transitions
(using, for example, weight 1). For the dwta of Example 1, the corresponding
total dwta would have 1 + 5 + 52 = 31 instead of 10 transitions. In general,
exponentially many (in the number of states or existing transitions) additional
transitions might be required. Thus, making a dwta total can yield an exponen-
tial blow-up.

Throughout the remainder of this paper, let Σ be a finite ranked set,
ψ : TΣ → S be a tree series, and S = 〈S,+, ·, 0, 1〉 be a commutative
semifield.

6

qm

qg qf

qe
e/0

f/0

g/0

g/0

f/0

f/0

f/1

f/1

f/0

g/0

Fig. 1. Illustration of the dwta of Example 1. Lines (unbroken or dashed) to a transition
node are ordered counter-clockwise from the arrow leading to the target state. The
dashed lines are only used to increase readability and carry no special significance.

Let s, t ∈ TΣ . For C ⊆ CΣ , we write s ≡C t if there exists a ∈ S \ {0} such
that ψ(cs) = a · ψ(ct) for every c ∈ C. Note that ≡C is an equivalence relation
on TΣ . The relation ≡CΣ is simply denoted by ≡.

Theorem 2 (see [5, Theorems 2 and 3]). The tree series ψ can be computed
by some dwta if and only if ≡ has finite index. Moreover, any dwta computing ψ
has at least |L/≡| states where L = {t ∈ TΣ | t live in ψ}.

An easy but important observation for the learning algorithms considered
in this paper concerns the question how one can establish that t 6≡ t′ for trees
t, t′ ∈ TΣ having a common sign of life c. Let ψ(ct′) = a · ψ(ct). By definition,
t ≡ t′ is equivalent to saying that ψ(c′t′) = a · ψ(c′t) for all c′ ∈ CΣ . In other
words, we have the following lemma, that we will usually make use of without
explicitly mentioning this fact.

Lemma 3. Let t, t′ ∈ TΣ have a common sign of life c. Then t ≡ t′ if and only
if, for all c′ ∈ CΣ,

ψ(c′t)

ψ(ct)
=
ψ(c′t′)

ψ(ct′)
.

Example 4 (cont’d). In our running example, one of the (infinitely many) com-
mon signs of life for the trees e and ge is the context c = g2. Taking c′ = 2, we
find that χ(c′e)−χ(ce) = −∞− 0 6= 0− 0 = χ(c′ge)−χ(cge), which shows that
e 6≡ ge. To be continued.

7

The Minimal Adequate Teacher

In the following, we will consider grammatical inference of ψ. The aim is to build
a dwta computing ψ (if such a dwta exists) using an appropriately extended ver-
sion of Angluin’s minimal adequate teacher (MAT) as the source of information
about ψ (cf. [1, 2, 3]).

A learning algorithm that infers a dwta computing ψ will henceforth be called
a learner. Such a learner may ask coefficient and equivalence queries to the MAT
(and the MAT will answer them correctly):

Coefficient: Given a tree t ∈ TΣ (provided by the learner), what is ψ(t)?
Equivalence: Given a dwta A (provided by the learner), does A compute ψ?

If so, the teacher returns the token ⊥ indicating that A = ψ. Otherwise, a
counterexample is returned; i.e., a tree t ∈ TΣ such that A(t) 6= ψ(t).

The algorithms presented in this paper are all supposed to have access to
a MAT. In particular, this implies that these algorithms can obtain ψ(t) for
t ∈ TΣ by asking a coefficient query. Thus, the reader should bear in mind
that every mention of ψ(t) in our algorithms indicates that a coefficient query is
asked unless ψ(t) has already been provided earlier, in which case a reasonable
implementation would have memorized the value.

3 An abstract data type for MAT learners

In this section, we will develop an abstract data type specification, called abstract
observation table, for MAT learners [1, 2, 3]. The commonly used ‘observation
table’ [1, 12, 13, 19] will be an instance of this specification, but in the next
section we will present another data type, called observation tree, that avoids
(in our experiments) some of the coefficient queries typically asked when the
learner fills the observation table.

In essence, our abstract data type manages the two sets S and T of trees,
which are related by S ⊆ T ⊆ Σ(S). Eventually, S and T will respectively
correspond to the states and the transitions of the deterministic weighted tree
automaton that we construct. Moreover, our abstract data type maintains two
mappings, sol : S → CΣ and ρ : T → S, which assign a sign of life (in ψ) for each
tree in S and a tree of S to each tree t ∈ T , respectively. This tree ρ(t) is called the
representative of t and eventually encodes the transition target δ(t) = ρ(t), where
δ is the transition function of the constructed dwta. The name ‘representative’
is justified by the fact that only ρ(t) of all trees in S can be ≡-equivalent to t.

To simplify the notation (and to avoid some parentheses), we write tρ instead
of ρ(t) for every t ∈ T . Let us present a mathematical definition of the universal
invariant of an abstract observation table.

Definition 5 (cf. [19, Definition 8]). Let S ⊆ T ⊆ Σ(S) be finite subsets
of TΣ, sol : S → CΣ, and ρ : T → S. Then (S, T, sol, ρ) is an abstract observa-
tion table (with respect to ψ) if

8

1. sol(tρ) = 2 for every t ∈ T ∩ supp(ψ) (trivial sign of life for support)
2. sol(tρ)t ∈ supp(ψ) for every t ∈ T (sol(tρ) sign of life for t in ψ)
3. t 6≡ s for every t ∈ T and s ∈ S \ {tρ} (t distinct from other states)

In the following, we will abbreviate sol(tρ) by sol(t) for t ∈ TΣ whenever
appropriate. Thus, with this convention in mind, the first condition becomes
sol(t) = 2 for every t ∈ T ∩ supp(ψ), and the second becomes sol(t)t ∈ supp(ψ)
for every t ∈ T .

Note that the third condition yields sρ = s for every s ∈ S because triv-
ially s ≡ s. In addition, this implies that s1 6≡ s2 for all distinct s1, s2 ∈ S.
Finally, for every t ∈ T , t ∈ supp(ψ) if and only if tρ ∈ supp(ψ), which can be
seen as follows. If t ∈ supp(ψ) or tρ ∈ supp(ψ), then sol(t) = 2 by the first
condition and thus t ∈ supp(ψ) and tρ ∈ supp(ψ) by the second condition.

Conceptually, we note that all known variants of Angluin’s original algorithm
(at least those we are aware of) maintain a set of contexts for the purpose of
distinguishing between the equivalence classes of trees in T . In our abstract ver-
sion, the only contexts that are explicitly required to be maintained are the signs
of life for the trees in T . Thus, it might, in principle, be possible to implement
abstract observation tables without managing additional contexts. The difficulty
is, of course, to make sure that the third condition is satisfied, because this is
usually what separating contexts are used for (cf. the definition of ≡).

In the following, we will use the following interface to manipulate an abstract
observation table. To simplify the description of the semantic properties, let
(S, T, sol, ρ) and (S′, T ′, sol′, ρ′) be the abstract observation table before and
after execution, respectively.

– initialize (constructor)
• Post-condition: S′ = T ′ = ∅

– addTransition(t, c) with t ∈ Σ(S) and c ∈ CΣ (add new transition)
• Pre-conditions: t /∈ T and ct ∈ supp(ψ)
• Post-conditions: S ⊆ S′ and T ∪ {t} ⊆ T ′

– addState(t, c) with t ∈ T and c ∈ CΣ (add new state)

• Pre-condition:
ψ(ct)

ψ(sol(t)t)
6= ψ(c(tρ))

ψ(sol(t)(tρ))
• Post-conditions: S ∪ {t} ⊆ S′ and T ⊆ T ′

In the next definition, it is shown how to construct a dwta Aaot = (Σ,S, δ, λ)
from an abstract observation table (S, T, sol, ρ). The motivation for the pre-
conditions of addTransition and addState are closely related to this defini-
tion. As we shall see, the trees in S will be turned into the states of Aaot, whereas
the trees in T will give rise to its transitions. As a consequence, δ(t) and δ̂(t)
are undefined for trees t ∈ Σ(S) \ T . In other words, a tree t that fulfills the
pre-conditions of addTransition is not live in Aaot, whereas the second part
of the pre-condition states that it, in fact, is live in ψ. Thus, the tree t must be
added (as a transition) to T . The pre-condition of addState is motivated by
the fact that Aaot maps t and tρ to the same state (namely tρ), while the pre-
condition expresses that sol(t) and c separate tρ from t (by Lemma 3). Hence,
t should rather be mapped to a new state.

9

Definition 6 (cf. [5, Definition 4 and p. 9]). Let aot = (S, T, sol, ρ) be an
abstract observation table. Let ψaot : T → S be such that for every t ∈ T

ψaot(t) =
ψ(sol(t)t)

ψ(sol(t)(tρ))
.

We construct the deterministic weighted tree automaton Aaot = (Σ,S, δ, λ) with

– λ(s) = ψ(s) for every s ∈ S,
– δ(t) = (tρ, ψaot(t)) for every t ∈ T , and
– δ(t) is undefined for all t ∈ Σ(S) \ T .

Example 7 (cont’d). Let S = {e, ge} and T = {e, ge, f e e, f ge ge}, where

s ∈ S sol(s) sρ t ∈ T \ S tρ
e g2 e f e e ge
ge 2 ge f ge ge ge

Then aot = (S, T, sol, ρ) is an abstract observation table. The dwta Aaot has the
states e and ge, where

δ(e) = (e, 0) δ(ge) = (ge, 0) δ(f e e) = (ge, 0) δ(f ge ge) = (ge, 1) .

The final weights are λ(e) = −∞ and λ(ge) = 0. Figure 2 illustrates Aaot. This
dwta still computes some wrong weights. For example, it computes weight 2 for
f f ge ge ge, but it computes the correct weight for all trees t ∈ T (namely 1
if t = f ge ge and 0 otherwise). As we shall see next, this is not a coincidence.

To be continued.

ge

e
e/0

f/0 g/0

f/1

Fig. 2. Illustration of the dwta of Example 7. As before, lines to a transition node are
ordered counter-clockwise from the arrow leading to the target state.

We observe some easy properties of the automaton Aaot. First, note that
ψaot(s) = 1 for every s ∈ S (as sρ = s). Second, Aaot computes ψ on all trees
of T , which we prove in the next lemma.

Lemma 8 (see [19, Lemma 12]). Let aot = (S, T, sol, ρ) be an abstract ob-
servation table. Then Aaot(t) = ψ(t) for every t ∈ T .

10

Algorithm 1 Learn a minimal deterministic weighted tree automaton for ψ

Post-conditions: returned automaton computes ψ
aot.initialize // initialize data structure

2: loop
t← Equal?(Aaot) // ask equivalence query

4: if t = ⊥ then
return Aaot // return the approved automaton

6: aot← Extend(aot, t) // extend the data structure

Proof. Let Aaot = (Σ,S, δ, λ). First, we claim that δ̂(t) = (tρ, ψaot(t)) for every
t ∈ T by induction on t. Since S ⊆ T ⊆ Σ(S), this induction is possible and
we have t = f [s1, . . . , sk] for some k ∈ N, f ∈ Σk, and s1, . . . , sk ∈ S. The
induction base corresponds to the case k = 0 and is contained in the induction
step. The induction hypothesis is δ̂(si) = (si, 1) because siρ = si (since si ∈ S)
and ψaot(si) = 1 for every i ∈ [k]. Since δ(t) = (tρ, ψaot(t)), we obtain

δ̂(t) =
(
tρ, ψaot(t) ·

k∏
i=1

1
)

= (tρ, ψaot(t)) .

This proves the claim. Now we can prove the statement as follows.

Aaot(t) = ψaot(t) · λ(tρ) =
ψ(sol(t)t)

ψ(sol(t)(tρ))
· ψ(tρ)

=


ψ(t)

ψ(tρ)
· ψ(tρ) if t ∈ supp(ψ)

0 otherwise

= ψ(t) ,

where the penultimate equality uses the first condition of Definition 5. ut

The principal structure of the MAT learner [12, 13, 19] is shown in Algo-
rithm 1. Note that we only adapted it to work with our abstract observation
table. We start with the initial empty data structure ‘aot’ and iteratively query
the teacher for counterexamples to our current hypothesis (the current deter-
ministic weighted tree automaton Aaot), which is constructed from the current
abstract observation table (see Definition 6). We update our abstract data struc-
ture with the returned information (using Extend), and if the teacher eventually
approves our dwta, then we simply return it.

Example 9 (cont’d). Let us consider a run of Algorithm 1 using an unknown
but correct implementation of abstract observation tables. After initialization,
an equivalence query is asked, passing the empty dwta as a parameter. The
teacher may return the counterexample f ge gge. In Extend this yields a call to
either addTransition(e, f g2 gge) or addTransition(e, f ge gg2). Thus, we
may obtain the new abstract observation table(

{e}, f ge gg2
)
,

11

where we denote an abstract observation table as the set of pairs (ρ−1(s), sol(s))
with s ∈ S and the element s ∈ ρ−1(s) is printed in boldface. In addition, we
drop the outermost set braces.

Let us assume that the teacher returns the same counterexample as long as
it is not treated correctly.3 Then three more calls of addTransition lead to
the addition of ge, gge, and f ge ge to the table, all of which have the sign of
life 2. Hence, the table may become(

{e}, f ge gg2
)

,
(
{ge, gge, f ge ge},2

)
.

Note that there are some other possible outcomes as well, such as the table
{({e}, f ge gg2), ({ge, gge},2), ({f ge ge},2)}. The result depends on the par-
ticular implementation of the used abstract observation table.

Since a transition for processing f e e is missing, the teacher may return a
counterexample containing this subtree, which may lead to the table(

{e}, f ge gg2
)

,
(
{ge, gge, f e e, f ge ge},2

)
.

However, the resulting dwta assigns the weight 0 to gf e e, so this tree, which
is outside supp(χ), may be the next counterexample. This results in the first
call of addState, namely addState(f e e, g2), where g2 is the context that
separates f e e from ge. As a consequence, the table may become(

{e}, f ge gg2
)

,
(
{ge, gge},2

)
,
(
{f e e, f ge ge},2

)
.

The next problem is the counterexample f ggge ge, to which the dwta as-
signs the weight 1 rather than 0. Processing this counterexample leads to the
call addState(gge, f 2 ge) and subsequently to a call of addTransition. The
result is(

{e}, f ge gg2
)
,
(
{ge},2

)
,
(
{gge, ggge},2

)
,
(
{f e e, f ge ge},2

)
.

It remains to discover the four missing transitions, all of which are revealed
by the counterexample f f f gge ge f gge gge f ge gge. Repeatedly processing this
counterexample leads to the final table(

{e}, f ge gg2
)

,
(
{ge},2

)
,
(
{gge, ggge},2

)
,(

{f e e, f ge ge, f gge ge, f gge gge, f ge gge, f f e e f e e},2
)
.

To be continued.

We say that an algorithm works correctly if whenever the pre-conditions are
met at the beginning of the algorithm, then (i) the algorithm terminates and
(ii) the post-conditions hold at the point of return. For the next statements, we
additionally assume that a correct implementation of our abstract observation
table is used.

3 An optimized learner can check this without asking equivalence queries; see [11].

12

Theorem 10 (see [19, Theorem 13]). If Extend works correctly (see the
pre- and post-conditions given in Algorithm 2) and ψ can be computed by some
dwta, then Algorithm 1 terminates and returns a minimal dwta computing ψ.

Proof. Suppose that ψ can be computed by some dwta. Then ≡ has finite in-
dex by Theorem 2. Let n = |TΣ/≡|. Clearly, by the third condition in Defini-
tion 5, the set S of an abstract observation table (S, T, sol, ρ) contains at most
n elements. Trivially, Extend is always called with a counterexample, because
the counterexample is provided by the teacher. Since |S| and |T | are uniformly
bounded and each call to Extend increases |S|+ |T |, there can only be finitely
many calls to Extend, which yields that Algorithm 1 terminates. Moreover, the
returned dwta Aaot was approved by the teacher, so Aaot trivially computes ψ.
By the construction of Aaot (see Definition 6), we know that it has at most
n states. Since all states (recall that they are trees) of Aaot are live in Aaot, this
shows that it is a minimal dwta computing ψ by Theorem 2. ut

Finally, let us discuss the function Extend, which is displayed in Algo-
rithm 2. Given the counterexample t, it searches for a minimal subtree of t
that is still a counterexample, using a technique called contradiction backtrack-
ing [22]. Let aot = (S, T, sol, ρ) be the abstract observation table and t ∈ TΣ be
the counterexample; i.e., a tree t such that Aaot(t) 6= ψ(t). We decompose t into
a context c ∈ CΣ and a tree u that is itself not in S but whose direct subtrees are
all in S. In some sense, this is a minimal subtree that could possibly be offend-
ing, because Aaot computes the correct coefficient on all trees in T by Lemma 8.
Moreover, such a subtree must exist, because t /∈ S (since t is a counterexample).

Now, we distinguish two cases. If u was already seen (i.e., u ∈ T), then
by Lemma 8, Aaot returns ψ(u) if applied to u. Thus an error is made when
processing the context c. To this end, we test whether the context c separates
u and uρ; the latter is the state that represents u. Provided that c does not
distinguish between u and uρ, then we continue our search for an error with
the simplified counterexample c(uρ). In the other cases, either u and uρ could
be separated or u was not seen before. Consequently, we either add u as a new
state (in the former case) or as a new transition (in the latter case). Overall, the
post-condition of the algorithm is trivially met.

It is clear that the pre-conditions of aot.addState and aot.addTransition
are met as well. It remains to prove that the recursive call of Extend meets
the pre-conditions of Extend. To this end, we need to prove that c(uρ) is also
a counterexample in line 6. This is shown in the next lemma.

Lemma 11 (cf. [19, Lemma 16]). Let aot = (S, T, sol, ρ) be an abstract ob-
servation table, t ∈ T , and c ∈ CΣ such that

ψ(ct)

ψ(sol(t)t)
=

ψ(c(tρ))

ψ(sol(t)(tρ))
. (1)

If Aaot(ct) 6= ψ(ct), then also Aaot(c(tρ)) 6= ψ(c(tρ)).

13

Algorithm 2 Function Extend(t) for aot = (S, T, sol, ρ)

Pre-conditions: t ∈ TΣ with Aaot(t) 6= ψ(t)
Post-conditions: return an abstract observation table aot′ = (S′, T ′, sol′, ρ′) such

that S ⊆ S′ and T ⊆ T ′ and one inclusion is strict

Decompose t into t = cu where c ∈ CΣ and u ∈ Σ(S) \ S
2: if u /∈ T then

return aot.addTransition(u, c) // u not reachable so far; add transition

4: if
ψ(cu)

ψ(sol(u)u)
6= ψ(c(uρ))

ψ(sol(u)(uρ))
then

return aot.addState(u, c) // add new state u

6: return Extend(aot, c(uρ)) // normalize and continue

Proof. Let Aaot = (Σ,S, δ, λ). By the claim in the proof of Lemma 8 it follows

that δ̂(t) = (tρ, ψaot(t)) and δ̂(tρ) = (tρ, 1) because t ∈ T . Trivially, the former

yields that δ̂(ct) is defined if and only if δ̂(c(tρ)) is defined. Moreover, if they are

defined, then there exist s ∈ S and a ∈ S \ {0} such that δ̂(ct) = (s, a · ψaot(t))

and δ̂(c(tρ)) = (s, a). Now we distinguish three cases:

– First, let ct /∈ supp(Aaot). Then clearly also c(tρ) /∈ supp(Aaot), because
Aaot(t) = ψ(t) 6= 0. Since ct is a counterexample, we have ct ∈ supp(ψ) and
thus also c(tρ) ∈ supp(ψ) by (1), which proves that Aaot(c(tρ)) 6= ψ(c(tρ)).

– Second, let ct /∈ supp(ψ). Since ct is a counterexample by assumption,
we obtain that ct ∈ supp(Aaot) and thus also c(tρ) ∈ supp(Aaot). More-
over, equation (1) yields that c(tρ) /∈ supp(ψ), which again proves that
Aaot(c(tρ)) 6= ψ(c(tρ)).

– Third, let ct ∈ supp(Aaot) ∩ supp(ψ). By the same reasoning as in the pre-
vious cases, this yields that c(tρ) ∈ supp(Aaot) ∩ supp(ψ). The observation

δ̂(ct) = (s, a ·ψaot(t)) stated in the first paragraph allows us to conclude that

Aaot(ct) = a · ψaot(t) · λ(s) =
ψ(sol(t)t)

ψ(sol(t)(tρ))
·Aaot(c(tρ))

=
ψ(ct)

ψ(c(tρ))
·Aaot(c(tρ))

by (1). Since all factors are nonzero, we obtain

Aaot(ct)

ψ(ct)
=
Aaot(c(tρ))

ψ(c(tρ))
.

By assumption, the left-hand side is different from 1, which proves that
Aaot(c(tρ)) 6= ψ(c(tρ)). ut

Consequently, the recursive call of Extend is correct. An easy size argument
(counting the subtrees of t that are not in T) can be used to show that the
recursion terminates (see [13, Lemma 5.3]). Thus we obtain the main statement
of this section.

14

Corollary 12 (of Theorem 10). If ψ can be computed by some dwta, then
Algorithm 1 terminates and returns a minimal dwta computing ψ.

4 Observation Tables

Let us briefly present the “classical” implementation of our abstract observation
table: the ‘observation table’. Several similar implementations exist; the one
presented here corresponds to the one in [19].

Definition 13 (see [19, Definition 8]). Let T ⊆ Σ(T) and C ⊇ {2} be finite
subsets of TΣ and CΣ, respectively. An observation table is a (T ×C)-matrix P
with P (t, c) = ψ(ct) for every t ∈ T and c ∈ C such that, for every t ∈ T , there
exists c ∈ C with P (t, c) 6= 0.

Given a set S ⊆ T , the pair (S,P) is an S-observation table, if

– S ⊆ Σ(S),
– s1 6≡C s2 for all s1, s2 ∈ S, and (no ≡C-equivalent rows in S)
– for every t ∈ T there exists s ∈ S such that t ≡C s. (no new rows in T)

Note that t ≡C t′ for trees t, t′ ∈ T means that the row indexed by t is
a multiple of the one indexed by t′ (by a nonzero factor). It has essentially
been shown in [12, 13, 19] that every observation table P can be turned into
an S-observation table by choosing an appropriate set S ⊆ T , and that the
operations of our abstract observation table can be implemented with the help
of observation tables. Let us quickly show how this works.

Lemma 14. Observation tables implement abstract observation tables.

Proof. Let (S,P : T ×C → S) be an S-observation table. The abstract observa-
tion table (S, T ′, sol, ρ) represented by (S,P) is given follows:

– T ′ = T ∩Σ(S),
– for every s ∈ S,

sol(s) =

{
2 if s ∈ supp(ψ)

c otherwise, for some c ∈ C such that cs ∈ supp(ψ)

(by Definition 13, such an element exists for every s ∈ S), and
– tρ = s where s ∈ S is such that t ≡C s (by the second and third condition

for S-observation trees s exists and is unique).

To verify the conditions of our abstract observation table, let t ∈ T ′.

1. If t ∈ supp(ψ) then tρ ∈ supp(ψ) because t ≡C tρ. Consequently, sol(t) = 2.
2. By definition, sol(t)(tρ) ∈ supp(ψ). Again t ≡C tρ and since sol(t) ∈ C, we

obtain sol(t)t ∈ supp(ψ).
3. Let s ∈ S\{tρ}. By the definition of ρ and the first condition of Definition 13,
t ≡C tρ and tρ 6≡C s. Since ≡C is an equivalence relation and ≡ ⊆ ≡C (see
remarks below [19, Definition 7]), this yields t 6≡C s and t 6≡ s.

15

It remains to define initialize, addTransition, and addState. Of course,
initialize returns (∅,Pε), where Pε is the empty matrix (i.e., T = C = ∅). The
function addTransition simply adds t to T and c to C (and extends P by
means of coefficient queries).4 If necessary, it completes S by adding elements
of T ∪ {t} to it until the third condition of Definition 13 is fulfilled. Similarly,
addState adds t to S and c to C, updates P , and completes S. For both
addTransition and addState, it is straightforward to check that the resulting
pair (S′,P ′) is an S′-observation table, and that the abstract observation table
it represents fulfills the post-condition of the respective function. ut

Example 15 (cont’d). Re-using the first counterexample in Example 9 as long as
possible may lead to the following observation table:

2 f ge gg2 f ge g2 f ge2
e −∞ 1 1 −∞

ge 0 1 1 1
gge 0 1 1 1

f ge ge 1 −∞ −∞ −∞

The tree f ge ge has been separated from the others “by chance”. Hence, the
table corresponds to(

{e}, f ge gg2
)

,
(
{ge, gge},2

)
,
(
{f ge ge},2

)
rather than to {({e}, f ge gg2), ({ge, gge, f ge ge},2)}. To be continued.

5 Observation Trees

We are now going to show that the abstract data type proposed in the previ-
ous section can alternatively be implemented by an observation tree. For MAT
learning of regular string languages, this idea has roughly been described earlier
by Kearns and Vazirani in [18, Chapter 8]. The expected advantage of obser-
vation trees over observation tables is that they require a smaller number of
coefficient queries to be asked. This is important if we want to make practical
use of MAT learners for recognizable tree series, because such practical use nor-
mally requires an (exact or approximate) simulation of the teacher, which means
that the complexity of answering coefficient and equivalence queries cannot be
neglected.

To understand the idea behind observation trees, it is useful to have a look
at Definition 13 and the proof of Lemma 14. Intuitively, the major purpose of
the matrix P is to be able to guarantee that condition (iii) of Definition 5 holds.
In other words, the collected contexts provide explicit evidence that trees t, t′

with tρ 6= t′ρ belong to distinct congruence classes. Suppose that, at some stage
of the algorithm, there are trees t, t′ ∈ T such that tρ = s = t′ρ, but the
teacher provides the learner with a counterexample that, via Extend, reveals a

4 In fact, C can be left unchanged if it already contains a sign of life for t.

16

Algorithm 3 Function addTransition(t, c) for an abstract observation ta-
ble (S, T, sol, ρ) represented by (S, τ)

Pre-conditions: t ∈ Σ(S) \ T and c ∈ CΣ with ct ∈ supp(ψ)
Post-conditions: return an S′-observation tree (S′, τ ′) such that S ⊆ S′ and

T ∪ {t} ⊆ T (τ ′), representing an abstract observation table aot′ = (S′, T ′, sol′, ρ′)

v ← nodτ (t)
2: if τ = ∅ then

return
(
{t},2[c[{t}]]

)
// aot′ =

(
{t}, {t}, 〈t := c′〉, 〈t := t〉

)
, c′ ∈ {c,2}

4: if v ∈ leaves(τ) then
return

(
S, τ [v ← τ(v) ∪ {t}]

)
// aot′ =

(
S, T ∪ {t}, sol, ρ〈t := s〉

)
// where S ∩ τ(v) = {s}

6: let τ/v = c′[τ1, . . . , τk] and u = c[{t}]
if {ψ(dt) | d ∈ Cτ (v)} 6= {0} then

8: c← d; u← {t} // sign of life c not needed

return
(
S ∪ {t}, τ [v ← c′[τ1, . . . , τk, u]]

)
// aot′ =

(
S ∪ {t}, T ∪ {t},

// sol〈t := c〉, ρ〈t := t〉
)

separating context c. The addition of c to the table divides the set T ′ = ρ−1(s)
into subsets T ′1, . . . , T

′
k with k ≥ 2. The addition of c may also subdivide some

of the other sets ρ−1(s′) with s′ ∈ S \ {s} as a side effect. A similar effect may
occur when a transition is added; see Example 15. Although these effects are
welcome (because they speed up convergence), they have the disadvantage of
forcing us to query the teacher for all the coefficients ψ(ct′) with t′ ∈ T . To
avoid the latter, we may organize our data in a tree, where the internal nodes
are contexts and the leaves are the sets in T/ker(ρ).

5 In the situation considered
above, when the new context c has been discovered, the leaf T ′ would be replaced
with c[T ′1, . . . , T

′
k]. Then, only the coefficients ψ(ct′) for all t′ ∈ T ′ need to be

asked for.
Formally, let Ω be the infinite ranked set such that Ω0 = fin(TΣ) and

Ωk = CΣ for every k ≥ 1. For a tree τ ∈ TΩ and v ∈ nodes(τ) \ leaves(τ),
we let Cτ (v) denote the set of contexts on the path from the root of τ to v, in-
cluding the latter. In other words, if v1 = ε, . . . , vn = v are the prefixes of v, then
Cτ (v) = {τ(v1), . . . , τ(vn)}. Below, we also use the notation T (τ) to designate
the set

⋃
v∈leaves(τ) τ(v).

Definition 16. A tree τ ∈ TΩ is an observation tree if

1. τ(ε) ∈ {2, ∅},
2. for all v ∈ nodes(τ) \ leaves(τ), if τ/v = c[τ1, . . . , τk], then

T (τ/v)/Cτ (v) = {T (τ1), . . . , T (τk)} , and

3. for all v ∈ leaves(τ) and t ∈ τ(v), Cτ (v) contains a sign of life for t.

5 T/ker(ρ) denotes the quotient of T under the equivalence {(t, t′) ∈ T 2 | tρ = t′ρ}. For
technical convenience, we let T/ker(ρ) = {∅} in the special case where T = ∅.

17

Algorithm 4 Function addState(t, c) for an abstract observation table
(S, T, sol, ρ) represented by (S, τ)

Pre-conditions: t ∈ T and c ∈ CΣ with
ψ(ct)

ψ(sol(t)t)
6= ψ(c(tρ))

ψ(sol(t)(tρ))
Post-conditions: return an S′-observation tree (S′, τ ′) such that S ∪ {t} ⊆ S′ and

T ⊆ T (τ ′), representing an abstract observation table aot′ = (S′, T ′, sol′, ρ′)

let nodτ (t) = v = ui with i ∈ N and {T1, . . . , Tk} = τ(v)/≡Cτ (u)∪{c}
2: choose s1 ∈ T1, . . . , sk ∈ Tk, such that {t, tρ} ⊆ {s1, . . . , sk}

return
(
S ∪ {s1, . . . , sk}, τ [v ← c[T1, . . . , Tk]]

)
// aot′ =

(
S ∪ {s1, . . . , sk}, T, sol′, ρ′

)
, where

// sol′ = sol〈s1 := sol(t), . . . , sk := sol(t)〉,
// ρ′(ti) = si for i ∈ [k] and ti ∈ Ti, and
// ρ′(u) = uρ for u ∈ T \ τ(v)

Given a set S such that S ⊆ T (τ) ⊆ Σ(S), the pair (S, τ) is an S-observation
tree if τ = ∅ or |τ(v) ∩ S| = 1 for all v ∈ leaves(τ).

Let us now see how observation trees can implement abstract observation
tables. For this, let (S, τ) be an S-observation tree. We define the abstract ob-
servation table (S, T, sol, ρ) represented by (S, τ), as follows. The set T is given
by T (τ). By the second condition, for every tree t ∈ T , there is a unique leaf u of τ
such that t ∈ τ(u). Henceforth, we denote u by nodτ (t). Now, for every s ∈ S,
define sol(s) = τ(v) where v is the shortest prefix of nodτ (s) such that τ(v) is a
sign of life for s. By the third condition, v exists, and by the first condition it
is equal to ε (yielding sol(s) = 2) if s ∈ supp(ψ). Finally, the definition of ρ is
straightforward: tρ is the unique element of τ(nodτ (t)) ∩ S for every t ∈ T .

It should be clear that the tuple (S, T, sol, ρ) constructed in this way fulfils
the conditions of Definition 5. It remains to give implementations of initialize,
addTransition, and addState. Unsurprisingly, initialize returns (S, τ) with
S = ∅ and τ = ∅. The functions addTransition and addState are given in
Algorithms 3 and 4, respectively. In their definitions, we use the following exten-
sion of nodτ . For a tree t ∈ TΣ , let nodτ (t) be the maximal node v ∈ nodes(τ)
(with respect to |v|) such that t ≡Cτ (u) t

′ for all t′ ∈ T (τ/v) and all proper
prefixes u of v. Note that v is uniquely determined, and that the requirement
“t ≡Cτ (u) t

′ for all t′ ∈ T (τ/v)” is equivalent to “t ≡Cτ (u) t
′ for a t′ ∈ T (τ/v)”

(both by the second condition). The latter makes it possible to find nodτ (t) ef-
ficiently. The reader should also notice that the extension of nodτ is consistent
with the earlier definition of nodτ (t) for t ∈ T .

The last case distinction in addTransition is needed only for efficiency
reasons; i.e., to keep the observation tree small. If efficiency is not a concern, then
(S, τ [v ← c′[τ1, . . . , τk, c[{t}]]]) can be returned in either case. In fact, a similar
case distinction could be made in line 3, because c is not needed if t ∈ supp(ψ).

Example 17 (cont’d). If we use observation trees when processing the counterex-
amples of Example 9 (again, always re-using counterexamples as long as possi-
ble), we get the sequence of observation trees depicted in Figure 3.

18

2

f ge gg2

{e}

{ge, gge, f ge ge}

(counterexample 1: f ge gge)

2

f ge gg2

{e}

{ge, gge, f ge ge, f e e}

(counterexample 2: f e e)

2

f ge gg2

{e}

g2

{ge, gge} {f ge ge, f e e}

(counterexample 3: gf e e)

2

f ge gg2

{e}

g2

f 2 ge

{ge} {gge}

{f ge ge, f e e}

(counterexample 4: f ggge ge)

2

f ge gg2

{e}

g2

f 2 ge

{ge} {gge}

{f e e, f ge ge, f gge ge,
f gge gge, f ge gge, f f e e f e e}

(counterexample 5: f f f gge ge f gge gge f ge gge)

Fig. 3. Observation trees encountered when using the counterexamples of Example 9.

Lemma 18. Observation trees implement abstract observation tables.

Proof. It sufffices to show that addTransition and addState are correct; i.e.,
that they return S′-observation trees (S′, τ ′) with S ⊆ S′ and T ∪{t} ⊆ T (τ ′) in
case of addTransition, and S ∪{t} ⊆ S′ and T ⊆ T (τ ′) in case of addState.

Correctness of addTransition. The return statement in line 3 is obvi-
ously correct, because c is a sign of life for t. If the condition in line 4 holds, and
u is the parent node of v, then t ≡Cτ (u) t

′ for all t′ ∈ τ(v). Hence, it follows that
the addition of t to τ(v) does not violate any of the requirements imposed on
S-observation trees. Finally, consider the third case. By the definition of nodτ (t),
for all t′ ∈ τ(v), it holds that t 6≡Cτ (v) t

′ but t 6≡Cτ (u) t
′ for all proper prefixes u

of v. Consequently, (S ∪ {t}, τ [v ← c′[τ1, . . . , τk, {t}]]) satisfies all conditions
imposed on S-observation trees, with the possible exception of condition 3. If
condition 3 is violated, then (S∪{t}, τ [v ← c′[τ1, . . . , τk, c[{t}]]]) satisfies it, since
c is a sign of life for t. Clearly, the remaining conditions are not affected by the
insertion of c. Hence, the return statement in line 9 is correct.

Correctness of addState. Let (S′, τ ′) be the pair returned by the algo-
rithm. Concerning line 1, notice first that v 6= ε, because T 6= ∅ and, thus,
τ(ε) = 2. The pre-condition ensures that t 6≡Cτ (u)∪{c} tρ; i.e., t ∈ Ti and tρ ∈ Tj

19

for distinct i, j ∈ [k] in line 1. Hence, s1, . . . , sk can be chosen as required in line 2,
which means that (S′, τ ′) with S′ = S∪{s1, . . . , sk} and τ ′ = τ [v ← c[T1, . . . , Tk]]
satisfies condition 2 of Definition 16. Further, condition 3 is satisfied since τ sat-
isfies it, T (τ ′) = T = T (τ), and Cnodτ (t′) ⊆ Cnodτ′ (t

′) for all t′ ∈ T . Hence,
(S′, τ ′) is an S′-observation tree. ut

Let us roughly compare the size of an observation table P , and the number
of coefficient queries required to build it, with the corresponding numbers for an
observation tree τ . Clearly, the number of rows of P is equal to the cardinality
of T (τ), because both are equal to |T |. For non-trivial cases, the number K of
columns of P lies between 2 and |S|. These bounds are sharp. On the one hand,
two contexts may separate any number of equivalence classes from each other.
On the other hand, |S| contexts may be needed to separate the |S| equivalence
classes from each other. Thus, P has between 2|T | and |S| · |T | cells, requiring
as many coefficient queries.

When using an observation tree τ , the number of coefficient queries required
to build it is determined by the depth d at which the trees of T reside in τ .
More precisely, let d(t) = |nodτ (t)| for t ∈ T . Since a coefficient query has to
be asked for each node v such that v is a proper prefix of nodτ (t), the overall
number of coefficient queries used to build τ is D(τ) =

∑
t∈T d(t). From the

observation that d(t) ≤ |S|+ 1 for all t ∈ T , we obtain the worst-case estimation
D(τ) ≤ (|S| + 1) · |T |, which is essentially the same as above. In the best case,
d(t) = 2 for all t ∈ T , again yielding the same estimation as above.

So, why should τ have an advantage over P ? The reason is that, in most cases,
one may expect the average of all d(t) to be considerably smaller than the num-
ber K of columns of P . This is because the contexts indexing the columns of P
must simultaneously separate all trees in S from each other, whereas the contexts
in Cτ (u), for a leaf v = ui of τ , only need to separate the one tree of nodτ (v) ⊆ S
from the remaining ones. In other words, we expect davg = 1

|T |
∑
t∈T d(t) to

be considerably smaller than K, and thus, D(τ) = davg|T | to be considerably
smaller than K|T |.

Of course, in concrete cases, there are many factors that can affect davg.
A thorough study of davg and its relation with K is beyond the scope of this
article. Such a study should take into account the properties of the tree series ψ
to be learned and suitable probabilistic assumptions regarding the behaviour of
the MAT.

6 Experiments

As established in Section 5, observation trees and observation tables are both
proper realizations of the abstract observation table (aot) of Section 3. The ter-
mination and correctness of the learner are thus guaranteed when instantiated
with either data structure. As argued in Section 5, observation trees are expected
to have an advantage over observation tables as the former should usually require
fewer coefficient queries, but only slightly more equivalence queries, than the lat-
ter. To confirm this expectation, we implemented the relevant data structures

20

and algorithms in Java and conducted a series of experiments.6 In particular, the
aot is implemented as an abstract class, the learner as an algorithm instantiated
with an aot, and the observation tree and observation table as data structures
realizing the aot. The teacher is implemented for various restricted and unre-
stricted weighted tree automata over semifields. From here on, we refer to the
learner as Ltable

∗ when instantiated with an observation table, and as Ltree
∗ when

instantiated with an observation tree.
In our experiments, we record both the number of coefficient and equiva-

lence queries — the latter because one may suspect that Ltable
∗ , if it by chance

receives contexts separating many trees from each other, may use fewer equiva-
lence queries than Ltree

∗ .

6.1 Results and discussion

We investigate the performance of Ltable
∗ and Ltree

∗ with respect to several families
of tree series, each parameterized by a natural number. The formal definitions of
the families are given below. To verify that the maximal rank of the underlying
alphabet has little influence on the relative performance of the learners, the last
two families in the list are defined over variable-rank alphabets.

– The tree series Sizen, n ∈ N, is defined over the arctic (or max-plus) semiring
(N ∪ {−∞},max,+,−∞, 0) and the ranked alphabet Σ = {a(0), f (2)}. For
every t ∈ TΣ ,

Sizen(t) =

{
n if n = |nodes(t)|, and

−∞ otherwise .

– The tree series Numbern, n ∈ N, over R and Σ = Σ0 ∪Σ2, where Σ0 = [n]
and Σ2 = {f}, is such that for every t ∈ TΣ ,

Numbern(t) =


∏

v∈leaves(t)

t(v) if hg(t) ≥ 1, and

0 otherwise .

– The tree series Quartern, n ∈ N, over the field R of reals and Σ = Σ0∪Σ2,
where Σ0 = [dn/4e] and Σ2 = {f}, is such that for every t ∈ TΣ ,

Quartern(t) =

{
1 if t ∈ T{f,i}, i ∈ Σ0, and hg(t) ≡ 1 (mod n), and

0 otherwise .

– The tree series Powern, n ∈ N, over R and Σ = Σ0 ∪Σ2, where Σ0 = 2[n]

and Σ2 = {f}, is such that for every t ∈ TΣ ,

Powern(t) =


1 if

⋃
v∈leaves(t)

t(v) = [n], and

0 otherwise .

6 The source files can be downloaded from http://www.cs.umu.se/∼johanna/adt/.

21

– The tree series Girdn, n ∈ N, over R and Σ = Σ0 ∪Σn, where Σ0 = {a, b}
and Σn = {f}, is such that for every t ∈ TΣ ,

Girdn(t) =

{
1 if hg(t) = 5 and |t|b = 1 , and

0 otherwise .

– The tree series Ordern, n ∈ N, over the arctic semiring and Σ = Σ0 ∪Σn,
where Σ0 = Σn = {f, g}, is such that for every t ∈ TΣ ,

Ordern(t) =


|t| if @v ∈ nodes(t) and i, j ∈ N such that

i < j, t(vi) = g, and t(vj) = f , and

0 otherwise .

The number of coefficient and equivalence queries posed by Ltable
∗ and Ltree

∗
when inferring the tree series are plotted in Figures 4–6. In all experiments,
Ltree
∗ requires fewer coefficient queries than Ltable

∗ . The only example in which it
makes more equivalence queries than Ltable

∗ is given by the tree series Power. To
learn Power, Ltree

∗ needed 3–4% more equivalence queries. However, the overall
computation time (including the time consumed by the teacher) was still faster
than Ltable

∗ . In our implementation, the overhead of using observation trees is
larger than for observation tables, so although Ltree

∗ is typically faster than Ltable
∗ ,

this was not the case for the tree series Number. Here, the savings in terms of
coefficient queries was too small to make up for the additional overhead, so
Ltree
∗ ran slightly slower than Ltable

∗ .
Let us, finally, discuss how we implemented the teacher. In our implementa-

tion, it is initialized with a dwta A computing the target tree series. To answer
a coefficient query for a tree t, the teacher simply runs A on t. To answer an
equivalence query; i.e., deciding whether A is equivalent to some dwta B, the
teacher searches for a tree on which A and B disagree. It is easy to see that if
A and B are dwta over the Boolean semiring, or are all-accepting dwta (meaning
that every final weight is non-zero) over a semifield, then such a tree can, if it
exists, be found in time O(nrmr) where r is the maximum rank of the ranked
set, and n and m are the number of states of A and B, respectively. It was shown
in [8] that the equivalence problem for probabilistic string automata over fields
is in time O(|Σ|(n + m)3). When the weights are taken from a semifield, the
problem can, as we shall see in the subsequent section, be solved in time O(rnm)
by an algorithm based on the pumping lemma of [6, Corollary 5.6].

6.2 Deciding the equivalence problem for dwta over semifields

Let us, finally, discuss how to decide the equivalence problem for dwta over
semifields (and how to obtain a counterexample if the answer is negative), since
such an algorithm is obviously needed to implement the teacher.

In the following, for a function f : A → B1 × B2, we let fi (i ∈ [2]) denote
the composition of f with the projection onto Bi. In particular, for a total dwta

22

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

10

20

30

40

50

60

70

10 15 20 25 30 35 40

Fig. 4. The outcome of applying Ltable
∗ and Ltree

∗ to the tree series Size (left plot) and
Number (right plot). The x-axis is labeled with the size of the target dwta; the y-axis
with the number of queries posed. The curves are in turn (from above to below): the
number of coefficient queries posed by Ltable

∗ ; the number of coefficient queries posed by
Ltree
∗ ; and the number of equivalence queries posed by Ltable

∗ and Ltree
∗ (which coincide).

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

Fig. 5. The outcome of applying Ltable
∗ and Ltree

∗ to the tree series Quarter (left plot)
and Power (right plot). Curves and labels are as in Figure 4.

23

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

50

100

150

200

250

300

350

400

450

2 4 6 8 10 12

Fig. 6. The outcome of applying Ltable
∗ and Ltree

∗ to the tree series Rank (left plot) and
Gird (right plot). Curves and labels are as in Figure 4.

(Σ,P, δ, λ), δ1 : Σ(P) → P and δ2 : Σ(P) → S \ {0} are the (total) functions
such that δ(u) = (δ1(u), δ2(u)) for every u ∈ Σ(P).

Let A = (Σ,P, δ, λ) and B = (Σ,Q, η, ν) be total dwta. By [7, Theorem 6.1.6]
we can suppose, without loss of generality, that A and B have Boolean final
weights (i.e., λ : P → {0, 1} and ν : Q → {0, 1}). We first construct the direct
product total dwta A ·B−1 = (Σ,P ×Q, δ′, λ′) by

δ′(f [〈p1, q1〉, . . . , 〈pk, qk〉]) = (〈δ1(f [p1, . . . , pk]), η1(f [q1, . . . , qk])〉,
δ2(f [p1, . . . , pk]) · η2(f [q1, . . . , qk])−1)

and

λ′(〈p, q〉) =

{
1 if λ(p) = 1 = ν(q)

0 otherwise.

This construction (without the inverses) is taken from [6, Definition 3.7]. Next,

we observe that if any state 〈p, q〉 with λ(p) 6= ν(q) is reachable (i.e., δ̂′1(t) = 〈p, q〉
for some t ∈ TΣ), then clearly A and B are not equivalent because A(t) 6= B(t)
for any tree t that reaches this state. If such a pair does not exist, we can
eliminate all states 〈p, q〉 with λ(p) 6= ν(q) from A · B−1 without changing the
tree series computed. Moreover, in this case, for every t ∈ TΣ

(A ·B−1)(t) =

{
0 if A(t) = 0 = B(t)

A(t) ·B−1(t) otherwise

(essentially by [6, Lemma 3.8]). Thus, to decide whether A and B are equivalent,
it is sufficient to decide whether this reduced total dwta computes a Boolean tree

24

series (i.e., all coefficients are either 0 or 1). This can (effectively) be decided
by [6, Corollary 6.9].

In practice, we often find ourselves working with partial automata, and in
these cases it is, of course, sensible to use a decision algorithm that avoids pro-
cessing dead states in the product automaton (and their associated transitions),
because the transition table of a partial dwta may be exponentially smaller than
the corresponding total dwta. We therefore conclude with an algorithm that op-
erates on the same principle, but iterates over transitions rather than trees to
take advantage of sparsity in the transition table.

In the following, A = (Σ,P, δ, λ) and B = (Σ,Q, η, ν) are partial dwta with
Boolean final weights. It is computationally easy to decide if A and B have the
same support. Since we operate in a semifield, the support is regular, so it suffices
to test the equality of two regular languages. Moreover, the involved automata
already yield deterministic unweighted tree automata for the support by setting
every nonzero weight to one, so the size of the deterministic unweighted automata
for the support is the same as the size of the input automata. Thus, the equality
of the supports can be decided by the classical equivalence test for deterministic
tree automata, running in time O(|A| · |B|). Thus, we may henceforth assume
that A and B have the same support, and that A and B have been purged of
useless (i.e., unreachable or dead) states.

Lemma 19. Let A and B be partial dwta that contain no useless states, and
are such that supp(A) = supp(B). The automata A and B are equivalent iff
for every p ∈ P and q ∈ Q there is a constant ap,q ∈ S, such that, for all

t ∈ δ̂−11 (q) ∩ η̂−11 (p),

(i) ap,q = δ̂2(t)
η̂2(t)

, and

(ii) if p (and thus q) is final, then ap,q = 1.

Proof. For the “if” direction, we combine conditions (i) and (ii), and thus obtain

that if p and q are final states, then δ̂2(t) = η̂2(t) for all t ∈ δ̂−11 (p) ∩ η̂−11 (q).
For the opposite direction, let A and B be equivalent. Consider p ∈ P , q ∈ Q,

and t, u ∈ δ̂−11 (p) ∩ η̂−11 (q). To establish (i), we have to show that δ̂2(t)
η̂2(t)

= δ̂2(u)
η̂2(u)

.

Since A contains no dead states and supp(A) = supp(B), there is a sign of life
c ∈ CΣ for t and u in both A and B. Moreover,

δ̂2(ct)

δ̂2(t)
= δ̂2(cp) =

δ̂2(cu)

δ̂2(u)
and

η̂2(ct)

η̂2(t)
= η̂2(cq) =

η̂2(cu)

η̂2(u)
,

because δ̂1(t) = p = δ̂1(u) and η̂1(t) = q = η̂1(u). We can now compute as
follows:

δ̂2(t)

η̂2(t)
=
δ̂2(ct)

δ̂2(cp)
· η̂2(cq)

η̂2(ct)
=
δ̂2(ct) · δ̂2(u)

δ̂2(cu)
· η̂2(cu)

η̂2(ct) · η̂2(u)

=
δ̂2(ct) · δ̂2(u) · η̂2(cu)

η̂2(ct) · η̂2(u) · δ̂2(cu)
=
δ̂2(u)

η̂2(u)

25

because δ̂2(ct)
η̂2(ct)

= 1 = η̂2(cu)

δ̂2(cu)
since A and B are equivalent and have Boolean final

weights. This last observation also shows that the second condition holds. ut

Algorithm 5 traverses the transitions of the product automaton A · B−1 to
compute a constant ap,q ∈ S for each pair of states 〈p, q〉 ∈ P × Q that is

reachable; i.e., each pair with δ̂−11 (p)∩ η̂−11 (q) 6= ∅. (Note that the constants ap,q
for unreachable pairs of states are irrelevant, as they can be chosen arbitrarily.)
For this purpose, the algorithm maintains a partial mapping τ that assigns
to each pair of states 〈p, q〉 ∈ P × Q found reachable a constant in S that is
the current candidate for ap,q. In the algorithm, the domain of τ is denoted
by dom(τ). The algorithm starts with the totally undefined mapping ⊥ and
terminates when it discovers a violation of Lemma 19 or has reached a stable
state.

Algorithm 5 Decide if A and B are equivalent.

Pre-conditions: A = (Σ,P, δ, λ) and B = (Σ,Q, η, ν) are partial dwta with Boolean
final weights, contain no useless states, and are such that supp(A) = supp(B).

τ ← ⊥
2: repeat

unchanged ← true
4: for all 〈p, q〉 ∈ P ×Q such that ∃f ∈ Σk and 〈p1, q1〉, . . . , 〈pk, qk〉 ∈ dom(τ) with

δ1(f [p1, . . . , pk]) = p and η1(f [q1, . . . , qk]) = q do

ap,q ← δ2(f [p1, . . . , pk]) · η2(f [q1, . . . , qk])−1 · τ(〈p1, q1〉) · . . . · τ(〈pk, qk〉)
6: if p is final and ap,q 6= 1 then

return false

8: if 〈p, q〉 6∈ dom(τ) then
τ(〈p, q〉)← ap,q

10: unchanged ← false

else if τ(〈p, q〉) 6= ap,q then
12: return false

until unchanged
14: return true

Lemma 20. Algorithm 5 decides if A and B are equivalent.

Proof. Termination is obvious, because every execution of the main loop except
the last enlarges dom(τ). We show that Algorithm 5 returns true if and only if
there is, for every p ∈ P and q ∈ Q, a constant ap,q ∈ S that fulfills Conditions
(i) and (ii) of Lemma 19.

Suppose that Algorithm 5 returns false. This can happen in two cases.

– In the first case (lines 11 and 12), the algorithm has reached the same pair

of states 〈p, q〉 on distinct trees s and t, such that δ̂2(t)
η̂2(t)

6= δ̂2(s)
η̂2(s)

. This violates

Condition (i) of Lemma 19.

26

– In the second case (lines 6 and 7), the algorithm has discovered that a pair of

final states 〈p, q〉 are reachable on a tree t such that δ̂2(t)
η2(t)

6= 1, which violates

Condition (ii) of Lemma 19.

For the other direction, suppose that the algorithm returns true after some
iterations of the main loop. For a contradiction, assume that there is a minimal

tree t = f [t1, . . . , tk] ∈ δ̂−11 (p)∩ η̂−11 (q) such that δ̂2(t)
η̂2(t)

6= τ(〈p, q〉), which includes

the possibility that τ(〈p, q〉) is undefined. Let pi = δ̂1(ti) and qi = η̂1(ti) for

all i ∈ [k]. By the minimality assumption, we have δ̂2(ti)
η̂2(ti)

= τ(〈pi, qi〉). Now,

consider the last execution of the body of the main loop. At some point during
that execution, the body of the for all loop will be executed with the given choice
of 〈p, q〉, f , and 〈p1, q1〉, . . . , 〈pk, qk〉. Since neither the condition in line 6 nor the
one in line 8 is fulfilled (the latter because dom(τ) does not change, according to
the termination condition of the main loop), line 11 is reached. However, since
line 12 is not reached, this means that

= ap,q

= wA · w−1B · τ(〈p1, q1〉) · . . . · τ(〈pk, qk〉)

= (wA · δ̂2(t1) · . . . · δ̂2(tk)) · (wB · η̂2(t1) · . . . · η̂2(tk))−1

=
δ̂2(t)

η̂2(t)
,

contradicting the assumption that δ̂2(t)
η̂2(t)

= τ(〈p, q〉). ut

Lemma 21. Algorithm 5 executes in time O(|A||B|).

Proof. For an efficient implementation, we begin by calculating a sign of life
for every state in the smaller of the two automata. This is done by comput-
ing representative trees for each state, at a cost of O(min(|A|, |B|)) operations,
and then searching for the shortest path from each state to an accepting state,
consuming another O(min(|P |2, |Q|2)) ≤ O(min(|A|2, |B|2)) operations. In the
worst case, the main loop must traverse every transition in A · B−1, but since
this is sufficient, the complexity of this loop, and of the entire algorithm, is
O(|A ·B−1|) = O(|A| · |B|). ut

We finally note that Algorithm 5 can easily be extended to return a coun-
terexample whenever A and B are found to be different. For this, it suffices to
store, along with each of the values τ(〈p, q〉), a corresponding tree tp,q such that
δ̂2(tp,q)
η̂2(tp,q)

= τ(〈p, q〉). Then the two return statements in lines 7 and 12 can be

adapted in the obvious way to return a counterexample.

Acknowledgment We thank the referees for their useful comments.

27

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Inform.
and Comput., 75(2):87–106, 1987.

[2] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,
1987.

[3] Dana Angluin. Queries revisited. In Proc. 12th Int. Conf. Algorithmic Learning
Theory, volume 2225 of LNCS, pages 12–31. Springer, 2001.

[4] Jean Berstel and Christophe Reutenauer. Recognizable formal power series on
trees. Theoret. Comput. Sci., 18(2):115–148, 1982.

[5] Björn Borchardt. The Myhill-Nerode theorem for recognizable tree series. In
Proc. 7th Int. Conf. Developments in Language Theory, volume 2710 of LNCS,
pages 146–158. Springer, 2003.

[6] Björn Borchardt. A pumping lemma and decidability problems for recognizable
tree series. Acta Cybernet., 16(4):509–544, 2004.

[7] Björn Borchardt. The Theory of Recognizable Tree Series. PhD thesis, Technische
Universität Dresden, 2005.

[8] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence
of probabilistic automata. J. Comput. System Sci., 18(4):761–779, 2007.

[9] Colin de la Higuera and José Oncina. Learning stochastic finite automata. In
Proc. 7th Int. Coll. Grammatical Inference, volume 3264 of LNCS, pages 175–
186. Springer, 2004.

[10] Frank Drewes. MAT learners for recognizable tree languages and tree series. Acta
Cybernet., 19(2):249–274, 2009.

[11] Frank Drewes and Johanna Högberg. Extensions of a MAT learner for regular tree
languages. In Proc. 23rd Annual Workshop of the Swedish Artificial Intelligence
Society, pages 35–44, 2006.

[12] Frank Drewes and Johanna Högberg. Query learning of regular tree languages:
How to avoid dead states. Theory of Comput. Syst., 40(2):163–185, 2007.

[13] Frank Drewes and Heiko Vogler. Learning deterministically recognizable tree
series. J. Automata, Languages and Combinatorics, 12(3):332–354, 2007.

[14] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree transducers. In
Werner Kuich, Manfred Droste, and Heiko Vogler, editors, Handbook of Weighted
Automata, chapter 9, pages 313–403. Springer, 2009.

[15] Jonathan S. Golan. Semirings and their Applications. Kluwer Academic, Dor-
drecht, 1999.

[16] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[17] Amaury Habrard and Jose Oncina. Learning multiplicity tree automata. In
Proc. 8th Int. Coll. Grammatical Inference, volume 4201 of LNCS, pages 268–
280. Springer, 2006.

[18] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

[19] Andreas Maletti. Learning deterministically recognizable tree series — revisited.
In Proc. 2nd Int. Conf. Algebraic Informatics, volume 4728 of LNCS, pages 218–
235. Springer, 2007.

[20] José Oncina. Using multiplicity automata to identify transducer relations from
membership and equivalence queries. In Proc. 9th Int. Coll. Grammatical Infer-
ence, volume 5278 of LNCS, pages 154–162. Springer, 2008.

28

[21] Yasubumi Sakakibara. Learning context-free grammars from structural data in
polynomial time. Theoret. Comput. Sci., 76(2–3):223–242, 1990.

[22] Ehud Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Disserta-
tion. MIT Press, 1983.

[23] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
1984.

29

