
© Springer Nature Switzerland AG 2021
N. Moreira and R. Reis (Eds.): DLT 2021, LNCS 12811, pp. 66–77, 2021.
https://doi.org/10.1007/978-3-030-81508-0 6

Compositions of Constant Weighted
Extended Tree Transducers

Malte Blattmann[0000−0003−2282−0723] and Andreas Maletti[0000−0003−3202−0498]

Universität Leipzig, Faculty of Mathematics and Computer Science, PO Box 100 920,
04009 Leipzig, Germany

malteblattmann@gmx.de, andreas.maletti@uni-leipzig.de
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1 Introduction

Weighted tree transducers [5,7,16] are a straightforward generalization of clas-
sical tree transducers [23,24,25] such that each rule carries a weight from a
semiring. They compute a weighted relation on trees, which assigns a weight
to each pair of an input and an output tree. Overall, they thus allow a much
more fine-grained classification of the input-output relation. A good overview of
weighted tree transducers is presented in [8].

The weighted extended tree transducers [12,18,20] have been introduced to
model certain syntax-based translation systems in machine translation [15] and
have also been utilized in that capacity [12]. Whereas (non-extended) tree trans-
ducers permit only a single input symbol in the left-hand side of each rule, the
extended variants allow arbitrary many input symbols in the left-hand side of
their rules, which makes the model more symmetric. In the unweighted case, this
asymmetry was noted much earlier and has been thoroughly investigated [3,2].

In this contribution we study compositions of certain weighted extended
tree transducers. Composition is one of the basic operations on relations and
can straightforwardly be extended to weighted relations. More precisely, given
weighted relations τ1 : A × B → Q and τ2 : B × C → Q with weights in the
rational numbers Q, their composition is the weighted relation τ1 ; τ2 given for
every a ∈ A and c ∈ C by

(τ1 ; τ2)(a, c) =
∑
b∈B

τ1(a, b) · τ2(b, c) .
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Note that this composition is essentially a matrix product. Compositions of
weighted relations naturally occur in the development of speech recognition
systems [22], where the standard methodology composes from right-to-left a
language-model transducer, a lexicon transducer, a context-dependency trans-
ducer, and a final HMM transducer each computing corresponding weighted
relations. While the transducers for speech recognition usually work on strings,
the transducers in syntax-based machine translation operate on trees [27] and
individual components of the cascade reorder the subtrees of the input, insert
additional subtrees, and finally translate the lexical entries. Representing the
composed weighted relation computed by the cascade by just a single trans-
ducer offers significant advantages [1,12,21].

We continue the investigation started in [17] and confirm [17, Conjecture 11].
To this end, we show how to compose an arbitrary constant weighted extended
tree transducer with a linear weighted top-down tree transducer. In other words,
we require that the first transducer is constant, which is a semantic property and
essentially states that a certain weight total does not depend on the actual input
tree, but only on the state of the transducer. The second transducer needs to
be linear (i.e., is not allowed to copy subtrees) and non-extended (i.e., handles a
single input symbol in each rule). However, we place no constraints on the utilized
weight structure. Our construction works for any commutative semiring [14,11].
Both main features, commutativity and distributivity, of the weight structure are
heavily utilized in the construction. The history and corresponding unweighted
composition results are discussed at length in [17].

Besides the construction, we offer an illustration of the problem that occurs
in the standard composition construction of [17] and motivate the adjustment in
this manner. A proof sketch for the correctness of the composition construction
is provided. Since the constant property is semantic, it is not trivially decidable
whether a given transducer is constant. In the final section, we explore a few
cases, in which decidability of the constant property can be established.

2 Preliminaries

The nonnegative integers are N, and we let [n] = {i ∈ N | 1 ≤ i ≤ n} for
every n ∈ N. Given relations R ⊆ A×B and S ⊆ B×C their composition R ;S
is R ; S =

{
(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S

}
. The inverse R−1,

domain dom(R), and range ran(R) of R are R−1 = {(b, a) | (a, b) ∈ R},

dom(R) =
{
a ∈ A | ∃b ∈ B : (a, b) ∈ R

}
and ran(R) = dom(R−1) .

Finite sets are also called alphabets, and for any alphabet A we let A∗ be the
set of all finite words over A including the empty word ε. The length of a
word w ∈ A∗ is written as |w|, and for all k ∈ N we let A≤k = {w ∈ A∗ | k ≥ |w|}
be the words of length at most k.

A ranked alphabet (Σ, rk) consists of an alphabet Σ together with a map-
ping rk: Σ → N that assigns a rank to each element of Σ. For every k ∈ N we
let Σ(k) = {σ ∈ Σ | rk(σ) = k} be the set of all symbols of Σ that have rank k.
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We write σ(k) to indicate that rk(σ) = k. To simplify the notation, we often
refer to the ranked alphabet (Σ, rk) by Σ alone. The set TΣ(A) of all trees is the
smallest set T such that A ⊆ T and σ(t1, . . . , tk) ∈ T for all k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ T . Instead of TΣ(∅) we simply write TΣ . Given a finite set Q and a
subset T ⊆ TΣ(A), we let Q(T ) = {q(t) | q ∈ Q, t ∈ T} ⊆ TΣ∪Q(A), where each
element of q is considered as a unary symbol. The positions of a tree t ∈ TΣ(A)
are inductively defined by pos(a) = {ε} for all a ∈ A and

pos
(
σ(t1, . . . , tk)

)
= {ε} ∪

{
iw | i ∈ [k], w ∈ pos(ti)

}
for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(A). Note that the positions pos(t)
are totally ordered by the usual lexicographic order ≤lex. We write t(w), t|w,
and t[u]w to refer to the symbol at position w ∈ pos(t) in the tree t ∈ TΣ(A),
the subtree of t rooted in w, and the tree obtained from t by replacing the subtree
rooted in w by the tree u ∈ TΣ(A), respectively. Formally, a(ε) = a|ε = a and
a[u]ε = u for all a ∈ A and for t = σ(t1, . . . , tk)

t(ε) = σ t(iw) = ti(w) t|ε = t t|iw = ti|w
t[u]ε = u t[u]iw = σ(t1, . . . , ti−1, ti[u]w, ti+1, . . . , tk)

for all k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ(A), i ∈ [k], and w ∈ pos(ti). Given
labels L ⊆ Σ ∪ A we let posL(t) = {w ∈ pos(t) | t(w) ∈ L} be the set of posi-
tions of t labeled by elements of L, and posa(t) = pos{a}(t) for all a ∈ A. We
use the countable set X = {xi | i ∈ N} of (formal) variables and its finite sub-
sets Xk =

{
xi | i ∈ [k]

}
for every k ∈ N. We let var(t) =

{
x ∈ X | posx(t) 6= ∅

}
for every tree t ∈ TΣ(A ∪ X). The tree t is called linear if |posx(t)| ≤ 1 for
all x ∈ X. For every V ⊆ X, we let CΣ(V ) =

{
t ∈ TΣ(V ) | var(t) = V, t linear

}
be the set of those trees that contain exactly one position labeled v for ev-
ery v ∈ V . Given a substitution θ : V → TΣ(A ∪ X) with V ⊆ X finite, its
application to a tree t ∈ TΣ(A ∪X) is given by vθ = θ(v) for all v ∈ V , xθ = x
for all x ∈ X \ V , aθ = a for all a ∈ A, and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ) for
all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(A ∪X). For every t ∈ TΣ we let

match(t) =
{

(c, θ) | k ∈ N, c ∈ CΣ(Xk), θ : Xk → TΣ , t = cθ
}
.

A (commutative) semiring [14,11] is an algebraic structure (S,+, ·, 0, 1), in
which (S,+, 0) and (S, ·, 1) are both commutative monoids, s ·0 = 0 for all s ∈ S,
and multiplication · distributes over addition +. The semiring is idempotent
if 1 + 1 = 1. Moreover, the semiring is zero-sum free if s+ s′ = 0 implies s = 0
for all s, s′ ∈ S, and zero-divisor free if s·s′ = 0 implies 0 ∈ {s, s′} for all s, s′ ∈ S.
Note that every idempotent semiring is zero-sum free. If there exists (−1) ∈ S
such that 1 + (−1) = 0, then S is a ring. Finally, given a mapping f : A → S,
we let supp(f) = {a ∈ A | f(a) 6= 0}.

3 Weighted Extended Tree Transducers

Let us start by introducing the main tree transducer model, the weighted ex-
tended tree transducer [12,18,20], for which we want to study composition. It
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is the weighted version of the bimorphism model studied in [3,2]. For conve-
nience we use the minor syntactic variant of [17, Definition 3], which introduces
an additional indirection via rule identifiers. For the rest of the contribution,
let (S,+, ·, 0, 1) be an arbitrary commutative semiring.

Definition 1 (see [17, Definition 3]). A weighted extended tree transducer
(for short: wxtt) is a tuple (Q,Σ,∆,Q0, I, χ), in which

– Q is a finite set of states
– Σ and ∆ are ranked alphabets of input and output symbols, respectively,

such that Q ∩ (Σ ∪∆) = ∅,
– Q0 ⊆ Q is a set of initial states,
– I is a finite set of rule identifiers, and
– χ : I → Q

(
TΣ(X)

)
× S × T∆

(
Q(X)

)
assigns a weighted rule χ(i) = 〈`, s, r〉

to each identifier i ∈ I such that ` /∈ Q(X), ` is linear, and var(r) ⊆ var(`).

In the following, let M = (Q,Σ,∆,Q0, I, χ) be a wxtt. To simplify the

notation, we also write `
s→ r instead of 〈`, s, r〉. Moreover, for every i ∈ I we

let `i, si, and ri be such that χ(i) = 〈`i, si, ri〉. Since we can select the identifiers
such that they uniquely determine M (i.e., different wxtt have disjoint sets of
identifiers), the notation `i, si, and ri should not lead to confusion. The wxttM is
called linear if ri is linear for every i ∈ I, and it is called Boolean if si ∈ {0, 1}
for every i ∈ I. Finally, M is a weighted top-down tree transducer (for short:
wtdtt), if |posΣ(`i)| = 1 for all i ∈ I.

Next, we introduce the semantics of M . Later in our composition construc-
tion it proves to be convenient to handle symbols and states of another wxtt. To
this end, we consider ranked alphabets Σ′ and ∆′ such that Σ ⊆ Σ′ and ∆ ⊆ ∆′.
Moreover, let q ∈ Q, i ∈ I, and ξ ∈ T∆′

(
Q(TΣ′(X))

)
, which we treat as a tree

of T∆′∪Q∪Σ′(X). This treatment entails certain technical difficulties since the
rank of each symbol needs to be unique, but we largely ignore those issues here
in the interest of clarity. A position w ∈ posq(ξ) is i-reducible if there exists a
substitution θ : var(`i)→ TΣ′(X) such that ξ|w = `iθ. Note that if such a substi-
tution exists, then it is unique. Let w ∈ posQ(ξ) be the lexicographically least po-

sition labeled by a state. If w is i-reducible, then we let i(ξ) = ξ
[
riθ
]
w

, which we

also write as ξ
i⇒M

[
riθ
]
w

. Otherwise, i(ξ) is undefined. Given i1, . . . , in ∈ I we

let (i1 · · · in)(ξ) = in
(
· · · i1(ξ) · · ·

)
, which we also write as ξ

i1···in=⇒ M (i1 · · · in)(ξ).
A sequence d ∈ I∗ is called derivation for ξ if d(ξ) is defined, and the finite set
of all such derivations is denoted by DM (ξ). Moreover, we let

D⊥M (ξ) =
{
d ∈ DM (ξ) | d(ξ) ∈ T∆

}
be the subset of terminal derivations. Given a derivation i1 · · · in ∈ DM (ξ)
with n ∈ N and i1, . . . , in ∈ I we let wtM (i1 · · · in) =

∏n
j=1 sij . Finally, we

define the mapping τ ′M : T∆′
(
Q(TΣ′(X))

)
× T∆′

(
Q(TΣ′(X))

)
→ S by

τ ′M (ξ, ζ) =
∑

d∈DM (ξ)
d(ξ)=ζ

wtM (d)
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χ′(1) =

q′

γ

x1

1→

γ

q′

x1

χ′(2) =

q′

α

.5→ α χ′(3) =

q′

α

.5→ β

Fig. 1: Rules of the wtdtt M ′ of Example 3.

for all ξ, ζ ∈ T∆′
(
Q(TΣ′(X))

)
. The semantics of M is the weighted relation

τM : TΣ × T∆ → S given by

τM (t, u) =
∑
q∈Q0

τ ′M
(
q(t), u

)
for all trees t ∈ TΣ and u ∈ T∆. The wxtt M is total if for all states q ∈ Q and
input trees t ∈ TΣ there is an output tree u ∈ T∆ such that

(
q(t), u

)
∈ supp(τ ′M ).

Finally, M is unambiguous if for every state q and input tree t ∈ TΣ there exists
at most one derivation d ∈ D⊥M

(
q(t)

)
.

Next, let us introduce the special property, for which we provide a composi-
tion construction. The property constant was introduced in [17, Definition 9] and
essentially says that for any given state q ∈ Q there exists a constant cq such that
for every input tree t ∈ TΣ the sum of all weights of derivations d ∈ D⊥M

(
q(t)

)
is exactly cq.

Definition 2 (see [17, Definition 9]). Let q ∈ Q and c ∈ S. State q is c-
constant if c =

∑
d∈D⊥

M (q(t)) wtM (d) for every t ∈ TΣ. The wxtt M is constant

if for every state q ∈ Q there exists cq ∈ S such that q is cq-constant.

To conclude this section, let us quickly discuss a small example to illustrate
the notions introduced in this section.

Example 3. Let M ′ = ({q′}, Σ,∆, {q′}, {1, 2, 3}, χ′) be the wtdtt over the semi-
ring (R,+, ·, 0, 1) with Σ = {γ(1), α(0)}, ∆ = {γ(1), α(0), β(0)} and χ′ presented
in Fig. 1. Then for

t = γ
(
· · · γ︸ ︷︷ ︸

n times γ

(α) · · ·
)

we have D⊥M ′

(
q′(t)

)
=
{

1 · · · 1︸ ︷︷ ︸
n times

2, 1 · · · 1︸ ︷︷ ︸
n times

3
}

and those derivations have weight s1 · . . . · s1 · s2 = .5 and s1 · . . . · s1 · s3 = .5.
The derivations are illustrated in Fig. 2 for n = 2. This illustrates that state q′

is 1-constant, which also proves that M is constant.

4 Composition

Our overall goal is to settle [17, Conjecture 11], which deals with compositions
of the weighted relations computed by certain wxtt. Before stating the con-
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Fig. 2: Illustration of derivations of M ′ discussed in Example 3.

jecture, let us settle the relevant notion of composition first. A weighted re-
lation τ : TΣ × T∆ → S is finitary if the set

{
u ∈ T∆ | (t, u) ∈ supp(τ)

}
is

finite for every t ∈ TΣ . The weighted relation τM computed by a wxtt M is al-
ways finitary by [6, Note before Lemma 2], which also applies to nonlinear wxtt.
Now, let us first formally introduce the composition of 2 weighted relations. Let
τ : TΣ × T∆ → S and τ ′ : T∆ × TΓ → S be weighted relations such that τ is
finitary. Their composition τ ; τ ′ : TΣ × TΓ → S is given by

(τ ; τ ′)(t, t′′) =
∑
t′∈T∆

τ(t, t′) · τ ′(t′, t′′)

for all t ∈ TΣ and t′′ ∈ TΓ , where the sum is finite since τ is finitary. Now we
can state the conjecture. Given a constant wxtt M ′ and a linear wtdtt M , [17,
Conjecture 11] claims that the composition τM ;τM ′ can be computed by a wxtt.

Let us first provide some insight into the difficulties that arise when attempt-
ing the standard composition constructions. Let M ′ = (Q′, Σ,∆,Q′0, I

′, χ′) be
the constant wxtt and M = (Q,∆, Γ,Q0, I, χ) be the linear wtdtt. Moreover, for
every state q′ ∈ Q′, let cq′ ∈ S be such that q′ is cq′-constant. We first investigate
the composition of M ′ and M using the generic composition construction of [17,
Definition 6] to highlight the problem. Afterwards we provide a solution and
prove that it is correct. We start with the exposition of the generic construction
and an illustration of the inherent problem on a simplistic example.

Example 4. We reconsider the constant wtdtt M ′ = (Q′, Σ,∆,Q′, I ′, χ′) of Ex-
ample 3 together with the linear wtdtt M =

(
{q}, ∆, {α(0)}, {q}, {4}, χ

)
, where

χ(4) = q
(
γ(x1)

) 1→ α. For the sake of illustration, we adjust M ′ such that
s2 = s3 = 2; i.e., the weight of rules 2 and 3 is adjusted to weight 2. It can be
verified as in Example 3 that q′ is 4-constant in the adjusted wtdtt M ′. Now,
let us consider the input tree t = γ

(
γ(α)

)
. As illustrated in Example 3 there are

exactly 2 derivations in D⊥M ′

(
q′(t)

)
, which are 112 and 113 as demonstrated in

Fig. 2. Their weights are s1 · s1 · s2 = 1 · 1 · 2 = 2 and s1 · s1 · s3 = 1 · 1 · 2 = 2.
There exists a single derivation d1 ∈ D⊥M

(
q(γ(γ(α)))

)
on the output tree γ

(
γ(α)

)
of derivation 112 and a single derivation d2 ∈ D⊥M

(
q(γ(γ(β)))

)
on the output

tree γ
(
γ(β)

)
of derivation 113. In both cases the derivation is d1 = d2 = 4, and

it is illustrated in Fig. 3. Its weight is obviously s4 = 1.
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Fig. 3: Illustration of derivations discussed in Example 4.

The main idea of the generic composition construction is to apply rules of M
immediately after the input symbol it consumes has been produced by a rule
ofM ′. In this manner we avoid the explicit construction of the intermediate trees,
which were γ

(
γ(α)

)
and γ

(
γ(β)

)
in our example. Every rule i′ of M ′ together

with the rules of M that consume the symbols output by i′ will form a new rule
in the composed wxtt. In this manner we mix the rule applications of M ′ and M
and obtain the derivation 14 starting at q

(
q′(t)

)
, which is illustrated right-most

in Fig. 3. Note that since rule identifier 1 belongs to M ′, it will select the least
occurrence of a state in the set {q′} of states of M ′. This derivation 14 has
weight s1 · s4 = 1 · 1 = 1. It is evident that applications of rules 1, 2, and 3
are missing since the subtree q′

(
γ(α)

)
is deleted by the application of rule 4.

This has no impact on the generated output tree, but the missing application of
rules 1, 2, and 3 impacts the weight. Indeed the rule weights might even contain
a factor 0 (directly or as a product of factors), which would potentially remove
the pair of the input and output tree from the support of the computed weighted
relation altogether.

This change of weight, which in our case always amounts to missing factors
due to missing rule applications, needs to be corrected in an adjusted composition
construction. We also remark that in the derivation presented the subtree γ(α) in
the input tree was never processed and could potentially been processed utilizing
different rules. As presented in the example, we could utilize derivation 12 or 13
to process the remaining subtree q′

(
γ(α)

)
. The newly constructed rule needs to

account for all derivations that would have been possible starting in q′
(
γ(α)

)
,

which have total weight cq′ by the definition of cq′ -constant. Moreover, due to
the definition of cq′ -constant, we know that cq′ is the total weight irrespective
of the actual subtree that would need to still be processed.

The solution is relatively straightforward. Whenever M deletes a subtree (i.e.,
a variable x ∈ X occurs in the left-hand side of a rule, but does not occur in the
corresponding right-hand side), we charge the weight cq′ for every occurrence
of state q′ in the deleted part. Since the wtdtt M is linear, it will not copy
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subtrees and thus not duplicate occurrences of states q′ ∈ Q′. This motivates
the following composition of the given wxtt.

Definition 5 (see [17, Definition 6]). Let M ′ = (Q′, Σ,∆,Q′0, I
′, χ′) be

a constant wxtt and M = (Q,∆, Γ,Q0, I, χ) be a linear wtdtt. Moreover, for
every q′ ∈ Q′, let cq′ ∈ S be such that q′ is cq′-constant. Finally, let b ∈ N
be such that |pos(ri′)| ≤ b for every i′ ∈ I ′. The composed wxtt M ′ ; M is the
wxtt (Q×Q′, Σ, Γ,Q0 ×Q′0, P, ρ) such that P = I ′ ×Q× I≤b and

ρ
(
〈i′, q, d〉

)
=

{(
q(`i′), s, r

)
if r = d

(
q(ri′)

)
∈ T∆

(
Q
(
Q′(X)

))
0 otherwise

for every identifier i′ ∈ I ′, state q ∈ Q, and identifier sequence d ∈ I≤b, where

s = si′ · wtM (d) ·
∏
q′∈Q′

c
|posq′ (ri′ )|−|posq′ (r)|
q′ .

Note that we identify Q
(
Q′(T )

)
with (Q×Q′)(T ).

For the given example derivation in Fig. 3 we observe that the application
of rule 4 deletes a subtree containing 1 occurrence of state q′, for which cq′ = 4.
Hence the newly constructed rule with identifier 〈1, q, 4〉 would be assigned
weight s1 · s4 · cq′ . Let us state the main result, which confirms [17, Conjec-
ture 11].

Theorem 6. Let M ′ be a constant wxtt and M be a linear wtdtt. Then there
exists a wxtt N such that τN = τM ′ ; τM .

Proof (sketch). Let M ′ = (Q′, Σ,∆,Q′0, I
′, χ′). Without loss of generality, we

can assume that for every i′ ∈ I ′ there exists ki′ ∈ N such that var(`i′) = Xki′ .
We call a tree c ∈ CΣ(Xk) normalized if the leafs labeled x1, . . . , xk occur in
exactly in this order when read left-to-right. Following [19, Definition 3] we define
the mapping hM ′ : Q′(TΣ)× T∆ → S for every ξ ∈ Q′(TΣ) and u ∈ T∆ by

hM ′(ξ, u) =
∑
i′∈I′

(li′ ,θ
′)∈match(ξ)

(c,θ′′)∈match(u)
c normalized

θ : var(c)→Q′(Xk
i′
)

ri′=cθ

si′ ·
∏

x∈var(c)

hM ′(xθθ′, xθ′′) .

The proof of [19, Theorem 5] shows that hM ′(ξ, u) = τ ′M ′(ξ, u) for all ξ ∈ Q′(TΣ)
and u ∈ T∆. The same alternative semantics also applies to M and N naturally.
The following statement can be proven for every t ∈ TΣ and t′′ ∈ TΓ by induction
on t

hN
(
〈q, q′〉(t), t′′

)
=
∑
t′∈T∆

hM ′
(
q′(t), t′

)
· hM

(
q(t′), t′′

)
.
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This directly yields

τN (t, t′′)

=
∑

〈q,q′〉∈Q0×Q′
0

τ ′N
(
〈q, q′〉(t), t′′

)
=

∑
〈q,q′〉∈Q0×Q′

0

t′∈T∆

τ ′M ′

(
q′(t), t′

)
· τ ′M

(
q(t′), t′′

)

=
∑
t′∈T∆

( ∑
q′∈Q′

0

τ ′M ′

(
q′(t), t′

))
·
(∑
q∈Q0

τ ′M
(
q(t′), t′′

))
=
∑
t′∈T∆

τM ′(t, t′) · τM (t′, t′′)

= (τM ′ ; τM )(t, t′′)

and thus the desired τN = τM ′ ; τM . An alternative argumentation based on the
original derivation semantics is provided in the appendix. ut

5 Decidability of Constant Property

To make Theorem 6 effective, we would like to decide whether a given state
is c-constant for a given c ∈ S and, more generally, whether a given wxtt is
constant. In the following let M = (Q,Σ,∆,Q0, I, χ) be a wxtt, for which we
want to check whether it is constant. Some straightforward results are already
mentioned in [17, Example 10] for wtdtt, which we generalize easily to wxtt here.

Lemma 7 (see [17, Example 10]). Every state q ∈ Q is 1-constant if

1. M is Boolean and total and the semiring S is idempotent, or
2. M is Boolean, total, and unambiguous.

Clearly, totality of M is necessary for every state q ∈ Q to be 1-constant
because otherwise there exists a state q ∈ Q and input tree t ∈ TΣ such that
τ ′M
(
q(t), u

)
= 0 for all output trees u ∈ T∆. Consequently, for that q and t the

sum in the definition of 1-constant (see Definition 2) is 0, which shows that q
is not 1-constant. Already [17] mentions that totality is not sufficient. Next, we
demonstrate that none of the properties mentioned in Lemma 7 besides totality
are necessary for every state q ∈ Q to be 1-constant.

Example 8. Recall the wxtt M ′ over the semiring (R,+, ·, 0, 1) of Example 3.
We already observed in Example 3 that q′ is 1-constant, but M ′ is neither un-
ambiguous nor Boolean. In addition, the semiring (R,+, ·, 0, 1) is clearly not
idempotent.

Next we investigate some special cases, for which we can decide the constant
property. We start with the Boolean semiring as a starting point. Clearly,
the Boolean semiring ({0, 1},max,min, 0, 1) is idempotent and all wxtt over the
Boolean semiring are trivially Boolean, so according to Lemma 7 we only
need to check totality. We present a slightly more general statement, which states
decidability of totality for all Boolean wxtt over an idempotent semiring.

Lemma 9. Totality of Boolean wxtt over an idempotent semiring is decidable.
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Proof. Clearly, rules with weight 0 are useless, so without loss of generality, let
M = (Q,Σ,∆,Q0, I, χ) be a Boolean wxtt such that si = 1 for all i ∈ I;
i.e., all rules have weight 1. For every state q ∈ Q we also consider the vari-
ant Mq = (Q,Σ,∆, {q}, I, χ), which is essentially M but with the single initial
state q. Clearly, the subsemiring of S generated by {0, 1}, which are the only
weights permitted in M (as well as Mq for all q ∈ Q), is isomorphic to the
Boolean semiring ({0, 1},max,min, 0, 1) because S is idempotent. Let q ∈ Q
be an arbitrary state. Hence Mq is essentially a wxtt over the Boolean semiring,
and thus also an (unweighted) extended tree transducer of [20]. By [20, Theo-
rem 4.8] such a transducer can equivalently be presented as a top-down tree
transducer Nq with regular look-ahead [4]. It is well-known [4, Corollary 2.7]
that the domain dom(τNq ) of the tree transformation τNq ⊆ TΣ × T∆ computed
by Nq is a recognizable tree language [9,10].

Obviously, M is total if and only if dom(τNq ) = TΣ for every q ∈ Q.
Since dom(τNq ) is recognizable and universality is decidable [9,10] for recog-
nizable tree languages, totality is also decidable.

A closer analysis of the proof shows that a (semiring) homomorphism [14,11]
from the subsemiring S′ of S generated by the weights in M into the Boolean
semiring would be sufficient. Such a homomorphism exists if S′ is not a ring
by [26, Theorem 2.1]. Additionally, the restrictions on the addition can be
avoided, if the wxtt is restricted such that multiple derivations for the same
state, input and output tree are impossible. Using similar techniques we can
thus also show that totality is decidable for

– Boolean wxtt over zero-sum free semirings,
– wxtt over zero-sum and zero-divisor free semirings,
– Boolean unambiguous wxtt, and
– unambiguous wxtt over zero-divisor free semirings.

Thus the conditions of the first item of Lemma 7 can effectively be checked
in an idempotent semiring. It is beyond the scope of this contribution to develop
general decidability results for unambiguity. However, a simpler condition exists
for wtdtt. Suppose that M is a wtdtt. It is called deterministic if for every
state q ∈ Q and σ ∈ Σ there exists at most one rule identifier i ∈ I such
that `i(ε) = q and `i(1) = σ. Every deterministic wtdtt is guaranteed to be
unambiguous.

Let us provide another relevant scenario. Let M be a deterministic wtdtt
without useless rules, which can efficiently be checked, and no rules of weight 0
(i.e., si 6= 0 for all i ∈ I). Moreover, suppose that S is multiplicatively can-
cellative (i.e., s · s′ = s · s′′ implies s′ = s′′ for all s, s′, s′′ ∈ S with s 6= 0).
For example, every field S is multiplicatively cancellative. Then S is zero-divisor
free and by the last item of the previous list, totality is decidable. In fact, due
to the special shape of left-hand sides of an wtdtt it suffices to check whether
for every state q ∈ Q and σ ∈ Σ there exists a rule identifier i ∈ I with
`i(ε) = q and `i(1) = σ. Together with determinism there is thus exactly one
rule identifier i ∈ I with `i(ε) = q and `i(1) = σ for every state q ∈ Q and σ ∈ Σ.
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Due to the cancellation property of S we can now utilize the weight pushing strat-
egy [22,13] to determine whether a given state q ∈ Q is c-constant for some c ∈ S.
The standard pushing strategy cannot be applied directly since M might copy
or delete. We consider it interesting to extend the existing pushing strategies
to these scenarios where (i) weights might not be applied due to deletion or
(ii) weights might be applied multiple times due to copying. We leave the details
of this adaptation to future work, but believe that this avenue allows an efficient
test of the constant property in this relevant scenario (without requiring the
wtdtt to be Boolean).
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