ADS: Algorithmen und Datenstrukturen 2 Teil 4

Prof. Dr. Gerhard Heyer

Institut für Informatik Abteilung Automatische Sprachverarbeitung **Universität Leipzig**

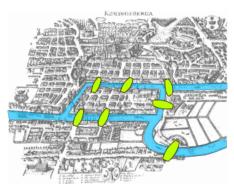
02. Mai 2017

[Letzte Aktualisierung: 10/07/2018, 17:40]

Graphen - Themenübersicht

- Ungerichtete Graphen: Grundlegende Definitionen
- @ Gewichtete, ungerichtete Graphen, minimale Spannbäume
- Gerichtete Graphen: Definitionen, Speicherung, topologische Sortierung, transitive Hülle, starke Zusammenhangskomponenten
- Gerichtete gewichtete Graphen: Kürzeste Pfade, Flußnetzwerke

Königsberger Brückenproblem (Euler, 1736)



Gibt es einen Weg, bei dem man alle sieben Brücken genau einmal überquert? Ist dieser Weg als Rundweg möglich?

Originalartikel: http://www.math.dartmouth.edu/~euler/pages/E053.html

Ungerichteter Graph

Ein Tupel (V, E) heißt *(ungerichteter) Graph*, genau dann wenn

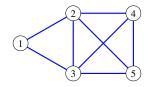
- V eine endliche Menge und
- E eine Menge ungeordneter Paare von Elementen in V ist.

V heißt Knotenmenge, die Elemente von V heißen Knoten. E heißt Kantenmenge, die Elemente von E heißen Kanten.

Ungerichteter Graph - Beispiel

Beispiel:
$$V = \{1, 2, 3, 4, 5\}$$

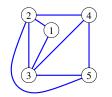
 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}$

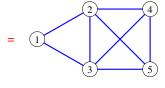


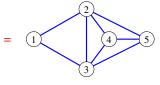
Ungerichteter Graph - Beispiel

Beispiel:
$$V = \{1, 2, 3, 4, 5\}$$

 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}$



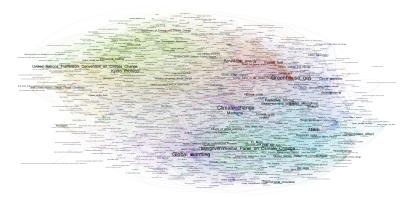




Graphen: Beispiele realer Systeme

System	<u>Knoten</u>	<u>Kanten</u>	
Internet	Router	Datenleitungen	
WWW	Webseiten/-dokumente	Hyperlinks	
Gesellschaft	Personen	soziale Kontakte	
Sprache	Wörter	gemeinsames Auftreten	
Biotop	Spezies	trophische Bez., "Fressen"	
Molekül	Atome	chem. Bindungen	

Netzwerk von Artikeln über Klimawandel (Okt 2012)

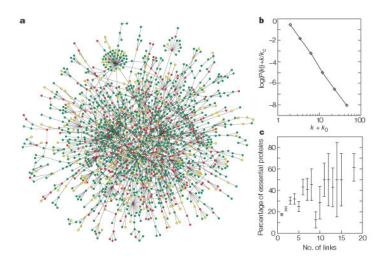


http://www.emapsproject.com/blog/archives/1572

Social Network (Facebook, 2010)

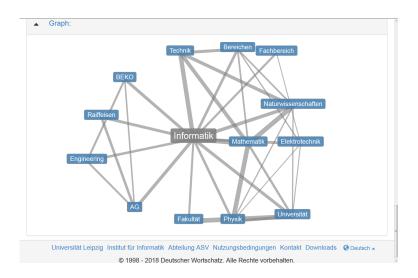
http://blog.revolutionanalytics.com/2010/12/facebooks-social-network-graph.html

Graph von Protein-Wechselwirkungen (Hefe)



Jeong, Mason, Barabási & Oltvai, Nature 2001.

Wortschatzgraph



http://corpora.uni-leipzig.de/de?corpusId=deu_newscrawl_2011

Teilgraphen

Seien G = (V, E) und G' = (V', E') Graphen.

- G' heißt Teilgraph von G, wenn $V' \subseteq V$ und $E' \subseteq E$ ist.
- G' heißt aufspannender Teilgraph von G, wenn G' Teilgraph von G mit V' = V ist (G' enthält dieselben Knoten wie G).
- G' heißt induzierter Teilgraph von G, wenn G' Teilgraph von G ist und für alle $e \in E$ gilt: $e \subseteq V' \Rightarrow e \in E'$. (Alle Kanten aus G, deren zwei Knoten in G' liegen, sind auch in G enthalten.)

Pfade, Zyklen, Zusammenhang

Sei G = (V, E) ein Graph, $\ell \in \mathbb{N}$ und $k = (v_0, v_1, \dots, v_\ell) \in V^{\ell+1}$.

- k heißt Weg der Länge ℓ , wenn für alle $i \in \{1, \dots, \ell\}$ gilt: $\{v_{i-1}, v_i\} \in E$
- k heißt *Pfad* der Länge ℓ , wenn k ein Weg ist und für alle $i, j \in \{0, \dots, \ell\}$ mit $i \neq j$ gilt: $v_i \neq v_j$.
- k heißt Zyklus (oder Kreis) der Länge ℓ , wenn (v_1, \ldots, v_ℓ) ein Pfad der Länge $\ell 1$ ist, $v_0 = v_\ell$ und $\{v_0, v_1\} \in E$.
- G heißt zusammenhängend, wenn für alle $x, y \in V$ ein Pfad zwischen x und y existiert.

Wälder und Bäume

Sei G = (V, E) ein ungerichteter Graph.

- G heißt Wald (oder zyklenfrei), wenn kein Weg in G ein Zyklus ist.
- G heißt Baum, wenn G ein Wald ist und G zusammenhängend ist.

Satz: Ist G ein Baum, so hat G genau |V|-1 Kanten.

Satz: Ist G zusammenhängend, so hat G einen aufspannenden Teilgraphen T, so daß T ein Baum ist. T heißt dann Spannbaum von G.

Spannbaum - Beispiel

Ein Spannbaum ist

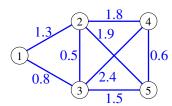
- Teilgraph eines ungerichteten Graphen
- 2 der ein Baum ist und
- alle Knoten dieses Graphen enthält

Gewichteter Graph

Sei (V, E) ein Graph und $w : E \to \mathbb{R}$.

- Das Tripel G = (V, E, w) heißt gewichteter (oder kantenbewerteter) Graph.
- w(e) heißt Gewicht (oder Länge) der Kante $e \in E$.

Beispiel:



Minimaler Spannbaum

Gegeben: Gewichteter zusammenhängender Graph G = (V, E, w).

Gesucht: Spannbaum T = (V, F) mit *minimaler Kantensumme*. Wähle also die Kantenmenge $F \subseteq E$ so, daß

$$\sum_{e\in F}w(e)$$

möglichst klein wird.

Kruskal-Algorithmus (1956)

Minimaler Spannbaum T für G = (V, E, w).

Initialisiere F als leere Menge.

Erzeuge Liste *L* der Kanten in *E*; Sortiere *L* aufsteigend nach Gewicht. Solange L nicht leer ist:

- Entferne Kante $e = \{u, v\}$ mit kleinstem Gewicht aus L.
- Falls (V, F) keinen Pfad zwischen u und v enthält:

$$F := F \cup \{e\}$$

(Sonst: tue nichts.)

Ergebnis: F, bzw. T = (V, F)

Wir verwenden dabei einen *minHeap* und eine *UnionFind* Datenstruktur

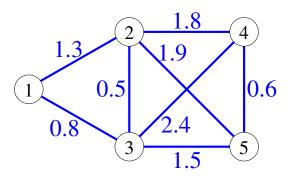
Union-Find-Datenstruktur

Gegeben:

- endliche Grundmenge E
- Familie S = $\{S_1, S_2, ... S_n\}$ von disjunkten Teilmengen $S_i \subseteq E$
- jede Menge S_i ist durch einen eindeutigen Repräsentanten $x \in S_i$ gekennzeichnet

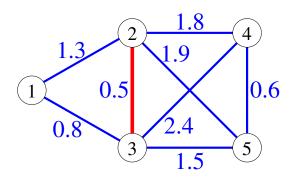
Die Union-Find-Datenstruktur unterstützt folgende Operationen:

- erzeuge(x)
 - erzeugt eine neue Menge $\{x\}$ mit x als Repräsentant von $\{x\}$
- vereinige(x,y)
 - ullet vereinigt die Mengen S_{x} und S_{y} , die ${\sf x}$ und ${\sf y}$ enthalten, zu $S_{x} \cup S_{y}$
 - der Repräsentant von $S_x \cup S_y$ ist ein belibiges Element aus $S_x \cup S_y$
- finde(x)
 - liefert den Repräsentanten der (eindeutigen) Menge, die x enthält



$$L = [\{2,3\}, \{4,5\}, \{1,3\}, \{1,2\}, \{3,5\}, \{2,4\}, \{2,5\}, \{3,4\}]$$

$$F = \{\}$$

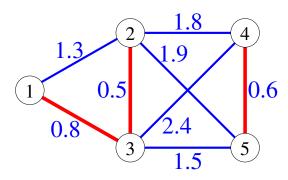


$$L = [\{4,5\}, \{1,3\}, \{1,2\}, \{3,5\}, \{2,4\}, \{2,5\}, \{3,4\}]$$

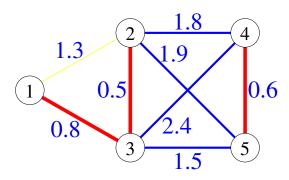
$$F = \{\{2,3\}\}$$



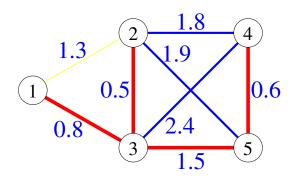
$$L = [\{1,3\}, \{1,2\}, \{3,5\}, \{2,4\}, \{2,5\}, \{3,4\}]$$
$$F = \{\{2,3\}\}, \{4,5\}\}$$



$$L = [\{1, 2\}, \{3, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}]$$
$$F = \{\{2, 3\}\}, \{4, 5\}, \{1, 3\}\}$$

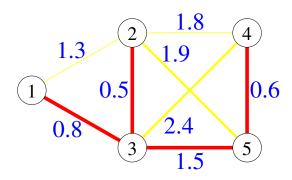


$$L = [\{3,5\}, \{2,4\}, \{2,5\}, \{3,4\}]$$
$$F = \{\{2,3\}\}, \{4,5\}, \{1,3\}\}$$



$$L = [\{2,4\}, \{2,5\}, \{3,4\}]$$

$$F = \{\{2,3\}\}, \{4,5\}, \{1,3\}, \{3,5\}\}$$



$$L = []$$

$$F = \{\{2,3\}\}, \{4,5\}, \{1,3\}, \{3,5\}\}$$

Anmerkungen zum Kruskal-Algorithmus

Berechnung eines *minimalen* Spannbaums (daraus folgt: gegeben ein zusammenhängender Graph)

- **Korrektheit:** Findet der Kruskal-Algorithmus garantiert einen minimalem Spannbaum?
 - ightarrow Ja, sehen wir später bei Greedy-Algorithmen.
- Laufzeit-Komplexität: $O(|E| \log |E|)$ [= $O(|E| \log |V|)$]. Betrachten wir dazu den folgenden Algorithmus

Kruskal Pseudocode

```
Initialisiere eine lineare Liste T und eine UnionFind-Struktur auf V mit
 \{v_1, ..., v_n\};
konstruiere minHeap der Kanten E mit Bewertung c;
setze k = 0:
while k \neq n-1 do
   {u, v} := Wurzel des minHeaps;
   entferne {u, v} aus Heap;
   stelle Heapstruktur wieder her;
   A = finde (u):
   B = finde(v):
   if A \neq B then
      T = T \cup \{u, v\};
      k = k+1;
      vereinige (A, B)
   end
```

Komplexitätsbetrachtung

- sei $|E| = m, |V| = n, m \ge n 1$
- sei t die Anzahl der Durchläufe in der While-Schleife, $t \leqslant m$
- die Laufzeit eines Schleifendurchlaufs wird dominiert von den Heap-Operationen $O(\log |E|)$ [= $O(\log m)$]
- Laufzeit-Komplexität: $O(t \log m) = O(|E| \log |E|)$

Gerichteter Graph

Ein Tupel (V, E) heißt gerichteter Graph (Digraph), wenn V eine endliche Menge und E eine Menge geordneter Paare von Elementen in V ist.

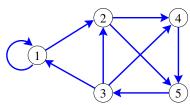
V heißt Knotenmenge, die Elemente von V heißen Knoten. E heißt Kantenmenge, die Elemente von E heißen Kanten.

Eine Kante (v, v) heißt Schleife.

Beispiel:

$$V = \{1, 2, 3, 4, 5\},\$$

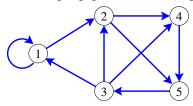
$$E = \{(1, 1), (1, 2), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (4, 5), (5, 3)\}$$



Vorgänger, Nachfolger, Grad

Sei G = (V, E) ein gerichteter Graph und $v \in V$.

- $u \in V$ heißt *Vorgänger* von v, wenn $(u, v) \in E$.
- Mit $pred(v) := \{u \in V | (u, v) \in E\}$ bezeichnen wir die Menge der Vorgänger von v.
- Der Eingangsgrad von v ist eg(v) = |pred(v)|
- $w \in V$ heißt Nachfolger von v, wenn $(v, w) \in E$.
- Mit $succ(v) := \{w \in V | (v, w) \in E\}$ bezeichnen wir die Menge der Nachfolger von v.
- Der Ausgangsgrad von v ist ag(v) = |succ(v)|



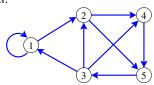
$$eg(3) = 1$$
, $pred(3) = \{5\}$
 $ag(3) = 3$, $succ(3) = \{1, 2, 4\}$

Speicherung von Graphen: Adjazenzmatrix

Ein Graph G=(V,E) mit |V|=n wird in einer Boole'schen $n\times n$ -Matrix $A=(a_{ij})$ gespeichert, wobei

$$a_{ij} = \left\{ egin{array}{ll} 1 & \mathsf{falls}\; (i,j) \in E \ 0 & \mathsf{sonst} \end{array}
ight.$$

Beispiel:



$$A = \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

Speicherplatzbedarf $O(n^2)$

- 1 Bit pro Position (statt Knoten/Kantennummern)
 - unabhängig von Kantenmenge
- für ungerichtete Graphen ergibt sich symmetrische Belegung (Halbierung des Speicherbedarfs möglich)

Speicherung von Graphen in Listen

Knoten- und Kantenlisten

- Speicherung von Graphen als Liste von Zahlen (z.B. in Array oder verketteter Liste)
- Knoten werden von 1 bis *n* durchnummeriert; Kanten als Paare von Knoten

Kantenliste

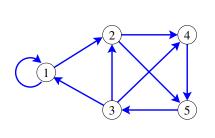
- Liste: Knotenzahl, Kantenzahl, Liste von Kanten (je als 2 Zahlen)
- Speicherbedarf: 2 + 2m (m = Anzahl Kanten, bei Digraphs 2 + m)

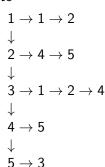
Knotenliste

- Liste: Knotenzahl, Kantenzahl, Liste von Knoteninformationen
- Knoteninformation: Ausgangsgrad und Nachfolger $ag(v), s_1, s_2, \dots, s_{ag(v)}$
- Speicherbedarf: 2 + n + m

Adjazenzlisten

- verkettete Liste der n Knoten (oder Array-Realisierung)
- pro Knoten: verkettete Liste der Nachfolger (repräsentiert die von dem Knoten ausgehenden Kanten)
- Speicherbedarf: n + m Listenelemente





Speicherung von Graphen: Vergleich

Komplexitätsvergleich

Operation	Adjmatrix	Kantenliste	Knotenliste	Adjazenzliste
Einfügen Kante	O(1)	O(1)	O(n+m)	O(n)
Löschen Kante	O(1)	O(m)	O(n+m)	O(n)
Einfügen Knoten	$O(n^2)$	O(1)	O(1)	O(1)
Löschen Knoten	$O(n^2)$	O(m)	O(n+m)	O(n+m)

- Löschen eines Knotens löscht auch zugehörige Kanten
- änderungsaufwand abhängig von Realisierung der Adjazenzmatrix und Adjazenzliste

Welche Repräsentation geeigneter ist, hängt vom Problem ab:

- Frage: Gibt es Kante von a nach b? \rightarrow Matrix
- ullet Durchsuchen von Knoten in durch Nachbarschaft gegebener Reihenfolge ightarrow Listen

Kantenfolgen, Pfade, Zyklen

Sei G=(V,E) gerichteter Graph, $\ell\in\mathbb{N}\cup\{0\}$ und $k=(v_0,v_1,\ldots,v_\ell)\in V^{\ell+1}.$

- k heißt Kantenfolge (oder Weg) der Länge ℓ von v_0 nach v_ℓ , wenn für alle $i \in \{1, \dots, \ell\}$ gilt: $(v_{i-1}, v_i) \in E$
- $v_1, \ldots, v_{\ell-1}$ sind die *inneren* Knoten von k. Ist $v_0 = v_\ell$, so ist die Kantenfolge *geschlossen*.
- k heißt Kantenzug, wenn k Kantenfolge ist und für alle $i, j \in \{0, \dots, \ell-1\}$ mit $i \neq j$ gilt: $(v_i, v_{i+1}) \neq (v_j, v_{j+1})$.
- k heißt Pfad der Länge ℓ , wenn k eine Kantenfolge ist und für alle $i, j \in \{0, \dots, \ell\}$ mit $i \neq j$ gilt: $v_i \neq v_j$.
- k heißt Zyklus (oder Kreis), wenn (v_1, \ldots, v_ℓ) ein Pfad der Länge $\ell-1$ ist, $v_0=v_\ell$, und $(v_0,v_1)\in E$.
- k heißt $Hamiltonscher\ Zyklus$, wenn k Zyklus ist und $\ell=|V|$ (also eine geschlossene Kantenfolge, die jeden Knoten genau einmal enthält; TSP sucht nach dem kürzesten Hamilton Zyklus) .