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Abstract

We report on some experience with a parallel version of the Gröbner basis algorithm
with factorization, implemented in the REDUCE package CALI [4]. It is based on a coarse
grain parallel master-slave model with distributed memory. This model was realized on an
HP workstation cluster both with a disk remote connection based on (ordinary) REDUCE
[9] and the special PVM-based parallel REDUCE version of H. Melenk and W. Neun [7].

Our considerations focus on a detailed study of the practical time behaviour of the
parallelized improved Gröbner factorization algorithm [5]. For well splitting examples,
where the number of intermediate subproblems is large compared to the number of parallel
processes available on the system (only for such examples this approach makes sense),
we’ve got almost always a good load balance. Since even for the relatively slow disk
remote connection the results are encouraging, we conclude that with a fast and stable
communication hard- and software one will obtain a serious speed up on such problems
compared to the serial implementation.

Keywords: parallel Gröbner factorizer, disk remote connection, PVM, REDUCE
software, workstation cluster with distributed memory

1 Introduction

In a precedent paper [5] we discussed a new (serial) implementation of the Gröbner factor-
ization algorithm. Factorized Gröbner bases are up to now the most powerful approach to
the determination of the solution set of a well splitting system of polynomial equations over
an algebraically closed field. A first detailed study appeared in [6]. The main advantage of
the new implementation is a careful study of the interconnections between different problems
thus allowing cancellation of superfluous computational branches in an early stage of the
computation.

The Gröbner factorization algorithm is well suited for a parallelization on almost all
parallel architectures, since it produces a lot of mutually independent subproblems that may
be treated in parallel by slave sessions started at different nodes. Several such experiments
are reported in the literature, see e.g. [2] or [8], but we know of no report about a detailed
study of the parallelized implementation.1

∗Appeared in Proceedings PASCO’94, Linz 1994, ed. H. Hong. Lecture Notes in Computing 5, World
Scientific, Singapore 1994, 174 - 180.

1One of the referees drawed our attention to the detailed discussions in [12] and [13]. Due to the tight
deadline there was no time to compare our results with these papers.
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Such a detailed study is desirable since parallel symbolic algorithms have some special pe-
culiarities compared to parallel numerical applications. The most important special feature
is the intermediate problem’s growth, that usually cannot be predicted by the input data.
Thus an efficient automatic load balancing needs much more effort than for most numerical
problems. Secondly, (at least advanced) symbolic problems usually rest on a deep knowledge
of basic symbolic techniques as simplification, polynomial arithmetic over different base rings,
factorization etc. These techniques must be available at each node. Thus parallel symbolic im-
plementations usually need either a (true) shared memory or powerful local nodes to support
the necessary software. Moreover, due to the high costs of excessive symbolic communication,
usually the latter architecture supports only coarse grain parallelized algorithms.

Below we report on our experience with a parallel implementation of the improved Gröbner
factorizer algorithm on a workstation cluster, consisting of 8 HP 9000/735-99 of different
memory size (32−144 MB), connected through FDDI to each other and to a CONVEX server,
supporting a (NFS-)shared file system. It is part of the CONVEX Meta Series installation at
the University of Leipzig. We hope to continue these experiments in a near future on a massive
parallel system with a better communication hard- and software. Nevertheless especially the
PVM-based implementation leads already to a certain speedup compared to the serial version
of the same algorithm.

In our experiments a master process manages, updates, and distributes the problems
according to the rules described in [5], whereas several slave processes work out the corre-
sponding subtasks. Replacing the naturally occuring tree structure with a computationally
more convenient list of problems, sorted by “importance”, allows the master easy to control
the progress of computation.

Since each slave process needs a full REDUCE session, each node can host at most 2 or
3 of them. Thus the number of slave processes, executable in parallel, is restricted by the
hardware.

The problem list management developed in [5] is well suited for such a restricted par-
allelism, even if, as in our experiments, the software does not support the interruption of
executing tasks, that turned out to be superfluous, and the master manages only the list of
subproblems not yet distributed to the slaves.

Let us now describe the main algorithmic idea of our approach :

• During a preprocessing the master interreduces the set B of input polynomials and tries
to factor each f ∈ B. If f factors, he replaces B by a set of new problems, one for each
factor of f , updates the side conditions, and applies the preprocessing recursively. This
ends up with a list of interreduced problems with non factoring base elements. This
preprocessing is currently not parallelized.

Then each of these ideal bases is prepared for further computations, e.g. computing the
list of critical pairs. They are collected in a problem list managed by the master.

• The master distributes the most important problems to the slaves, one per process.
The slaves proceed with the usual Gröbner basis algorithm on the list of pairs not yet
processed, trying to factor each reduced (non zero) S-polynomial before it will be added
to the polynomial list. If it factors, they split up the problem into as many subproblems
as there are (different) factors, add each of the factors to the corresponding subproblem,
update the pair list and the side conditions, and return the new problems to the master.
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• If the pair list is exhausted, the slave extracts the minimal Gröbner basis of the subprob-
lem and continues with tail reductions. This may cause some of the reduced polynomials
to factor anew. Hence he applies the preprocessing once more. If the result is stable he
returns it to the master as a result. Otherwise the new problems are returned to the
master.

• The master manages both the problem and the result lists according to the rules de-
scribed in [5].

Obviously this procedure terminates and returns a list of Gröbner bases with the desired
properties. For details of this part of the implementation we refer to [5]. As it was reported
from other experiments, one can reduce the communication overhead with a master’s book-
keeping of base elements, already transferred to the slave. This is especially useful for a
depth-first problem solving strategy, if a slave continues with one of the subtasks that he
created after splitting a polynomial. On the other hand, this advantage strongly restricts the
freedom of choise of “next important” subproblems. Since such a restriction is not in the
spirit of [5] we consider problems as mutually independent and transfer them as a whole. It
needs more experience to justify this.

2 Communication Frames

Communication is the heart of any parallelization. Together with the high software require-
ments of symbolic computations this suggests two approaches :

1. Resting on a standard symbolic package, use its built in communication facilities devel-
oped for serial purposes to design a parallel communication frame.

In a first approach we used the standard REDUCE distribution [9] together with the
package CALI [4] and its (symbolic mode) disk input/output facilities for communica-
tion between different processes.

Such an approach has the following advantages :

(a) We can use the full power of the diagnostic software supplied with REDUCE for
the analysis of the implementation.

(b) The communication protocol can be designed by the user and hence restricted to
a necessary minimum.

The main disadvantages are :

(a) The communication frame is slow. Surprisingly enough, it is not as bad as we
expected in advance.

(b) Due to the restricted communication protocol there is no error handling. This
requires a very secure task handling. After the resolution of certain read/write
conflicts caused by the underlying NFS system we had almost no trouble even
with large computations.

2. Extend standard symbolic software with a message passing interface for remote connec-
tions through one of the ”classical” communication levels.
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For such an approach we used the original symbolic mode interface of CALI with the
PVM-based REDUCE version of H.Melenk and W. Neun, [7], developed at the Zuse
center in Berlin. We kindly acknowledge the possibility to use this experimental software
and the support provided by the authors installing the system.

This approach has the following advantages:

(a) The communication itself is faster and more stable than in the first approach.

(b) One can use a standard communication interface provided by the software.

Without doubt, this is the direction in which parallel symbolic software should be de-
veloped further. Nevertheless also this approach has some (temporary) disadvantages :

(a) Transferring arguments of a remote task the corresponding expression tree is
searched for repeated entries to minimize the necessary data transfer. This causes
a relatively great overhead.

(b) The REDUCE-PVM interface does not (yet) support error handling.

(c) The software does not support detailed diagnostics.

Both versions use the RLISP remote interface proposed by Melenk and Neun in [7]. (A
subset of) its main features are the following procedures :

remote process(initfile)
start a slave process, load the REDUCE kernel and the necessary environment due
to the supplied initfile.

remote call(function, parameters, slave)
start a new task on a specified slave executing apply(function, parameters) in
the slave’s REDUCE shell.

remote inquire(task)
test whether the specified task was finished.

remote receive(task)
get the result of the task’s request and close it.

remote kill(process)
terminate the slave process.

3 The Run Time Experiments and Conclusions

3.1 Preparing the run time experiment

Both communication frames follow the general RPC scenario as e.g. described in [11] :

• A remote request is formulated in the master’s REDUCE shell.

• The remote request is submitted to the kernel process.

• The master’s kernel transfers the request to the slave’s kernel.

• The slave’s kernel delivers the request to the slave’s REDUCE shell.
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Since the internal diagnostic software watches only for the REDUCE shells it is not easy to
estimate the true communication overhead.

On the other hand, dividing the communication overhead into two parts, the software
and the kernel parts, the internal and the external one, allows us even for a slow interactive
medium as the disk remote connection to get an impression about the potential possibilities
of our algorithmic ideas in a fast communication frame. Indeed, the internal (to REDUCE)
overhead is almost constant and does not depend on the externa. The only difference (and
deformation of the calculation’s graph) comes from the different time that slaves have to wait
for calling the ”slow” master and vice versa.

Since awakening sleeping processes is not supported by our communication frames, unbusy
slaves and master are sleeping a constant time (of 1 sec., calling sleep from inside REDUCE).
These (in)activities can be watched with the REDUCE diagnostic software (counting the calls
to sleep). This allows to predict in a very precise manner a fast communication scenario of
the same calculations. We will discuss this below in more detail.

Note that slaves are sleeping during the (not yet parallelized) preprocessing.

To develop a good approximation of the true picture of the communication we have to
collect different CPU times and real times. Here CPU time measures only activities of the
corresponding process, not of derived kernel activities. This applies to both the PVM-based
communication and the disk remote communication frames. Using the qualtime package of
REDUCE we can count even the CPU time spent in single procedures of both the master’s
and the slave’s (the latter only in the disk remote version) REDUCE shells. Real time is the
real time difference between two events and thus depends not only on the kernel processes
responsible for the external communication, but also on the general load factor of the machine.
Comparing CPU and real time of a serial symbolic implementation for reference we’ve got a
factor in the range 2 . . . 5 between both timings.

The master’s CPU time mt may be divided essentially in two parts,

the call/receive time cr spent during remote call and remote receive, e.g. al-
locating memory for the transferred data (excluding the file management part of
the kernel process),

and the master’s proper contribution prog to the Gröbner bases computation (pre-
processing, list management etc.).

The same applies to the slave’s CPU time st, that can be divided (and accessed) into two
parts in the same way :

the slave’s contribution prog to the Gröbner bases computation

and the slave’s receive/send time cr.

3.2 The Examples

We tested our implementation on several big polynomial systems arising in the computation
of automorphism groups of (complex) Lie algebras given by their structure constants. For a
d-dimensional Lie algebra we obtain this way d×

(d
2

)
quadratic equations in d2 variables (ai

j)
constituting the matrix of the automorphism, see [3, cor. to thm. 2]. Due to the structure
theory of these automorphism groups (CALI’s varopt suggests the same) we consider the
corresponding interreduced system of polynomials with respect to the pure lexicographic
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term order, where variables with greater |i− j| are counted first.2 In table 1 we collected all
results, not only those with det(ai

j) 6= 0.
As result we obtain usually a prime component through the unit matrix and several other

components lying on the hypersurface det(ai
j) = 0.

Our examples arose from the following Lie algebras

1. a5.x : the 5-dimensional Lie algebra a5x in [10].

2. o4 : the 6-dimensional Lie algebra o4 = so3 ⊕ so3.

3. heat : the 6-dimensional Lie symmetry algebra of the heat equation, cf. [1, p. 178].

In table 1 we collected some characteristic data of these problems and the serial execution
(CPU)-time with REDUCE 3.5 and CALI in sec. on an HP-9000/735.

3.3 The Disk Remote Version

Below in table 2 we collected our experimental results on the given examples, i.e.

the total serial (real) time tst,

the sum of the prog part contributions of the master and all slaves,

the number of tasks, i.e. subproblems sent to the slaves,

the master’s mean call/receive communication (CPU) time per task,

the master’s call/receive (CPU) time cr,

the master’s CPU time mt,

the minimum and maximum slave’s CPU time stmin and stmax

and for comparison the (master’s) total (real) time tpt of the parallel computation.

These timings were obtained with 8 slaves on 8 nodes. We did also experiments with other
configurations. The results are similar.

All times are given in sec.

Comparing the second and the last columns of our table we see that the timings obtained
by the parallel disk remote implementation do not differ as much from the (well tuned) serial
implementation as we were feared in advance. They report even a slight speedup for the
larger examples. Some examples we were running several times to see how far the output
depends on the temporary load situation of the cluster.

Although we reported in [5] a great influence of the strategy choosing next subproblems
on the run time of the Gröbner factorizer, the total effort of both the serial and the parallel
versions (using the same strategy) for the computation of the Gröbner bases should be com-
parable. This yields an independent criterion for the adequateness of our scenario : the prog
values of the slaves and the master should more or less sum up to the serial CPU time given
in table 1. These sums are collected in the third column.

The mean call/receive communication time per task gives an impression about the average
range of a subproblem that had to be transferred between the master and the corresponding
slave process. Of course, the size of the problem varies not only between different examples

2For heat we took the deglex. term order.
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but also between different pieces of the same computation. Nevertheless it turned out, that
the average value of cr

task for each single slave does not differ much from the average value
over the whole computation. This is a first indication for a good load (self)balance. This
means that cr is a good approximation for the total transfer amount (given in transfer units
of about 0.8 MB, comparing the entries in the column cr

task with the real disk file size of the
transferred requests).

A second indication for such a good balance is the small ratio between the maximal and
minimal slave’s CPU time in almost all examples.

Comparing CPU times we see that in all cases but heat the master’s time dominates.
For heat there are several ”thick hunks” to be treated by some of the slaves thus forcing the
master to wait for them.

In table 3 we collected for the master’s CPU time

the percentage of the contribution of the preprocessing % pre,

the percentage of the contribution of the call/receive part % cr,

the number of sleep calls,

and for the slaves’ CPU times

the range of the percentage of the slave’s prog part,

and the range of the number of sleep calls.

These parameters give a good impression about the local distribution of the computations.

Let us give an interpretation of the number of sleep calls. In almost all examples the real
bottleneck was the slow input/output of the master process. But, comparing master’s and
slave’s CPU times, we conclude that even for a superfast communication the picture will not
change much. The only difference will be the range of sleep calls to the slaves. The great
dispersion in table 3 rests mainly on the circumstance whether the slave had to handle a lot
of small problems (high sleeping rate standing in the master’s queue to deliver the answer)
or a smaller number of more serious problems. In a faster frame these unsimilarities should
disappear.

Let us try to predict the real time needed for the same computations, but with a commu-
nication that is 10 times faster than our disk remote connection. With a load factor (real time
vs. CPU time) of about 3 our timings yield a real call/receive communication time of about
10 s. per transfer unit. Altogether we get for the expected total parallel time etpt = tpt−9cr
the values in table 4 (o4 does not meet these assumptions, see table 1).

3.4 The PVM-based Version

For the PVM based version we had access only to the master’s time. In table 5 we compared
these timings with the corresponding disk remote values obtained earlier. We’ve got already
a slight speed up for almost all our examples. The number of tasks necessary to complete
a problem differs heavily between both versions (and also between runs at different time of
the same version). This is due to the sensitivity of the Gröbner factorizer to the subproblem
selection strategy as reported in [5].
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Taking into account the sensitivity mentioned above one should agree that these timings
fit very close into the expected run time scenario derived from the detailed consideration of
the disk remote connection above. Note, on the other hand, that the huge PVM-software
providing the communication changes the load situation on the cluster drastically (even with
one slave per node its CPU usage is seldom more that 30%), so that it needs some care to
compare the timings in the table.

3.5 Conclusions

Due to the coarse granularity of our approach the number of available tasks is not very high
and one cannot expect a good load balance if the number of slave processes is beyond that
number. Nevertheless the results collected in table 2 – 5 show, that we obtain a good load
balance and a good ratio between the communication overhead of the slaves and the real work
they have to do.

We tried even larger examples than the o4 and found that up to 24 slave processes (3
per node) are well suited for our cluster. Our approach gives an almost equal distribution
to the slaves, provided the problem does well split into enough pieces. The smaller examples
produced enough subproblems only for 5 . . . 8 slave processes. Hence the load balance in a
given configuration of a medium range number (5 . . . 20) of powerful (≥ 25 MB heap size) slave
processes depends strongly on the examples. Our approach is very well suited for examples
that really admit factorization. Many problems occuring in ”real life” are of this kind. The
performance will increase with a fast communication frame that does not influence the load
factor so ”heavily” as PVM does.

Some of the examples factored very well, thus producing a great amount of communica-
tion overhead, whereas other examples factored into a small number of large Gröbner basis
computation pieces only. In the former class the slow communication became a real bottle-
neck and slaves had to wait a great amount of time. In the latter examples (e.g. in heat) the
master was unbusy some time, thus indicating a good load balance for the slaves.
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example vars eqns subsolutions time dimension of the solutions

a5.37 25 46 18 122 7 5x6 10x5 2x4 (2x5 with det 6= 0)
a5.39 25 46 6 73 8 2x7 3x6 (2x6 with det 6= 0)
a5.40 25 46 2 83 6 0
o4 36 90 9 1650 4x6 (2 with det 6= 0) 4x3 0

heat 36 90 2 911 6 0

Table 1 : The examples

example tst
sum of
progs

# tasks cr
task cr mt stmin stmax tpt

a5.37 293 106.99 166 0.15 28 49.82 11.16 16.79 450
a5.39 191 112.56 243 0.12 37 53.94 11.27 18.51 575
a5.39 191 116.71 256 0.14 37 55.62 11.71 18.19 528
a5.40 244 79.55 143 0.20 33 46.14 6.92 19.25 349
a5.40 244 82.86 144 0.20 33 46.22 7.70 15.31 394
heat 2081 809.83 82 0.70 62 86.99 12.30 485.71 1101
o4 2169 1166.94 760 0.30 289 580.76 111.26 168.33 2032

Table 2 : Experimental results with the disk remote version. The global picture.

example Master Slaves
% pre % cr # sleep % prog # sleep

a5.37 3 57 10 71..84 123..329
a5.39 < 1 62 27 68..76 171..439
a5.39 < 1 66 11 72..80 122..403
a5.40 17 71 7 62..73 72..228
a5.40 17 70 3 61..74 270..371
heat < 1 83 774 53..98 128..919
o4 30 50 64 74..81 86..105

Table 3 : Experimental results with the disk remote version. The local picture.

example etpt
a5.37 198
a5.39 217
a5.40 73
heat 543

Table 4 : Expected real run time with fast communication.
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PVM disk remote
example tst mt cr # tasks tpt mt cr # tasks tpt
a5.37 293 25.40 3.95 186 236 49.82 28 166 450
a5.39 191 17.80 3.20 175 138 55.62 37 256 528
a5.40 244 21.12 5.38 184 105 46.22 33 144 394
heat 2081 24.05 6.38 82 1312 86.99 62 82 1101
o4 2169 437.57 32.16 816 2091 580.76 289 760 2032

Table 5 : PVM based vs. disk remote version.
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