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1 Introduction

Given data points x1, . . . , xn, our aim is to sample new data points which are in
some way similar to x1, . . . , xn. For instance, the given data points may be images
of cats and our goal is to sample new images of cats.

Our assumption is that x1, . . . , xn are samples of a random variable x with an
unknown underlying probability distribution p∗(x) over a known space of possible
data points, e.g., the space of all images of a certain size. We attempt to approxi-
mate x by defining a family of probability distributions pθ, where θ are the model
parameters, to sample from and determine θ such that pθ approximates p∗ as good
as possible. Our known data points are used to assess how well pθ approximates p∗

for a given set of parameters θ.
For denoising diffusion probabilistic models (DDPMs) [18, 52], we define a Markov

chain by gradually adding noise to our training samples until they are (more or less)
normally distributed noise and then attempt to model the reversal of this diffusion
process. Sampling is achieved by generating random noise and applying the reverse
process.

Scope In the following, we cover the original paper on denoising diffusion models
[18] which is based on [52], several papers on architecture improvements including
guidance mechanisms [8, 17, 35], the deterministic sampling scheme DDIM [53],
cascaded diffusion models [19], the conditional diffusion models GLIDE [36], LDM
[44], unCLIP (DALL-E 2) [41], and Imagen [47], and the fine-tuning techniques
LoRA [20], Textual Inversion [13], and DreamBooth [46].

Related surveys Apart from the cited papers, the contents of the following notes
draw major inspirations from Lilian Weng’s blog post [60], the survey by Calvin
Luo [33], and the blog post by Sergios Karagiannakos and Nikolaos Adaloglou [23]
on the topic. It is also worth to mention the blog post by Niels Rogge and Kashif
Rasul [43] which provides detailed insights into the official implementation of the
DDPM model. For introductions to the closely related score based models and their
connection to DDPMs, we recommend the introductions by Yang Song [54] and by
Ayan Das [5, 6]. For an extensive overview of variants and applications of diffusion
models, see the survey by Cao et al. [4].
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2 Preliminaries

In the following, we assume that the reader is familiar with basic concepts of prob-
ability theory, including the normal distribution N (µ, σ2) with density

N (x;µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 .

We recall that for X ∼ N (µ, σ2) and a, b ∈ R, we have aX + b ∼ N (aµ + b, a2σ2).
Moreover, for X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2), we have X1 + X2 ∼ N (µ1 +

µ2, σ
2
1 + σ2

2).
A real random vector X = (X1, . . . , Xk)

T is called a normal random vector if
there exists a vector µ ∈ Rk and a matrix A ∈ Rk×l such that X = AZ + µ,
where Z = (Z1, . . . , Zl) is a vector of independent normally distributed variables,
i.e., Zi ∼ N (0, 1) for all i = 1, . . . , l. In this case, we write X ∼ N (µ,Σ) with the
covariance matrix Σ = AAT. Note that Cov[Xi, Xj] = E[(

∑
k aikZk)·(

∑
k ajkZk)] =∑

k aikajkE[Z2
k ] = Σij, as the expected value is linear, E[Z2

k ] = Var[Zk] = 1, and
E[ZkZl] = E[Zk]E[Zl] = 0 for k 6= l since Zk and Zl are independent.

The density for X ∼ N (µ,Σ) is given by

N (X;µ,Σ) =
1√

(2π det Σ)k
exp

(
−1

2
(X− µ)TΣ−1(X− µ)

)
.

If X ∼ N
([
µ1

µ2

]
,

(
Σ11 Σ12

Σ21 Σ22

))
, then

X1 | X2 ∼ N (µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21)
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3 The Mathematical Model

We model pθ as a marginal distribution pθ(x0) =
∫
pθ(x0:T )dx1:T , where x1, . . . ,xT

are latent variables of the same dimensionality as x. We define the forward diffusion
process by

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

where β1, . . . , βT is a variance schedule of small positive variances. The forward
process is easy to sample from and is used to create the training set for learning the
reverse process. The variances βt are usually held constant as hyperparameters but
can also be learned. For our model family pθ, we choose pθ(xT ) = N (xT ; 0, I) and

pθ(x0:T ) = pθ(xT )
T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

i.e., we assume the reverse process can also be modeled by Gaussians. Here, µθ and
Σθ are modeled using neural networks.

The forward process admits sampling xt at an arbitrary timestep t by defining
αt = 1− βt and ᾱt =

∏t
s=1 αs, as then

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

This is clear by definition for t = 1 and if it is true for t − 1, then with εt−1, εt ∼
N (0, I) independently distributed, we have

xt ∼
√

1− βtxt−1 +
√
βtεt

∼
√

1− βt(
√
ᾱt−1x0 +

√
1− ᾱt−1εt−1) +

√
βtεt

∼ N (
√
ᾱtx0, (αt − ᾱt + 1− αt)I).

We choose βt such that ᾱt
t→∞−→ 0, so the distribution of xt approaches N (0, I) for

t→∞.

Properties for Fixed x0 The distribution q(xt|xt−1,x0) can be computed ana-
lytically, as we know that[

xt−1

xt

∣∣∣∣x0

]
∼ N

([√
ᾱt−1x0√
ᾱtx0

]
,

[
(1− ᾱt−1)I

√
αt(1− ᾱt−1)I√

αt(1− ᾱt−1)I (1− ᾱt)I

])
since

xt−1,i ∼
√
ᾱt−1x0,i +

√
1− ᾱt−1εt−1,i

xt,j ∼
√
ᾱtx0,j +

√
αt
√

1− ᾱt−1εt−1,j +
√
βtεt,j

so

Cov(xt−1,i,xt,j) = E
[√

αt(1− ᾱt−1)εt−1,iεt−1,j +
√

1− ᾱt−1

√
βtεt−1,iεt,j

]
=

{√
αt(1− ᾱt−1) if i = j

0 otherwise.
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Thus, we can compute

q(xt−1|xt,x0)

= N
(
µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
= N

(
√
ᾱt−1x0 +

√
αt

1− ᾱt−1

1− ᾱt
(xt −

√
ᾱtx0), 1− ᾱt−1 − αt

(1− ᾱt−1)2

1− ᾱt
I

)

= N

√αt1− ᾱt−1

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0︸ ︷︷ ︸

µ̃t(xt,x0)

, βt
1− ᾱt−1

1− ᾱt︸ ︷︷ ︸
β̃t

I

 .

Note that if we sample xt through xt =
√
ᾱtx0 +

√
1− ᾱtεt, we can rewrite µ̃t as

µ̃t(xt, εt) =
√
αt

1− ᾱt−1

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt

(
xt −

√
1− ᾱtεt√
ᾱt

)
=

1
√
αt

(
xt −

βt√
1− ᾱt

εt

)
Properties for normally distributed x0 If we assume that x0 ∼ N (0, I), we
can explicitly compute

q(xt) =

∫
q(xt|x0)q(x0)dx0

=
1√

(2π(1− ᾱt))k
1√

(2π)k

∫
exp

(
−||xt −

√
ᾱtx0||22

2(1− ᾱt)

)
exp

(
−||x0||22

2

)
dx0

= C

∫
exp

(
−||xt||

2
2 − 2

√
ᾱtx

T
t x0 + ᾱt||x0||22 + (1− ᾱt)||x0||22

2(1− ᾱt)

)
dx0

= C

∫
exp

(
−||x0 −

√
ᾱtxt||22 + (1− ᾱt)||xt||22

2(1− ᾱt)

)
dx0

=
1√

(2π)k
exp

(
−||xt||

2
2

2

)
︸ ︷︷ ︸

=N (xt;0,I)

· 1√
(2π(1− ᾱt))k

∫
exp

(
−||x0 −

√
ᾱtxt||22

2(1− ᾱt)

)
dx0︸ ︷︷ ︸

=1

.

Thus, we see from

xt−1 ∼ εt−1 xt ∼
√

1− βtεt−1 +
√
βtεt

that Cov(xt−1,xt) =
√

1− βtI, so xt−1|xt ∼ N (
√

1− βtxt, βtI).
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4 The Loss Function

Our goal is to maximize the likelihood pθ(x0) over our dataset. For this, we derive
the evidence lower bound (ELBO) as in [28].

− log pθ(x0) = Ex1:T∼q(·|x0)[− log pθ(x0)]

= Ex1:T∼q(·|x0)

[
log

[
pθ(x1:T |x0)

pθ(x0:T )

]]
= Ex1:T∼q(·|x0)

[
log

[
q(x1:T |x0)

pθ(x0:T )

pθ(x1:T |x0)

q(x1:T |x0)

]]
= Ex1:T∼q(·|x0)

[
log

[
q(x1:T |x0)

pθ(x0:T )

]]
︸ ︷︷ ︸

=Lθ(x0)
(ELBO)

−Ex1:T∼q(·|x0)

[
log

[
q(x1:T |x0)

pθ(x1:T |x0)

]]
︸ ︷︷ ︸

=DKL(q(x1:T |x0)||pθ(x1:T |x0))

We can rewrite the ELBO as

Lθ(x0) = Ex1:T∼q(·|x0)

[
log

[ ∏T
t=1 q(xt|xt−1)

pθ(xT )
∏T

t=1 pθ(xt−1|xt)

]]

= Ex1:T∼q(·|x0)

[
− log pθ(xT ) + log

[
q(x1|x0)

pθ(x0|x1)

]
+

T∑
t=2

log

[
q(xt|xt−1)

pθ(xt−1|xt)

]]
.

Now note that

q(xt|xt−1) = q(xt|xt−1,x0) =
q(xt,xt−1,x0)

q(xt−1,x0)
=
q(xt−1|xt,x0)q(xt,x0)

q(xt−1,x0)
=
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)

so we can write

T∑
t=2

log

[
q(xt|xt−1)

pθ(xt−1|xt)

]
=

T∑
t=2

log

[
q(xt−1|xt,x0)

pθ(xt−1|xt)

]
+

T∑
t=2

log

[
q(xt|x0)

q(xt−1|x0)

]

=
T∑
t=2

log

[
q(xt−1|xt,x0)

pθ(xt−1|xt)

]
+ log

[
q(xT |x0)

q(x1|x0)

]
and obtain

Lθ(x0) = Ex1:T∼q(·|x0)

[
log

[
q(xT |x0)

pθ(xT )

]
+

T∑
t=2

log

[
q(xt−1|xt,x0)

pθ(xt−1|xt)

]
− log pθ(x0|x1)

]

= DKL(q(xT |x0)||pθ(xT ))︸ ︷︷ ︸
LT

+
T∑
t=2

Ext∼q(·|x0) [DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))]︸ ︷︷ ︸
Lt−1

− Ex1∼q(·|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
L0

.

For the correctness of the KL terms, note that

q(xt,xt−1|x0) =
q(xt,x0)

q(xt,x0)

q(xt,xt−1,x0)

q(x0)
= q(xt|x0)q(xt−1|xt,x0).
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The Term LT is the prior matching term and ensures that the forward process
destroys all information about x0 such that q(xT ) ≈ N (xT ; 0, I). If the variances
βt are treated as hyperparameters, LT is constant as q has no learnable parameters
and pθ(xT ) = N (xT ; 0, I), so it can be ignored during training. Moreover, by design
we choose βt and T such that q(xT ) ≈ N (xT ; 0, I) so that LT is (close to) zero
anyway. If the variance schedule is learned, the term is crucial to ensure that the
two processes do not cheat by modeling the identity function.

The terms Lt−1 are the denoising matching terms which force the reverse process
to reverse the forward process as good as possible. The KL-terms compare Gaussians
with known distributions and can be computed analytically.

The term L0 is the reconstruction term which ensures that the reverse process
attempts to produce data points which mimic our training examples x0. In [18], L0,
and thus the sampler from x1 to x0, is modeled using a separate discrete decoder
derived fromN (x0;µθ(x1, 1),Σθ(x1, 1)), i.e., as a parameterless function of µθ(x1, 1)
and Σθ(x1, 1), c.f. Section 5.

5 Simplifications and Hyperparameter Choices

The Variance Schedule βt In the original paper [18], the variances βt are sched-
uled to increase linearly from β1 = 10−4 to βT = 0.02, where T = 1000. The
variances are deliberately chosen small w.r.t. the data from [−1, 1] so that the for-
ward process creates only minor distortions and the assumption that the reverse
process can be modeled using Gaussians is defensible. Also, this choice ensures that
the distribution q(xT |x0) of xT is reasonably close to N (0, I), being reported as
LT = DKL(q(xT |x0)||N (0, I)) ≈ 10−5 bits per dimension in the experiments.

Parameterizing Σθ The authors of [18] found that learning a diagonal reverse
process covariance matrix Σθ(xt, t) lead to unstable training and worse sample qual-
ity and fixed Σθ(xt, t) = σ2

t I as hyperparameters with either σ2
t = βt or σ2

t = β̃t,
both of which choices lead to similar results. Note that these choices of σ2

t corre-
spond to the variances of q(xt−1|xt) for x0 ∼ N (0, I) and q(xt−1|xt,x0) for x0 fixed,
respectively.

Parameterizing L0 In the original paper [18], the data x0 to be generated are
images, so the decoder sampling from pθ(x0|x1) should produce valid images. For
this, the image data is assumed to have integer values in {0, . . . , 255} and is scaled
linearly to [−1, 1] to match the standard local prior pθ(xT ) ∼ N (0, I). To obtain a
discrete decoder, pθ(x0|x1) is modeled as

pθ(x0|x1) =
D∏
i=1

∫ δ+(x0,i)

δ−(x0,i)

N (x;µθ(x1, 1)i, σ
2
1)dx

δ+(x) =

{
∞ if x = 1

x+ 1
255

if x < 1
δ−(x) =

{
−∞ if x = −1

x− 1
255

if x > −1
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where D is the dimensionality of the image. In other words, we measure for each
pixel x0,i how much probability mass of N (µθ(x1, 1)i, σ

2
1) is in the correct ground

truth bin for that pixel. Our model thus has to predict a mean vector µθ(x1, 1).
In [18], the final sampling step outputs µθ(x1, 1) noiselessly and the training loss is
modeled with a loss term as described in the next section.

Simplifying Lt for t > 1 The KL-divergence DKL(N (µ1,Σ1) ‖ N (µ2,Σ2)) of
two k-dimensional multivariate Gaussians is

1

2

(
tr(Σ−1

2 Σ1)− k + (µ2 − µ1)TΣ−1
2 (µ2 − µ1) + log

(
det Σ2

det Σ1

))
.

Thus, we obtain

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) = DKL(N (µ̃t(xt,x0), β̃tI) ‖ N (µθ(xt, t), σ
2
t I))

=
1

2σ2
t

||µ̃t(xt,x0)− µθ(xt, t)||22 + C

for some constant C which does not depend on θ. Thus, Lt becomes

Lt = Ext∼q(·|x0)

[
1

2σ2
t

||µ̃t(xt,x0)− µθ(xt, t)||22
]

+ C.

During training, we may assume that xt is sampled via xt =
√
ᾱtx0 +

√
1− ᾱtεt so

that

µ̃t(xt, εt) =
1
√
αt

(
xt −

βt√
1− ᾱt

εt

)
.

This motivates the parameterization

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
such that Lt becomes

Lt = Ex0∼p∗,εt∼N (0,I)

[
β2
t

2σ2
tαt(1− ᾱt)

||εt − εθ(
√
ᾱtx0 +

√
1− ᾱtεt, t)||22

]
+ C.

As this loss essentially minimizes the distance between εt and εθ, the authors of [18]
propose a further simplification to

Lsimple(θ) = Et∼U ,x0∼p∗,ε∼N (0,I)

[
||ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)||22

]
,

where U is the uniform distribution on 0, . . . , T − 1. The authors report better
performance with this choice than when predicting ε or µ̃ using the more complex
loss terms. For t > 1, the loss term corresponds to a rescaling of the loss term
derived above. For t = 0, the loss term corresponds to an approximation of the
integral in L0 by the Gaussian probability density function at x0,i, scaled by the bin
width and ignoring scaling factors like σ2

1.
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In conclusion, during training we pick a training sample x0, sample t ∼ U([0, T−
1]) and ε ∼ N (0, I), and then perform a gradient descent step on ||ε− εθ(

√
ᾱtx0 +√

1− ᾱtε, t)||22. Recall that mathematically, this corresponds to applying gradient
descent on a Monte Carlo estimate of the expected value in Lsimple, i.e., we apply
the usual stochastic gradient descent.

For sampling, we first sample xT ∼ N (0, I), then repeatedly sample z ∼ N (0, I)

and xt−1 = µθ(xt, t) + σtz = 1√
αt

(
xt − βt√

1−ᾱt
εθ(xt, t)

)
+ σtz up to x1 and output

x0 = µθ(x1, 1). Note that during sampling, the model means µθ(xt, t) are always
clipped to [−1, 1], the valid interval of pixel value bins.

6 The U-Net Backbone

In this section, we review the implementation of the neural network which pre-
dicts εθ. The overall architecture is a U-Net [45], following the PixelCNN++ [49]
backbone based on a Wide ResNet [63]. For extended details, the original imple-
mentation is available on GitHub1. Throughout the network, the U-Net operates
on tensors of shape (B,H,W,C). Here, B denotes the batch size (fixed throughout
the network), H and W are the height and width of the image (downscaled and
then upscaled throughout the network), and C is the number of feature channels
(upscaled and then downscaled throughout the network). The input to the network
is a batch of noisy images, i.e., a tensor of shape (B,H,W, 3), and the output is a
tensor of the same shape containing predictions for εθ. Specifically, B = 128 was
chosen for images of size 32× 32 and B = 64 for larger images.

The Activation Function The activation function of choice is Swish [40], defined
by swish(x) = x

1+e−x
and depicted below.

Positional Encoding The network uses temporal embeddings very similar to
those of the original transformer paper [59]. More precisely, the positional encoding
vector τt at time t of dimension 2d (here 2d = 128) is defined as

ηti = t · 10−
4i
d−1 =

t

10000
i

d−1

(i = 0, . . . , d− 1)

τt = (sin ηt0, sin η
t
1, . . . , sin η

t
d−1, cos ηt0, cos ηt1, . . . , cos ηtd−1).

Dropout A dropout layer [16] randomly sets a fraction p of the weights of its input
tensor to 0. Here, p was set to 0.1 for the system trained on the CIFAR10 data set
and to 0 on all other data sets (CelebA-HQ 256× 256, LSUN) in all dropout layers.

1https://github.com/hojonathanho/diffusion
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Group Normalization The network makes repeated use of group normalization
[61]. A group normalization layer groups the channels of a batch x of images of
shape (B,H,W,C) into G groups (where G must divide C) and “normalizes” the
mean and standard deviation by computing these statistics over all channels in the
group. More precisly, for fixed batch index b and each group index 0 ≤ g ≤ G− 1,
we define

µbg =
1

C
G
·H ·W

(g+1)C
G∑

c=1+gC
G

H∑
h=1

W∑
w=1

x(b,h,w,c)

σbg =

√√√√√ 1
C
G
·H ·W

(g+1)C
G∑

c=1+gC
G

H∑
h=1

W∑
w=1

(x(b,h,w,c) − µg)2 + ε,

where ε = 10−6 is a small constant to avoid division by 0 later on. The output

tensor y, also of shape (B,H,W,C), is for g =
⌊
c−1
C/G

⌋
defined by

y(b,h,w,c) = γc
x(b,h,w,c) − µg

σg
+ βc,

where γ and β are trainable scale and shift parameter vectors of dimension C. The
original implementation uses some TensorFlow default hyperparameters such that
here, G = 32, γ is initialized with 1’s, and β is initialized with 0’s.

Dense Layers Unsurprisingly, the network employs dense layers, i.e., layers con-
sisting of a matrix W of shape (Cin, Cout) together with a bias b of shape (Cout).
Dense layers are applied to 1-dimensional tensors of shape (Cin) as well as to multi-
dimensional layers of shape (B,H,W,Cin). In both cases, the output is computed
as a matrix multiplication plus the bias on the last dimension, producing outputs of
shape (Cout) and (B,H,W,Cout), respectively. As the input dimension Cin is given
by the input to the layer, we only denote the output dimension Cout for dense layers.
The bias weights are initialized as 0 and the layer weights are initialized by variance
scaling with a uniform distribution in fan-avg mode, i.e., with

fan-avg =
Cin + Cout

2
limit =

√
3 · scale

fan-avg
,

weights are drawn uniformly from [−limit, limit]. The parameter “scale” is chosen
either 1 or 10−10 for all dense layers. We consider scale = 1 as the “default” and
only denote deviations.

Convolutional Layers The convolutional layers of the network all have kernel
size 3 × 3. We denote the number of input channels by Cin and the number of
output channels by Cout. As the number of input channels Cin is given by the input
to the layer, we only denote the number of output channels Cout as in 3× 3× Cout.
Each convolutional layer has a bias b of shape (Cout) initialized by 0. Like the dense
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layer weights, the kernel weights are initialized by variance scaling with uniform
distribution in fan-avg mode, i.e., with

fan-avg =
3 · 3 · Cin + 3 · 3 · Cout

2
limit =

√
3 · scale

fan-avg

weights are drawn uniformly from [−limit, limit]. Like for dense layers, the parame-
ter “scale” is chosen either 1 or 10−10 for all convolutional layers. All convolutional
layers have either stride s = 1 and preserve the dimensions H and W , for which
one row / column of 0 padding is added at the top, bottom, left, and right, or stride
s = 2 and divide the dimensions H and W by 2 (all dimensions are powers of 2)
for which one row / column of 0 padding is added at the bottom and right.2 In the
following, we consider stride s = 1 and scale = 1 as the “default” and only denote
deviations.

Downsampling and Upsampling Blocks Downsampling and upsampling blocks
obtain an input x of shape (B,H,W,C) and produce an output of shape (B, H

2
, W

2
, C)

or (B, 2H, 2W,C), respectively. Downsampling blocks are simply convolutional lay-
ers with output dimension C and stride s = 2 as described above. Upsampling
blocks first apply a nearest neighbor upsampling to double the dimensions H and
W , i.e., each “pixel” x(b,h,w) is copied to produce a square of 4 identical pixels, after
which a convolution with output dimension C and stride s = 1 is applied.

ResNet Blocks The network employs residual neural network (ResNet) blocks
[14]. The input to a ResNet block is a tensor of shape (B,H,W,Cin) and the output
a tensor of shape (B,H,W,Cout). Like for the other network blocks, we denote only
Cout when specifying a ResNet block. The precise implementation is as follows.

x GN swish conv Cout ⊕ GN swish drop
conv Cout

scale = 10−10 ⊕

swishdense Coutt

dense Cout

Here, GN stands for a group normalization layer and t is a positional embedding
of shape (B, 512). The dashed dense layer on the residual connection is only used
if Cin 6= Cout, otherwise this connection is an identity connection. Note that the
positional embeddings t are of shape (B,Cout) after the dense layer and are broadcast
for addition to the transformations of x, i.e., they are implicitly converted to a tensor
of shape (B,H,W,Cout) via t(b,h,w,c) = t(b,c).

Attention Blocks The network also employs scaled dot-product attention as in-
troduced in [59]. Note that this implementation uses only one attention head. The
input is a tensor x of shape (B,H,W,C) and the output is of the same shape. Three

2according to the default TensorFlow implementation of conv2d for padding=“SAME”
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separate dense layers of output dimension C are used to produce projections of x
for use as queries, keys, and values, i.e.,

q,k,v = denseq(x), densek(x), densev(x)

all of shape (B,H,W,C). In the following, we consider q(b,h,w) as a vector of dimen-
sion C, similar for k,v. We recall the general idea behind attention. For each query
q(b,w,h), we generate a “useful information” by computing a convex combination of
all values (v(b,h,w))h,w. For a query q(b,h,w), the coefficient for value v(b,h′,w′) is given
by the correlation (i.e., dot-product) of query q(b,h,w) with key k(b,h′,w′). Obviously,
these coefficients (also called scores) do not lead to a convex combination, so a
softmax is applied over all scores produced for q(b,h,w).

The score matrix is computed as

S(b,h,w,h′,w′) =
q(b, h, w)Tk(b, h′, w′)√

C

and the coefficient matrix A is computed by taking the softmax over the last two
dimensions of S, i.e., with s(b,h,w,h′,w′) = exp(S(b,h,w,h′,w′)) and Z =

∑
h′,w′ s(b,h,w,h′,w′),

we let A(b,h,w,h′,w′) = s(b,h,w,h′,w′)/Z. More succinctly, we may write

A(b,h,w) =
exp(S(b,h,w))

|| exp(S(b,h,w))||1
,

where the exponential function is applied pointwise and ||.||1 denotes the Manhattan
norm. The preliminary attention y with shape (B,H,W,C) is computed via

y(b,h,w) =
∑
h′,w′

A(b,h,w,h′,w′) · v(b,h′,w′).

The final output of the layer is the sum of the input x and a projection of y, so that

output = x + dense(y),

where the dense layer is of output dimension C and scale = 10−10.

The U-Net A U-Net [45] is a dedicated network architecture for picture-to-picture
transformation scenarios, i.e., the input and output usually have the same shape
(B,H,W,C), although the number of channels may differ depending on the goal.
This is opposed to networks which reduce a batch of images to a tensor of shape
(B,Cout), for instance to predict the objects present in the images.

Here, the input to the U-Net is a batch x of noisy images of shape (B,H,W, 3)
and the output is a batch of predictions for εθ, also of shape (B,H,W, 3). To sample
the input images, a batch of time steps t ∈ {0, 1, . . . , T − 1}B is sampled uniformly
from {0, 1, . . . , T − 1} (here, T = 1000) and x is sampled as xb ∼ q(xtb+1|x0 = x̃b),
where x̃ is a batch of training images of shape (B,H,W, 3). A batch of positional
encodings τ = (τt1 , . . . , τtB) of dimension 2d = 128 is created as described above
and transformed into an embedding t of shape (B, 512) as follows.
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τ dense 512 swish dense 512 t

The tensor t is the positional embedding input to all ResNet blocks of the network.
The U-Net consists of a gradual downsampling phase followed by a gradual up-

sampling phase, where downsampling blocks and upsampling blocks of matching
dimensions are also connected by a skip connection, i.e., the output of the down-
sampling block is concatenated to the (linear) input of the upsampling block. Here,
the concatenation of two tensors x,y of shape (B,H,W,C1),(B,H,W,C2) is a ten-
sor z of shape (B,H,W,C1 + C2), where z(b,h,w) is the concatenation of x(b,h,w) and
y(b,h,w). Graphically, we denote a concatenation by 	. We define such a coupled
upsampling and downsampling block as follows.

ResNet C 	 ResNet C 	 ResNet C 	 up

ResNet C ResNet C down
=l C

If the input tensor (before downsampling/upsampling) to such a block is of height
(and thus also width) H = 16, each of the 5 ResNet blocks is immediately followed
by an attention block, i.e., before use for concatenation.

There are two specific configurations for the U-Net depending on the size of the
input images which is either 32 × 32 or 256 × 256. The configuration for 32 × 32
images uses 4 feature resolutions down to 4×4 while the configuration for 256×256
images uses 6 feature resolutions down to 8 × 8. The precise configurations are as
follows.

l 128
x

l 256 l 256 l 256
GNSwish

conv 3
scale = 10−10

ResNet 256

ResNet 256
Attn

l 128
x

l 128 l 256 l 256 l 512 l 512
GNSwish

conv 3
scale = 10−10

ResNet 512

ResNet 512
Attn

Here, the dashed blocks contain attention blocks after each residual block. Moreover,
in the deepest scaling block, downsampling and upsampling is omitted.

The U-Net specification is usually (i.e., also for derivative models by other au-
thors) given by a base channel number (here 128) and an array of channel multipli-
ers (here [1, 2, 2, 2] and [1, 1, 2, 2, 4, 4], respectively) which determines the number of
downsampling and upsampling blocks as well as their channel counts. The spacial
dimension are halved after each block, with the exception of the deepest block, and
doubled accordingly during upsampling.

The Optimizer After experimentation with Adam [25] and RMSProp, Adam was
chosen as the optimizer with default hyperparameters (β1 = 0.09, β2 = 0.999) and
a learning rate of 2 · 10−4 for 32× 32 images and 2 · 10−5 for 256× 256 images. We
note that improved systems by other authors are also optimized using AdamW [31].
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EMA EMA (exponential moving average) is applied to model parameters with a
decay factor β = 0.9999. More precisely, a record θ̃t of model parameters is kept and
updated according to θ̃t = β · θ̃t−1 + (1 − β)θt, where θt are the model parameters
of the current optimization step and θ̃0 = 0. The initialization bias towards 0
can be corrected via θ̂t = θ̃t/(1 − βt). The final EMA model parameters are used
for inference but not during training. This technique aims to prevent the training
data encountered during the last optimization steps before training stopped from
dominating the final model weights. Also, EMA reduces the effect of overfitting
common towards the end of training.

6.1 Architecture Improvements

In [35] and [8], Dhariwal and Nichol experiment with several improvements to the
U-Net architecture which we summarize in the following. Full details can be found
in the official GitHub repositories.34 The first two improvements we review are from
[35], the remainder from [8].

Cosine Schedule In [35], Nichol and Dhariwal find that the linear noise schedule
of [18] is sub-optimal for smaller images and suggest a cosine schedule of the form

ᾱt =
f(t)

f(0)
f(t) = cos

(
t/T + s

1 + s
· π

2

)2

,

where then βt = 1 − ᾱt
ᾱt−1

and βt is additionally clipped to be no larger than 0.999
in order to avoid singularities when t approaches T . This choice of schedule leads
to a linear drop-off of ᾱt in the middle of the process while near the beginning and
end, the changes to ᾱt are small. The schedule takes longer to “destroy” the original
information x0 than the linear schedule. The small offset s = 0.008 prevents βt from
being too small near t = 0 and was chosen so that

√
β0 is slightly smaller than the

pixel bin size 1
127.5

(see Section 5). The choice of cos2 was more or less arbitrary and
other functions with similar shapes may perform comparably.

Interpolating between βt and β̃t In [35], Dhariwal and Nichol suggest to learn
Σθ(xt, t) = exp(v log βt+(1−v) log β̃t)I as an interpolation between the two choices
suggested by Ho et al. [18]. Here, v = vθ(xt, t) is obtained by doubling the output
channels of the U-Net implementing εθ(x, t) from 3 (the RGB channels) to 6 (one
v for each RGB channel). The coefficient v was not constrained to [0, 1], but was
found to be learned to be in [0, 1] during the experiments anyway. As the loss
term Lsimple(θ) suggested in [18] does not provide signals to update Σθ(xt, t) (see
Section 5), the loss is instead modeled as a hybrid loss

Lhybrid(θ) = Lsimple(θ) + λLθ(x0),

where λ = 0.001 is chosen small such that Lθ(x0) does not overwhelm Lsimple(θ)
and a stop gradient is applied to the µθ(xt, t) output in Lθ(x0) such that it guides
Σθ(xt, t) while Lsimple(θ) remains the main source of updates to µθ(xt, t).

3https://github.com/openai/improved-diffusion
4https://github.com/openai/guided-diffusion
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BigGAN Up/Downsampling While the original model employs convolutional
layers for upsampling and downsampling, the authors report an improved sampling
quality when using BigGAN [3] style residual blocks instead, as suggested in [55].
More precisely, each upsampling and downsampling block of the original implemen-
tation is replaced by a residual block identical to the one described above but with
a scaling layer added before the first convolution (after the swish activation) and
before the dense layer on the skip connection, respectively. Upsampling layers con-
sist of a nearest neighbor interpolations to double the dimension and downsampling
layers consist of a 2× 2 average pooling layers with stride 2 to halve the dimension.
Similar to the original implementation, these upsampling and downsampling ResNet
blocks are omitted near the U-turn of the U-Net.

Multi-Head and Multi-Resolution Attention The original model employs
single-head scalar dot product attention at the 16 × 16 resolution of the network.
Here, the authors suggest to employ multi-head attention at the resolutions 32 ×
32, 16 × 16, and 8 × 8. They experiment with using a fixed number of heads for
all resolutions (2,4,8) or a fixed number of channels per head for all resolutions
(32,64,128) and report better performance with multi-resolution attention and with
more heads/fewer channels per head, identifying 64 channels per head as optimal.

Depth over Width The authors investigate whether increasing the depth of the
network (number of layers) while reducing its width (number of parameters per
layer, i.e., number of channels for convolutional layers) improves performance. More
precisely, they increase the number of ResNet blocks per downsampling and upsam-
pling block from 2 to 4 (the BigGAN upsampling/downsampling ResNet block is
not counted as a ResNet block here) while reducing the number of channels. While
this change improves quality, it also increases training time and is for this reason
not pursued further.

Adaptive Group Normalization The authors further report improved sampling
quality by using a new mechanism they term adaptive group normalization (AdaGN)
which modifies how the time step embedding is “injected” into the ResNet blocks.
In the original implementation, a time step embedding t is scaled by a dense layer
with swish activation to an embedding y with the correct number of channels for
addition to the output h of the first convolutional layer. The original model then
computes GroupNorm(h+ y). Similar to adaptive instance norm (AdaIN) [24] and
feature-wise linear modulation (FiLM) [38], AdaGN instead computes (1 + ys) �
GroupNorm(h) + yb as the next step, where y = [ys, yb] is an embedding with twice
the number of channels of h and � denotes the Hadamard (i.e., pointwise) product.

7 Alternatives to Predicting εt

Recall the loss term

Lt = Ext∼q(·|x0)

[
1

2σ2
t

||µ̃t(xt,x0)− µθ(xt, t)||22
]

+ C.
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Instead of predicting the noise εt as derived in Section 5, we could either predict
µ̃t(xt,x0) directly or predict x0 as follows. Since

µ̃t(xt,x0) =
√
αt

1− ᾱt−1

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

we can parameterize

µθ(xt, t) =
√
αt

1− ᾱt−1

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
xθ(xt, t).

Then Lt above becomes

Lt = Ext∼q(·|x0)

[
ᾱt−1β

2
t

2σ2
t (1− ᾱt)2

||x0 − xθ(xt, t)||22
]

+ C.

As mentioned in Section 5, both approaches were reported to yield inferior results
in [18].

There is one more approach we can take by applying Tweedie’s Formula [11].
Tweedie’s Formula states that for a random variable µ with density pµ and X ∼
N (µ,Σ), where Σ is a constant diagonal covariance matrix, we have

Eµ∼pµ [µ | X = x] = x+ Σ∇x log pX(x).

Note that Tweedie’s Formula applies in more generality, including for non-diagonal
covariance matrices, but this version of the theorem suffices for us. For a derivation,
consult the appendix. By applying Tweedie’s Formula to xt ∼ N (

√
ᾱtx0, (1− ᾱt)I)

with a constant (Dirac distributed) x0, we obtain
√
ᾱtx0 = xt+(1−ᾱt)∇xt log q(xt|x0).

By writing xt =
√
ᾱtx0 +

√
1− ᾱtεt with εt ∼ N (0, I), this formula is easy to verify

by hand without employing Tweedie’s Formula and this also reveals that

∇xt log q(xt|x0) = ∇xt

(
log

1√
(2π det(1− ᾱt)I)k

− 1

2

∑
i

(xt,i −
√
ᾱtx0,i)

2

1− ᾱt

)
= −xt −

√
ᾱtx0

1− ᾱt
= − εt√

1− ᾱt
.

We can now compute

µ̃t(xt,x0) =
√
αt

1− ᾱt−1

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
1√
ᾱt

(xt + (1− ᾱt)∇xt log q(xt|x0))

= (αt − ᾱt + βt)
xt

(1− ᾱt)
√
αt

+
βt√
αt
∇xt log q(xt|x0)

=
1√
αt

xt +
βt√
αt
∇xt log q(xt|x0).

Accordingly, we may choose to parameterize

µθ(xt, t) =
1√
αt

xt +
βt√
αt
sθ(xt, t)
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in which case Lt becomes

Lt = Ext∼q(·|x0)

[
β2
t

2σ2
tαt
||∇xt log q(xt|x0)− sθ(xt, t)||22

]
+ C.

Clearly, sθ(xt, t) is encouraged to learn a rescaling of the objective of εθ(xt, t). The
log derivative∇xt log q(xt|x0) is also called the score function of xt. This formulation
of the loss function shows a close connection to score based generative models.

Connection to SDEs and Score Based Models Assume that instead of the
discrete time steps t = 0, 1, . . . , T we consider [0, T ] as a continuous interval of time
steps and model

q(xt+∆t − xt|xt) = N (f(xt, t)∆t, g
2(t)∆t2) or

xt+∆t − xt = f(xt, t)∆t+ g(t)∆t · ε with ε ∼ N (0, I),

then we can consider f and g as the drift and diffusion functions of the stochastic
differential equation

dxt = f(xt, t)dt+ g(t)dWt,

where Wt is a Wiener process. For example, the process we defined for DDPMs
becomes

dxt = −1

2
βtxtdt+

√
βtdWt,

see Appendix B of [55] for a derivation. Due to a result for SDEs [1], such a forward
diffusion process can be reversed in closed form with the SDE

dxt =
[
f(xt, t)− g(t)2∇x log p(xt)

]
dt+ g(t)dWt,

where p is the density of the process (xt)t∈[0,T ] solving the forward SDE with x0 ∼
p∗. This allows sampling from p∗ by applying the reverse process to a random
sample xT ∼ N (0, I). Score based models aim to approximate the score s(xt, t) =
∇x log p(xt) and then approximate the reverse process via discrete sampling. For an
introduction to score based models and their connection to DDPMs, see the articles
by Song [54] and by Das [5, 6].

8 Speedups – Strided Sampling, DDIM, and LDM

Sampling from a diffusion model as described in [18] is very time consuming as
T = 1000 denoising steps have to be computed. Song et al. report in [53] that
“For example, it takes around 20 hours to sample 50k images of size 32× 32 from a
DDPM, but less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU.”
In the following, we review some approaches to increase sampling speed.
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Strided Sampling The first approach, suggested in [35], uses a strided sampling
procedure. Note that this approach also employs the interpolated parameterization
of Σθ and the cosine variance schedule as explained in Section 6.1. In their exper-
iments, the authors train a diffusion model with T = 4000 steps and experiment
with sampling only n = 25, 50, 100, 200, 400, 1000, 4000 steps as follows. A sampling
schedule (St)

n
t=1 is selected by spacing n points evenly in [1, T ] (including 1 and T )

and rounding to the nearest integer. Then sampling is conducted as if the model
had been trained using this sampling schedule. More precisely, during training we
assume that

xt ∼ N (
√
ᾱtx0, (1− ᾱt)I) and xt ∼ N (

√
1− βtxt−1, βtI).

Preserving the first assumption, βSt and β̃St are computed as

βSt = 1− ᾱSt
ᾱSt−1

and β̃St = βSt
1− ᾱSt−1

1− ᾱSt

such that

xSt ∼ N (
√
ᾱStx0, (1− ᾱSt)I) and xSt ∼ N (

√
1− βStxSt−1 , βStI).

The reverse process then samples xSt−1 | xSt ∼ N (xt−1;µθ(xSt , St),Σθ(xSt , St)).
The authors found that using the hybrid loss function Lhybrid and 100 sampling
steps already produces near optimal Fréchet Inception Distance (FID) [15]. In com-
parison to DDIM (see next paragraph), the authors found that DDIM produces
better samples with fewer than 50 sampling steps but worse samples when using 50
or more steps.

DDIM In [53], Song et al. introduce denoising diffusion implicit models. The
authors observe that the training of DDPMs only requires the marginals of xt given
x0 to satisfy

xt | x0 ∼ N (
√
ᾱtx0, (1− ᾱt)I).

Thus, any forward process qσ with these marginal distributions, including a non-
Markovian process, is a valid candidate to replace the Markovian process used in [18].
With this motivation, the authors define a process qσ whose reverse marginal density
qσ(xt−1|xt,x0) uses a fixed variance schedule σ = (σ2

t )
T
t=1 as follows.

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1εt−1

=
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t εt + σtε

=
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt
+ σtε

such that

qσ(xt−1|xt,x0) = N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt︸ ︷︷ ︸
=µσ,t(xt,x0)

, σ2
t I).
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The Markovian process q satisfies q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃t) implying
that qσ is Markovian if and only if σ2

t = β̃t.
The joint density q(x1:T |x0) and the density qσ(xT |x0) are chosen as

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1,x0) and qσ(xT |x0) = N (xT ;
√
ᾱTx0, (1− ᾱT )I)

such that the derivation of the loss function in Section 4 is valid without any changes:
simply replace q(xt|xt−1) by q(xt|xt−1,x0). The reverse process is modeled as

pθ(xt−1|xt) = N (xt−1; µ̃θ(xt, t), σ
2
t I).

The KL divergence in the loss term Lt then becomes

DKL(qσ(xt−1|xt,x0)||pθ(xt−1|xt)) = DKL(N (µσ,t(xt,x0), σ2
t I) ‖ N (µθ(xt, t), σ

2
t I))

=
1

2σ2
t

||µσ,t(xt,x0)− µθ(xt, t)||22.

Again, during training we may assume xt =
√
ᾱtx0 +

√
1− ᾱtεt such that

µσ,t(xt,x0) =
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t εt.

which motivates modeling

µθ(xt, t) =
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t εθ(xt, t)

and Lt becomes

Lt = Ex0∼p∗,εt∼N (0,I)

[
1− ᾱt−1 − σ2

t

2σ2
t

||εt − εθ(
√
ᾱtx0 +

√
1− ᾱtεt, t)||22

]
.

Note that σt here is not the same as in Section 4, where it was chosen as either βt
or β̃t. This loss term is a rescaling of the loss term derived in Section 4 (ignoring
the constant C) which yields the important observation that the models trained for
DDPM and DDIM optimize the same objective. Thus, it is possible to sample from
a DDPM trained model using the DDIM sampling algorithm

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtεθ(xt, t)√

ᾱt

)
︸ ︷︷ ︸

predicted x0

+
√

1− ᾱt−1 − σ2
t εθ(xt, t)︸ ︷︷ ︸

direction pointing to xt

+ σtε︸︷︷︸
random noise

,

with the definition α0 = 1. In particular, the same model can be used to sample
using different choices of σt. The special case σt = 0, where the sampling process
becomes deterministic, is what the authors define as denoising diffusion implicit
models.

To increase sampling speed, strided sampling as described above is applied using
the DDIM sampling algorithm. In their experiments, the authors choose the variance
schedule σ2

St
= ηβ̃St for sampling schedules of the form (St)

n
t=1 ⊆ [1, T ] with a

hyperparameter η > 0. For η = 1, this corresponds to (strided) DDPM sampling
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and for η = 0, to (strided) DDIM sampling. The authors report a higher sample
quality with DDIM sampling when n is small. In particular, DDIM produces samples
comparable 1000 step DDPM sampling in only 20 to 100 steps. Moreover, DDIM
displays “sample consistency” due to its deterministic nature in the sense that the
initial latent xT determines the high level features of the output regardless of the
number of sampling steps and varying the number of sampling steps only affects
minor details. This also indicates that DDIM is suited for latent space interpolation
as sampling from an interpolated initial latent is more likely to produce an output
whose high level features are also interpolated while DDPM may simply “sample
out” high level features during the sampling process.

LDM In DDPMs, the latents x1, . . . ,xT have the same dimensionality as the data
x0. The authors of [44] suggest to instead perform the denoising process in a lower
dimensional latent space to generate high level features and then use a dedicated
decoder which generates low level features (detail) and maps the denoised latent
into the image data space. This proves to significantly lower computational costs
both for training and for sampling. The denoising process is the same as in DDPMs
apart from minor differences (e.g., the initialization of convolutional layer weights,
no bias in the linear dense layers of the attention blocks). Therefore, we describe
in the following the encoder and decoder architecture used to move between the
data space and the latent space. Full details can be found in the official GitHub
repository.5

The encoder-decoder pair is constructed as a variational autoencoder (VAE)
[27, 28]. The authors experiment both with “vanilla” VAEs as well as with vector
quantized VAEs (VQ-VAEs) [42, 58]. For vanilla VAEs, the encoder E takes a batch
of image inputs x of shape (B,H,W,C) and outputs means Eµ(x) and variances
Eσ2(x) both of shape (B, h, w, c), where (h,w, c) is the latent space dimensionality.
The latent z is generated by sampling each entry from a normal distribution using
its predicted mean and variance. For VQ-VAEs, E outputs a single tensor of shape
(B, h, w, c) serving as the latent z. The encoder is constructed exactly like the
downsampling part of the U-Net in Section 6 including the ResNet-Attn-ResNet
sequence after the downsampling. It is then followed by a final GroupNorm-Swish-
Conv sequence where the last Conv layer preserves spatial dimensions (which become
the latent space spatial dimensions h × w) by using a 3 × 3 kernel with a padding
of size 1 on all sides and fixes the number of channels to either 2c or c, depending
on whether it implements a VAE or a VQ-VAE. In the first case, the first half of
channels is treated as the predicted means and the second half as the logarithms of
the predicted variances.

The decoder D first quantizes the input if it is implemented as a VQ-VAE.
A 3 × 3 convolution restores the shape the encoder produced before forcing the
channel number c or 2c. After this, the decoder follows the U-Net layout of Section 6,
repeating the ResNet-Attn-ResNet sequence into the upsampling blocks but without
any skip connections from the encoder. The information loss from the original data
x to its reconstruction x′ = D(E(x)) is based on [12] and measured as a combination
of

5https://github.com/CompVis/latent-diffusion
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1. a reconstruction loss Lrec(x,x
′) = ||x− x′||1,

2. a perceptual loss (LPIPS6) [64] which computes the distance between two im-
ages as the L2 distance of their activations in the deepest layer of a feature
extraction network like AlexNet or VGG (here: AlexNet?),

3. a regularization loss, either as the VQ-VAE commitment loss or as the KL-
divergence between a standard normal distribution and the normal distribution
given by the predicted means and variances, and

4. a patch-based [22] adverserial loss [10, 12, 62] of the form −Dψ(D(E(x)) of a
discriminator Dψ which is trained to tell “real” images x from “fake” (recon-
structed) images x′.

The discriminator Dψ is trained jointly with the autoencoder. It is implemented as
a stack of conv-norm-LeakyReLU blocks. The convolutional layers downscale the
image and increase channels by using 4× 4 convolutions with a stride of 2 and the
norm is always either a batch norm [21] or an activation norm [26]. A final convolu-
tional layer projects the channel dimension to 1 and each entry in the resulting map is
treated as the logit for the “realness” of an associated patch. The predictions are av-
eraged and larger predictions are treated as higher perceived realness. The discrimi-
nator is trained using a standard GAN loss 1

2
(softplus(−Dψ(x))+softplus(D(E(x′))))

where softplus(x) = log(1 + ex).

9 Conditioned Generation

So far, we have only considered modeling the data distribution p∗(x). However, it
is desirable to be able to model conditional data distributions p∗(x|y) conditioned
on some label y such that the model output can be controlled via y. Such a label
could be a text encoding for text-to-image synthesis as (Imagen [47], DALLE-2
[41], Stable Diffusion [44]), a partially drawn image to be inpainted [44], or a low
resolution image to perform super-resolution on [19, 44]. In the following, we review
approaches to enhance the models discussed so far with conditioning mechanisms.

AdaGN Every ResNet block in the U-Net for εθ(xt, t) obtains a time step em-
bedding t. Dhariwal and Nichol suggest to convert the label y for xt into a label
embedding y of the same dimension as t using a standard embedding layer. Each
ResNet block then obtains t + y instead of only t as a combined temporal and class
embedding.

Note that the class label information is not reflected in the loss function such
that the diffusion process is not guided to produce an output of the provided class.
Rather, it provides additional information to the network which it can leverage
but also learn to ignore. This approach is motivated by the fact that Lucic et al.
[32] found that even creating synthetic labels by applying a mini-batch k-means
clustering [50] on the representation of a feature extractor trained to recognize the
rotation degree of a randomly rotated image [30] improved the FID scores of GANs.
However, the conditioning mechanisms discussed in the following paragraphs suggest
that models learn to leverage “meaningful” semantic information.

6https://github.com/richzhang/PerceptualSimilarity
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Classifier Guidance In [8], Dhariwal and Nichol train a classifier pφ(y|xt) on
noisy images xt and use the gradients ∇xt log pφ(y|xt) to guide the diffusion process.
For a clean derivation, we first make some observations. Recall that we assume

q(xT |x0) ≈ N (xT ; 0, I) = pθ(xT ) and q(xt|xt+1,x0) ≈ pθ(xt|xt+1).

By an induction, we can thus show as follows that in general q(xt|x0) ≈ pθ(xt).

q(xt|x0) =

∫
xt+1

q(xt,xt+1|x0)dxt+1

=

∫
xt+1

q(xt,xt+1,x0)

q(x0)

q(xt+1,x0)

q(xt+1,x0)
dxt+1

=

∫
xt+1

q(xt|xt+1,x0)q(xt+1|x0)dxt+1

≈
∫
xt+1

pθ(xt|xt+1)pθ(xt+1)dxt+1 (induction hypothesis)

=

∫
xt+1

pθ(xt,xt+1)dxt+1

= pθ(xt)

This implies

∇xt log pθ(xt) ≈ ∇xt log q(xt|x0) = − εt√
1− ᾱt

≈ −εθ(xt, t)√
1− ᾱt

.

Now assume we want to guide the denoising process pθ by a class label y in the form
of pθ(xt|xt+1, y). Then instead of predicting (a rescaling of) ∇xt log pθ(xt), we want
to predict a conditioned score ∇xt log pθ(xt|y). We can compute [33]

∇xt log pθ(xt|y) = ∇xt log

(
pθ(xt)pθ(y|xt)

pθ(y)

)
= ∇xt log pθ(xt) +∇xt log pθ(y|xt)

≈ −εθ(xt, t)√
1− ᾱt

+∇xt log pφ(y|xt)

= − 1√
1− ᾱt

(εθ(xt, t)−
√

1− ᾱt∇xt log pφ(y|xt)︸ ︷︷ ︸
ε̂θ,φ(xt,t)

),

where pφ(y|xt) is a class label predictor for noisy images. The authors found that
the guidance had to be strengthened for optimal results and modeled ε̂θ,φ with a
hyperparameter γ as

ε̂θ,φ(xt, t) = εθ(xt, t)−
√

1− ᾱtγ∇xt log pφ(y|xt).

The choices for γ range from 0.5 to 11 (usually γ > 1) and is adapted to the
training set of the model. The actual implementation of log pφ(y|xt) employs the
U-Net architecture up to the U-turn. The gradients are computed automatically
using PyTorch. For extended details, consult the official GitHub repository.7

7https://github.com/openai/guided-diffusion, guided diffusion/unet.py/EncoderUNetModel,
guided diffusion/script util.py/create classifier, scripts/classifier sample.py/cond fn
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Classifier-Free Guidance In [17], Ho and Salimans develop a guidance method
which avoids using a dedicated classifier, as training such a classifier in itself is
costly; employing existing classifiers is not optimal as these are not trained on noisy
images. Instead, the authors train both an unconditional denoising diffusion model
pθ(xt−1|xt) parameterized through an estimator εθ(xt, t) and a conditional denoising
diffusion model pθ(xt−1|xt, y) parameterized through an estimator εθ(xt, t, y). Effec-
tively, both models can be trained in parallel, only training εθ(xt, t, y), by creating a
synthetic “void” label ∅ and during training randomly choose either the correct label
y for xt to train the conditional model or choose y = ∅ to train the unconditional
model.

A motivation for the approach of Ho and Salimans can be derived as follows. In
the section on classifier guidance, we saw that

∇xt log pθ(y|xt) = ∇xt log pθ(xt|y)−∇xt log pθ(xt).

Thus, if we use the classifier pθ(y|xt) = pθ(xt|y)pθ(xt)
−1pθ(y) for classifier guidance,

the weighted score function becomes

∇xt log pθ(xt|y) = ∇xt log pθ(xt) + γ∇xt log pθ(y|xt)
= ∇xt log pθ(xt) + γ(∇xt log pθ(xt|y)−∇xt log pθ(xt))

= γ∇xt log pθ(xt|y) + (1− γ)∇xt log pθ(xt).

With the parameterizations

∇xt log pθ(xt) ≈ −
εθ(xt, t)√

1− ᾱt
∇xt log pθ(xt|y) ≈ −εθ(xt, t, y)√

1− ᾱt
γ = 1 + w

the authors suggest a sampling via

ε̂(xt, t, y) = (1 + w)εθ(xt, t, y)− wεθ(xt, t),

where w controls the influence of the conditional diffusion process. The authors
report that the choice of w provides a trade-off between FID score [15] and Inception
Score (IS) [48]. Sweeping the value of w from 0.0 to 4.0 reduces FID while increasing
IS.

There is no official GitHub implementation,8 but the paper suggests that the only
architectural change is to provide an embedding y of y to εθ(xt, t,y) for addition to
t which can be implemented using a standard embedding layer.

GLIDE In [36], Nichol et al. develop a diffusion denoising model they call GLIDE
(Guided Language to Image Diffusion for Generation and Editing) which is able
to simultaneously condition on both images and text. They experiment both with
classifier-free guidance as well as with classifier guidance using CLIP [39] to guide
the denoising process, which turns out to provide worse results than classifier-free
guidance. The base architecture is the ADM model from [8] discussed in Section 6.1.
For full details, consult the official GitHub repository.9

8an unofficial implementation can be found under https://github.com/coderpiaobozhe/

classifier-free-diffusion-guidance-Pytorch
9https://github.com/openai/glide-text2im
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The models are conditioned only on text during training. For this, the text
is converted to a sequence of tokens and fed to a transformer [59] to produce a
sequence of embeddings which are used in two ways. First, the embedding of the
last token in the sequence is passed in place of a class embedding to the ResNet
blocks as described in the paragraph on AdaGN, i.e., it is added to the temporal
embedding vector. Second, the embedding sequence is separately projected to the
dimensionality of each attention block in the U-Net and concatenated to the key
and value sequences of the (self) attention layers.

Conditioning on images is achieved by fine-tuning the trained text-conditioned
models. For this, the U-Net is modified to accommodate 4 input channels in addition
to the 3 input channels containing the noisy input image: 3 new RGB channels for
the image to be conditioned on and a mask channel to indicate the region masked for
inpainting (the RGB channels of masked regions are zeroed out, resulting in black
regions, but not all black regions in an image should be inpainted). The weights
introduced to attend to the new channels are initialized to 0 before fine-tuning. The
authors experiment with inpainting, super resolution, and super resolution inpaint-
ing (both tasks simultaneously).

CLIP [39] (short for Contrastive Language-Image Pre-training) is an approach
for learning joint representations between text and images. A CLIP model consists
of an image encoder f(x) and a caption encoder g(c), both producing real vectors.
During training, batches (x1, c1), . . . , (xn, cn) of image/caption pairs from a training
set are randomly sampled and a contrastive cross-entropy loss aims to maximizes
the dot products f(xi)

Tg(ci) and minimize the dot products f(xi)
Tg(cj) with i 6= j.

Full details can be found in the paper and the GitHub repository.10 As pre-trained
CLIP models are not trained on noisy images, the authors train a dedicated CLIP
model where the image encoder f(x, t) takes time step information into account.
CLIP guidance is realized by modeling log pφ(c|xt) ≈ f(xt, t)

Tg(c).

Cascaded Diffusion Models In [19], Ho et al. propose an iterative application of
diffusion denoising models for super resolution. At the lowest resolution, a diffusion
model pθ(z0|z) upsamples a low resolution image z to an image z0. This image is
in turn upsampled by a higher resolution diffusion model pθ(x0|z0), a process which
can be iterated. The models are further conditioned on class information c. The
conditioning is achieved as in the previous models, i.e., the conditioning image is
concatenated to the input of the U-Net and the class information is added to the
temporal embedding via a class embedding. The model architecture employs the
first two improvements discussed in Section 6.1 from [35].

The authors found that training the cascading pipeline of super resolution diffu-
sion models benefits from data augmentation being applied to the lower resolution
conditioning image. Specifically, the authors notice a positive effect when randomly
(e.g., with 50% probability) adding Gaussian noise to the conditioning image z for
low resolution upsamplers and randomly adding Gaussian blur to the conditioning
image z0 for higher resolution upsamplers. During inference, no noise or blur is
added. The authors term this form of data augmentation noise conditioning aug-
mentation.

10https://github.com/openai/CLIP
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Moreover, the authors experiment with a truncated training process, where a
low resolution model pθ(zt|z) is only trained to upsample from timesteps T to s > 0
while the higher resolution upsampler pθ(x0|zs) is trained to super resolve from
noisy inputs zs. In a denoising step from xt to xt−1, the high resolution upsampler
obtains xt, zs, and embeddings for t and s. During sampling, the authors suggest
not to truncate the sampling process but run the full process to sample z0 as pθ(z0|z)
from z, then sample z′s from q(z′s|z0), and continue the upsampling process with z′s
instead of zs as the conditioning image for the higher resolution upsampler.

Cross Attention (LDM/Stable Diffusion) In [44], which also introduces la-
tent diffusion models, Rombach et al. experiment with two modifications of the
conditioning methods used in GLIDE. As in GLIDE, the base architecture is the
ADM model from [8] discussed in Section 6.1. Classifier-free guidance is chosen to
guide the denoising process.

First, GLIDE fine-tuned a pre-trained model for image-to-image synthesis tasks.
In contrast, Rombach et al. concatenate a downsampled version of the conditioning
information to the input xt of εθ(xt, t) during training. The authors employ this
approach to train models for semantic synthesis (by providing a semantic map of
x0), super-resolution (by providing a low-resolution version of x0), and inpainting.

The second method enhances the attention mechanism used in GLIDE to attend
to text conditioning information. Here, the authors replace the self attention blocks
of the U-Net implementing εθ(xt, t) with cross attention blocks. First, a domain
specific encoder τθ projects the conditioning information y to an intermediate repre-
sentation τθ(y) ∈ RM×dτ . For class conditioning, τθ can be implemented as a simple
embedding layer. For text-to-image and layout-to-image synthesis, τθ is modeled as
a transformer as follows.

y
TokEmb

PosEmb
⊕ LN MHA ⊕ LN dense ⊕ LN

×N

Here, y is a token sequence (e.g., of words or of bounding box location and class
information), TokEmb and PosEmb are trainable embedding layers for the token
embedding and the positional embedding, respectively, LN denotes layer norms [2],
MHA is the usual multi-head self attention, and N denotes the depth of the trans-
former, i.e., the number of self attention blocks. In particular, BERT [7] serves as
an implementation for τθ in the text-to-image scenario.

The representation τθ(y) is used as the input to the keys and values in a multi-
head attention mechanism. Recall that in the self attention mechanism explained
in Section 6, the queries q, keys k, and values v are all computed from the current
hidden state x. For cross attention, the queries are obtained by applying a dense
layer denseq to x and the keys and values are obtained by applying dense layers
densek and densev to τθ(y). To employ the usual multi-head attention formulas for
linear sequences, the state x of shape (B,H,W,C) is first reshaped to (B,H ·W,C)
and the output reshaped to (B,H,W,C) again. The explanation in Section 6 avoided
reshaping, but the mechanism is the same. The attention blocks of the U-Net are
replaced by a transformer block with the following architecture.
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LN dense reshape LN MHA ⊕ LN dense ⊕ LN MHCA ⊕ reshape dense

×N

τθ(y)

Here, “reshape” denotes the two reshapings described above, MHA is a multi-head
self attention layer, MHCA a multi-head cross attention layer, and N = 1 is chosen
for most models, but N = 3 has also been used to train a model.

unCLIP (DALLE-2) In [41], Ramesh et al. further develop the GLIDE model by
enhancing the text conditioning mechanism with CLIP embeddings. CLIP guidance
is not explored further and dropped in favor of classifier-free guidance. In partic-
ular, the authors employ a standard CLIP model trained on “normal” (not noisy)
images producing image embeddings zi from images x and text embeddings zt from
captions c. The proposed text-to-image model consists of a decoder pθ(x|zi, c) sam-
pling images from CLIP image embeddings (and optionally the caption) and a prior
pθ(z

i|c) sampling CLIP image embeddings from captions. As the decoder is trained
to invert the CLIP image embedding, the model is named unCLIP. An unofficial
implementation can be found on GitHub.11

The decoder pθ(x|zi, c) is a denoising diffusion model modifying the ADM ar-
chitecture from [8] by projecting and adding the CLIP image embedding zi to the
timestep embedding and by projecting zi into four extra tokens of context which
are, together with transformer generated embeddings of the caption c, concatenated
to the key and value sequences of the networks attention layers. This approach is
very similar to how GLIDE provides text conditioning information to the network,
in particular retaining the provision of text embeddings to the attention layers.

For the prior pθ(z
i|c), two approaches are investigated. Both approaches employ

classifier-free guidance and during training drop the text conditioning information
10% of the time.

The first approach trains a diffusion denoising model which predicts zit−1 =
zit−1(c, zt, t, zit, ∅). More precisely, the first approach employs a decoder-only trans-
former with a causal attention mask on a sequence consisting of, in order: the
encoded text, the CLIP text embedding, an embedding for the diffusion timestep,
the noised CLIP image embedding, and a final embedding (here denoted by ∅ whose
output from the transformer is used to predict the unnoised CLIP image embedding
zi. Instead of the ε-prediction usually employed to optimize diffusion models, the
authors find that directly predicting zi works better and use the loss term

Lprior = Et∼[0,T ],zit∼q(·|zi)
[
||zit−1(c, zt, t, zit, ∅)− zi||22

]
.

The second approach models the prior pθ(x|zi, c) autoregressively. We only
briefly summarize this method as it performs slightly worse than the first method and
full implementation details are not published. First, principal component analysis
(PCA) [37] is applied to the CLIP image embeddings zi, reducing the latent space

11https://github.com/lucidrains/DALLE2-pytorch
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dimensionality (here, 319 out of 1024 are kept, causing only a 1% reconstruction
loss). The principal components are ordered by decreasing eigenvalue magnitude
and quantized each to 1024 discrete buckets producing a sequence which a trans-
former with causal attention mask is trained to predict. To condition on the text
information, the sequence is prepended by embeddings of c, zt, and a token indicat-
ing the (quantized) dot product (zi)Tzt between the text embedding and the image
embedding.

Imagen In [47], Saharia et al. present the text-to-image model Imagen which
introduces three major innovations. First, the text embeddings for text conditioning
are not trained specifically for the diffusion model like in GLIDE, which trains a text
encoder transformer jointly with the model, or unCLIP, where the text embeddings
come from a CLIP model trained on the training data. Instead, the text embeddings
are generated by the pretrained large language model T5-XXL. These embeddings
are not trained with computer vision tasks in mind, but training on a data set much
larger than the captions of the training set images seems to outweigh this initial
drawback.

Second, the authors introduce dynamic thresholding. Recall that εθ(xt, t) pre-
dicts pixel value means in the range [−1, 1] which map linearly (see Section 5) to
[0, 255]. During training, the input xt to εθ(xt, t) is always a (3 channel) image
with pixel values in [−1, 1], but the output may exceed this range. Although the
training loss encourages εθ(xt, t) to stay withing the bounds, the necessity to predict
black and white pixels (i.e., −1 and 1) leads to εθ(xt, t) not being clipped to [−1, 1].
During sampling, previous models therefore clipped the output of εθ(xt, t) to [−1, 1]
before sampling xt−1, a technique which may be referred to as static thresholding.
This however causes pixel value predictions to be biased towards the boundaries,
resulting in overly saturated images, in particular when using classifier-free guidance
with a large guidance weight w. As an alternative to static thresholding, the authors
propose dynamic thresholding in which a boundary s is defined as a percentile p of
absolute pixel values (i.e., s = min{s′ | at least p percent of all pixel values are
within [−s′, s′]}) and if s > 1, then the output of εθ(xt, t) is clipped to [−s, s] and
divided by s, resulting in a smoother restriction to the interval [−1, 1]. Here, p was
chosen for example as p = 99.5%.

Third and finally the authors introduce a modified U-Net architecture they term
“Efficient U-Net”. Unfortunately, it is not possible to have full certainty over all de-
tails of the implementation as no official implementation has been published. There
exist (at least) two unofficial implementations,1213 but both deviate from the archi-
tecture specified in the paper. As the paper itself contains somewhat contradictory
statements on the architecture, it is not clear whether the paper leaves out certain
details or whether the descriptions are, in fact, accurate. The following are some of
the puzzles in the paper.

• The paper states that the base architecture is the U-Net from [35], i.e., with the
first 2 improvements from Section 6.1. However, training parameters include a

12http://github.com/lucidrains/imagen-pytorch
13https://github.com/cene555/imagen-pytorch
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number of attention heads, the use of BigGAN upsampling and downsampling,
and a parameter use scale shift norm which usually specifies the use of
AdaGN. This indicates the architecture includes (some of) the improvements
from [8], i.e., the rest of Section 6.1.

• The ResNet block does not specify any dropout layer. Training parameters
specified in Section F of the paper indicate that no dropout was used, so this
may be accurate.

• The ResNet block does not obtain a temporal embedding. This may be accu-
rate as the downsampling and upsampling blocks do specify where the tempo-
ral embedding is included, but it is still surprising as the deepest downsampling
blocks then contain up to 8 ResNet blocks in a row without outside embedding
(temporal, text) input.

The following is thus my best guess at the Efficient U-Net architecture.
The overall model architecture is a cascading diffusion model with a base 64×64

denoising model and two super-resolution denoising models 64 × 64 → 256 × 256
and 256× 256→ 1024× 1024. Each of the three denoising models is designed and
trained with specific modifications. Both super-resolution models are trained using
noise conditioning augmentation as suggested for cascading diffusion models [19].

The ResNet blocks lose the temporal embedding and the dropout layer. It is un-
clear whether any of the Group Norm layers is implemented as AdaGN and whether
the dense layer on the residual connection is always in effect as the paper suggests
(previous architectures only use the projection when the number of input channels
differs from the number of output channels). According to the paper, a single ResNet
block with Cout output channels has the following architecture.

x GN swish conv Cout GN swish conv Cout ⊕

dense Cout

The downsampling and upsampling blocks are again paired by skip connections,
which are scaled by 1/

√
2. The actual downsampling and upsampling layers as well

as the attention layers are optional, as before. The downsampling layer is a 3 × 3
convolution with stride s = 2 and the upsampling layer also uses a 3×3 convolution,
very likely preceded by a nearest neighbor upsampling. Efficient U-Net is designed
such that deeper downsampling blocks and their upsampling partners contain more
ResNet blocks than the blocks near the top of the network. The following is the
design of a downsampling/upsampling pair.

down ⊕ ResNet C Attn

up	 Attn ResNet C ⊕

×N

×N

cond
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It is not clear how the conditional embeddings are fed into the blocks, so the following
assumes the usual addition to the hidden state. The conditional embedding consists
of the temporal embedding, the noise conditioning augmentation level (a scalar in
[0, 1] indicating how much noise was added), and an attention pooled text embedding
vector. The nature of these embeddings is also not clear. As the authors use a time
continuous diffusion process with t ∈ [0, 1], the embeddings are likely created as
for [29], i.e., a sinusoidal positional encoding vector for 1000t is used.14 Creating
an embedding for the noise level in the same way seems natural, but this is pure
speculation. The attention pooled text embedding mechanism is also not specified
further, but following [39] and a mention of Layer Normalization in the paper, the
attention pooled vector is likely created by a Layer Normalization followed by a
multi-head attention where q is the mean pooling of the T5-XXL text embeddings
and k and v are the T5-XXL embeddings. A different natural choice would be
to choose q as a vector of trainable parameters [57]. Following up the multi-head
attention with another Layer Normalization and a dense layer would be common
practice and would also allow projecting to the dimension of the temporal embedding
vector. Following the design of previous ResNet blocks and considering the need to
project to the dimensionality of the block, the combined embedding vector is likely
fed to a dense layer with swish activation.

The only information on the attention layer design is the use of Layer Normal-
ization and the use of twice the number of channels within the multi-head attention,
compared to the number of input and output channels. Moreover, the text embed-
dings are projected and concatenated to the keys and values of the self attention
layers. Attention blocks are used at resolutions 32 × 32, 16 × 16, and 8 × 8 in the
64× 64 model and the 64× 64→ 256× 256 model. The 256× 256→ 1024× 1024
model does not use self attention, so the attention layers become pure cross attention
layers. Following [44], the attention layer may be implemented as follows.

LN MHA ⊕ LN dense ⊕

The full Efficient U-Net architecture begins with a 3×3 stride s = 1 convolution from
the 3 input channels to 128 output channels, is followed by pairs of downsampling
and upsampling blocks (specific to each of the three diffusion models), and closes
with a dense layer to 3 output channels. Further details on the architecture are
specified in Section F of the paper, such as the downsampling/upsampling block
configurations for the different models (although I cannot fully follow them) or the
noise schedules and optimizer (hyperparameter) choice. We just note that both the
cosine schedule and the linear schedule are used as a noise schedule and that Adam
and Adafactor [51] are used for optimization.

10 Fine-Tuning Text-to-Image Models

If a text-to-image diffusion model did not encounter any image of a gömböc during
training or if none of the gömböc images was labeled accordingly, the model cannot

14http://github.com/google-research/vdm
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sample an image of one. Fine-tuning aims to inject a new identifier-object pairing
into the “knowledge base” of the model which allows images of the object to be
sampled by using the identifier. In the following, we review some well-known fine-
tuning approaches.

LoRA LoRA (Low Rank Adaptation) [20] is a general approach to fine-tuning
neural networks. Abstractly, fine-tuning a network with model parameters θ pro-
duces a new set of parameters θ′ = θ + ∆θ. For large networks, this comes with
costly fine-tuning training process, as all of the parameters θ have to be fine-tuned,
and with a large set of new parameters which have to be stored. LoRA aims to
resolve this problem by training a much smaller set of parameters φ from which ∆θ
can be synthesized. Specifically, assume a pretrained weight matrix W ∈ Rk×d in a
neural network. LoRA modifies the model architecture and models W ′ = W+ α

r
BA,

where A ∈ Rr×d and B ∈ Rk×r such that r � min(k, d) and α is a hyperparameter.
During fine-tuning, only A and B are trainable while W is frozen. In some experi-
ments of [20], r could be chosen as small as 1 or 2. In [20], A was initialized with a
normal distribution and B was initialized as 0.

The authors notably investigate the effectiveness of fine-tuning only the projec-
tion matricesWq,Wk,Wv,W of the multi-head attention layers of several transformer
encoders and large language models with positive results. This very approach is used
to fine-tune the cross attention layers of pretrained Stable Diffusion models.

Textual Inversion In addition to the computational and storage costs of fine-
tuning a model, fine-tuning on a very small dataset can lead to catastrophic for-
getting of prior knowledge [9, 34]. In [13], the authors therefore suggest a method
of identifier-object injection which avoids retraining any model weights. Instead,
the fine-tuning process optimizes the embedding vector of a new word added to the
vocabulary of the model.

The authors experiment with an LDM [44] model in which BERT [7] is used to
produce text embeddings for text conditioning. The first layer of a BERT encoder
maps each word of a sequence of input words (i.e., string tokens) to an embedding
vector. The sequence of embedding vectors is then fed into a multi-layer transformer
which produces the final embedding vectors. The authors suggest to add a new word
S∗ to the vocabulary, initialize its embedding vector with the embedding vector of
an existing word which broadly fits the object’s category (e.g., “person” or “man”
for images of one specific individual in these categories) and then optimize the usual
LDM training loss while freezing all weights but those of the embedding vector.

More specifically, as few as 3-5 images of the object to be injected are randomly
sampled from, embedded to the latent space by the encoder E , noised by randomly
sampled noise, and the amount of added noise is predicted using the noisy image
zt, the time t, and a text embedding generated by BERT from a randomly sampled
caption c(S∗). The captions are derived from the CLIP ImageNet templates [39]
and contain prompts of the form “A photo of S∗” or “A rendition of S∗”. The full
list is given in the paper.
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DreamBooth In contrast to the previous approaches, DreamBooth [46] does fine-
tune all model weights but aims to prevent catastrophic forgetting, over-fitting, and
mode collapse by using a different training loss termed autogenous class-specific
prior preservation loss. In addition, the identifier for the object to be injected into
the model is carefully chosen to be amenable for fine-tuning.

As in the previous methods, DreamBooth aims to bind a new identifier to the
object chosen for injection. One detail of text encoders, in particular of BERT, we
glossed over so far is that words are usually not tokenized as whole words but as
subwords. For instance, the word “example” might be divided into the three tokens
“ex–amp–le•”, where • is an end-of-word marker. Thus, if the identifier is tokenized
into very common subwords, the fine-tuning process is prone to interfere with prior
training. This is in particular the case with seemingly very unique identifiers such as
“xxy5syt00”, which may be tokenized into single letters, resulting in very common
tokens. The authors therefore identify a sequence of k “rare” tokens in the vocabu-
lary, e.g., tokens added later during the WordPiece token generation algorithm used
for BERT. According to the authors, a relatively short sequence of k ∈ {1, 2, 3}
tokens consisting of up to 3 Unicode characters (without spaces) sampled randomly
uniformly in the T5-XXL tokenizer range of {5000, . . . , 10000} works well.

DreamBooth fine-tunes the diffusion model on a small number of images of the
object to be injected. To bind the identifier to the object, the images are labeled
with the caption c = “a [identifier] [class noun]”, where the class noun is coarse
class descriptor of the subject (like for Textual Inversion) and can be user-specified
or obtained from a classifier. In order to prevent overfitting “class noun” to the
new object during training, a number of N (e.g., N = 1000) images x

(1)
pr , . . . ,x

(N)
pr

are sampled from the (prior) model before fine-tuning using the caption cpr = “a
[class noun]”. The model is then fine-tuned with a loss function that encourages
the model to keep the sampled images in its output space, i.e., the following loss is
optimized.

E
x0,x

(i)
pr ,t,t′,ε,ε′

[
||ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t, c)||22

+ λ||ε′ − εθ(
√
ᾱt′x

(i)
pr +

√
1− ᾱt′ε′, t′, cpr)||22

]
Here, x0 is uniformly sampled from the images of the object, i ∼ U([1, N ]), t, t′ ∼
U([1, T ]), and ε, ε′ ∼ N (0, I). The parameter λ controls the strength of the class-
specific prior preservation loss. The authors trained models for ∼ 1000 iterations
with λ = 1 and a learning rate of 10−5 for Imagen and 5 · 10−6 for Stable Diffusion
on only 3-5 images each.

Appendix

Tweedie’s Formula

Let X, Y be two independent random variables with densities pX , pY and joint den-
sity pX,Y (i.e., the density of (X, Y )). Then

1. pX,Y = pXpY ,
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2. the density of X + Y is pX+Y (y) =
∫
R pX(x)pY (y − x)dx,

3. the density of Y | X satisfies pY |X(y | x)pX(x) = pX,Y (x, y).

The first statements can be derived relatively easily by applying Fubini’s Theorem
and observing generators of the Borel algebra.∫

x≤c,y≤d
pX,Y (x, y)d(x, y) = P(X ≤ c, Y ≤ d)

= P(X ≤ c)P(Y ≤ d)

=

∫
x≤c

∫
y≤d

pX(x)pY (y)dydx

=

∫
x≤c,y≤d

pX(x)pY (y)d(x, y)

P(X + Y ≤ c) =

∫
x+y≤c

pX,Y (x, y)d(x, y)

=

∫
R

∫
y≤c−x

pX(x)pY (y)dydx

=

∫
R
pX(x)

∫
y≤c

pY (y − x)dydx

=

∫
y≤c

∫
R
pX(x)pY (y − x)dxdy

The last statement requires some work for a rigorous derivation which we do not
cover here.

We show that for a random variable µ with density pµ and X ∼ N (µ,Σ), where
Σ is a constant diagonal covariance matrix, we have

Eµ∼pµ [µ | X = x] = x+ Σ∇x log pX(x).

We only consider the case where µ,X, and Σ are scalars, from which the general
statement follows by applying this result component-wise.

Assume that µ is a random variable with density pµ and X ∼ N (µ, σ2) where
σ is constant. In particular, we may assume X = µ + Z with Z ∼ N (0, σ2). Then
the density of X is pX(x) =

∫
pµ(µ)N (x − µ; 0, σ2)dµ and the density of µ | X is

pµ|X=x =
pµ,X(.,x)

pX(x)
=

pX|µ(x)pµ

pX(x)
. Thus,

Eµ∼pµ [µ | X = x]− x
σ2

=

∫
µ− x
σ2

pµ|X=x(µ)dµ

=

∫
µ−x
σ2 pµ(µ)N (x;µ, σ2)dµ∫
pµ(µ)N (x− µ; 0, σ2)dµ

=
d

dx
log

∫
pµ(µ)N (x− µ; 0, σ2)dµ

which means Eµ∼pµ [µ | X = x] = x + σ2 d
dx

log pX(x). Note that we may swap
integration and differentiation as the integrand is an L1 function for x fixed and the
derivatives are L1 functions if we assume that E[µ] <∞.
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