
A Layman’s Understanding
of

Discrete Variational Autoencoders

Erik Paul

September 08, 2023

1 Variational Autoencoders

1.1 Motivation

Given data points x1, . . . , xn, our aim is to sample new data points which are in
some way similar to x1, . . . , xn. For instance, the given data points may be images
of cats and our goal is to sample new images of cats.

For variational autoencoders [3, 4], our assumption is that x1, . . . , xn are samples
of a random variable x with an unknown underlying probability distribution p∗(x)
over a known space of possible data points, e.g., the space of all images of a certain
size. We attempt to approximate x by defining a family of random variables xθ,
where θ are the model parameters, and determine θ such that the probability dis-
tribution pθ of xθ best approximates p∗. Our known data points are used to assess
how well pθ approximates p∗ for a given set of paramters θ.

1.2 Latent Variables

In practice, effectively sampling from a random variable is difficult, so we sample
from simple probability distributions, like the uniform distribution or the normal
distribution, and transform their outputs. For this, we model pθ using latent (un-
observed) random variables z which are easy to sample. The marginal distribution,
or likelihood, over the observed variables is thus

pθ(x) =

∫
pθ(x, z)dz.

For variational autoencoders, we write pθ(x, z) = pθ(x|z)pθ(z), choose pθ(z) = p(z)
as a very simple distribution without parameters, and model pθ(x|z) using the pa-
rameters θ. Modeling pθ(x|z) is usually achieved by using θ to compute the param-
eters of a distribution which is easy to sample from and choose x as a sample from
this distribution. The model used to produce x from z is called the decoder.

1

Example 1 ([3]). Assume x ∈ {0, 1}D is a vector of D-dimensional binary data.
We may model x = xθ and pθ as follows.

z ∼ N (0, I)

p(z) = N (z; 0, I)

p = DecoderNeuralNetθ(z)

xi ∼ Bernoulli(pi)

log pθ(xθ|z) =
D∑
i=1

log Bernoulli(xi; pi)

=
D∑
i=1

xi log pi + (1− xi) log(1− pi),

where DecoderNeuralNetθ outputs a vector p ∈ [0, 1]D, for instance by using a
sigmoid non-linearity after the last layer, and pi is used as the probability that
xi = 1, i.e., pi is the parameter of a Bernoulli distribution.

1.3 Conditioning Latent Variables

Although the setup above looks promising, we do not really have a way of training
it: the variables z are not observed, so we do not have training examples telling
us how xθ (or pθ) should look like given z. If the marginal likelihood pθ(x) =∫
pθ(x, z)dz =

∫
pθ(x|z)pθ(z)dz was tractable, i.e., efficiently computable, we could

solve this problem by averaging out z and search θ which maximizes the likelihood
of our observed data. However, for models sufficiently flexible to solve real world
problems, this integral often does not possess an analytic solution or an efficient
estimator. Alternatively, if we knew pθ(z|x), we could compute

pθ(x) =
pθ(x, z)

pθ(z|x)
=
pθ(x|z)pθ(z)

pθ(z|x)
.

However, pθ(z|x) is usually just as intractable as
∫
pθ(x, z)dz.

For variational autoencoders, we therefore employ an additional encoding distri-
bution qφ(z|x) in order to approximate pθ(z|x). Modeling qφ(z|x) is usually achieved
by using x and φ to compute the parameters of a distribution which is easy to sam-
ple from, sample z from this distribution (qφ), and let qφ(z|x) be the likelihood of z
under this distribution. For example,

(µ, logσ) = EncoderNeuralNetφ(x)

z ∼ N (µ, diag(σ))

qφ(z|x) = N (z;µ, diag(σ))

2

1.4 Optimizing the Evidence Lower Bound

Our goal is still to maximize the likelihood pθ(x) over our dataset. For this, we
derive the evidence lower bound (ELBO) as follows [4].

log pθ(x) = Ez∼qφ(·|x)[log pθ(x)]

= Ez∼qφ(·|x)

[
log

[
pθ(x, z)

pθ(z|x)

]]
= Ez∼qφ(·|x)

[
log

[
pθ(x, z)

qφ(z|x)

qφ(z|x)

pθ(z|x)

]]
= Ez∼qφ(·|x)

[
log

[
pθ(x, z)

qφ(z|x)

]]
︸ ︷︷ ︸

=Lθ,φ(x)
(ELBO)

+Ez∼qφ(·|x)

[
log

[
qφ(z|x)

pθ(z|x)

]]
︸ ︷︷ ︸

=DKL(qφ(z|x)||pθ(z|x))

(∗)

The second term in (∗) is the Kullback-Leibler (KL) divergence between qφ(z|x) and
pθ(z|x). It is always non-negative

DKL(qφ(z|x)||pθ(z|x)) ≥ 0

and zero if and only if qφ(z|x) and pθ(z|x) coincide. The first term in (∗) is called
the evidence lower bound

Lθ,φ(x) = Ez∼qφ(·|x)[log pθ(x, z)− log qφ(z|x)].

As the KL divergence is non-negative, the ELBO is a lower bound on the log-
likelihood of our data:

Lθ,φ(x) = log pθ(x)−DKL(qφ(z|x)||pθ(z|x))

≤ log pθ(x).

Thus, by maximizing the ELBO, we push qφ(z|x) closer to pθ(z|x) and at the same
time maximize pθ(x). Note that the ELBO can be rewritten to

Lθ,φ(x) = Ez∼qφ(·|x)

[
log

[
pθ(x|z)p(z)

qφ(z|x)

]]
= Ez∼qφ(·|x) [log pθ(x|z)]−DKL(qφ(z|x)||pθ(z)).

This formulation has a simple interpretation as a loss function. The first term
is the reconstruction error (or fidelity) and should be maximized: When drawing
z ∼ qφ(·|x) we want pθ(x|z) to be high. The reconstruction error is also sometimes
implemented as taking the L2-difference between the input x and a generated sample
xθ.

The second term is a regularization term which forces the encoder to not encode
the training examples as single data points in Z. If our encoder produces parameters
for a standard distribution and pθ(z) = p(z) is a known simple distribution, we may
compute this divergence analytically. For instance,

DKL(N (µ, σ2)||N (0, 1)) = − log σ +
σ2 + µ2

2
− 1

2
,

which is always non-negative and 0 for µ = 0 and σ = 1. Alternatively, we could
minimize µ2 + (σ− 1)2 instead of the KL divergence, i.e., the L2 difference between
the parameters of p(z) and of qφ(z|x).

3

1.5 Gradient Estimation

In order to apply gradient descent to optimize the parameters θ and φ, we need to
compute the gradient of Lθ,φ(x) w.r.t. θ and φ. For θ, this is easy:

∇θLθ,φ(x) = ∇θEz∼qφ(·|x)[log pθ(x, z)− log qφ(z|x)]

= Ez∼qφ(·|x)[∇θ log pθ(x, z)]

≈ ∇θ log pθ(x, z),

where in the last line, z is a sample from qφ(·|x) to obtain a simple Monte Carlo
estimator of the integral.

For φ, we cannot proceed in the same way as the expectation is taken w.r.t. the
distribution qφ(·|x) which itself depends on φ. That is, in general we have

∇φEz∼qφ(·|x)[log pθ(x, z)− log qφ(z|x)] 6= Ez∼qφ(·|x)[∇φ log pθ(x, z)−∇φ log qφ(z|x)].

One way to obtain a gradient estimator is via REINFORCE [10], but this estimator
has a high variance leading to slow convergence and bad performance. For the
derivation of this estimator, consider that

∇φEz∼qφ(·|x)[f(z, φ)] = ∇φ

∫
f(z, φ)qφ(z|x)dz

=

∫
(∇φf(z, φ))qφ(z|x)dz +

∫
f(z, φ)∇φqφ(z|x)dz

= Ez∼qφ(·|x)[∇φf(z, φ)] +

∫
f(z, φ)

qφ(z|x)
qφ(z|x)∇φqφ(z|x)dz

= Ez∼qφ(·|x)[∇φf(z, φ)] + Ez∼qφ(·|x)

[
f(z, φ)

qφ(z|x)
∇φqφ(z|x)

]
.

Thus, we could compute

∇φEz∼qφ(·|x)[log pθ(x, z)− log qφ(z|x)]

= Ez∼qφ(·|x)

[
log pθ(x, z)− log qφ(z|x)− 1

qφ(z|x)
∇φqφ(z|x)

]
However, the high variance of this estimator makes Monte Carlo estimation unreli-
able. A better way is to apply the reparameterization trick [3].

1.6 The Reparameterization Trick

The reparameterization trick is applicable whenever sampling z ∼ qφ(·|x) can be
expressed by sampling a random variable ε from a distribution p without parameters
and computing z = g(φ,x, ε). In other words, we need to find a fixed random
variable ε which is easy to sample and a function g such that z = g(φ,x, ε) has
distribution qφ(·|x). Examples of distributions for which this is possible are

• “Location-scale” families of distributions in which every distribution of the
family is described by a location and a scale parameter and can be obtained
from the distribution with location = 0 and scale = 1. Then g(x, φ, ε) =
location(x, φ) + scale(x, φ) · ε. Examples are Laplace, Elliptical, Student’s t,
Logistic, Uniform, Triangular, and Gaussian distributions.

4

• Distributions arising from simple transformations of random variables to which
the reparameterization trick applies. For instance, the Log-Normal, Gamma,
Dirichlet, Beta, Chi-Squared, and F distributions.

• Distributions whose inverse cumulative distribution functions F−1 are tractable.
In this case, sampling is achieved by F−1(ε) for a uniformly distributed random
variable ε ∼ U(0, 1).

In the above scenario, we can estimate the gradient by

∇φEz∼qφ(·|x)[f(z, φ)] = ∇φEε∼p(·)[f(g(φ,x, ε), φ)]

= Eε∼p(·)[∇φf(g(φ,x, ε), φ)]

≈ ∇φf(g(φ,x, ε), φ).

In particular, we can estimate

∇φLθ,φ(x) ≈ ∇φ(log pθ(x, z)− log qφ(z|x)),

where z = g(φ,x, ε) and ε ∼ p(·) is a sample.

1.7 Computing qφ(z|x)

By the substitution formula and the inverse function theorem, we have for invertible
g(φ,x, ·) that

qφ(z|x) = p(ε)

∣∣∣∣det

(
∂ε

∂z

)∣∣∣∣ = p(ε)

∣∣∣∣det

(
∂z

∂ε

)∣∣∣∣−1
such that

log qφ(z|x) = log p(ε)− log

∣∣∣∣det

(
∂z

∂ε

)∣∣∣∣−1 .
Here,

∂z

∂ε
=
∂(z1, . . . , zk)

∂(ε1, . . . , εk)
=

∂z1
∂ε1

· · · ∂z1
∂εk

...
. . .

...
∂zk
∂ε1

· · · ∂zk
∂εk

is the Jacobian as usual.

2 Discrete Variational Autoencoders

So far, we considered z to be continuous variables, e.g., vectors from RD. However,
from an information theory point of view, a single scalar from R can encode just as
much information as a vector from RD since |RD| = |R|. Thus, in order to view z as
a form of compressed information about x, it makes sense to consider a discrete or
finite latent space Z. For example, we might consider z to be a binary vector with
values in {0, 1}D.

More generally, we could assume a fixed latent space Z = {z1, . . . , zM} and have
our encoder produce a vector p ∈ [0, 1]M from x and φ such that

∑
pi = 1, for

5

instance by using a softmax layer. Then we sample z according to P(z = zi) = pi.
We can implement this using a function g(φ,x, ε) = zi iff ε ∈ [

∑i−1
j=0 pj,

∑i
j=0 pj]

with a random variable ε ∼ U(0, 1). If pi is differentiable w.r.t. φ, it is in particular
continuous and as g has only finitely many discontinuities, we have ∇φg(φ,x, ε) = 0
almost surely. We also see that qφ(z|x) =

∑
pi1zi(z). If we write the ELBO as

Ez∼qφ(·|x) [log pθ(x|z)]−DKL(qφ(z|x)||pθ(z)) and use the estimation via the reparam-
eterization trick, we obtain

∇φEz∼qφ(·|x) [log pθ(x|z)] ≈ 1

pθ(x|z)

∂pθ(x|z)

∂z
∇φz = 0

Thus, we have
∇φLθ,φ(x) ≈ −∇φDKL(qφ(z|x)||pθ(z))

and the variables φ are only encouraged to minimize the KL divergence between
qφ(z|x) and p(z). This is minimized for qφ(z|x) = p(z) at which point no information
about x is conveyed in z. Thus, any reparameterization with ∇φz = 0 is unsuitable.

The general problem with differentiating a function f defined on a finite set Z is
that derivatives do not make any sense when there is no order on the elements of Z.
If the latent space consists of {1, . . . ,M}, derivatives of f are not defined but make
sense as we may want to increase or decrease the input z and need to know what
works best for f . However, if the the latent space consists of {0, (0, 0), (0, 0, 0), . . .},
there is no use in differentiating f and gradient descent is not a suitable optimiza-
tion approach. Therefore, discrete variational autoencoders trained using gradient
descent require some structure on the latent space which allow an embedding into
a continuous space. Typical choices include a set Z of one-hot vectors or a set of
binary vectors.

2.1 The Straight-Through Estimator

The straight-through estimator [7] ignores the expectation and defines the gradient
of z as ∇φqφ(z|x). That is, we define

∇φEz∼qφ(·|x)[f(z)] = Ez∼qφ(·|x)[∇zf(z)∇φqφ(z|x)]

and estimate this using Monte Carlo. There is no good mathematical justification
for this, as depending on the choice of Z, differentiating f w.r.t. z may be completely
nonsensical. However, it may work in practice.

2.2 Gumbel-Softmax

For the Gumbel-softmax trick [2], we assume the latent space Z to consist of M
one-hot vectors from {0, 1}M where we sample the unit vector ej with probability
pj. If g1, . . . , gM are Gumbel(0, 1)-distributed, then P[j = arg maxi(gi + log pi)] =
pj, i.e., z = eargmaxi(gi+log pi) has the required distribution. As the arg max is not
differentiable, we apply the softmax with an annealed (during training) temperature
τ , i.e., we define

zi =
e

log(pi)+gi
τ∑M

j=1 e
log(pj)+gj

τ

.

6

For τ → 0, the vector (z1, . . . , zM) approaches the one-hot arg max vector with our
desired distribution. Note that this increases the variance of the vector.

2.3 Smoothing Transformations

An approach investigated in a series of papers [6, 9, 8] is to draw continuous random
variables ζ depending on z. Ignoring the mathematical motivation provided by
these papers, the gist is the following. We assume that Z = {0, 1}M is a set of
binary vectors and pi is the probability for the ith entry to be 1. This means for

z = (z1, . . . , zM), we have qφ(z|x) =
∏M

i=1

(
pizi + (1 − pi)(1 − zi)

)
. Each entry zi

is sampled using the uniform distribution εi ∼ U(0, 1) but instead of using a step
function zi = 1[1−pi,1](εi), we generate zi = f(β, pi, εi) using a function f such that

• f(β, pi, .) is increasing, f(β, pi, 0) = 0, and f(β, pi, 1) = 1,

• f(β, pi, .) converges pointwise to 1[1−pi,1] for β → B ∈ R ∪ {∞}, and

• f(β, pi, .) is differentiable in all but finitely many points and its derivative is
not 0.

The parameter β is annealed towards B during training. One example is obtained
via the spike-and-exponential smoothing transformation [6], see also Figure 1

f1(β, p, ε) = 1[1−p,1](ε) ·
1

β
loga

(
ε+ p− 1

p
· (aβ − 1) + 1

)
where a is an arbitrary base, for instance e or 2. This function is 0 on the interval
[0, 1 − p] and then grows from 0 to 1 in a logarithmic curve on [1 − p, 1]. Similar
functions are

f2(β, p, ε) = 1[1−p,1](ε) ·

(
1−

(
1− ε+ p− 1

p

)β)

f ′2(β, p, ε) = 1[1−p,1](ε) · β

√
ε+ p− 1

p

f ′′2 (β, p, ε) = 1[1−p,1](ε) ·
(

1− 1− p
β(ε− p)

)
for β →∞. A more symmetrical choice, inspired by the exponential transformation
and the power-function transformation [8], are the functions

f3(β, p, ε) = 1[0,1−p](ε) · (1− p)
(

ε

1− p

)β
+ 1[1−p,1](ε) ·

(
1− p

(
1− ε
p

)β)

f ′3(β, p, ε) = 1[0,1−p](ε) · (p− 1)

(
β

√
−ε+ p− 1

1− p
− 1

)
+ 1[1−p,1](ε) ·

(
1 + p

(
β

√
−ε+ p− 1

p
− 1

))
for β →∞. The derivatives of f3 are 0 in 0 and 1 and n in 1− p.

7

0.5 1.0

0.5

1.0

0.5 1.0

0.5

1.0

0.5 1.0

0.5

1.0

Figure 1: The functions f1, f2, f3 for varying values of β (dotted < solid < dashed)
and p (0.2, 0.5, 0.8).

2.4 Vector Quantization

Vector Quantized Variational Autoencoders (VQ-VAEs) [5] differ from other discrete
variational autoencoders in that the latent space is learned. The latent space is of
the form Z = {z1, . . . , zM} ⊆ RD, the encoder produces outputs Eφ(x) ∈ RD and
the quantization is achieved by z = arg minz∈Z ||Eφ(x) − z||2. Note that no actual
sampling takes place in the generation of z. This is equivalent to defining

qφ(z|x) =

{
1 if z = arg minz∈Z ||Eφ(x)− z||2
0 otherwise.

The prior p(z) onZ is assumed to be uniform. The KL divergenceDKL(qφ(z|x)||pθ(z))
thus becomes

DKL(qφ(z|x)||pθ(z)) =
∑
z∈Z

qφ(z|x) log

(
qφ(z|x)

p(z)

)
= logM

and can be ignored in the ELBO. The decoder produces an output using the quan-
tized latent z and otherwise functions as usual.

For training, a three-part loss is minimized.

Lθ,φ(x) = − log pθ(x|z) + ||sg[Eφ(x)]− e||22 + β||Eφ(x)− sg[z]||22 (∗∗)

Here, sg denotes the stop gradient operator which stops gradients from flowing into
its argument. The first term in (∗∗) is (a Monte Carlo estimator of) the reconstruc-
tion loss, i.e., the ELBO without the now constant KL divergence term. During the
forward pass, the decoder obtains the quantized latent z, but during backpropaga-
tion ∇φz is replaced with ∇φEφ(x) since arg min is not differentiable. The elements
of the latent space therefore do not obtain gradients from the reconstruction loss.
This constitutes an application of straight-through estimation discussed earlier. The
second term in (∗∗) is the codebook loss and pushes the latents closer to the encoder
outputs. The third term in (∗∗) is the commitment loss and encourages the encoder
to commit to a codebook. The coefficient β is a hyperparameter and weighs the
commitment loss.

As usual, the reconstruction loss is sometimes implemented as ||Dθ(z) − x||22,
where Dθ(z) is a sample of the decoder. The codebook loss can be replaced by

8

exponential moving average updates, i.e.,

N
(t)
i = N

(t−1)
i · γ + n

(t)
i (1− γ)

m
(t)
i = m

(t−1)
i · γ +

n
(t)
i∑
j

Eφ(x)
(t)
i,j (1− γ)

z
(t)
i =

m
(t)
i

N
(t)
i

,

where n
(t)
i is the number of vectors Eφ(x) in the minibatch which are quantized

to z
(t−1)
i , Eφ(x)

(t)
i,1, Eφ(x)

(t)
i,2, Eφ(x)

(t)
i,3, . . . are quantized to z

(t−1)
i , and γ is a decay

parameter in (0, 1), e.g., γ = 0.99.

References

[1] Evidence lower bound. https://en.wikipedia.org/wiki/Evidence_lower_

bound.

[2] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[4] Diederik P Kingma, Max Welling, et al. An introduction to variational au-
toencoders. Foundations and Trends R© in Machine Learning, 12(4):307–392,
2019.

[5] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete
representation learning. arXiv preprint arXiv:1711.00937, 2017.

[6] Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint
arXiv:1609.02200, 2016.

[7] John Thickstun. Discrete VAE’s. https://courses.cs.washington.edu/

courses/cse599i/20au/resources/L09_discretevae.pdf.

[8] Arash Vahdat, Evgeny Andriyash, and William Macready. DVAE#: Discrete
variational autoencoders with relaxed Boltzmann priors. Advances in Neural
Information Processing Systems, 31, 2018.

[9] Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman, and
Evgeny Andriyash. DVAE++: Discrete variational autoencoders with overlap-
ping transformations. In International conference on machine learning, pages
5035–5044. PMLR, 2018.

[10] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8:229–256, 1992.

9

https://en.wikipedia.org/wiki/Evidence_lower_bound
https://en.wikipedia.org/wiki/Evidence_lower_bound
https://courses.cs.washington.edu/courses/cse599i/20au/resources/L09_discretevae.pdf
https://courses.cs.washington.edu/courses/cse599i/20au/resources/L09_discretevae.pdf

	Variational Autoencoders
	Motivation
	Latent Variables
	Conditioning Latent Variables
	Optimizing the Evidence Lower Bound
	Gradient Estimation
	The Reparameterization Trick
	Computing q(z|x)

	Discrete Variational Autoencoders
	The Straight-Through Estimator
	Gumbel-Softmax
	Smoothing Transformations
	Vector Quantization

