
Expressiveness and Decidability
of Weighted Automata
and Weighted Logics

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fachgebiet
Informatik

Vorgelegt

von Dipl.-Math. Erik Paul
geboren am 24. Juni 1989 in Schkeuditz

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Manfred Droste (Universität Leipzig)
2. Prof. Dr. Helmut Seidl (Technische Universität München)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 15. Juli 2020 mit dem Gesamtprädikat

summa cum laude.

Acknowledgments

I want to thank Manfred Droste for supervising this thesis. His guidance has been a
tremendous help in improving my abilities to conduct research and he has provided
me with many insights into the world of research as a whole. Also, I want to thank
Heiko Vogler for his support as the second supervisor of this thesis.

I want to thank Stefan Dück, Andreas Maletti, and Tobias Weihrauch for the many
helpful and enjoyable discussion we have had on both scientific and non-scientific
topics. In particular, I want to thank Stefan for his great advice on all the small
details of everyday research life, and I want to thank Andreas for his invaluable advice
on my research on tree automata.

I also want to thank Peter Leupold for guiding me through the very first steps of
academic writing, Vitaly Perevoshchikov for helping me get started on the first topic
of my PhD studies, and Mirko Schulze for his great support in my teaching duties
during the final preparation of this dissertation.

I am grateful to the Deutsche Forschungsgemeinschaft (DFG) for supporting
me financially in the scope of its Graduiertenkolleg 1763 “Quantitative Logics and
Automata”, and of course also for providing me with such a wonderful research
environment.

Finally, I want to thank my family who has supported me in many ways over the
last years.

i

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Basic Definitions . 7
2.2 Semirings . 8
2.3 First Order and Monadic Second Order Logic 9

3 Feferman-Vaught Theorems 13
3.1 Weighted First Order and Monadic Second Order Logic 15
3.2 The Classical Feferman-Vaught Theorem 19
3.3 Translation Schemes . 23
3.4 Weighted Feferman-Vaught Theorems 26
3.5 Extensions . 39

4 Decidable Properties of Max-Plus Tree Automata 49
4.1 Max-Plus Automata . 52
4.2 Decomposing Finitely Ambiguous Max-Plus Tree Automata 60
4.3 The Equivalence Problem . 64
4.4 The Unambiguity Problem . 71
4.5 The Sequentiality Problem . 81
4.6 The Finite Sequentiality Problem . 85

5 Monitor Logics 111
5.1 Quantitative Monitor Automata . 112
5.2 Closure Properties . 115
5.3 Monitor MSO logic . 118
5.4 Equivalence . 128

Bibliography 139

List of Symbols 149

Index 153

iii

1
Introduction

Automata theory, one of the main branches of theoretical computer science, established
its roots in the middle of the 20th century. One of its most fundamental concepts is
that of a finite automaton, a basic yet powerful model of computation. In essence,
finite automata provide a method to finitely represent possibly infinite sets of strings.
Such a set of strings is also called a language, and the languages which can be described
by finite automata are known as regular languages. Owing to their versatility, regular
languages have received a great deal of attention over the years. Other formalisms
were shown to be expressively equivalent to finite automata, most notably regular
grammars [22], regular expressions [62], and monadic second order (MSO) logic
[16, 38, 106]. To increase expressiveness, the fundamental idea underlying finite
automata and regular languages was also extended to describe not only languages of
strings, or words, but also of infinite words by Büchi [16] and Muller [79], finite trees
by Doner [25] and Thatcher and Wright [105], infinite trees by Rabin [90], nested
words by Alur and Madhusudan [3], and pictures [12] by Blum and Hewitt, just to
name a few examples. In a parallel line of development, Schützenberger introduced
weighted automata [99] which allow the description of quantitative properties of
regular languages. In subsequent works, many of these descriptive formalisms and
extensions were combined and their relationships investigated. This includes regular
expressions, regular grammars, and logical characterizations for regular languages of
trees and pictures as well as weighted regular expressions and weighted logics. For
surveys on these and many more related topics, we refer to the books by Eilenberg
[37], Salomaa and Soittola [98], Kuich and Salomaa [68], Berstel and Reutenauer [8],
Rozenberg and Salomaa [93, 94, 95], and Droste, Kuich, and Vogler [29].

In this work, we focus on two of these extensions and their relationship, namely
weighted automata and weighted logics. Just as the classical Büchi-Elgot-Trakh-
tenbrot Theorem [16, 38, 106] established the coincidence of regular languages with
languages definable in monadic second order logic, weighted automata have been
shown to be expressively equivalent to a specific fragment of a weighted monadic
second order logic by Droste and Gastin [27]. We will explore several aspects of

2 Chapter 1. Introduction

weighted automata and of this weighted logic. More precisely, we will consider the
following topics. In Chapter 3, we study a weighted monadic second order logic and
prove that a classical model-theoretic result also holds for this logic. In Chapter 4, we
study weighted tree automata over the max-plus semiring and prove four decidability
results for these automata. In Chapter 5, we investigate the relationship between
weighted automata and weighted logics and develop a weighted logic and an expressive
equivalence result for quantitative monitor automata. In the following, we provide a
more in-depth overview of the chapters of this thesis.

In Chapter 2, we introduce some fundamental concepts used throughout this
thesis. To avoid an overloaded section of preliminaries, all concepts which are relevant
only to a single chapter are introduced at the beginning of the respective chapter.
For the most part, the individual chapters are designed to be readable in isolation.
The only exception to this is Section 4.2 which uses some definitions of Chapter 3.

In Chapter 3, we extend the classical Feferman-Vaught Theorem [44] to the
weighted setting. The Feferman-Vaught Theorem is one of the fundamental theorems
in model theory. The theorem describes how the computation of the truth value of a
first order sentence in a generalized product of relational structures can be reduced to
the computation of truth values of first order sentences in the contributing structures
and the evaluation of a monadic second order (MSO) sentence in the index structure.
The theorem itself has a long-standing history. It builds upon work of Mostowski [78],
and was shown in subsequent works to hold true for MSO logic [36, 51, 52, 70, 102].

Here, we show that under appropriate assumptions, the Feferman-Vaught Theorem
also holds true for a weighted MSO logic with arbitrary commutative semirings as
weight structure. For this, we consider the logic introduced by Droste and Gastin in
[27] and allow the use of arbitrary relational signatures. In comparison to Boolean
MSO logic, which is suitable only to specify qualitative properties of a structure, this
logic permits the modeling of quantitative properties by employing binary sum and
product operators as well as sum and product quantifiers.

For arbitrary commutative semirings, we identify a fragment of this weighted
logic whose formulas satisfy a Feferman-Vaught-like theorem over disjoint unions
of finite structures. This fragment is characterized by disallowing the second order
product quantifier and restricting the first order quantifier to quantify only over
formulas not containing any quantifier themselves. We show that for this fragment,
the evaluation of a formula on the disjoint union of two finite structures can be
reduced to evaluations of formulas from our fragment in the contributing structures
and the combination of their results in an elementary way. Moreover, we show that
if the product quantifier is removed entirely from the logic, the formulas from the
resulting fragment satisfy an analogous statement for products of finite structures.
Very importantly, we also show that if the restrictions on the product quantifiers are
violated, then the Feferman-Vaught-like theorems do not hold. For this, we employ a
weak version of Ramsey’s Theorem [91]. We remark that surprisingly, the fragment
for disjoint unions coincides with the fragment shown to be expressively equivalent
to weighted word automata in [27].

3

In order to deal with infinite structures, we also consider bicomplete semirings
which provide infinite sum and product operators. For bicomplete semirings, we show
that statements analogous to those above for finite structures also hold for infinite
structures. Moreover, for weakly biaperiodic semirings and De Morgan algebras, we
show that Feferman-Vaught-like theorems hold for the full logic, without the need
for any restrictions on the product quantifiers as described above. Finally, we show
how translation schemes and transductions can be employed to obtain more general
versions of our theorems. Translation schemes allow structures over one signature to
be “translated” into structures over another signature. In particular, they allow us to
extend our theorems to more general combinations of structures than only disjoint
unions and products by allowing MSO-defined modifications to these. An extended
abstract of some of the results of this chapter appeared as [31].

In Chapter 4, we lift four decidability results from max-plus word automata to
max-plus tree automata. Max-plus word and tree automata are weighted automata
over the max-plus semiring and assign real numbers to words or trees, respectively.
More precisely, a max-plus automaton is a finite automaton whose transitions are
weighted by real numbers. To each run of a max-plus automaton, a weight is assigned
by summing over the weights of the transitions which constitute the run. The
automaton assigns a weight to each word or tree by taking the maximum of the
weights of all runs on the given word or tree. We show that, like for max-plus word
automata, the equivalence, unambiguity, and sequentiality problems are decidable for
finitely ambiguous max-plus tree automata, and that the finite sequentiality problem
is decidable for unambiguous max-plus tree automata.

The equivalence problem asks whether two max-plus automata are equivalent
in the sense that to each input, they both assign the same weight. In his seminal
paper, Krob showed that the equivalence problem of max-plus word automata is
undecidable in general [66]. For finitely ambiguous max-plus automata, on the other
hand, Hashiguchi et al. showed that this problem is decidable [55]. Here, a max-plus
automaton is called finitely ambiguous if the number of accepting runs on each input
is bounded by a global constant. In this chapter, we generalize this result to finitely
ambiguous max-plus tree automata. We adopt some of the ideas from the proof of [55]
but replace the cycle decompositions employed therein by an application of Parikh’s
theorem [82]. This idea was suggested by Mikołaj Bojańczyk after a presentation of
our original proof of the statement which still employed cycle decompositions [85].
This approach greatly simplifies the proof, even in comparison to the one for words.

The sequentiality problem is a prominent open problem of max-plus automata
and asks whether a given automaton is equivalent to a deterministic automaton.
We call a max-plus word automaton deterministic or sequential if it possesses at
most one initial state and for each pair of a state and an input letter, there exists at
most one valid successor state. Although open in general, the sequentiality problem
was shown to be decidable for unambiguous max-plus word automata by Mohri [76],
finitely ambiguous max-plus word automata by Klimann et al. [63], and later even
for polynomially ambiguous max-plus word automata by Kirsten and Lombardy [61].
A max-plus automaton is called unambiguous if there exists at most one accepting
run on every input. It is called polynomially ambiguous if the number of accepting

4 Chapter 1. Introduction

runs on each word is bounded polynomially in the size of the input, i.e., in the length
of the word or in the number of nodes of the tree.

The results by Klimann et al. and by Kirsten and Lombardy are in fact more
general as they establish the decidability of the unambiguity problem for finitely
ambiguous and polynomially ambiguous max-plus word automata, respectively. The
unambiguity problem is a relaxation of the sequentiality problem and asks for a
given automaton whether it is equivalent to an unambiguous automaton. From the
respective results on the decidability of the unambiguity problem, the decidability
of the sequentiality problem follows by Mohri’s result on unambiguous max-plus
word automata. In this chapter, we extend the result of Klimann et al. to trees.
For this, we adapt the dominance property, the criterion for unambiguity identified
in [63], to tree automata and show that the resulting criterion allows us to decide
the unambiguity problem for finitely ambiguous max-plus tree automata. We then
combine results of Büchse et al. [18] and Mohri [76] to also obtain the decidability of
the sequentiality problem for these automata.

Finally, the finite sequentiality problem, also a relaxation of the sequentiality
problem, asks whether for a given max-plus automaton, there exist finitely many
deterministic max-plus automata whose pointwise maximum is equivalent to the given
automaton. This problem was first posed by Hashiguchi et al. in [55] but was solved
only recently by Bala and Koniński for both unambiguous and finitely ambiguous
max-plus word automata [5, 4]. In this chapter, we show that finite sequentiality
of unambiguous max-plus tree automata is decidable as well. For unambiguous
max-plus word automata, the fork property was shown to be a criterion for deciding
finite sequentiality in [5]. We extend the fork property by an additional criterion
accounting for the nonlinear structure of trees and show that the resulting criterion
is both necessary and sufficient for finite sequentiality of unambiguous max-plus tree
automata. Extended abstracts of the results of this chapter, excluding the one from
Section 4.2, appeared as [85] and [87].

In Chapter 5, we develop a logic which is expressively equivalent to quantitative
monitor automata, a weighted automaton model operating on infinite words introduced
very recently by Chatterjee, Henzinger, and Otop [20]. At each transition of a run
on an infinite word, a quantitative monitor automaton can activate one of finitely
many monitor counters. On subsequent transitions, an activated counter can either
be modified by being incremented or decremented or the counter can be terminated.
A counter may only be activated if it is not already active and counters must be
terminated after finitely many steps. The counters only “monitor” the run and do not
influence it. The value of a counter when terminated is associated to the position of
the word where the counter was activated. The resulting infinite sequence of counter
values is aggregated into a real number by a valuation function and serves as the
weight of the run. The weight assigned to an infinite word is given by the infimum
over the weights of all runs on the word. Quantitative monitor automata possess
several interesting features. They are expressively equivalent to a subclass of nested
weighted automata [21], an automaton model which for many valuation functions has
decidable emptiness and universality problems. Also, quantitative monitor automata
are more expressive than weighted Büchi-automata [40, 41] and their extension with

5

valuation functions [30].
In this chapter, we introduce a new logic which we call monitor logic and show

that it is expressively equivalent to quantitative monitor automata. The logic
is equipped with a sum quantifier to handle the counter operations, a valuation
quantifier for the aggregation of the counter values, and an infimum quantifier to
compute the infimum over all runs on an infinite word. Our expressive equivalence
result is effective, i.e., for each formula from our logic, we show how to construct
a quantitative monitor automaton whose behavior coincides with the semantics of
the formula, and for every automaton, we show how a formula describing precisely
this automaton can be constructed. The most challenging aspect of establishing this
logical characterization of quantitative monitor automata was to find appropriate
quantifiers and, in turn, appropriate restrictions on these quantifiers. In particular,
we show that the computations of the sum quantifier need to further depend on an
MSO-definable condition and that if this restriction is dropped, the logic becomes
strictly more powerful than quantitative monitor automata. In order to obtain
our logical characterization, we also prove various closure properties of quantitative
monitor automata and the equivalent expressive power of Büchi and Muller acceptance
conditions for these automata. An extended abstract of the results of this chapter
was published as [86].

2
Preliminaries

The best books, he perceived,
are those that tell you what you know already.

George Orwell, 1984

In the following, we introduce basic notions and concepts used throughout this work.

2.1 Basic Definitions

We let N = {0, 1, 2, . . .} denote the natural numbers, N+ = {1, 2, 3, . . .} the natural
numbers excluding zero, Z the integers, Q the rational numbers, and R the real
numbers.

For a set X, we denote the power set of X by P(X) and the cardinality of X
by |X|. For a set Y , we denote the set of all mappings from X to Y by Y X . For
an integer n ≥ 1 and a tuple x̄ ∈ Xn, we will usually assume that its elements are
called x1, . . . , xn, i.e., that x̄ = (x1, . . . , xn). For a mapping f : X → Y , we call X
the domain of f , denoted by dom(f), and Y the range of f , denoted by range(f).
For a subset X ′ ⊆ X, we call the set f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the image
or range of X ′ under f . The restriction of f to X ′, denoted by f�X′ , is the mapping
f�X′ : X

′ → Y defined by f�X′(x) = f(x) for every x ∈ X ′. We also call a mapping
g : X ′ → Y a partial mapping from X to Y , denoted by g : X 9 Y . For a subset
Y ′ ⊆ Y , we call the set f−1(Y ′) = {x ∈ X | f(x) ∈ Y ′} the preimage of Y ′ under f .
For an element y ∈ Y , we define the preimage of y under f by f−1(y) = f−1({y}). For
a second mapping h : X → Y , we write f = h if for all x ∈ X we have f(x) = h(x).
For a set Z and a mapping h : Y → Z, the composition of f and h is the mapping
h ◦ f : X → Z defined by (h ◦ f)(x) = h(f(x)) for every x ∈ X.

An alphabet is a non-empty finite set. An infinite alphabet is a non-empty set. Let
Σ be an infinite alphabet. By Σ∗, we denote the set of all (finite) words over Σ. The
empty word is denoted by ε and the length of a word w ∈ Σ∗ by |w|. The number of
occurrences of a letter a ∈ Σ in w is denoted by |w|a. For two words u, v ∈ Σ∗, the

8 Chapter 2. Preliminaries

concatenation of u and v is denoted by uv. A subset L ⊆ Σ∗ is called a language over
Σ. An infinite word over Σ is a sequence w = a0a1a2 . . . from Σ. The set of infinite
words over Σ is denoted by Σω. A subset L ⊆ Σω is called an infinitary language
over Σ.

2.2 Semirings

A commutative semiring is a tuple (K,⊕,�, 0, 1), abbreviated by K, with operations
sum ⊕ and product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are
commutative monoids, multiplication distributes over addition, and κ�0 = 0�κ = 0
for every κ ∈ K. Important examples of commutative semirings include

• the Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction
∧,

• the semiring of natural numbers (N,+, ·, 0, 1) with the usual addition and
multiplication,

• the fields of rational numbers (Q,+, ·, 0, 1) and real numbers (R,+, ·, 0, 1),

• the max-plus or arctic semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) where
the sum and the product operations are max and +, respectively, extended to
R ∪ {−∞} in the usual way,

• the min-plus or tropical semiring Rmin = (R ∪ {∞},min,+,∞, 0) where the
sum and the product operations are min and +, respectively,

• the min-max semiring (R ∪ {∞,−∞},min,max,∞,−∞),

• the Viterbi semiring ([0, 1],max, ·, 0, 1), where the product operation is the
usual multiplication of real numbers,

• the semiring of formal languages (P(Σ∗),∪, ·, ∅, {ε}) over an alphabet Σ, where
the sum and product operations are the union and concatenation of languages,
respectively. Here, the concatenation of two languages L1, L2 ⊆ Σ∗ is the
language L1 · L2 = {uv | u ∈ L1, v ∈ L2}.

For a commutative semiring (K,⊕,�,0,1) and a number n ≥ 1, the product semiring
(Kn,⊕n,�n,0n, 1n) is defined by componentwise operations and the constants 0n =
(0, . . . ,0) and 1n = (1, . . . ,1). We will usually denote ⊕n and �n simply by ⊕ and
�.

Next, assume that the commutative semiring K is equipped, for every index set
I, with an infinitary sum operation

⊕
I : KI → K such that for every family (κi)i∈I

2.3. First Order and Monadic Second Order Logic 9

of elements of K and κ ∈ K we have⊕
i∈∅

κi = 0,
⊕
i∈{j}

κi = κj ,
⊕
i∈{j,l}

κi = κj ⊕ κl for j 6= l, (2.2.1)

⊕
j∈J

(⊕
i∈Ij

κi

)
=
⊕
i∈I

κi, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′, (2.2.2)

⊕
i∈I

(κ� κi) = κ�
(⊕
i∈I

κi

)
,
⊕
i∈I

(κi � κ) =
(⊕
i∈I

κi

)
� κ. (2.2.3)

Then K together with the operations
⊕

I is called complete [37, 67].
If in addition, K is endowed, for every index set I, with an infinitary product

operation
⊙

I : KI → K such that for every family (κi)i∈I of elements of K we have⊙
i∈∅

κi = 1,
⊙
i∈{j}

κi = κj ,
⊙
i∈{j,l}

κi = κj � κl for j 6= l,
⊙
i∈I

1 = 1, (2.2.4)

⊙
j∈J

(⊙
i∈Ij

κi

)
=
⊙
i∈I

κi, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′, (2.2.5)

then we call K bicomplete. We just want to mention here that there exists a different
notion of semirings with infinite sums and products, namely the notion of totally
complete semirings [42]. The main difference between these two notions lies in the
definition of infinite products. For totally complete semirings, only products over
countable index sets need to be defined, but the infinite products are required to
be completely distributive over the infinite sums. We do not require this infinitary
distributivity here. Examples of bicomplete semirings include

• the min-max semiring,

• the min-plus semiring (R≥0 ∪{∞},min,+,∞, 0) restricted to the positive reals,
i.e., where R≥0 = {r ∈ R | r ≥ 0},

• the semiring of extended natural numbers (N ∪ {∞},+, ·, 0, 1) where 0 · ∞ = 0,

• the Boolean semiring, or more generally every complete distributive lattice
(L,∨,∧, 0, 1) which satisfies the distributivity law (2.2.3). For instance, every
complete Boolean algebra B satisfies (2.2.3) (see [9, page 167]), so then B is
bicomplete but may not be completely distributive and therefore not totally
complete.

2.3 First Order and Monadic Second Order Logic

A signature σ is a pair (Relσ, arσ) where Relσ is a set of relation symbols and
arσ : Relσ → N+ the arity function. A σ-structure A is a pair (UA, IA) where UA is a
set, called the universe of A, and IA is an interpretation, which maps every symbol
R ∈ Relσ to a set RA ⊆ Uarσ(R)

A . A structure is called finite if its universe is a finite
set. By Str(σ) we denote the class of all σ-structures.

10 Chapter 2. Preliminaries

Example 2.1. For an alphabet Σ, we can interpret every finite or infinite word w over
Σ as a structure w = (W, Iw) over the signature σ = ({Pa | a ∈ Σ} ∪ {≤}, arσ) where
arσ(≤) = 2 and arσ(Pa) = 1 for every a ∈ Σ. For this, let w = a0a1 . . . ∈ Σ∗ ∪ Σω. If
w is finite, we let W = {0, . . . , |w| − 1}, and otherwise, we let W = N. Furthermore,
we let Iw(≤) = (W ×W)∩≤, where the latter ≤ denotes the usual less-than-or-equal
relation on the natural numbers, and for each letter a ∈ Σ define the interpretation
of Pa by Iw(Pa) = {i ∈W | ai = a}.

For two σ-structures A = (A, IA) and B = (B, IB), we define the product
A × B ∈ Str(σ) of A and B and the disjoint union A t B ∈ Str(σ) of A and
B as follows. For the product, we let A × B = (A × B, IA×B) with RA×B =
{((a1, b1), . . . , (an, bn)) | (a1, . . . , an) ∈ RA and (b1, . . . , bn) ∈ RB} for each R ∈ Relσ
and n = arσ(R). For the disjoint union, we let A t B be the disjoint union (i.e.,
the set theoretic coproduct) of A and B with inclusions ιA and ιB. Then we
define A t B = (A t B, IAtB) by RAtB = {(ιA(a1), . . . , ιA(ak)) | (a1, . . . , ak) ∈
RA} ∪ {(ιB(b1), . . . , ιA(bk)) | (b1, . . . , bk) ∈ RB} for each R ∈ Relσ and n = arσ(R).
Throughout this chapter, we identify a ∈ A with ιA(a) ∈ A t B and b ∈ B with
ιB(b) ∈ A tB.

We provide a countable set V of first and second order variables, where lower
case letters like x and y denote first order variables and capital letters like X and Y
denote second order variables. We define first order formulas β over a signature σ by
the grammar

β ::= false | R(x1, . . . , xn) | ¬β | β ∨ β | ∃x.β,

where R ∈ Relσ, n = arσ(R), and x, x1, . . . , xn ∈ V are first order variables. Likewise,
we define monadic second order formulas β over σ through

β ::= false | R(x1, . . . , xn) | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β,

where R ∈ Relσ, n = arσ(R), x, x1, . . . , xn ∈ V are first order variables, and X ∈ V
is a second order variable. We also allow the usual abbreviations ∧, ∀, →, ←→, and
true. By FO(σ), we denote the set of all first order formulas over σ, and by MSO(σ),
we denote the set of all monadic second order formulas over σ.

The notion of free variables is defined as usual, i.e., the operators ∃ and ∀ bind
variables. We let Free(β) be the set of all free variables of β. A formula β with
Free(β) = ∅ is called a sentence. For a tuple β̄ = (β1, . . . , βn) ∈ MSO(σ)n, we define
the set of free variables of β̄ as Free(β̄) =

⋃n
i=1 Free(βi).

We now define the semantics of MSO. Let σ be a signature, A = (A, IA) a
σ-structure, and V a set of first and second order variables. A (V,A)-assignment ρ
is a partial function ρ : V 9 A ∪ P(A) such that, whenever x ∈ V is a first order
variable and ρ(x) is defined, we have ρ(x) ∈ A, and whenever X ∈ V is a second
order variable, ρ(X) is defined and we have ρ(X) ⊆ A. By AV , we denote the set of
all (V,A)-assignments. The reason we consider partial functions is that in Chapter 3,
we want to be able to restrict the range of a variable assignment to a subset of the
universe. For a first order variable, this restriction may cause the variable to become
undefined.

2.3. First Order and Monadic Second Order Logic 11

For a (V,A)-assignment ρ, a first order variable x ∈ V , and an element a ∈ A, the
update ρ[x→ a] is defined through

ρ[x→ a] : dom(ρ) ∪ {x} → A ∪ P(A), X 7→

{
a if X = x

ρ(X) otherwise.

For a second order variable X ∈ V and a set I ⊆ A, the update ρ[X → I] is defined
through

ρ[X → I] : dom(ρ) ∪ {X} → A ∪ P(A), X 7→

{
I if X = X

ρ(X) otherwise.

For a tuple X̄ = (X1, . . . ,Xn) ∈ Vn of pairwise distinct variables and (matching)
values ā = (a1, . . . , an) ∈ (A ∪ P(A))n, we abbreviate the repeated update ρ[X1 →
a1] · · · [Xn → an] by ρ[X1 → a1, . . . ,Xn → an] or simply ρ[X̄ → ā].

For ρ ∈ AV and a formula β ∈ MSO(σ), the relation “(A, ρ) satisfies β”, denoted
by (A, ρ) |= β, is defined as

(A, ρ) |= false never holds

(A, ρ) |= R(x1, . . . , xn) ⇐⇒ x1, . . . , xn ∈ dom(ρ) and (ρ(x1), . . . , ρ(xn)) ∈ RA

(A, ρ) |= x ∈ X ⇐⇒ x ∈ dom(ρ) and ρ(x) ∈ ρ(X)

(A, ρ) |= ¬β ⇐⇒ (A, ρ) |= β does not hold
(A, ρ) |= β1 ∨ β2 ⇐⇒ (A, ρ) |= β1 or (A, ρ) |= β2

(A, ρ) |= ∃x.β ⇐⇒ (A, ρ[x→ a]) |= β for some a ∈ A
(A, ρ) |= ∃X.β ⇐⇒ (A, ρ[X → I]) |= β for some I ⊆ A.

We will usually identify a pair (A, ∅) with A.

Example 2.2. Let σ be the signature of a graph, i.e., Relσ = {edge} with edge
binary. We call a graph G ∈ Str(σ) undirected if its interpretation of edge is a
symmetric relation on the universe of G. For every undirected graph G ∈ Str(σ) and
a subset I of its universe, we can check whether the nodes from I form a clique in G
using the MSO formula

clique(X) = ∀x∀y
((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→ edge(x, y)

)
.

Here, the formula x 6= y is an abbreviation for ∃Y (y ∈ Y ∧ ¬(x ∈ Y)). We have that
(G, [X → I]) satisfies clique(X) if and only if I is a clique in G.

3
Feferman-Vaught Theorems

If his forces are united, separate them.

Sun Tzu, The Art of War

3.1 Weighted First Order and Monadic Second Order Logic 15
3.2 The Classical Feferman-Vaught Theorem 19

A Feferman-Vaught Theorem for disjoint unions 19
A Feferman-Vaught Theorem for products 22

3.3 Translation Schemes . 23
3.4 Weighted Feferman-Vaught Theorems 26

Formulation of the theorems . 26
Necessity of restricting the logic for disjoint unions 29
Necessity of restricting the logic for products 32
Proofs of the theorems . 32

3.5 Extensions . 39
De Morgan algebras . 39
Weakly biaperiodic semirings . 42
Courcelle’s transductions . 44

In this chapter, we extend the Feferman-Vaught Theorem [44] for Boolean logic to a
weighted logic. The classical Feferman-Vaught Theorem shows how the evaluation of
a sentence in first order or monadic second order logic on a generalized product of
relational structures can be reduced to the evaluation of sentences on the contributing
structures. For a survey and more background information on the Feferman-Vaught
Theorem, see [71]. The logic we employ is based on the weighted logic by Droste
and Gastin [27]. In this logic, formulas can take values which convey a quantitative
meaning. The logic’s connectives and quantifiers hence also adopt quantitative roles.
The disjunction becomes a sum, the conjunction a product. The existential quantifier,

14 Chapter 3. Feferman-Vaught Theorems

instead of only verifying whether some element with a certain property exists, now
takes the truth value of this property for every element in the universe and sums
over these values. Under appropriate assumptions, the result of this summation
can for instance be the exact number of elements that satisfy the given property.
One example of a property which can be expressed using this logic is the size of the
largest clique of an undirected graph. In [27], the authors prove a Büchi-like result
for a specific fragment of this logic, showing that for finite and infinite words, this
fragment is expressively equivalent to semiring-weighted automata [99]. The study
of a weighted Feferman-Vaught Theorem for disjoint unions, employing the same
logic as we do, was initiated by Ravve et al. in [92], where the authors also point out
several algorithmic uses and possible applications of a weighted Feferman-Vaught
Theorem.

The classical Feferman-Vaught Theorem considers finite and infinite structures
without any need for distinction between them. This results from the fact that, in the
Boolean setting, infinite joins and meets are well-defined. In particular, existential
and universal quantification, which are essentially joins and meets ranging over the
whole universe of a structure, are well-defined for finite and infinite structures alike.
However, for arbitrary semirings, infinite sums and products are usually not defined.
To allow for infinite structures, we therefore also consider bicomplete semirings, which
are equipped with infinite sum and product operations. Our main results are the
following.

• We provide a Feferman-Vaught Theorem for disjoint unions of structures with
our weighted MSO logic, where the second order product quantifier is removed
and the first order product quantifier is restricted to quantify only over formulas
which do not contain any sum or product quantifier themselves. Surprisingly,
this restriction and the resulting fragment are the same as the one working for
the Büchi-like result of [27].

• We show that no similar theorem can hold for disjoint unions if the first order
product quantifier is not restricted. The formulas we employ for this in fact
also occurred in [27] and [33] as examples of weighted formulas whose semantics
cannot be described by weighted automata. While in these papers, it was
elementary to show that the formulas given define weighted languages not
recognizable by weighted automata, here proving that they do not allow for
a Feferman-Vaught-like decomposition is more complex and employs a weak
version of Ramsey’s theorem [91].

• We show that a Feferman-Vaught Theorem also holds for products of structures
for the product-quantifier-free first order fragment of our logic.

• We show that no similar theorem can hold for products if we include the first
order product quantifier.

• We show that the restrictions on the product quantifiers are not necessary if
the semiring is weakly biaperiodic or forms a De Morgan algebra.

3.1. Weighted First Order and Monadic Second Order Logic 15

• We show that our theorems are also true for more general disjoint unions and
products defined by translation schemes and transductions [71, 80, 23].

With respect to our proofs, here we just note that in comparison to the universal
quantifier of the Boolean setting, the product quantifier requires a separate and new
consideration. While universal quantification can simply be expressed using negation
and existential quantification, it is in general not possible to express multiplication
by addition.

Translation schemes are a model theoretic tool to “translate” structures over one
logical signature into structures over another signature in a well behaved fashion,
namely in an MSO-defined fashion. They can be applied, for example, to translate
between texts and trees [56], and between nested words, alternating texts, and hedges
[74, 73, 72]. These particular translations were employed in [72] to prove that weighted
automata over texts, hedges, and nested words are expressively equivalent to weighted
logics over these structures. Translation schemes are a rather natural concept and
therefore they have been frequently rediscovered and named differently [71, 80, 23].
Our notion of a translation scheme is mostly due to [71].

Related work. A concept related to weighted logics is that of many-valued logics. In
both models the evaluation of a formula on a structure produces a quantitative piece
of information. In many approaches to many-valued logics, values are taken in the
interval [0, 1], cf. [53, 50]. In contrast to this, weights in weighted logics are taken
from a semiring and may occur as atomic formulas which enables the modeling of
quantitative properties.

An extended abstract of the results of this chapter appeared at the 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS) in 2018 [31].

3.1 Weighted First Order and Monadic Second Order
Logic

The following definitions are due to [27] in the form of [14]. Let σ be a signature,
(K,⊕,�,0,1) a commutative semiring, and V a countable set of first and second
order variables. We define weighted first order formulas ϕ over σ and K by the
grammar

ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ϕ,

where β ∈ FO(σ), κ ∈ K, and x ∈ V is a first order variable. Likewise, we define
weighted monadic second order formulas ϕ over σ and K through

ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ϕ |

⊕
X.ϕ |

⊗
X.ϕ,

where β ∈ MSO(σ), κ ∈ K, x ∈ V is a first order variable, and X ∈ V is a second
order variable. By wFO(σ,K), we denote the set of all weighted first order formulas
over σ and K, and by wMSO(σ,K), we denote the set of all weighted monadic second
order formulas over σ and K. The notions of free variables and sentences are defined

16 Chapter 3. Feferman-Vaught Theorems

like for MSO formulas, with the addition that the operators
⊕

and
⊗

also bind
variables.

We define the semantics of wMSO as follows. Let A = (A, IA) be a σ-structure.
In the following, for all sums and products to be well-defined, we assume that either
the universe A is finite, or that K is bicomplete. For a formula ϕ ∈ wMSO(σ,K),
the (weighted) semantics of ϕ is a mapping JϕK(A, ·) : AV → K inductively defined as

JβK(A, ρ) =

{
1 if (A, ρ) |= β

0 otherwise

JκK(A, ρ) = κ

Jϕ1 ⊕ ϕ2K(A, ρ) = Jϕ1K(A, ρ)⊕ Jϕ2K(A, ρ)

Jϕ1 ⊗ ϕ2K(A, ρ) = Jϕ1K(A, ρ)� Jϕ2K(A, ρ)

J
⊕
x.ϕK(A, ρ) =

⊕
a∈A

JϕK(A, ρ[x→ a])

J
⊗
x.ϕK(A, ρ) =

⊙
a∈A

JϕK(A, ρ[x→ a])

J
⊕
X.ϕK(A, ρ) =

⊕
I⊆A

JϕK(A, ρ[X → I])

J
⊗
X.ϕK(A, ρ) =

⊙
I⊆A

JϕK(A, ρ[X → I]).

For a tuple of formulas ϕ̄ = (ϕ1, . . . , ϕn) ∈ wMSO(σ,K)n, we define Jϕ̄K(A, ρ) =
(Jϕ1K(A, ρ), . . . , JϕnK(A, ρ)) ∈ Kn.

We give some examples of how weighted formulas can be interpreted. For more
examples, see also [92].

Example 3.1. If K = B is the Boolean semiring, we obtain the classical Boolean
logic.

Example 3.2. Using the max-plus semiring Rmax = (R ∪ {−∞},max,+,−∞, 0),
we can describe the size of the largest clique in a graph as follows. We reuse the
signature σ of a graph and the MSO formula clique(X) from Example 2.2 and define
a wMSO formula as follows.

ϕ =
⊕

X.
(

clique(X)⊗
⊗

x.
(
0⊕ (1⊗ x ∈ X)

))
Then for every undirected graph G ∈ Str(σ), we have that JϕK(G) is the size of the
largest clique in G.

Example 3.3. Assume that K = (Q,+, ·, 0, 1) is the field of rational numbers and
that σ is the signature from the previous example. Then for every fixed n ∈ N+,
we can count the number of n-cliques of an undirected graph G ∈ Str(σ) using the
wMSO formula

ϕn =
1

n!
⊗
⊕
x1 . . .

⊕
xn.

∧
i 6=j

(
(xi 6= xj) ∧ edge(xi, xj)

)
.

Here, xi 6= xj again is an abbreviation for ∃Y (xj ∈ Y ∧ ¬(xi ∈ Y)).

3.1. Weighted First Order and Monadic Second Order Logic 17

Example 3.4. We consider the minimum cut of directed acyclic graphs. For this,
we interpret these graphs as flow networks in the following way. Every vertex which
does not have a predecessor is considered a source, every vertex without successors is
considered a drain, and every edge is assumed to have a capacity of 1. Let G = (V,E)
be a directed acyclic graph where V is the set of vertices and E ⊆ V × V the set of
edges. A cut (S,D) of G is a partition of V , i.e., S ∪D = V and S ∩D = ∅, such
that all sources of G are in S, and all drains of G are in D. The minimum cut of G
is the smallest number |E ∩ (S ×D)| such that (S,D) is a cut of G.

We can express the minimum cut of directed acyclic graphs by a weighted formula
as follows. We let σ be the signature from the previous two examples and as our
semiring, we choose the min-plus semiring Rmin = (R ∪ {∞},min,+,∞, 0). Then
using the abbreviation

cut(X,Y) = ∀x.
(

(x ∈ X ↔ ¬(x ∈ Y)) ∧ (∃y.edge(y, x) ∨ x ∈ X)

∧ (∃y.edge(x, y) ∨ x ∈ Y)
)

we can express the minimum cut of a directed acyclic graph G ∈ Str(σ) using the
formula

ϕ =
⊕
X.
⊕
Y.
(

cut(X,Y)⊗
⊗
x.
⊗
y.(1⊕ ¬(x ∈ X ∧ y ∈ Y ∧ edge(x, y)))

)
.

Example 3.5 ([27]). Let K = (N,+, ·, 0, 1) be the semiring of natural numbers and
let ϕ ∈ wMSO(σ,K) be a formula which does not contain any constants κ ∈ K. Then
we may understand JϕK(A, ρ) as the number of proofs we have that (A, ρ) satisfies ϕ
assuming that we interpret the weighted operators in the following way. For Boolean
formulas, we simply consider satisfaction to give us one proof, and otherwise we have
no proof. The sum Jϕ1 ⊕ ϕ2K is the number of proofs we have that ϕ1 ∨ ϕ2 is true.
This says that, if we have n proofs for ϕ1 and m proofs for ϕ2, then we interpret
this as having n+m proofs for the fact that ϕ1 ∨ ϕ2 is true. Likewise, we interpret
the product Jϕ1 ⊗ ϕ2K as the number of proofs we have that ϕ1 ∧ ϕ2 is true. Similar
interpretations apply for the weighted quantifiers.

For ϕ ∈ wMSO(σ,K) and a first order variable x which does not appear in ϕ as a
bound variable, we define ϕ−x as the formula obtained from ϕ by replacing all atomic
subformulas containing x, i.e., all subformulas of the form x ∈ X and R(. . . , x, . . .)
for R ∈ Relσ, by false. It is easy to show by induction that for all σ-structures
A = (A, IA) and (V,A)-assignments ρ with x /∈ dom(ρ) we have

JϕK(A, ρ) = Jϕ−xK(A, ρ).

As in the sequel we will deal with disjoint unions and products of structures, we
need to define the restrictions of a variable assignment to the contributing structures
of the disjoint union or product. Let A,B ∈ Str(σ) be two structures with universes
A and B. For a (V,A tB)-assignment ρ, we define the restriction ρ�A : V 9 A as

ρ�A(X) =

ρ(X) ∩A if X is a second order variable
ρ(X) if X is a first order variable and ρ(X) ∈ A
undefined if X is a first order variable and ρ(X) /∈ A.

18 Chapter 3. Feferman-Vaught Theorems

The restriction ρ�B is defined similarly.
For a (V,A×B)-assignment ρ, we define the restrictions ρ�A and ρ�B by projection

on the corresponding entries. That is, we let πA be the projection on the first and πB
be the projection on the second entry of A×B and let ρ�A = πA ◦ρ and ρ�B = πB ◦ρ.

The union of two assignments ρ and ς with dom(ρ) ∩ dom(ς) = ∅, denoted by
ρ∪ ς, is defined by dom(ρ∪ ς) = dom(ρ)∪dom(ς), (ρ∪ ς)(X) = ρ(X) for X ∈ dom(ρ)
and (ρ ∪ ς)(X) = ς(X) for X ∈ dom(ς).

We fix two disjoint sets of variables (xi)i∈N and (yi)i∈N. For n ∈ N+, we define
the set of expressions Expn(K) over a semiring K by the grammar

E ::= xi | yi | E ⊕ E | E ⊗ E,

where i ∈ {1, . . . , n}. The (weighted) semantics of an expression E ∈ Expn(K) is a
mapping 〈〈E〉〉 : Kn ×Kn → K defined for κ̄, λ̄ ∈ Kn inductively by

〈〈xi〉〉(κ̄, λ̄) = κi

〈〈yi〉〉(κ̄, λ̄) = λi

〈〈E1 ⊕ E2〉〉(κ̄, λ̄) = 〈〈E1〉〉(κ̄, λ̄)⊕ 〈〈E2〉〉(κ̄, λ̄)

〈〈E1 ⊗ E2〉〉(κ̄, λ̄) = 〈〈E1〉〉(κ̄, λ̄)� 〈〈E2〉〉(κ̄, λ̄).

For expressions over the Boolean semiring B = ({0, 1},∨,∧, 0, 1) we will usually write
∨ instead of ⊕ and ∧ instead of ⊗.

Construction 3.6. We call an expression E ∈ Expn(K) a pure product if

E = x1 ⊗ . . .⊗ xl ⊗ y1 ⊗ . . .⊗ ym

with xi ∈ {x1, . . . , xn} for i ∈ {1, . . . , l} and yj ∈ {y1, . . . , yn} for j ∈ {1, . . . ,m}.
We define a substitution procedure as follows. Let ϕ̄1, ϕ̄2 ∈ wMSO(σ,K)n be given.
Let i ∈ {1, . . . , l} and assume xi = xk for some k, then we define ξi = ϕ1

k. Likewise,
for j ∈ {1, . . . ,m} and yj = yk, we define θj = ϕ2

k. We let ξ = ξ1 ⊗ . . . ⊗ ξl and
θ = θ1 ⊗ . . . ⊗ θm. Then for A,B ∈ Str(σ), every (V,A)-assignment ρ, and every
(V,B)-assignment ς we have

〈〈E〉〉(Jϕ̄1K(A, ρ), Jϕ̄2K(B, ς))
= Jξ1K(A, ρ)� . . .� JξlK(A, ρ)� Jθ1K(B, ς)� . . .� JθmK(B, ς)
= JξK(A, ρ)� JθK(B, ς).

We define PRD1(E, ϕ̄1, ϕ̄2) = ξ and PRD2(E, ϕ̄1, ϕ̄2) = θ.
Pure products B ∈ Expn(B) are also called pure conjunctions. For a pure

conjunction B ∈ Expn(B), formulas ϕ̄1, ϕ̄2 ∈ MSO(σ) and ξi, θj as above, we define
the MSO(σ)-formulas CON1(B, ϕ̄1, ϕ̄2) = ξ = ξ1 ∧ . . . ∧ ξl and CON2(B, ϕ̄1, ϕ̄2) =
θ = θ1 ∧ . . . ∧ θm. We then have

〈〈B〉〉(Jϕ̄1K(A, ρ), Jϕ̄2K(B, ς)) = 1 iff (A, ρ) |= ξ and (B, ς) |= θ. ♦

3.2. The Classical Feferman-Vaught Theorem 19

We say that an expression E ∈ Expn(K) is in normal form if

E = E1 ⊕ . . .⊕ Em

for some m ≥ 1 and pure products Ei. By applying the laws of distributivity of the
semiring K, every expression E ∈ Expn(K) can be transformed into normal form.
More precisely, we have the following lemma.

Lemma 3.7. For every E ∈ Expn(K) there exists an expression E′ ∈ Expn(K) in
normal form with the same semantics as E.

Proof. We proceed by induction. Let E ∈ Expn(K). If E = xi or E = yi for some
i ∈ {1, . . . , n}, then E is in normal form. If E is of the form E1 ⊕ E2 or E1 ⊗ E2

for two expressions E1, E2 ∈ Expn(K), we can find by induction two expressions
E′1, E

′
2 ∈ Expn(K) in normal form with 〈〈E1〉〉 = 〈〈E′1〉〉 and 〈〈E2〉〉 = 〈〈E′2〉〉. In the

first case, we see that E′ = E′1⊕E′2 is also in normal form and we have 〈〈E〉〉 = 〈〈E′〉〉.
For the case that E = E1 ⊗ E2, we write E′1 = E

(1)
1 ⊕ · · · ⊕ E

(1)
l and E′2 =

E
(2)
1 ⊕ · · · ⊕E(2)

m with E(1)
1 , · · · , E(1)

l and E(2)
1 , · · · , E(2)

m pure products. Then we see
that E′ =

⊕l
i=1

⊕m
j=1E

(1)
i ⊗ E

(2)
j is in normal form and due to the distributivity of

K, we have 〈〈E〉〉 = 〈〈E′〉〉.

3.2 The Classical Feferman-Vaught Theorem

In this section, we recall the Feferman-Vaught Theorem for disjoint unions and
products of two structures. For convenience, we also provide the proofs for both cases.
If the reader is familiar with the classical Feferman-Vaught Theorem, the proofs are
safe to skip. For the rest of this section, let σ be a signature.

A Feferman-Vaught Theorem for disjoint unions

First, we state and prove the classical Feferman-Vaught Theorem for disjoint unions
in the framework we will also employ for our weighted extension.

Theorem 3.8 ([44]). Let V be a set of first and second order variables and β ∈
MSO(σ) with variables from V. Then there exist n ≥ 1, tuples of formulas β̄1, β̄2 ∈
MSO(σ)n, and an expression Bβ ∈ Expn(B) such that Free(β̄1)∪Free(β̄2) ⊆ Free(β)
and for all structures A,B ∈ Str(σ) and all (V,A tB)-assignments ρ:

(A tB, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Proof. We proceed by induction.

� β = R(x1, . . . , xk) for a relation symbol R ∈ Relσ of arity k
In this case, we let n = 1, β1

1 = β2
1 = R(x1, . . . , xk), and Bβ = x1 ∨ y1.

� β = (x ∈ X)
In this case, we let n = 1, β1

1 = β2
1 = (x ∈ X), and Bβ = x1 ∨ y1.

20 Chapter 3. Feferman-Vaught Theorems

� β = ¬α
Assume the theorem is true for α with ᾱ1, ᾱ2 ∈ MSO(σ)l and Bα ∈ Expl(B). We
may assume that Bα = B1 ∨ . . .∨Bm is in normal form with all Bi pure conjunctions.
We let γi = CON1(Bi, ᾱ

1, ᾱ2) and δi = CON2(Bi, ᾱ
1, ᾱ2) (see Construction 3.6) and

set

β̄1 = (¬γ1, . . . ,¬γm)

β̄2 = (¬δ1, . . . ,¬δm)

Bβ =
m∧
i=1

(xi ∨ yi).

Then we have

(A tB, ρ) |= β ⇔ (A tB, ρ) |= α does not hold

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρ�A), Jᾱ2K(B, ρ�B)) = 0

⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρ�A), Jᾱ2K(B, ρ�B)) = 0 for all i ∈ {1, . . . ,m}
⇔ (A, ρ�A) |= γi does not hold or (B, ρ�B) |= δi does not hold

for all i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Furthermore, we have

Free(β̄1) ∪ Free(β̄2) ⊆ Free(ᾱ1) ∪ Free(ᾱ2) ⊆ Free(α) = Free(β).

� β = α ∨ γ
Assume the theorem is true for α with ᾱ1, ᾱ2 ∈ MSO(σ)l and Bα ∈ Expl(B), and for
γ with γ̄1, γ̄2 ∈ MSO(σ)m and Bγ ∈ Expm(B). Then we set

β̄1 = (α1
1 , . . . , α

1
l , γ

1
1 , . . . , γ

1
m)

β̄2 = (α2
1 , . . . , α

2
l , γ

2
1 , . . . , γ

2
m)

Bβ = Bα ∨B′γ ,

where B′γ is obtained from Bγ by replacing every variable xi by xi+l and every variable
yi by yi+l. Then we have

(A tB, ρ) |= β

⇔ (A tB, ρ) |= α or (A tB, ρ) |= γ

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρ�A), Jᾱ2K(B, ρ�B)) = 1 or 〈〈Bγ〉〉(Jγ̄1K(A, ρ�A), Jγ̄2K(B, ρ�B)) = 1

⇔ 〈〈Bα〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1 or 〈〈B′γ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1

⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Also, we have

Free(ᾱ1) ∪ Free(ᾱ2) ∪ Free(γ̄1) ∪ Free(γ̄2) ⊆ Free(α) ∪ Free(γ) = Free(β).

3.2. The Classical Feferman-Vaught Theorem 21

� β = ∃x.α
Assume the theorem is true for α with ᾱ1, ᾱ2 ∈ MSO(σ)l and Bα ∈ Expl(B). We
may assume that Bα = B1 ∨ . . .∨Bm is in normal form with all Bi pure conjunctions
and that x does no occur as a bound variable in any of the α1

i or α2
i . We let

γi = CON1(Bi, ᾱ
1, ᾱ2) and δi = CON2(Bi, ᾱ

1, ᾱ2) and set

β̄1 = (∃x.γ1, . . . ,∃x.γm, γ−x1 , . . . , γ−xm)

β̄2 = (∃x.δ1, . . . ,∃x.δm, δ−x1 , . . . , δ−xm)

Bβ =
m∨
i=1

((xi ∧ ym+i) ∨ (xm+i ∧ yi)).

Then we have

(A tB, ρ) |= β

⇔ (A tB, ρ[x→ c]) |= α for some c ∈ A tB let ρc = ρ[x→ c]

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = 1 for some c ∈ A tB
⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = 1 for some c ∈ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρc�A) |= γi and (B, ρc�B) |= δi for some c ∈ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρ�A[x→ a]) |= γi and (B, ρ�B) |= δ−xi for some a ∈ A and i ∈ {1, . . . ,m} or

(A, ρ�A) |= γ−xi and (B, ρ�B[x→ b]) |= δi for some b ∈ B and i ∈ {1, . . . ,m}
⇔ (A, ρ�A) |= ∃x.γi and (B, ρ�B) |= δ−xi for some i ∈ {1, . . . ,m} or

(A, ρ�A) |= γ−xi and (B, ρ�B) |= ∃x.δi for some i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Furthermore, we have

Free(β̄1) ∪ Free(β̄2) ⊆ (Free(ᾱ1) ∪ Free(ᾱ2)) \ {x}
⊆ Free(α) \ {x}
= Free(β).

� β = ∃X.α
We reuse the notation from first order existential quantification and set

β̄1 = (∃X.γ1, . . . ,∃X.γm)

β̄2 = (∃X.δ1, . . . ,∃X.δm)

Bβ =

m∨
i=1

(xi ∧ yi).

Then we have

(A tB, ρ) |= β

⇔ (A tB, ρ[X → I]) |= α for some I ⊆ A tB let ρI = ρ[X → I]

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρI�A), Jᾱ2K(B, ρI�B)) = 1 for some I ⊆ A tB

22 Chapter 3. Feferman-Vaught Theorems

⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρI�A), Jᾱ2K(B, ρI�B)) = 1 for some I ⊆ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρI�A) |= γi and (B, ρI�B) |= δi for some I ⊆ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρ�A[X → I]) |= γi and (B, ρ�B[X → J]) |= δi for some I ⊆ A, J ⊆ B, and
i ∈ {1, . . . ,m}

⇔ (A, ρ�A) |= ∃X.γi and (B, ρ�B) |= ∃X.δi for some i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

In the same way as for first order existential quantification, we obtain Free(β̄1) ∪
Free(β̄2) ⊆ Free(β).

A Feferman-Vaught Theorem for products

Here, we state and prove the classical Feferman-Vaught Theorem for products in the
framework we will also employ for our weighted extension.

Theorem 3.9 ([44]). Let V be a set of first and second order variables and β ∈ FO(σ)
with variables from V. Then there exist n ≥ 1, tuples of formulas β̄1, β̄2 ∈ FO(σ)n,
and an expression Bβ ∈ Expn(B) such that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) and for
all structures A,B ∈ Str(σ) and all (V,A×B)-assignments ρ:

(A×B, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Proof. We proceed by induction.

� β = R(x1, . . . , xk) for a relation symbol R ∈ Relσ of arity k
In this case, we let n = 1, β1

1 = β2
1 = R(x1, . . . , xk), and Bβ = x1 ∧ y1.

� The proofs for β = ¬α and β = α ∨ γ are the same as in Theorem 3.8.

� β = ∃x.α
We reuse the notation from first order existential quantification of Theorem 3.8 and
set

β̄1 = (∃x.γ1, . . . ,∃x.γm)

β̄2 = (∃x.δ1, . . . ,∃x.δm)

Bβ =

m∨
i=1

(xi ∧ yi).

Then we have

(A×B, ρ) |= β

⇔ (A×B, ρ[x→ c]) |= α for some c ∈ A×B let ρc = ρ[x→ c]

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = 1 for some c ∈ A×B
⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = 1 for some c ∈ A×B and i ∈ {1, . . . ,m}
⇔ (A, ρc�A) |= γi and (B, ρc�B) |= δi for some c ∈ A×B and i ∈ {1, . . . ,m}

3.3. Translation Schemes 23

⇔ (A, ρ�A[x→ a]) |= γi and (B, ρ�B[x→ b]) |= δi for some a ∈ A, b ∈ B, and
i ∈ {1, . . . ,m}

⇔ (A, ρ�A) |= ∃x.γi and (B, ρ�B) |= ∃x.δi for some i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Again, we easily obtain Free(β̄1) ∪ Free(β̄2) ⊆ Free(β).

3.3 Translation Schemes

Theorems 3.8 and 3.9 consider disjoint unions and products only. So far, there
is no interaction between the two constituting structures. Translation schemes
allow us to create such interactions in an MSO-defined manner. More precisely,
translation schemes “translate” structures over one signature into structures over
another signature. Applying this to disjoint unions and products, we can extend
Theorems 3.8 and 3.9 to more complex constructs. The usefulness of such extensions
by translation schemes was discussed in [71], which we follow here.

Let σ and τ be two signatures, Z = {z, z1, z2, . . .} be a set of distinguished first
order variables, and W be a set of first and second order variables with W ∩Z = ∅.
A σ-τ -translation scheme Φ over W and Z is a pair (φU , (φT)T∈Relτ) where φU , φT ∈
MSO(σ) for each T ∈ Relτ , φU has variables fromW∪{z}, and each φT has variables
from W ∪{z1, . . . , zarτ (T)}. The variables from Z may not be used for quantification,
i.e., all variables from Z must be free.

Intuitively, the formula φU is a filter for the new universe, i.e., the universe of
our new τ -structure will contain all elements a of our σ-structure which satisfy φU
when z is mapped to a. Likewise, every formula φT defines the relation T of our new
τ -structure, i.e., the interpretation of T will contain all tuples (a1, . . . , aarτ (T)) which
satisfy φT when each zi is mapped to ai.

We set Free(Φ) = Free(φU)∪
⋃
T∈Relτ

Free(φT). The formulas φU and (φT)T∈Relτ

depend on Z in the following way. For a first order variable x not occurring in φU , the
formula φU (x) is obtained from φU by replacing all occurrences of z by x. Similarly,
for T ∈ Relτ and first order variables x1, . . . , xarτ (T) not occurring in φT , the formula
φT (x1, . . . , xarτ (T)) is obtained from φT by replacing all occurrences of zi by xi for
i ∈ {1, . . . , arτ (T)}.

For a σ-structure A = (A, IA) and a (W,A)-assignment ς, we define the Φ-induced
τ -structure of A and ς, denoted by Φ?(A, ς), as a τ -structure with universe UC and
interpretation IC as follows.

UC = {a ∈ A | (A, ς[z → a]) |= φU}

IC(T) = {c̄ ∈ Uarτ (T)
C | (A, ς[z̄ → c̄]) |= φT }

Here, z̄ always denotes the tuple (z1, . . . , zarτ (T)).

Example 3.10. We can use a translation scheme to connect a specified vertex in a
graph to a set of vertices of the graph. For this let σ = τ = ({edge}, edge 7→ 2) be

24 Chapter 3. Feferman-Vaught Theorems

the signature of a directed graph like in Example 2.2. We define a σ-σ-translation
scheme Φ = (φU , φedge) through

φU = true

φedge = edge(z1, z2) ∨ (z1 = x ∧ z2 ∈ X),

where z1 = x is an abbreviation for ∀Y (z1 ∈ Y → x ∈ Y). Let G = (V, edge 7→ E) ∈
Str(σ) be a graph, v ∈ V a vertex, and I ⊆ V a set of vertices. Then the graph
Φ∗(G, {x 7→ v,X 7→ I}) is exactly the graph G with an edge added between v and
every vertex v′ ∈ I.

Example 3.11. A translation scheme can also be used to cut a subtree from a
given tree at a specified vertex in the tree. As in the previous example, let σ be the
signature of a directed graph. For a graph G = (V, edge 7→ E) ∈ Str(σ), let E′ be
the transitive closure of the relation E ⊆ V × V . We say that G is a directed rooted
tree with root r ∈ V if (1) E′ is irreflexive, (2) (r, v) ∈ E′ for all v ∈ V \ {r} and
(3) for all v ∈ V \ {r} there is exactly one v′ ∈ V with (v′, v) ∈ E. We define the
following abbreviation which describes the reflexive transitive closure of E.

(x ≤ y) = ∀X
((
x ∈ X ∧

(
∀z.(∃z′.z′ ∈ X ∧ edge(z′, z))→ z ∈ X

))
→ y ∈ X

)
We define a σ-σ-translation scheme Φ = (φU , φedge) through

φU = (x ≤ z)
φedge = edge(z1, z2).

Then with G as above and v ∈ V , the graph C = Φ∗(G, x 7→ v) is the subtree of G at
the vertex v, i.e.,

UC = {v} ∪ {v′ ∈ V | (v, v′) ∈ E′}
IC = E ∩ (UC × UC).

We have the following fundamental property of translation schemes [71].

Lemma 3.12 ([71]). Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over
W and Z, V be a set of first and second order variables such that V, W, and Z
are pairwise disjoint, and β ∈ MSO(τ) with variables from V. Then there exists a
formula α ∈ MSO(σ) such that Free(α) ⊆ Free(β) ∪ Free(Φ) and for all structures
A ∈ Str(σ), all (W,A)-assignments ς, and all (V,Φ?(A, ς))-assignments ρ:

(Φ?(A, ς), ρ) |= β iff (A, ς ∪ ρ) |= α.

Proof. We indicate the proof for the convenience of the reader. We proceed by
induction. In the following, we will assume that for formulas β′, β1, and β2, the
theorem holds by induction with the formulas α′, α1 and α2, respectively.

For β = (x ∈ X), we let α = (x ∈ X). For β = T (x1, . . . , xk) for some T ∈ Relτ ,
we let α = φT (x1, . . . , xk). For β = ¬β′, we let α = ¬α′. For β = β1 ∨ β2, we let
α = α1 ∨ α2. For β = ∃x.β′, we let α = ∃x.(α′ ∧ φU(x)) and for β = ∃X.β′, we let
α = ∃X.(α′ ∧ ∀x.(x ∈ X → φU (x))).

3.3. Translation Schemes 25

Together with Theorems 3.8 and 3.9, this gives us the following Feferman-Vaught
decomposition theorems for disjoint unions and products with translations schemes.

Theorem 3.13 ([71]). Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over
W and Z, V be a set of first and second order variables such that V, W, and Z are
pairwise disjoint, and β ∈ MSO(τ) with variables from V. Then there exist n ≥ 1,
tuples of formulas β̄1, β̄2 ∈ MSO(σ)n, and an expression Bβ ∈ Expn(B) such that
Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) ∪ Free(Φ) and for all structures A,B ∈ Str(σ), all
(W,A tB)-assignments ς, and all (V,Φ?(A tB, ς))-assignments ρ:

(Φ?(A tB, ς), ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, (ς ∪ ρ)�A), Jβ̄2K(B, (ς ∪ ρ)�B)) = 1.

Proof. By Lemma 3.12 we know that there is a formula α ∈ MSO(σ) such that

(Φ?(A tB, ς), ρ) |= β iff (A tB, ς ∪ ρ) |= α.

We then use Theorem 3.8 for the formula α to obtain n ≥ 1, tuples of formulas
β̄1, β̄2 ∈ MSO(σ)n, and an expression Bβ ∈ Expn(B) as required.

Theorem 3.14 ([71]). Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over
W and Z, V be a set of first and second order variables such that V, W, and Z are
pairwise disjoint, and β ∈ FO(τ) with variables from V. Then there exist n ≥ 1,
tuples of formulas β̄1, β̄2 ∈ FO(σ)n, and an expression Bβ ∈ Expn(B) such that
Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) ∪ Free(Φ) and for all structures A,B ∈ Str(σ), all
(W,A tB)-assignments ς, and all (V,Φ?(A×B, ς))-assignments ρ:

(Φ?(A×B, ς), ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, (ς ∪ ρ)�A), Jβ̄2K(B, (ς ∪ ρ)�B)) = 1.

Proof. We proceed as in the proof of Theorem 3.13 and combine Lemma 3.12 and
Theorem 3.9.

Example 3.15. We consider the signature σ of a labeled graph, i.e., Relσ = {edge,
labela, labelb} where edge has arity 2 and labela, labelb both have arity 1. Given
two directed rooted labeled trees G1,G2 in this signature (see Example 3.11), we
can use a translation scheme to add edges between all leaves of G1 and the root
of G2 in G1 t G2. For this scenario, we have to distinguish between the vertices
from the first and the second graph, so the use of an intermediate signature is
necessary. We define the signature σ′ to be σ extended by the relation symbols
G1 and G2 of arity 1. Then for i ∈ {1, 2}, we define a σ-σ′-translation scheme
Φi = (φU , φ

′
edge, φlabela , φlabelb , φ

i
G1
, φiG2

) as

φU = true

φ′edge = edge(z1, z2)

φlabela = labela(z1)

φlabelb = labelb(z1)

φiGj =

{
true if i = j

false otherwise.

26 Chapter 3. Feferman-Vaught Theorems

With the abbreviations

root(x) = ¬∃y.edge(y, x)

leaf(x) = ¬∃y.edge(x, y)

we then define the σ′-σ-translation scheme Φ = (φU , φedge, φlabela , φlabelb) through

φedge = edge(z1, z2) ∨ (G1(z1) ∧G2(z2) ∧ leaf(z1) ∧ root(z2)).

Then G = Φ∗(Φ∗1(G1) t Φ∗2(G2)) is exactly G1 tG2 with the leaves of G1 connected
to the root of G2. We now consider the formula

β = ∃x.∃y.(edge(x, y) ∧ labela(x) ∧ labelb(y))

which asks whether there is some edge between an a-labeled and a b-labeled vertex.
We can apply Lemma 3.12 and Theorem 3.13 to obtain the following decomposition
of β. Let

β̄1 = (β,∃x.labela(x) ∧ leaf(x))

β̄2 = (β,∃y.labelb(y) ∧ root(y))

Bβ = x1 ∨ y1 ∨ (x2 ∧ y2).

Then we have

G |= β iff 〈〈Bβ〉〉(Jβ̄1K(G1), Jβ̄2K(G2)) = 1.

3.4 Weighted Feferman-Vaught Theorems

Our goal is to prove weighted versions of Theorems 3.13 and 3.14. That is, we would
like to replace FO by wFO and MSO by wMSO in those theorems. This, however, is
not possible as we will see in Sections 3.4 and 3.4. For disjoint unions, we have to
restrict the use of the first order product quantifier and entirely remove the second
order product quantifier in wMSO. For products, it is not possible to include the first
order product quantifier at all.

Formulation of the theorems

Let σ be a signature and K a commutative semiring. We define two fragments of
our logic and formulate our weighted versions of Theorems 3.13 and 3.14 for these
fragments.

Definition 3.16 (Product-free weighted first order logic). We define the product-free
first order fragment of our logic through the grammar

ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ,

where β ∈ FO(σ) is a first order formula, κ ∈ K, and x is a first order variable. By
wFO

⊗
-free(σ,K), we denote the set of all such formulas. In fact, wFO

⊗
-free(σ,K) is

the set of all formulas from wFO(σ,K) which do not contain any first order product
quantifier. Using this fragment, we will formulate a weighted Feferman-Vaught
decomposition theorem for products of structures.

3.4. Weighted Feferman-Vaught Theorems 27

Definition 3.17 (Product-restricted weighted monadic second order logic). In order
to define the product-restricted fragment of our weighted monadic second order logic,
we first define the fragment of so-called almost Boolean formulas through the grammar

ψ ::= β | κ | ψ ⊕ ψ | ψ ⊗ ψ,

where β ∈ MSO(σ) is a monadic second order formula and κ ∈ K. This fragment,
which we denote by wMSOa-bool(σ,K), already appeared in [27] in the form of
recognizable step functions. To obtain the main theorem of [27], the product quantifier
was restricted to quantify only over recognizable step functions. We employ the
same restriction and define the product-restricted fragment of our logic through the
grammar

ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ψ |

⊕
X.ϕ,

where β ∈ MSO(σ) is a monadic second order formula, κ ∈ K, x is a first order
variable, X is a second order variable, and ψ ∈ wMSOa-bool(σ,K) is an almost
Boolean formula. By wMSO

⊗
-res(σ,K) we denote the set of all such formulas. The

set wMSO
⊗

-res(σ,K) contains all formulas from wMSO(σ,K) which do not contain
any second order quantifier and where for every subformula of the form

⊗
x.ψ we have

that ψ is an almost Boolean formula. Our weighted Feferman-Vaught decomposition
theorem for disjoint unions of structures will be formulated for this fragment. In [27]
it was shown that for finite and infinite words, this fragment is expressively equivalent
to weighted finite automata.

We note that the restrictions we impose on the product quantifier are necessary
as we will show in Sections 3.4 and 3.4. We formulate the weighted versions of
Theorems 3.13 and 3.14 as follows.1 Let τ , W, and Z be as in Section 3.3.

Theorem 3.18. Let K be a commutative semiring. Let Φ = (φU , (φT)T∈Relτ) be a σ-
τ -translation scheme overW and Z, V be a set of first and second order variables such
that V, W, and Z are pairwise disjoint, and ϕ ∈ wMSO

⊗
-res(τ,K) with variables

from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈ wMSO
⊗

-res(σ,K)n

with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(K)
such that the following holds. For all finite structures A,B ∈ Str(σ), or, for all
structures A,B ∈ Str(σ) if K is bicomplete, all (W,A tB)-assignments ς, and all
(V,Φ?(A tB, ς))-assignments ρ we have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Theorem 3.19. Let K be a commutative semiring. Let Φ = (φU , (φT)T∈Relτ) be a
σ-τ -translation scheme over W and Z, V be a set of first and second order variables
such that V, W, and Z are pairwise disjoint, and ϕ ∈ wFO

⊗
-free(τ,K) with variables

from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈ wFO
⊗

-free(σ,K)n

with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(K)

1In [92] a weighted version of Theorem 3.13 similar to ours is stated (without proof) to hold
without any restriction on the first order product quantifier. However, in Section 3.4 we show that a
restriction on the product quantifier is necessary.

28 Chapter 3. Feferman-Vaught Theorems

such that the following holds. For all finite structures A,B ∈ Str(σ), or, for all
structures A,B ∈ Str(σ) if K is bicomplete, all (W,A×B)-assignments ς, and all
(V,Φ?(A×B, ς))-assignments ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

The proofs of both theorems are deferred to Section 3.4. For formulas without
free variables and a trivial translation scheme, i.e., σ = τ , φU = true, and φT =
T (z1, . . . , zarτ (T)) for all T ∈ Relτ , the theorems reduce to the following, simplified
versions.

Theorem 3.20. Let K be a commutative semiring and ϕ ∈ wMSO
⊗

-res(σ,K) be a
sentence. Then there exist n ≥ 1, tuples of sentences ϕ̄1, ϕ̄2 ∈ wMSO

⊗
-res(σ,K)n,

and an expression Eϕ ∈ Expn(K) such that the following holds. For all finite
structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K is bicomplete, we
have

JϕK(A tB) = 〈〈Eϕ〉〉(Jϕ̄1K(A), Jϕ̄2K(B)).

Theorem 3.21. Let K be a commutative semiring and ϕ ∈ wFO
⊗

-free(σ,K) be a
sentence. Then there exist n ≥ 1, tuples of sentences ϕ̄1, ϕ̄2 ∈ wFO

⊗
-free(σ,K)n, and

an expression Eϕ ∈ Expn(K) such that the following holds. For all finite structures
A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K is bicomplete, we have

JϕK(A×B) = 〈〈Eϕ〉〉(Jϕ̄1K(A), Jϕ̄2K(B)).

Example 3.22. To illustrate Theorem 3.20, we consider the semiring of natu-
ral numbers (N,+, ·, 0, 1) and the signature σ of a labeled graph, i.e., Relσ =
{edge, labela, labelb} with edge binary and labela, labelb both unary. Consider the
following formula which multiplies the number of vertices labeled a with the number
of edges between two vertices labeled b.⊕x.labela(x)︸ ︷︷ ︸

=ϕa

⊗
⊕x.

⊕
y.edge(x, y) ∧ labelb(x) ∧ labelb(y)︸ ︷︷ ︸

=ϕb

The formula can be decomposed as follows. Let

ϕ̄1 = ϕ̄2 = (ϕa, ϕb)

Eϕ = (x1 ⊕ y1)⊗ (x2 ⊕ y2).

Then for every two σ-structures G1,G2 we have

JϕK(G1 tG2) = 〈〈Eϕ〉〉(Jϕ̄1K(G1), Jϕ̄2K(G2)).

Example 3.23. In Example 3.5, we interpreted JϕK(A, ρ) as the number of proofs
we have that (A, ρ) satisfies ϕ, assuming that ϕ does not contain constants. Applying
Theorem 3.18 in this scenario means that the number of proofs that (AtB, ρ) satisfies
a formula ϕ can be computed from the number of proofs we have that (A, ρ�A) satisfies
some formulas ϕ1

1 , . . . , ϕ
1
n and the number of proofs we have that (B, ρ�B) satisfies

some formulas ϕ2
1 , . . . , ϕ

2
n by combining these numbers only through an expression.

3.4. Weighted Feferman-Vaught Theorems 29

Example 3.24. In [92], it is discussed how translation schemes can be applied for
Feferman-Vaught-like decompositions of weighted properties. Theorems 3.18 and 3.19
show that this is possible for all properties which can be expressed by formulas in
our weighted logic fragments.

Necessity of restricting the logic for disjoint unions

In this section, we show that the restrictions we impose on the product quantifiers are
indeed necessary. For disjoint unions, we will prove that already Theorem 3.20 does
not hold over the min-plus semiring Rmin = (R ∪ {∞},min,+,∞, 0) and over the
max-plus semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) for the formulas

⊗
x.
⊗
y.1

and
⊗
X.1. To prove this, we employ Ramsey’s theorem. Then we show that for

the formula
⊗
x.
⊕
y.1, Theorem 3.20 does not hold over the semiring (N,+, ·, 0, 1).

We note that these types of formulas also occurred in [27] and [33] as examples of
weighted formulas whose semantics cannot be described by weighted automata.

We will employ the following version of Ramsey’s theorem. For a set X, we denote
by
[
X
2

]
the set of all subsets of X of size 2.

Theorem 3.25 ([91]). Let X be an infinite set, k ≥ 1 a positive integer, and
f :
[N

2

]
→ {1, . . . , k} a mapping. Then there exists an infinite subset E ⊆ N such

that f�[E2] ≡ i for some i ∈ {1, . . . , k}.

Theorem 3.26. Let K ∈ {Rmin,Rmax}, σ = (∅, ∅) be the empty signature, and for
l ∈ N+ consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.
⊗
y.1 there

do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,K))n, and Eϕ ∈ Expn(K) such that for all
l,m ∈ N+ we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)). (3.4.1)

Proof. First, consider K = Rmin. For contradiction, suppose that n, ϕ̄1, ϕ̄2, and Eϕ
as above satisfying (3.4.1) exist. We may assume that Eϕ = E1 ⊕ . . . ⊕ Ek is in
normal form with all Ei pure products. For l ≥ 1 and i ∈ {1, . . . , k} we let ali =
JPRD1(Ei, ϕ̄

1, ϕ̄2)K(Sl) and bli = JPRD2(Ei, ϕ̄
1, ϕ̄2)K(Sl). Then by assumption we

have

(l +m)2 = JϕK(Sl tSm) =
k

min
i=1

(ali + bmi). (3.4.2)

Given l ≥ 1 and m ≥ 1, for at least one index j ∈ {1, . . . , k} we have (l + m)2 =
alj + bmj . We define jlm as the smallest such index. Then we define a function
f :
[
N+

2

]
→ {1, . . . , k} by f({l,m}) = jlm for l < m. Then we take E ⊆ N+ according

to Ramsey’s theorem. As E is infinite, there are l, λ,m, µ ∈ E with l < λ < m < µ.
With j = jlm, we thus have

(l +m)2 = alj + bmj

(λ+m)2 = aλj + bmj

(l + µ)2 = alj + bµj

(λ+ µ)2 = aλj + bµj .

30 Chapter 3. Feferman-Vaught Theorems

This implies that

(λ+ µ)2 = (λ+m)2 + (l + µ)2 − (l +m)2

= λ2 + µ2 + 2λm+ 2lµ− 2lm

= (λ+ µ)2 − 2(λ− l)(µ−m)

< (λ+ µ)2,

a contradiction. Therefore, n, ϕ̄1, ϕ̄2, and Eϕ as chosen cannot exist.
The proof for the max-plus semiring is in fact identical, the only difference is that

equations (3.4.2) become

(l +m)2 = JϕK(Sl tSm) =
k

max
i=1

(ali + bmi).

Theorem 3.27. Let K ∈ {Rmin,Rmax}, σ = (∅, ∅) be the empty signature, and for
l ∈ N+ consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
X.1 there

do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,K))n, and Eϕ ∈ Expn(K) such that for all
l,m ∈ N+ we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)).

Proof. We proceed as in the proof of Theorem 3.26 and by contradiction obtain a
system of equations

2l+m = JϕK(Sl tSm) =
k

min
i=1

(ali + bmi).

Also employing Ramsey’s theorem in the same way, we obtain l < λ < m < µ and
j ∈ {1, . . . , k} such that

2l+m = alj + bmj

2λ+m = aλj + bmj

2l+µ = alj + bµj

2λ+µ = aλj + bµj ,

which gives us the equality

2λ+µ = 2λ+m + 2l+µ − 2l+m.

By dividing by 2l+m we obtain

2(λ−l)+(µ−m) = 2λ−l + 2µ−m − 1. (3.4.3)

However, we have

2(λ−l)+(µ−m) ≥ 2λ−l + 2µ−m

> 2λ−l + 2µ−m − 1,

which contradicts equation (3.4.3).

3.4. Weighted Feferman-Vaught Theorems 31

Theorem 3.28. Let K = (N,+, ·, 0, 1), σ = (∅, ∅) be the empty signature, and for
l ∈ N+ consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.
⊕
y.1 there

do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,N))n, and Eϕ ∈ Expn(N) such that for all
l,m ∈ N+ we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)). (3.4.4)

Proof. We proceed by contradiction and assume n, ϕ̄1, ϕ̄2, and Eϕ as above satisfying
(3.4.4) exist. We may assume that Eϕ = E1 ⊕ . . .⊕ Ek is in normal form with all Ei
pure products. For l ≥ 1 and i ∈ {1, . . . , k} we let ali = JPRD1(Ei, ϕ̄

1, ϕ̄2)K(Sl) and
bli = JPRD2(Ei, ϕ̄

1, ϕ̄2)K(Sl). Then by assumption we have

(l +m)(l+m) = JϕK(Sl tSm) =
k∑
i=1

(ali · bmi). (3.4.5)

For every j ∈ {1, . . . , k} we choose Lj ≥ 1 such that aLjj 6= 0, or let Lj = 0 if for all
l ≥ 1 we have alj = 0. Assume m ≥ 1 and j ∈ {1, . . . , k} with Lj 6= 0, then aLjj ≥ 1,
hence

(Lj +m)(Lj+m) =

k∑
i=1

(aLji · bmi) ≥ (aLjj · bmj) ≥ bmj .

In particular, with L = max{Li | i ∈ {1, . . . , k}}, we have that for every j ∈ {1, . . . , k}
either (i) bmj ≤ (L+m)(L+m) for all m ≥ 1 or (ii) alj = 0 for all l ≥ 1. Note that from
equation (3.4.5) it follows that L = 0 is impossible. In the same fashion, we can find
M ≥ 1 such that for every l ≥ 1 and every j ∈ {1, . . . , k} either (i) alj ≤ (l+M)(l+M)

for all l ≥ 1 or (ii) bmj = 0 for all m ≥ 1.
Now, for arbitrary l ≥ 1, consider the special case

(l + l)(l+l) =
k∑
i=1

(ali · bli).

If j ∈ {1, . . . , k} such that either alj = 0 for all l ≥ 1 or bmj = 0 for all m ≥ 1, then
clearly also (alj · blj) = 0. If j is not like this, we have

(alj · blj) ≤ (l +M)(l+M) · (L+ l)(L+l) ≤ (l + C)2(l+C)

for C = max{L,M}. In summary, we have

(2l)2l ≤ k(l + C)2(l+C)

for every l ≥ 1. Now if l is of the form NC for some N ∈ N, we have

(2l)2l ≤ k(l + C)2(l+C)

⇔ (2NC)NC ≤
√
k((N + 1)C)(N+1)C

⇔ (2N)N ≤ 2C
√
kC(N + 1)(N+1)

⇔ 2N

N + 1

(
N

N + 1

)N
≤ 2C
√
kC.

32 Chapter 3. Feferman-Vaught Theorems

However, this inequality cannot hold for all N ∈ N, as

2N

N + 1

N→∞−−−−→ +∞ and
(

N

N + 1

)N
N→∞−−−−→ e−1.

Necessity of restricting the logic for products

The proof of Theorem 3.26 can also be used to show that no Feferman-Vaught-like
theorem holds for products if the first order product quantifier is included in the
weighted logic. More precisely, already Theorem 3.21 does not hold over the min-plus
and max-plus semirings for the formula ϕ =

⊗
x.1 even if ϕ̄1 and ϕ̄2 are allowed to

be from wMSO(σ,K).

Theorem 3.29. Let K ∈ {Rmin,Rmax}, σ = (∅, ∅) be the empty signature, and for
l ∈ N+ consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.1 there

do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,K))n, and Eϕ ∈ Expn(K) such that for all
l,m ∈ N+ we have

JϕK(Sl ×Sm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)).

Proof. Like in the proof of Theorem 3.26, for K = Rmin we reduce the problem to a
system of equations

lm = JϕK(Sl ×Sm) =
k

min
i=1

(ali + bmi).

Employing Ramsey’s theorem, we again obtain l < λ < m < µ and j ∈ {1, . . . , k}
such that

lm = alj + bmj

λm = aλj + bmj

lµ = alj + bµj

λµ = aλj + bµj .

Thus, we have

λµ = λm+ lµ− lm
= λµ− (λ− l)(µ−m)

< λµ,

which is a contradiction. For K = Rmax, the proof is again analogous.

Proofs of the theorems

We now turn to the proofs of Theorems 3.18 and 3.19. First, we show that we can
reduce the proofs to the case where the translation scheme is the identity.

3.4. Weighted Feferman-Vaught Theorems 33

Lemma 3.30. Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and
Z, V be a set of first and second order variables such that V, W, and Z are pairwise
disjoint, and ϕ ∈ wMSO(τ,K) with variables from V. Then there exists a formula
ψ ∈ wMSO(σ,K) with Free(ψ) ⊆ Free(ϕ)∪Free(Φ) such that the following holds. For
all finite structures A ∈ Str(σ), or, for all structures A ∈ Str(σ) if K is bicomplete,
all (W,A)-assignments ς, and all (V,Φ?(A, ς))-assignments ρ we have

JϕK(Φ?(A, ς), ρ) = JψK(A, ς ∪ ρ).

If ϕ is from wMSO
⊗

-res(τ,K) or wFO
⊗

-free(τ,K), then ψ can also be chosen as a
formula from wMSO

⊗
-res(σ,K) or wFO

⊗
-free(σ,K), respectively.

Proof. We proceed by induction. In the sequel we will assume that for formulas
ϕ′, ϕ1, and ϕ2, the lemma holds by induction with the formulas ψ′, ψ1, and ψ2,
respectively.

For ϕ = β ∈ MSO(τ), we obtain ψ by applying Lemma 3.12 to β. For ϕ = κ ∈ K,
we let ψ = κ. For ϕ = ϕ1⊕ϕ2 or ϕ = ϕ1⊗ϕ2, we define ψ = ψ1⊕ψ2 or ψ = ψ1⊗ψ2,
respectively.
For ϕ =

⊕
x.ϕ′, we let ψ =

⊕
x.(ψ′ ⊗ φU (x)).

For ϕ =
⊕
X.ϕ′, we let ψ =

⊕
X.(ψ′ ⊗ ∀x.(x ∈ X → φU (x))).

For ϕ =
⊗
x.ϕ′, we let ψ =

⊗
x.((ψ′ ⊗ φU (x))⊕ ¬φU (x)).

For ϕ =
⊗
X.ϕ′, we define β = ∀x.(x ∈ X → φU (x)) and let ψ =

⊗
X.((ψ′⊗β)⊕¬β).

Note that for the cases of infinite sums and products, we need that
⊙

I 1 = 1 and⊕
I 0 = 0 for every index set I. The first is an axiom of our infinite products, the

latter follows from the distributivity of the infinite sum.

Proof of Theorem 3.18. By Lemma 3.30, it suffices to prove the case τ = σ and
Φ?(A tB, ς) = A tB. We proceed by induction on the structure of ϕ. We note that
the idea for the case ϕ =

⊗
x.ζ for some almost Boolean formula ζ was suggested by

Vitaly Perevoshchikov.

� ϕ = β for some β ∈ MSO(σ)
We apply Theorem 3.8 to the formula β and obtain l ≥ 1, tuples of formulas
β̄1, β̄2 ∈ MSO(σ)l, and an expression Bβ ∈ Expl(B) such that

(A tB, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1.

Wemay assume thatBβ = B1∨. . .∨Bm is in normal form with allBi pure conjunctions.
We let γi = CON1(Bi, β̄

1, β̄2) and δi = CON2(Bi, β̄
1, β̄2) for i ∈ {1, . . . ,m} (see

Construction 3.6). We set n = 2m and define

ϕ̄1 = (γ1, . . . , γm,¬γ1, . . . ,¬γm)

ϕ̄2 = (δ1, . . . , δm,¬δ1, . . . ,¬δm).

Intuitively, we would now define the expression Eϕ as (x1 ⊗ y1)⊕ . . .⊕ (xm ⊗ ym),
but this expression is not necessarily evaluated to 1 in K if γi ∧ δi is true for more

34 Chapter 3. Feferman-Vaught Theorems

than one index i. Instead, we define expressions Ek ∈ Expn(K) for k ∈ {1, . . . ,m}
inductively by E1 = x1 ⊗ y1 and

Ek = (Ek−1 ⊗ ((xk+m ⊗ yk)⊕ yk+m))⊕ (xk ⊗ yk)

for k ≥ 2 and set Eϕ = Em. The expression Ek is evaluated to 1 if γk ∧ δk holds,
and otherwise, if either γk or δk does not hold, it is evaluated to Ek−1. We show by
induction that for all k ∈ {1, . . . ,m} we have

〈〈Ek〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)) ={
1 if 〈〈Bi〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1 for some i ∈ {1, . . . , k}
0 otherwise.

Let κ̄ = Jϕ̄1K(A, ρ�A) and λ̄ = Jϕ̄2K(B, ρ�B). For k = 1 we have, due to the fact that
κ̄, λ̄ ∈ {0, 1}2m,

〈〈x1 ⊗ y1〉〉(κ̄, λ̄) = 1

⇔ κ1 = 1 and λ1 = 1

⇔ (A, ρ�A) |= γ1 and (B, ρ�A) |= δ1

⇔ 〈〈B1〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1

and 〈〈E1〉〉(κ̄, λ̄) = 0 otherwise. For k > 1 and 〈〈Bi〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 0
for all i ∈ {1, . . . , k}, we have 〈〈Ek−1〉〉(κ̄, λ̄) = 0 by induction and at least one of
κk, λk is 0. It is easy to see that in this case 〈〈Ek〉〉(κ̄, λ̄) = 0. Otherwise either
〈〈Ek−1〉〉(κ̄, λ̄) = 1 by induction or κk = λk = 1. Taking into account that the values
for xk, xk+m and yk, yk+m are always “dual”, a simple case distinction shows that in
this case 〈〈Ek〉〉(κ̄, λ̄) = 1. In conclusion, we have JϕK(A tB, ρ) ∈ {0,1} and

JϕK(A tB, ρ) = 1

⇔ (A tB, ρ) |= β

⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1

⇔ 〈〈Bi〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = 1 for some i ∈ {1, . . . ,m}
⇔ 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)) = 1,

hence JϕK(A tB, ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ = κ for some κ ∈ K
We let n = 1, ϕ1

1 = ϕ2
1 = κ and Eϕ = x1.

� ϕ = ζ ⊕ η
We assume the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO

⊗
-res(σ,K)l and Eζ ∈

Expl(K), and for η with η̄1, η̄2 ∈ wMSO
⊗

-res(σ,K)m and Eη ∈ Expm(K). We
let ϕ̄1 = (ζ1

1 , . . . , ζ
1
l , η

1
1 , . . . , η

1
m), ϕ̄2 = (ζ2

1 , . . . , ζ
2
l , η

2
1 , . . . , η

2
m), and Eϕ = Eζ ⊕ E′η,

where E′η is obtained from Eη by replacing every variable xi by xi+l and every variable

3.4. Weighted Feferman-Vaught Theorems 35

yi by yi+l. We have

JϕK(A tB, ρ)

= JζK(A tB, ρ)⊕ JηK(A tB, ρ)

= 〈〈Eζ〉〉(Jζ̄1K(A, ρ�A), Jζ̄2K(B, ρ�B))⊕ 〈〈Eη〉〉(Jη̄1K(A, ρ�A), Jη̄2K(B, ρ�B))

= 〈〈Eζ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B))⊕ 〈〈E′η〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B))

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ = ζ ⊗ η
The proof is the same as for the previous case, only that here we define Eϕ = Eζ⊗E′η.

� ϕ =
⊕
x.ζ

We assume the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO
⊗

-res(σ,K)l and Eζ ∈
Expl(K). We may assume that Eζ = E1 ⊕ . . . ⊕ Em is in normal form with all Ei
pure products and that x does no occur as a bound variable in any of the ζ1

i or ζ2
i .

We let ξi = PRD1(Ei, ζ̄
1, ζ̄2) and θi = PRD2(Ei, ζ̄

1, ζ̄2). We set n = 2m and define

ϕ̄1 = (
⊕
x.ξ1, . . . ,

⊕
x.ξm, ξ

−x
1 , . . . , ξ−xm)

ϕ̄2 = (
⊕
x.θ1, . . . ,

⊕
x.θm, θ

−x
1 , . . . , θ−xm)

Eϕ =
⊕m

i=1((xi ⊗ ym+i)⊕ (xm+i ⊗ yi)).

Then we have

JϕK(A tB, ρ)

=
⊕

c∈AtB
JζK(A tB, ρ[x→ c])

=
⊕

c∈AtB
〈〈Eζ〉〉(Jζ̄1K(A, ρ[x→ c]�A), Jζ̄2K(B, ρ[x→ c]�B))

=
⊕

c∈AtB

m⊕
i=1

〈〈Ei〉〉(Jζ̄1K(A, ρ[x→ c]�A), Jζ̄2K(B, ρ[x→ c]�B))

=
⊕

c∈AtB

m⊕
i=1

JξiK(A, ρ[x→ c]�A)� JθiK(B, ρ[x→ c]�B)

=
⊕
a∈A

m⊕
i=1

JξiK(A, ρ�A[x→ a])� Jθ−xi K(B, ρ�B)

⊕
⊕
b∈B

m⊕
i=1

Jξ−xi K(A, ρ�A)� JθiK(B, ρ�B[x→ b])

=

m⊕
i=1

(⊕
a∈A

JξiK(A, ρ�A[x→ a])

)
� Jθ−xi K(B, ρ�B)

⊕ Jξ−xi K(A, ρ�A)�

(⊕
b∈B

JθiK(B, ρ�B[x→ b])

)

36 Chapter 3. Feferman-Vaught Theorems

=
m⊕
i=1

J
⊕
x.ξiK(A, ρ�A)� Jθ−xi K(B, ρ�B)⊕ Jξ−xi K(A, ρ�A)� J

⊕
x.θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ =
⊕
X.ζ

As for the first order sum quantifier, we assume that the theorem is true for ζ
with ζ̄1, ζ̄2 ∈ wMSO

⊗
-res(σ,K)l and Eζ ∈ Expl(K) such that Eζ = E1 ⊕ . . .⊕ Em

is in normal form with all Ei pure products. We let ξi = PRD1(Ei, ζ̄
1, ζ̄2) and

θi = PRD2(Ei, ζ̄
1, ζ̄2). We set n = m and define

ϕ̄1 = (
⊕
X.ξ1, . . . ,

⊕
X.ξm)

ϕ̄2 = (
⊕
X.θ1, . . . ,

⊕
X.θm)

Eϕ =
⊕m

i=1(xi ⊗ yi).

Then we have

JϕK(A tB, ρ)

=
⊕

I⊆AtB
JζK(A tB, ρ[X → I])

=
⊕

I⊆AtB
〈〈Eζ〉〉(Jζ̄1K(A, ρ[X → I]�A), Jζ̄2K(B, ρ[X → I]�B))

=
⊕

I⊆AtB

m⊕
i=1

JξiK(A, ρ[X → I]�A)� JθiK(B, ρ[X → I]�B)

=
m⊕
i=1

⊕
I⊆A

⊕
J⊆B

JξiK(A, ρ�A[X → I])� JθiK(B, ρ�B[X → J])

=
m⊕
i=1

⊕
I⊆A

JξiK(A, ρ�A[X → I])

�
⊕
J⊆B

JθiK(B, ρ�B[X → J])

=

m⊕
i=1

J
⊕
X.ξiK(A, ρ�A)� J

⊕
X.θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ =
⊗
x.ζ with ζ ∈ wMSOa-bool(σ,K) almost Boolean

Using the laws of distributivity in K and the fact that for two MSO formulas α, β ∈
MSO(σ) we have Jα⊗βK = Jα∧βK, we may assume that ζ = (κ1⊗β1)⊕ . . .⊕(κl⊗βl)
for some l ≥ 1, κi ∈ K, and βi ∈ MSO(σ). First, we will show that we may even
assume that β1, . . . , βl form a partition, i.e., that for every (V,A tB)-assignment ρ′

there is exactly one i ∈ {1, . . . , l} with (A tB, ρ′) |= βi.
For this, let Ω = {β1,¬β1} × . . .× {βl,¬βl}. For every ω̄ = (ω1, . . . , ωl) ∈ Ω we

define a formula αω̄ and κω̄ ∈ K as follows.

αω̄ =
l∧

i=1

ωi κω̄ =
⊕

1≤i≤l
ωi=βi

κi

3.4. Weighted Feferman-Vaught Theorems 37

The empty sum is 0 by convention. It is clear that for every (V,A tB)-assignment
ρ′ there exists a unique ω̄ ∈ Ω with (AtB, ρ′) |= αω̄. Moreover, for i ∈ {1, . . . , l} we
have (A tB, ρ′) |= βi if and only if (A tB, ρ′) |= αω̄ for some ω̄ ∈ Ω with ωi = βi,
and in this case ω̄ is unique. We therefore have

JζK(A tB, ρ′) =
l⊕

i=1

κi � JβiK(A tB, ρ′)

=
l⊕

i=1

κi �
⊕
ω̄∈Ω
ωi=βi

Jαω̄K(A tB, ρ′)

=

l⊕
i=1

⊕
ω̄∈Ω
ωi=βi

κi � Jαω̄K(A tB, ρ′)

=
⊕
ω̄∈Ω

⊕
1≤i≤l
ωi=βi

κi

� Jαω̄K(A tB, ρ′)

=
⊕
ω̄∈Ω

κω̄ � Jαω̄K(A tB, ρ′).

Thus, JζK = J
⊕

ω̄∈Ω κω̄ ⊗ αω̄K and the family (αω̄)ω̄∈Ω forms a partition in the above
sense. In the following, we simply assume that ζ = (κ1 ⊗ β1)⊕ . . .⊕ (κl ⊗ βl) and
that β1, . . . , βl form a partition.

For every i ∈ {1, . . . , l}, let Xi ∈ V be a second order variable not occurring in ζ.
We define the abbreviation

((x ∈ Xi)B κi) = ((x ∈ Xi)⊗ κi)⊕ ¬(x ∈ Xi).

We write all of the Xi into a tuple X̄ and for sets Ii ⊆ A tB (i ∈ {1, . . . , l}), we let
Ī be the corresponding tuple of sets. Then for c ∈ AtB and sets Ii ⊆ AtB we have

J(x ∈ Xi)B κiK(A tB, ρ[X̄ → Ī , x→ c]) =

{
κi if c ∈ Ii
1 otherwise.

Now consider the formula(
l∧

i=1

∀x.(x ∈ Xi ↔ βi)

)
⊗

l⊗
i=1

⊗
x.((x ∈ Xi)B κi).

For sets Ii ⊆ A tB (i ∈ {1, . . . , l}) we have

J
l∧

i=1

∀x.(x ∈ Xi ↔ βi)K(A tB, ρ[X̄ → Ī])

=

{
1 if for all c ∈ A tB and all i ∈ {1, . . . , l} : c ∈ Ii iff (A tB, ρ[x→ c]) |= βi

0 otherwise.

38 Chapter 3. Feferman-Vaught Theorems

Hence, the above is evaluated to 1 if and only if Ii = {c ∈ A t B | (A tB, ρ[x →
c]) |= βi} for all i ∈ {1, . . . , l}. In this case, the family (Ii)1≤i≤l is a partition of
A tB, since the family (βi)1≤i≤l forms a partition. Therefore, in this case we have

J
l⊗

i=1

⊗
x.((x ∈ Xi)B κi)K(A tB, ρ[X̄ → Ī])

=
l⊙

i=1

⊙
c∈Ii

κi

=
⊙

c∈AtB

l⊕
i=1

κi � JβiK(A tB, ρ[x→ c])

=
⊙

c∈AtB
JζK(A tB, ρ[x→ c])

= JϕK(A tB, ρ).

In conclusion, we have

JϕK = J
⊕
X1.
⊕
X2 . . .

⊕
Xl.

(
l∧

i=1

∀x.(x ∈ Xi ↔ βi)

)
⊗

l⊗
i=1

⊗
x.((x ∈ Xi)B κi)K.

Therefore, it suffices to show this case of the induction for formulas of the form

ϕ =
⊗
x.((x ∈ X)B κ).

We let n = 1 and define ϕ̄1 = ϕ̄2 = (
⊗
x.((x ∈ X)B κ)) and Eϕ = x1 ⊗ y1. Then we

have

J
⊗
x.((x ∈ X)B κ)K(A tB, ρ)

= J
⊗
x.((x ∈ X)B κ)K(A, ρ�A)� J

⊗
x.((x ∈ X)B κ)K(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

Proof of Theorem 3.19. Again we proceed by induction and assume that τ = σ and
Φ?(A×B, ς) = A×B. The proofs for the cases ϕ = β, ϕ = κ, ϕ = ζ⊕η, and ϕ = ζ⊗η
are identical to the ones used in the proof of Theorem 3.18 for the corresponding
cases.

For the case ϕ =
⊕
x.ζ we proceed as for the case ϕ =

⊕
X.ζ in the proof of

Theorem 3.18 as follows. We assume that the theorem is true for ζ with ζ̄1, ζ̄2 ∈
wMSO

⊗
-res(σ,K)l and Eζ ∈ Expl(K) such that Eζ = E1⊕. . .⊕Em is in normal form

with all Ei pure products. We let ξi = PRD1(Ei, ζ̄
1, ζ̄2) and θi = PRD2(Ei, ζ̄

1, ζ̄2).
We set n = m and define

ϕ̄1 = (
⊕
x.ξ1, . . . ,

⊕
x.ξm)

ϕ̄2 = (
⊕
x.θ1, . . . ,

⊕
x.θm)

Eϕ =
⊕m

i=1(xi ⊗ yi).

3.5. Extensions 39

Then we have

JϕK(A×B, ρ)

=
⊕

c∈A×B
JζK(A×B, ρ[x→ c])

=
⊕

c∈A×B
〈〈Eζ〉〉(Jζ̄1K(A, ρ[x→ c]�A), Jζ̄2K(B, ρ[x→ c]�B))

=
⊕

c∈A×B

m⊕
i=1

JξiK(A, ρ[x→ c]�A)� JθiK(B, ρ[x→ c]�B)

=

m⊕
i=1

⊕
a∈A

⊕
b∈B

JξiK(A, ρ�A[x→ a])� JθiK(B, ρ�B[x→ b])

=

m⊕
i=1

(⊕
a∈A

JξiK(A, ρ�A[x→ a])

)
�

(⊕
b∈B

JθiK(B, ρ�B[x→ b])

)

=

m⊕
i=1

J
⊕
x.ξiK(A, ρ�A)� J

⊕
x.θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

This concludes the proofs of Theorems 3.18 and 3.19.
We note here that Theorems 3.18 and 3.19, which consider disjoint unions and

products of only two structures, can easily be extended to disjoint unions and products
of finitely many structures. This can be shown either by modifying the proofs of this
section directly, or by using an induction on the number of structures m, where the
base case m = 2 is given by Theorems 3.18 and 3.19. Since both proof methods are
technical but not too difficult to implement, we omit the formal proof.

3.5 Extensions

In this section, we want to consider several extensions of Theorems 3.18 and 3.19.
More precisely, we show two conditions on the semiring under which we can drop the
restrictions on the product quantifiers, and we show how to combine Theorems 3.18
and 3.19 with transductions.

De Morgan algebras

In this section, we consider the special case where our semiring can be extended
by a unary operation ¬ to form a De Morgan algebra (L,∨,∧,¬, 0, 1). A tuple
(L,∨,∧,¬, 0, 1) is called a De Morgan algebra if (L,∨,∧, 0, 1) is a bounded distributive
lattice and ¬ : L → L is an involution satisfying De Morgan’s laws, i.e., we have
¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y, and ¬¬x = x for all x, y ∈ L. If ≤ is
the induced order of the lattice (L,∨,∧, 0, 1), it follows that ¬ : (L,≤) → (L,≤)
is an order-antiisomorphism. In particular, ¬0 = 1 and ¬1 = 0. A De Morgan

40 Chapter 3. Feferman-Vaught Theorems

algebra is called complete if (L,∨,∧, 0, 1) is a complete lattice. Since ¬ is an order-
antiisomorphism, it follows that the equalities ¬

∧
x∈X x =

∨
x∈X ¬x and ¬

∨
x∈X x =∧

x∈X ¬x hold for every subset X ⊆ L of a complete lattice L.

Example 3.31. Examples of De Morgan algebras include

• all Boolean algebras, in particular, the two element Boolean algebra B,

• Kleene or Priest logic ({F, I, T},∨,∧,¬, F, T) where F ≤ I ≤ T describes the
lattice and ¬I = I, ¬F = T the negation,

• Belnap or Dunn logic ({F,B,N, T},∨,∧,¬, F, T) where F ≤ B ≤ T , F ≤ N ≤
T , and B and N are incomparable, and the negation is given by ¬B = B,
¬N = N , ¬F = T , and

• the Łukasiewicz logics, for example L∞ = ([0, 1],max,min,¬, 0, 1) where ¬x =
1− x.

Whenever we are dealing with a De Morgan algebra, we can include the operator ¬
into our weighted logic.

Definition 3.32 (De Morgan-extension). Let σ be a signature. We define the De
Morgan-extensions of our weighted first order and monadic second order logics through
the grammars

ϕ ::= β | κ | ¬ϕ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ϕ,

where β ∈ FO(σ) is a first order formula, κ ∈ L, and x is a first order variable, and

ϕ ::= β | κ | ¬ϕ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ϕ |

⊕
X.ϕ |

⊗
X.ϕ,

where β ∈ MSO(σ) is a monadic second order formula, κ ∈ L, x is a first order
variable, and X is a second order variable, respectively. The semantics of ¬ϕ is defined
by J¬ϕK(A, ρ) = ¬JϕK(A, ρ) for a σ-structure A and a variable assignment ρ. By
wFO¬(σ, L) and wMSO¬(σ, L), we denote the sets of all such formulas, respectively.
Weighted logics for words over bounded lattices were also considered in [35], where
the authors showed that Kleene-type and Büchi-like results hold for these logics.

Since L is a De Morgan algebra, it is easy to see that for every formula ϕ ∈
wMSO¬(σ, L) the formulas

⊗
x.ϕ and ¬

⊕
x.¬ϕ are semantically equivalent. The

same holds true for the formulas
⊗
X.ϕ and ¬

⊕
X.¬ϕ. Therefore, in this scenario

we do not need any restriction to formulate weighted Feferman-Vaught decomposition
theorems. Let τ , W, and Z be as in Section 3.3.

Theorem 3.33. Let L be a De Morgan algebra, Φ = (φU , (φT)T∈Relτ) be a σ-τ -
translation scheme over W and Z, V be a set of first and second order variables
such that V, W, and Z are pairwise disjoint, and ϕ ∈ wMSO¬(τ, L) with variables
from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈ wMSO¬(σ, L)n with
Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(L) such
that the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures

3.5. Extensions 41

A,B ∈ Str(σ) if L is complete, all (W,AtB)-assignments ς, and all (V,Φ?(AtB, ς))-
assignments ρ we have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Theorem 3.34. Let L be a De Morgan algebra, Φ = (φU , (φT)T∈Relτ) be a σ-τ -
translation scheme over W and Z, V be a set of first and second order variables
such that V, W, and Z are pairwise disjoint, and ϕ ∈ wFO¬(τ, L) with variables
from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈ wFO¬(σ, L)n with
Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(L) such
that the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures
A,B ∈ Str(σ) if L is complete, all (W,A×B)-assignments ς, and all (V,Φ?(A×B, ς))-
assignments ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Proof. We proceed as in the proofs of Theorems 3.18 and 3.19. To see that we
can assume the translation scheme to be trivial, note that the inductive proof of
Lemma 3.30 can easily be extended to wMSO¬(σ, L): if ϕ = ¬ϕ′ and the lemma is
true for ϕ′ with the formula ψ′, then we can choose ψ = ¬ψ′.

Using the inductive steps of the proofs for Theorems 3.18 and 3.19 and the above
rewriting of product quantifiers into sum quantifiers through a double weighted
negation, we see that it only remains to show the inductive step for the weighted
negation ϕ = ¬ζ as follows.

We proceed as in the proof for the Boolean case. Also, the proofs for the disjoint
union and the product are the same, so in the following let C = A tB or C = A×B.
We assume the theorem is true for ζ with Eζ ∈ Expl(L) and ζ̄1, ζ̄2 from wFO¬(σ, L)l

or from wMSO¬(σ, L)l. We may assume that Eζ = E1 ⊕ . . .⊕ Em is in normal form
with all Ei pure products. We let ξi = PRD1(Ei, ζ̄

1, ζ̄2) and θi = PRD2(Ei, ζ̄
1, ζ̄2)

and define

ϕ̄1 = (¬ξ1, . . . ,¬ξm)

ϕ̄2 = (¬ζ1, . . . ,¬ζm)

Eϕ =

m∧
i=1

(xi ∨ yi).

Then we have

JϕK(C, ρ) = ¬〈〈Eζ〉〉(Jζ̄1K(A, ρ�A), Jζ̄2K(B, ρ�B))

= ¬
m∨
i=1

〈〈Ei〉〉(Jζ̄1K(A, ρ�A), Jζ̄2K(B, ρ�B))

= ¬
m∨
i=1

JξiK(A, ρ�A) ∧ JθiK(B, ρ�B)

=

m∧
i=1

J¬ξiK(A, ρ�A) ∨ J¬θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

42 Chapter 3. Feferman-Vaught Theorems

Weakly biaperiodic semirings

In this section, we show that Theorems 3.18 and 3.19 hold true without the need
for any restriction whenever our weights are taken from a weakly biaperiodic com-
mutative semiring. A monoid is called weakly aperiodic if for every element x there
exists a positive integer n such that xn = xn+1. We call a semiring (K,⊕,�, 0, 1)
weakly biaperiodic if both its additive monoid (K,⊕,0) and its multiplicative monoid
(K,�,1) are weakly aperiodic. Weighted logics for words over weakly biaperiodic
semirings were also considered in [27, 35].

Example 3.35. Examples of weakly biaperiodic semirings include

• Every De Morgan algebra, in particular, all semirings from Example 3.31,

• the Łukasiewicz semiring ([0, 1],max,⊗, 0, 1) where x⊗ y = max{0, x+ y − 1},

• the truncated min-plus semiring ([0, d],min,+d, d, 0) for a real number d > 0,
where x+d y = min{d, x+ y}.

For weakly biaperiodic semirings, we can show that every quantifier, when quan-
tifying over an almost Boolean formula, again models an almost Boolean formula.
The proof for this employs explicit case distinctions to compute the outcomes of
the quantifiers. By induction, it follows that for weakly biaperiodic semirings, every
wMSO formula is semantically equivalent to an almost Boolean formula, i.e., a formula
containing no weighted quantifiers. We thus have the following lemma.

Lemma 3.36. Let K be a weakly biaperiodic commutative semiring and σ a
signature. Then for every formula ϕ ∈ wMSO(σ,K), there exists a formula
ψ ∈ wMSOa-bool(σ,K) with JϕK = JψK.

Proof. We proceed by induction. For the cases ϕ = β ∈ MSO(σ,K), ϕ = κ ∈ K,
ϕ = ψ1 ⊕ ψ2, and ϕ = ψ1 ⊗ ψ2 with ψ1, ψ2 ∈ wMSOa-bool(σ,K), the statement is
clear.

For the cases ϕ =
⊕
x.ϕ′, ϕ =

⊕
X.ϕ′, ϕ =

⊗
x.ϕ′, and ϕ =

⊗
X.ϕ′ with

ϕ′ ∈ wMSO(σ,K), we proceed as follows. By induction, we assume that there
exists an almost Boolean formula ψ′ ∈ wMSOa-bool(σ,K) such that Jϕ′K = Jψ′K. We
assume that ψ′ is of the form ψ′ = (κ1 ⊗ β1) ⊕ . . . ⊕ (κl ⊗ βl), where β1, . . . , βl
form a partition like in the proof of Theorem 3.18. By the assumption that K is
weakly biaperiodic, there exists for every i ∈ {1, . . . , l} a number ni ∈ N+ such that⊕ni

j=1 κi =
⊕ni+1

j=1 κi. We let N1 = maxli=1 ni. Likewise, there exist ni ∈ N+ such
that

⊙ni
j=1 κi =

⊙ni+1
j=1 κi for every i ∈ {1, . . . , l}. We let N2 = maxli=1 ni. Then

with N = max{N1, N2} we have
⊕N

j=1 κi =
⊕N+1

j=1 κi and
⊙N

j=1 κi =
⊙N+1

j=1 κi for
all i ∈ {1, . . . , l}. Furthermore, we define abbreviations as follows. For first order
variables y1 and y2 and second order variables Y1 and Y2, we let

(y1 = y2) = ∀Z.(y1 ∈ Z ↔ y2 ∈ Z)

(Y1 = Y2) = ∀z.(z ∈ Y1 ↔ z ∈ Y2).

3.5. Extensions 43

Now let β ∈ MSO(σ,K) be a monadic second order formula. For a first order
variable y, we denote by β(y) the formula which results from β by renaming every
free occurrence of the first order variable x to y. For a second order variable Y , we
denote by β(Y) the formula which results from β by renaming every free occurrence
of the second order variable X to Y . Then for m ∈ N+ and X ∈ {x,X}, we define
the abbreviations

∃≥mX .β = ∃X1 . . . ∃Xm.
(m∧
i=1

β(Xi) ∧
∧
i 6=j
¬(Xi = Xj)

)
∃mX .β = ∃≥mX .β ∧ ¬(∃≥m+1X .β)

∃̄mX .β =

{
∃mX .β if m < N

∃≥NX .β if m ≥ N,

where X1, . . . ,Xm /∈ Free(ψ′) are first order variables if X = x, and they are second
order variables if X = X. For every v̄ ∈ {0, . . . , N}l, we define the constants

κv̄ =
l⊕

i=1

vi⊕
j=1

κi λv̄ =
l⊙

i=1

vi⊙
j=1

κi.

Again, the empty sum is defined as 0 and the empty product as 1. Then for the case
ϕ =

⊕
X .ϕ′ with X ∈ {x,X}, we define the formula

ψ =
⊕

v̄∈{0,...,N}l
κv̄ ⊗

l∧
i=1

∃̄viX .βi.

By the definition of κv̄ and the choice of N , we have JϕK = JψK and ψ is almost
Boolean. For the case ϕ =

⊗
X .ϕ′ with X ∈ {x,X}, we define

ψ =
⊕

v̄∈{0,...,N}l
λv̄ ⊗

l∧
i=1

∃̄viX .βi.

Again, we have JϕK = JψK and ψ is almost Boolean.

We let τ , W, and Z be as in Section 3.3. Then we have the following theorems.

Theorem 3.37. Let K be a weakly biaperiodic commutative semiring. Let Φ =
(φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and Z, V be a set of first
and second order variables such that V, W, and Z are pairwise disjoint, and ϕ ∈
wMSO(τ,K) with variables from V. Then there exist n ≥ 1, tuples of formulas
ϕ̄1, ϕ̄2 ∈ wMSO(σ,K)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an
expression Eϕ ∈ Expn(K) such that the following holds. For all structures A,B ∈
Str(σ), all (W,A tB)-assignments ς, and all (V,Φ?(A tB, ς))-assignments ρ we
have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

44 Chapter 3. Feferman-Vaught Theorems

Theorem 3.38. Let K be a weakly biaperiodic commutative semiring. Let Φ =
(φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and Z, V be a set of first
and second order variables such that V, W, and Z are pairwise disjoint, and ϕ ∈
wFO(τ,K) with variables from V. Then there exist n ≥ 1, tuples of formulas
ϕ̄1, ϕ̄2 ∈ wFO(σ,K)n with Free(ϕ̄1)∪Free(ϕ̄2) ⊆ Free(ϕ)∪Free(Φ), and an expression
Eϕ ∈ Expn(K) such that the following holds. For all structures A,B ∈ Str(σ), all
(W,A×B)-assignments ς, and all (V,Φ?(A×B, ς))-assignments ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Proof. This can be shown using the exact same methods as in the proofs of Lemma 3.30
and Theorems 3.18 and 3.19. Note that, since every formula ϕ ∈ wMSO(σ,K) is
equivalent to some almost Boolean formula, we do not need any assumptions on the
finiteness of our structures.

Courcelle’s transductions

Like translation schemes, transductions provide a tool to translate structures over one
signature into structures over another signature. Transductions extend our notion of
translation scheme by allowing multiple copies of the given universe. More precisely,
a σ-τ -translation scheme is a 1-σ-τ transduction in the sense defined below. In the
following, we show that, with some adjustments, our weighted Feferman-Vaught
Theorems can also be applied to transductions. For a survey on transductions, see
[23].

Definition 3.39 ([23]). Let k > 0 be a natural number, [k] = {1, . . . , k}, and

τ ∗ k = {(T, ı̄) | T ∈ Relτ and ı̄ ∈ [k]arτ (T)}.

A k-σ-τ -transduction Ψ over W and Z is a tuple (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k) where

ψiU , ψw ∈ MSO(σ) are formulas with variables from W ∪ Z. The variables from Z
may not be used for quantification, i.e., all variables from Z must be free.

Intuitively, the formulas ψ1
U , . . . , ψ

k
U are filters for the copies of the universe, i.e.,

for an element a from the universe of the σ-structure, there will be one copy of
a in the universe of the new τ -structure for each ψiU which is satisfied when the
free variable z is mapped to a. Likewise, the formulas ψ(T,̄ı) are used to define the
interpretation of T for the new τ -structure, where ı̄ determines from which copy of
the universe each entry of the new tuple has to be.

For a σ-structure A = (A, IA) and a (W,A)-assignment ς, the Ψ-induced τ -
structure of A and ς, denoted by Ψ?(A, ς), is defined as a τ -structure with universe
UC and interpretation IC as follows. For i ∈ {1, . . . , k} we define

Ai = {a ∈ A | (A, ς[z → a]) |= ψiU}

and let ιi : Ai → A1 t . . . tAk be the inclusions. Then we let

UC = A1 t . . . tAk
IC(T) =

⋃
ı̄∈[k]arτ (T)

{(ιi1(a1), . . . , ιiarτ (T)
(aarτ (T))) | (a1, . . . , aarτ (T)) ∈

Ai1 × . . .×Aiarτ (T)
and (A, ς[z̄ → ā]) |= ψ(T,̄ı)}

3.5. Extensions 45

where ı̄ = (i1, . . . , iarτ (T)) and ā = (a1, . . . , aarτ (T)).

We refrain from restricting the domain of the transduction, as it does not make
any difference for our purpose.

We can prove an analogue of Lemma 3.30 for transductions. Therefore, Theo-
rems 3.18 and 3.19 are true for transductions as well. However, we have to make two
small concessions. First, for the Boolean fragment of our first order logic, we need a
new atomic formula def(x), where x is a first order variable. This formula is satisfied
if the variable x is defined, and otherwise it is not satisfied. For our second order
logic, we use def(x) as an abbreviation for the formula ∃X.(x ∈ X). We denote by
def-wFO(σ,K) the first order logic where def(x) is allowed as an atomic formula.
Second, the variables of the formula we want to “translate” do usually not suffice for
the translated formula. In particular, the translated formula potentially has more
free variables than the formula to translate.

For a set of first and second order variables V and k > 0, we let Vtk = {X i | X ∈
V, i ∈ {1, . . . , k}} be the set of variables containing k copies of every variable from
V. Then, with the above notation, we define for a (V,Ψ?(A, ς))-assignment ρ the
(Vtk,A)-assignment ρ# by

ρ#(X i) =

ι−1
i (ρ(X) ∩ ιi(A)) if X is a second order variable
ι−1
i (ρ(X)) if X is a first order variable and ρ(X) ∈ ιi(A)

undefined if X is a first order variable and ρ(X) /∈ ιi(A).

Then we have the following lemma.

Lemma 3.40. Let K be a commutative semiring. Let Ψ = (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k)

be a k-σ-τ -transduction over W and Z, V be a set of first and second order variables
such that V, W, and Z are pairwise disjoint, and ϕ ∈ def-wFO(τ,K) or ϕ ∈
wMSO(τ,K) with variables from V. Then there exists a formula ψ ∈ def-wFO(σ,K)
or ψ ∈ wMSO(σ,K), respectively, with Free(ψ) ⊆ Free(ϕ)tk ∪ Free(Ψ) such that the
following holds. For all structures A ∈ Str(σ), or, for all structures A ∈ Str(σ) if K
is bicomplete, all (W,A)-assignments ς, and all (V,Ψ?(A, ς))-assignments ρ we have

JϕK(Ψ?(A, ς), ρ) = JψK(A, ς ∪ ρ#).

If ϕ is from wMSO
⊗

-res(τ,K) or def-wFO
⊗

-free(τ,K), then ψ can also be chosen
as a formula from wMSO

⊗
-res(σ,K) or def-wFO

⊗
-free(σ,K), respectively. Fur-

thermore, if ϕ does not contain free variables, ψ can be chosen to not contain any
subformula of the form def(x).

Proof. We proceed by induction and first cover the Boolean case.
If ϕ = T (x1, . . . , xn) for some T ∈ Relτ , we let

ψ =
∨
ı̄∈[k]n

(
ψ(T,̄ı)(x

i1
1 , . . . , x

in
n) ∧

n∧
j=1

def(x
ij
j)
)
.

If ϕ = (x ∈ X), we let ψ =
∨k
i=1 x

i ∈ Xi. If ϕ = def(x) we let ψ =
∨k
i=1 def(xi).

46 Chapter 3. Feferman-Vaught Theorems

Now we assume that by induction, the theorem holds for the formulas ϕ1, ϕ2,
and ϕ′ with the formulas ψ1, ψ2, and ψ′. If ϕ = ϕ1 ∨ ϕ2, we let ψ = ψ1 ∨ ψ2, and if
ϕ = ¬ϕ′, we let ψ = ¬ψ′.

If ϕ = ∃x.ϕ′, we define for i ∈ {1, . . . , k} the formula ψ′+i as the formula obtained
by replacing all atomic subformulas in ψ′ that contain a variable xj with j 6= i by
false. Then we let ψ =

∨k
i=1 ∃xi.

(
ψiU (xi) ∧ ψ′+i

)
.

If ϕ = ∃X.ϕ′, we let ψ = ∃X1 . . . ∃Xk.
(
ψ′ ∧

∧k
i=1 ∀x.(x ∈ Xi → ψiU (x))

)
, where

x is a new first order variable.
We now turn to the weighted case.
If ϕ = κ ∈ K, we let ψ = κ.
If ϕ = ϕ1 ⊕ ϕ2 or ϕ = ϕ1 ⊗ ϕ2, we let ψ = ψ1 ⊕ ψ2 or ψ = ψ1 ⊗ ψ2, respectively.
If ϕ =

⊕
x.ϕ′, we let ψ =

⊕k
i=1

⊕
xi.
(
ψiU (xi)⊗ ψ′+i

)
.

If ϕ =
⊕
X.ϕ′, we let ψ =

⊕
X1 . . .

⊕
Xk.

(
ψ′ ⊗

∧k
i=1 ∀x.(x ∈ Xi → ψiU (x))

)
,

where x is a new first order variable.
If ϕ =

⊗
x.ϕ′, we let ψ =

⊗k
i=1

⊗
xi.((ψ′+i ⊗ ψiU (xi))⊕ ¬ψiU (xi)).

If ϕ =
⊗
X.ϕ′ we define β =

∧k
i=1 ∀x.(x ∈ Xi → ψiU(x)), where x is a new first

order variable, and let ψ =
⊗
X1 . . .

⊗
Xk.((ψ′ ⊗ β)⊕ ¬β).

To see that all atomic subformulas def(x) in ψ can be removed if ϕ does not
contain free variables, note that every subformula def(x) can be replaced by true
without changing the semantics of ψ if x is a bound variable.

With this, we have the following versions of Theorems 3.18 and 3.19 for transduc-
tions.

Theorem 3.41. Let K be a commutative semiring. Let Ψ = (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k)

be a k-σ-τ -transduction over W and Z, V be a set of first and second order vari-
ables such that V, W, and Z are pairwise disjoint, and ϕ ∈ def-wMSO

⊗
-res(τ,K)

with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈
def-wMSO

⊗
-res(σ,K)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ)tk ∪ Free(Ψ), and an

expression Eϕ ∈ Expn(K) such that the following holds. For all finite structures
A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K is bicomplete, all (W,AtB)-
assignments ς, and all (V,Ψ?(A tB, ς))-assignments ρ we have

JϕK(Ψ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ#)�A), Jϕ̄2K(B, (ς ∪ ρ#)�B)).

Theorem 3.42. Let K be a commutative semiring. Let Ψ = (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k)

be a k-σ-τ -transduction over W and Z, V be a set of first and second order vari-
ables such that V, W, and Z are pairwise disjoint, and ϕ ∈ def-wFO

⊗
-free(τ,K)

with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈
def-wFO

⊗
-free(σ,K)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ)tk ∪ Free(Ψ), and an

expression Eϕ ∈ Expn(K) such that the following holds. For all finite structures
A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K is bicomplete, all (W,A×B)-
assignments ς, and all (V,Ψ?(A×B, ς))-assignments ρ we have

JϕK(Ψ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ#)�A), Jϕ̄2K(B, (ς ∪ ρ#)�B)).

3.5. Extensions 47

Proof. Theorems 3.41 and 3.42 are immediate by first applying Lemma 3.40 and
then Theorem 3.18 or Theorem 3.19, respectively, while treating def as a relation
symbol.

4
Decidable Properties
of Max-Plus Tree Automata

Homer Kids, there’s three ways to do things.
The right way, the wrong way, and the Max Power way!

Bart Isn’t that the wrong way?
Homer Yeah, but faster!

“Homer to the Max”, The Simpsons

4.1 Max-Plus Automata . 52
4.2 Decomposing Finitely Ambiguous Max-Plus Tree Automata . . 60
4.3 The Equivalence Problem . 64
4.4 The Unambiguity Problem . 71
4.5 The Sequentiality Problem . 81
4.6 The Finite Sequentiality Problem 85

In this chapter, we extend four decidability results from max-plus word automata
to max-plus tree automata. A max-plus word automaton is a finite automaton
which assigns real numbers to words over a given alphabet. The transitions of a
max-plus automaton each carry a weight from the real numbers. To every run of the
automaton, a weight is associated by summing over the weights of the transitions
which constitute the run. The weight of a word is given by the maximum over the
weights of all runs on this word. More generally, max-plus word automata and their
min-plus counterparts are weighted automata [99, 98, 68, 8, 29] over the max-plus or
min-plus semiring. Min-plus automata were originally introduced by Imre Simon as
a means to show the decidability of the finite power property [103, 104]. Since their
introduction, max-plus and min-plus automata have enjoyed a continuing interest
[66, 55, 63, 10, 24, 46] and they have been employed in many different contexts.
To only name some examples, they can be used to determine the star height of a

50 Chapter 4. Decidable Properties of Max-Plus Tree Automata

language [54], to prove the termination of some string rewriting systems [107], and to
model certain discrete event systems [64]. Additionally, they appear in the context of
natural language processing [76], where for reasons of numerical stability, probabilities
are often computed in the min-plus semiring as negative log-likelihoods.

For practical applications, the decidable properties of an automaton model are
usually of great interest. Typical decidability problems considered include the empti-
ness, universality, inclusion, equivalence, unambiguity, and sequentiality problems.
We consider the last three of these problems for finitely ambiguous automata and the
lesser known finite sequentiality problem for unambiguous automata. Here, we call a
max-plus word automaton unambiguous if there exists at most one accepting run
on every word. We call it finitely ambiguous if the number of runs on each word is
bounded by a global constant. Moreover, if on every word the number of accepting
runs is bounded polynomially in the length of the word, we call the automaton
polynomially ambiguous. As a special type of unambiguity, we consider determinism
or sequentiality. We call a max-plus word automaton deterministic or sequential if
at most one of its states is initial and for each pair of a state and an input symbol,
there is at most one valid transition into a next state. Note that the ambiguity of a
max-plus automaton is a decidable property, as it is easily reduced to deciding the
ambiguity of a finite automaton. Deciding the sequentiality of a finite automaton is
trivial, polynomial time algorithms for deciding the unambiguity, the finite ambiguity,
and the polynomial ambiguity of a finite automaton can be found in [11, 109, 101].
Furthermore, the classes of functions definable by deterministic, unambiguous, and
finitely ambiguous max-plus automata form a strictly ascending hierarchy [63], and
the classes of functions definable by finitely ambiguous, polynomially ambiguous,
and arbitrary min-plus automata form a strictly ascending hierarchy [58, 75]. The
methods of [58] and [75] can be used to show that the expressive hierarchy of finitely
ambiguous, polynomially ambiguous, and arbitrary max-plus automata is strict as
well. In the following, we quickly recall the considered decidability problems and the
related results.

The equivalence problem asks whether two given max-plus automata coincide
on the weights they assign to each word. In general, the equivalence problem is
undecidable for max-plus automata [66], but for finitely ambiguous max-plus word
automata it becomes decidable [108, 55]. The sequentiality problem asks whether for a
given max-plus automaton, there exists an equivalent deterministic automaton. This
problem was shown to be decidable by Mohri [76] for unambiguous max-plus word
automata. The unambiguity problem asks whether for a given max-plus automaton,
there exists an equivalent unambiguous automaton. This problem is known to
be decidable for finitely ambiguous [63] and even polynomially ambiguous max-
plus word automata [61]. In conjunction with Mohri’s results, it follows that the
sequentiality problem is decidable for these classes of automata as well. Finally,
the finite sequentiality problem asks whether a given max-plus automaton can be
represented as a pointwise maximum of finitely many deterministic max-plus automata.
In [55], it was left as an open question to determine the decidability of the finite
sequentiality problem for finitely ambiguous max-plus automata. It was shown only
recently that for the classes of unambiguous as well as finitely ambiguous automata,
the finite sequentiality problem is decidable [5, 4]. The class of functions which allow

51

a finitely sequential representation by max-plus automata lies strictly between the
classes of functions definable by deterministic and by finitely ambiguous max-plus
automata, and it is incomparable to the class of functions definable by unambiguous
max-plus automata [63].

In this chapter, we investigate all four of these problems for max-plus tree
automata. In the same way that finite automata have been generalized to finite
tree automata [49, 48], weighted automata have been generalized to weighted tree
automata [1, 7, 39, 47]. Max-plus tree automata are weighted tree automata over
the max-plus semiring and are thus in particular a generalization of max-plus word
automata. Applications for max-plus tree automata include proving the termination
of certain term rewriting systems [65], and they are also commonly employed in
natural language processing [88] in the form of probabilistic context-free grammars. We
will show that the equivalence, unambiguity, and sequentiality problems are decidable
for finitely ambiguous max-plus tree automata, and that the finite sequentiality
problem is decidable for unambiguous max-plus tree automata.

Our approach to the decidability of the equivalence problem employs ideas from
[55]. We reduce the equivalence problem to the same decidable problem as [55],
namely the decidability of the existence of an integer solution for a system of linear
inequalities [81]. However, instead of the cycle decompositions which were used both
in [55] and [85], we employ Parikh’s theorem [82, Theorem 2]. This idea was suggested
by Mikołaj Bojańczyk in a discussion following the presentation of the proof from
[85]. The proof presented here is a revised version of the one from [85]. We note
that our solution of the equivalence problem can be applied to weighted logics. In
[84], a fragment of a weighted logic is shown to have the same expressive power as
finitely ambiguous weighted tree automata. Over the max-plus semiring, equivalence
is decidable for formulas of this fragment due to our results.

The decidability of the unambiguity problem employs ideas from [63]. Here, we
show how the dominance property can be generalized to max-plus tree automata. To
show the decidability of the sequentiality problem for finitely ambiguous max-plus
tree automata, we first combine results from [18] and [76] to show the decidability
of this problem for unambiguous max-plus tree automata, and then combine this
result with the decidability of the unambiguity problem. For the finite sequentiality
problem, we employ ideas from [5]. We show how the fork property can be generalized
to max-plus tree automata and that for unambiguous max-plus tree automata, this
generalization is a criterion for deciding finite sequentiality.

Except for the equivalence problem, we show all decidability results for max-plus
automata with weights in the real numbers. Therefore, we want to point out how we
understand the word “decidable” here. Clearly, not every real number can be finitely
represented, thus our results can only hold for max-plus automata with weights in
the computable real numbers. Admittedly, however, in the most general sense our
results do not even hold for the computable reals for the following reason. For our
decision procedures to be effective, we need to be able to check arbitrary finite sums
of transition weights for zero. However, although having algorithms to compute two
real numbers to an arbitrary precision allows us to compute their sum to an arbitrary
precision, we are not necessarily able to decide whether their sum equals zero. We
therefore assume the following “meta-restriction” on the weights of our max-plus

52 Chapter 4. Decidable Properties of Max-Plus Tree Automata

automata. By considering the real numbers as a vector space over the field of rational
numbers, we obtain the notion of linearly independent sets of real numbers. We will
assume that for each max-plus automaton, we are given a finite linearly independent
set of computable real numbers such that each weight of the automaton is a finite
linear combination with rational coefficients of numbers from this set. Under this
assumption, all our algorithms are effective.

An extended abstract of our results on the equivalence, the unambiguity, and
the sequentiality problems appeared at the 42nd International Symposium on Math-
ematical Foundations of Computer Science (MFCS) in 2017 [85]. Our results on
the finite sequentiality problem have appeared as an extended abstract at the 36th
International Symposium on Theoretical Aspects of Computer Science (STACS) in
2019 [87].

4.1 Max-Plus Automata

In the following, we introduce max-plus automata on words and trees and the notion
of ambiguity of these automata models.

Trees

We recall that N∗ denotes the set of all finite words over N. By ≤p, we denote the
prefix-relation on N∗, and by ≤l, we denote the lexicographic order on N∗, i.e., the
relations

≤p = {(u, uv) | u, v ∈ N∗}
≤l = {(uiv1, ujv2) | u, v1, v2 ∈ N∗, i, j ∈ N, i < j} ∪ ≤p.

Note that ≤p is a partial order and ≤l is a total order on N∗. Two words from N∗ are
called prefix-dependent if they are in prefix relation, and otherwise they are called
prefix-independent. We call a set X ⊆ N∗ prefix-closed if uv ∈ X implies u ∈ X for
every two words u, v ∈ N∗.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite
set and rkΓ : Γ → N a mapping which assigns a rank to every symbol. For every
m ≥ 0, we define Γ(m) = rk−1

Γ (m) as the set of all symbols of rank m. The rank of Γ
is defined as rk(Γ) = max{rkΓ(a) | a ∈ Γ}.

The set of (finite, labeled, and ordered) Γ-trees, denoted by TΓ, is the set of all
pairs t = (pos(t), labelt), where pos(t) ⊂ N∗+ is a finite non-empty prefix-closed set
of positions, labelt : pos(t) → Γ is a mapping, and for every w ∈ pos(t) we have
wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w) and |t| for |pos(t)|.
We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to prefix-
maximal nodes as leaves. The height of t is defined as height(t) = maxw∈pos(t) |w|.
For a leaf w ∈ pos(t), the set {v ∈ pos(t) | v ≤p w} is called a branch of t.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree
defined as follows. We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w),
we let labelt�w(v) = t(wv).

4.1. Max-Plus Automata 53

The substitution of s into w of t, denoted by t〈s → w〉, is a Γ-tree defined as
follows. We let pos(t〈s→ w〉) = (pos(t) \ {v ∈ pos(t) | w ≤p v}) ∪ {wv | v ∈ pos(s)}.
For v ∈ pos(t〈s→ w〉), we let labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s),
and otherwise labelt〈s→w〉(v) = t(v).

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the
tree t with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and
labelt(iw) = ti(w). For a ∈ Γ(0), the tree a() is abbreviated by a.

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0})
is called a Γ-context. Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a
lexicographically ordered enumeration of all leaves of t labeled �. Then we call t
an n-Γ-context and define ♦i(t) = wi for i ∈ {1, . . . , n}. For an n-Γ-context t and
contexts t1, . . . , tn ∈ TΓ� , we define t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 . . . 〈tn → ♦n(t)〉 by
substitution of t1, . . . , tn into the �-leaves of t. A 1-Γ-context is also called a Γ-word.
For a Γ-word s, we define s0 = � and sn+1 = s(sn) for n ≥ 0.

Example 4.1. Let Γ = {a, b, c, d} with rkΓ(a) = 3, rkΓ(b) = 2, rkΓ(c) = 1 and
rkΓ(d) = 0. Then an example tree is

b

c

d

b

c

a

d d d

d

t = b(c(d), b(c(a(d, d, d)), d))

with pos(t) = {ε, 1, 11, 2, 21, 211, 2111, 2112, 2113, 22}.

ε

211211

21

11

2111 2112 2113

22

1 2

The subtree t�211 of t at position 211 is the tree

a

d d d

t�211 = a(d, d, d) with pos(t�211) = {ε, 1, 2, 3}.
ε

1 2 3

To illustrate substitution, we substitute the subtree t�211 into position 2 of t.

54 Chapter 4. Decidable Properties of Max-Plus Tree Automata

b

c

d

a

d d d

t〈t�211 → 2〉 = b(c(d), a(d, d, d))

By substituting the tree � into position 211 of t and taking the subtree at 2 of
the resulting tree, we obtain a Γ-word s = t〈� → 211〉�2 as follows.

b

c

�

d

t〈� → 211〉�2 = b(c(�), d)

Then the second power s2 of s is the Γ-word

b

c

b

c

�

d

d

s2 = b(c(b(c(�), d)), d).

Weighted Automata on Words and Trees

Although we will not employ or derive results for weighted automata on words, we
will often compare our results for tree automata to the corresponding results for word
automata. Therefore, we want to briefly define what we understand under a weighted
automaton on words.

Let (K,⊕,�, 0, 1) be a commutative semiring and Σ an alphabet. A weighted
finite automaton (short: WA) over K and Σ is a tuple A = (Q,Σ, λ, µ, ν) where Q
is a finite set (of states), Σ the input alphabet, λ : Q → K (the function of initial
weights), µ : Q × Σ × Q → K (the function of transition weights), and ν : Q → K

4.1. Max-Plus Automata 55

(the function of final weights). A tuple (p, a, q) ∈ Q×Σ×Q is called a transition and
(p, a, q) is called valid if µ(p, a, q) 6= 0. A state q ∈ Q is called initial if λ(q) 6= 0 and
it is called final if ν(q) 6= 0. We call a WA over the max-plus semiring a max-plus-WA
and a WA over the Boolean semiring a nondeterministic finite automaton (NFA).
An NFA A = (Q,Γ, λ, µ, ν) is also written as a tuple A′ = (Q,Γ, I, δ, F) where
I = {q ∈ Q | λ(q) = 1}, δ = {d ∈ Q×Σ×Q | µ(d) = 1}, and F = {q ∈ Q | ν(q) = 1}.
For an overview of finite automata theory, see also [57].

For a word w = a1a2 . . . an ∈ Σ∗, a (valid) run of A on w is a finite sequence of
valid transitions r = (q0, a1, q1) . . . (qn−1, an, qn) from Q×Σ×Q. We call r accepting
if q0 is initial and qn is final. We let λ(r) = λ(q0) and ν(r) = ν(qn). By RunA(w) and
AccA(w), we denote the sets of all runs and all accepting runs of A on w, respectively.
The weight of r is defined by

wtA(r) =

n⊙
i=1

µ(qi−1, ai, qi).

The behavior of A, denoted by JAK, is the mapping defined for every w ∈ Σ∗ by

JAK(w) =
⊕

r∈AccA(w)

(λ(r)� wtA(r)� ν(r)),

where the sum over the empty set is 0 by convention. The support of A is the set
supp(A) = {w ∈ Σ∗ | JAK(w) 6= 0}. The support of an NFA A is also called the
language accepted by A and is denoted by L(A). A subset L ⊆ Σ∗ is called recognizable
if there exists an NFA A with L = L(A).

Next, we recall weighted tree automata. Let (K,⊕,�,0,1) be a commutative
semiring and Γ a ranked alphabet. A weighted bottom-up finite state tree automaton
(short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of
states), Γ is a ranked alphabet (of input symbols), µ :

⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q→ K
(the function of transition weights), and ν : Q → K (the function of final weights).
We define ∆A = dom(µ). A tuple (p̄, a, q) ∈ ∆A is called a transition and (p̄, a, q) is
called valid if µ(p̄, a, q) 6= 0. A state q ∈ Q is called final if ν(q) 6= 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over
the Boolean semiring a finite tree automaton (FTA). An FTA A = (Q,Γ, µ, ν) is
also written as a tuple A′ = (Q,Γ, δ, F) where δ = {d ∈ ∆A | µ(d) = 1} and
F = {q ∈ Q | ν(q) = 1}. For an overview of the theory of finite tree automata, see
also [49].

For a tree t ∈ TΓ, a mapping r : pos(t)→ Q is called a quasi-run of A on t. For a
quasi-run r on t and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple

t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))

is called the transition at w. The quasi-run r is called a (valid) run if for every
w ∈ pos(t) the transition t(t, r, w) is valid with respect to A. We call a run r
accepting if r(ε) is final. By RunA(t) and AccA(t), we denote the sets of all runs and
all accepting runs of A on t, respectively. For a state q ∈ Q, we denote by RunA(t, q)
the set of all runs r ∈ RunA(t) such that r(ε) = q.

56 Chapter 4. Decidable Properties of Max-Plus Tree Automata

For a run r ∈ RunA(t), the weight of r is defined by

wtA(t, r) =
⊙

w∈pos(t)

µ(t(t, r, w)).

The behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by

JAK(t) =
⊕

r∈AccA(t)

(wtA(t, r)� ν(r(ε))),

where again the sum over the empty set is 0 by convention. The support of A is the
set supp(A) = {t ∈ TΓ | JAK(t) 6= 0}. The support of an FTA A is also called the
(tree) language accepted by A and is denoted by L(A). A subset L ⊆ TΓ is called
recognizable if there exists an FTA A with L = L(A).

For a WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the WTA A′ =
(Q,Γ�, µ

′, ν) on t, where µ′(�, q) = 1 for all q ∈ Q and µ′(d) = µ(d) for all d ∈ ∆A.
We denote Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r).
For an n-Γ-context t ∈ TΓ� and states q0, . . . , qn, we denote by Run�A(q1, . . . , qn, t, q0)
the set of all runs r ∈ Run�A(t) such that r(ε) = q0 and r(♦i(t)) = qi for every
i ∈ {1, . . . , n}. For a Γ-word s, we write p s|x−−→ q if there exists a run r ∈ Run�A(p, s, q)

with wt�A(s, r) = x. In this case, r is said to realize p s|x−−→ q. Note here that if
K = Rmax, then r ∈ Run�A(s) implies x 6= −∞.

Similar to trees, we define restrictions, substitutions, and powers of runs as
follows. Let t, s ∈ TΓ, r ∈ RunA(t), w ∈ pos(t), and rs ∈ RunA(s) with rs(ε) = r(w).
Then we define r�w ∈ RunA(t�w) by r�w(v) = r(wv) for every v ∈ pos(t�w). We
define r〈rs → w〉 ∈ RunA(t〈s → w〉) by r〈rs → w〉(v) = rs(u) if v = wu for
some u ∈ pos(s), and r〈rs → w〉(v) = r(v) otherwise. For a Γ-word s and a run
r ∈ Run�A(s) with r(ε) = r(♦1(s)), we let v = ♦1(s) and define r0〈v〉 = {ε 7→ r(ε)}
and rn+1〈v〉 = r〈rn〈v〉 → v〉 ∈ Run�A(sn+1) for n ≥ 0.

For a WTA A, we define a relation � on Q by p � q iff there exists a Γ-word
s ∈ TΓ� such that Run�A(q, s, p) 6= ∅. We write p ≈ q if p � q and q � p. By [p] we
denote the set of all q ∈ Q with p ≈ q.

A WTA A is called trim if for every p ∈ Q, there exist t ∈ TΓ, r ∈ AccA(t), and
w ∈ pos(t) such that r(w) = p. The trim part of A is the automaton obtained from
A by removing all states p ∈ Q for which no such t, r, and w exist. This process
obviously has no influence on JAK.

Ambiguity of Automata

A WA A = (Q,Σ, λ, µ, ν) over a semiring (K,⊕,�, 0, 1) is called deterministic or
sequential if (1) there is at most one initial state, i.e., at most one state p ∈ Q with
λ(p) 6= 0 and (2) for every a ∈ Σ and p ∈ Q, there exists at most one state q ∈ Q
with µ(p, a, q) 6= 0. If there exists an integer M ≥ 1 such that |AccA(w)| ≤ M for
every word w ∈ Σ∗, we say that A is M -ambiguous. We call A finitely ambiguous if
it is M -ambiguous for some M ≥ 1. A 1-ambiguous WA is also called unambiguous.
If there exists a polynomial P such that |AccA(w)| ≤ P (|w|) for every w ∈ Σ∗, we
call A polynomially ambiguous. The behavior JAK of A is called finitely sequential

4.1. Max-Plus Automata 57

if there exist finitely many deterministic WA A1, . . . ,An over K and Σ such that
JAK =

⊕n
i=1JAiK, where the sum is taken pointwise.

Likewise, a WTA A = (Q,Γ, µ, ν) over K is called deterministic or sequential if for
everym ≥ 0, a ∈ Γ(m), and p̄ ∈ Qm, there exists at most one q ∈ Q with µ(p̄, a, q) 6= 0.
If there exists M ≥ 1 such that |AccA(t)| ≤ M for every every tree t ∈ TΓ, we say
that A is M -ambiguous. We call A finitely ambiguous if it is M -ambiguous for
some M ≥ 1 and we call a 1-ambiguous WTA unambiguous. We call A polynomially
ambiguous if there exists a polynomial P such that |AccA(t)| ≤ P (|t|) for every t ∈ TΓ.
Finally, we call the behavior JAK of A finitely sequential if there exist finitely many
deterministic WTA A1, . . . ,An over K and Γ such that JAK =

⊕n
i=1JAiK, where the

sum is taken pointwise.

Remark 4.2. A trim WA A is deterministic if and only if |RunA(w)| ≤ 1 for every
w ∈ Σ∗, and a trim WTA A is deterministic if and only if |RunA(t)| ≤ 1 for every
t ∈ TΓ.

We can decide whether a weighted word or tree automaton is deterministic,
unambiguous, finitely ambiguous, or polynomially ambiguous as follows. If A =
(Q,Σ, λ, µ, ν) is a WA over K, we consider the NFA A′ = (Q,Σ, I, δ, F) where
I = {q ∈ Q | q is initial in A}, δ = {d ∈ ∆A | d is valid in A}, and F = {q ∈
Q | q is final in A}. Then A is deterministic, unambiguous, finitely ambiguous,
respectively polynomially ambiguous if and only if the same applies to A′ since
for every word w ∈ Σ∗, we have RunA(w) = RunA′(w) and AccA(w) = AccA′(w).
Likewise, deciding the sequentiality, unambiguity, finite ambiguity, or polynomial
ambiguity of a WTA A = (Q,Γ, µ, ν) can be reduced to deciding the same for the
FTA A′ = (Q,Γ, δ, F) with δ = {d ∈ ∆A | d is valid in A} and F = {q ∈ Q |
q is final in A}. For NFAs and FTAs, deciding sequentiality is trivial. Polynomial
time algorithms to check NFAs and FTAs for unambiguity, finite ambiguity, and
polynomial ambiguity can be found in [11, 109, 101].

Remark 4.3. Note that for max-plus automata, the above reduction to finite automata
shows in particular that the support of every max-plus word or tree automaton is a
recognizable language. For both weighted word and weighted tree automata, this is
in fact true for every zero-sum free commutative semiring, i.e., every commutative
semiringK where κ+λ = 0 implies κ = λ = 0 for every two elements κ, λ ∈ K [59, 28].

By applying the classical powerset construction [89, 105], we can construct for
every NFA A a deterministic NFA A′ with the same behavior as A. In particular,
for every recognizable language L of words there exists a deterministic NFA A
with L(A) = L. Likewise, every recognizable language of trees is recognizable by a
deterministic FTA. In this sense, recognizable languages of words or trees do not
carry any inherent degree of ambiguity. The same is in general not true for weighted
automata over semirings other than the Boolean semiring. For max-plus automata,
the classes of behaviors which can be described by deterministic, unambiguous,
finitely ambiguous, polynomially ambiguous, and arbitrary automata form a strictly
ascending hierarchy as summarized in the following diagram [63].

58 Chapter 4. Decidable Properties of Max-Plus Tree Automata

Seq Unamb ∩ FinSeq

FinSeq

Unamb

FinAmb PolyAmb Rec(
(

(

(

(
((

Note that the class of finitely sequential behaviors lies strictly between the classes of
behaviors definable by deterministic and by finitely ambiguous max-plus automata,
and it is incomparable to the class of behaviors definable by unambiguous max-
plus automata. The class Rec (for recognizable) denotes all behaviors which can
be described by arbitrary max-plus-WA. See also Figure 4.1 for example automata
separating the classes above; the complement of a class like Seq is denoted by Seq.

4.1. Max-Plus Automata 59

0 0 0

00

a | 0

a | 0

a | 1

a | 1

(a) An unambiguous max-plus-WA whose behavior is in Seq ∩Unamb ∩ FinSeq [63].

0 0 0 0

a | 0
b | 1

a | 1
b | 0

(b) A max-plus-WA whose behavior is
in Unamb ∩ FinSeq [63].

0 0
a | 0

a | 0
b | 1 b | −1

(c) An unambiguous max-plus-WA whose
behavior is in Unamb ∩ FinSeq [63].

0 0 0 0

a | 1
c | 0

a | 0
c | 1

0 0
a | 0

a | 0
b | 1 b | −1

(d) A finitely ambiguous max-plus-WA whose behavior is in Unamb ∩ FinSeq ∩ FinAmb [63].

0 0

a | 1
b | 1

b | 1

a | 0

b | 1

a | 1
b | 1

(e) A polynomially ambiguous max-plus-WA whose behavior is in FinAmb ∩ PolyAmb [58].

0

00 00

00

00

a | 1
b | 0

a | 1
b | 0

c | 0
c | 0

c | 0

a | 0
b | 1

a | 0
b | 1

(f) A max-plus-WA whose behavior is in PolyAmb ∩ Rec [75].

Figure 4.1: Max-plus word automata which illustrate the ascending hierarchy of
behaviors describable by max-plus-WA of a certain degree of ambiguity.

60 Chapter 4. Decidable Properties of Max-Plus Tree Automata

4.2 Decomposing Finitely Ambiguous Max-Plus Tree
Automata

For use in Section 4.4, we want to show in this section that every finitely ambiguous
max-plus-WTA can be decomposed into a finite pointwise maximum of unambiguous
max-plus-WTA such that the supports of all these unambiguous automata coincide.
In fact, it is already known that every finitely ambiguous WTA can be decomposed
into a finite sum of unambiguous WTA [84, 83]. For the max-plus semiring, this result
can be extended quite easily to ensure that all the unambiguous automata have the
same support, which for completeness we do in Lemma 4.4. The main objective of
this section, however, is to provide an alternative proof for the statement from [84, 83].
The reason to do this is twofold. First, our new proof shows a very tight bound on
the number of unambiguous automata needed for the decomposition: we show that
if the finitely ambiguous automaton is M -ambiguous, then it can be decomposed
into a sum of M unambiguous automata. This bound does not follow from [84, 83].
Second, the new proof relies almost entirely on logics, while the approach in [84, 83]
is purely automata-theoretic. We note that the idea for the new proof was suggested
by one of the reviewers of the paper [84]. Before we present the new proof, we show
that for the max-plus semiring the result from [84, 83] can be extended such that
all unambiguous automata have the same support. The idea for this proof is to
simply take the automata obtained by [84, 83], unite their supports, and add to each
automaton a run of “small” weight for every tree from this union which is not already
in the support of the respective automaton.

Lemma 4.4. Let A be a finitely ambiguous max-plus-WTA over Γ, then there
exist finitely many unambiguous max-plus-WTA A1, . . . ,AM over Γ with JAK =
maxMi=1JAiK and supp(A1) = . . . = supp(AM).

Proof. By [84, Theorem 1] (or [83, Lemma 7.2]) we can find finitely many unam-
biguous max-plus-WTA A1, . . . ,AM over Γ with JAK = maxMi=1JAiK. We write
Ai = (Qi,Γ, µi, νi). We let L =

⋃M
i=1 supp(Ai) and let κ be the smallest weight

used in the automata A1, . . . ,AM , i.e., for R =
⋃M
i=1(µi(∆Ai) ∪ νi(Qi)) we let

κ = min(R \ {−∞}).
The language L is recognizable, therefore for i ∈ {1, . . . ,M}, the language

Li = L \ supp(Ai) is also recognizable and there exists a deterministic FTA A′i =
(Q′i,Γ, δ

′
i, F
′
i) with L(A′i) = Li. We define the max-plus-WTA A′′i = (Q′i,Γ, µ

′′
i , ν
′′) by

µ′′i (d) =

{
κ if d ∈ δ′i
−∞ otherwise

and ν ′′i (q) =

{
κ if q ∈ F ′i
−∞ otherwise.

We assume without loss of generality that Qi ∩ Q′i = ∅ and define A′′′i = (Qi ∪
Q′i,Γ, µ

′′′
i , νi ∪ ν ′′i) with

µ′′′i (d) =

µi(d) if d ∈ ∆Ai
µ′′i (d) if d ∈ ∆A′′i
−∞ otherwise

4.2. Decomposing Finitely Ambiguous Max-Plus Tree Automata 61

as the union of Ai and A′′i . Then A′′′i is unambiguous since Ai is unambiguous, A′′i is
deterministic, and supp(Ai) ∩ supp(A′′i) = ∅. Furthermore, for t ∈ supp(Ai) we have
JA′′′i K(t) = JAiK(t).

For every t ∈ supp(A′′i), there exists some j ∈ {1, . . . ,M} with t ∈ supp(Aj) and
due to the choice of κ we have JAjK(t) ≥ JA′′i K(t). In conclusion, for all i ∈ {1, . . . ,M}
we have that A′′′i is unambiguous, supp(A′′′i) = L, and maxMi=1JA′′′i K = maxMi=1JAiK =
JAK.

In the following, we present our new proof for the statement from [84, 83].

Lemma 4.5. Let A = (Q,Γ, µ, ν) be an M -ambiguous WTA over a commutative
semiring K. Then there exist M unambiguous WTA A1, . . . ,AM over K and Γ
such that JAK = JA1K ⊕ . . . ⊕ JAM K. Over the max-plus semiring, we can choose
A1, . . . ,AM such that supp(A1) = . . . = supp(AM).

Proof. We consider the signature σ = (Relσ, arσ) where Relσ = {labela | a ∈
Γ} ∪ {edgei | i ∈ {1, . . . , rk(Γ)}}, all relations labela are unary, and all relations
edgei are binary. Every tree t ∈ TΓ can be translated into a σ-structure t with
universe pos(t) as follows. The interpretations for the labels are given by w ∈ labelta
iff t(w) = a, and the interpretations for the edge relations are given by (v, w) ∈ edgeti
iff w = vi. In the following, we will identify t and t.

We consider the logic wMSO
⊗

-res(σ,K) (see Definition 3.17). This particular
logic was introduced in [34] and shown to be expressively equivalent to WTA. In
[84, 83], various fragments of this logic were investigated and shown to be expressively
equivalent to WTA of a certain degree of ambiguity. Most importantly for us, we obtain
from [84, Theorem 16] (or [83, Theorem 6.1]) that for every almost Boolean formula
ψ ∈ wMSOa-bool(σ,K), the formula

⊗
x.ψ can be translated into an unambiguous

WTA over K and Γ. To prove our lemma, we will therefore define M almost Boolean
formulas ψ1, . . . , ψM such that JAK = J

⊗
x.ψ1K ⊕ . . . ⊕ J

⊗
x.ψM K. By translating

each formula
⊗
x.ψi into an unambiguous WTA, we obtain a decomposition of A

into M unambiguous automata as desired.
The idea for the construction of the formulas ψi is the following. We can fix

an arbitrary linear ordering on the valid transitions of A. This enables us to sort
the runs on a tree t lexicographically: for two runs r1, r2 on t, we define r1 < r2

iff for the lexicographically smallest position w at which r1 and r2 differ, we have
t(t, r1, w) < t(t, r2, w), i.e., the transition of r1 at w is smaller than the transition
of r2 at w with respect to this arbitrary linear ordering. We can thereby define the
formulas ψi such that ψi “selects” the i-th run, according to the lexicographic ordering,
and returns the weight of the transition at position x of this run. In addition, if x is
the root, ψi returns the weight of the transition at the root multiplied by the final
weight of the state at the root.

Formally, we proceed as follows. Let D = {d ∈ ∆A | µ(d) 6= 0} be the set of
all valid transitions and DF = {(p1, . . . , pm, a, p) ∈ D | ν(p) 6= 0} be the set of all
valid final transitions. Let n = |D| and let v : D → {1, . . . , n} be a bijection. Then v
induces a linear ordering on D by d1 < d2 iff v(d1) < v(d2). For second order variables
X1, . . . , Xn and a transition d ∈ D, we write Xd for Xv(d) and X̄ for (X1, . . . , Xn).

62 Chapter 4. Decidable Properties of Max-Plus Tree Automata

We begin constructing the formulas ψi by defining four abbreviations, namely
x ≤p y, x ≤l y, root(x), and partition(X̄). The first formula checks whether x is
predecessor of y with regard to the prefix ordering, the second formula does the
same for the lexicographic ordering, the third formula checks whether x is the root of
the tree, and the last formula checks whether {X1, . . . , Xn} forms a partition of the
universe. We define these formulas as follows.

(x ≤p y) = ∀X.

((
y ∈ X ∧ ∀z.

((rk(Γ)∨
i=1

(∃z′.(edgei(z, z
′) ∧ z′ ∈ X))

)
→ z ∈ X

))

→ x ∈ X

)
(x ≤l y) = (x ≤p y) ∨ ∃z.∃z1.∃z2.

(∨
1≤i<j≤rk(Γ)

edgei(z, z1) ∧ edgej(z, z2) ∧

z1 ≤p x ∧ z2 ≤p y
)

root(x) = ∀y.

rk(Γ)∧
i=1

¬edgei(y, x)

partition(X̄) = ∀x.

n∨
i=1

x ∈ Xi ∧
∧
j 6=i
¬(x ∈ Xj)

 .

All these formulas are clearly MSO(σ,K)-formulas. We interpret a partition X̄ of
the nodes of a tree as a run of A in the sense that “w ∈ Xd” means that at position
w, we have transition d. We therefore define the MSO(σ,K)-formula matched(X̄) to
check whether a guessed partition is a well matched run as follows.

matched(X̄)

=
∧

(p̄,a,p)∈D

∀x.
(

(x ∈ X(p̄,a,p))→ labela(x)
)
∧ (4.2.1)

∧
(p1,...,pm,a,p)∈D

m≥1

∀x.

(
(x ∈ X(p1,...,pm,a,p))→ ∃y1 . . . ∃ym.

(
(
m∧
i=1

edgei(x, yi)) ∧

∨
(q̄1,a1,p1)∈D

...
(q̄m,am,pm)∈D

(

m∧
i=1

(yi ∈ X(q̄i,ai,pi)))

))
(4.2.2)

Part (4.2.1) verifies that the labeling of the run is consistent with the letters in the
tree and Part (4.2.2) verifies that the transitions used are well matched. With this
in hand, we define the MSO(σ,K)-formula acceptA(X̄) which checks whether X̄
encodes an accepting run of A.

acceptA(X̄) = partition(X̄) ∧matched(X̄) ∧ ∃x.

root(x) ∧
∨
d∈DF

(x ∈ Xd)

4.2. Decomposing Finitely Ambiguous Max-Plus Tree Automata 63

That is, we verify that X̄ is a partition, that this partition is well matched, and that
the state at the root is a final state. Next, we define abbreviations to compare runs
according to the lexicographic ordering we described earlier.

(X̄ = Ȳ) = ∀x.
∧

1≤i≤n
(x ∈ Xi ↔ x ∈ Yi)

(X̄ < Ȳ) = ∃x.

((∨
1≤i<j≤n

x ∈ Xi ∧ x ∈ Yj
)
∧

∀y.
(

(y ≤l x ∧ ¬(x ≤l y))→
∧

1≤i≤n
y ∈ Xi ↔ y ∈ Yi

))

Clearly, both formulas are in MSO(σ,K). We use these two formulas to define for
every k ∈ {1, . . . ,M} an MSO(σ,K)-formula acceptkA(X̄) which checks whether X̄
is an accepting run and, out of all accepting runs on the given tree, it is the k-th run
according to the lexicographic ordering.

acceptkA(X̄) = ∃Ȳ1 . . . ∃Ȳk.
(

(Ȳk = X̄) ∧ (
∧

1≤i≤k
acceptA(Ȳi)) ∧ (

∧
1≤i<k

Ȳi < Ȳi+1) ∧

∀Z̄.((acceptA(Z̄) ∧
∧

1≤i≤k
¬(Ȳi = Z̄))→ Ȳk < Z̄)

)
We can now define the formulas ψi with the idea we described above. For

simplicity, we extend the mapping ν to D by defining ν(p1, . . . , pm, a, p) = ν(p).
Then for i ∈ {1, . . . ,M}, we define ψi by

ψi(x) =
⊕

d∈D

(
µ(d)⊗ ν(d)⊗ ∃X̄.(acceptiA(X̄) ∧ x ∈ Xd ∧ root(x))

)
⊕
⊕

d∈D

(
µ(d)⊗ ∃X̄.(acceptiA(X̄) ∧ x ∈ Xd ∧ ¬root(x))

)
Clearly, ψi ∈ wMSOa-bool(σ,K) for all i, and if for a tree t the run r is the i-th run ofA
on t according to the lexicographic ordering, we have J

⊗
x.ψiK(t) = wtA(t, r)�ν(r(ε)).

If K is the max-plus semiring, we can ensure that supp(A1) = . . . = supp(AM)
as follows. To each ψi(x), we add a formula which returns ψ1(x) whenever no i-th
run exists. For i ∈ {1, . . . ,M}, we define

ψ′i(x) = ψi(x)⊕
(
ψ1(x)⊗ ¬∃X̄.acceptiA(X̄)

)
.

Then for a tree t ∈ TΓ with less then i runs, we have J
⊗
x.ψ′iK(t) = J

⊗
x.ψ1K(t) and

therefore supp(Ai) = supp(A1) = supp(A). Also, we clearly have maxMi=1J
⊗
x.ψ′iK =

maxMi=1J
⊗
x.ψiK = JAK.

64 Chapter 4. Decidable Properties of Max-Plus Tree Automata

4.3 The Equivalence Problem

The equivalence problem for max-plus (tree) automata asks whether for two given
max-plus (tree) automata A1 and A2, it holds that JA1K = JA2K. In this case, we say
that A1 and A2 are equivalent. For words, this problem was shown to be undecidable
in general [66], but it is decidable if both automata are finitely ambiguous [55]. In
this section, we prove that the equivalence problem is decidable for finitely ambiguous
max-plus-WTA. Like in [55], we reduce the equivalence problem to the decidability
of the existence of an integer solution for a system of linear inequalities [81]. This
latter problem is decidable only for systems over the rationals, which is why for the
equivalence problem, we consider only max-plus-WTA over the max-plus semiring
Qmax = (Q ∪ {−∞},max,+,−∞, 0) restricted to the rationals. The proof presented
here is a revised version of the one from [85]. It is largely based on ideas from [55],
but employs Parikh’s theorem [82, Theorem 2] instead of the cycle decompositions
which were used both in [55] and [85]. This idea was suggested by Mikołaj Bojańczyk
in a discussion following the presentation of the proof from [85]. We formulate the
main result of this section as follows.

Theorem 4.6. The equivalence problem for finitely ambiguous max-plus tree automata
with transition and final weights from Q ∪ {−∞} is decidable.

In fact, we will show that if A1 is a finitely ambiguous max-plus-WTA and A2

any max-plus-WTA, then it is decidable whether for all trees t ∈ TΓ it holds that
JA1K(t) ≥ JA2K(t). If this is the case, we also write JA1K ≥ JA2K and say that A1

dominates A2.

Theorem 4.7. Let A1 be a finitely ambiguous max-plus-WTA and A2 any max-plus-
WTA, both with transition and final weights from Q ∪ {−∞}. It is decidable whether
or not JA1K ≥ JA2K.

If both automata in Theorem 4.7 are finitely ambiguous, we can reverse their
roles. Consequently, Theorem 4.6 is a corollary of Theorem 4.7. The remainder of
this section is dedicated to the proof of Theorem 4.7. As part of the proof, we will
employ the following concepts.

Let Σ = {a1, . . . , an} be an alphabet. The Parikh vector p(w) ∈ Nn of a word
w ∈ Σ∗ is the vector p(w) = (|w|a1 , |w|a2 , . . . , |w|an). For a language L ⊆ Σ∗, the
Parikh image of L is the set p(L) = {p(w) | w ∈ L}.

A set of vectors J ⊆ Nn is called linear if there exist k ≥ 0 and vectors
α, β1, . . . , βk ∈ Nn such that

J = {α+

k∑
i=1

ni · βi | n1, . . . , nk ∈ N}.

The set J is called semilinear if it is the union of finitely many linear subsets of Nn.
A context-free grammar (short: CFG) [49] is a tuple (N,Σ, P, S) where (1) N

is a finite set of nonterminal symbols, (2) Σ is a finite set of terminal symbols with

4.3. The Equivalence Problem 65

N ∩ Σ = ∅, (3) P ⊆ N × (N ∪ Σ)∗ is a finite set of productions or rules, and (4)
S ∈ N is the initial symbol. We usually denote a rule (A,w) ∈ P by A→ w.

Let G = (N,Σ, P, S) be a context-free grammar. For u, v ∈ (N ∪ Σ)∗ we write
u ⇒G v if there exists u′, u′′ ∈ (N ∪ Σ)∗ and a production A → w ∈ P such that
u = u′Au′′ and v = u′wu′′. The language generated by G is the language

L(G) = {w ∈ Σ∗ | ∃n ≥ 0∃u1, . . . , un ∈ (N ∪ Σ)∗ : S ⇒G u1 ⇒G . . .⇒G un ⇒G w}.

A language L ⊆ Σ∗ is called context-free if there exists a context-free grammar G
with L = L(G).

As a first step, we show in the following lemma that every finitely ambiguous
max-plus-WTA A can be normalized such that all trees, on which there exists at
least one accepting run of A, have the same number of accepting runs. The idea here
is that we can simply add dummy runs with low weight for every tree which does not
already have a sufficient number of runs.

Lemma 4.8. Let A = (Q,Γ, µ, ν) be an M -ambiguous max-plus-WTA. Then there
exists a finitely ambiguous max-plus-WTA A′ with JAK = JA′K and |AccA′(t)| ∈ {0,M}
for all t ∈ TΓ.

Proof. First, we show that for every n ∈ {1, . . . ,M}, the set Ln = {t ∈ TΓ |
|AccA(t)| ≥ n} is recognizable. For this, we construct an automaton which
simulates n runs of A in parallel, keeps track of which runs are pairwise dis-
tinct, and accepts only when all simulated runs are pairwise distinct. Let An =
(Qn × P({1, . . . , n}2),Γ, δn, Fn) be the FTA defined as follows. For a ∈ Γ with
rkΓ(a) = m, p̄0, . . . , p̄m ∈ Qn with p̄i = (pi1, . . . , pin), and R0, . . . , Rm ⊆ {1, . . . , n}2,
we let ((p̄1, R1), . . . , (p̄m, Rm), a, (p̄0, R0)) ∈ δn iff for all i ∈ {1, . . . , n} we have
µ(p1i, . . . , pmi, a, p0i) 6= −∞ and R0 = {(k, l) ∈ {1, . . . , n}2 | p0k 6= p0l} ∪

⋃m
i=1Ri.

Furthermore, (p̄0, R0) ∈ Fn iff for all i ∈ {1, . . . , n} we have ν(p0i) 6= −∞ and
R0 = {(k, l) ∈ {1, . . . , n}2 | k 6= l}.

It is easy to see that there is an accepting run of An on t ∈ TΓ if and only if there
are at least n pairwise distinct accepting runs of A on t. Therefore, L(An) = Ln.
Since recognizable tree languages are closed under complement and intersection, for
n ∈ {1, . . . ,M − 1} the languages L′n = Ln \ Ln+1 = {t ∈ TΓ | |AccA(t)| = n}
are also recognizable and we can find deterministic FTA A′n = (Q′n,Γ, δ

′
n, F

′
n) with

L(A′n) = L′n.
Now let κ be the smallest weight used in A, i.e., with R = µ(∆A) ∪ ν(Q) we

let κ = min(R \ {−∞}). For n ∈ {1, . . . ,M − 1}, we define the max-plus-WTA
A′′n = (Q′n,Γ, µ

′′
n, ν
′′
n) by

µ′′n(d) =

{
κ if d ∈ δ′n
−∞ otherwise

and ν ′′n(q) =

{
κ if q ∈ F ′n
−∞ otherwise.

Finally, we construct A′ as follows. For each n ∈ {1, . . . ,M − 1}, we take M − n
copies of A′′n and unite them with A, where we assume that all sets of states are
pairwise disjoint. By choice of κ, this does not influence the behavior of A. By choice

66 Chapter 4. Decidable Properties of Max-Plus Tree Automata

of the languages L′′n, every tree which had at least one accepting run in A now has
exactly M accepting runs in A′ and all other trees still have no accepting run in
A′.

Next, we show that every max-plus-WTA A can be normalized such that all final
weights are equal either to −∞ or to 0. The idea is that the final weight can be
included in the transition weight of the transition at the root, see also [15].

Lemma 4.9 ([15]). Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Then there exists
a max-plus-WTA A′ = (Q′,Γ, µ′, ν ′) with JAK = JA′K, ν ′(Q′) ⊆ {−∞, 0}, and
|AccA(t)| = |AccA′(t)| for every t ∈ TΓ.

Proof. We define a max-plus-WTA A′ = (Q′,Γ, µ′, ν ′) as follows. We let Q′ =
Q × {0, 1} and define ν ′(q, 0) = −∞ and ν ′(q, 1) = 0 for all q ∈ Q. For every
d = (p1, . . . , pm, a, p0) ∈ ∆A, we let µ′((p1, 0), . . . , (pm, 0), a, (p0, 0)) = µ(d) and
µ′((p1, 0), . . . , (pm, 0), a, (p0, 1)) = µ(d) + ν(p0). On all remaining transitions we
define µ′ as −∞.

It is easy to see that for every tree t ∈ TΓ, we have a bijection f : AccA(t) →
AccA′(t) given by (f(r))(ε) = (r(ε), 1) and (f(r))(w) = (r(w), 0) for w ∈ pos(t) \ {ε},
and for this bijection it holds that wtA(t, r) + ν(r(ε)) = wtA′(t, f(r)).

For the rest of this section, we fix an M -ambiguous max-plus-WTA A1 and a
max-plus-WTA A2, both with transition and final weights from Q ∪ {−∞}. We
write Ai = (Qi,Γ, µi, νi) for i = 1, 2. By Lemma 4.8, we can assume that for all
t ∈ TΓ we have |AccA1(t)| ∈ {0,M}. By Lemma 4.9, we may furthermore assume
that ν1(Q1) ⊆ {−∞, 0} and ν2(Q2) ⊆ {−∞, 0}. Note that JA1K ≥ JA2K can only
hold if supp(A2) ⊆ supp(A1), which is decidable since the supports of A1 and A2

are recognizable tree languages. Therefore, in the forthcoming considerations we will
assume that supp(A2) ⊆ supp(A1) holds.

We call a tuple v̄ ∈ QM+1 an outcome vector if there exists a tree t ∈ TΓ, runs
r1, . . . , rM ∈ AccA1(t), and a run rM+1 ∈ AccA2(t) with AccA1(t) = {r1, . . . , rM} and
v̄ = (wtA1(t, r1), . . . ,wtA1(t, rM),wtA2(t, rM+1)). We denote the set of all outcome
vectors by O. We can make the following observation.

Proposition 4.10. A1 does not dominate A2 iff there exists a vector (v1, . . . , vM+1) ∈
O such that for all i ∈ {1, . . . ,M} we have vi < vM+1.

We give an overview of the rest of the proof. We first construct a weighted tree
automaton A over the product semiring (Qmax)M+1 such that the weights realized
by the runs of A are exactly the vectors from O. We then define Parikh vectors of
runs by counting the transitions occurring in a run, just like the Parikh vector of a
word counts the number of occurrences of the letters in a word. By arranging the
weight vectors of the transitions of A as columns into a matrix Ω, we see that the
weight of a run of A is simply the result of multiplying the matrix Ω with the Parikh
vector of the run.

We proceed to show that the set of Parikh vectors of the accepting runs of A can
also be expressed as the Parikh image of a context free language over the alphabet
of transitions from ∆A. By Parikh’s theorem, the Parikh image of a context-free

4.3. The Equivalence Problem 67

language is semilinear, and thus so is the set of Parikh vectors of the accepting runs
of A.

It follows that the set O can be represented as the image of a semilinear set,
namely the set of Parikh vectors of the accepting runs of A, under a matrix with
rational entries, namely the matrix Ω. We then use Proposition 4.10 to reduce the
dominance problem to the satisfiability problem of systems of linear inequalities over
the rationals with an integer solution. The latter problem is decidable [13, Theorem
3.4]. We begin by constructing A.

Lemma 4.11. There exists a weighted tree automaton A = (Q,Γ, µ, ν) over the
product semiring (Qmax)M+1 such that O = {wtA(t, r) | t ∈ TΓ, r ∈ AccA(t)}. The
automaton A can be effectively constructed from A1 and A2.

Proof. We let Q = QM1 ×Q2 ×P({1, . . . ,M}2). The first M + 1 entries of the states
from Q are used to simulate the M runs of A1 and one run of A2, and the last
entry is used to keep a record of which runs from A1 are distinct in order to ensure
that accepting runs of A simulate all accepting runs of A1 in the respective entries.
For a ∈ Γ with rkΓ(a) = m and p0, . . . ,pm ∈ Q with pi = (pi1, . . . , piM , piM+1, Ri),
we define weights as follows. For i ∈ {1, . . . ,M}, we let xi = µ1(p1i, . . . , pmi, a, p0i)
and yi = ν1(p0i), and we let xM+1 = µ2(p1M+1, . . . , pmM+1, a, p0M+1) and yM+1 =
ν2(p0M+1). Furthermore, we let R = {(k, l) ∈ {1, . . . ,M}2 | p0k 6= p0l} ∪

⋃M
i=1Ri.

Then we define µ and ν by

µ(p1, . . . ,pm, a,p0) =

{
(x1, . . . , xM+1) if (x1, . . . , xM+1) ∈ QM+1 and R0 = R

(−∞, . . . ,−∞) otherwise

ν(p0) =

(y1, . . . , yM+1) if (y1, . . . , yM+1) ∈ QM+1 and

R0 = {(k, l) ∈ {1, . . . ,M}2 | k 6= l}
(−∞, . . . ,−∞) otherwise.

It is easy to see that for an accepting run of A on a tree t, projecting on each of the
first M + 1 entries yields M distinct accepting runs of A1 and one accepting run of
A2 on t, and that the transition weights are preserved by this projection.

Furthermore, for M pairwise distinct accepting runs r1, . . . , rM of A1 and one
accepting run rM+1 of A2 on a tree t, we can construct a mapping R : pos(t) →
P({1, . . . ,M}2) such that (r1, . . . , rM+1, R) is an accepting run of A on t with
wtA(t, (r1, . . . , rM+1, R)) = (wtA1(t, r1), . . . ,wtA1(t, rM),wtA2(t, rM+1)).

Let A = (Q,Γ, µ, ν) be the automaton from Lemma 4.11 and let d1, . . . , dD be an
enumeration of ∆A. We define a matrix Ω ∈ Q(M+1)×D by Ω = (µ(d1), . . . , µ(dD))
where every vector µ(di) is considered to be a column vector. Furthermore, for a run
r of A on a tree t, we define the transition Parikh vector of r by

p(t, r) = (|{w ∈ pos(t) | t(t, r, w) = d1}|, . . . , |{w ∈ pos(t) | t(t, r, w) = dD}|).

In the following Lemma, we show that multiplying Ω with every possible transition
Parikh vector of A yields precisely O.

68 Chapter 4. Decidable Properties of Max-Plus Tree Automata

Lemma 4.12. We have O = {Ω · p(t, r) | t ∈ TΓ, r ∈ AccA(t)}.

Proof. Let v̄ ∈ O, then by assumption on A, there exists a tree t ∈ TΓ and a run
r ∈ AccA(t) with v̄ = wtA(t, r). By definition of wtA and the commutativity of “+”,
it follows that wtA(t, r) = Ω · p(t, r).

On the other hand, let t ∈ TΓ and r ∈ AccA(t). Then with the same arguments
and our assumption on A, we have Ω · p(t, r) = wtA(t, r) ∈ O.

Next, we construct a context-free language whose Parikh image coincides with
the set of possible transition Parikh vectors of A.

Lemma 4.13. There exists a context-free language L over the alphabet ∆A such that
p(L) = {p(t, r) | t ∈ TΓ, r ∈ AccA(t)}. A context-free grammar G generating L can
be found effectively from A.

Proof. We define the context-free grammar G = (Q ∪ {S},∆A, P, S), where S is a
new symbol, by

P = {S → p | ν(p) ∈ QM+1}
∪ {p→ (p1, . . . ,pm, a,p)p1 . . .pm | µ(p1, . . . ,pm, a,p) ∈ QM+1}.

Then L = L(G) is context-free and we see as follows that p(L) = {p(t, r) | t ∈ TΓ, r ∈
AccA(t)}.

“⊆”: Let w ∈ L. We construct a tree t ∈ TΓ and a run r ∈ AccA(t) such that
p(w) = p(t, r). Since w ∈ L, we find words u1, . . . , un ∈ (Q∪∆A)∗ such that un = w
and S ⇒G u1 ⇒G . . .⇒G un. We construct by induction for every i ∈ {1, . . . , n} a
Γ-context ti ∈ TΓ� and a run ri ∈ Run�A(ti) such that ν(ri(ε)) ∈ QM+1 and for every
p ∈ Q and d ∈ ∆A we have

|ui|p = |{v ∈ pos(t) | ti(v) = � and ri(v) = p}|
|ui|d = |{v ∈ pos(t) | t(t, r, w) = d}|.

For i = 1, we know by the definition of G that u1 = p with ν(p) ∈ QM+1, so we
let t1 = � and r1(ε) = p. Now assume we have constructed ti and ri with the
properties above. We have ui ⇒G ui+1, so by definition of G, there exists a transition
d = (p1, . . . ,pm, a,p) ∈ ∆A with µ(d) ∈ QM+1 and words u′, u′′ ∈ (Q ∪∆A)∗ such
that ui = u′pu′′ and ui+1 = u′dp1 . . .pmu

′′. Thus |ui|p ≥ 1, so by induction we find
v ∈ pos(ti) with ti(v) = � and ri(v) = p. We let ti+1 = ti〈a(�, . . . , �) → v〉 and
define ri+1 by ri+1(v′) = ri(v

′) for v′ ∈ pos(ti) and ri+1(vj) = pj for j ∈ {1, . . . ,m}.
It is easy to check that ti+1 and ri+1 satisfy all of the above properties.

Since un = w ∈ ∆∗A, the Γ-context tn is actually a Γ-tree, the run rn ∈ Run�A(tn)
is an accepting run of A on tn, and we have p(w) = p(un) = p(tn, rn). Thus, we
have p(L) ⊆ {p(t, r) | t ∈ TΓ, r ∈ AccA(t)}.

“⊇”: Now let t ∈ TΓ and r ∈ AccA(t). We construct a word w ∈ L with
p(w) = p(t, r). For this, we construct by induction for every v ∈ pos(t) words
u1, . . . , un such that r(v)⇒G u1 ⇒G . . .⇒G un, un ∈ ∆∗A, and p(un) = p(t�v, r�v).
We proceed by a reverse induction on the length of v. For |v| = height(t), we let n = 1
and u1 = t(t, r, v), then we have r(v)⇒G u1, un ∈ ∆∗A, and p(un) = p(t�v, r�v).

4.3. The Equivalence Problem 69

For |v| < height(t), we assume that t(t, r, v) = d = (p1, . . . ,pm, a,p) and that for
every i ∈ {1, . . . ,m} we have words u(i)

1 , . . . , u
(i)
ni with pi ⇒G u

(i)
1 ⇒G . . . ⇒G u

(i)
ni ,

u
(i)
ni ∈ ∆∗A, and p(u

(i)
ni) = p(t�vi, r�vi). Since r ∈ AccA(t), we have µ(d) ∈ QM+1, so

by the definition of G, we have p⇒G dp1 . . .pm. Thus, we see that

p⇒G dp1 . . .pm

⇒G du
(1)
1 p2 . . .pm ⇒G . . .⇒G du

(1)
n1

p2 . . .pm

⇒G du
(1)
n1
u

(2)
1 p3 . . .pm ⇒G . . .⇒G du

(1)
n1
u(2)
n2

p3 . . .pm
...

⇒G du
(1)
n1
. . . u

(m−1)
m−1 u

(m)
1 ⇒G . . .⇒G du

(1)
n1
. . . u(m)

nm .

From this, we obtain words u1, . . . , un ∈ (Q ∪∆A)∗ with p ⇒G u1 ⇒G . . . ⇒G un

such that un = du
(1)
n1 . . . u

(m)
nm ∈ ∆∗A, and therefore p(un) = p(d) +

∑m
i=1 p(u

(i)
ni) =

p(d) +
∑m

i=1 p(t�vi, r�vi) = p(t�v, r�v).
For v = ε, we thus obtain words u1, . . . , un such that r(ε)⇒G u1 ⇒G . . .⇒G un,

un ∈ ∆∗A, and p(un) = p(t, r). Due to r ∈ AccA(t) we have r(ε) ∈ QM+1, which
means that S ⇒G r(ε). Therefore un ∈ L, which shows that p(L) ⊇ {p(t, r) | t ∈
TΓ, r ∈ AccA(t)}.

Finally, we recall Parikh’s theorem, after which we are ready to conclude the
proof of Theorem 4.7.

Theorem 4.14 ([82, Theorem 2],[43]). For every context-free language L, the set
p(L) is semilinear. Furthermore, indices k, k1, . . . , kk and vectors α(i), β

(i)
j ∈ ND

(i ∈ {1, . . . , k}, j ∈ {1, . . . , ki}) with

p(L) =
k⋃
i=1

{α(i) +

ki∑
j=1

nj · β(i)
j | n1, . . . , nki ∈ N}

can be effectively found from every context-free grammar generating L.

Proof of Theorem 4.7. Let L be as in Lemma 4.13. By Lemma 4.12 and Lemma 4.13,
we then have O = {Ω · p(t, r) | t ∈ TΓ, r ∈ AccA(t)} = {Ω · v̄ | v̄ ∈ p(L)}.

For L, let k, k1, . . . , kk, α
(i), β

(i)
j ∈ ND (i ∈ {1, . . . , k}, j ∈ {1, . . . , ki}) be as in

Theorem 4.14. Then

O =
k⋃
i=1

{Ω · α(i) +

ki∑
j=1

nj · Ω · β(i)
j | n1, . . . , nki ∈ N}.

Let ω̄1, . . . , ω̄M+1 be the rows of Ω. Then by Proposition 4.10, A1 does not dominate
A2 iff there exist i ∈ {1, . . . , k} and n1, . . . , nki ∈ N such that for every l ∈ {1, . . . ,M}
we have

ω̄l · α(i) +

ki∑
j=1

(ω̄l · β
(i)
j) · nj < ω̄M+1 · α(i) +

ki∑
j=1

(ω̄M+1 · β(i)
j) · nj .

70 Chapter 4. Decidable Properties of Max-Plus Tree Automata

In other words, for every i ∈ {1, . . . , k} we have a system of linear inequalities

ω̄l · α(i) +

ki∑
j=1

(ω̄l · β
(i)
j) ·Xj < ω̄M+1 · α(i) +

ki∑
j=1

(ω̄M+1 · β(i)
j) ·Xj (l = 1, . . . ,M)

0 ≤ Xj (j = 1, . . . , ki)

and A1 does not dominate A2 iff one of these systems possesses an integer solution.
The first M inequalities of each system form a system of the form A′X̄ < 0 for a
matrix A′. The satisfiability of this system with a non-negative integer solution is
equivalent to that of the system A′X̄ ≤ −1 since every non-negative integer solution
X̄ of the first can be inflated by a sufficiently large integer C to a solution C · X̄
of the latter system. Thus, we effectively need to check the satisfiability of systems
of the form AX̄ ≤ b̄ for a matrix A and a vector b̄, both with entries from Q, with
an integer solution. By [13, Theorem 3.4], the satisfiability of such systems with an
integer solution is decidable, so we can decide whether A1 dominates A2 or not.

4.4. The Unambiguity Problem 71

4.4 The Unambiguity Problem

A man with a watch knows what time it is.
A man with two watches is never sure.

Segal’s Law

The unambiguity problem asks whether for a given max-plus-WTA A, there exists
an unambiguous max-plus-WTA A′ such that JAK = JA′K. In this section, we show
that the unambiguity problem is decidable for finitely ambiguous max-plus-WTA. We
follow ideas from [63, Section 5], where the decidability of this problem was shown
for finitely ambiguous max-plus word automata. We first generalize the dominance
property from max-plus word automata to max-plus tree automata and show that it
is decidable whether a max-plus tree automaton satisfies the dominance property.
Then we show that for a finitely ambiguous max-plus tree automaton A, there exists
an equivalent unambiguous max-plus tree automaton A′ if and only if A satisfies the
dominance property. We note that for max-plus word automata, the unambiguity
problem is known to be decidable even for polynomially ambiguous automata [61].
We leave the question open as to whether the same holds true for polynomially
ambiguous max-plus-WTA. The main result of this section is the following theorem.

Theorem 4.15. For a finitely ambiguous max-plus-WTA A, it is decidable whether
there exists an unambiguous max-plus-WTA A′ with JAK = JA′K. If A′ exists, it can
be effectively constructed.

The rest of this section is dedicated to the proof of Theorem 4.15. For the proof,
we will employ the concept of an A-circuit of a WTA A defined as follows. For a WTA
A = (Q,Γ, µ, ν), a Γ-word s ∈ TΓ� , and a run r ∈ Run�A(s) with r(ε) = r(♦1(s)), the
pair (s, r) is called an A-circuit. We call (s, r) small if height(s) ≤ 2|Q|.

For the rest of this section, we fix a finitely ambiguous max-plus-WTA A. We
apply Lemma 4.4 (or equivalently Lemma 4.5) and obtain unambiguous max-plus-
WTA A1, . . . ,AM such that supp(A1) = . . . = supp(AM) and JAK = maxMi=1JAiK.
The product automaton B = (Q,Γ, µ, ν) of A1, . . . ,AM is a weighted tree automaton
over the product semiring (Rmax)M which, intuitively, executes all of the automata
A1, . . . ,AM in parallel. We write Ai = (Qi,Γ, µi, νi) for i ∈ {1, . . . ,M} and define
B as the trim part of the automaton B′ = (Q′,Γ, µ′, ν ′) defined as follows. We let
Q′ = Q1 × . . . × QM and for a ∈ Γ with rkΓ(a) = m and p0, . . . ,pm ∈ Q′ with
pi = (pi1, . . . , piM) we define, with xi = µi(p1i, . . . , pmi, a, p0i) and yi = νi(p0i),

µ′(p1, . . . ,pm, a,p0) =

{
(x1, . . . , xM) if (x1, . . . , xM) ∈ RM

(−∞, . . . ,−∞) otherwise

ν ′(p0) =

{
(y1, . . . , yM) if (y1, . . . , yM) ∈ RM

(−∞, . . . ,−∞) otherwise.

Then B is unambiguous and for t ∈ TΓ we have JBK(t) = (JA1K(t), . . . , JAM K(t)).

72 Chapter 4. Decidable Properties of Max-Plus Tree Automata

Definition 4.16 (Victorious coordinate). Let s ∈ TΓ� be a Γ-context, r ∈ Run�B(s),
and write wt�B(s, r) = (κ1, . . . , κM). We define wti(s, r) = κi and wt(s, r) =
maxMi=1 wti(s, r).

A coordinate i ∈ {1, . . . ,M} is called victorious if wti(s, r) = wt(s, r). The set of
all victorious coordinates of (s, r) is denoted by Vict(s, r). For q ∈ Q we define

Vict([q]) =
⋂

(s,r) small B-circuit
r(ε)∈[q]

Vict(s, r)

where the empty intersection is defined as {1, . . . ,M}. For P ⊆ Q, we let Vict(P) =⋂
p∈P Vict([p]). We have the following lemma which relates victorious coordinates to

the decidability of the unambiguity problem.

Lemma 4.17. There exists an unambiguous max-plus-WTA A′ with JAK = JA′K if
and only if for all t ∈ TΓ and all r ∈ AccB(t) we have Vict(r(pos(t))) 6= ∅. The latter
property is called the dominance property and is denoted by (P). The dominance
property is decidable, and therefore so is the unambiguity problem.

Proof. Here, we only show that (P) is decidable. We defer the proof that (P) is a
necessary condition to Lemma 4.18. The proof for the sufficiency of (P) takes some
more preparation and is split into several lemmata.

(P) is decidable as follows. We can consider Q as an (unranked) alphabet and
construct an FTA which accepts exactly the accepting runs of B, i.e., all pairs
(pos(t), r) for some t ∈ TΓ and r ∈ AccB(t). Also, for every subset P ⊆ Q we can
construct an FTA which accepts all trees in TQ in which every p ∈ P occurs at least
once as a label. By taking the intersection of these two automata and checking for
emptiness, we can decide for every P ⊆ Q whether there exists t ∈ TΓ and r ∈ AccB(t)
with P ⊆ r(pos(t)). Checking whether all P for which this is true satisfy Vict(P) 6= ∅
is equivalent to checking (P). Note that Vict(P) can be effectively computed since
there are only finitely many small B-circuits.

First, we prove that (P) is a necessary condition, i.e., that from the existence of
an unambiguous automaton A′ with JAK = JA′K it follows that B satisfies (P).

Lemma 4.18. If there exists an unambiguous max-plus-WTA A′ = (Q′,Γ, µ′, ν ′)
with JAK = JA′K then B satisfies (P).

Proof. We proceed by contradiction and assume that A′ as above exists and that
(P) is not satisfied. Then there exists a tree t ∈ TΓ and a run r ∈ AccB(t) with
Vict(r(pos(t)) = ∅. We let C be the set of all small circuits which are relevant to
show this, i.e., C = {(s, rs) small B-circuit | [rs(ε)] ∩ r(pos(t)) 6= ∅}.

Let (s, rs) ∈ C and q = rs(ε). We may assume that q ∈ r(pos(t)) due to the
following argument. If q ∈ r(pos(t)) does not hold, there exists some p ∈ r(pos(t))
with p ≈ q. Then there exist Γ-words spq, sqp ∈ TΓ� and runs rpq ∈ Run�B(q, spq,p) and
rqp ∈ Run�B(p, sqp,q). Thus, with s′ = spq(sqp) and rs′ = rpq〈rqp → ♦1(spq)〉, we obtain
a circuit (s′, rs′) with rs′(ε) = p and rs′(♦1(spq)) = q. We can insert (s′, rs′) into t
and r to obtain a tree t′ and a run r′ ∈ AccB(t′) with q ∈ r′(pos(t′)).

4.4. The Unambiguity Problem 73

Now let c1, . . . , cn be an enumeration of C. We write ci = (si, ri) and let qi = ri(ε),
wqi ∈ pos(t) with r(wqi) = qi, and wi = ♦1(si). We may assume that c1, . . . , cn are
ordered such that wq1 ≤l . . . ≤l wqn . Then for every i ∈ {1, . . . , n}, we can insert the
circuit (s

|Q′|
i , r

|Q′|〈wi〉
i) at wqi to obtain a tree t′ = t〈s|Q

′|
n → wqn〉 · · · 〈s

|Q′|
1 → wq1〉 ∈

TΓ together with a run r′B = r〈r|Q
′|〈w〉

n → wqn〉 · · · 〈r
|Q′|〈w〉
1 → wq1〉 ∈ AccB(t′). For

simplicity, we assume that the root of each circuit (s
|Q′|
i , r

|Q′|〈wi〉
i) is still at position

wqi in t′.
Since suppB = suppA′, we find a run r′A′ ∈ AccA′(t

′). By pigeon hole
principle, we find 0 ≤ mi < ni ≤ |Q′| for each i ∈ {1, . . . , n} such that
r′A′(wqiw

mi
i) = r′A′(wqiw

ni
i). We thus obtain runs rAi ∈ Run�A′(s

ni−mi) through
rAi (w) = r′A′(wqiw) such that each (sni−mii , rAi) is an A′-circuit. We let s̃i = sni−mii

and rBi = r
ni−mi〈wi〉
i . Then (s̃i, r

B
i) are B-circuits with Vict(ci) = Vict(s̃i, r

B
i) for all

i. For v̄ = (v1, . . . , vn) ∈ Nn, we denote by tv̄ the tree obtained by adding vi copies
of s̃i to t′ for each i ∈ {1, . . . , n}, i.e., the tree tv̄ = t′〈s̃vnn → wqn〉 · · · 〈s̃

v1
1 → wq1〉.

Then we see that the runs

r′B〈(rBn)vn〈w
nn−mn
n 〉 → wqn〉 · · · 〈(rB1)v1〈w

n1−m1
1 〉 → wq1〉 ∈ AccB(tv̄)

r′A′〈(rAn)vn〈w
nn−mn
n 〉 → wqnw

mn
n 〉 · · · 〈(rA1)v1〈w

n1−m1
1 〉 → wq1w

m1
1 〉 ∈ AccA′(tv̄)

are accepting on tv̄.
By assumption, there exists I ∈ {1, . . . , n} such that

⋂I
i=1 Vict(ci) 6= ∅ and⋂I+1

i=1 Vict(ci) = ∅. In the following, we show that
⋂I+1
i=1 Vict(ci) 6= ∅, which yields

the desired contradiction. For k, l ∈ N, let tk,l = t(k,...,k,l,0,...,0), where l is at index
I + 1. Since A′ is unambiguous, we see that with x = JA′K(t0,0), κ = wtA′(s̃1, r

A
1) +

. . .+ wtA′(s̃I , r
A
I), and λ = wtA′(s̃I+1, r

A
I+1), we have

JA′K(tk,l) = x+ kκ+ lλ

for all k, l ∈ N.
Due to the definition of victorious coordinates, we can find a number N ∈ N such

that for all l ≥ N , the tuple JBK(t0,l) has its maximum in some victorious coordinate
from Vict(cI+1); this is because with every repetition of a circuit, non-victorious
coordinates fall behind victorious coordinates in terms of weight by a small fixed
margin. Then for every l′ ≥ 0, we have

JAK(t0,N+l′) = JAK(t0,N) + l′ · wt(s̃I+1, r
B
I+1).

Since JA′K = JAK, it follows that

wt(s̃I+1, r
B
I+1) = JAK(t0,N+1)− JAK(t0,N) = x+ (N + 1)λ− (x+Nλ) = λ.

Similarly, due to the assumption that
⋂I
i=1 Vict(ci) 6= ∅, we can find for every

l ∈ N a number Ml ∈ N such that for all k ≥Ml, the tuple JBK(tk,l) has its maximum
in some victorious coordinate jl ∈

⋂I
i=1 Vict(ci). We let M̃ = maxMl=0Ml. By pigeon

hole principle, there exist l1, l2 ∈ {0, . . . ,M} with l1 < l2 and jl1 = jl2 . Then we see
that, again due to JA′K = JAK, we have

(l2 − l1)wtjl1 (s̃I+1, r
B
I+1) = JAK(tM̃,l2

)− JAK(tM̃,l1
) = (l2 − l1)λ.

74 Chapter 4. Decidable Properties of Max-Plus Tree Automata

It follows that

wt(s̃I+1, r
B
I+1) = λ = wtjl1 (s̃I+1, r

B
I+1),

which means that jl1 ∈ Vict(cI+1). Since jl1 ∈
⋂I
i=1 Vict(ci) also holds, we have⋂I+1

i=1 Vict(ci) 6= ∅, which is a contradiction to the choice of I. In conclusion, t and r
as chosen do not exist and therefore B satisfies (P).

Next, we address the sufficiency of (P). In the following, we assume that B
satisfies (P) and construct an unambiguous max-plus-WTA A′ with JA′K = JAK.

The idea behind A′ is as follows. The states of A′ will be taken from RMmax ×Q.
From a bottom-up perspective, A′ remembers in each Rmax-coordinate the weight
which B would have assigned to the run in this coordinate “so far”. Since this can
become unbounded, we normalize the smallest coordinate to 0 in each transition,
make this coordinate’s weight the transition weight, and remember only the difference
to this weight in the remaining coordinates. Still, these differences can become
unbounded. Therefore, once the difference exceeds a certain bound (2N + 1)C, the
coordinates with small weights are discarded by being set to −∞ and only the large
weights are remembered. Here, N is the maximum possible number of nodes of a
tree over Γ of height at most 2|Q|. The constant C is the largest difference between
all weights occurring in the automata A1, . . . ,AM .

We can show that the coordinate l which in B eventually yields the largest weight
will not be discarded as follows. First, we can show that the weight of a victorious
coordinate of a run will never be smaller than the largest weight (over all coordinates)
minus NC. Second, we can show that if k is victorious, then the weight of coordinate l
will never be smaller than the weight of k minus NC+C. Our assumption is that (P)
holds, so there exists some victorious coordinate in every accepting run. Therefore,
the weight of l will never be smaller than the largest weight minus (2N + 1)C and is
never discarded.

Formally, we define A′ as follows.

Construction 4.19. We let

N =

2|Q|∑
i=0

rk(Γ)i = max{|pos(t)| | t ∈ TΓ, height(t) ≤ 2|Q|}

R =

M⋃
i=1

(µi(∆Ai) ∪ νi(Qi))

C = maxR−min(R \ {−∞}).

For x = (x1, . . . , xM) ∈ RMmax, we denote the smallest weight of x by

x̌ = min{xi | 1 ≤ i ≤M,xi 6= −∞},

and define the normalization of x by

x = x− (x̌, . . . , x̌).

We construct an unambiguous max-plus-WTA A′ = (Q′,Γ, µ′, ν ′) with JAK = JA′K
and Q′ ⊂ RMmax ×Q as follows.

4.4. The Unambiguity Problem 75

Rule 1 For (a,q) ∈ ∆B ∩ (Γ × Q) with x = µ(a,q) ∈ RM , we let (x,q) ∈ Q′ and
µ′(a, (x,q)) = x̌.

Rule 2 Assume we have d = (p1, . . . ,pm, a,p0) ∈ ∆B with x = µ(d) ∈ RM and
(z1,p1), . . . , (zm,pm) ∈ Q′ for some z1, . . . , zm ∈ RMmax. We let t = x+

∑m
i=1 zi

and define y ∈ RMmax through

yi =

{
−∞ if ti < max{tj | 1 ≤ j ≤M} − (2N + 1)C

ti otherwise.

We let (y,p0) ∈ Q′ and µ′((z1,p1), . . . , (zm,pm), a, (y,p0)) = y̌.

Rule 3 Assume (z,p) ∈ Q′ and x = ν(p) ∈ RM . Then we let ν ′(z,p) = maxMi=1(zi+
xi).

Note that from the above definition, it is not obvious that Q′ is finite, which is
what we will show later on. The following is clear from the construction.

Proposition 4.20. The projection π : Q′ → Q, (z,p) 7→ p induces a bijection between
the accepting runs of B and A′. In particular, A′ is unambiguous.

Using a simple induction we can show the following relationship between the runs
of A′ and B.

Lemma 4.21. Let t ∈ TΓ, r ∈ RunB(t), and r′ = π−1(r) ∈ RunA′(t). We write
r′(ε) = (z,p), then for every l ∈ {1, . . . ,M} we have

(i) if zl 6= −∞ then wtl(t, r) = wtA′(t, r
′) + zl

(ii) if zl = −∞ then for some w ∈ pos(t) we have wtl(t�w, r�w) < wt(t�w, r�w)−
(2N + 1)C.

Proof. (i) We proceed by induction on the height of t. If height(t) = 0, the statement
follows from Rule 1. Otherwise, we let a = t(ε), m = rk(a), and r′(i) = (zi,pi)
for i ∈ {1, . . . ,m}. Since zl 6= −∞, we know by Rule 2 that zil 6= −∞ holds for
all i ∈ {1, . . . ,m}. Thus, by induction we have wtl(t�i, r�i) = wtA′(t�i, r

′�i) + zil
for all i ∈ {1, . . . ,m}. It follows by Rule 2 that with x = µ(p1, . . . ,pm, a,p) and
y = µ′((z1,p1), . . . , (zm,pm), a, (z,p)) we have

wtl(t, r) = xl +
m∑
i=1

wtl(t�i, r�i)

= xl +

m∑
i=1

(wtA′(t�i, r
′�i) + zil)

= zl + y +
m∑
i=1

wtA′(t�i, r
′�i)

= wtA′(t, r
′) + zl.

76 Chapter 4. Decidable Properties of Max-Plus Tree Automata

(ii) Assume z = −∞ and let w be a prefix-maximal position with the property that
for (z′,p′) = r′(w) we have z′l = −∞. By Rule 1, w cannot be a leaf. We let a = t(w),
m = rk(a), r′(w) = (z0,p0), and r′(wi) = (zi,pi) for i ∈ {1, . . . ,m}. By choice
of w, we have zil 6= −∞ for all i ∈ {1, . . . ,m}, so by (i) we have wtl(t�wi, r�wi) =
wtA′(t�wi, r

′�wi) + zil for all i ∈ {1, . . . ,m}. Let x = µ(p1, . . . ,pm, a,p0) and y =
µ′((z1,p1), . . . , (zm,pm), a, (z0,p0)). Then since z0l = −∞, there exists by Rule 2
some j ∈ {1, . . . ,M} such that z0j 6= −∞ and xl +

∑m
i=1 zil < z0j + y − (2N + 1)C.

Thereby, we have

wtl(t�w, r�w) = xl +
m∑
i=1

wtl(t�wi, r�wi)

= xl +
m∑
i=1

(wtA′(t�wi, r
′�wi) + zil)

< z0j + y +
m∑
i=1

wtA′(t�wi, r
′�wi)− (2N + 1)C

= z0j + wtA′(t�w, r�w)− (2N + 1)C

= wtj(t�w, r�w)− (2N + 1)C

≤ wt(t�w, r�w)− (2N + 1)C.

The dominance property (P) is defined only through small circuits. Thus, in
order to use (P), we describe in the following how to decompose pairs (t, r) of a
Γ-tree or a Γ-word t and a run r of B on t into small circuits. Intuitively, we cut
circuits from the bottom of the tree using the pigeon hole principle.

Construction 4.22. Let t ∈ TΓ� be a Γ-tree or a Γ-word and r ∈ Run�B(t). A circuit
decomposition of t and r is a stub (t0, r0), where t0 ∈ TΓ� with height(t0) ≤ 2|Q| and
r0 ∈ Run�B(t0), together with a finite sequence of small B-circuits (s1, r1), . . . , (sn, rn)
defined as follows. If height(t) ≤ 2|Q|, then we let t0 = t and r0 = r and conclude
the decomposition. Otherwise, we cut a small circuit from t and r.

If t is a Γ-tree, we proceed as follows. We choose uv ∈ pos(t) with |uv| = height(t)
and |v| = |Q|. By pigeon hole principle, we find u ≤p w1 <p w2 ≤p uv with
r(w1) = r(w2). We let s = (t〈� → w2〉)�w1

, then for w ∈ pos(s) we see that

height(t) ≥ |w1w| = |w1|+ |w| ≥ |u|+ |w| = height(t)− |Q|+ |w|

from which |w| ≤ |Q| and therefore height(s) ≤ |Q| follows. Thus from r we obtain a
small circuit (s, r′′) through r′′(w) = r(w1w) for w ∈ pos(s). With t′ = t〈t�w2

→ w1〉
we obtain from r a run r′ ∈ RunB(t′) through r′ = r〈r�w2

→ w1〉. We continue the
decomposition with t′ and r′. This procedure ends after finitely many steps.

If t is a Γ-word, we proceed in the following way in order to ensure that the process
above never creates a 2-Γ-context when cutting a circuit. If there exists a position
v′ ∈ pos(t) which is prefix-independent from ♦1(t) and for which height(t�v′) ≥ |Q|,
we let uv ∈ pos(t) with v′ ≤p uv, |uv| = |v′| + height(t�v′), and |v| = |Q|. By

4.4. The Unambiguity Problem 77

pigeon hole principle, we find u ≤p w1 <p w2 ≤p uv with r(w1) = r(w2). We let
s = (t〈� → w2〉)�w1

, then for w ∈ pos(s) we see that

|v′|+ height(t�v′) ≥ |w1w| = |w1|+ |w| ≥ |u|+ |w| = |v′|+ height(t�v′)− |Q|+ |w|

from which |w| ≤ |Q| and therefore height(s) ≤ |Q| follows. Thus from r we obtain a
small circuit (s, r′′) through r′′(w) = r(w1w) for w ∈ pos(s). With t′ = t〈t�w2

→ w1〉
we obtain from r a run r′ ∈ Run�B(t′) through r′ = r〈r�w2

→ w1〉. Note that both
s and t′ are Γ-words since v′ is prefix-independent from ♦1(t). We continue the
decomposition with t′ and r′.

If t is a Γ-word but height(t�v′) < |Q| for all v′ ∈ pos(t) which are prefix-
independent from ♦1(t), we proceed as follows. First, we show that |♦1(t)| ≥ |Q|. We
know that height(t) > 2|Q|, thus there exists a position w ∈ pos(t) with |w| ≥ 2|Q|.
If w ≤p ♦1(t), it immediately follows that |♦1(t)| ≥ |Q|. Otherwise, since ♦1(t) is a
leaf, w and ♦1(t) are prefix-independent and we can write w = viv1 and ♦1(t) = vjv2

for some i, j ∈ N+ with i 6= j. As vi is prefix-independent from ♦1(t), we see that
|v1| ≤ height(t�vi) < |Q| and therefore |vi| ≥ 2|Q| − |Q| = |Q|. In particular, we have
|♦1(t)| ≥ |vj| ≥ |Q|.

Since |♦1(t)| ≥ |Q|, we can write ♦1(t) = uv with |v| = |Q|. By pigeon hole
principle, we find u ≤p w1 <p w2 ≤p uv with r(w1) = r(w2). We let s = (t〈� →
w2〉)�w1

and show that height(s) ≤ 2|Q|. Let w ∈ pos(s). If uw ≤p ♦1(t), we
have |w| ≤ |v| = |Q|. Otherwise, if uw is prefix-independent from ♦1(t), we can
write uw = uv′ivi and ♦1(t) = uv′jvj for some i, j ∈ N+ with i 6= j. Then uv′i is
prefix-independent from ♦1(t) which means we have |vi| ≤ height(t�uv′i) < |Q|. Due
to |v′jvj | = |v| = |Q|, we see that |v′| ≤ |Q| and therefore |w| = |v′ivi| < |Q|+1+ |Q|.
Therefore, we have height(s) ≤ 2|Q|. Thus from r we obtain a small circuit (s, r′′)
through r′′(w) = r(w1w) for w ∈ pos(s). With t′ = t〈t�w2

→ w1〉 we obtain from r a
run r′ ∈ Run�B(t′) through r′ = r〈r�w2

→ w1〉. Note that both s and t′ are Γ-words
since w2 ≤p ♦1(t). We continue the decomposition with t′ and r′.

In the following lemma, we show that the weights of victorious coordinates never
become much smaller than the maximum weight over all coordinates.

Lemma 4.23. Let t ∈ TΓ� be a Γ-tree or a Γ-word and r ∈ Run�B(t). If k ∈
Vict(r(pos(t))) then wtk(t, r) ≥ wt(t, r)−NC.

Proof. Take a circuit decomposition of t and r as in Construction 4.22 with stub
(t0, r0) and small circuits (s1, r1), . . . , (sn, rn). Since |pos(t0)| ≤ N , we have for all
j ∈ {1, . . . ,M} that

wtk(t, r) = wtk(t0, r0) +

n∑
i=1

wtk(si, ri)

≥ wtj(t0, r0)−NC +
n∑
i=1

wtj(si, ri)

= wtj(t, r)−NC.

This is true in particular for j with wt(t, r) = wtj(t, r).

78 Chapter 4. Decidable Properties of Max-Plus Tree Automata

We are now able to show that Q′ is finite. We proceed by contradiction and
show that if Q′ was infinite, we would be able to find arbitrarily long successions
(zn,p) � . . . � (z1,p) in Q′ with z1, . . . , zn pairwise distinct. Then we show that
such successions can in fact not be arbitrarily long, as from every zi to the next,
the difference in weights of at least one non-victorious coordinate to the victorious
coordinates grows by at least δ, where δ is a fixed constant. Thus, after some zi,
these differences exceed (2N + 1)C for all all non-victorious coordinates, and all
subsequent zi remain constant.

Lemma 4.24. Q′ is a finite set.

Proof. We show first that if Q′ is infinite, then for at least one p ∈ Q we can find
arbitrarily long successions (zn,p) � . . . � (z1,p) with z1, . . . , zn pairwise distinct.
Let P0 ⊆ Q′ be the set of all states added to Q′ by Rule 1. For i ≥ 0, let Pi+1 ⊆ Q′ be
the set of all states added to Q′ by Rule 2 using only states (z1,p1), . . . , (zm,pm) ∈ Pi.
Then for all i ≥ 0 we have Pi ⊆ Pi+1, Pi+1 \Pi 6= ∅ since Q is infinite, and Pi is finite.

Let i > 0 and (z,p) ∈ Pi+1 \ Pi. Then there are (z1,p1), . . . , (zm,pm) ∈ Pi
with at least one (zj ,pj) ∈ Pi \ Pi−1 such that (z,p) is added to Q′ by Rule 2
using (z1,p1), . . . , (zm,pm) ∈ Pi, and a valid transition (p1, . . . ,pm, a,p) ∈ ∆B. In
particular, we have (z,p) � (zj ,pj).

Now let H > 0, n > H|Q|, and p ∈ Pn \ Pn−1. Then according to the argu-
mentation we just did, we can find (zn,pn) � . . . � (z0,p0) with (z0,p0) ∈ P0

and (zi,pi) ∈ Pi \ Pi−1 for i > 0. In particular, (z0,p0), . . . , (zn,pn) are pairwise
distinct. By pigeon hole principle, at least one p ∈ Q occurs H or more times
among p0, . . . ,pn. Hence, we find i1 < . . . < iH with pi1 = . . . = piH = p and have
(ziH ,p) � . . . � (zi1 ,p) with zi1 , . . . , ziH pairwise distinct.

Now we show that there can be no arbitrarily long successions (zn,p) � . . . �
(z1,p) with z1, . . . , zn pairwise distinct in Q′. This shows in particular that Q′ must
be finite. We define the constant

δ = min
(s,r) small B-circuit

wti(s,r)<wt(s,r) for some i

wt(s, r)−max{wti(s, r) | wti(s, r) < wt(s, r)}

where the minimum over the empty set is defined as ∞. Assume we have
(x,p) � (y,p) with x 6= y. Then there exists a Γ-word s ∈ TΓ� with a run
r′ ∈ Run�A′((y,p), s, (x,p)). By projecting r to Q, we obtain a run r ∈ Run�B(p, s,p).
Take a circuit decomposition of s and r as in Construction 4.22 with stub (s0, r0)
and small circuits (s1, r1), . . . , (sn, rn). Note that now, (s0, r0) is also a small circuit.
Since B satisfies (P), there exists k ∈ Vict(r(pos(t))). Due to Lemma 4.21(ii) and
Lemma 4.23, we have xk, yk ∈ R.

For all i ∈ {0, . . . , n} and j ∈ {1, . . . ,M}, we have either wtj(si, ri) = wtk(si, ri)
or wtj(si, ri) ≤ wtk(si, ri)−δ. Hence, for all j ∈ {1, . . . ,M} we have either xk−xj =
yk − yj or xk − xj ≥ yk − yj + δ. Since x 6= y, we have xk − xj ≥ yk − yj + δ for at
least one j ∈ {1, . . . ,M}.

Now let (zn,p) � . . . � (z1,p) be a succession as above with z1, . . . , zn pairwise
distinct. Then in every step from zi to zi+1, for at least one non-victorious coordinate

4.4. The Unambiguity Problem 79

the difference the victorious coordinates grows by at least δ. If this differences exceeds
(2N + 1)C, the coordinate is set to −∞. Thus, at some point all non-victorious
coordinates are −∞. It follows that n cannot be arbitrarily large.

Next, we show that if a coordinate yields the maximum weight in B, then during
the whole computation of the weight of the run, the distance to the maximum weight
does not exceed the bound (2N + 1)C.

Lemma 4.25. Let t ∈ TΓ and r ∈ AccB(t). If for l ∈ {1, . . . ,M} we have JAK(t) =
JAlK(t), then for all w ∈ pos(t) we have wtl(t�w, r�w) ≥ wt(t�w, r�w)− (2N + 1)C.

Proof. We let w ∈ pos(t), t′ = t〈� → w〉, and let r′ be the run on t′ we obtain from
r through r′(v) = r(v). We write r(ε) = (q1, . . . , qM) and let k ∈ Vict(r(pos(t))). By
assumption, we have

νl(ql) + wtl(t
′, r′) + wtl(t�w, r�w) ≥ νk(qk) + wtk(t

′, r′) + wtk(t�w, r�w).

Due to Lemma 4.23, we have

wtl(t
′, r′) ≤ wt(t′, r′) ≤ wtk(t

′, r′) +NC.

Thus, applying Lemma 4.23 also to wtk(t�w, r�w) we can conclude

wtl(t�w, r�w) ≥ νk(qk)− νl(ql) + wtk(t
′, r′)− wtk(t

′, r′)−NC + wtk(t�w, r�w)

≥ −C −NC + wt(t�w, r�w)−NC
= wt(t�w, r�w)− (2N + 1)C.

We are now ready to show that the behaviors of A′ and A coincide.

Lemma 4.26. We have JAK = JA′K.

Proof. It is clear that suppA = suppB = suppA′. Let t ∈ suppA and let r ∈ AccB(t)
and r′ ∈ AccA′(t) be the unique accepting runs on t. We write r′(ε) = (z,q) and
let l ∈ {1, . . . ,M} with JAlK(t) = maxMi=1JAiK(t). Combining Lemma 4.21(ii) and
Lemma 4.25, we see that we have zl 6= −∞. Thus, by Lemma 4.21(i) we have for all
i ∈ {1, . . . ,M} that

νi(qi) + zi ≤ νi(qi) + wti(t, r)− wtA′(t, r
′)

= JAiK(t)− wtA′(t, r
′)

≤ JAlK(t)− wtA′(t, r
′)

= νl(ql) + wtl(t, r)− wtA′(t, r
′)

= νl(ql) + zl.

80 Chapter 4. Decidable Properties of Max-Plus Tree Automata

Therefore, again by Lemma 4.21(i) we have

JAK(t) =
M

max
i=1

JAiK(t)

= JAlK(t)
= νl(ql) + wtl(t, r)

= νl(ql) + wtA′(t, r
′) + zl

= wtA′(t, r
′) +

M
max
i=1

(νi(qi) + zi)

= wtA′(t, r
′) + ν ′(z,q)

= JA′K(t).

In conclusion, A′ is an unambiguous max-plus-WTA with JAK = JA′K.

4.5. The Sequentiality Problem 81

4.5 The Sequentiality Problem

The sequentiality problem asks whether for a given max-plus-WTA A, there exists
a deterministic max-plus-WTA A′ such that JAK = JA′K. In this section, we show
that the sequentiality problem is decidable for finitely ambiguous max-plus-WTA.
For words, the corresponding result is known due to [63]. Like in [63], we obtain
the decidability of the sequentiality problem for finitely ambiguous automata by
combining the decidability of the unambiguity problem for these automata with
the decidability of the sequentiality problem for unambiguous automata. Although
to our knowledge the decidability of the sequentiality problem for unambiguous
max-plus-WTA has never been stated explicitly, it follows rather easily from some
known results and ideas.

We begin by showing that the Lipschitz property of deterministic max-plus word
automata [63, 76] also holds for deterministic max-plus tree automata. On words, this
Lipschitz property can be formulated follows. Let A be a deterministic max-plus-WA
and let L be the largest weight, in terms of absolute value, occurring in A (excluding
−∞). Then for two words w1 = uv1 and w2 = uv2 which have an accepting run in
A, the difference between JAK(w1) and JAK(w2) can be at most |L|(|v1|+ |v2|+ 2).
This is clear since the unique runs of A on w1 and w2 will be identical on the prefix
u, and then with every remaining letter of each word the difference between both
runs cannot grow more than |L|. For deterministic max-plus-WTA, we can show a
similar statement as follows.

Lemma 4.27 (c.f. [63, end of Section 2.4][76, Section 3.2]). Let A = (Q,Γ, µ, ν)
be a deterministic max-plus-WTA, let X = (µ(∆A) ∪ ν(Q)) \ {−∞}, and let L =
maxx∈X |x|. Furthermore, let t1, t2 ∈ supp(A) be two trees and let w1 ∈ pos(t1) and
w2 ∈ pos(t2) be two positions such that t1�w1

= t2�w2
. Then with t = t1�w1

we have

|JAK(t1)− JAK(t2)| ≤ L(|t1|+ |t2| − 2|t|+ 2).

Proof. Since A is deterministic, there exists exactly one run r1 ∈ AccA(t1) and
exactly one run r2 ∈ AccA(t2). Likewise, there exists exactly one run r ∈ RunA(t).
Due to t1�w1

= t2�w2
= t, we thus have r1�w1

= r2�w2
= r. It follows that

|JAK(t1)− JAK(t2)|

=
∣∣∣ ∑
w∈pos(t1)

µ(t(t1, r1, w)) + ν(r1(ε))−
(∑
w∈pos(t2)

µ(t(t2, r2, w)) + ν(r2(ε))
)∣∣∣

=
∣∣∣ ∑
w∈pos(t1)
¬(w1≤pw)

µ(t(t1, r1, w)) + ν(r1(ε))−
(∑
w∈pos(t2)
¬(w2≤pw)

µ(t(t2, r2, w)) + ν(r2(ε))
)∣∣∣

≤ L(|t1| − |t|+ 1) + L(|t2| − |t|+ 1)

= L(|t1|+ |t2| − 2|t|+ 2).

Next, we recall the twins property. Let Γ be a ranked alphabet. We begin by
introducing the concepts of siblings and twins. Intuitively, two states are called
siblings if they can be “reached” by the same tree. Two siblings are called twins if for

82 Chapter 4. Decidable Properties of Max-Plus Tree Automata

every Γ-word which can “loop” in both states, the maximal weight for the loop is the
same in both states.

Definition 4.28. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q
are called siblings if there exists a tree u ∈ TΓ such that RunA(u, p) 6= ∅ and
RunA(u, q) 6= ∅. We recall that RunA(u, p) and RunA(u, q) contain only valid runs.

Two siblings p, q are called twins if for every Γ-word s and weights

x = max
r∈Run�A(p,s,p)

wt�A(s, r) y = max
r∈Run�A(q,s,q)

wt�A(s, r),

we have x = y whenever x 6= −∞ and y 6= −∞ holds. Here, the maximum over the
empty set is −∞ by convention.

A max-plus-WTA is said to satisfy the twins property if all of its siblings are
twins. For unambiguous max-plus-WTA, the twins property is a criterion to decide
the sequentiality problem. An unambiguous max-plus-WTA possesses a deterministic
equivalent if and only if it satisfies the twins property. For words, this result is due
to [76, Theorem 12]. For trees, we cite the following theorem which states that the
twins property is a sufficient condition for determinizability.

Theorem 4.29 ([18, Lemma 5.10]). Let A be a trim unambiguous max-plus-WTA.
If A satisfies the twins property, there exists a deterministic max-plus-WTA A′ with
JAK = JA′K which can be effectively constructed.

The converse, namely that the twins property is also a necessary condition for
determinizability, follows from the Lipschitz property of deterministic max-plus
automata. For max-plus word automata, consider the following. If an unambiguous
max-plus word automaton A does not satisfy the twins property, we can find states
p and q which are siblings and not twins. We assume that our witnesses for this are
u and s as above. Then we consider words of the form w1 = usNvp and w2 = usNvq,
where vp and vq are two fixed words which lead from p and q, respectively, to some
final state. For every fixed L ∈ R, we can choose N sufficiently large to ensure
that |JAK(w1) − JAK(w2)| > |L|(|vp| + |vq| + 2). Due to the Lipschitz property of
deterministic max-plus-WA, it is thus not possible to determinize A if it does not
satisfy the twins property. For trees, we can proceed in the same way.

Lemma 4.30. Let A be a trim unambiguous max-plus-WTA. If there exists a deter-
ministic max-plus-WTA A′ with JAK = JA′K, then A satisfies the twins property.

Proof. We follow the idea for the proof of [76, Theorem 9]. Let A = (Q,Γ, µ, ν) be a
trim unambiguous max-plus-WTA and let p, q ∈ Q be siblings, i.e., there exists a tree
u ∈ TΓ and runs rp ∈ RunA(u, p) and rq ∈ RunA(u, q). Let s ∈ TΓ� be a Γ-word such
that p s|x−−→ p and q s|y−−→ q for weights x, y ∈ R. Since A is trim, there exist Γ-words
ûp, ûq ∈ TΓ� such that p ûp|zp−−−→ p′ and q ûq |zq−−−→ q′ for two final states p′, q′ ∈ Q and
weights zp, zq ∈ R. We let κp = wtA(u, rp)+zp+ν(p′) and κq = wtA(u, rq)+zq+ν(q′)

and for n ≥ 1 define the trees t(n)
p = ûp(s

n(u)) and t
(n)
q = ûq(s

n(u)). Due to the

4.5. The Sequentiality Problem 83

unambiguity of A, we see that for every n ≥ 1 we have

JAK(t(n)
p) = κp + nx

JAK(t(n)
q) = κq + ny.

Assume that there exists a deterministic max-plus-WTA A′ with JAK = JA′K. Then
by Lemma 4.27, there exists L ∈ R such that for all n ≥ 1 we have

|JAK(t(n)
p)− JAK(t(n)

q)| ≤ |L|(|ûp|+ |ûq|+ 2).

From the equations above we thus obtain that for every n ≥ 1 we have

|κp − κq + n(x− y)| ≤ |L|(|ûp|+ |ûq|+ 2).

This can only hold if x = y. It follows that A satisfies the twins property.

The twins property is decidable for both max-plus word automata [2, 6, 76, 77, 60]
and max-plus tree automata [17, Section 3]. Deciding whether a max-plus word
automaton satisfies the twins property is PSPACE-complete [60]. For max-plus tree
automata, the problem is thus PSPACE-hard, but no upper complexity bound is
stated in [17]. We cite the following theorem.

Theorem 4.31 ([18, Theorem 5.17][17, Section 3]). For an unambiguous max-plus-
WTA A it is decidable whether A satisfies the twins property.

Note that in general, it is undecidable whether two given siblings are twins [60],
but for unambiguous max-plus automata (and even polynomially ambiguous max-plus
automata), it was shown to be decidable on both words [2, Section 4] and trees [18,
Section 5.4]. As we will need this statement in Section 4.6, we provide a short direct
proof.

Lemma 4.32 ([18, Section 5.4]). Let A = (Q,Γ, µ, ν) be an unambiguous max-plus-
WTA. For every two states p, q ∈ Q it is decidable whether p and q are siblings and it
is decidable whether p and q are twins.

Proof. Let p, q ∈ Q be two states. First, to check whether p and q are siblings, we
see as follows that it suffices to check whether they can both be reached by a tree u
of height at most |Q|2. Assume we have a tree u ∈ TΓ and two runs rp ∈ RunA(t, p)
and rq ∈ RunA(t, q). If height(u) > |Q|2, then by pigeon hole principle, we can find
a simultaneous loop in rp and rq; that is, we can find two positions w1 <p w2 in u
with rp(w1) = rp(w2) and also rq(w1) = rq(w2). By removing everything between w1

and w2 from u, we obtain the smaller tree u〈u�w2
→ w1〉 which still reaches p and q.

If p and q are siblings, we see as follows that we only need to check Γ-words
s of height at most 4|Q|2 to decide whether p and q are twins. Assume p and q
are not twins and our witness for this is the Γ-word s with height(s) > 4|Q|2. Let
rp ∈ Run�A(p, s, p) be the run on s which loops in p with weight x = wt�A(s, rp) and
let rq ∈ Run�A(q, s, q) be the run on s which loops in q with weight y = wt�A(s, rq).
Furthermore, let w ∈ pos(s) with |w| = height(s) and let w′ ∈ pos(s) be the longest
common prefix of w and ♦1(s). Then either |w′| > 2|Q|2 or |w|−|w′| > 2|Q|2, or both.

84 Chapter 4. Decidable Properties of Max-Plus Tree Automata

In the first case, there exist two disjoint simultaneous loops in rp and rq above ♦1(s).
More precisely, by pigeon hole principle we can find positions w1 <p w2 ≤p w3 <p w4

with w4 ≤p w′ ≤p ♦1(s) in s for which (rp(w1), rq(w1)) = (rp(w2), rq(w2)) and
(rp(w3), rq(w3)) = (rp(w4), rq(w4)). In the second case, there exist two disjoint
simultaneous loops in rp and rq which are prefix-independent from ♦1(s). That is,
there exist positions w1 <p w2 ≤p w3 <p w4 with w′ <p w1 and w4 ≤p w in s for
which (rp(w1), rq(w1)) = (rp(w2), rq(w2)) and (rp(w3), rq(w3)) = (rp(w4), rq(w4)).

Let x12 and x34 be the weights of the loops in the run rp, and let y12 and y34 be
the weights of the loops in the run rq. We obtain a smaller Γ-word s′ and runs r′p
and r′q of distinct weights which loop in p and q, respectively, by removing either one
of the two loops or both loops as follows. If x− x12 6= y − y12, we remove the w1-w2

loop. Otherwise, if x − x34 6= y − y34, we remove the w3-w4 loop. If we have both
x−x12 = y−y12 and x−x34 = y−y34, we obtain that 2x−x12−x34 = 2y−y12−y34.
From x 6= y, it follows that x− x12 − x34 6= y − y12 − y34, so we remove both loops.
From the unambiguity of A, we see that these two runs are the only runs on the
smaller Γ-word, so we have found a smaller witness.

Finally, we present the main theorem of this section, namely the decidability of
the sequentiality problem for finitely ambiguous max-plus-WTA.

Theorem 4.33. For a finitely ambiguous max-plus-WTA A it is decidable whether
there exists a deterministic max-plus-WTA A′ with JAK = JA′K. If such an automaton
A′ exists, it can be effectively constructed.

Proof. Let A be a finitely ambiguous max-plus-WTA. Due to Theorem 4.15 we can
decide whether there exists an equivalent unambiguous max-plus-WTA. If this is not
the case, A can also not be determinizable. Otherwise, we can effectively construct
an unambiguous max-plus-WTA A′ with JAK = JA′K. Due to Theorem 4.31, we can
decide whether A′ satisfies the twins property, which according to Theorem 4.29 and
Lemma 4.30 is equivalent to deciding whether A is determinizable.

4.6. The Finite Sequentiality Problem 85

4.6 The Finite Sequentiality Problem

The finite sequentiality problem asks whether the behavior of a given max-plus-
WTA is finitely sequential. In other words, the finite sequentiality problem asks
whether for a given max-plus-WTA A, there exist finitely many deterministic max-
plus-WTA A1, . . . ,An such that JAK = maxni=1JAiK, where the maximum is taken
pointwise. In this section, we show that the finite sequentiality problem is decidable
for unambiguous max-plus-WTA. Moreover, if the behavior of an unambiguous
max-plus-WTA is finitely sequential, we will obtain that the deterministic max-
plus-WTA A1, . . . ,An can be effectively constructed. For the proof, we follow ideas
from [5], where the decidability of the finite sequentiality problem was proved for
unambiguous max-plus word automata. In [5], the fork property is shown to be
a decidable criterion to determine the existence of a finitely sequential equivalent.
More precisely, unambiguous max-plus word automata are shown to possess a finitely
sequential representation if and only if they do not satisfy the fork property. It is
shown elementarily that an unambiguous automaton satisfying the fork property
cannot possess a finitely sequential equivalent. The proof for the existence of a finitely
sequential representation in case that the fork property is not satisfied, on the other
hand, relies on the construction of finitely many unambiguous max-plus automata
whose pointwise maximum is equivalent to the original automaton, and which all
satisfy the twins property. Since every unambiguous max-plus automaton which
satisfies the twins property is determinizable [76], a finitely sequential representation
is found by determinizing the unambiguous automata.

The general outline of our proof is similar to that of [5] and presents itself as
follows. First, we generalize the fork property to the tree fork property by adding a
condition which accounts for the nonlinear structure of trees. We then prove that an
unambiguous max-plus tree automaton possesses a finitely sequential representation
if and only if it does not satisfy the tree fork property. Like in the word case, we can
use elementary proof methods to show that JAK is not finitely sequential if A satisfies
the tree fork property. To show that JAK is finitely sequential if A does not satisfy
the tree fork property, we also construct finitely many unambiguous max-plus tree
automata which satisfy the twins property and which thus possess a deterministic
equivalent. However, in comparison to [5] we need to take a different approach in order
to obtain these automata. In [5], a modified Schützenberger covering [100, 96, 97]
is first constructed from the unambiguous max-plus automaton, from which in turn
an automaton is constructed which monitors the occurrence of certain states of the
modified Schützenberger covering. This latter automaton is then decomposed into
the finitely many unambiguous automata. This approach, however, is not applicable
to trees, as the monitoring of states requires all relevant states to occur linearly.
This happens trivially for word automata due to the inherent linear structure of
words, but for tree automata examples can be found where relevant states occur
nonlinearly. The approach we use here relies on constructing a max-plus automaton
which tracks certain pairs of states of the original automaton. When applied to word
automata, this immediately yields an automaton which can be decomposed into the
desired unambiguous automata. Unfortunately, for tree automata this tracking of
pairs of states again fails due to states occurring nonlinearly. Surprisingly however,

86 Chapter 4. Decidable Properties of Max-Plus Tree Automata

our construction can be applied to the Schützenberger covering of the original tree
automaton, as the states relevant for tracking all occur pairwise linearly in the
Schützenberger covering. The most difficult part of our proof is to show that the
Schützenberger covering indeed has the property we just indicated.

For now, we introduce the tree fork property and show that it is decidable
whether an unambiguous max-plus-WTA A satisfies this property. Recall that an
unambiguous max-plus-WTA possesses a deterministic equivalent if and only if
it satisfies the twins property, i.e., if and only if all of its siblings are twins (see
Theorem 4.29 and Lemma 4.30). There exist unambiguous max-plus automata which
cannot be determinized, but whose behavior is finitely sequential [63, Section 3.1], see
also Figure 4.2. Thus, for the finite sequentiality problem we inevitably have to deal

p0 0 q0

00

a | 0

a | 0

a | 1

a | 1

Figure 4.2: A max-plus word automaton A over the alphabet {a} which is unam-
biguous, whose behavior is finitely sequential, but which does not satisfy the twins
property as p and q are siblings but not twins. The behavior JAK of A assigns 0 to
all words of odd length and |w| to all words w of even length.

with unambiguous automata in which not all siblings are twins. In the following, we
will call two such states rivals. For unambiguous automata, which are the only type
of max-plus-WTA we consider in this section, the following definition is equivalent to
being siblings and not twins.

Definition 4.34. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are
called rivals if there exists a tree u ∈ TΓ such that RunA(u, p) 6= ∅ and RunA(u, q) 6= ∅
and a Γ-word s such that p s|x−−→ p and q s|y−−→ q with x 6= y. In this case, u and s are
also said to be witnesses for the fact that p and q are rivals.

We do not have to consider a maximum over runs here since A is unambiguous.
Also note that by our definition of Run�A(s), we have x 6= −∞ and y 6= −∞ above.

Next, we introduce the tree fork property which, as we will show, is satisfied by an
unambiguous max-plus-WTA if and only if its behavior is not finitely sequential. The
property consists of two separate conditions. The first condition intuitively states
that there exist two rivals p and q and a Γ-word t which can loop in p, and which can
also lead from p to q. The second condition states that there exist two rivals which
can occur at prefix-independent positions.

Definition 4.35. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. We say that A satisfies
the tree fork property if at least one of the following two conditions is satisfied.

(i) There exist rivals p, q ∈ Q and a Γ-word t with p t|zp−−→ p and p t|zq−−→ q for weights
zp, zq ∈ R. In this case, t is also called a p-q-fork.

4.6. The Finite Sequentiality Problem 87

(ii) There exist rivals p, q ∈ Q, a 2-Γ-context t ∈ TΓ� , and a run r ∈ Run�A(t) with
r(♦1(t)) = p and r(♦2(t)) = q.

The tree fork property can be regarded as an extension of the fork property which
was introduced in [5] and which for max-plus word automata plays the same role as
the tree fork property does for max-plus tree automata. Condition (i) is essentially
a tree version of the fork property. Casually put, if we take only condition (i) and
replace “Γ-word” by “word”, we obtain the fork property. The automaton depicted in
Figure 4.3 is unambiguous and satisfies the fork property. Condition (ii) is new and
possesses no counterpart in the fork property.

p0 q 0
a | 0

a | 0
b | 1 b | −1

Figure 4.3: An unambiguous max-plus word automaton A over the alphabet {a, b}
which satisfies the fork property. With u = a and s = b, we see that p and q are
rivals, and a is a p-q-fork. All b’s after the last a in a word are treated differently
from the b’s before the last a. A deterministic automaton cannot “guess” which a is
the last in the word, and since there may be arbitrarily many a’s in a word, even
finitely many deterministic automata cannot compensate this inability to guess.

We have the following theorem which relates the tree fork property to the finite
sequentiality problem.

Theorem 4.36. Let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA
over Γ. Then there exist deterministic max-plus-WTA A1, . . . ,An over Γ with
JAK = maxni=1JAiK if and only if A does not satisfy the tree fork property. If
such automata A1, . . . ,An exist, they can be effectively constructed. In particular, the
finite sequentiality problem is decidable for unambiguous max-plus-WTA.

Proof. Here, we only show that it is decidable whether A satisfies the tree fork
property. The rest of the proof is deferred to Sections 4.6.1 and 4.6.2, where we show
that the behavior of A is finitely sequential if and only if A does not satisfy the tree
fork property.

To decide whether A satisfies condition (i), we first show that if there exists a p-q-
fork t for two rivals p and q, then there exists a p-q-fork t′ of height at most 2|Q|2. The
argumentation for this is similar to the proof of Lemma 4.32 that the property of being
siblings is decidable. Assume that t is a p-q-fork with height(t) > 2|Q|2 and that rp
and rq are runs that realize p t|zp−−→ p and p t|zq−−→ q for some weights zp, zq ∈ R. We let
w ∈ pos(t) be a position with |w| = height(t) and let w′ be the longest common prefix
of w and ♦1(t). Then either |w′| > |Q|2 or |w|− |w′| > |Q|2, or both. In the first case,
there exist by pigeon hole principle two positions w1 <p w2 in t with w2 ≤p w′ ≤p ♦1(t)
and (rp(w1), rq(w1)) = (rp(w2), rq(w2)). In the second case, there exist two positions
w1 <p w2 in t with w′ <p w1 and (rp(w1), rq(w1)) = (rp(w2), rq(w2)). By removing

88 Chapter 4. Decidable Properties of Max-Plus Tree Automata

the part of t between w1 and w2, we obtain that t′ = t〈t�w2
→ w1〉 is a p-q-fork as

well. Iterating this process, we obtain a p-q-fork of height at most 2|Q|2.
Next, we identify all pairs of rivals, which is possible since by Lemma 4.32, we

can decide for every pair of states whether they are siblings and not twins. Then, for
every pair of rivals p, q and all Γ-words t of height at most 2|Q|2, we check whether t
is a p-q-fork. If this yields no p-q-fork, A does not satisfy condition (i).

In order to decide whether A satisfies condition (ii), we first compute the relation
� on Q. This is possible since Q is a finite set and � is the smallest transitive and
reflexive relation satisfying µ(q1, . . . , qm, a, q0) 6= −∞ → q0 � qi for all transitions
(q1, . . . , qm, a, q0) ∈ ∆A and i ∈ {1, . . . ,m}. Then, by the trimness of A, condition (ii)
is satisfied if and only if there exist two rivals p and q, a transition (q1, . . . , qm, a, q0) ∈
∆A with µ(q1, . . . , qm, a, q0) 6= −∞, and indices i, j ∈ {1, . . . ,m} with i 6= j, qi � p,
and qj � q.

The following two sections are dedicated to completing the proof of Theorem 4.36.

4.6.1 Necessity

In this section, we show that if an unambiguous max-plus-WTA A satisfies either
condition (i) or condition (ii) of the tree fork property, then JAK is not finitely
sequential. We begin with condition (i) and show that an unambiguous max-plus-
WTA which satisfies condition (i) of the tree fork property does not possess a finitely
sequential representation. The following theorem and its proof are an adaptation of
[5, Theorem 2]. The proof relies on the Lipschitz property of deterministic max-plus
automata (see Lemma 4.27) and its approach is similar to the proof that the twins
property is a necessary condition for determinizability (see Lemma 4.30.

Theorem 4.37. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies
condition (i) of the tree fork property, then there do not exist deterministic max-plus-
WTA A1, . . . ,An over Γ with JAK = maxni=1JAiK.

Proof. For contradiction, assume that A satisfies condition (i) of the tree fork property
and that there exist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK =
maxni=1JAiK. We write Ai = (Qi,Γ, µi, νi) and let N = maxni=1 |Qi|. Let p, q, t, zp, zq
be as in condition (i) of the tree fork property and for the rivals p and q, let u, s, x, y
be as in the definition of rivals. We let rp ∈ RunA(u, p) and define zu = wtA(u, rp).
Furthermore, by trimness there exists a Γ-word û with q û|zû−−→ qf for some weight
zû ∈ R and some state qf ∈ Q with ν(qf) 6= −∞.

We define the constant L ∈ R to be the largest weight, in terms of absolute value,
which occurs in the automata A1, . . . ,An as follows. We let X =

⋃n
i=1 µi(∆Ai) ∪

νi(Qi) and define L = maxx∈X\{−∞} |x|. Furthermore, we define natural numbers
N0, . . . , Nn inductively as follows. We let Nn = 0 and if Nl+1, . . . , Nn are defined,

4.6. The Finite Sequentiality Problem 89

then we define Nl such that for all k ∈ {l + 1, . . . , n} we have

Nl|x− y| > L
(

(k − l)|t|+ (
k∑

i=l+1

Ni|s|) + 2|û|+ 2
)

+ (k − l)|zp|+ (
k−1∑
i=l+1

Ni|x|) +Nk|y|.

We define trees t′0, . . . , t′n inductively by t′0 = sN0(t(u)) and t′k+1 = sNk+1(t(t′k));
for clarity, in the word case we would have t′k = utsN0tsN1 · · · tsNk . Then for
k ∈ {1, . . . , n}, we let tk = û(t′k). Due to the unambiguity of A, we see that for every
k ∈ {1, . . . , n} we have

JAK(tk) = zu + kzp + (

k−1∑
i=0

Nix) + zq +Nky + zû + ν(qf).

Thus, for k > l, we have

|JAK(tk)− JAK(tl)| = |Nl(x− y) + (k − l)zp + (

k−1∑
i=l+1

Nix) +Nky|

≥ Nl|x− y| − (k − l)|zp| − (
k−1∑
i=l+1

Ni|x|)−Nk|y|

> L
(

(k − l)|t|+ (
k∑

i=l+1

Ni|s|) + 2|û|+ 2
)
.

Note that the first inequality is an application of the reverse triangle inequality. The
second inequality follows from the definition of Nl. Now let j ∈ {1, . . . , n}, then by
choice of L and because Aj is deterministic, we have by Lemma 4.27 that

|JAjK(tk)− JAjK(tl)| ≤ L
(

(k − l)|t|+ (

k∑
i=l+1

Ni|s|) + 2|û|+ 2
)
.

In conclusion, we have n+ 1 trees ti, and n automata Ai, so by pigeonhole principle
and the assumption that JAK = maxni=1JAiK, there must be j ∈ {1, . . . , n} and k, l ∈
{0, . . . , n} with k > l such that JAK(tk) = JAjK(tk) and JAK(tl) = JAjK(tl). However,
we have |JAK(tk)− JAK(tl)| > |JAjK(tk)− JAjK(tl)|, which is a contradiction.

Next, we address condition (ii) of the tree fork property. On words, states cannot
occur in prefix-independent positions. Thus, this condition is new for the tree case.
Intuitively, the reason that the behavior of an unambiguous max-plus-WTA A cannot
be finitely sequential if it satisfies condition (ii) is as follows. Assume we have a
2-Γ-context t and two rivals p and q as in condition (ii) and let u and s be as in
the definition of rivals. Then we can construct trees of the form t(sn(u), sn(u)) such
that, by increasing n, the difference between the weights on the two subtrees sn(u)
is arbitrarily large. However, every deterministic automaton necessarily assigns the
same weight to both subtrees.

90 Chapter 4. Decidable Properties of Max-Plus Tree Automata

Theorem 4.38. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies
condition (ii) of the tree fork property, then there do not exist deterministic max-plus-
WTA A1, . . . ,An over Γ with JAK = maxni=1JAiK.

Proof. For contradiction, we assume that A satisfies condition (ii) of the tree
fork property and that there exist deterministic max-plus-WTA A1, . . . ,An over
Γ with JAK = maxni=1JAiK. First, we construct a tree of the above mentioned form
t(sn(u), sn(u)) and choose n large enough to ensure that in each of the deterministic
automata, some sub-Γ-word sm of sn loops in some state. Then we show that every
choice of a weight for such a loop leads to a contradiction.

Let p, q, t, r be as in condition (ii) of the tree fork property, v1 = ♦1(t), and v2 =
♦2(t). For the rivals p and q, let u and s be as in the definition of rivals and v = ♦1(s).
We let rpu ∈ RunA(u, p), rqu ∈ RunA(u, q), rps ∈ Run�A(p, s, p), and rqs ∈ Run�A(q, s, q).
Furthermore, we write Ai = (Qi,Γ, µi, νi) and let N = maxni=1 |Qi|.

By the following argument, we may assume that ν(r(ε)) 6= −∞. By trimness,
there exists a Γ-word s′′ and a run r′′ ∈ Run�A(s′′) with r′′(♦1(s′′)) = r(ε) and
ν(r′′(ε)) 6= −∞. Thus, if ν(r(ε)) = −∞, we can consider the 2-Γ-context s′′(t) with
the run r′′〈r → ♦1(s′′)〉 instead of t and r.

We now consider the tree t′ = t(sN (u), sN (u)) together with the run

r′ = r〈(rps)N〈v〉〈rpu → vN 〉 → v1〉〈(rqs)N〈v〉〈rqu → vN 〉 → v2〉.

Since r′ ∈ RunA(t′) and ν(r′(ε)) 6= −∞, we have JAK(t′) 6= −∞, so for some
j ∈ {1, . . . , n} we have JAjK(t′) = JAK(t′). By pigeonhole principle, since N ≥ |Qj |,
we have r′(v1v

n1) = r′(v1v
n2) for some n1, n2 ∈ {0, . . . , N} with n1 < n2. Since Aj is

deterministic, we also obtain r′(v2v
n1) = r′(v2v

n2) = r′(v1v
n1). Let m = n2−n1 and

let x, y, z ∈ R be the weights such that p s|x−−→ p and q s|y−−→ q in A and r′(v1v
n1) sm|z−−−→

r′(v1v
n1) in Aj . In particular, x 6= y. We may assume that x < y. We consider two

cases.
First, if z ≥ m

2 (x+ y), then for the tree t+ = t(sN+m(u), sN (u)) we obtain
n

max
i=1

JAiK(t+) ≥ JAjK(t+) = JAjK(t′) + z

≥ JAjK(t′) +
m

2
(x+ y)

> JAjK(t′) +mx = JAK(t+).

For the other case, namely that z ≤ m
2 (x + y), we see that for the tree t− =

t(sN (u), sN−m(u)) we obtain
n

max
i=1

JAiK(t−) ≥ JAjK(t−) = JAjK(t′)− z

≥ JAjK(t′)−
m

2
(x+ y)

> JAjK(t′)−my = JAK(t−).

In both cases, we see that JAK = maxni=1JAiK does not hold, which is a contradiction.

Together, Theorems 4.37 and 4.38 show that if a trim unambiguous max-plus-WTA
satisfies the tree fork property, then its behavior is not finitely sequential.

4.6. The Finite Sequentiality Problem 91

4.6.2 Sufficiency

In this section, we show that the behavior of an unambiguous max-plus-WTA A
which does not satisfy the tree fork property is finitely sequential. For simplicity, we
begin with a description of our method of proof on max-plus word automata and
compare it to the proof method of Bala and Koniński [5].

Both proofs work by distributing the runs of A across a finite set of unambiguous
max-plus word automata such that all of these automata satisfy the twins property.
This distribution essentially has the aim of separating the rivals ofA. By Theorem 4.29,
these unambiguous automata can then be determinized. The major difference between
our approach and that of [5] lies in the way we obtain these unambiguous automata. To
understand our approach, let p and q be two rivals of A. Furthermore, let u = u1 · · ·un
be a word for which there exist valid runs rp = p0 u1−→ p1 u2−→ . . . un−1−−−→ pn−1 un−→ p
and rq = q0 u1−→ q1 u2−→ . . . un−1−−−→ qn−1 un−→ q of A on u. We also define pn = p and
qn = q.

We now show that the first occurrence of either p or q in the runs rp and rq serves
as a “distinguisher” between the two runs. We let i be the smallest index with the
property that pi ∈ {p, q}. Similarly, we let j be the smallest index with the property
that qj ∈ {p, q}. We obtain valid runs pi ui+1···un−−−−−→ p and qj uj+1···un−−−−−−→ q.

Now assume it would hold that i = j and pi = qj , i.e., the first occurrences are
at the same position in the word, and also the states at this position are the same
in both runs. Then with t = ui+1 · · ·un, we see that we have valid runs pi t−→ p
and pi t−→ q, where pi ∈ {p, q}. Thus, A would satisfy the fork property. Since our
assumption is that A does not satisfy the fork property, we have either i 6= j or
pi 6= qj .

This fundamental property is also used in the corresponding proof of [5], but
our way of exploiting it differs from [5]. In their proof for word automata, Bala
and Koniński use this property implicitly to show that certain states of a modified
Schützenberger covering of A occur at most once in every run [5, Lemma 6]. They
can therefore construct a new max-plus automaton which for each run keeps a record
of all occurrences of these states. The above mentioned unambiguous automata are
then obtained by separating runs with differing records into different automata. For
tree automata, the number of these occurrences is unfortunately not bounded, for
reasons which we will also indicate below.

For now, we continue outlining our new approach, which is to construct an
automaton which adds a distinguishing marker to every run when first encountering
one of the rivals p or q. This marker consists of a number, which is used to distinguish
occurrences at different positions, and the state from {p, q} which was visited first.
Whenever reading a letter which causes some valid run to visit p or q for the first
time, the automaton selects the smallest marker which was not used by any valid
run on the prefix read so far, and annotates it to the run. For example, assume that
neither p nor q occur in any valid run the word u, but that our run r on ua leads
to p. Then r obtains the marker 1p. Now assume there is a valid run on uaa which
leads to p and which visited neither p nor q before that. Then this run obtains the
marker 2p, since 1p is already assigned to r. Next, assume that after reading uaaa
another marker for p has to be assigned, and that r cannot be extended to a valid

92 Chapter 4. Decidable Properties of Max-Plus Tree Automata

run on uaa. Then we assign the marker 1p, as now no valid run on uaa exists to
which the marker 1p is assigned. See Figure 4.4 for an example of this annotation
process on the word aaa for the automaton depicted there.

q0

00

p

00

q 0

00

a | 0

a | 0

a | 0

b | 1 b | −1

q0 q0 q0 q0

p, 1p p, 2p p, 3p p, 1p

q, 1q q, 1p q, 2p q, 3p

a a a

Figure 4.4: On the left, an unambiguous max-plus word automaton over the alphabet
{a, b} which does not satisfy the twins property but whose behavior is finitely
sequential. On the right, an illustration of the runs of the automaton on the words ε,
a, aa, and aaa together with appropriate markers. Arrows indicate a transition. The
states p and q are rivals with witnesses u = ε and s = b.

With this procedure, runs like rp and rq above receive different markers since
either one run obtains a marker later than the other, and therefore a different marker,
or at least the states they visit first are different, which also leads to different markers.
To separate the rivals of A, we can thus make a copy of A for every marker, and
only allow runs which carry the respective automaton’s marker. Whenever a different
marker would be assigned, the execution of the run is blocked.

Note here that the number of markers we need for this annotation process is
bounded. Since the automaton A is unambiguous, the number of valid runs on every
given word is bounded by the number of states in A. If this were not the case, there
would exist two distinct valid runs on the same word which lead to the same state,
from which a counterexample to the unambiguity of A could be constructed. In
particular, the number of markers assigned at any given “time” is bounded by the
number of states of A.

All of this can easily be generalized to the situation where there is more than
one pair of rivals. Then, runs simply obtain a marker for each pair of rivals of the
automaton, and the copies of A allow a distinguished marker for each of these pairs.

Unfortunately, these ideas do not translate to trees as easily. For example, consider
the runs in Figure 4.5. Intuitively, both runs should obtain the marker 1p. However,
since p and q are rivals, this marker does not serve the purpose of distinguishing runs
as it does in the word case. The first p occurs in different subtrees of both runs, thus
the annotation of distinct markers is not possible. Also, it is easy to construct an
automaton where a rival p can occur at arbitrarily many pairwise prefix-independent
positions, thus a simple lexicographic distinction is not possible. This is also the
reason why the approach from [5] does not work for tree automata.

Our solution is to distribute not the runs of the automaton A, but the runs of its
Schützenberger covering. The Schützenberger covering of a max-plus automaton A is
a max-plus automaton which possesses the same behavior as A. It has already been
employed in a number of decidability results for max-plus automata [63, 5, 4, 85]. Its

4.6. The Finite Sequentiality Problem 93

ν(q) = 0

µ(p, a, q) = 0

µ(p, b, p) = 1

µ(q, b, q) = −1

µ(p, q0, c, p) = µ(q0, p, c, q) = 0

µ(d, p) = µ(d, q0) = 0

a

b

c

d d

b

b

c

d d

q

p

p

p q0

q

q

q

q0 p

Figure 4.5: Two accepting runs of the max-plus tree automaton A = ({q0, p, q},Γ, µ, ν)
over the ranked alphabet Γ = {a, b, c, d} where c ∈ Γ(2), a, b ∈ Γ(1), and d ∈ Γ(0). All
unspecified weights are assumed to be −∞. The states p and q are rivals.

construction is inspired by a paper of Schützenberger [100] and was made explicit by
Sakarovitch in [96], see also [97].

To better explain the idea behind its construction, we first point out a certain
aspect of the classical powerset construction for finite automata [89]. Assume that D
is the result of applying the powerset construction to an NFA B. Then we might say
that for a word w = w1w2, the state which D is in after reading the prefix w1 is the
set of all states which B could be in after reading w1. Similarly, the Schützenberger
covering of a max-plus automaton A annotates to every state of a run of A on a word
w the set of all states which “A could be in” at this point, i.e., which can be reached
by some valid run on the considered prefix of w. Like the powerset construction,
these ideas easily carry over to trees.

The reason we consider the Schützenberger covering of A is that each pair p,q
of its rivals satisfies the following property. For every tree t, either (1) p and q do
not occur together in any run on t or (2) p and q occur only linearly, i.e., there is a
distinguished branch of t such that for every run on t, all occurrences of p and q lie
on this branch. In particular, the situation of Figure 4.5 is not possible. All pairs
which satisfy the first condition can simply be separated into different automata, all
pairs which satisfy the second condition can be handled like in the word case. The
proof of this is non-trivial and needs some preparation. We begin with the formal
definition of the Schützenberger covering.

For the rest of this section, let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-
WTA which does not satisfy the tree fork property.

Definition 4.39 (Schützenberger covering, [96]). The Schützenberger covering S =
(QS ,Γ, µS , νS) of A is the trim part of the max-plus-WTA (Q×P(Q),Γ, µ′, ν ′) defined
for a ∈ Γ with rkΓ(a) = m and (p0, P0), . . . , (pm, Pm) ∈ Q× P(Q) by

µ′((p1, P1), . . . , (pm, Pm), a, (p0, P0)) =
µ(p1, . . . , pm, a, p0) if P0 = {q0 ∈ Q | ∃(q1, . . . , qm) ∈ P1 × . . .× Pm with

µ(q1, . . . , qm, a, q0) 6= −∞}
−∞ otherwise

94 Chapter 4. Decidable Properties of Max-Plus Tree Automata

a

b

c

d d

b

b

c

d d

(q, {q})

(p, {p, q})

(p, {p, q})

(p, {p, q0}) (q0, {p, q0})

(q, {p, q})

(q, {p, q})

(q, {p, q})

(q0, {p, q0}) (p, {p, q0})

Figure 4.6: Two accepting runs of the Schützenberger covering of the automaton
from Figure 4.5. The states (p, {p, q}) and (q, {p, q}) are rivals. The state (p, {p, q0})
is not the rival of any state.

ν ′(p0, P0) = ν(p0).

We let π1 : Q× P(Q) → Q, (p, P) 7→ p and π2 : Q× P(Q) → P(Q), (p, P) 7→ P be
the projections.

It is elementary to show that for a run of S on a tree t, the second entry of the
state at a position w consists of all states of A which can be reached by a valid run
of A on t�w. In particular, every two runs on the same tree coincide on their second
entries. Furthermore, projecting all states of a run of S to their first coordinate yields
a run of A, and the weights of these runs coincide. It follows that S is unambiguous
and satisfies JSK = JAK. Also, S is trim by definition.

We can also make the following observation about the rivals of S. Let p and q be
rivals of S and let u and s be as in the definition of rivals. Since all runs of S on u
coincide on the second entry of the state at the root, p and q also coincide on their
second entry. Moreover, as projecting the runs of S on u and s to their first entries
yields runs of A on u and s, respectively, we additionally see that the first entries of
p and q are rivals in A. Thus, if two states p,q ∈ QS are rivals in S, then p = (p, P)
and q = (q, P) for some set P ⊆ Q and two states p, q ∈ Q which are rivals in A.

In the Schützenberger covering of the automaton from Figure 4.5, only the
states (p, {p, q}) and (q, {p, q}) are rivals. See also Figure 4.6 for the runs of the
Schützenberger covering on the trees from Figure 4.5. In the following lemma, we
formally show that the properties we just described indeed hold for S.

Lemma 4.40. Let t ∈ TΓ be a tree. Then the following statements hold.

(i) For every run r ∈ RunS(t) and position w ∈ pos(t) we have π2 ◦ r(w) = {p ∈
Q | ∃r′ ∈ RunA(t�w, p)}.

(ii) For every two runs r1, r2 ∈ RunS(t), it holds that π2 ◦ r1 = π2 ◦ r2.

(iii) The projection π1 induces a bijection π1 : RunS(t)→ RunA(t) by r 7→ π1 ◦ r.

(iv) For every run r ∈ RunS(t) and every position w ∈ pos(t), we have π1 ◦ r(w) ∈
π2 ◦ r(w).

4.6. The Finite Sequentiality Problem 95

(v) S is trim, unambiguous, and satisfies JSK = JAK.

(vi) For every Γ-word s and two states p,q ∈ QS with p s|x−−→ q, we have π1(p) s|x−−→
π1(q).

(vii) If two states p,q ∈ QS are rivals in S, then p = (p, P) and q = (q, P) for
some set P ⊆ Q and two states p, q ∈ Q which are rivals in A.

Proof. (i) Let t ∈ TΓ and r ∈ RunB(t) and for contradiction, let w ∈ pos(t) be a
prefix-maximal position for which (i) does not hold. We deduce that (i) holds for
w. We let a = t(w), m = rkΓ(a), and write r(w) = (p, P) and r(wi) = (pi, Pi) for
i ∈ {1, . . . ,m}.

First, let q ∈ P , then there are states (q1, . . . , qm) ∈ P1 × . . . × Pm with
µ(q1, . . . , qm, a, q) 6= −∞. By assumption, for every i ∈ {1, . . . ,m} we find a run
ri ∈ RunA(t�wi, qi). Then the quasi-run r′ : pos(t�w)→ Q defined by r′(ε) = q and
r′(iv) = ri(v) is a run of A on t�w with r′(ε) = q.

On the other hand, let r′ ∈ RunA(t�w) and let q = r′(ε). Then for every
i ∈ {1, . . . ,m} we have that r′�i ∈ RunA(t�wi), so by assumption, r′(i) ∈ Pi. More-
over, µ(r′(1), . . . , r′(m), a, q) 6= −∞, so q ∈ P . Thus, (i) holds for w, which is a
contradiction, so w does not exist.

(ii) follows from (i).

(iii) Let t ∈ TΓ. By definition of µS , it is clear that for r ∈ RunS(t) we have
π1 ◦ r ∈ RunA(t). The injectivity of π1 : RunS(t)→ RunA(t) follows from (ii) since
for every two runs r1, r2 ∈ RunS(t) we have π2 ◦ r1 = π2 ◦ r2. For surjectivity, we
let r′ ∈ RunA(t) and define a run r ∈ RunS(t) inductively as follows. For a leaf
w ∈ pos(t), we let r(w) = (r′(w), {p0 ∈ Q | µ(t(w), p0) 6= −∞}). For w ∈ pos(t) with
rkΓ(t(w)) = m such that r is defined on w1, . . . , wm with π2 ◦ r(wi) = Pi, we let
r(w) = (r′(w), {p0 ∈ Q | ∃(p1, . . . , pm) ∈ P1 × . . . × Pm with µ(p1, . . . , pm, a, p0) 6=
−∞}). Then r ∈ RunS(t) and π1 ◦ r = r′.

(iv) follows from (i) and (iii).

(v) S is trim by definition. Let t ∈ TΓ. By definition of µS , for every run
r ∈ RunS(t) we have wtS(t, r) = wtA(t, π1 ◦ r). By definition of νS , we also have
νS(r(ε)) = ν(π1 ◦ r(ε)). By (iii), we thus have |AccS(t)| = |AccA(t)| ≤ 1, which
means S is unambiguous, and JSK(t) = JAK(t).

(vi) Let s be a Γ-word and p,q ∈ QS be two states with p s|x−−→ q, then there
exists a run r ∈ Run�S(p, s,q) with wt�S(s, r) = x. By definition of µS , we have
π1 ◦ r ∈ Run�A(s) and wt�S(s, r) = wt�A(s, π1 ◦ r), so π1(p) s|x−−→ π1(q).

(vii) Let p,q ∈ QS be rivals in S and write p = (p, Pp), q = (q, Pq). Let
u ∈ TΓ and s ∈ TΓ� be as in the definition of rivals and let rp ∈ RunS(u,p) and
rq ∈ RunS(u,q). By (ii), we have Pp = π2 ◦ rp(ε) = π2 ◦ rq(ε) = Pq. By (iii), we
have π1 ◦ rp ∈ RunA(u, p) and π1 ◦ rq ∈ RunA(u, q), so p and q are siblings. Finally,
from (p, Pp) s|x−−→ (p, Pp) and (q, Pq) s|y−−→ (q, Pq), we obtain by (vi) that p s|x−−→ p and
q s|y−−→ q. Since x 6= y, p and q are rivals in A.

96 Chapter 4. Decidable Properties of Max-Plus Tree Automata

In the theorems to follow, we will use fact (vii) of Lemma 4.40 without explicit
further notice.

In order to prove some deeper results about the rivals of S, we need two preparatory
lemmata. As a first simplification, we show that we may assume that two rivals p and
q of A are always comparable with respect to the relation �. To see this, note that by
condition (ii) of the tree fork property, p and q may not occur in prefix-independent
positions in a run. If in addition, p and q can also not appear in prefix-dependent
positions in a run, they never appear together in the same run of A. Thus, we can
create two copies of A, one in which we remove p and one in which we remove q, and
the pointwise maximum of these two automata will be equivalent to the behavior of
A.

Lemma 4.41. We may assume that for all rivals p, q ∈ Q we have either p � q or
q � p, or both.

Proof. Let p, q ∈ Q be rivals for which neither p � q nor q � p. Then we can show
that p and q never occur together in the same run as follows. Assume we have
a tree t ∈ TΓ, a run r ∈ RunA(t), and positions w1, w2 ∈ pos(t) with r(w1) = p
and r(w2) = q. Then w1 and w2 may not be prefix-independent since p and q are
rivals, and by assumption A does not satisfy condition (ii) of the tree fork property.
However, if w1 and w2 are prefix-dependent, we have a witness for either p � q or
q � p. This is a contradiction, and thus r as chosen does not exist.

We let Q1 = Q \ {p}, Q2 = Q \ {q}, and let Ai = (Qi,Γ, µi, νi) for i = 1, 2, where
µi and νi are the appropriate restrictions of µ and ν to the state sets Qi. As p and q
do not occur together in any run of A, every run of A is also a run of at least one
of the automata A1,A2. Thus, we have JAK = max2

i=1JAiK and both A1 and A2 are
trim and unambiguous and do not satisfy the tree fork property.

This procedure can be iterated to separate all rivals which are not in �-relation.
The termination of this procedure is guaranteed by the fact that the set of states
becomes strictly smaller with every iteration. Eventually, we find trim unambiguous
max-plus-WTAA1, . . . ,An, all of which do not satisfy the tree fork property, such that
JAK = maxni=1JAiK and all rivals in an automaton Ai are pairwise in �-relation.

Next, we note an elementary statement about self-maps f : X → X. Namely, if
X is a finite set and f : X → X a mapping, then for every a ∈ X there exists some
element b ∈ X and an integer n ≥ 1 such that after n iterations of f , both a and b
are mapped to b. To see this, consider the elements a, f(a), f2(a), . . . , f |X|(a). By
pigeon hole principle, there are numbers 0 ≤ m1 < m2 ≤ |X| with fm1(a) = fm2(a).
Then if we choose n ≥ m1 as a multiple of m2 − m1 and b = fn(a), we see that
fn(a) = b = fn(b).

Lemma 4.42. Let X be a finite set and f : X → X a mapping. Then for every
a ∈ X, there exists an element b ∈ X and an integer n ≥ 1 with fn(a) = b = fn(b).
Here, fn is the n-th iterate of f , i.e., f0 = idX and fm+1 = f ◦ fm.

We now identify the first important property which all rivals of S satisfy. Namely,
if P ⊆ Q is the second entry of some rival, then it cannot occur in the form of a

4.6. The Finite Sequentiality Problem 97

“triangle” in any valid run of S. More precisely, if we have a run r and positions w,
wv1, and wv2 such that the second entry of r(w), r(wv1), and r(wv2) is P , then wv1

and wv2 are prefix-dependent.

Lemma 4.43. Let (p, P), (q, P) ∈ QS be rivals in S. Furthermore, let t′ ∈ TΓ be
a tree, r′ ∈ RunS(t′) a run of S on t′, and w1, w2 ∈ pos(t′) be positions in t′. If
π2 ◦ r′(ε) = π2 ◦ r′(w1) = π2 ◦ r′(w2) = P , then w1 and w2 are prefix-dependent.

Proof. We proceed by contradiction and assume that t′, r′, w1, w2 as in the statement
of the lemma exist such that w1 and w2 are prefix-independent. We show that then,
A satisfies condition (i) of the tree fork property. For the rivals (p, P) and (q, P),
let u and s be as in the definition of rivals and let v = ♦1(s). As the proof is rather
technical, we first provide a proof sketch and then follow up with a more precise
presentation of the argumentation. See also Figure 4.7 for some visual aid.

By assumption, u can reach (p, P) and s can loop in (p, P), thus the trees s|P |(u)

and s|P |
|P |

(u) can reach (p, P). Due to the construction of S, this means both of
these trees can also reach the states of r′ at w1 and w2. In particular, there exists
a run of S on the tree t = t′〈s|P |(u) → w1〉〈s|P |

|P |
(u) → w2〉 and for this run, the

second entry of every state at the beginning or end of an s-loop is P . In addition, t
leads to a state with second entry P , so there in fact exist |P | runs of S on t, one
for each state in P . We let r1, . . . , r|P | be the projections of these runs to their first
entry and obtain |P | runs of A on t where for each run the state at the root and all
states at the beginning or end of an s-loop are from P .

By pigeonhole principle, there is some subloop sn below w2 which loops in all
runs at the same time, i.e., where for some n1 we have ri(w2v

n1) = ri(w2v
n1+n) for

all runs ri. For each ri, we let qi = ri(w2v
n1) ∈ P be the state which ri loops in and

let xi be the weight of this loop.
If xi 6= xj for some i and j, the states qi and qj are rivals in A with witnesses

u and sn. By Lemma 4.41, we may therefore assume qi � qj . Again by pigeon hole
principle, the run ri loops below w1 in sm for some m ≥ 1 with some state pi ∈ P ,
say with weight yi. Due to xi 6= xj , we have mxi 6= nyi or mxj 6= nyi. Since u can
reach every state from P , the state pi is thus a rival of qi or qj with witnesses u and
snm. From the existence of ri and the assumption that qi � qj , we see that pi can
occur prefix-independently both from qi and from qj . This is a contradiction to the
assumption that A does not satisfy the tree fork property. It must therefore hold
that x1 = . . . = x|P |.

We let x and y be the weights such that A loops s in p with weight x and in q
with weight y. Then from x 6= y it follows that nx 6= x1 or ny 6= x1, so the states qi
are either all rivals of p or all rivals of q with witnesses u and sn. We assume all qi to
be rivals of p and apply Lemma 4.42 to the mapping f : P → {q1, . . . , q|P |}, ri(ε) 7→ qi
with a = p to obtain qj ∈ P and m ≥ 1 such that fm(p) = qj = fm(qj). Then
with s̃ = t〈� → w2v

n1〉, we see that the Γ-word s̃m is a qj-p-fork, i.e., A satisfies
condition (i) of the tree fork property.

We now turn to the more technical presentation of the proof. We define the
tree t = t′〈s|P |(u) → w1〉〈s|P |

|P |
(u) → w2〉 and construct a run r ∈ RunS(t) of S

on t as follows. By assumption, there exists a run rp ∈ RunS(u, (p, P)) and a run

98 Chapter 4. Decidable Properties of Max-Plus Tree Automata

t′ t(,P)

(,P) (,P)

(,P)

(,P) (,P)
w1 w2

(,P)

s

..
.

s

u

s

..
.

s

u

s|P | s|P |
|P |

Figure 4.7: An illustration for the proof of Lemma 4.43.

rs ∈ Run�S((p, P), s, (p, P)). We let r′1 = r
|P |〈v〉
s 〈rp → v|P |〉 and r′2 = r

|P ||P |〈v〉
s 〈rp →

v|P |
|P |〉. Then r′1 ∈ RunS(s|P |(u), (p, P)) and r′2 ∈ RunS(s|P |

|P |
(u), (p, P)).

By Lemma 4.40(iv), we have π1 ◦ r′(w1), π1 ◦ r′(w2) ∈ P , so by Lemma 4.40(i)
we can find r′′1 ∈ RunA(s|P |(u)) with r′′1(ε) = π1 ◦ r′(w1) and r′′2 ∈ RunA(s|P |

|P |
(u))

with r′′2(ε) = π1 ◦ r′(w2). Then r = r′〈π−1
1 (r′′1)→ w1〉〈π−1

1 (r′′2)→ w2〉 ∈ RunS(t) is a
run of S on t and we have π2 ◦ r(w1v

i) = P for 0 ≤ i ≤ |P | and π2 ◦ r(w2v
i) = P for

0 ≤ i ≤ |P ||P |.
By Lemma 4.40(i) and because π2 ◦ r(ε) = P , we can now find |P | runs

r1, . . . , r|P | ∈ RunA(t) on t such that {r1(ε), . . . , r|P |(ε)} = P . We have rj(w2v
i) ∈ P

for every j ∈ {1, . . . , |P |} and every i ∈ {0, . . . , |P ||P |}. For each i ∈ {0, . . . , |P ||P |},
we define the tuple q̄i = (r1(w2v

i), . . . , r|P |(w2v
i)). Since q̄i ∈ P |P | for every i, we

can find n1 < n2 with q̄n1 = q̄n2 by pigeonhole principle. Let n = n2 − n1 and write
q̄n1 = (q1, . . . , q|P |).

We now show that q1, . . . , q|P | are either all rivals of p, or they are all rivals
of q. For this, note first that qj sn|xj−−−→ qj for all j ∈ {1, . . . , |P |} with weights
x1, . . . , x|P | ∈ R. Also, by the existence of the run rp on u and Lemma 4.40(i), all
states in P are siblings.

We show first that x1 = . . . = x|P |. We assume that by contradiction, xi 6= xj for
some i 6= j. Then qi and qj are rivals in A with witnesses u and sn. By Lemma 4.41,
we can therefore assume that qi � qj or qj � qi. We assume qi � qj and let sij
be a Γ-word such that there exists a run rij ∈ Run�S(qj , s

i
j , qi). Furthermore, by

pigeonhole principle, we can find m1,m2 ∈ {0, . . . , |P |} with ri(w1v
m1) = ri(w2v

m2)
and m1 < m2. We let pi = ri(w1v

m1) and m = m2 −m1 and show that pi is a rival
of either qi or qj . We have pi sm|yi−−−→ pi for some weight yi ∈ R. Since pi ∈ P , we know
that pi, qi, and qj are all siblings. Also, we have pi snm|nyi−−−−−→ pi, qi snm|mxi−−−−−→ qi, and
qj snm|mxj−−−−−→ qj . Since xi 6= xj , we have nyi 6= mxi or nyi 6= mxj , or both. Thus, pi is
a rival of either qi or of qj .

Under these assumptions, we see that A satisfies condition (ii) of the tree fork
property as follows. Either the 2-Γ-context t1 = t〈� → w1v

m1〉〈� → w2v
n1〉 to-

gether with the run ri�pos(t1) or the 2-Γ-context t2 = t1(�, sij) together with the
run ri�pos(t1)〈rij → ♦2(t1)〉 is a witness for condition (ii) to be satisfied. Since our
assumption for this section is that A does not satisfy the tree fork property, this is a
contradiction. In conclusion, x1 = . . . = x|P |.

4.6. The Finite Sequentiality Problem 99

To see that q1, . . . , q|P | are either all rivals of p, or they are all rivals of q, consider
the following. Using the same arguments as above, we find for every i ∈ {1, . . . , |P |}
a run rqi ∈ RunA(u, qi). Furthermore, we have p sn|nx−−−→ p, q sn|ny−−−→ q, and qi sn|x1−−−→ qi
for every i ∈ {1, . . . , |P |}. Since x 6= y, we have either nx 6= x1 or ny 6= x1. Without
loss of generality, we assume nx 6= x1, thus all qi are rivals of p.

We now show that A satisfies condition (i) of the tree fork property. We de-
fine a mapping f : P → {q1, . . . , q|P |} by ri(ε) 7→ qi for i ∈ {1, . . . , |P |}; recall
that {q1, . . . , q|P |} ⊆ P , {r1(ε), . . . , r|P |(ε)} = P , and ri(ε) 6= rj(ε) for i 6= j. By
Lemma 4.42, there exists m ≥ 1 and i ∈ {1, . . . , |P |} with fm(p) = qi = fm(qi).
From this, we obtain that with s̃ = t〈� → w2v

n1〉 we have qi s̃m|z−−−→ qi and qi s̃m|z′−−−→ p
for weights z, z′ ∈ R. As p and qi are rivals, this means that A satisfies condition (i)
of the tree fork property.

In the previous lemma, we showed that if P is the second entry of some rival
from S, then states with second entry P do not occur in the form of a triangle. In
the next lemma, we show that even prefix-independent occurrences are restricted to
a certain degree. Namely, if we have two rivals (p, P) and (q, P) with p � q, then all
occurrences of P as a second entry are prefix-dependent on (p, P).

Lemma 4.44. Let (p, P), (q, P) ∈ QS be rivals in S with p � q. Furthermore, let
t′ ∈ TΓ be a tree, r′ ∈ RunS(t′) a run of S on t′, and w1 ∈ pos(t′) a position in
t′ with r′(w1) = (p, P). Then all positions w2 ∈ pos(t′) with π2 ◦ r′(w2) = P are
prefix-dependent on w1.

Proof. We proceed by contradiction and take (p, P), (q, P), t′, r′, w1 as in the state-
ment of the lemma and assume that there exists a position w2 ∈ pos(t′) which is
prefix-independent from w1 and for which π2 ◦ r′(w2) = P . We show that under these
assumptions, A satisfies condition (ii) of the tree fork property. For the rivals (p, P)
and (q, P), let u and s be as in the definition of rivals and let v = ♦1(s). As in the
proof of the previous lemma, we first provide a short proof sketch, see also Figure 4.8
for some visual aid.

As we have seen in the proof of Lemma 4.43, the tree s|P |(u) can reach (p, P),
so due to the construction of S, it can also reach the state of r′ at w2. Thus, there
exists a run of S on the tree t = t′〈s|P |(u)→ w2〉 for which the state at w1 is (p, P)
and for which the second entry of every state at the beginning or end of an s-loop is
P . We let r be the projection of this run to the first entries of the states.

By pigeonhole principle, we find some subloop sn below w2 in r which loops in a
state p′ ∈ P . Let z be the weight of this loop and let x and y be the weights such
that A loops s in p with weight x and in q with weight y. Due to x 6= y, we have
nx 6= z or ny 6= z. Since u can reach every state from P , the state p′ is a rival of p or
q with witnesses u and sn. From the fact that r(w1) = p and the assumption that
p � q, we see that p′ can occur prefix-independently both from p and from q. This is
a contradiction to the assumption that A does not satisfy the tree fork property.

In more detail, the proof is as follows. We define the tree t = t′〈s|P |(u) → w2〉
and construct a run r ∈ RunA(t) of A on t as follows. By assumption, there

100 Chapter 4. Decidable Properties of Max-Plus Tree Automata

t′ t

(p,P) (,P) (p,P) (,P)
w1 w2

(q,P)

u

(,P)

s

..
.

s

u

s|P |

Figure 4.8: An illustration for the proof of Lemma 4.44.

exists a run rp ∈ RunS(u, (p, P)) and a run rs ∈ Run�S((p, P), s, (p, P)). We let
r′2 = r

|P |〈v〉
s 〈rp → v|P |〉. Then r′2 ∈ RunS(s|P |(u), (p, P)).

By Lemma 4.40(iv), we have π1 ◦ r′(w2) ∈ P , so by Lemma 4.40(i) we can find
r′′2 ∈ RunA(s|P |(u)) with r′′2(ε) = π1 ◦ r′(w2). Then r = π1(r′)〈r′′2 → w2〉 ∈ RunA(t)
is a run of A on t and we have r(w2v

i) ∈ P for 0 ≤ i ≤ |P |.
By pigeonhole principle, we can find n1, n2 ∈ {0, . . . , |P |} with r(w2v

n1) =
r(w2v

n2) and n1 < n2. We let p′ = r(w1v
n1) and n = n2 − n1 and show that p′ is a

rival of either p or q. We know that p′ sn|z−−→ p′ for some weight z ∈ R. Since p′ ∈ P ,
we can also find a run rp′ ∈ RunA(u, p′) which means that p′ is a sibling of both p
and q. We now have p′ sn|z−−→ p′, p sn|nx−−−→ p, and q sn|ny−−−→ q. Since x 6= y, we have
nx 6= z or ny 6= z, or both. Thus, p′ is a rival of either p or of q.

We see that A satisfies condition (ii) of the tree fork property as follows. Since
we assumed p � q, there exists a Γ-word spq and a run rpq ∈ Run�A(q, spq , p). Therefore,
either the 2-Γ-context t1 = t〈� → w1〉〈� → w2v

n1〉 together with the run r�pos(t1) or
the 2-Γ-context t2 = t1(spq , �) together with the run r�pos(t1)〈r

p
q → ♦1(t1)〉 is a witness

for condition (ii) to be satisfied. Since our assumption for this section is that A does
not satisfy the tree fork property, this is a contradiction.

We can now prove that every run of S satisfies at least one of the following two
conditions. If (p, P) and (q, P) are rivals in S with p � q, then for every run r of S
on a tree t either (i) (p, P) does not occur in r or (ii) all states with second entry P
occur along a distinguished branch of t. This property enables us to apply the idea
from the word case of using markers to indicate the first visit of a rival in a run. If u
is a witness for (p, P) and (q, P) to be siblings, there is in particular a run on u which
leads to (p, P). This run then satisfies condition (ii) and since by Lemma 4.40(ii) the
second entries of runs on the same tree coincide, all states with second entry P occur
along a distinguished branch of u in every run of S on u. This is true in particular
for the two rivals (p, P) and (q, P).

Theorem 4.45. Let (p, P), (q, P) ∈ QS be rivals in S with p � q. Then for every
tree t ∈ TΓ and every run r ∈ RunS(t) of S on t, at least one of the following two
conditions holds.

(i) The state (p, P) does not occur in r, i.e., r(w) 6= (p, P) for all w ∈ pos(t).

(ii) All states with second entry P occur linearly in r, i.e., for all w1, w2 ∈ pos(t)
with π2 ◦ r(w1) = π2 ◦ r(w2) = P we have w1 ≤p w2 or w2 ≤p w1.

4.6. The Finite Sequentiality Problem 101

Proof. Let (p, P), (q, P), t, r be as in the statement of the theorem. Assume that
(i) does not hold, i.e., there is a position w ∈ pos(t) with r(w) = (p, P). Let
w1, w2 ∈ pos(t) be two positions with π2 ◦ r(w1) = π2 ◦ r(w2) = P . By Lemma 4.44,
we see that then w1 and w2 are prefix-dependent on w. From the definition of the
prefix relation, we see that if either w1 ≤p w or w2 ≤p w, then all three positions
are in prefix relation. We thus consider the case that w ≤p w1 and w ≤p w2. In
this case, we see from Lemma 4.43 that w1 and w2 are prefix-dependent as follows.
We write w1 = wv1 and w2 = wv2 and define t′ = t�w and r′ = r�w. Then we have
r′ ∈ RunS(t′), r′(ε) = (p, P), and π2 ◦ r′(v1) = π2 ◦ r′(v2) = P . Thus, by Lemma 4.43
the positions v1 and v2 are prefix-dependent.

In the following example, we illustrate some more complex interactions which may
exist between rivals, in particular between the rivals of a Schützenberger covering.

Example 4.46. We extend the max-plus-WTA from Figure 4.5 to an automaton
A = ({q0, p, p

′, p′′, q},Γ, µ, ν) over the alphabet Γ = {a, b, c, d, e, f} where f ∈ Γ(3),
c ∈ Γ(2), a, b, e ∈ Γ(1), and d ∈ Γ(0). As this example is somewhat complex, we first
give some intuition of what we are trying to show with the example and how we
achieve this.

Let P = {p, p′, p′′, q} and let S be the Schützenberger covering of A. We construct
A such that it satisfies the following conditions.

(i) A is unambiguous and does not satisfy the tree fork property. We achieve
unambiguity simply by making A top-down deterministic.

(ii) The problem showcased in Figure 4.5 still occurs, i.e., a nonlinearity in the first
occurrence of rivals.

(iii) The state q is a rival of all of p, p′, and p′′.

(iv) We have p′′ � q � p � q � p′. In particular, we cannot trivially separate these
states to different automata.

(v) In S, the state (q, P) is a rival of all of (p, P), (p′, P), and (p′′, P).

(vi) In S, we have (p′′, P) � (q, P) � (p, P) � (q, P), i.e., these three states cannot
be trivially separated, and we have (p′′, P) � (p′, P).

(vii) In S, the state (p′, P) may occur at arbitrarily many pairwise prefix-independent
positions in the same run.

The sole purpose of the letter c is to ensure condition (ii). The purpose of b is
to ensure conditions (iii) and (v), the purpose of a is to ensure the first part of
condition (vi), the purpose of e is to ensure the second part of condition (vi), and
the purpose of f is to ensure condition (vii).

It is surprising that an automaton with the properties above exists since (1)
Theorem 4.45 tells us that whenever (p′′, P) occurs in a run, then all states with
second entry P occur at pairwise prefix-dependent positions, (2) both (p′′, P) and

102 Chapter 4. Decidable Properties of Max-Plus Tree Automata

e

a

b

c

d d

e

a

b

c

d d

e

a

b

c

d d

b

c

d d

a

f

d e

f

d d d

d

q

q

p

p

p q0

p

p

q

q

q0 p

p′′

p′

p′

p′

p′ q0

p′′

p′′

p′ q0

p′′

q

q0

p′

p′

p′ q0 p′

q0

Figure 4.9: An illustration of the transitions of A.

(p′, P) may occur together in the same run, and (3) the state (p′, P) may occur at
two prefix-independent positions in the same run. We define µ and ν as follows.

µ(d, q0) = µ(d, p) = µ(d, p′) = 0

µ(p, q0, c, p) = µ(q0, p, c, q) = µ(p′, q0, c, p
′) = µ(p′, q0, c, p

′′) = 0

µ(p, b, p) = µ(p′, b, p′) = µ(p′′, b, p′′) = 1

µ(q, b, q) = −1

µ(p, a, q) = µ(q, a, p) = µ(p′, a, p′) = µ(q, a, p′′) = 0

µ(p, e, p) = µ(q, e, q) = µ(p′, e, p′) = µ(p′, e, p′′) = 0

µ(q0, p
′, q0, f, q) = µ(p′, q0, p

′, f, p′) = 0

ν(p′′) = 0

All unspecified weights are −∞. The trees in Figure 4.9 together with the runs given
on them showcase the above transitions in a more graphical way. With witnesses
u = c(d, d) and s = b(�), we see that conditions (iii) and (v) above are satisfied. Due
to (q, P) a(�)|0−−−→ (p, P) a(�)|0−−−→ (q, P) a(�)|0−−−→ (p′′, P) and (p′, P) e(�)|0−−−→ (p′′, P), we see
that condition (vi) is also satisfied. Let P0 = {q0, p, p

′}, then the tree in Figure 4.10
together with the run of S on it illustrates that (p′, P) may occur nonlinearly, i.e.,
condition (vii) is satisfied as well.

We note that the states p and p′ are also rivals in A with witnesses u = d
and s = a(b(a(�))). Furthermore, S contains many more rivals than the ones
mentioned above, among others the rivals (p′, {p′, q}) and (q, {p′, q}) with witnesses
u = f(d, d, d) and s = b(�) and the rivals (p, {p, p′, p′′}) and (p′, {p, p′, p′′}) with
witnesses u = a(f(d, d, d)) and s = a(b(a(�))).

We are now ready to construct the automaton which tracks the first occurrences
of rivals, and whose runs we will later distribute across multiple automata in order
to separate all rivals.

Construction 4.47. Let R1, . . . , Rn ⊆ QS be an enumeration of all (unordered)
pairs of rivals of S, i.e., for all i ∈ {1, . . . , n} we have Ri = {(pi, Pi), (qi, Pi)} such

4.6. The Finite Sequentiality Problem 103

f

c

d d

d c

d d

(p′, {p′})

(p′, P)

(p′, P0) (q0, P0)

(q0, P0)

(p′, P)

(p′, P0) (q0, P0)

Figure 4.10: The state (p′, P) may occur nonlinearly.

that (pi, Pi) and (qi, Pi) are rivals in S and for every two rivals (p, P), (q, P) ∈ QS ,
we have Ri = {(p, P), (q, P)} for some i ∈ {1, . . . , n}. Since by Lemma 4.41, we may
assume that all rivals in A are in �-relation, we assume in the following that pi and
qi are named such that pi � qi for all i ∈ {1, . . . , n}.

For each pair of rivals Ri, we define a set of markers by Ii = {0, |Q| + 1} ∪
({1, . . . , |Q|} × Ri). The set of all combined records of markers is defined by I =
I1 × . . .× In. For ā ∈ I, we denote by ā[i] the i-th entry of ā.

Intuitively, the states of our new automaton will consist of a state from S together
with a record of markers from I. However, in order to properly update markers, we
need to know in each step the records of all other runs as well. Thus, our states will
be from QS × I × P(QS × I).

In order to define the transition function of our new automaton, we first define
how markers are updated. In some sense, this is similar to the context successor
defined in [5]. Assume we transition into the state q ∈ QS , we have m subtrees below
our current position in the tree, the runs we consider on these subtrees have obtained
markers ā1, . . . , ām ∈ I, and the sets of states we could be in on these trees, together
with their markers, are given by A1, . . . , Am ⊆ QS × I.

Every pair (p, ā) ∈ Ak corresponds to exactly one run of S on the k-th subtree
together with its markers. Since S is unambiguous, we can therefore assume that
|Ak| ≤ |Q|. Also, since āk is the marker of a run on the k-th subtree, we may assume
that (QS × {āk}) ∩Ak 6= ∅.

For k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, we define the sets of unassigned counters
Bk[i] ⊆ {1, . . . , |Q|} by

Bk[i] = {1, . . . , |Q|} \ {j | ∃(p, ā) ∈ Ak with ā[i] ∈ {j} ×Ri}.

Then if for all k ∈ {1, . . . ,m} we have |Ak| ≤ |Q| and (QS × {āk}) ∩ Ak 6= ∅, we

104 Chapter 4. Decidable Properties of Max-Plus Tree Automata

define the record of markers b̄ for our current position by (explanations below)

b̄[i] =

0 if m = 0 and q /∈ Ri
(1,q) if m = 0 and q ∈ Ri
āk[i] if k ∈ {1, . . . ,m} satisfies:

āl[i] = 0 for all l 6= k and either āk[i] 6= 0 or q /∈ Ri
(minBk[i],q) if q ∈ Ri and k ∈ {1, . . . ,m} satisfies:

āk[i] = 0 and for all l 6= k and all (p, ā) ∈ Al : ā[i] = 0

|Q|+ 1 otherwise

for i ∈ {1, . . . , n}. If |Ak| > |Q| or QS × {āk} ∩ Ak = ∅ for some k, we let b̄[1] =
. . . = b̄[n] = |Q|+ 1.

Note that minBk[i] in above case distinction always exists since |Ak| ≤ |Q|,
(QS × {āk}) ∩ Ak 6= ∅, and in the case in question we have āk[i] = 0. We define
I(q, ā1, . . . , ām, A1, . . . , Am) = b̄.

Case 1 of the definition above means our current position is a leaf and q is not
from Ri, so we assign the dummy marker 0. Case 2 means our current position is
a leaf and q is from Ri, so we assign the marker (1,q). Case 3 means that either
(1) there is exactly one subtree below our current position which already obtained
a marker different from 0 and we keep this marker for our current position, or (2)
the markers of all subtrees are 0 and q is also not from Ri, so we continue with the
dummy marker 0.

Case 4 means the markers of all subtrees below our current position are 0, the
state q is from Ri, and there is at most one subtree on which runs exist that obtained
a marker for Ri. Then, we take the smallest number which is not already used in a
marker for Ri in any run on this subtree, and use this number together with q as the
marker for our current position.

Case 5, the “otherwise-case”, applies in two situations. This case means that
either (1) two distinct subtrees below our current position have already obtained a
marker, or that (2) all markers below our current position are 0 and q is from Ri,
but we cannot apply case 4 as there are two distinct subtrees on which runs exist
which obtained markers for Ri. In other words, markers were assigned nonlinearly,
and our run satisfies only condition (i) of Theorem 4.45. In this case, we assign the
dummy marker |Q|+ 1.

The extra case covers the situation where in case 4, the set Bk[i] would be empty.
This case is necessary to ensure our definition is formally complete, but in our
applications of the operator I it will not actually occur.

We define our “run-marking” max-plus-WTA B = (Q̃,Γ, µ̃, ν̃) as follows. We let
Q̃′ = QS×I×P(QS×I) and let B be the trim part of the automaton B′ = (Q̃′,Γ, µ̃′, ν̃ ′)
defined for a ∈ Γ with rkΓ(a) = m and (p0, ā0, A0), . . . , (pm, ām, Am) ∈ QS × I ×
P(QS × I) by

4.6. The Finite Sequentiality Problem 105

µ̃′((p1, ā1, A1), . . . , (pm, ām, Am), a, (p0, ā0, A0)) =

µS(p1, . . . ,pm, a,p0) if ā0 = I(p0, ā1, . . . , ām, A1, . . . , Am) and
A0 = {(q0, b̄0) ∈ QS × I | ∃((q1, b̄1), . . . , (qm, b̄m)) ∈
A1 × . . .×Am with µS(q1, . . . ,qm, a,q0) 6= −∞ and
b̄0 = I(q0, b̄1, . . . , b̄m, A1, . . . , Am)}

−∞ otherwise

ν̃ ′(p0, ā0, A0) = νS(p0).

For the rest of this section, we show that the automaton B “does what we want”:
We show that B is unambiguous, that it has the same behavior as A, and that we can
indeed separate its rivals by distributing runs with a different marker across different
automata which then satisfy the twins property.

Let π̃1 : QS × I ×P(QS × I)→ QS , (p, ā, A) 7→ p, π̃2 : QS × I ×P(QS × I)→ I,
(p, ā, A) 7→ ā, and π̃3 : QS × I × P(QS × I) → P(QS × I), (p, ā, A) 7→ A be the
projections. We prove the following basic observations about B.

Lemma 4.48. Let t ∈ TΓ be a tree. Then the following statements hold.

(i) For every run r ∈ RunB(t) we have (π̃1 ◦ r(w), π̃2 ◦ r(w)) ∈ π̃3 ◦ r(w). In
particular, the only applications of the operator I are for sets Ak and tuples āk
with (QS × {āk}) ∩Ak 6= ∅.

(ii) For every two runs r1, r2 ∈ RunB(t) and every position w ∈ pos(t) we have
π̃3 ◦ r1(w) = π̃3 ◦ r2(w).

(iii) For every run r ∈ RunB(t) and position w ∈ pos(t) we have π̃3 ◦ r(w) =
{(q, b̄) ∈ QS × I | ∃r′ ∈ RunB(t�w) with r′(ε) = (q, b̄, π̃3 ◦ r(w))}.

(iv) The projection π̃1 induces a bijection π̃1 : RunB(t)→ RunS(t) by r 7→ π̃1 ◦ r.

(v) B is trim, unambiguous, and satisfies JBK = JAK.

(vi) For every run r ∈ RunB(t) and position w ∈ pos(t) we have |π̃3 ◦ r(w)| ≤ |Q|.
In particular, the only applications of the operator I are for sets Ak with
|Ak| ≤ |Q|.

(vii) For every Γ-word s and two states p̃, q̃ ∈ Q̃ with p̃ s|x−−→ q̃, we have π̃1(p̃) s|x−−→
π̃1(q̃).

Proof. (i) Let t ∈ TΓ and r ∈ RunB(t) and for contradiction, let w ∈ pos(t) be a
prefix-maximal position for which (i) does not hold. We let m = rkΓ(t(w)) and write
r(w) = (p, ā, A) and r(wj) = (pj , āj , Aj) for j ∈ {1, . . . ,m}. Since r is a run of B
on t, we have µS(p1, . . . ,pm, a,p) 6= −∞ and ā = I(p, ā1, . . . , ām, A1, . . . , Am). By
assumption, we have (pj , āj) ∈ Aj for all j ∈ {1, . . . ,m}, so (p, ā) ∈ A follows from
the definition of µ̃. This is a contradiction, thus w does not exist.

(ii) Let t ∈ TΓ and r1, r2 ∈ RunB(t) and let w ∈ pos(t) be a prefix-maximal
position for which (ii) does not hold. From the definition of µ̃, it is immediately clear
that π̃3 ◦ r1(w) = π̃3 ◦ r2(w), so w does not exist.

106 Chapter 4. Decidable Properties of Max-Plus Tree Automata

(iii) Let t ∈ TΓ and r ∈ RunB(t) and let w ∈ pos(t) be a prefix-maximal position for
which (iii) does not hold. We will deduce that (iii) holds for w. We let m = rkΓ(t(w))
and write r(w) = (p, ā, A) and r(wj) = (pj , āj , Aj) for j ∈ {1, . . . ,m}.

First, let (q, b̄) ∈ A, then there are states ((q1, b̄1), . . . , (qm, b̄m)) ∈ A1× . . .×Am
with µ(q1, . . . ,qm, a,q) 6= −∞ and b̄ = I(q, b̄1, . . . , b̄m, A1, . . . , Am). By assumption
on w, for every j we find rj ∈ RunB(t�wj) with rj(ε) = (qj , b̄j , Aj). Then by definition
of µ̃, we see that the quasi-run r′ : pos(t�w) → Q̃ defined by r′(ε) = (q, b̄, A) and
r′(jv) = rj(v) is a run of B on t�w with r′(ε) = (q, b̄, A).

On the other hand, let r′ ∈ RunB(t�w), with r′(ε) = (q, b̄, A) for some (q, b̄) ∈
QS × I. Then from (i) we obtain (q, b̄) ∈ A. Thus, (iii) holds for w.

(iv) Let t ∈ TΓ. By definition of µ̃, it is clear that for r ∈ RunB(t) we have
π̃1 ◦ r ∈ RunS(t). For the injectivity of π̃1 : RunB(t)→ RunS(t), let r1, r2 ∈ RunB(t)
with π̃1 ◦ r1 = π̃1 ◦ r2. Let w ∈ pos(t) be a prefix-maximal position from the set {v ∈
pos(t) | r1(v) 6= r2(v)}. Then π̃1◦r1(w) = π̃1◦r2(w) and for all j ∈ {1, . . . , rkΓ(t(w))}
we have r1(wj) = r2(wj). From the definition of µ̃, it is immediately clear that
r1(w) = r2(w) follows, i.e., w as chosen does not exist.

For surjectivity, we let r′ ∈ RunS(t) and define a run r ∈ RunB(t) inductively
as follows. For a leaf w ∈ pos(t), we let p = r′(w), ā = I(p), A = {(q0, I(q0) |
µS(t(w),q0) 6= −∞}, and r(w) = (p, ā, A).

Now let w ∈ pos(t) with rkΓ(t(w)) = m such that r is defined on
w1, . . . , wm. We write p = r′(w) and r(wj) = (pj , āj , Aj) for j ∈ {1, . . . ,m}.
We let ā0 = I(p0, ā1, . . . , ām, A1, . . . , Am) and A = {(q0, b̄0) ∈ QS × I |
∃((q1, b̄1), . . . , (qm, b̄m)) ∈ A1× . . .×Am with µS(q1, . . . ,qm, a,q0) 6= −∞ and b̄0 =
I(q0, b̄1, . . . , b̄m, A1, . . . , Am)}, and r(w) = (p, ā, A). Thus, we obtain a run
r ∈ RunB(t) with π̃1 ◦ r(w) = r′.

(v) B is trim by definition. Let t ∈ TΓ. By definition of µ̃, for every run
r ∈ RunS(t) we have wtB(t, r) = wtS(t, π̃1 ◦ r). By definition of ν̃, we also have
ν̃(r(ε)) = ν(π̃1 ◦ r(ε)). By (iv), we have |AccB(t)| = |AccS(t)| ≤ 1, which means B is
unambiguous, and we have JBK(t) = JSK(t) = JAK(t).

(vi) The automaton A is assumed to be trim and unambiguous, so we have
|RunA(t)| ≤ |Q| for every t ∈ TΓ. Furthermore, the projections π1 and π̃1 are
bijections by Lemma 4.40(iii) and (iv) above. Let t ∈ TΓ, r ∈ RunB(t), and w ∈ pos(t).
From (iii), we see that |π̃3 ◦ r(w)| ≤ |RunB(t�w)| = |RunS(t�w)| = |RunA(t�w)| ≤ |Q|.

(vii) Let s be a Γ-word and p̃, q̃ ∈ Q̃ be two states with p̃ s|x−−→ q̃, then there is a
run r ∈ Run�B(p̃, s, q̃) with wt�B(s, r) = x. By definition of µ̃, we have π̃1 ◦r ∈ Run�S(s)
and wt�B(s, r) = wt�S(s, π̃1(r)), so we have π̃1(p̃) s|x−−→ π̃1(q̃).

Next, we prove two basic statements about how B sets markers. Assume we have
some run in which a state (p, ā, A) occurs. First, we show that if ā[i] 6= 0 for some i,
then in the past, we must have visited one of the rivals in Ri. Second, we show that
if A contains a state (q, b̄) with b̄[i] 6= 0 for some i, then we must have visited some
state with second entry Pi in the past.

4.6. The Finite Sequentiality Problem 107

Lemma 4.49. Let t ∈ TΓ be a tree, r ∈ RunB(t) be a run of B on t, let w ∈ pos(t)
be a position in t, assume that r(w) = (p, ā, A), and let i ∈ {1, . . . , n}. Then the
following statements hold.

(i) If ā[i] 6= 0, then there is a position v ∈ pos(t) with w ≤p v and π̃1 ◦ r(v) ∈ Ri.

(ii) If there exists (q, b̄) ∈ A with b̄[i] 6= 0, then there is a position v ∈ pos(t) with
w ≤p v such that π2 ◦ π̃1 ◦ r(v) = Pi.

Proof. (i) Assume ā[i] 6= 0. We choose v prefix-maximal from the set {w′ ∈ pos(t) |
w ≤p w′ and r(w′) = (q, b̄, B) with b̄[i] 6= 0}. This set is not empty since it contains
w. We write r(v) = (q, b̄, B). If q /∈ Ri would hold, we see from the definition of
µ̃, the definition of the operator I, and the fact that we chose v prefix-maximal
from above set, that either case 1 or case 3 of the definition of I would apply in the
definition of b̄[i]. Thus, b̄[i] = 0 would hold, which is not the case. Therefore, q ∈ Ri
holds.

(ii) Assume there is (q, b̄) ∈ A with b̄[i] 6= 0. By Lemma 4.48(iii), there is a run
r′ ∈ RunB(t�w) with r′(ε) = (q, b̄, A). Then by (i), there exists v ∈ pos(t�w) with
π̃1 ◦ r′(v) ∈ Ri. Furthermore, we have r�w ∈ RunB(t�w). Combining Lemma 4.48(iv)
and Lemma 4.40(ii), we have Pi = π2 ◦ π̃1 ◦ r′(v) = π2 ◦ π̃1 ◦ r�w(v). Thus, we see
that π2 ◦ π̃1 ◦ r(wv) = Pi.

Next, we essentially prove that markers for Ri are properly set in runs where
states with Pi as a second entry occur only linearly. That is, we show that in these
runs, a marker for Ri is only set when a rival from Ri is actually visited, and that it
cannot be altered afterwards.

Lemma 4.50. Let t ∈ TΓ, i ∈ {1, . . . , n}, and r ∈ RunB(t) such that for all positions
v1, v2 ∈ pos(t) with π2 ◦ π̃1 ◦ r(v1) = π2 ◦ π̃1 ◦ r(v2) = Pi we have v1 ≤p v2 or v2 ≤p v1.
If w ∈ pos(t) is the prefix-largest position of t with π̃1 ◦ r(w) ∈ Ri then the following
properties are satisfied

(i) The marker π̃2 ◦ r(w) is defined using case 2 or case 4 of the definition of the
operator I.

(ii) For all positions v ∈ pos(t) with v ≤p w we have π̃2 ◦ r(v)[i] = π̃2 ◦ r(w)[i] ∈
{1, . . . , |Q|} × {π̃1 ◦ r(w)}.

(iii) For all positions v ∈ pos(t)\{w} such that either v and w are prefix-independent
or w ≤p v, we have π̃2 ◦ r(v)[i] = 0.

Proof. Let m = rkΓ(t(w)). If m = 0, π̃2 ◦ r(w)[i] is obviously defined using case 2.
Otherwise, since w is the prefix-largest among all positions w′ with π̃1◦r(w′) ∈ Ri, we
have by Lemma 4.49(i) that π̃2 ◦ r(v)[i] = 0 for all v ∈ pos(t) \ {w} with w ≤p v. In
particular, we have π̃2 ◦ r(wj)[i] = 0 for all j ∈ {1, . . . ,m}. Thus, by Lemma 4.49(ii)
and our assumptions on r and w, we see that case 4 of the definition of the operator I
applies in the definition of π̃2 ◦ r(w)[i]. Thus, π̃2 ◦ r(w)[i] ∈ {1, . . . , |Q|}×{π̃1 ◦ r(w)}.

108 Chapter 4. Decidable Properties of Max-Plus Tree Automata

We show (ii). For contradiction, let v ∈ pos(t) be the prefix-largest position with
v ≤p w and π̃2 ◦ r(v)[i] 6= π̃2 ◦ r(w)[i]. Let m = rkΓ(t(v)) and j ∈ {1, . . . ,m} such
that w = vjv′ for some v′. Then π̃2 ◦r(vj)[i] = π̃2 ◦r(w)[i] 6= 0, and by Lemma 4.49(i)
and our assumption on r, we have π̃2 ◦ r(vk)[i] = 0 for all k 6= j. Thus, case 3 of the
definition of I applies in the definition of π̃2 ◦ r(v)[i], so π̃2 ◦ r(v)[i] = π̃2 ◦ r(vj)[i] =
π̃2 ◦ r(w)[i]. This means v as chosen does not exist.

Finally let v ∈ pos(t) \ {w} be such that either v and w are prefix-independent or
w ≤p v. Then from Lemma 4.49(i) and our assumption on r we immediately obtain
π̃2 ◦ r(v)[i] = 0.

In the next lemma, we show that if two states are rivals in B, then their records
of markers differ. The reasoning for this is exactly the same as in our intuitive
description at the beginning of this section.

Lemma 4.51. If (p, ā, A) and (q, b̄, B) are rivals in B, then p and q are rivals
in S and for i ∈ {1, . . . , n} with Ri = {p,q}, we have ā[i] 6= b̄[i] and ā[i], b̄[i] ∈
{1, . . . , |Q|} × {p,q}.

Proof. Let p̃ = (p, ā, A) and q̃ = (q, b̄, B) be rivals in B. Let u and s be as
in the definition of rivals and let rp̃ ∈ Run�B(u, p̃) and rq̃ ∈ Run�B(u, q̃). Then
by Lemma 4.48(iv), we have π̃1(rp̃) ∈ RunS(u,p) and π̃1(rq̃) ∈ RunS(u,q). By
Lemma 4.48(vii), we also have p s|x−−→ p and q s|y−−→ q with x 6= y, thus p and q are
rivals in S. Let i ∈ {1, . . . , n} with Ri = {p,q}. We may assume that p = (pi, Pi)
and q = (qi, Pi).

We show that ā[i], b̄[i] /∈ {0, |Q|+ 1}. We let rp = π̃1 ◦ rp̃ and rq = π̃1 ◦ rq̃. We
have rp(ε) = (pi, Pi) and we assumed pi � qi, so by Theorem 4.45 we obtain that
for every two positions v1, v2 ∈ pos(u) with π2 ◦ rp(v1) = π2 ◦ rp(v2) = Pi, we have
v1 ≤p v2 or v2 ≤p v1. This also holds for rq since by by Lemma 4.40(ii) we have
π2 ◦ rp = π2 ◦ rq.

Let wp ∈ pos(u) be the prefix-largest position of u with rp(wp) ∈ Ri and
wq ∈ pos(u) be the prefix-largest position with rq(wq) ∈ Ri. That wp and wq exist
is clear from the fact that rp(ε) ∈ Ri and rq(ε) ∈ Ri. By Lemma 4.50(ii), we
have ā[i] = π̃2 ◦ rp̃(wp)[i] ∈ {1, . . . , |Q|} × {π̃1 ◦ rp̃(wp)} and b̄[i] = π̃2 ◦ rq̃(wq)[i] ∈
{1, . . . , |Q|} × {π̃1 ◦ rq̃(wq)}.

We show that ā[i] 6= b̄[i] and consider two cases. First, if wp = wq we assume
for contradiction that ā[i] = b̄[i]. Then we see that rp(wp) = rq(wq) ∈ Ri, and we
also have rp(ε) = p and rq(ε) = q. It follows that with s = u〈� → wp〉, we have
π1 ◦ rp(wp) s|z1−−→ pi and π1 ◦ rp(wp) s|z2−−→ qi for weights z1, z2 ∈ R. Thus, A satisfies
condition (i) of the tree fork property, which is a contradiction. Therefore, ā[i] = b̄[i]
cannot hold when wp = wq.

Now assume without loss of generality that wp ≤p wq with wp 6= wq and write
wq = wpjv and rq̃(wpj) = (q′, b̄′, Aj). By Lemma 4.48(i) and Lemma 4.48(ii), we
then have (q′, b̄′) ∈ Aj = π̃3 ◦rp̃(wpj). By Lemma 4.50(i), we know that π̃2 ◦rp̃(wp)[i]
is defined using case 4 of the definition of I, so ā[i] 6= b̄[i] must hold.

We turn to our final construction where we distribute the runs of B across multiple
automata. For every record of markers c̄ ∈ I, we construct one automaton Bc̄ which

4.6. The Finite Sequentiality Problem 109

for each pair of rivals Ri admits only runs using the markers 0 and c̄[i]. All runs in
which rivals occur nonlinearly are covered by admitting the marker |Q|+ 1. All other
runs are covered by admitting an appropriate marker from {1, . . . , |Q|} ×Ri.

Construction 4.52. For every tuple c̄ ∈ I, we define a max-plus-WTA Bc̄ =
(Q̃c̄,Γ, µ̃, ν̃) by removing states from B through

Q̃c̄ = {(p, ā, A) ∈ Q̃ | for all i ∈ {1, . . . , n} it holds:
if c̄[i] = |Q|+ 1 then p 6= (pi, Pi) and
if c̄[i] 6= |Q|+ 1 then ā[i] ∈ {0, c̄[i]}}.

Finally, we formally prove that the automata Bc̄ are unambiguous, that their
pointwise maximum is equivalent to the behavior of A, and that they all satisfy the
twins property, which means that they can be determinized.

Theorem 4.53. We have JAK = maxc̄∈IJBc̄K and for every c̄ ∈ I, the automaton Bc̄
is unambiguous and satisfies the twins property.

Proof. The unambiguity of Bc̄ follows from the unambiguity of B. To see that
Bc̄ satisfies the twins property, let (p, ā, A), (q, b̄, B) ∈ Q̃c̄ be rivals in Bc̄. Then
(p, ā, A) and (q, b̄, B) are also rivals in B, so by Lemma 4.51 for some i ∈ {1, . . . , n}
we have ā[i] 6= b̄[i] and ā[i], b̄[i] /∈ {0, |Q| + 1}. By definition of Bc̄, this means
(p, ā, A), (q, b̄, B) ∈ Q̃c̄ is impossible, so there are no rivals in Bc̄ and Bc̄ satisfies the
twins property.

To show that JAK = maxc̄∈IJBc̄K, we show that for every tree t ∈ TΓ we have
RunB(t) =

⋃
c̄∈I RunBc̄(t). From this, it follows that maxc̄∈IJBc̄K = JBK = JAK. The

inclusion “⊇” is clear.
Let t ∈ TΓ, r ∈ RunB(t), and let O = {i ∈ {1, . . . , n} | there is a position w ∈

pos(t) with π̃1◦r(w) = (pi, Pi)}. Let i ∈ O and assume we have two positions v1, v2 ∈
pos(t) such that π2 ◦ π̃1 ◦ r(v1) = π2 ◦ π̃1 ◦ r(v2) = Pi. Then, since π̃1(r) ∈ RunS(t)
by Lemma 4.48(iv), we obtain by Theorem 4.45 that v1 ≤p v2 or v2 ≤p v1. We can
therefore let wi ∈ pos(t) be the prefix-largest position in t with π̃1 ◦ r(wi) ∈ Ri. Then
from Lemma 4.50(ii) and Lemma 4.50(iii), we obtain that for all positions v ∈ pos(t)
with v ≤p wi we have π̃2 ◦ r(v)[i] = π̃2 ◦ r(wi)[i] ∈ {1, . . . , |Q|} × {π̃1 ◦ r(wi)}, and
for all other positions v ∈ pos(t) we have π̃2 ◦ r(v)[i] = 0.

We define a tuple c̄ ∈ I as follows. If i ∈ O, we let c̄[i] = π̃2 ◦ r(wi)[i], where wi is
defined as above. If i /∈ O, we let c̄[i] = |Q|+ 1. Then we have r ∈ RunBc̄(t). Thus,
RunB(t) =

⋃
c̄∈I RunBc̄(t).

We now obtain a finitely sequential representation of A by applying Theorem 4.29
to the automata Bc̄. In particular, we see that the behavior of a trim unambiguous
max-plus-WTA is finitely sequential if it does not satisfy the tree fork property. This
concludes the proof of Theorem 4.36.

5
Monitor Logics

My suspicion, and fear, is that the genie is out of the bottle.
New and more exotic techniques of surveillance and control
are constantly being developed.

Noam Chomsky, Interview with Stuart Alan Becker

5.1 Quantitative Monitor Automata 112
5.2 Closure Properties . 115
5.3 Monitor MSO logic . 118
5.4 Equivalence . 128

In this chapter, we develop a logic which is expressively equivalent to quantitative
monitor automata. Quantitative monitor automata have been introduced very recently
by Chatterjee et al. [20] and operate on infinite words. A quantitative monitor
automaton is equipped with a finite number of monitor counters. At each transition,
a counter can be started, terminated, or the value of the counter can be increased or
decreased. The term “monitor” stems from the fact that the values of the counters
do not influence the behavior of the automaton. The values of the counters when
they are terminated provide an infinite sequence of weights, which is evaluated into a
single weight using a valuation function.

Quantitative monitor automata are very expressive. As an example, imagine a
storehouse with a resource which is restocked at regular intervals. Between restocks,
demands can remove one unit of this resource at a time. Such a succession of
restocks and demands can be modeled as an infinite sequence over the alphabet
{restock, demand}. Interesting quantitative properties of such a sequence include
the long-term average demand, the minimum demand, and the maximum demand
between restocks. All of these properties can be described using quantitative monitor
automata. Reading an infinite sequence of restocks and demands, we can start a
counter at every restock and count the number of demands until the next restock.

112 Chapter 5. Monitor Logics

An appropriate valuation function then computes the desired property. For the
average demand, this can be achieved with the Cesàro mean which was introduced to
automata theory by Chatterjee et al. in [19]. Note that behaviors like these cannot
be modeled using weighted Büchi-automata [40, 41] or their extension with valuation
functions [30]. In the latter model, the Cesàro mean of every weight-sequence is
bounded by the largest transition weight in the automaton. This is not the case for
quantitative monitor automata. The main results of this section are the following.

• We introduce a new logic which we call monitor logic.

• We show that this monitor logic is expressively equivalent to quantitative
monitor automata.

• We show various closure properties of quantitative monitor automata and prove
that Muller and Büchi acceptance conditions provide the same expressive power.

Our logic is equipped with three quantifiers. A sum quantifier to handle the compu-
tations on the counters, a valuation quantifier to handle the valuation, and a third
quantifier to combine the weights of all runs on a word. The biggest challenge for
this characterization was to find appropriate restrictions on the use of the quantifiers.
Without any restrictions, the logic would be too powerful, which we also formally
prove using counter examples. The most important result of our considerations is
that the computations of the sum quantifier should depend on an MSO-definable
condition.

We note that our constructions are effective. Given a formula from our logic,
we can effectively construct a quantitative monitor automaton describing this for-
mula. Conversely, for every automaton we can effectively construct a formula whose
semantics coincides with the behavior of the automaton.

An extended abstract of the results of this chapter appeared at the 42nd Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS) in
2017 [86].

5.1 Quantitative Monitor Automata

Muller Automata

A (non-deterministic) Muller automaton (NMA) over Σ is a tuple A = (Q,Σ, q0, δ,F)
where (1) Q is a finite set (of states), (2) Σ is an alphabet, (3) q0 ∈ Q is the initial
state, (4) δ ⊆ Q × Σ × Q is the set of transitions, and (5) F ⊆ P(Q) is the set of
final sets.

Let a0a1 . . . ∈ Σω be an infinite word. A run of A on w is an infinite sequence
of transitions r = (di)i≥0 so that di = (qi, ai, qi+1) ∈ δ for all i ≥ 0. We denote by
InQ(r) the set of states which appear infinitely many times in r, i.e.,

InQ(r) = {q ∈ Q | ∀i∃j ≥ i : dj = (q, aj , qj+1)}.

A run r of A on w ∈ Σω is called accepting if InQ(r) ∈ F , that is, if the states which
appear infinitely many times in r form a set in F . In this case, we say that w is

5.1. Quantitative Monitor Automata 113

recognized (accepted) by A. The set of accepting runs on a word w ∈ Σω is denoted by
AccA(w). The infinitary language of A, denoted by Lω(A), is the set of all infinite
words that are accepted by A. A language L ⊆ Σω is called ω-recognizable if there
exists a Muller automaton A so that L = Lω(A).

Valuation Functions

An ω-valuation function is a mapping Val : ZN → R ∪ {−∞,∞} which assigns
real values, −∞, or ∞ to infinite sequences of integers. Typical examples of such
functions are the Cesàro mean Ces((zi)i≥0) = lim supn→∞

1
n

∑n−1
i=0 zi, the supre-

mum Sup((zi)i≥0) = supi≥0 zi, the infimum Inf((zi)i≥0) = infi≥0 zi, the limit su-
perior LimSup((zi)i≥0) = lim supi→∞ zi, and the limit inferior LimInf((zi)i≥0) =
lim infi→∞ zi.

For a new symbol 1 and an ω-valuation function Val, we extend the domain of Val
to sequences (zi)i≥0 from Z∪{1} as follows. If at some point (zi)i≥0 becomes constantly
1, we let Val((zi)i≥0) =∞. Otherwise, we let (zik)k≥0 be the subsequence of (zi)i≥0

which contains all elements which are not 1 and define Val((zi)i≥0) = Val((zik)k≥0).

Büchi and Muller Automata with Monitor Counters

We recall quantitative monitor automata as introduced in [20]. We use a differ-
ent name, however, in order to distinguish between Büchi and Muller acceptance
conditions.

A Büchi automaton with monitor counters (BMCA) A is a tuple
(Q,Σ, I, δ, F, n,Val) where (1) Q is a finite set (of states), (2) Σ is an alphabet, (3)
I ⊆ Q is the set of initial states, (4) δ is a finite subset of Q× Σ×Q× (Z ∪ {s, t})n,
called the transition relation, such that for every (p, a, q, ū) ∈ δ at most one compo-
nent of ū contains s, (5) F is the set of accepting states, (6) n ≥ 1 is the number of
counters, and (7) Val is an ω-valuation function.

Intuitively, the meaning of a transition (p, a, q, ū) is that if the automaton is in
state p and reads an a, it can move to state q and either (1) start (or activate) counter
j if uj = s, or (2) add uj to the current value of counter j if this counter is active
and uj ∈ Z, or (3) stop (or deactivate) counter j if uj = t, for j = 1, . . . , n. Initially,
all counters are inactive. We will also call A an n-BMCA or a Val-BMCA, thereby
stressing the number of counters or the ω-valuation function used.

Let w = a0a1 . . . ∈ Σω be an infinite word. A run of A on w is an infinite sequence
of transitions r = (di)i≥0 so that di = (qi, ai, qi+1, ū

i) ∈ δ for all i ≥ 0. A run r of A
on w ∈ Σω is called accepting if (1) q0 ∈ I, (2) InQ(r) ∩ F 6= ∅, (3) if uij = s for some
i ≥ 0, then there exists l > i such that ulj = t and for all k ∈ {i + 1, . . . , l − 1} we
have ukj ∈ Z, (4) if uij = t for some i ≥ 0, then there exists l < i such that ulj = s and
for all k ∈ {l + 1, . . . , i− 1} we have ukj ∈ Z, and (5) infinitely often some counter is
activated, i.e.,

{i ≥ 0 | uij = s for some j}

is an infinite set. The set of accepting runs on a word w ∈ Σω is denoted by AccA(w).

114 Chapter 5. Monitor Logics

An accepting run r defines a sequence (zi)i≥0 from Z ∪ {1} as follows. If uij = s

for some j ∈ {1, . . . , n} and l > i is such that ulj = t and for all k ∈ {i+ 1, . . . , l− 1}
we have ukj ∈ Z, then zi =

∑l−1
k=i+1 u

k
j . If uij 6= s for all j ∈ {1, . . . , n}, then

zi = 1. We also call (zi)i≥0 the weight-sequence associated to r. The weight of the
run r is defined as Val(r) = Val((zi)i≥0). The behavior of the automaton A is the
series JAK : Σω → R ∪ {−∞,∞} defined by JAK(w) = infr∈AccA(w) Val(r), where the
infimum over the empty set is defined as ∞. A series S : Σω → R ∪ {−∞,∞} is
called MC-recognizable if there exists a BMCA A such that JAK = S. The notions of
n-MC-recognizable and Val-MC-recognizable are defined likewise.

A Muller automaton with monitor counters (MMCA) is defined like a BMCA,
but instead of a set of accepting states we have a set of accepting sets F ⊆ P(Q).
The condition (2) for a run r on a word w ∈ Σω to be accepting is then replaced by
InQ(r) ∈ F , i.e., a Muller acceptance condition.

Büchi automata with monitor counters use a Büchi acceptance condition, i.e., at
least one accepting state has to appear infinitely often. In Lemma 5.3 we show that
using a Muller acceptance condition does not influence the expressive power.

Example 5.1. Consider the alphabet Σ = {demand, restock} with the ω-valuation
function Val = Ces. We model a storehouse with some sort of supply which is
restocked whenever restock is encountered, and one unit of the supply is removed at
every demand. Given an infinite sequence of restocks and demands, we are interested
in the long-time average number of demands between restocks. Under the assumption
that every such sequence starts with a restock, this behavior is modeled by the
following automaton with two monitor counters.

q0 q1 q2
(restock, s, 0)

(restock, t, s)

(demand, 1, 0)

(restock, s, t)

(demand, 0, 1)

When for the valuation function we take Inf or Sup, the automaton above
describes the lowest or highest demand ever encountered, for the latter assuming that
the numbers of demands are bounded.

Example 5.2 ([20]). Consider the alphabet Σ = {a,#} and the language L consisting
of words (#2a∗#a∗#)ω. On these words, we consider the quantitative property “the
maximal block-length difference between even and odd positions”, i.e., the value
of the word ##am1#am2### . . . shall be supi≥1 |m2i−1 −m2i|. With the choice
Val = Sup, a BMCA realizing this behavior is the following.

5.2. Closure Properties 115

q0 q1 q2 q3
(#, s, 0) (#, 0, s) (#, 0, 0)

(a, 1,−1) (a,−1, 1)

(#, t, t)

Each (#2am1#am2#)-block is processed by starting both counters on the first two
#’s, accumulating m1 into the first counter and accumulating −m1 into the second,
reading #, then accumulating m1 −m2 into the first counter and −m1 +m2 into the
second, and finally terminating both counters on the last #. Thus, the associated
weight-sequence for only this block is (m1 −m2,−m1 +m2,1, . . . ,1). Clearly, the
final value of counter 1 is always the negative of the final value in counter 2. Since
our ω-valuation function is Sup, only the positive counter value actually plays a role
in the value assigned to the whole word, and this positive value is |m1 −m2|.

5.2 Closure Properties

In the following, we prove various closure properties for automata with monitor
counters and that BMCA and MMCA have the same expressive power.

Lemma 5.3. Büchi automata with monitor counters are expressively equivalent to
Muller automata with monitor counters.

Proof. The proof is similar to the standard construction to show that Büchi automata
are expressively equivalent to Muller automata, see for example [32].

Let A = (Q,Σ, I, δ, F, n,Val) be a BMCA, we define the MMCA A′ =
(Q,Σ, I, δ,F , n,Val) by F = {S ⊆ Q | S ∩ F 6= ∅}. Then on every word w, the
accepting runs of A on w coincide with the accepting runs of A′ on w, i.e., JAK = JA′K.

Conversely, let A = (Q,Σ, I, δ,F , n,Val) be an MMCA. We construct a BMCA
A′ = (Q′,Σ, I ′, δ′, F ′, n,Val) as follows.

Q′ = Q ∪ (Q×F × P(Q))

I ′ = I ∪ {(q, F, {q}) | F ∈ F , q ∈ I ∩ F}
F ′ = {(q, F, F) | F ∈ F , q ∈ F}
δ′ = δ

∪ {(p, a, (q, F, {q}), ū) | F ∈ F , p ∈ Q \ F, q ∈ F, a ∈ Σ, (p, a, q, ū) ∈ δ}
∪ {((p, F,R), a, (q, F,R ∪ {q}), ū) | F ∈ F , p, q ∈ F,R (F,

a ∈ Σ, (p, a, q, ū) ∈ δ}
∪ {((p, F, F), a, (q, F, {q}), ū) | F ∈ F , p, q ∈ F, a ∈ Σ, (p, a, q, ū) ∈ δ}

We let π : Q′ → Q be the projection defined by q 7→ q and (q, F,R) 7→ q for (q, F,R) ∈
Q×F×P(Q). We extend π to transitions by (p′, a, q′, ū) 7→ (π(p′), a, π(q′), ū) and to
sequences of transitions from (δ′)ω in the obvious way. We claim that for every w ∈ Σω,

116 Chapter 5. Monitor Logics

we have a surjection π : AccA′(w)→ AccA(w), and that for every r′ ∈ AccA′(w) the
weight-sequences associated to r′ and π(r′) are the same.

First, let r′ = (d′i)i≥0 with d′i = (q′i, a, q
′
i+1, ū

i) be an accepting run of A′ on w.
Then for some F ∈ F and q ∈ F , the state (q, F, F) occurs infinitely often. By
construction of δ′, this means that there exists i ≥ 0 such that for all j ≥ i, we have
π(q′j) ∈ F , and for every p ∈ F , there are infinitely many j such that π(q′j) = p.
Thus, InQ(π(r′)) = F and we have π(r′) ∈ AccA(w). It is also easy to see that the
weight-sequences of r′ and π(r′) coincide.

Now let r = (di)i≥0 with di = (qi, ai, qi+1, ū
i) be an accepting run of A on w and

F = InQ(r). Then either all qi are in F , or there is an i ≥ 0 with qi /∈ F and for all
j > i, qj ∈ F .

In the first case, we let q′0 = (q0, F, {q0}), otherwise we let q′j = qj for j ≤ i
and q′i+1 = (qi+1, F, {qi+1}). Then assuming that q′j = (qj , F,R) for j > i is already
defined, we let q′j+1 = (qj+1, F,R ∪ {qj+1}) if R (F , and otherwise if R = F we let
q′j+1 = (qj+1, F, {qj+1}). Then with d′i = (q′i, aj , q

′
i+1, ū

i), the sequence r′ = (d′i)i≥0

is an accepting run of A′ on w.
In conclusion, we have infr′∈AccA′ (w) Val(r′) = infr∈AccA(w) Val(r) for all w ∈ Σω,

which means JAK = JA′K.

In the next lemma, we show that MC-recognizable series are closed under projec-
tions and their preimage. Given two alphabets Σ and Γ and a mapping h : Σ→ Γ,
and thus a homomorphism h : Σω → Γω, we define for every S : Σω → R ∪ {−∞,∞}
the projection h(S) : Γω → R ∪ {−∞,∞} by

h(S)(w) = inf{S(v) | h(v) = w}

for every w ∈ Γω. Moreover, if S′ : Γω → R∪{−∞,∞}, then we define h−1(S′) = S′◦h,
i.e., h−1(S′) : Σω → R ∪ {−∞,∞}, w 7→ S′(h(w)).

Lemma 5.4. Let Σ and Γ be two alphabets, h : Σ→ Γ be a mapping, and Val be an
ω-valuation function.

(i) If S : Σω → R ∪ {−∞,∞} is Val-MC-recognizable, then the projection
h(S) : Γω → R ∪ {−∞,∞} is also Val-MC-recognizable.

(ii) If S′ : Γω → R ∪ {−∞,∞} is Val-MC-recognizable, then h−1(S′) : Σω → R ∪
{−∞,∞} is also Val-MC-recognizable.

Proof. We apply an idea also used in [35].
(i) Let AS = (QS ,Σ, IS , δS , FS , nS ,Val) be a Val-BMCA over Σ with JASK = S.

We construct a new Val-BMCA A = (Q,Γ, I, δ, F, nS ,Val) over Γ with JAK = h(S)
as follows.

• Q = QS × Σ, I = IS × {a0} for some fixed a0 ∈ Σ, F = FS × Σ, and

• ((p, a), b, (p′, a′), ū) ∈ δ if and only if h(a′) = b and (p, a′, p′, ū) ∈ δS .

5.2. Closure Properties 117

Then r = ((q0, a0), b1, (q1, a1), ū1)((q1, a1), b2, (q2, a2), ū2) . . . is a run of A on b1b2 . . .
if and only if h(a1a2 . . .) = b1b2 . . . and rS = (q0, a1, q1, ū

1)(q1, a2, q2, ū
2) . . . is a run

of AS on a1a2 Moreover, r is accepting if and only if q0 ∈ IS , at least one q ∈ FS
appears infinitely often in the first component of the states, and the conditions (3),
(4), and (5) concerning the counters are satisfied, i.e., if and only if rS is accepting.
By construction, we have Val(r) = Val(rS), and therefore JAK = h(JASK).

(ii) Let AS′ = (QS′ ,Γ, IS′ , δS′ , FS′ , nS′ ,Val) be a Val-BMCA over Γ with JAS′K =
S′. Then we let A = (QS′ ,Σ, IS′ , δ, FS′ , nS′ ,Val) be a Val-BMCA over Σ with
(p, a, q, ū) ∈ δ if and only if (p, h(a), q, ū) ∈ δS′ . It is easy to see that A recognizes
h−1(S′) = S′ ◦ h.

For two series S1, S2 : Σω → R ∪ {−∞,∞}, the minimum min(S1, S2) of S1 and
S2 is defined pointwise, i.e.,

min(S1, S2)(w) = min{S1(w), S2(w)}.

As the next lemma shows, taking the minimum of MC-recognizable series preserves
recognizability.

Lemma 5.5. For a given ω-valuation function Val, the Val-MC-recognizable series
are closed under minimum.

Proof. We show this using the usual union construction for automata: for two BMCA
A1 = (Q1,Σ, I1, δ1, F1, n1,Val) and A2 = (Q2,Σ, I2, δ2, F2, n2,Val) with disjoint state
spaces, the BMCA (Q1 ∪Q2,Σ, I1 ∪ I2, δ1 ∪ δ2, F1 ∪ F2,max{n1, n2},Val) recognizes
min(JA1K, JA2K). Here, we implicitly fill every tuple of weights ū of a transition from
δ1 ∪ δ2 with 0’s if it does not have max{n1, n2} entries.

Let L ⊆ Σω and S : Σω → R ∪ {−∞,∞}. The intersection of L and S is the
series L ∩ S : Σω → R ∪ {−∞,∞} defined for w ∈ Σω by

L ∩ S(w) =

{
S(w) if w ∈ L
∞ otherwise.

As the next lemma shows, intersecting an ω-recognizable language with an MC-
recognizable series preserves MC-recognizability.

Lemma 5.6. Let Val be an ω-valuation function, let L ⊆ Σω be ω-recognizable, and
let S : Σω → R ∪ {−∞,∞} be Val-MC-recognizable. Then L ∩ S is also Val-MC-
recognizable.

Proof. The proof is similar to the standard product construction to show that
recognizable languages are closed under intersection. Let A = (Q,Σ, q0, δ,F) be an
NMA with Lω(A) = L and A′ = (Q′,Σ, I ′, δ′,F ′, n,Val) an MMCA with JA′K = S.
We construct a new MMCA A′′ = (Q′′,Σ, I ′′, δ′′,F ′′, n,Val) with JA′′K = L ∩ S
as follows. We let Q′′ = Q × Q′, I ′′ = {q0} × I ′, and we let π1 : Q′′ → Q and
π2 : Q′′ → Q′ be the projections. Then we let F ′′ ∈ F ′′ iff both π1(F ′′) ∈ F and
π2(Q′′) ∈ F ′. The set of transitions δ′′ ⊂ Q′′ × Σ×Q′′ × (Z ∪ {s, t})n is defined by

118 Chapter 5. Monitor Logics

((p, p′), a, (q, q′), ū) ∈ δ′′ iff (p, a, q) ∈ δ and (p′, a, q′, ū) ∈ δ′. Then for every infinite
word w ∈ Σω, there is an obvious bijection between the pairs of accepting runs
(r, r′) ∈ AccA(w)×AccA′(w) and the runs r′′ ∈ AccA′′(w), and under this bijection
we have Val(r′′) = Val(r′). Thus for every word w ∈ L we have JA′′K(w) = S(w), as
AccA(w) 6= ∅. For w /∈ L we have AccA(w) = ∅ and therefore JA′′K(w) =∞.

5.3 Monitor MSO logic

In this section, we develop a logic which captures exactly the MC-recognizable series.
We first want to give a motivation for the quantifiers and restrictions we use in our
logic. We are looking for a logic which is expressively equivalent to automata with
monitor counters. It is clear that we need a valuation quantifier in order to model
the valuation done by the automata. The question is which types of formulas should
be allowed in the scope of the valuation quantifier. From [30], it follows that allowing
only almost Boolean formulas (see below) is too weak. We would only describe Muller
automata over valuation monoids, and these are strictly weaker than automata with
monitor counters [20].

We therefore have to allow at least some other quantifier in the scope of the
valuation quantifier. Taking into account the automaton model we want to describe,
this should be a sum quantifier. Most weighted logics [27, 32, 30, 45, 74, 26] use
quantifiers that act unconditionally on the whole input, i.e., on the whole word, tree,
or picture. However, in Lemma 5.11 we will see that in our case, an unrestricted sum
quantifier is too powerful.

The intention of the sum quantifier as we define it here is to have a sum quantifier
which acts on infinite words, but still computes only finite sums on a given word. The
computation of the sum quantifier depends on a first order variable x and a second
order variable X provided to it. The variable X serves as a “list” of start and stop
positions, and the variable x indicates where the summation on the infinite word
should take place. Simply put, the sum is evaluated to 1 if x does not point to a
position in X or there is no successor of x in X. Otherwise, if y is x’s successor in X,
the sum is taken from x+ 1 to y − 1.

Intuitively, each sum quantifier corresponds to a counter. In a run of an automaton
with monitor counters, not more than one counter can be started at each letter of the
given word. Therefore, we use Boolean formulas to choose which counter to use. We
combine these choices between counters into so-called x-summing formulas, where x
is the first order variable provided to each sum quantifier in the formula.

Let Σ be an alphabet and let σ = ({Pa | a ∈ Σ} ∪ {≤}, arσ) be the signature of a
word over Σ as described in Example 2.1. In the following, we identify every infinite
word w ∈ Σω with its corresponding σ-structure w, also as described in Example 2.1.
Furthermore, as σ is uniquely determined by Σ, we denote the set MSO(σ) simply
by MSO(Σ) and say that a formula β ∈ MSO(Σ) is a Boolean or an MSO formula
over Σ. Let V be a countable set of first and second order variables and Val an
ω-valuation function. We define a three step logic over Σ and Val according to the

5.3. Monitor MSO logic 119

following grammars.

ψ ::= k | β ? ψ : ψ

ζx ::= 1 | β ? ζx : ζx |
⊕x,X y.ψ

ϕ ::= β ? ϕ : ϕ | min(ϕ,ϕ) | inf x.ϕ | inf X.ϕ | Valx.ζx

where β ∈ MSO(Σ), x, y ∈ V are first order variables, X ∈ V is a second order
variable, a ∈ Σ, and k ∈ Z. The formulas ψ are called almost Boolean formulas,
the formulas ζx x-summing formulas, and the formulas ϕ monitor MSO (mMSO)
formulas. We denote the sets of almost Boolean and x-summing formulas over Σ by
mMSOa-bool(Σ) and mMSOx(Σ), respectively, and the set of monitor MSO formulas
over Σ and Val by mMSO(Σ,Val).

Note that while almost Boolean formulas as defined here differ in notation from the
way we defined almost Boolean formulas in Section 3.4, the semantics of the formulas
from mMSOa-bool(Σ) as we will define them in fact coincide with the semantics of
the formulas from wMSOa-bool(σ,Z) as defined in Section 3.4.

We remark that within an x-summing formula, the first order variable provided
to each sum quantifier is always x. This restriction is not imposed on the second
order quantifiers, i.e., β ?

⊕x,X y.ψ1 :
⊕x,Z y.ψ2 is an x-summing formula, but

β ?
⊕x,X y.ψ1 :

⊕z,Z y.ψ2 is neither an x-summing nor a z-summing formula. Also
note that the x-summing formulas are only auxiliary formulas, see Remark 5.7 later
on.

The notions of free variables and sentences are defined as for MSO formulas, with
the addition that the operators inf and Val also bind variables and that in

⊕x,X y.ψ,
the variable y is bound.

For the rest of this chapter, we will always assume that V denotes a finite set of first
and second order variables. Let w = a0a1 . . . ∈ Σω. We encode (V, w)-assignments ρ
as usual with an extended alphabet ΣV = Σ× {0, 1}V : to a pair (w, ρ), we associate
the word (a0, ρ0)(a1, ρ1) . . . ∈ Σω

V where

ρi(X) =

1 if X is a first order variable and i = ρ(X)

1 if X is a second order variable and i ∈ ρ(X)

0 otherwise

for i ∈ N. An infinite word (a0, ρ0)(a1, ρ1) . . . over ΣV is called valid if and only if for
every first order variable the respective row in the {0, 1}V -coordinate contains exactly
one 1. In this case, we denote this word by (w, ρ), where w is the projection to Σ and
ρ is the (V, w)-assignment we obtain from the ρi by reversing the above association.
In particular, ρ is then always a total mapping. It is not difficult to see that the set

NV = {(w, ρ) ∈ Σω
V | (w, ρ) is valid}

is ω-recognizable. Let β ∈ MSO(Σ) be an MSO formula. We will write Σβ for ΣFree(β)

and Nβ for NFree(β). We recall the fundamental Büchi theorem [16], namely that
whenever Free(β) ⊆ V, the language

LV(β) = {(w, ρ) ∈ NV | (w, ρ) |= β}

120 Chapter 5. Monitor Logics

defined by β over ΣV is ω-recognizable. We abbreviate L(β) = LFree(β)(β). Conversely,
every ω-recognizable language L ⊆ Σω is definable by an MSO sentence β, i.e.,
L = L(β).

Next, we define the semantics of mMSO. Let Val be an ω-valuation function. For
an almost Boolean, x-summing, or monitor MSO formula η, we define the semantics
JηKV(w, ρ) of η under the (V, w)-assignment ρ as follows: if (w, ρ) is not valid, then
JηKV(w, ρ) =∞; otherwise the semantics are defined as follows.

JkKV(w, ρ) = k

Jβ ? ψ1 : ψ2KV(w, ρ) =

{
Jψ1KV(w, ρ) if (w, ρ) |= β

Jψ2KV(w, ρ) otherwise

J
⊕x,X y.ψKV(w, ρ) =

min{j∈ρ(X)|j>ρ(x)}−1∑
i=ρ(x)+1

JψKV∪{y}(w, ρ[y → i]) if ρ(x) ∈ ρ(X) and
{j ∈ ρ(X) | j > ρ(x)} 6= ∅

1 otherwise.

Jmin(ϕ1, ϕ2)KV(w, ρ) = min{Jϕ1KV(w, ρ), Jϕ2KV(w, ρ)}
Jinf x.ϕKV(w, ρ) = inf

i∈N
JϕKV∪{x}(w, ρ[x→ i])

Jinf X.ϕKV(w, ρ) = inf
I⊆N

JϕKV∪{X}(w, ρ[X → I])

JValx.ζxKV(w, ρ) = Val((JζxKV∪{x}(w, ρ[x→ i]))i∈N)

We write JηK for JηKFree(η).
Remark 5.7. From the semantics defined here it is clear that every x-summing sentence
ζx is semantically equivalent to 1. In this sense, the x-summing formulas constitute no
meaningful fragment of our logic, and are only auxiliary formulas for the construction
of monitor MSO formulas.

In Lemma 5.12 we will see that the first order variable x is necessarily also
the variable which is quantified by Val, i.e., allowing formulas like Valx.ζz leads to
formulas which are not MC-recognizable.

Note also that for every valid (w, ρ), we have JValx.1KV(w, ρ) =∞. By abuse of
notation, we can thus define the abbreviation ∞ = Valx.1.
Remark 5.8. The condition used in the definition of the sum quantifier is definable
by the MSO formula

notLast(x,X) = x ∈ X ∧ ∃y.(y ∈ X ∧ x < y),

where x < y is an abbreviation for x ≤ y ∧ ¬(y ≤ x). We can therefore also write

J
⊕x,X y.ψKV(w, ρ)

=

{∑min{j∈ρ(X)|j>ρ(x)}−1
i=ρ(x)+1 JψKV∪{y}(w, ρ[y → i]) if (w, ρ) |= notLast(x,X)

1 otherwise.

If we define an unrestricted sum quantifier
⊕
y.ψ by

J
⊕
y.ψKV(w, ρ) =

{∑
i∈NJψKV∪{y}(w, ρ[y → i]) if this sum converges

∞ otherwise,

5.3. Monitor MSO logic 121

we can write our restricted sum quantifier as

J
⊕x,X y.ψKV(w, ρ)

= JnotLast(x,X) ?
⊕
y.(x < y ∧ ∀z.((x < z ∧ z ≤ y)→ ¬z ∈ X) ? ψ : 0) : 1KV(w, ρ).

Example 5.9. Consider Example 5.1 again, i.e., the alphabet Σ = {demand, restock}
with the ω-valuation function Val = Ces. Then the formula

ϕ = inf X.
(
∀z.(z ∈ X ↔ Prestock(z)) ? Valx.

⊕x,X y.1 :∞
)

describes the average number of demands between two restocks. We recall that ∞ is
simply an abbreviation for the formula Valx.1. As in Example 5.1, if we take Inf
or Sup for the valuation function, the formula above describes the lowest or highest
demand ever encountered.

We have the following fundamental lemma which intuitively states that the
semantics and recognizability of a formula depend only on the variables occurring in
it.

Lemma 5.10 (Consistency Lemma). Let ϕ ∈ mMSO(Σ,Val) and let V be a finite
set of variables with V ⊇ Free(ϕ).

(i) For every valid (w, ρ) ∈ Σω
V we have JϕKV(w, ρ) = JϕK(w, ρ�Free(ϕ)).

(ii) JϕK is Val-MC-recognizable if and only if JϕKV is Val-MC-recognizable.

Proof. (i) This can be shown by induction on ϕ using the same ideas as in [27]. We
first show that the statement also holds for Boolean, almost Boolean, and x-summing
formulas.

Let β be of the form Pa(x), x ≤ y, or x ∈ X where x and y are first order
variables and X is a second order variable. Then for every valid (w, ρ) ∈ Σω

V with
V ⊇ Free(β), it is immediate from the definition of satisfaction that (w, ρ) |= β if and
only if (w, ρ�Free(β)) |= β.

Next, assume that β = ¬β′ with β′ ∈ MSO(Σ) and let (w, ρ) ∈ Σω
V be valid. Then

since V ⊇ Free(β) = Free(β′), we have by induction that

(w, ρ) |= β ⇐⇒ not (w, ρ) |= β′

⇐⇒ not (w, ρ�Free(β)) |= β′

⇐⇒ (w, ρ�Free(β)) |= β.

Now assume that β = β1 ∨ β2 with β1, β2 ∈ MSO(Σ) and let (w, ρ) ∈ Σω
V be

valid. Then since V ⊇ Free(β) ⊇ Free(β1) and V ⊇ Free(β) ⊇ Free(β2), we have by
induction that

(w, ρ) |= β ⇐⇒ (w, ρ) |= β1 or (w, ρ) |= β2

⇐⇒ (w, ρ�Free(β1)) |= β1 or (w, ρ�Free(β2)) |= β2

⇐⇒ (w, ρ�Free(β)) |= β1 or (w, ρ�Free(β)) |= β2

⇐⇒ (w, ρ�Free(β)) |= β.

122 Chapter 5. Monitor Logics

For the first order existential quantifier, assume that β = ∃x.β′ with β′ ∈ MSO(Σ)
and let (w, ρ) ∈ Σω

V be valid. By definition, we have

(w, ρ) |= β ⇐⇒ (w, ρ[x→ i]) |= β′ for some i ∈ N.

Due to V ⊇ Free(β), we have

V ∪ {x} ⊇ Free(β) ∪ {x} ⊇ Free(β′) ∪ {x} ⊇ Free(β′).

By applying the induction hypothesis twice, we thus have for every i ∈ N that

(w, ρ[x→ i]) |= β′ ⇐⇒ (w, ρ[x→ i]�Free(β′)) |= β′

⇐⇒ (w, ρ�Free(β′)[x→ i]) |= β′.

It follows that (w, ρ) |= β ⇐⇒ (w, ρ�Free(β′)) |= β. For the the second order
existential quantifier, we can proceed in the same way.

Next, we address almost Boolean formulas. For ψ = k with k ∈ Z, the statement
is clear. For ψ = β ? ψ1 : ψ2 with β ∈ MSO(Σ) and ψ1, ψ2 ∈ mMSOa-bool(Σ), let
(w, ρ) ∈ Σω

V be valid. Then since V ⊇ Free(ψ) ⊇ Free(ψ1), V ⊇ Free(ψ) ⊇ Free(ψ2),
and V ⊇ Free(ψ) ⊇ Free(β), we have by induction that

JψKV(w, ρ) =

{
Jψ1KV(w, ρ) if (w, ρ) |= β

Jψ2KV(w, ρ) otherwise

=

{
Jψ1K(w, ρ�Free(ψ1)) if (w, ρ�Free(β)) |= β

Jψ2K(w, ρ�Free(ψ2)) otherwise

=

{
Jψ1KFree(ψ)(w, ρ�Free(ψ)) if (w, ρ�Free(ψ)) |= β

Jψ2KFree(ψ)(w, ρ�Free(ψ)) otherwise

= JψK(w, ρ�Free(ψ)).

For x-summing formulas, we proceed as follows. For ζ = 1, the statement is
clear. For ζ = β ? ζ1 : ζ2 with β ∈ MSO(Σ) and ζ1, ζ2 ∈ mMSOx(Σ), we can
proceed in the same way as for almost Boolean formulas. Assume that ζ =

⊕x,X y.ψ
with ψ ∈ mMSOa-bool(Σ) and let (w, ρ) ∈ Σω

V be valid. We have V ⊇ Free(ζ) =
Free(ψ) \ {y} ∪ {x,X}. In particular, we have

V ∪ {y} ⊇ Free(ζ) ∪ {y} = Free(ψ) ∪ {y, x,X} ⊇ Free(ψ).

Thus, we see by induction that for every i ∈ N, we have

JψKV(w, ρ[y → i]) = JψK(w, ρ[y → i]�Free(ψ))

= JψKFree(ζ)∪{y}(w, ρ�Free(ζ)[y → i]),

from which the statement follows.
Finally, we consider monitor MSO formulas. For formulas of the form β ? ϕ1 : ϕ2

with ϕ1, ϕ2 ∈ mMSO(Σ,Val), we proceed in the same way as for almost Boolean
formulas. For ϕ = min(ϕ1, ϕ2) with ϕ1, ϕ2 ∈ mMSO(Σ,Val), let (w, ρ) ∈ Σω

V be

5.3. Monitor MSO logic 123

valid. Then since V ⊇ Free(ϕ) ⊇ Free(ϕ1) and V ⊇ Free(ϕ) ⊇ Free(ϕ2), we see by
induction that

JϕKV(w, ρ) = min{Jϕ1KV(w, ρ), Jϕ2KV(w, ρ)}
= min{Jϕ1K(w, ρ�Free(ϕ1)), Jϕ2K(w, ρ�Free(ϕ2))}
= min{Jϕ1KFree(ϕ)(w, ρ�Free(ϕ)), Jϕ2KFree(ϕ)(w, ρ�Free(ϕ))}
= JϕK(w, ρ�Free(ϕ)).

For ϕ = Valx.ζ with ζ ∈ mMSOx(Σ), let (w, ρ) ∈ Σω
V be valid. Since V ⊇ Free(ϕ),

we have

V ∪ {x} ⊇ Free(ϕ) ∪ {x} ⊇ Free(ζ) ∪ {x} ⊇ Free(ζ).

Thus, we see by induction that

JϕKV(w, ρ) = Val((JζKV∪{x}(w, ρ[x→ i]))i∈N)

= Val((JζK(w, ρ[x→ i]�Free(ζ)))i∈N)

= Val((JζKFree(ϕ)∪{x}(w, ρ�Free(ϕ)[x→ i]))i∈N)

= JϕK(w, ρ�Free(ϕ)).

The cases where ϕ = inf x.ϕ′ or ϕ = inf X.ϕ′ with ϕ′ ∈ mMSO(Σ,Val) are proved in
the same way.

(ii) Consider the homomorphism h : Σω
V → Σω

ϕ defined by (w, ρ) 7→ (w, ρ�Free(ϕ)).
If JϕKV is Val-MC-recognizable, then by Lemma 5.4(i), the series JϕK = h(JϕKV) is
also Val-MC-recognizable.

Conversely, let JϕK be Val-MC-recognizable and let NV be the language of all
words (w, ρ) where ρ is a valid (V, w)-assignment. NV is an ω-recognizable language.
We have JϕKV = NV ∩h−1(JϕK) because of (i). Due to Lemma 5.4(ii) and Lemma 5.6,
NV ∩ h−1(JϕK) is Val-MC-recognizable.

In the following lemma, we show that the use of an unrestricted sum quantifier
leads to series which are not MC-recognizable.

Lemma 5.11. Consider the unrestricted sum quantifier from Remark 5.8

J
⊕
y.ψKV(w, ρ) =

{∑
i∈NJψKV∪{y}(w, ρ[y → i]) if this sum converges

∞ otherwise,

the ω-valuation function Val defined by

Val((zi)i≥0) =

{∑∞
i=0 zi if this sum converges

∞ otherwise,

and the alphabet Σ = {a, b}. Then for the almost Boolean formula

ψ = y ≤ x ∧ ∀z.(z ≤ x→ Pa(z)) ?−1 : 0,

124 Chapter 5. Monitor Logics

the formula

ϕ = Valx.
⊕
y.ψ

is not Val-MC-recognizable.

Proof. Let w = a0a1 . . . ∈ Σω, then for i ∈ N we have

J
⊕
y.ψK{x}(w, [x→ i]) =

{
−(i+ 1) if a0 = a1 = . . . = ai = a

0 otherwise.

By the Gauß summation formula, ϕ hence describes the series

JϕK(w) =

{
−m(m+1)

2 if w = ambw′ for some w′ ∈ Σω

∞ if w = aω.

The idea is now that with only finitely many transitions, and therefore only finitely
many different weights, this quadratic growth cannot be realized if only transitions up
to the first b in each word influence the weight of the runs. But once the automaton
has read this first b, it cannot distinguish between the words anymore. Under
appropriate assumptions, we can therefore combine runs from different words to
obtain a contradiction.

Assume there was a BMCA A = (Q,Σ, I, δ, F, n,Val) with JAK = JϕK. We
consider the special words wm = ambaω. For m ≥ 0 and r ∈ AccA(wm), we have
Val(r) ∈ Z ∪ {∞} and Val(r) ≥ JϕK(wm). Therefore, there must be a minimal run in
AccA(wm), i.e., r ∈ AccA(wm) with JϕK(wm) = Val(r).

For a minimal run r = (di)i≥0 of A on wm with di = (qi, ai, qi+1, ū
i), we define

the counter pattern CP(r) and the effective weights EW≤(r) and EW>(r) of r as
follows. Intuitively, the counter pattern tells us for each counter whether it is active
or not at the letter b of wm. For j ∈ {1, . . . , n}, we let kj = 1 if there is an i ≤ m
such that uij = s and for all i′ with i < i′ ≤ m we have ui′j ∈ Z. Otherwise we let
kj = 0. Then we define CP(r) = (k1, . . . , kn) ∈ {0, 1}n. The effective weights will be
partial computations of Val(r) on amb on the one hand and on aω on the other hand.
For j ∈ {1, . . . , n}, we let

E≤j =
m∑
i=0
uij=s

min({m}∪{k≥i|uk+1
j =t})∑

i′=i+1

ui
′
j

E>j =

∑∞

i=m+1
uij=s

∑min{k≥i|uk+1
j =t}

i′=i+1 ui
′
j if kj = 0

∑∞
i=m+1
uij=s

∑min{k≥i|uk+1
j =t}

i′=i+1 ui
′
j +

∑min{k≥m|uk+1
j =t}

i′=m+1 ui
′
j if kj = 1.

The empty sum is simply defined as 0. We let EW≤(r) =
∑n

j=1E
≤
j and EW>(r) =∑n

j=1E
>
j . We have

Val(r) = EW≤(r) + EW>(r).

5.3. Monitor MSO logic 125

Now for every m ≥ 0, let rm = (dmi)i≥0 be a minimal run of A on wm. We consider
the pairs pm = (CP(rm), dmm). Since there are only finitely many different such pairs,
namely not more than 2n · |δ|, there must be such a pair p and a subsequence (rmk)k≥0

of (rm)m≥0 with pmk = p for all k ≥ 0.
Now let M > 0 such that all weights occurring in δ are in [−M,M]. Then we

have

|EW≤(rm)| ≤ nM(m+ 1).

For the special index m1 ≥ 1, we choose k sufficiently large to ensure that

−nM(m1 + 1)− m1(m1 + 1)

2
> −mk(mk + 1)

2
+ nM(mk + 1).

This is possible since if we treat the right hand side of this inequality as a polynomial
in mk, the leading coefficient of this polynomial is negative, thus the polynomial
tends to minus infinity for k →∞. We know that

EW≤(rm1) ≤ nM(m1 + 1)

EW≤(rmk) ≥ −nM(mk + 1).

If we had

EW>(rmk) ≥ −nM(m1 + 1)− m1(m1 + 1)

2
,

then we would have

Val(rmk) = EW≤(rmk) + EW>(rmk)

≥ −nM(mk + 1)− nM(m1 + 1)− m1(m1 + 1)

2

> −mk(mk + 1)

2
,

which is a contradiction to the choice of rmk as minimal. We therefore have

EW≤(rm1) + EW>(rmk) < −m1(m1 + 1)

2
.

We now consider the sequence of transitions r = dm1
0 . . . dm1

m1
dmkmk+1d

mk
mk+2 . . . and

claim that it is an accepting run of A on wm1 . The first state is initial as rm1 is an
accepting run and the transitions are well matched since dm1

m1
= dmkmk , which are also

the only b-transitions of these runs. Since rmk is an accepting run, it is clear that the
Büchi acceptance condition is fulfilled and infinitely often some counter is activated.
Finally, that the starts and stops form well matched pairs follows from the fact that
CP(rm1) = CP(rmk).

126 Chapter 5. Monitor Logics

To conclude, we have

JAK(wm1) ≤ Val(r)

= EW≤(r) + EW>(r)

= EW≤(rm1) + EW>(rmk)

< −m1(m1 + 1)

2
= JϕK(wm1).

Obviously, the behavior of A does not coincide with the semantics of ϕ, which is a
contradiction to the choice of A.

The next lemma shows that in order to ensure MC-recognizability, the first
order variable x provided to the sum quantifier is necessarily the variable which Val
quantifies.

Lemma 5.12. Consider the ω-valuation function Val defined by

Val((zi)i≥0) =

{
1
z0

if 0 < z0 = z1 = z2 = . . .

−1 otherwise.

and the alphabet Σ = {a}. We define the abbreviation

(y = x+ 1) = x ≤ y ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z).

Then for the Boolean formula

β(X) = ∀x1.∀x2.((x1 ∈ X ∧ x2 = x1 + 1)→ ¬(x2 ∈ X)),

the formula

ϕ = inf X. inf z.
(
β(X) ? Valx.

⊕z,X y.1 :∞
)

is not Val-MC-recognizable.

Proof. For i ∈ N and I ⊆ N we have

J
⊕z,X y.1K{z,X}(aω, [z → i,X → I]) ={

1 if i /∈ I or for all j > i we have j /∈ I
min{j ≥ i | j + 1 ∈ I} − i otherwise

and therefore

JValx.
⊕z,X y.1K{z,X}(aω, [z → i,X → I]) =

∞ if i /∈ I or for all j > i we have j /∈ I
−1 if i ∈ I and i+ 1 ∈ I
(min{j ≥ i | j + 1 ∈ I} − i)−1 otherwise.

5.3. Monitor MSO logic 127

We obtain

Jβ(X) ? Valx.
⊕z,X y.1 :∞K{z,X}(aω, [z → i,X → I]) =

∞ if i /∈ I or for all j > i we have j /∈ I
or j, j + 1 ∈ I for some j ≥ 0

(min{j ≥ i | j + 1 ∈ I} − i)−1 otherwise,

in particular JϕK(aω) ≥ 0. For m ≥ 2 and the special choices I = {0,m + 1} and
i = 0, we obtain

Jβ(X) ? Valx.
⊕z,X y.1 :∞K{z,X}(aω, [z → i,X → I]) =

1

m

and therefore JϕK(aω) = inf{m−1 | m ≥ 2} = 0.
For a BMCA A realizing this series, the weight-sequence associated to each run

has to be constant, and there must be a sequence of runs such that this constant
grows arbitrarily large. We exploit the latter fact to show that there must be a run
whose associated weight-sequence is not constant, which leads to the contradiction
JAK(aω) = −1.

Assume there was a BMCA A = (Q,Σ, I, δ, F, n,Val) with JAK = JϕK. Let
r ∈ AccA(aω) and let (zi)i≥0 be the associated weight-sequence. Clearly, we must
have Val(r) ≥ 0 and therefore 0 < z0 = z1 = z2 = . . ., i.e., Val(r) = z−1

0 > 0.
Since infr∈AccA(aω) Val(r) = 0, there must be a sequence (rm)m≥1 in AccA(aω) with
Val(rm) < 1

m . We write rm = (dmi)i≥0.
Now similarly to the proof of Lemma 5.11, we associate to each m ≥ 1 and i ≥ 0

a quantifier pattern CPm(i) = (k1, . . . , kn) ∈ {0, 1}n, which tells us whether in run
rm at transition i, a counter j ∈ {1, . . . , n} is active or not. More precisely, kj is
1 if for some i′ ≤ i counter j is started at i′ but not terminated on the positions
{i′ + 1, . . . , i}, and 0 otherwise.

For each m ≥ 1, let Nm > 0 such that in run rm, at least one counter was
terminated before reading the Nm-th letter of aω. For every c ∈ {0, 1}n and d ∈ δ,
let M(d, c) = {m ≥ 1 | there exists i > Nm with dmi = d and CPm(i) = c}. We have⋃

(d,c)∈δ×{0,1}nM(d, c) = N+, and since δ × {0, 1}n is a finite set, at least one M(d, c)
must be infinite.

Consider such an infinite M(d, c). Let m1 ∈M(d, c), let i1 > Nm1 with dm1
i1

= d
and CPm1(i1) = c and let ε1 = Val(rm1). Since M(d, c) is infinite, there is m2 ∈
M(d, c) with m−1

2 < ε1. Then we have Val(rm2) < m−1
2 < ε1 = Val(rm1). Let

i2 > Nm2 with dm2
i2

= d and CPm2(i2) = c and let ε2 = Val(rm2). We know that the
associated weight-sequence of rm1 is constantly ε−1

1 and that of rm2 is constantly ε−1
2 .

Now consider the sequence of transitions r = dm1
0 . . . dm1

i1
dm2
i2+1d

m2
i2+2 . . ., we claim

that r is an accepting run of A on aω and that Val(r) = −1. The first state is
initial as rm1 is an accepting run and the transitions are well matched as dm1

i1
= dm2

i2
.

That the Büchi acceptance condition is fulfilled and infinitely often some counter is
activated is clear as rm2 is an accepting run. Finally, that the starts and stops form
well matched pairs follows from the fact that CPm1(i1) = CPm2(i2).

To see that Val(r) = −1, note that i1 > Nm1 , i.e., there is at least one counter in r
which is started at a position l1 < i1 and also terminated before position i1. Therefore,

128 Chapter 5. Monitor Logics

for the weight-sequence (zi)i≥0 associated to r, we have zl1 = ε−1
1 . Furthermore,

there must also be a counter that is started at a position l2 > i2 in rm2 , which means
zl2−i2+i1 = ε−1

2 . Since ε2 < ε1, (zi)i≥0 is not constant and therefore Val(r) = −1. It
follows that JAK(aω) = −1, which is a contradiction to the choice of A.

5.4 Equivalence

In this section, we want to show that the MC-recognizable series coincide with the
series definable by monitor MSO formulas from our logic. In Lemma 5.14, we show
how a given MMCA can be described by a monitor MSO formula. To show that
every series definable by a monitor MSO formula is also MC-recognizable, we show by
induction on the structure of the formula how to construct an MMCA whose behavior
coincides with the semantics of the formula. We first formulate our main theorem.

Theorem 5.13. Let Σ be an alphabet and Val an ω-valuation function. A series
S : Σω → R ∪ {−∞,∞} is Val-MC-recognizable if and only if there exists a monitor
MSO sentence ϕ ∈ mMSO(Σ,Val) with JϕK = S.

In the following lemma, we show the first direction, namely how to obtain a
formula for a given MMCA.

Lemma 5.14. For every Val-MMCA A over Σ, there exists a sentence ϕ ∈
mMSO(Σ,Val) with JAK = JϕK.

Proof. For first order variables x and y and second order variables X1, . . . , Xk we
define the MSO formulas

first(x) = ∀y.x ≤ y
(x < y) = x ≤ y ∧ ¬(y ≤ x)

(y = x+ 1) = x < y ∧ ∀z.(z ≤ x ∨ y ≤ z)

partition(X1, . . . , Xk) = ∀x.
k∨
i=1

x ∈ Xi ∧
∧
j 6=i
¬(x ∈ Xj)

 .

Now let A = (Q,Σ, I, δ,F , n,Val) be an n-MMCA. For every (p, a, q, ū) ∈ δ
we choose a second order variable X(p,a,q,ū) and with k = |δ| we fix a bijection
v : {1, . . . , k} → δ. For i ∈ {1, . . . , k} we write Xi for Xv(i) and X̄ for (X1, . . . , Xk).
Furthermore, we fix second order variables Y1, . . . , Yn and write Ȳ for (Y1, . . . , Yn).
For j ∈ {1, . . . , n} and ? ∈ {s, t} we abbreviate

(uj(x) = ?) =
∨

(p,a,q,ū)∈δ
uj=?

x ∈ X(p,a,q,ū).

Intuitively, we use the variables X̄ to encode runs, i.e., by assigning the transition
v(i) to every position in Xi. The variables Ȳ are used to mark the starts and stops
of the counters in the run X̄. In the following, we define the MSO formula muller(X̄)

5.4. Equivalence 129

which checks that X̄ encodes a run of A satisfying the Muller acceptance condition,
and the MSO formula accept(X̄) which checks that X̄ encodes an accepting run. The
MSO formula accept∗(X̄, Ȳ) asserts that the positions in Ȳ conform to the starts
and stops of the counters in X̄. The precise formulas are as follows.

matched(X̄) =
∧

(p,a,q,ū)∈δ

∀x.
(
x ∈ X(p,a,q,ū) → Pa(x)

)
∧

∀x.∀y.

(
y = x+ 1→

∨
q∈Q

(∨
(p,a,q,ū),(q,a′,p′,ū

′
)∈δ

(x ∈ X(p,a,q,ū) ∧

y ∈ X(q,a′,p′,ū′))

))
muller(X̄) = partition(X̄) ∧matched(X̄) ∧

∃x.
(

first(x) ∧
∨

(p,a,q,ū)∈δ
p∈I

x ∈ X(p,a,q,ū)

)
∧

∨
F∈F

(
∃x.∀y.x ≤ y →

((∨
(p,a,q,ū)∈δ

q∈F

y ∈ X(p,a,q,ū)

)
∧

∧
q∈F
∃z.
(
y ≤ z ∧

∨
(p,a,q,ū)∈δ

z ∈ X(p,a,q,ū)

)))

accept(X̄) = muller(X̄) ∧ ∀x.∃y.(x ≤ y ∧
n∨
j=1

uj(y) = s) ∧

n∧
j=1

∀x.
((

(uj(x) = s)→ ∃y.
(
x < y ∧ uj(y) = t ∧

∀z.((x < z ∧ z < y)→ ¬(uj(z) = s))
))
∧(

(uj(x) = t)→ ∃y.
(
y < x ∧ uj(y) = s ∧

∀z.((y < z ∧ z < x)→ ¬(uj(z) = t))
)))

accept∗(X̄, Ȳ) = accept(X̄) ∧
n∧
j=1

∀x.(x ∈ Yj ↔ (uj(x) = s ∨ uj(x) = t)).

For (p, a, q, ū) ∈ δ and j ∈ {1, . . . , n}, we let wtj(p, a, q, ū) = uj if uj ∈ Z, and
wtj(p, a, q, ū) = 0 otherwise. Then for i ∈ {1, . . . , k− 2} and j ∈ {1, . . . , n} we define
inductively

ψjk−1 = (y ∈ Xk−1 ? wtj(v(k − 1)) : wtj(v(k)))

ψji =
(
y ∈ Xi ? wtj(v(i)) : ψji+1

)
ζn+1 = 1

ζj =
(

(uj(x) = s) ?
⊕x,Yj y.ψj1 : ζj+1

)
.

130 Chapter 5. Monitor Logics

Then with

ϕ = inf X̄. inf Ȳ .(accept∗(X̄, Ȳ) ? Valx.ζ1 :∞),

we have JAK = JϕK. The formula ψj1 evaluates to the weight for counter j of the
transition at position y, i.e., it is wtj(v(i)) iff y is in Xi. The formula ζ1 evaluates
to the output of the counter started at position x in the run encoded by X̄. More
precisely, ζ1 evaluates to

⊕x,Yj y.ψj1 if counter j is started at position x, and to 1 if
no counter is started at x. Finally, the formula ϕ takes the infimum over the weights
of all runs X̄, in the sense that assignments to X̄ and Ȳ only influence the value of
ϕ if X̄ encodes an accepting run and Ȳ mirrors its counter starts and stops.

The remainder of this section is dedicated to showing the converse, namely, that
for every monitor MSO formula there exists an MMCA whose behavior coincides
with the semantics of the formula. Let Σ be an alphabet and Val an ω-valuation
function. We proceed by induction. For the base case, we show that for an x-summing
formula ζ ∈ mMSOx(Σ), the semantics of Valx.ζ is Val-MC-recognizable. For the
inductive part, we show that if we have mMSO formulas ϕ1, ϕ2 ∈ mMSO(Σ,Val)
whose semantics are Val-MC-recognizable and an MSO formula β ∈ MSO(Σ), then
the semantics of β ? ϕ1 : ϕ2, min(ϕ1, ϕ2), inf x.ϕ1, and inf X.ϕ1 are all recognizable.
We will actually show the base case last, as it has the most involved proof. We begin
with the Val-MC-recognizability of β ? ϕ1 : ϕ2.

Lemma 5.15. Let β ∈ MSO(Σ) be an MSO formula and ϕ1, ϕ2 ∈ mMSO(Σ,Val)
such that Jϕ1K and Jϕ2K are Val-MC-recognizable. Then with ϕ = β ? ϕ1 : ϕ2, the
series JϕK is also Val-MC-recognizable.

Proof. Let V = Free(ϕ). Then we have Free(ϕ1) ⊆ V and Free(ϕ2) ⊆ V and hence
by Lemma 5.10 Jϕ1KV and Jϕ2KV are Val-MC-recognizable. Due to Free(β) ⊆ V , the
classical Büchi theorem tells us that both LV(β) and LV(¬β) are ω-recognizable.
Hence by Lemma 5.5 and Lemma 5.6, JϕK = min(LV(β) ∩ Jϕ1KV ,LV(¬β) ∩ Jϕ2KV) is
also Val-MC-recognizable.

Next, we show that for two mMSO formulas ϕ1 and ϕ2 whose semantics are
Val-MC-recognizable, the semantics of min(ϕ1, ϕ2) is also Val-MC-recognizable.

Lemma 5.16. Let ϕ1, ϕ2 ∈ mMSO(Σ,Val) be such that Jϕ1K and Jϕ2K are Val-MC-
recognizable. Then with ϕ = min(ϕ1, ϕ2), the series JϕK is also Val-MC-recognizable.

Proof. Let V = Free(ϕ1) ∪ Free(ϕ2), then by Lemma 5.10, Jϕ1KV and Jϕ2KV are
Val-MC-recognizable. Hence by Lemma 5.5, JϕK = min(Jϕ1KV , Jϕ2KV) is also Val-MC-
recognizable.

For the last step of the inductive part, we show that for an mMSO formula ϕ
whose semantics is Val-MC-recognizable, the semantics of inf x.ϕ and inf X.ϕ are
also Val-MC-recognizable.

Lemma 5.17. Let ϕ ∈ mMSO(Σ,Val) such that JϕK is Val-MC-recognizable. Then
the series Jinf x.ϕK and Jinf X.ϕK are also Val-MC-recognizable.

5.4. Equivalence 131

Proof. We show the lemma for inf x.ϕ. The proof for inf X.ϕ is similar. Let V =
Free(inf x.ϕ), then x /∈ V. We consider the homomorphism

h : Σω
V∪{x} → Σω

V

which erases the x-row. Then for every valid (w, ρ) ∈ Σω
V , we have that

Jinf x.ϕKV(w, ρ) = inf{JϕKV∪{x}(w, ρ[x→ i]) | i ≥ 0} = h(JϕKV∪{x})(w, ρ).

As Free(ϕ) ⊆ V ∪ {x}, Lemma 5.10 shows that JϕKV∪{x} is Val-MC-recognizable and
therefore by Lemma 5.4(i), the series Jinf x.ϕKV = h(JϕKV∪{x}) is Val-MC-recognizable
as well.

Before we turn to the proof of the base case, we prove two technical lemmata for
almost Boolean and x-summing formulas.

Lemma 5.18. Let ψ ∈ mMSOa-bool(Σ) be an almost Boolean formula and V ⊇
Free(ψ). Then there exist MSO formulas β1, . . . , βn ∈ MSO(Σ) and weights
z1, . . . , zn ∈ Z such that Free(ψ) =

⋃n
i=1 Free(βi), NV =

⋃n
i=1 LV(βi), for i 6= j

we have LV(βi) ∩ LV(βj) = ∅, and for (w, ρ) ∈ NV we have JψKV(w, ρ) = zi if and
only if (w, ρ) ∈ LV(βi).

Proof. For ψ = k with k ∈ Z, we choose n = 1, β1 = true, and z1 = k.
For ψ = β ?ψ1 :ψ2 we assume that the lemma is true for ψ1 with β(1)

1 , . . . , β
(1)
n1 and

z
(1)
1 , . . . , z

(1)
n1 and for ψ2 with β(2)

1 , . . . , β
(2)
n2 and z(2)

1 , . . . , z
(2)
n2 . Then for ψ we let n =

n1 + n2 and choose β1, . . . , βn1+n2 and z1, . . . , zn1+n2 as follows. For i ∈ {1, . . . , n1},
we let βi = β ∧ β(1)

i and zi = z
(1)
i , and for i ∈ {1, . . . , n2}, we let βn1+i = ¬β ∧ β(2)

i

and zn1+i = z
(2)
i .

Lemma 5.19. Let ζ ∈ mMSOx(Σ) be an x-summing formula and V ⊇ Free(ζ).
Then there exist MSO formulas β1, . . . , βn ∈ MSO(Σ) and formulas ζ1, . . . , ζn with
ζi =

⊕x,Yi y.ψi, where ψi is almost Boolean, such that Free(ζ) =
⋃n
i=1 Free(βi) ∪

Free(ζi), for i 6= j we have LV(βi) ∩ LV(βj) = ∅, for (w, ρ) ∈ NV we have
JζKV(w, ρ) = JζiKV(w, ρ) if and only if (w, ρ) ∈ LV(βi), and if (w, ρ) /∈

⋃n
i=1 LV(βi)

then JζKV(w, ρ) = 1. We may assume the variables Yi to be pairwise distinct.

Proof. We proceed like in the proof of Lemma 5.18. For ζ = 1 we choose n = 0, i.e.,
there are no formulas β. For ζ =

⊕x,X y.ψ, we choose β1 = true and ζ1 = ζ.
For ζ = β ? ζ ′1 : ζ ′2, we assume that the lemma is true for ζ ′1 with β(1)

1 , . . . , β
(1)
n1 and

ζ
(1)
1 , . . . , ζ

(1)
n1 and for ζ ′2 with β(2)

1 , . . . , β
(2)
n2 and ζ(2)

1 , . . . , ζ
(2)
n2 . Then for ζ we let n =

n1 + n2 and choose β1, . . . , βn1+n2 and ζ1, . . . , ζn1+n2 as follows. For i ∈ {1, . . . , n1}
we let βi = β ∧ β(1)

i and ζi = ζ
(1)
i , and for i ∈ {1, . . . , n2} we let βn1+i = ¬β ∧ β(2)

i

and ζn1+i = ζ
(2)
i .

Now in case that for some i 6= j we have Yi = Yj , we replace βi and βj by one
formula β′ = βi ∨ βj and we replace ζi and ζj by ζ ′ =

⊕x,Yi y.(βi ? ψi : ψj).

We now turn to the proof of the base case of our induction.

132 Chapter 5. Monitor Logics

Theorem 5.20. Let ζ ∈ mMSOx(Σ) be an x-summing formula. Then JValx.ζK is
Val-MC-recognizable.

Proof. We adapt and expand ideas from [27, 32]. Let β1, . . . , βn and ζ1, . . . , ζn be
the formulas we can find for ζ according to Lemma 5.19. We write ζi =

⊕x,Yi y.ψi.
Then for each i ∈ {1, . . . , n}, let βi1, . . . , βini and zi1, . . . , zini be the formulas and
weights we can find for ψi according to Lemma 5.18.

The proof idea is as follows. For V = Free(Valx.ζ), the mapping JValx.ζK assigns
values to words from Σω

V . Consider a valid (w, ρ) ∈ Σω
V . We can interpret each ζi as

a counter which is stopped and then restarted at the k-th letter of w depending on
whether (w, ρ[x→ k]) satisfies βi. As our automata cannot stop and start a single
counter at the same time, each counter i will correspond to two counters i and i′ in
the automaton we construct. The computations of counter i depend on βi1, . . . , βini .
We extend the alphabet ΣV by adding two entries for each counter to each letter in
ΣV . The entries for counter i can contain an s to indicate the start of the counter, a
t to indicate a stop, a number j ∈ {1, . . . , ni} to indicate that the counter is active
and should add zij to its current value, or the new symbol ⊥ to indicate that the
counter is inactive. Let Σ̃V be this new alphabet. We show that we can define an
ω-recognizable language L over Σ̃V which for every word has all information about
the counter operations encoded in the word. For example, if (w, ρ[x→ k]) |= βi, then
in the word (w, ρ, v) ∈ Σ̃ω

V corresponding to (w, ρ), the entry for counter i in the k-th
letter should contain an s. Then if (w, ρ[x→ k, y → k + 1]) |= βij , the i-entry of the
k + 1-th letter should contain a j. The precise formulation is involved and will be
formalized in the sequel.

When we have shown that the language L is ω-recognizable, we can construct a
Muller automaton Ã which recognizes L. Turning Ã into an MMCA and applying a
projection, we finally obtain the recognizability of JValx.ζK.

In the following, we present the formal proof. If n = 0 then JζK ≡ 1, i.e.,
JValx.ζK ≡ ∞, which is recognized by every BMCA without final states. Assume
n > 0 and let W = Free(ζ), then according to Lemma 5.19 we have

W =

n⋃
i=1

Free(βi) ∪ Free(ζi)

=

n⋃
i=1

Free(βi) ∪ {x, Yi} ∪ (Free(ψi) \ {y}).

In particular, we have W ⊇ {x, Y1, . . . , Yn} and for every i ∈ {1, . . . , n}, we have
W ⊇ Free(βi). According to the classical Büchi theorem, we therefore know that
LW(βi) is ω-recognizable. This in turn means that there are MSO sentences β′i over
the alphabet ΣW with LW(βi) = L(β′i).

Let H = ({s, t,⊥, 1, . . . , n1}× . . .×{s, t,⊥, 1, . . . , nn})2, where ⊥ is a new symbol.
An element h ∈ H can be interpreted as a mapping with dom(h) = {1, . . . , 2n} such
that for i ∈ {1, . . . , n} we have h(i), h(i+n) ∈ {s, t,⊥, 1, . . . , ni}. We now consider a
new alphabet Σ̃W = ΣW ×H. We represent letters from Σ̃W as triples (a, g, h) where

5.4. Equivalence 133

a ∈ Σ, g ∈ {0, 1}W , and h ∈ H. Infinite words over Σ̃W are represented as triples
(w, ρ, v) where (w, ρ) ∈ Σω

W and v : N→ H.
We transform each β′i in the following fashion. We obtain β′′i from β′i by replacing

each atomic formula P(a,g)(z) in β′i by
∨
h∈H P(a,g,h)(z). Then for every (w, ρ, v) ∈ Σ̃ω

W
we have (w, ρ, v) |= β′′i if and only if (w, ρ) |= β′i.

Now let V =W \ {x}. We transform β′′i into a formula β′′′i (x) over the alphabet
Σ̃V = ΣV ×H as follows. Each atomic subformula P(a,g,h)(z) in β′′i is replaced by
P(a,g′,h)(z)∧x = z if g(x) = 1 and by P(a,g′,h)(z)∧¬(x = z) if g(x) = 0, where g′ is the
restriction of g to V , i.e., g′ = g�V . Then β′′′i (x) has exactly one free variable, namely
x, as β′i is a sentence. Let k ∈ N and (w, ρ, v) ∈ Σ̃ω

V . Then ((w, ρ, v), [x→ k]) |= β′′′i (x)
if and only if (w, ρ[x→ k], v) |= β′′i .

Now let W ′ =W ∪ {y}, then by Lemma 5.18 we have

W ′ ⊇ {y} ∪
n⋃
i=1

(Free(ψi) \ {y})

= {y} ∪
n⋃
i=1

ni⋃
j=1

Free(βij).

With the same argumentation as above, we find MSO sentences β′ij over the alphabet
ΣW ′ with LW ′(βij) = L(β′ij). Again, we obtain from each β′ij a sentence β′′ij over
the alphabet Σ̃W ′ = ΣW ′ ×H by replacing every atomic formula P(a,g)(z) in β′ij by∨
h∈H P(a,g,h)(z). Then for every (w, ρ, v) ∈ Σ̃ω

W ′ we have (w, ρ, v) |= β′′ij if and only
if (w, ρ) |= β′ij .

Next, we obtain from β′′ij a formula β′′′ij (x, y) over the alphabet Σ̃V as follows.
Each atomic subformula P(a,g,h)(z) in β′′ij is replaced by

• P(a,g′,h)(z) ∧ x = z ∧ y = z if g(x) = 1 and g(y) = 1

• P(a,g′,h)(z) ∧ x = z ∧ ¬(y = z) if g(x) = 0 and g(y) = 1

• P(a,g′,h)(z) ∧ ¬(x = z) ∧ y = z if g(x) = 1 and g(y) = 0

• P(a,g′,h)(z) ∧ ¬(x = z) ∧ ¬(y = z) if g(x) = 0 and g(y) = 0

where g′ is the restriction of g to V , i.e., g′ = g�V . Note the change of roles of x and
y. Then β′′′ij (x, y) has exactly two free variables, namely x and y, as β′ij is a sentence.
Let k, l ∈ N and (w, ρ, v) ∈ Σ̃ω

V . Then ((w, ρ, v), [x → k, y → l]) |= β′′′ij (x, y) if and
only if (w, ρ[x→ l, y → k], v) |= β′′ij .

Now recall that {Y1, . . . , Yn} ⊆ V. For i ∈ {1, . . . , n}, ? ∈ {s, t, 1, . . . , ni}, and
i′ ∈ {i, i+ n}, we define the abbreviations

Yi(z) =
∨

(a,g,h)∈Σ̃V
g(Yi)=1

P(a,g,h)(z)

(hi′(z) = ?) =
∨

(a,g,h)∈Σ̃V
h(i′)=?

P(a,g,h)(z)

134 Chapter 5. Monitor Logics

even(x,X) = ∃Y.∃Z.∀x′.((x′ ∈ X ∧ x′ < x)→ (x′ ∈ Y ↔ ¬x′ ∈ Z)) ∧
∀x′.((x′ ∈ Y ∨ x′ ∈ Z)→ (x′ ∈ X ∧ x′ < x)) ∧
∀z.(z ∈ Z → ∃y.(y ∈ Y ∧ y < z)) ∧
∀y.(y ∈ Y → ∃z.(z ∈ Z ∧ y < z)) ∧
∀y1.∀y2.((y1 ∈ Y ∧ y2 ∈ Y ∧ y1 < y2)

→ ∃z.(z ∈ Z ∧ y1 < z ∧ z < y2)) ∧
∀z1.∀z2.((z1 ∈ Z ∧ z2 ∈ Z ∧ z1 < z2)

→ ∃y.(y ∈ Y ∧ z1 < y ∧ y < z2)).

For every w ∈ Σω, we have (w, [x → k,X → I]) |= even(x,X) if and only if
{j ∈ I | j < k} contains evenly many elements. In the following, we will also use the
formula notLast(x,X) defined in Remark 5.8. Now for i ∈ {1, . . . , n}, j ∈ {1, . . . , ni},
and i′ ∈ {i, i+ n}, we define

ϕis(x) = (hi(x) = s)↔(
β′′′i (x) ∧ ∃X.

(
∀z.(z ∈ X ↔ Yi(z)) ∧ notLast(x,X) ∧ even(x,X)

))
ϕ(i+n)s(x) = (hi+n(x) = s)↔(

β′′′i (x) ∧ ∃X.
(
∀z.(z ∈ X ↔ Yi(z)) ∧ notLast(x,X) ∧ ¬even(x,X)

))
ϕi′t(x) = (hi′(x) = t)↔(

Yi(x) ∧ ∃z.
(

(z < x) ∧ (hi′(z) = s) ∧ ∀z′.
(

(z′ < x ∧ Yi(z′))→ z′ ≤ z
)))

ϕi′j(x) = (hi′(x) = j)↔

∃y.∃y′.
(

(y < x) ∧ (hi′(y) = s) ∧ (x < y′) ∧ (hi′(y
′) = t) ∧

∀z.
(
Yi(z)→ (z ≤ y ∨ y′ ≤ z)

)
∧ β′′′ij (x, y)

)
and finally

ϕ =

(
2n∧
i=1

∀x.ϕis(x)

)
∧

(
2n∧
i=1

∀x.ϕit(x)

)
∧

 n∧
i=1

ni∧
j=1

∀x.(ϕij(x) ∧ ϕ(i+n)j(x))

 .

The formula ϕ is clearly a sentence over Σ̃V . In the following lemma, we show that
L(ϕ) is exactly the language over Σ̃V we described in the explanation at the beginning
of the proof.

Lemma 5.21. Let (w, ρ) ∈ Σω
V be valid, then there exists exactly one mapping

v : N→ H such that (w, ρ, v) |= ϕ and for this v we have the following. For all k ∈ N,
either v(k)(i′) 6= s for all i′ ∈ {1, . . . , 2n} and JζKV∪{x}(w, ρ[x→ k]) = 1, or we have
v(k)(i′) = s for exactly one i′ ∈ {1, . . . , 2n} and with l = min{ι > k | v(ι)(i′) = t} we
have

JζKV∪{x}(w, ρ[x→ k]) =

l−1∑
ι=k+1

ziv(ι)(i′),

5.4. Equivalence 135

where i ∈ {1, . . . , n} is such that i′ ∈ {i, i+n}. In particular, {ι > k | v(ι)(i′) = t} 6= ∅
in the latter case. Furthermore, for this v and all l ∈ N we have that if v(l)(i′) = t
for some i′ ∈ {1, . . . , 2n}, then for some k < l we have v(k)(i′) = s.

Proof. Step 1: We show the uniqueness first, so let (w, ρ) ∈ Σω
V be valid and

v1, v2 : N→ H such that (w, ρ, v1) |= ϕ and (w, ρ, v2) |= ϕ. Let k ∈ N, i ∈ {1, . . . , n},
and i′ ∈ {i, i+n}. We then have five different cases: (1) v1(k)(i′) = s with i′ ≤ n, (2)
v1(k)(i′) = s with i′ > n, (3) v1(k)(i′) = t, (4) v1(k)(i′) ∈ N, and (5) v1(k)(i′) = ⊥.
Assume the first case is true. Then we know that both ((w, ρ, v1), [x → k]) |=
(hi′(x) = s) and ((w, ρ, v1), [x→ k]) |= ϕi′s(x), which implies

((w, ρ, v1), [x→ k]) |=

β′′′i (x) ∧ ∃X.
(
∀z.(z ∈ X ↔ Yi(z)) ∧ notLast(x,X) ∧ even(x,X)

)
.

(5.4.1)

As we have ((w, ρ, v1), [x→ k]) |= β′′′i (x) if and only if (w, ρ[x→ k]) |= βi, the validity
of (5.4.1) does not depend on v1. Hence, the formula in (5.4.1) is also satisfied by
((w, ρ, v2), [x → k]). Since ((w, ρ, v2), [x → k]) |= ϕi′s(x), we therefore must have
((w, ρ, v2), [x→ k]) |= (hi′(x) = s), i.e., v1(k)(i′) = v2(k)(i′). With similar reasoning,
cases (2), (3), and (4) yield the same result. For case (5) it then follows trivially that
v2(k)(i′) 6= ⊥ is impossible.
Step 2: We now construct a mapping v : N → H with (w, ρ, v) |= ϕ. We assume
that v is initialized with ⊥, i.e., v(k)(i′) = ⊥ for all k ∈ N and i′ ∈ {1, . . . , 2n}, and
we will gradually redefine v. Let k ∈ N and i ∈ {1, . . . , n}. We define i′ = i if the set
{j ∈ ρ(Yi) | j < k} contains evenly many elements, and i′ = i+ n otherwise. If

((w, ρ, v), [x→ k]) |= β′′′i (x) ∧ ∃X.
(
∀z.(z ∈ X ↔ Yi(z)) ∧ notLast(x,X)

)
, (5.4.2)

we redefine v(k)(i′) = s. Note that the validity of (5.4.2) does not depend on v.
Doing this for all k and i clearly yields (w, ρ, v) |=

∧2n
i=1 ∀x.ϕis(x).

Now let k ∈ N. Then for all i ∈ {1, . . . , n} and i′ ∈ {i, i + n}, we redefine
v(k)(i′) = t if

((w, ρ, v), [x→ k]) |=

Yi(x) ∧ ∃z.
(

(z < x) ∧ (hi′(z) = s) ∧ ∀z′.
(

(z′ < x ∧ Yi(z′))→ z′ ≤ z
))
.

(5.4.3)

We see as follows that v(k)(i′) was not redefined to s earlier. Let l = max{j ∈
ρ(Yi) | j < k}. Then we have by (5.4.3) that v(l)(i′) = s. We know that {j ∈
ρ(Yi) | j < k} contains evenly many elements if and only if {j ∈ ρ(Yi) | j < l}
contains an odd number of elements. This shows that v(k)(i′) and v(l)(i′) cannot
both be s. Proceeding in the same way for all k ∈ N, we obtain v such that
(w, ρ, v) |=

(∧2n
i=1 ∀x.ϕis(x)

)
∧
(∧2n

i=1 ∀x.ϕit(x)
)
.

Finally, for k ∈ N, i ∈ {1, . . . , n}, i′ ∈ {i, i+ n}, and j ∈ {1, . . . , ni} with

((w, ρ, v), [x→ k]) |= ∃y.∃y′.
(

(y < x) ∧ (hi′(y) = s) ∧ (x < y′) ∧ (hi′(y
′) = t) ∧

∀z.
(
Yi(z)→ (z ≤ y ∨ y′ ≤ z)

)
∧ β′′′ij (x, y)

)
,

136 Chapter 5. Monitor Logics

we redefine v(k)(i′) = j. Since clearly k /∈ ρ(Yi) in this case, v(k)(i′) was surely not
redefined to s or t earlier. In conclusion, we obtain (w, ρ, v) |= ϕ.
Step 3: Assume (w, ρ, v) |= ϕ. First, assume that for some l ∈ N and i′ ∈ {1, . . . , 2n}
we have v(l)(i′) = t. Since ((w, ρ, v), [x → l]) |= ϕi′t(x), it easily follows that
v(k)(i′) = s for some k < l.

Now let k ∈ N. We show that either v(k)(i′) 6= s for all i′ ∈ {1, . . . , 2n} and
JζKV∪{x}(w, ρ[x → k]) = 1, or we have v(k)(i′) = s for some i ∈ {1, . . . , n} and
i′ ∈ {i, i+ n} and with l = min{ι > k | v(ι)(i′) = t} we have

JζKV∪{x}(w, ρ[x→ k]) =

l−1∑
ι=k+1

ziv(ι)(i′).

Step 3.1: According to the choice of β1, . . . , βn and by Remark 5.8, we know that
JζKV∪{x}(w, ρ[x→ k]) 6= 1 if and only if there exists i ∈ {1, . . . , n} such that

(w, ρ[x→ k]) |= βi ∧ notLast(x, Yi)

and in this case the index i is uniquely determined. We have (w, ρ[x → k]) |=
notLast(x, Yi) if and only if

((w, ρ, v), [x→ k]) |= ∃X.
(
∀z.(z ∈ X ↔ Yi(z)) ∧ notLast(x,X)

)
,

and by construction we have (w, ρ[x→ k]) |= βi if and only if ((w, ρ, v), [x→ k]) |=
β′′′i (x). We thus have

((w, ρ, v), [x→ k]) |= β′′′i (x) ∧ ∃X.
(
∀z.(z ∈ X ↔ Yi(z)) ∧ notLast(x,X)

)
if and only if (w, ρ[x → k]) |= βi ∧ notLast(x, Yi). Since ((w, ρ, v), [x → k]) |=
ϕis(x)∧ϕ(i+n)s(x), this is the case if and only if either v(k)(i) = s or v(k)(i+ n) = s
holds, and both v(k)(i) = s and v(k)(i+ n) = s can never hold.

In conclusion, for every k ∈ N there is always at most one i′ ∈ {1, . . . , 2n} with
v(k)(i′) = s, and furthermore JζKV∪{x}(w, ρ[x → k]) 6= 1 if and only if v(k)(i′) = s
for some i′.
Step 3.2: Now assume JζKV∪{x}(w, ρ[x → k]) 6= 1 and let i ∈ {1, . . . , n} and
i′ ∈ {i, i+ n} with v(k)(i′) = s as in Step 3.1. We know that

JζKV∪{x}(w, ρ[x→ k]) = JζiKV∪{x}(w, ρ[x→ k])

= J
⊕x,Yi y.ψiKV∪{x}(w, ρ[x→ k])

=

min{j∈ρ(Yi)|j>k}−1∑
ι=k+1

JψiKV∪{x,y}(w, ρ[x→ k, y → ι]).

Let l = min{j ∈ ρ(Yi) | j > k}. We show that l = min{ι > k | v(ι)(i′) = t}. We have

((w, ρ, v), [x→ l]) |=

Yi(x) ∧ ∃z.
(

(z < x) ∧ (hi′(z) = s) ∧ ∀z′.
(

(z′ < x ∧ Yi(z′))→ z′ ≤ z
))
.

(5.4.4)

5.4. Equivalence 137

Due to (w, ρ, v) |= ϕi′t(x), we obtain v(l)(i′) = t. Now assume there was l′ with
k < l′ < l and v(l′)(i′) = t, then ((w, ρ, v), [x → l′]) |= (hi′(x) = t) and therefore
(5.4.4) above is also satisfied for l′. In particular, ((w, ρ, v), [x → l′]) |= Yi(x), but
l′ ∈ ρ(Yi) is impossible by definition of l.
Step 3.3: Now let ι with k < ι < l, we show that

ziv(ι)(i′) = JψiKV∪{x,y}(w, ρ[x→ k, y → ι]).

By choice of βi1, . . . , βini there is exactly one j ∈ {1, . . . , ni} with (w, ρ[x→ k, y →
ι]) |= βij , which is equivalent to ((w, ρ, v), [x→ ι, y → k]) |= β′′′ij (x, y). Due to Steps
3.1 and 3.2, we therefore see that ((w, ρ, v), [x→ ι]) models

∃y.∃y′.
(

(y < x) ∧ (hi′(y) = s) ∧ (x < y′) ∧ (hi′(y
′) = t) ∧

∀z.
(
Yi(z)→ (z ≤ y ∨ y′ ≤ z)

)
∧ β′′′ij (x, y)

)
,

which due to (w, ρ, v) |= ϕi′j(x) means that v(ι)(i′) = j. We obtain

JψiKV∪{x,y}(w, ρ[x→ k, y → ι]) = zij = ziv(ι)(i′).

Let Ã = (Q, Σ̃V , q0, δ̃,F) be a Muller automaton which accepts L(ϕ). We
construct the MMCA A = (Q, Σ̃V , {q0}, δ,F , 2n,Val) by defining δ as follows. The
set δ contains all transitions (p, (a, g, h), q, ū) such that (1) (p, (a, g, h), q) ∈ δ̃ and (2)
for all i ∈ {1, . . . , n} and i′ ∈ {i, i+ n} we have

ui′ =

s if h(i′) = s

t if h(i′) = t

zij if h(i′) = j

0 if h(i′) = ⊥.

By Lemma 5.21, we see that each transition starts at most one counter.
We show that now for every (w, ρ, v) ∈ Σ̃ω

V we have

JAK(w, ρ, v) =

{
JValx.ζK(w, ρ) if (w, ρ, v) |= ϕ

∞ otherwise.

If (w, ρ, v) 6|= ϕ, then AccÃ(w, ρ, v) = ∅ and thus by construction of δ we also have
AccA(w, ρ, v) = ∅, i.e., JAK(w, ρ, v) =∞.

Conversely, assume (w, ρ, v) |= ϕ. If AccA(w, ρ, v) = ∅, we let r̃ ∈ AccÃ(w, ρ, v) be
an accepting run of Ã on (w, ρ, v). By supplying vectors ū to the transitions of r̃ in the
obvious fashion, we obtain a run r of A on (w, ρ, v). It follows from Lemma 5.21 that
the start and stop symbols s and t for the counters appear in well-formed pairs. Thus,
r is accepting if and only if the set {k ∈ N | v(k)(i′) = s for some i′ ∈ {1, . . . , 2n}} is
infinite. Since AccA(w, ρ, v) = ∅, the run r is not accepting, so we see by Lemma 5.21
that {k ∈ N | JζKV∪{x}(w, ρ[x→ k]) 6= 1} is finite. Thus, we have JValx.ζK(w, ρ) =∞.
It follows that JAK(w, ρ, v) = JValx.ζK(w, ρ).

138 Chapter 5. Monitor Logics

Finally, if (w, ρ, v) |= ϕ and AccA(w, ρ, v) 6= ∅, we let r ∈ AccA(w, ρ, v), k ∈
N, and let (zj)j≥0 be the weight-sequence associated to r. We show that zk =
JζKV∪{x}(w, ρ[x→ k]). If zk = 1, then by construction of δ we have v(k)(i′) 6= s for
all i′ ∈ {1, . . . , 2n}. By Lemma 5.21 we thus have JζKV∪{x}(w, ρ[x→ k]) = 1 = zk. If
zk 6= 1, we must have v(k)(i′) = s for some i ∈ {1, . . . , n} and i′ ∈ {i, i+ n} by the
definition of (zj)j≥0 and the definition of δ. Thus, with l = min{ι > k | v(ι)(i′) = t}
we have by Lemma 5.21 and the definition of δ that

JζKV∪{x}(w, ρ[x→ k]) =
l−1∑

ι=k+1

ziv(ι)(i′) = zk.

Therefore, we have Val(r) = Val((zj)j≥0) = JValx.ζK(w, ρ). Since r ∈ AccA(w, ρ, v)
was arbitrary, it follows that JAK(w, ρ, v) = Val(r) = JValx.ζK(w, ρ).

To conclude, consider the projection h : Σ̃V → ΣV , (w, ρ, v) 7→ (w, ρ). For every
valid (w, ρ) ∈ Σω

V , we know by Lemma 5.21 that there exists exactly one mapping
v : N→ H with (w, ρ, v) |= ϕ. Thus we have

h(JAK)(w, ρ) = inf{JAK(w, ρ, v) | v : N→ H}
= JAK(w, ρ, v) for the unique v with (w, ρ, v) |= ϕ

= JValx.ζK(w, ρ),

so h(JAK) = JValx.ζK holds. By Lemma 5.4, h(JAK) is Val-MC-recognizable.

By combining Theorem 5.20 and Lemmata 5.15, 5.16, and 5.17, we obtain that
the semantics of every mMSO formula ϕ ∈ mMSO(Σ,Val) is Val-MC-recognizable.
Together with Lemma 5.14, this concludes the proof of Theorem 5.13.

Bibliography

When you steal from one author, it’s plagiarism;
if you steal from many, it’s research.

Wilson Mizner

[1] Athanasios Alexandrakis and Symeon Bozapalidis. Weighted grammars and
Kleene’s theorem. Information Processing Letters, 24(1):1–4, 1987.

[2] Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):117–144,
2003.

[3] Rajeev Alur and Parthasarathy Madhusudan. Adding nesting structure to
words. Journal of the ACM, 56(3):16:1–16:43, 2009.

[4] Sebastian Bala. Which finitely ambiguous automata recognize finitely sequential
functions? In Krishnendu Chatterjee and Jiří Sgall, editors, 38th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume
8087 of Lecture Notes in Computer Science, pages 86–97. Springer, 2013.

[5] Sebastian Bala and Artur Koniński. Unambiguous automata denoting finitely
sequential functions. In Adrian-Horia Dediu, Carlos Martín-Vide, and Bianca
Truthe, editors, 7th International Conference on Language and Automata Theory
and Applications (LATA), volume 7810 of Lecture Notes in Computer Science,
pages 104–115. Springer, 2013.

[6] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.
Squaring transducers: an efficient procedure for deciding functionality and
sequentiality. Theoretical Computer Science, 292(1):45–63, 2003.

[7] Jean Berstel and Christophe Reutenauer. Recognizable formal power series on
trees. Theoretical Computer Science, 18:115–148, 1982.

[8] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages,
volume 12 of EATCS Monographs in Theoretical Computer Science. Springer,
1988.

[9] Garrett Birkhoff. Lattice Theory. Colloquium publications. American Mathe-
matical Society, 1948. 4th printing.

140 Bibliography

[10] Johanna Björklund, Frank Drewes, and Niklas Zechner. An efficient best-trees
algorithm for weighted tree automata over the tropical semiring. In Adrian-Horia
Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, 9th
International Conference on Language and Automata Theory and Applications
(LATA), volume 8977 of Lecture Notes in Computer Science, pages 97–108.
Springer, 2015.

[11] Meera Blattner and Tom Head. Automata that recognize intersections of free
submonoids. Information and Control, 35(3):173–176, 1977.

[12] Manuel Blum and Carl Hewitt. Automata on a 2-dimensional tape. In 8th
Annual Symposium on Switching and Automata Theory (SWAT), pages 155–160.
IEEE Computer Society, 1967.

[13] Alexander Bockmayr, Volker Weispfenning, and Michael Maher. Solving nu-
merical constraints. In Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, volume 1, chapter 12, pages 751 – 842. Elsevier and
MIT Press, 2001.

[14] Benedikt Bollig, Paul Gastin, and Benjamin Monmege. Weighted specifications
over nested words. In Frank Pfenning, editor, 16th International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS),
volume 7794 of Lecture Notes in Computer Science, pages 385–400. Springer,
2013.

[15] Björn Borchardt. A pumping lemma and decidability problems for recognizable
tree series. Acta Cybernetica, 16(4):509–544, 2004.

[16] Julius Richard Büchi. Weak second-order arithmetic and finite automata.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66–92,
1960.

[17] Matthias Büchse and Anja Fischer. Deciding the twins property for weighted
tree automata over extremal semifields. In Frank Drewes and Marco Kuhlmann,
editors, 2nd Workshop on Applications of Tree Automata Techniques in Natural
Language Processing (ATANLP), pages 11–20. The Association for Computer
Linguistics, 2012.

[18] Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization of weighted
tree automata using factorizations. Journal of Automata, Languages and
Combinatorics, 15(3/4):229–254, 2010.

[19] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative
languages. ACM Transactions on Computational Logic, 11(4):23:1–23:38, 2010.

[20] Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative
monitor automata. In Xavier Rival, editor, 23rd Static Analysis Symposium
(SAS), volume 9837 of Lecture Notes in Computer Science, pages 23–38. Springer,
2016.

Bibliography 141

[21] Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted
automata. ACM Transactions on Computational Logic, 18(4):31:1–31:44, 2017.

[22] Noam Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, 2(3):113–124, 1956.

[23] Bruno Courcelle. Monadic second-order definable graph transductions: A survey.
Theoretical Computer Science, 126(1):53–75, 1994.

[24] Laure Daviaud, Pierre Guillon, and Glenn Merlet. Comparison of max-plus
automata and joint spectral radius of tropical matrices. In Larsen et al. [69],
pages 19:1–19:14.

[25] John Doner. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4(5):406–451, 1970.

[26] Manfred Droste and Stefan Dück. Weighted automata and logics on graphs. In
Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, 40th
International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 9234 of Lecture Notes in Computer Science, pages 192–204.
Springer, 2015.

[27] Manfred Droste and Paul Gastin. Weighted automata and weighted logics.
Theoretical Computer Science, 380(1-2):69–86, 2007.

[28] Manfred Droste and Doreen Heusel. The supports of weighted unranked tree
automata. Fundamenta Informaticae, 136(1-2):37–58, 2015.

[29] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted
Automata. EATCS Monographs in Theoretical Computer Science. Springer,
2009.

[30] Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO
logics for average and long-time behaviors. Information and Computation,
220:44–59, 2012.

[31] Manfred Droste and Erik Paul. A Feferman-Vaught decomposition theorem for
weighted MSO logic. In Igor Potapov, Paul Spirakis, and James Worrell, editors,
43rd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS), volume 117 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 76:1–76:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018.

[32] Manfred Droste and George Rahonis. Weighted automata and weighted logics
on infinite words. In Oscar H. Ibarra and Zhe Dang, editors, 10th International
Conference on Developments in Language Theory (DLT), volume 4036 of Lecture
Notes in Computer Science, pages 49–58. Springer, 2006.

[33] Manfred Droste and George Rahonis. Weighted automata and weighted logics
with discounting. Theoretical Computer Science, 410(37):3481–3494, 2009.

142 Bibliography

[34] Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics.
Theoretical Computer Science, 366(3):228–247, 2006.

[35] Manfred Droste and Heiko Vogler. Weighted automata and multi-valued logics
over arbitrary bounded lattices. Theoretical Computer Science, 418:14–36, 2012.

[36] Andrzej Ehrenfeucht. An application of games to the completeness problem for
formalized theories. Fundamenta Mathematicae, 49(2):129–141, 1961.

[37] Samuel Eilenberg. Automata, Languages, and Machines, volume A of Pure and
Applied Mathematics. Academic Press, 1974.

[38] Calvin C. Elgot. Decision problems of finite automata design and related
arithmetics. Transactions of the American Mathematical Society, 98(1):21–51,
1961.

[39] Zoltán Ésik and Werner Kuich. Formal tree series. Journal of Automata,
Languages and Combinatorics, 8(2):219–285, 2003.

[40] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of
ω-regular languages I. Journal of Automata, Languages and Combinatorics,
10(2/3):203–242, 2005.

[41] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-
regular languages II. Journal of Automata, Languages and Combinatorics,
10(2/3):243–264, 2005.

[42] Zoltán Ésik and Werner Kuich. On iteration semiring-semimodule pairs. Semi-
group Forum, 75(1):129–159, 2007.

[43] Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s
theorem: A simple and direct automaton construction. Information Processing
Letters, 111(12):614–619, 2011.

[44] Solomon Feferman and Robert L. Vaught. The first order properties of products
of algebraic systems. Fundamenta Mathematicae, 47(1):57–103, 1959.

[45] Ina Fichtner. Weighted picture automata and weighted logics. Theory of
Computing Systems, 48(1):48–78, 2011.

[46] Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-
François Raskin. On delay and regret determinization of max-plus automata.
In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE Computer Society, 2017.

[47] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree transducers.
In Droste et al. [29], chapter 9, pages 313–403.

[48] Ferenc Gécseg and Magnus Steinby. Tree languages. In Rozenberg and Salomaa
[95], chapter 1, pages 1–68.

Bibliography 143

[49] Ferenc Gécseg and Magnus Steinby. Tree automata. CoRR, abs/1509.06233,
2015. Available at http://arxiv.org/abs/1509.06233.

[50] Siegfried Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies in
Logic and Computation. Research Studies Press, 2001.

[51] Yuri Gurevich. Modest theory of short chains. I. The Journal of Symbolic Logic,
44(4):481–490, 1979.

[52] Yuri Gurevich. Chapter XIII: Monadic second-order theories. In Jon Barwise
and Solomon Feferman, editors, Model-Theoretic Logics, volume 8 of Perspectives
in Mathematical Logic, pages 479–506. Springer, 1985.

[53] Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic.
Kluwer Academic Publishers, 1998.

[54] Kōsaburō Hashiguchi. Algorithms for determining relative star height and star
height. Information and Computation, 78(2):124–169, 1988.

[55] Kōsaburō Hashiguchi, Kenichi Ishiguro, and Shūji Jimbo. Decidability of the
equivalence problem for finitely ambiguous finance automata. International
Journal of Algebra and Computation, 12(3):445–461, 2002.

[56] Hendrik Jan Hoogeboom and Paulien ten Pas. Monadic second-order definable
text languages. Theory of Computing Systems, 30(4):335–354, 1997.

[57] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 2000.

[58] Daniel Kirsten. A Burnside approach to the termination of Mohri’s algorithm
for polynomially ambiguous min-plus-automata. Informatique Théorique et
Applications, 42(3):553–581, 2008.

[59] Daniel Kirsten. The support of a recognizable series over a zero-sum free,
commutative semiring is recognizable. Acta Cybernetica, 20(2):211–221, 2011.

[60] Daniel Kirsten. Decidability, undecidability, and PSPACE-completeness of
the twins property in the tropical semiring. Theoretical Computer Science,
420:56–63, 2012.

[61] Daniel Kirsten and Sylvain Lombardy. Deciding unambiguity and sequentiality
of polynomially ambiguous min-plus automata. In Susanne Albers and Jean-
Yves Marion, editors, 26th International Symposium on Theoretical Aspects of
Computer Science (STACS), volume 3 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 589–600. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2009.

[62] Stephen Cole Kleene. Representation of events in nerve nets and finite automata.
In Claude Shannon and John McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press, 1956.

http://arxiv.org/abs/1509.06233

144 Bibliography

[63] Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. De-
ciding unambiguity and sequentiality from a finitely ambiguous max-plus au-
tomaton. Theoretical Computer Science, 327(3):349–373, 2004.

[64] Jan Komenda, Sébastien Lahaye, Jean-Louis Boimond, and Ton van den Boom.
Max-plus algebra in the history of discrete event systems. Annual Reviews in
Control, 45:240–249, 2018.

[65] Adam Koprowski and Johannes Waldmann. Max/plus tree automata for
termination of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

[66] Daniel Krob. The equality problem for rational series with multiplicities in
the tropical semiring is undecidable. International Journal of Algebra and
Computation, 4(3):405–426, 1994.

[67] Werner Kuich. Semirings and formal power series: Their relevance to formal
languages and automata. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 9, pages 609–677. Springer,
1997.

[68] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, volume 5
of EATCS Monographs in Theoretical Computer Science. Springer, 1986.

[69] Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors. 42nd
International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 83 of Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[70] Hans Läuchli and John Leonard. On the elementary theory of linear order.
Fundamenta Mathematicae, 59(1):109–116, 1966.

[71] Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem.
Annals of Pure and Applied Logic, 126(1):159–213, 2004.

[72] Christian Mathissen. Weighted Automata and Weighted Logics over Tree-like
Structures. PhD thesis, Leipzig University, Germany, 2009.

[73] Christian Mathissen. Definable transductions and weighted logics for texts.
Theoretical Computer Science, 411(3):631–659, 2010.

[74] Christian Mathissen. Weighted logics for nested words and algebraic formal
power series. Logical Methods in Computer Science, 6(1):1–34, 2010.

[75] Filip Mazowiecki and Cristian Riveros. Pumping lemmas for weighted au-
tomata. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium
on Theoretical Aspects of Computer Science (STACS), volume 96 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 50:1–50:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[76] Mehryar Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997.

Bibliography 145

[77] Mehryar Mohri. Weighted automata algorithms. In Droste et al. [29], chapter 6,
pages 213–254.

[78] Andrzej Mostowski. On direct products of theories. The Journal of Symbolic
Logic, 17(1):1–31, 1952.

[79] David Eugene Muller. Infinite sequences and finite machines. In 4th Annual
Symposium on Switching Circuit Theory and Logical Design (SWCT), pages
3–16. IEEE Computer Society, 1963.

[80] Jan Mycielski, Pavel Pudlák, and Alan S. Stern. A Lattice of Chapters of
Mathematics: Interpretations between Theorems. Number 426 in Memoirs of
the American Mathematical Society. American Mathematical Society, 1990.

[81] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial
Optimization. John Wiley & Sons, 1988.

[82] Rohit Jivanlal Parikh. On context-free languages. Journal of the ACM, 13(4):570–
581, 1966.

[83] Erik Paul. Weighted tree automata and quantitative logics with a focus
on ambiguity. Diplomarbeit, Leipzig University, 2015. Available at https:
//nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-164548.

[84] Erik Paul. On finite and polynomial ambiguity of weighted tree automata. In
Srečko Brlek and Christophe Reutenauer, editors, 20th International Conference
on Developments in Language Theory (DLT), volume 9840 of Lecture Notes in
Computer Science, pages 368–379. Springer, 2016.

[85] Erik Paul. The equivalence, unambiguity and sequentiality problems of finitely
ambiguous max-plus tree automata are decidable. In Kim G. Larsen, Hans L.
Bodlaender, and Jean-François Raskin, editors, 42nd International Symposium
on Mathematical Foundations of Computer Science (MFCS), volume 83 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 53:1–53:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[86] Erik Paul. Monitor logics for quantitative monitor automata. In Kim G. Larsen,
Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd International
Symposium on Mathematical Foundations of Computer Science (MFCS), vol-
ume 83 of Leibniz International Proceedings in Informatics (LIPIcs), pages
14:1–14:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[87] Erik Paul. Finite sequentiality of unambiguous max-plus tree automata. In
Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium
on Theoretical Aspects of Computer Science (STACS), volume 126 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 55:1–55:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-164548
https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-164548

146 Bibliography

[88] Slav Petrov. Latent variable grammars for natural language parsing. In Coarse-
to-Fine Natural Language Processing, Theory and Applications of Natural
Language Processing, chapter 2, pages 7–46. Springer, 2012.

[89] Michael O. Rabin and Dana S. Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, 3(2):114–125, 1959.

[90] Michael Oser Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society, 141:1–35,
1969.

[91] Frank P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, series 2, 30:264–286, 1930.

[92] Elena V. Ravve, Zeev Volkovich, and Gerhard-Wilhelm Weber. Effective
optimization with weighted automata on decomposable trees. Optimization,
63(1):109–127, 2014.

[93] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Volume 1: Word, Language, Grammar. Springer, 1997.

[94] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Volume 2: Linear Modeling: Background and Application. Springer, 1997.

[95] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Volume 3: Beyond Words. Springer, 1997.

[96] Jacques Sakarovitch. A construction on finite automata that has remained
hidden. Theoretical Computer Science, 204(1-2):205–231, 1998.

[97] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University
Press, 2009.

[98] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power
Series. Texts and Monographs in Computer Science. Springer, 1978.

[99] Marcel-Paul Schützenberger. On the definition of a family of automata. Infor-
mation and Control, 4(2-3):245–270, 1961.

[100] Marcel-Paul Schützenberger. Sur les relations rationnelles entre monoïdes libres.
Theoretical Computer Science, 3(2):243–259, 1976.

[101] Helmut Seidl. On the finite degree of ambiguity of finite tree automata. Acta
Informatica, 26(6):527–542, 1989.

[102] Saharon Shelah. The monadic theory of order. Annals of Mathematics,
102(3):379–419, 1975.

[103] Imre Simon. Limited subsets of a free monoid. In 19th Annual Symposium on
Foundations of Computer Science (FOCS), pages 143–150. IEEE Computer
Society, 1978.

Bibliography 147

[104] Imre Simon. Recognizable sets with multiplicities in the tropical semiring. In
Michal P. Chytil, Ladislav Janiga, and Václav Koubek, editors, 13th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS),
volume 324 of Lecture Notes in Computer Science, pages 107–120. Springer,
1988.

[105] James W. Thatcher and Jesse B. Wright. Generalized finite automata theory
with an application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57–81, 1968.

[106] Boris Avraamovich Trakhtenbrot. Finite automata and logic of monadic predi-
cates. Doklady Akademii Nauk SSSR, 140:326–329, 1961. In Russian.

[107] Johannes Waldmann. Weighted automata for proving termination of string
rewriting. Journal of Automata, Languages and Combinatorics, 12(4):545–570,
2007.

[108] Andreas Weber. Finite-valued distance automata. Theoretical Computer Science,
134(1):225–251, 1994.

[109] Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata.
Theoretical Computer Science, 88(2):325–349, 1991.

List of Symbols

[. . .] and ‘X’ never, ever, marks the spot.

Indiana Jones

|t| Number of positions of tree t

|w| Length of word w

|w|a Number of occurrences of letter a in word w

|X| Cardinality of set X

≤l Lexicographic ordering on N∗

≤p Prefix ordering on N∗

� Reachability relation on states of an automaton

≈ Mutual reachability relation on states of an automaton

[p] Equivalence class of state p with respect to mutual reach-
ability of states

♦i(t) Position of lexicographically ordered i-th leaf of context t
labeled �

⇒G Derivation step of grammar G

β̄, p̄, X̄ Tuples of elements

JAK Behavior of automaton A
AV Set of all (V,A)-assignments

A tB disjoint union of structures A and B

A×B product of structures A and B

AccA(t) Set of all accepting runs of automaton A on tree t

arσ(R) Arity of relation symbol R of signature σ

B Boolean semiring

Ces Cesàro mean

CON1,CON2 See page 18

150 List of Symbols

∆A Set of all transitions of automaton A
dom(f) Domain of mapping f

ε Empty word

〈〈E〉〉 Semantics of expression E

Expn(K) Set of all expressions over semiring K with variables
x1, . . . , xn and y1, . . . , yn

f : X → Y Mapping from set X to set Y

f : X 9 Y Partial mapping from set X to set Y

f(X) Image of set X under mapping f

f−1(Y) Preimage of set Y under mapping f

f�X Restriction of mapping f to set X

f ◦ g Composition of mappings f and g

FO(σ) Set of all first order formulas over signature σ

Free(β) Set of free variables of formula β

Γ(m) Set of all letters of rank m of ranked alphabet Γ

Γ� Ranked alphabet Γ extended by a symbol � of rank 0

height(t) Height of tree t

InQ(r) Set of states of Q appearing infinitely often in run r

IA Interpretation of structure A

labelt(w) Label of position w of tree t

L ∩ S Intersection of language L and series S

L(A) Language accepted by automaton A
Lω(A) Infinitary language accepted by automaton A
L(β) Language defined by formula β

L(G) Language generated by grammar G

MSO(σ) Set of all monadic second order formulas over signature σ

mMSOa-bool(Σ) Set of all almost Boolean formulas over alphabet Σ

mMSOx(Σ) Set of all x-summing formulas over alphabet Σ

mMSO(Σ,Val) Set of all monitor MSO formulas over alphabet Σ and
ω-valuation function Val

N Natural numbers including 0

N+ Natural numbers excluding 0

p(w) Parikh vector of word w

p(L) Parikh image of language L

List of Symbols 151

p s|x−−→ q Indication that on Γ-word s there exists a valid run from
p to q with weight x

pos(t) Set of positions of tree t

P(X) Power set of set X

PRD1,PRD2 See page 18

Q Rational numbers

Qmax Max-plus semiring of rational numbers

r�w Restriction of run r to subtree at position w

r〈r′ → w〉 Substitution of run r′ on subtree at position w into run r

rn〈w〉 The n-th power of run r by substitution into position w

ρ[x→ a] Update of variable assignment ρ to map variable x to a

ρ�A Restriction of variable assignment ρ to structure A

ρ ∪ ς Union of variable assignments ρ and ς

R Real numbers

Rmax Max-plus semiring of real numbers

Rmin Min-plus semiring of real numbers

RA Interpretation of relation symbol R in structure A

range(f) Range of mapping f

Relσ Relation symbols of signature σ

rkΓ(a) Rank of letter a from ranked alphabet Γ

RunA(t) Set of all valid runs of automaton A on tree t

RunA(t, q) Set of all valid runs of automaton A on tree t with state
q at the root

Run�A(t) Set of all valid runs of automaton A on context t

Run�A(q1, . . . , qn, t, q0) Set of all valid runs of automaton A on context t from
states q1, . . . , qn to state q0

sn The n-th power of Γ-word s

Σ∗ Set of finite words over alphabet Σ

Σω Set of infinite words over alphabet Σ

ΣV Abbreviation for Σ × {0, 1}V for alphabet Σ and set of
variables V

Str(σ) Class of all σ-structures

supp(A) Support of automaton A
t(w) Label of position w of tree t

t�w Subtree of tree t at position w

t〈s→ w〉 Substitution of tree s into position w of tree t

152 List of Symbols

t(t, r, w) Transition of run r at position w of tree t

TΓ Set of all trees over ranked alphabet Γ

TΓ� Set of all Γ-contexts for ranked alphabet Γ

UA Universe of structure A

uv Concatenation of words u and v

JϕK Semantics of formula ϕ

ϕ−x Formula obtained from ϕ by replacing all atomic subfor-
mulas containing variable x by false

Φ?(A, ς) Φ-induced structure of structure A and variable assignment
ς

wFO(σ,K) Set of all weighted first order formulas over signature σ
and semiring K

wFO¬(σ, L) Set of all wFO formulas over signature σ and De Morgan
algebra L including involution ¬

wFO
⊗

-free(σ,K) Set of all product-free wFO formulas over signature σ and
semiring K

wMSO(σ,K) Set of all weighted monadic second order formulas over
signature σ and semiring K

wMSO¬(σ, L) Set of all wMSO formulas over signature σ and De Morgan
algebra L including involution ¬

wMSO
⊗

-res(σ,K) Set of all product-restricted wMSO formulas over signature
σ and semiring K

wMSOa-bool(σ,K) Set of all almost-Boolean wMSO formulas over signature
σ and semiring K

wtA(t, r) Weight of run r on tree t with respect to automaton A
wt�A(t, r) Weight of run r on context t with respect to automaton A
Y X Set of mappings from set X to set Y

Z Integers

Index

Γ-word, 53
ω-valuation function, 113

Alphabet, 7
ranked, 52

Ambiguity
finite, 56, 57
polynomial, 56, 57
unambiguity, 56, 57

Assignment
of variables, 10
update, 10

Behavior
of a BMCA, 114
of a weighted automaton, 55
of a weighted tree automaton, 56

Branch, 52
Büchi automaton

with monitor counters, 113

Cesàro mean, 113
Circuit, 71
Commutative semiring

see Semiring, 8
Composition

of mappings, 7
Concatenation, 8
Context, 53
Context-free grammar, 65

De Morgan algebra, 39
Determinism, 56, 57
Disjoint union

of structures, 10
Domain

of a mapping, 7

Dominance property, 72
Dominate, 64

Expression, 18
normal form, 19

Feferman-Vaught Theorem
for disjoint unions, 19
for products, 22

Finite Automaton, 55
Finite tree automaton, 55
Formula

x-summing, 119
almost Boolean, 27, 119
first order, 10
monadic second order, 10
monitor MSO, 119
product-free, 26
product-restricted, 27
sentence, 10
weighted FO, 15
weighted MSO, 15

Free variable, 10

Height
of a tree, 52

Induced structure, 23
Infinite word, 8
Interpretation, 9
Intersection

of a language and a series, 117

Language
ω-recognizable, 113
accepted, 55, 56, 113
context-free, 65

154 Index

defined, 120
generated, 65
infinitary, 8
of words, 8
recognizable, 55, 56

Leaf, 52
Lexicographic order, 52
Linear set, 64
Lipschitz property, 81

MC-recognizable, 114
Muller automaton, 112

with monitor counters, 114

Node
of a tree, 52

Normal form
of an expression, 19

Parikh image
of a language, 64

Parikh vector
of a run, 67
of a word, 64

Parikh’s theorem, 69
Partial mapping, 7
Position, 52
Power

of contexts, 53
of runs, 56

Prefix relation, 52
Prefix-closed, 52
Prefix-dependent, 52
Prefix-independent, 52
Product

of structures, 10
Projection

of a series, 116
Pure conjunction, 18
Pure product, 18

Range
of a mapping, 7

Rank, 52
Ranked Alphabet, 52
Reachability, 56
Restriction

of a mapping, 7
of a run, 56
of a tree, 52
of a variable assignment, 17

Rival, 86
Root

of a tree, 52
Run

of a BMCA, 113
of a Muller automaton, 112
of a weighted automaton, 55
of a weighted tree automaton, 55

Satisfaction
of MSO formulas, 11

Semantics
of mMSO, 120
of MSO, 10
of wMSO, 16

Semilinear set, 64
Semiring, 8

bicomplete, 8
commutative, 8
product semiring, 8
weakly biaperiodic, 42

Sentence, 10
Sequentiality, 56, 57

finite, 57
Sibling, 82
Signature, 9
Structure, 9

induced, 23
Substitution

of runs, 56
of trees, 53

Subtree, 52
Support

of a weighted automaton, 55
of a weighted tree automaton, 56

Transduction, 44
Translation scheme, 23
Tree, 52
Tree fork property, 86
Trim, 56
Twin, 82

Index 155

Twins property, 82

Union
of assignments, 18
of structures, 10

Universe, 9
Update, 10

Victorious coordinate, 72

Weighted automaton, 55
Weighted tree automaton, 55
Witness, 86

Wissenschaftlicher Werdegang

It always takes longer than you expect,
even when you take into account Hofstadter’s Law.

Hofstadter’s Law

seit 10/2018 Wissenschaftlicher Mitarbeiter der Abteilung Automaten und
Sprachen am Institut für Informatik der Universität Leipzig und
assoziierter Promotionsstudent des DFG Graduiertenkollegs
Quantitative Logics and Automata (QuantLA)

04/2017 – 09/2018 Wissenschaftlicher Mitarbeiter im DFG Graduiertenkolleg Quan-
titative Logics and Automata (QuantLA)

10/2015 – 03/2017 Promotionsstipendium im DFG Graduiertenkolleg Quantitative
Logics and Automata (QuantLA)

seit 10/2015 Promotionsstudium der Informatik an der Universität Leipzig

10/2009 – 08/2015 Studium der Mathematik an der Universität Leipzig
Abschluss: Diplom-Mathematiker
Titel der Abschlussarbeit: Weighted Tree Automata and Quan-
titative Logics with a Focus on Ambiguity
Betreuer: Prof. Dr. Manfred Droste
Abschlussnote: mit Auszeichnung (1,0)

08/2000 – 06/2008 Geschwister-Scholl-Gymnasium, Taucha
Abschluss: Abitur (Abschlussnote 1,4)

Dissertationsbezogene
bibliographische Daten

Begutachtete Veröffentlichungen mit direktem Bezug zur
Dissertation

• Erik Paul. Finite sequentiality of unambiguous max-plus tree automata. In
36th International Symposium on Theoretical Aspects of Computer Science
(STACS), Leibniz International Proceedings in Informatics (LIPIcs), vol. 126,
pp. 55:1–55:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

• Manfred Droste, Erik Paul. A Feferman-Vaught decomposition theorem for
weighted MSO logic. In 43rd International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 117, pp. 76:1–76:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018.

• Erik Paul. The equivalence, unambiguity and sequentiality problems of finitely
ambiguous max-plus tree automata are decidable. In 42nd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 83, pp. 53:1–53:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

• Erik Paul. Monitor logics for quantitative monitor automata. In 42nd In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS), Leibniz International Proceedings in Informatics (LIPIcs), vol. 83, pp.
14:1–14:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

Weitere begutachtete Veröffentlichungen

• Erik Paul. On finite and polynomial ambiguity of weighted tree automata. In
20th International Conference on Developments in Language Theory (DLT),
Lecture Notes in Computer Science (LNCS), vol. 9840, pp. 368–379. Springer,
2016.

Eingereichte Arbeiten

• Yun Shang, Xiaoya Cheng, Manfred Droste, Erik Paul. Nivat’s Theorem for
Turing Machines Based on Unsharp Quantum Logic. Eingereicht bei Theoretical
Computer Science.

• Erik Paul. Finite sequentiality of unambiguous max-plus tree automata. Einge-
reicht bei Theory of Computing Systems, Special Issue of STACS 2019.

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen
und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß
aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden, und alle
Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich gemacht.
Ebenfalls sind alle von anderen Personen bereitgestellten Materialien oder erbrachten
Dienstleistungen als solche gekennzeichnet.

Leipzig, den 15. Oktober 2020

. .
(Erik Paul)

	Introduction
	Preliminaries
	Basic Definitions
	Semirings
	First Order and Monadic Second Order Logic

	Feferman-Vaught Theorems
	Weighted First Order and Monadic Second Order Logic
	The Classical Feferman-Vaught Theorem
	Translation Schemes
	Weighted Feferman-Vaught Theorems
	Extensions

	Decidable Properties of Max-Plus Tree Automata
	Max-Plus Automata
	Decomposing Finitely Ambiguous Max-Plus Tree Automata
	The Equivalence Problem
	The Unambiguity Problem
	The Sequentiality Problem
	The Finite Sequentiality Problem

	Monitor Logics
	Quantitative Monitor Automata
	Closure Properties
	Monitor MSO logic
	Equivalence

	Bibliography
	List of Symbols
	Index

