Nivat's Theorem for Turing Machines Based on Unsharp Quantum Logic

Erik Paul

Leipzig University
January 9, 2017

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:
Randomness measurement of observables probabilistic

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:
Randomness measurement of observables probabilistic
"deterministic" state constructable for every observable

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:
Randomness measurement of observables probabilistic "deterministic" state constructable for every observable

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:
Randomness measurement of observables probabilistic "deterministic" state constructable for every observable

Incompatible observables A and B incompatible
$\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:
Randomness measurement of observables probabilistic "deterministic" state constructable for every observable

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states repeated measurement of incompatible observables \rightsquigarrow change of observables

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Example

$p=$ "momentum of particle x is in $\left[0, \frac{1}{6}\right]$ "

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Example

$p=$ "momentum of particle x is in $\left[0, \frac{1}{6}\right]$ "
$q=$ "position of particle x is in $[-2,0]$ "

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Example

$p=$ "momentum of particle x is in $\left[0, \frac{1}{6}\right]$ "
$q=$ "position of particle x is in $[-2,0]$ "
$r=$ "position of particle x is in $[0,2]$ "

Incompatible observables $\quad A$ and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Example

$p=$ "momentum of particle x is in $\left[0, \frac{1}{6}\right]$ "
$q=$ "position of particle x is in $[-2,0]$ "
$r=$ "position of particle x is in $[0,2]$ "
$p \wedge(q \vee r)$ is true with probability 1 , for some system

Incompatible observables $\quad A$ and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Example
$p=$ "momentum of particle x is in $\left[0, \frac{1}{6}\right]$ "
$q=$ "position of particle x is in $[-2,0]$ "
$r=$ "position of particle x is in $[0,2]$ "
$p \wedge(q \vee r)$ is true with probability 1 , for some system
neither $p \wedge q$ nor $p \wedge r$ is true with probability 1 , for no system

Incompatible observables A and B incompatible $\Rightarrow A$ deterministic $\leftrightarrow B$ strictly probabilistic

Example
$p=$ "momentum of particle x is in $\left[0, \frac{1}{6}\right]$ "
$q=$ "position of particle x is in $[-2,0]$ "
$r=$ "position of particle x is in $[0,2]$ "
$p \wedge(q \vee r)$ is true with probability 1 , for some system
neither $p \wedge q$ nor $p \wedge r$ is true with probability 1 , for no system
$\Rightarrow p \wedge(q \vee r) \not \equiv(p \wedge q) \vee(p \wedge r) \quad$ distributivity fails

Johann von Neumann's approach (1932)

Johann von Neumann's approach (1932)
Quantum mechanical system
Hilbert space H finite dim. complex vector space with Hermitian scalar product $\langle.,$.

Johann von Neumann's approach (1932)
Quantum mechanical system
Hilbert space H finite dim. complex vector space with Hermitian scalar product $\langle.,$.

State of system unit vector $\psi \in H$

Johann von Neumann's approach (1932)
Quantum mechanical system Hilbert space H finite dim. complex vector space with Hermitian scalar product $\langle.,$.

State of system unit vector $\psi \in H$

Observable physical quantity self-adjoint operator $A: H \rightarrow H$ $\langle A x, y\rangle=\langle x, A y\rangle$

Johann von Neumann's approach (1932)
Quantum mechanical system Hilbert space H finite dim. complex vector space with Hermitian scalar product $\langle.,$.

State of system unit vector $\psi \in H$

Observable physical quantity self-adjoint operator $A: H \rightarrow H$ $\langle A x, y\rangle=\langle x, A y\rangle$

Spectral Theorem spectral measure for every observable A

$$
P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)
$$

Borel sets \rightarrow projectors

Johann von Neumann's approach (1932)
Quantum mechanical system Hilbert space H finite dim. complex vector space with Hermitian scalar product $\langle.,$.

State of system unit vector $\psi \in H$

Observable physical quantity
self-adjoint operator $A: H \rightarrow H$
$\langle A x, y\rangle=\langle x, A y\rangle$

Spectral Theorem spectral measure for every observable A

$$
P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)
$$

Borel sets \rightarrow projectors
probability that measurement of A in state ψ is in $X \subseteq \mathbb{R}$

$$
\left\langle P_{A}(X) \psi, \psi\right\rangle
$$

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A
projections $\mathbb{P}(H)$ form lattice: $\quad P \leq Q \leftrightarrow \operatorname{range}(P) \subseteq \operatorname{range}(Q)$

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A
projections $\mathbb{P}(H)$ form lattice: $\quad P \leq Q \leftrightarrow \operatorname{range}(P) \subseteq \operatorname{range}(Q)$

Example $\quad H=\mathbb{R}^{3}$
$P:(x, y, z) \mapsto(x, y, 0) \quad$ range $(P)=\mathbb{R} \times \mathbb{R} \times\{0\}$
$Q:(x, y, z) \mapsto(x, 0, z) \quad \operatorname{range}(Q)=\mathbb{R} \times\{0\} \times \mathbb{R}$

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A
projections $\mathbb{P}(H)$ form lattice: $\quad P \leq Q \leftrightarrow \operatorname{range}(P) \subseteq \operatorname{range}(Q)$

Example $\quad H=\mathbb{R}^{3}$
$P:(x, y, z) \mapsto(x, y, 0) \quad$ range $(P)=\mathbb{R} \times \mathbb{R} \times\{0\}$
$Q:(x, y, z) \mapsto(x, 0, z) \quad$ range $(Q)=\mathbb{R} \times\{0\} \times \mathbb{R}$
$P \wedge Q:(x, y, z) \mapsto(x, 0,0)$

$$
\operatorname{range}(P \wedge Q)=\mathbb{R} \times\{0\} \times\{0\}
$$

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A
projections $\mathbb{P}(H)$ form lattice: $\quad P \leq Q \leftrightarrow \operatorname{range}(P) \subseteq \operatorname{range}(Q)$

Example $\quad H=\mathbb{R}^{3}$
$P:(x, y, z) \mapsto(x, y, 0) \quad$ range $(P)=\mathbb{R} \times \mathbb{R} \times\{0\}$
$Q:(x, y, z) \mapsto(x, 0, z) \quad$ range $(Q)=\mathbb{R} \times\{0\} \times \mathbb{R}$
$P \wedge Q:(x, y, z) \mapsto(x, 0,0)$
$\operatorname{range}(P \wedge Q)=\mathbb{R} \times\{0\} \times\{0\}$
$P \vee Q:(x, y, z) \mapsto(x, y, z)$
range $(P \vee Q)=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A
projections $\mathbb{P}(H)$ form lattice: $\quad P \leq Q \leftrightarrow \operatorname{range}(P) \subseteq \operatorname{range}(Q)$

Example $\quad H=\mathbb{R}^{3}$
$P:(x, y, z) \mapsto(x, y, 0) \quad$ range $(P)=\mathbb{R} \times \mathbb{R} \times\{0\}$
$Q:(x, y, z) \mapsto(x, 0, z) \quad$ range $(Q)=\mathbb{R} \times\{0\} \times \mathbb{R}$
$P \wedge Q:(x, y, z) \mapsto(x, 0,0)$
$\operatorname{range}(P \wedge Q)=\mathbb{R} \times\{0\} \times\{0\}$
$P \vee Q:(x, y, z) \mapsto(x, y, z)$
$\operatorname{range}(P \vee Q)=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$
negation: $\quad P^{\prime}=I-P$

Johann von Neumann's approach
spectral measure $P_{A}: \mathcal{B}(\mathbb{R}) \rightarrow \mathbb{P}(H)$ for observable A
projections $\mathbb{P}(H)$ form lattice: $\quad P \leq Q \leftrightarrow \operatorname{range}(P) \subseteq \operatorname{range}(Q)$

Example $\quad H=\mathbb{R}^{3}$
$P:(x, y, z) \mapsto(x, y, 0) \quad$ range $(P)=\mathbb{R} \times \mathbb{R} \times\{0\}$
$Q:(x, y, z) \mapsto(x, 0, z) \quad$ range $(Q)=\mathbb{R} \times\{0\} \times \mathbb{R}$
$P \wedge Q:(x, y, z) \mapsto(x, 0,0)$
$\operatorname{range}(P \wedge Q)=\mathbb{R} \times\{0\} \times\{0\}$
$P \vee Q:(x, y, z) \mapsto(x, y, z)$
range $(P \vee Q)=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$
negation: $\quad P^{\prime}=I-P$
\Rightarrow Quantum Logic

Quantum Multi-Valued (QMV) Algebras

$$
\mathscr{E}=\left(E, \boxplus,{ }^{\prime}, \mathbf{0}, \mathbf{1}\right) \quad \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad \quad \leftrightarrow \neg
$$

Quantum Multi-Valued (QMV) Algebras

$$
\begin{aligned}
& \mathscr{E}=\left(E, \boxplus,{ }^{\prime}, \mathbf{0}, \mathbf{1}\right) \quad \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad{ }^{\prime} \leftrightarrow \neg \\
& a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} \quad(=\neg(\neg a \vee \neg b)=a \wedge b)
\end{aligned}
$$

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,{ }^{\prime}, \mathbf{0}, \mathbf{1}\right) \quad \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad ' \leftrightarrow \neg \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & (=(a \vee \neg b) \wedge b=a \wedge b)
\end{array}
$$

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right) & \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad ' \leftrightarrow \neg \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & (=(a \vee \neg b) \wedge b=a \wedge b) \\
a \leq b \leftrightarrow a=a \sqcap b &
\end{array}
$$

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right) & \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad{ }^{\prime} \leftrightarrow \neg \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & (=(a \vee \neg b) \wedge b=a \wedge b) \\
a \leq b \leftrightarrow a=a \sqcap b &
\end{array}
$$

\mathscr{E} is Quantum multi-valued (QMV) algebra if
(QMV1) $\quad a \boxplus b=b \boxplus a$
(QMV2) $\quad a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c$
commutative associative

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right) \quad \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad \prime \leftrightarrow \neg \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & (=(a \vee \neg b) \wedge b=a \wedge b) \\
a \leq b \leftrightarrow a=a \sqcap b &
\end{array}
$$

\mathscr{E} is Quantum multi-valued (QMV) algebra if
(QMV1) $\quad a \boxplus b=b \boxplus a$
(QMV2) $\quad a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c$
commutative associative (QMV3) $\quad a \boxplus a^{\prime}=\mathbf{1}$ law of excluded middle

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right) \quad \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad ' \leftrightarrow \neg \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & (=(a \vee \neg b) \wedge b=a \wedge b) \\
a \leq b \leftrightarrow a=a \sqcap b &
\end{array}
$$

\mathscr{E} is Quantum multi-valued (QMV) algebra if
(QMV1) $\quad a \boxplus b=b \boxplus a$
(QMV2) $\quad a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c$
commutative associative
(QMV3) $\quad a \boxplus a^{\prime}=\mathbf{1}$
(QMV4) $\quad a \boxplus \mathbf{0}=a$
(QMV5) $\quad a \boxplus \mathbf{1}=\mathbf{1}$

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right) \quad \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad \boxplus \leftrightarrow \vee \quad{ }^{\prime} \leftrightarrow \neg \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & (=(a \vee \neg b) \wedge b=a \wedge b) \\
a \leq b \leftrightarrow a=a \sqcap b &
\end{array}
$$

\mathscr{E} is Quantum multi-valued (QMV) algebra if
(QMV1) $\quad a \boxplus b=b \boxplus a$
(QMV2) $\quad a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c$
(QMV3) $\quad a \boxplus a^{\prime}=\mathbf{1}$
(QMV4) $\quad a \boxplus \mathbf{0}=a$
(QMV5) $\quad a \boxplus \mathbf{1}=\mathbf{1}$
(QMV6) $\quad a^{\prime \prime}=a$
commutative associative law of excluded middle neutral 0 absorbing 1 double negation principle

Quantum Multi-Valued (QMV) Algebras

$$
\begin{array}{lr}
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right) & \boxplus \text { binary, }{ }^{\prime} \text { unary } \quad(=\neg(\neg a \vee \neg b)=a \wedge b) \\
a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} & (=(a \vee \neg b) \wedge b=a \wedge b) \\
a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b & \\
a \leq b \leftrightarrow a=a \sqcap b &
\end{array}
$$

\mathscr{E} is Quantum multi-valued (QMV) algebra if
(QMV1) $a \boxplus b=b \boxplus a$
(QMV2) $\quad a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c$
(QMV3) $\quad a \boxplus a^{\prime}=\mathbf{1}$
(QMV4) $\quad a \boxplus \mathbf{0}=a$
(QMV5) $\quad a \boxplus \mathbf{1}=\mathbf{1}$
commutative associative law of excluded middle neutral 0 absorbing 1
(QMV6) $\quad a^{\prime \prime}=a \quad$ double negation principle
(QMV7) $\quad a \boxplus\left[\left(a^{\prime} \sqcap b\right) \sqcap\left(c \sqcap a^{\prime}\right)\right]=(a \boxplus b) \sqcap(a \boxplus c)$ weak "distributivity" of \boxplus over Π

Quantum Multi-Valued (QMV) Algebras

$$
\begin{aligned}
& \mathscr{E}=\left(E, \boxplus,,^{\prime}, \mathbf{0}, \mathbf{1}\right) \\
& a \odot b=\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime} \\
& a \sqcap b=\left(a \boxplus b^{\prime}\right) \odot b \\
& a \leq b \leftrightarrow a=a \sqcap b
\end{aligned}
$$

\boxplus binary, ' unary

$$
\begin{aligned}
& (=\neg(\neg a \vee \neg b)=a \wedge b) \\
& (=(a \vee \neg b) \wedge b=a \wedge b)
\end{aligned}
$$

partial order $\rightsquigarrow \vee, \wedge$
\mathscr{E} is Quantum multi-valued (QMV) algebra if
(QMV1) $\quad a \boxplus b=b \boxplus a$
(QMV2) $\quad a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c$
(QMV3) $\quad a \boxplus a^{\prime}=\mathbf{1}$
(QMV4) $\quad a \boxplus \mathbf{0}=a$
(QMV5) $\quad a \boxplus \mathbf{1}=\mathbf{1}$
(QMV6) $\quad a^{\prime \prime}=a \quad$ double negation principle
(QMV7) $\quad a \boxplus\left[\left(a^{\prime} \sqcap b\right) \sqcap\left(c \sqcap a^{\prime}\right)\right]=(a \boxplus b) \sqcap(a \boxplus c)$ weak "distributivity" of \boxplus over Π
$\mathscr{E}=\left(E, \boxplus,{ }^{\prime}, \mathbf{0}, \mathbf{1}\right)$
Example 1
$E=\{0, a, b, 1\} \quad \mathbf{0}=0 \quad \mathbf{1}=1$
$\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)$
Example 1
$E=\{0, a, b, 1\}$
$0=0$
$1=1$
$a \boxplus b=a \boxplus a=b \boxplus b=1$
$\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)$
Example 1
$E=\{0, a, b, 1\}$
$0=0$
$1=1$
$a \boxplus b=a \boxplus a=b \boxplus b=1$
$a^{\prime}=a \quad b^{\prime}=b$
$\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)$
Example 1
$E=\{0, a, b, 1\}$
$0=0$
$1=1$
$a \boxplus b=a \boxplus a=b \boxplus b=1$
$a^{\prime}=a \quad b^{\prime}=b$

c				
$\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime}$				
\odot				

$\mathscr{E}=\left(E, \boxplus,{ }^{\prime}, \mathbf{0}, \mathbf{1}\right)$
Example 1
$E=\{0, a, b, 1\}$
$0=0$
$1=1$
$a \boxplus b=a \boxplus a=b \boxplus b=1$
$a^{\prime}=a \quad b^{\prime}=b$

c				
$\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime}$				
\odot				

$\left(a \boxplus b^{\prime}\right) \odot b$				
$\|$$\square$ 0 a b 1 0 0 0 0 0 a 0 a b a b 0 a b b 1 0 a b 1				

$\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)$
Example 1
$E=\{0, a, b, 1\}$

$$
\mathbf{0}=0
$$

$1=1$
$a \boxplus b=a \boxplus a=b \boxplus b=1$
$a^{\prime}=a \quad b^{\prime}=b$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2

$$
E=\{0,1, \ldots, N\} \quad \mathbf{0}=0 \quad \mathbf{1}=N
$$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2
$E=\{0,1, \ldots, N\} \quad \mathbf{0}=0 \quad 1=N$
$a \boxplus b=\min \{a+b, N\}$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2
$E=\{0,1, \ldots, N\} \quad \mathbf{0}=0 \quad 1=N$
$a \boxplus b=\min \{a+b, N\}$
$a^{\prime} \quad=N-a$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2
$E=\{0,1, \ldots, N\}$
$\mathbf{0}=0$
$1=N$
$a \boxplus b=\min \{a+b, N\}$
$a^{\prime} \quad=N-a$
$a \odot b=\max \{a+b-N, 0\}$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2
$E=\{0,1, \ldots, N\}$
$\mathbf{0}=0$
$1=N$
$a \boxplus b=\min \{a+b, N\}$
$a^{\prime} \quad=N-a$
$a \odot b=\max \{a+b-N, 0\}$
$a \sqcap b=\min \{a, b\}$
$\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime}$
$\left(a \boxplus b^{\prime}\right) \odot b$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2
$E=\{0,1, \ldots, N\}$
$\mathbf{0}=0$
$1=N$
$a \boxplus b=\min \{a+b, N\}$
$a^{\prime} \quad=N-a$
$a \odot b=\max \{a+b-N, 0\}$
$a \sqcap b=\min \{a, b\}$
$a \leq b \leftrightarrow a \leq b$ in \mathbb{N}
$\left(a^{\prime} \boxplus b^{\prime}\right)^{\prime}$
$\left(a \boxplus b^{\prime}\right) \odot b$

$$
\mathscr{E}=\left(E, \boxplus,^{\prime}, \mathbf{0}, \mathbf{1}\right)
$$

Example 2
$E=\{0,1, \ldots, N\}$
$0=0$
$1=N$
$a \boxplus b=\min \{a+b, N\}$
$a^{\prime} \quad=N-a$
$a \odot b=\max \{a+b-N, 0\}$
$a \sqcap b=\min \{a, b\}$
$a \leq b \leftrightarrow a \leq b$ in \mathbb{N}
$a \wedge b=\min \{a, b\}$

QuANTUM COMPUTING

Benioff '80 first quantum mechanical description of a computer

Quantum Computing

Benioff '80 first quantum mechanical description of a computer

Feynman '82 simulation of certain quantum effects \rightarrow exponential slowdown of Turing machine

Quantum Computing

Benioff '80 first quantum mechanical description of a computer

Feynman '82 simulation of certain quantum effects \rightarrow exponential slowdown of Turing machine

Deutsch '85 description of first true quantum Turing machine \rightarrow quantum parallelism

Quantum Computing

Benioff '80 first quantum mechanical description of a computer

Feynman '82 simulation of certain quantum effects \rightarrow exponential slowdown of Turing machine

Deutsch '85 description of first true quantum Turing machine \rightarrow quantum parallelism

Shor '94 polynomial time prime factorization algorithm

Quantum Computing

Benioff '80 first quantum mechanical description of a computer

Feynman '82 simulation of certain quantum effects \rightarrow exponential slowdown of Turing machine

Deutsch '85 description of first true quantum Turing machine \rightarrow quantum parallelism

Shor '94 polynomial time prime factorization algorithm

Grover '96 $\mathcal{O}(\sqrt{n})$ algorithm for search in unsorted database

QMV Turing machine

$$
M=(Q, \Sigma, \Gamma, \delta, B, I, F)
$$

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$
Q
set of states

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$
Q
set of states
$\Sigma \subseteq \Gamma$
input alphabet

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$
Q
set of states
$\Sigma \subseteq \Gamma$
input alphabet
Γ
working alphabet

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$

Q	set of states
$\Sigma \subseteq \Gamma$	input alphabet
Γ	working alphabet
$\delta: Q \times \Gamma \times Q \times \Gamma \times\{L, S, R\} \rightarrow \mathscr{E}$	transition function

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$

Q	set of states
$\Sigma \subseteq \Gamma$	input alphabet
Γ	working alphabet
$\delta: Q \times \Gamma \times Q \times \Gamma \times\{L, S, R\} \rightarrow \mathscr{E}$	transition function
$B \in \Gamma$	blank symbol

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$
$\Sigma \subseteq \Gamma \quad$ input alphabet
working alphabet
$\delta: Q \times \Gamma \times Q \times \Gamma \times\{L, S, R\} \rightarrow \mathscr{E} \quad$ transition function
$B \in \Gamma$
blank symbol
$I, F: Q \rightarrow \mathscr{E} \quad$ initial / finial state function

QMV Turing machine
$M=(Q, \Sigma, \Gamma, \delta, B, I, F)$

Q	set of states
$\Sigma \subseteq \Gamma$	input alphabet
Γ	working alphabet
$\delta: Q \times \Gamma \times Q \times \Gamma \times\{L, S, R\} \rightarrow \mathscr{E}$	transition function
$B \in \Gamma$	blank symbol
$I, F: Q \rightarrow \mathscr{E}$	initial / finial state function

paths of M on $w \in \Sigma^{*}$ defined as usual

QMV Turing machine $M=(Q, \Sigma, \Gamma, \delta, B, I, F)$

Q	set of states
$\Sigma \subseteq \Gamma$	input alphabet
Γ	working alphabet
$\delta: Q \times \Gamma \times Q \times \Gamma \times\{L, S, R\} \rightarrow \mathscr{E}$	transition function
$B \in \Gamma$	blank symbol
$I, F: Q \rightarrow \mathscr{E}$	initial / finial state function

paths of M on $w \in \Sigma^{*}$ defined as usual
weight of path
$I($ first state $) \boxplus \delta($ transitions $) \boxplus F($ last state $)$

QMV Turing machine $M=(Q, \Sigma, \Gamma, \delta, B, I, F)$
$\Sigma \subseteq \Gamma$ input alphabet
$\delta: Q \times \Gamma \times Q \times \Gamma \times\{L, S, R\} \rightarrow \mathscr{E} \quad$ transition function

A Nivat Theorem for QMV-Turing machines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language projection $h: \Delta^{*} \rightarrow \Sigma^{*}$

$$
h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)
$$

A Nivat Theorem for QMV-TURING MACHines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language projection $h: \Delta^{*} \rightarrow \Sigma^{*}$

$$
h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)
$$

$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

A Nivat Theorem for QMV-TURING MACHines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*}$

$$
h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)
$$

$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist alphabet Δ

A Nivat Theorem for QMV-TURING MACHines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*}$

$$
h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)
$$

$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist
alphabet Δ mapping $h: \Delta \rightarrow \Sigma \cup\{\varepsilon\}$ extended to $\Delta^{*} \rightarrow \Sigma^{*}$

A Nivat Theorem for QMV-TURING MACHines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*}$

$$
h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)
$$

$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist
alphabet Δ
mapping $h: \Delta \rightarrow \Sigma \cup\{\varepsilon\}$
extended to $\Delta^{*} \rightarrow \Sigma^{*}$
homomorphic $g: \Delta^{*} \rightarrow \mathscr{E}$

A Nivat Theorem for QMV-Turing machines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*}$

$$
h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)
$$

$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow \quad g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist
alphabet Δ
mapping $h: \Delta \rightarrow \Sigma \cup\{\varepsilon\}$
extended to $\Delta^{*} \rightarrow \Sigma^{*}$
homomorphic $g: \Delta^{*} \rightarrow \mathscr{E}$
recursively enumerable language $L \subseteq \Delta^{*}$

A Nivat Theorem for QMV-Turing machines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*} \quad h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)$
$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow \quad g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist
alphabet Δ
mapping $h: \Delta \rightarrow \Sigma \cup\{\varepsilon\}$
extended to $\Delta^{*} \rightarrow \Sigma^{*}$
homomorphic $g: \Delta^{*} \rightarrow \mathscr{E}$
recursively enumerable language $L \subseteq \Delta^{*}$
such that $S=h(g \cap L)$

A Nivat Theorem for QMV-Turing machines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*} \quad h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)$
$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow \quad g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist
alphabet Δ
mapping $h: \Delta \rightarrow \Sigma \cup\{\varepsilon\}$
extended to $\Delta^{*} \rightarrow \Sigma^{*}$
homomorphic $g: \Delta^{*} \rightarrow \mathscr{E}$
recursively enumerable language $L \subseteq \Delta^{*}$
such that $S=h(g \cap L)$
Proof \Rightarrow construct Δ, h, g, L

A Nivat Theorem for QMV-Turing machines

$S: \Delta^{*} \rightarrow \mathscr{E}$ weighted language
projection $h: \Delta^{*} \rightarrow \Sigma^{*} \quad h(S)(w)=\bigwedge_{v \in h^{-1}(w)} S(v)$
$g: \Delta^{*} \rightarrow \mathscr{E}$ homomorphic $\leftrightarrow \quad g\left(a_{1} \ldots a_{n}\right)=g\left(a_{1}\right) \boxplus \ldots \boxplus g\left(a_{n}\right)$

Theorem

$S: \Sigma^{*} \rightarrow \mathscr{E}$ recognizable iff there exist
alphabet Δ
mapping $h: \Delta \rightarrow \Sigma \cup\{\varepsilon\}$
extended to $\Delta^{*} \rightarrow \Sigma^{*}$
homomorphic $g: \Delta^{*} \rightarrow \mathscr{E}$
recursively enumerable language $L \subseteq \Delta^{*}$
such that $S=h(g \cap L)$
Proof \Rightarrow construct Δ, h, g, L
\Leftarrow show closures, recognizability of homomorphic languages

