
The Equivalence, Unambiguity and Sequentiality Problems of

Finitely Ambiguous Max-Plus Tree Automata are Decidable

Erik Paul

January 12, 2020

1 Introduction

A max-plus automaton is a finite automaton with transition weights in the real numbers. To each word,
it assigns the maximum weight of all accepting paths on the word, where the weight of a path is the
sum of the path’s transition weights. Max-plus automata and their min-plus counterparts are weighted
automata [24, 23, 16, 1, 5] over the max-plus or min-plus semiring. Under varying names, max-plus and
min-plus automata have been studied and employed many times in the literature. They can be used to
determine the star height of a language [10], to decide the finite power property [25, 26] and to model
certain timed discrete event systems [7, 8]. Additionally, they appear in the context of natural language
processing [17].

For practical applications, the decidable properties of an automaton model are usually of great inter-
est. Typical problems considered include the emptiness, universality, inclusion, equivalence, sequentiality
and unambiguity problems. We consider the last three of these problems for finitely ambiguous automata,
which are automata in which the number of accepting paths for every word is bounded by a global con-
stant. If there is at most one accepting path for every word, the automaton is called unambiguous. It
is called deterministic or sequential if for each pair of a state and an input symbol, there is at most one
valid transition into a next state. It is known [14] that finitely ambiguous max-plus automata are strictly
more expressive than unambiguous max-plus automata, which in turn are strictly more expressive than
deterministic max-plus automata.

Let us quickly recall the considered problems and the related results. The equivalence problem asks
whether two automata are equivalent, which is the case if the weights assigned by them coincide on all
words. In general, the equivalence problem is undecidable [15] for max-plus automata, but for finitely
ambiguous max-plus automata it becomes decidable [27, 11]. The sequentiality problem asks whether for
a given automaton, there exists an equivalent deterministic automaton. This was shown to be decidable
by Mohri [17] for unambiguous max-plus automata. Finally, the unambiguity problem asks whether
for a given automaton, there exists an equivalent unambiguous automaton. This problem is known to
be decidable for finitely ambiguous and even polynomially ambiguous max-plus automata [14, 13]. In
conjunction with Mohri’s results, it follows that the sequentiality problem is decidable for these classes
of automata as well.

In this paper, we show that these three problems are decidable for finitely ambiguous max-plus
tree automata, which are max-plus automata that operate on trees instead of words. In the form of
probabilistic context-free grammars, max-plus tree automata are commonly employed in natural language
processing [22]. Our approach to the decidability of the equivalence problem uses ideas from [11]. We
reduce the equivalence problem to the same decidable problem as [11], namely the decidability of the
existence of an integer solution for a system of linear inequalities [18]. However, instead of the cycle
decompositions which were used both in [11] and [21], we employ Parikh’s theorem [19, Theorem 2].
This idea was suggested by Miko laj Bojańczyk in a discussion following the presentation of the proof
from [21]. The proof presented here is a revised version of the one from [21].

The decidability of the unambiguity problem employs ideas from [14]. Here, we show how the dom-
inance property can be generalized to max-plus tree automata. To show the decidability of the sequen-
tiality problem for finitely ambiguous max-plus tree automata, we first combine results from [4] and [17]
to show the decidability of this problem for unambiguous max-plus tree automata, and then combine
this result with the decidability of the unambiguity problem.

Our solution of the equivalence problem can be applied to weighted logics. In [20], a fragment of a
weighted logic is shown to have the same expressive power as finitely ambiguous weighted tree automata.
Over the max-plus semiring, equivalence is decidable for formulas of this fragment due to our results.

1

2 Preliminaries

For a set X, the power set of X is denoted by P(X) and the cardinality of X is denoted by |X|. For two
sets X and Y and a mapping f : X → Y , we call X the domain of f , denoted by dom(f), and Y the
range of f , denoted by range(f). For a subset X ′ ⊆ X, the set f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} is
called the image or range of X ′ under f . For an element y ∈ Y , the set f−1(y) = {x ∈ X | f(x) = y} is
called the preimage of y under f . For a second mapping g : X → Y , we write f = g if for all x ∈ X we
have f(x) = g(x).

An alphabet Σ is a non-empty finite set. By Σ∗, we denote the set of all finite words over Σ. The
empty word is denoted by ε, and the length of a word w ∈ Σ∗ by |w|. The number of occurrences of a
letter a ∈ Σ in a word w is denoted by |w|a. A subset L ⊆ Σ∗ is called a language over Σ.

Let N0 = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}. By N∗0, we denote the set of all finite words over N0. The
set N∗0 is partially ordered by the prefix relation ≤p and totally ordered with respect to the lexicographic
ordering ≤l. A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set and
rkΓ : Γ→ N0 a mapping which assigns a rank to every symbol. For every m ≥ 0 we define Γ(m) = rk−1

Γ (m)
as the set of all symbols of rank m. The rank of Γ is defined as rk(Γ) = max{rkΓ(a) | a ∈ Γ}.

The set of (finite, labeled, and ordered) Γ-trees, denoted by TΓ, is the set of all pairs t = (pos(t), labelt),
where pos(t) ⊂ N∗+ is a finite non-empty prefix-closed set of positions, labelt : pos(t) → Γ is a mapping,
and for every w ∈ pos(t) we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w).
We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to prefix-maximal nodes as
leaves. The height of t is defined by height(t) = maxw∈pos(t) |w|.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree defined as follows.
We let pos(t�w) = {v ∈ N∗0 | wv ∈ pos(t)} and for v ∈ pos(t�w), we let labelt�w(v) = t(wv).

The substitution of s into w of t, denoted by t〈s → w〉, is a Γ-tree defined as follows. We let
pos(t〈s → w〉) = (pos(t) \ {v ∈ pos(t) | w ≤p v}) ∪ {wv | v ∈ pos(s)}. For v ∈ pos(t〈s → w〉), we let
labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s), and otherwise labelt〈s→w〉(v) = t(v).

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t with pos(t) =
{ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and labelt(iw) = ti(w). For a ∈ Γ(0), the tree a()
is abbreviated by a.

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ∪{�}, rkΓ ∪{� 7→ 0}) is called a Γ-context.
Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a lexicographically ordered enumeration of
all leaves of t labeled �. Then we call t an n-Γ-context and define ♦i(t) = wi for i ∈ {1, . . . , n}. For an
n-Γ-context t and contexts t1, . . . , tn ∈ TΓ� , we define t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 . . . 〈tn → ♦n(t)〉 by
substitution of t1, . . . , tn into the �-leaves of t. A 1-Γ-context is also called a Γ-word. For a Γ-word s, we
define s0 = � and sn+1 = s(sn) for n ≥ 0.

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum ⊕ and
product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative monoids, multipli-
cation distributes over addition, and κ� 0 = 0� κ = 0 for every κ ∈ K. In this paper, we only consider
the following two semirings.

• The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction ∧.

• The max-plus semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) where the sum and the product oper-
ations are max and +, respectively, extended to R ∪ {−∞} in the usual way.

For a commutative semiring (K,⊕,�,0,1) and a number n ≥ 1, the product semiring (Kn,⊕n,�n,0n,1n)
is defined by componentwise operations and the constants 0n = (0, . . . ,0) and 1n = (1, . . . ,1). We will
usually denote ⊕n and �n simply by ⊕ and �.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite state tree automaton
(short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of states), Γ is a ranked

alphabet (of input symbols), µ :
⋃rk(Γ)

m=0 Q
m × Γ(m) × Q → K (the function of transition weights), and

ν : Q → K (the function of final weights). We define ∆A = dom(µ). A tuple (p̄, a, q) ∈ ∆A is called a
transition and (p̄, a, q) is called valid if µ(p̄, a, q) 6= 0. A state q ∈ Q is called final if ν(q) 6= 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over the Boolean semiring
a finite tree automaton (FTA). An FTA A = (Q,Γ, µ, ν) is also written as a tuple A′ = (Q,Γ, δ, F) where
δ = {d ∈ ∆A | µ(d) = 1} and F = {q ∈ Q | ν(q) = 1}.

For a tree t ∈ TΓ, a mapping r : pos(t) → Q is called a quasi-run of A on t. For a quasi-run r on t
and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple

t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))

2

is called the transition at w. The quasi-run r is called a (valid) run if for every w ∈ pos(t) the transition
t(t, r, w) is valid with respect to A. We call a run r accepting if r(ε) is final. By RunA(t) and AccA(t)
we denote the sets of all runs and all accepting runs of A on t, respectively. For a state q ∈ Q, we denote
by RunA(t, q) the set of all runs r ∈ RunA(t) such that r(ε) = q.

For a run r ∈ RunA(t), the weight of r is defined by

wtA(t, r) =
⊙

w∈pos(t)

µ(t(t, r, w)).

The behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by JAK(t) =
⊕

r∈AccA(t)(wtA(t, r)�
ν(r(ε))), where the sum over the empty set is 0 by convention. The support of A is the set supp(A) =
{t ∈ TΓ | JAK(t) 6= 0}. The support of an FTA A is also called the language accepted by A and denoted
by L(A). A subset L ⊆ TΓ is called recognizable if there exists an FTA A with L = L(A).

For a WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the WTA A′ = (Q,Γ�, µ
′, ν) on

t, where µ′(�, q) = 1 for all q ∈ Q and µ′(d) = µ(d) for all d ∈ ∆A. We denote Run�A(t) = RunA′(t)
and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r). For an n-Γ-context t ∈ TΓ� and states q0, . . . , qn, we
denote by Run�A(q1, . . . , qn, t, q0) the set of all runs r ∈ Run�A(t) such that r(ε) = q0 and r(♦i(t)) = qi
for every i ∈ {1, . . . , n}.

Similar to trees, we define restrictions, substitutions, and powers of runs as follows. Let t, s ∈ TΓ,
r ∈ RunA(t), w ∈ pos(t), and rs ∈ RunA(s) with rs(ε) = r(w). Then we define r�w ∈ RunA(t�w) by
r�w(v) = r(wv) for every v ∈ pos(t�w). We define r〈rs → w〉 ∈ RunA(t〈s→ w〉) by r〈rs → w〉(v) = rs(u)
if v = wu for some u ∈ pos(s), and r〈rs → w〉(v) = r(v) otherwise. For a Γ-word s and a run r ∈ Run�A(s)
with r(ε) = r(♦1(s)), we let v = ♦1(s) and define r0〈v〉 = {ε 7→ r(ε)} and rn+1〈v〉 = r〈rn〈v〉 → v〉 ∈
Run�A(sn+1) for n ≥ 0.

A WTA A is called deterministic if for every m ≥ 0, a ∈ Γ(m), and p̄ ∈ Qm, there exists at most
one q ∈ Q with µ(p̄, a, q) 6= 0. If there exists an integer M ≥ 1 such that |AccA(w)| ≤ M for every tree
t ∈ TΓ, we say that A is M -ambiguous. We call A finitely ambiguous if it is M -ambiguous for some
M ≥ 1. A 1-ambiguous WTA is also called unambiguous.

We recall that for every recognizable language L ⊆ TΓ, there exists a deterministic FTA A with
L(A) = L.

For a WTA A, we define a relation � on Q by p � q iff there exists a Γ-word s ∈ TΓ� such that
Run�A(q, s, p) 6= ∅. We write p ≈ q if p � q and q � p. By [p] we denote the set of all q ∈ Q with p ≈ q.

A WTA A is called trim if for every p ∈ Q, there exist t ∈ TΓ, r ∈ AccA(t), and w ∈ pos(t) such that
p = r(w). The trim part of A is the automaton obtained from A by removing all states p ∈ Q for which
no such t, r, and w exist. This process obviously has no influence on JAK.

3 The Equivalence Problem

For two max-plus-WTA A1 and A2 over an alphabet Γ, we say that A1 dominates A2, denoted by
JA1K ≥ JA2K, if for all trees t ∈ TΓ we have JA1K(t) ≥ JA2K(t). We say that A1 and A2 are equivalent if
JA1K = JA2K.

The equivalence problem for max-plus (tree) automata asks whether for two given max-plus (tree)
automata A1 and A2, it holds that JA1K = JA2K. For words, this problem was shown to be undecidable
in general [15], but it is decidable if both automata are finitely ambiguous [11]. In this section, we
prove that the equivalence problem is decidable for finitely ambiguous max-plus-WTA. Like in [11],
we reduce the equivalence problem to the decidability of the existence of an integer solution for a
system of linear inequalities [18]. This latter problem is decidable only for systems over the rationals,
which is why for the equivalence problem, we consider only max-plus-WTA over the max-plus semiring
Qmax = (Q ∪ {−∞},max,+,−∞, 0) restricted to the rationals. The proof presented here is a revised
version of the one from [21]. It is largely based on ideas from [11], but employs Parikh’s theorem [19,
Theorem 2] instead of the cycle decompositions which were used both in [11] and [21]. This idea was
suggested by Miko laj Bojańczyk in a discussion following the presentation of the proof from [21]. We
formulate the main result of this section as follows.

Theorem 1. The equivalence problem for finitely ambiguous max-plus tree automata with transition and
final weights from Q ∪ {−∞} is decidable.

In fact, we will show that if A1 is a finitely ambiguous max-plus-WTA and A2 any max-plus-WTA,
then it is decidable whether A1 dominates A2.

3

Theorem 2. Let A1 be a finitely ambiguous max-plus-WTA and A2 any max-plus-WTA, both with
transition and final weights from Q ∪ {−∞}. It is decidable whether or not JA1K ≥ JA2K.

If both automata in Theorem 2 are finitely ambiguous, we can reverse their roles. Consequently,
Theorem 1 is a corollary of Theorem 2. The remainder of this section is dedicated to the proof of
Theorem 2. As part of the proof, we will employ the following concepts.

Let Σ = {a1, . . . , an} be an alphabet. The Parikh vector p(w) ∈ Nn
0 of a word w ∈ Σ∗ is the

vector p(w) = (|w|a1
, |w|a2

, . . . , |w|an
). For a language L ⊆ Σ∗, the Parikh image of L is the set

p(L) = {p(w) | w ∈ L}.
A set of vectors J ⊆ Nn

0 is called linear if there exist k ≥ 0 and vectors α, β1, . . . , βk ∈ Nn
0 such that

J = {α+

k∑
i=1

ni · βi | n1, . . . , nk ∈ N0}.

The set J is called semilinear if it is the union of finitely many linear subsets of Nn
0 .

A context-free grammar (short: CFG) [9] is a tuple (N,Σ, P, S) where (1) N is a finite set of nonter-
minal symbols, (2) Σ is a finite set of terminal symbols with N ∩Σ = ∅, (3) P ⊆ N × (N ∪Σ)∗ is a finite
set of productions or rules, and (4) S ∈ N is the initial symbol. We usually denote a rule (A,w) ∈ P by
A→ w.

Let G = (N,Σ, P, S) be a context-free grammar. For u, v ∈ (N ∪Σ)∗ we write u⇒G v if there exists
u′, u′′ ∈ (N ∪ Σ)∗ and a production A → w ∈ P such that u = u′Au′′ and v = u′wu′′. The language
generated by G is the language

L(G) = {w ∈ Σ∗ | ∃n ≥ 0∃u1, . . . , un ∈ (N ∪ Σ)∗ : S ⇒G u1 ⇒G . . .⇒G un ⇒G w}.

A language L ⊆ Σ∗ is called context-free if there exists a context-free grammar G with L = L(G).

As a first step, we show in the following lemma that every finitely ambiguous max-plus-WTA A can
be normalized such that all trees, on which there exists at least one accepting run of A, have the same
number of accepting runs. The idea here is that we can simply add dummy runs with low weight for
every tree which does not already have a sufficient number of runs.

Lemma 3. Let A = (Q,Γ, µ, ν) be an M -ambiguous max-plus-WTA. Then there exists a finitely am-
biguous max-plus-WTA A′ with JAK = JA′K and |AccA′(t)| ∈ {0,M} for all t ∈ TΓ.

Proof. First, we show that for every n ∈ {1, . . . ,M}, the set Ln = {t ∈ TΓ | |AccA(t)| ≥ n} is recog-
nizable. For this, we construct an automaton which simulates n runs of A in parallel, keeps track of
which runs are pairwise distinct, and accepts only when all simulated runs are pairwise distinct. Let
An = (Qn × P({1, . . . , n}2),Γ, δn, Fn), where P({1, . . . , n}2) denotes the power set of {1, . . . , n}2, be
the FTA defined as follows. For a ∈ Γ with rkΓ(a) = m, p̄0, . . . , p̄m ∈ Qn with p̄i = (pi1, . . . , pin), and
R0, . . . , Rm ⊆ {1, . . . , n}2, we let ((p̄1, R1), . . . , (p̄m, Rm), a, (p̄0, R0)) ∈ δn iff for all i ∈ {1, . . . , n} we
have µ(p1i, . . . , pmi, a, p0i) 6= −∞ and R0 = {(k, l) ∈ {1, . . . , n}2 | p0k 6= p0l} ∪

⋃m
i=1Ri. Furthermore,

(p̄0, R0) ∈ Fn iff for all i ∈ {1, . . . , n} we have ν(p0i) 6= −∞ and R0 = {(k, l) ∈ {1, . . . , n}2 | k 6= l}.
It is easy to see that there is an accepting run of An on t ∈ TΓ if and only if there are at least n

pairwise distinct accepting runs of A on t. Therefore, L(An) = Ln. Since recognizable tree languages
are closed under complement and intersection, for n ∈ {1, . . . ,M − 1} the languages L′n = Ln \ Ln+1 =
{t ∈ TΓ | |AccA(t)| = n} are also recognizable and we can find deterministic FTA A′n = (Q′n,Γ, δ

′
n, F

′
n)

with L(A′n) = L′n.
Now let κ be the smallest weight used in A, i.e., with R = µ(∆A)∪ ν(Q) we let κ = min(R \ {−∞}).

For n ∈ {1, . . . ,M − 1}, we define the max-plus-WTA A′′n = (Q′n,Γ, µ
′′
n, ν
′′
n) by

µ′′n(d) =

{
κ if d ∈ δ′n
−∞ otherwise

and ν′′n(q) =

{
κ if q ∈ F ′n
−∞ otherwise.

Finally, we construct A′ as follows. For each n ∈ {1, . . . ,M − 1}, we take M − n copies of A′′n and unite
them with A, where we assume that all sets of states are pairwise disjoint. By choice of κ, this does not
influence the behavior of A. By choice of the languages L′′n, every tree which had at least one accepting
run in A now has exactly M accepting runs in A′ and all other trees still have no accepting run in A′.

4

Next, we show that every max-plus-WTA A can be normalized such that all final weights are equal
either to −∞ or to 0. The idea is that the final weight can be included in the transition weight of the
transition at the root, see also [3].

Lemma 4 ([3]). Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Then there exists a max-plus-WTA A′ =
(Q′,Γ, µ′, ν′) with JAK = JA′K, ν′(Q′) ⊆ {−∞, 0}, and |AccA(t)| = |AccA′(t)| for every t ∈ TΓ.

Proof. We define a max-plus-WTA A′ = (Q′,Γ, µ′, ν′) as follows. We let Q′ = Q × {0, 1} and de-
fine ν′(q, 0) = −∞ and ν′(q, 1) = 0 for all q ∈ Q. For every d = (p1, . . . , pm, a, p0) ∈ ∆A, we let
µ′((p1, 0), . . . , (pm, 0), a, (p0, 0)) = µ(d) and µ′((p1, 0), . . . , (pm, 0), a, (p0, 1)) = µ(d) + ν(p0). On all re-
maining transitions we define µ′ as −∞.

It is easy to see that for every tree t ∈ TΓ, we have a bijection f : AccA(t) → AccA′(t) given by
(f(r))(ε) = (r(ε), 1) and (f(r))(w) = (r(w), 0) for w ∈ pos(t) \ {ε}, and for this bijection it holds that
wtA(t, r) + ν(r(ε)) = wtA′(t, f(r)).

For the rest of this section, we fix an M -ambiguous max-plus-WTA A1 and a max-plus-WTA A2,
both with transition and final weights from Q ∪ {−∞}. We write Ai = (Qi,Γ, µi, νi) for i = 1, 2. By
Lemma 3, we can assume that for all t ∈ TΓ we have |AccA1(t)| ∈ {0,M}. By Lemma 4, we may
furthermore assume that ν1(Q1) ⊆ {−∞, 0} and ν2(Q2) ⊆ {−∞, 0}. Note that JA1K ≥ JA2K can only
hold if supp(A2) ⊆ supp(A1), which is decidable since the supports of A1 and A2 are recognizable
tree languages [23, 12]. This also follows from the proof of Lemma 3. Therefore, in the forthcoming
considerations we will assume that supp(A2) ⊆ supp(A1) holds.

We call a tuple v̄ ∈ QM+1 an outcome vector if there exists a tree t ∈ TΓ, runs r1, . . . , rM ∈ AccA1(t),
and a run rM+1 ∈ AccA2(t) with AccA1(t) = {r1, . . . , rM} and v̄ = (wtA1(t, r1), . . . ,wtA1(t, rM),wtA2(t, rM+1)).
We denote the set of all outcome vectors by O. We can make the following observation.

Proposition 5. A1 does not dominate A2 iff there exists a vector (v1, . . . , vM+1) ∈ O such that for all
i ∈ {1, . . . ,M} we have vi < vM+1.

We give an overview of the rest of the proof. We first construct a weighted tree automaton A over
the product semiring (Qmax)M+1 such that the weights realized by the runs of A are exactly the vectors
from O. We then define Parikh vectors of runs by counting the transitions occurring in a run, just like
the Parikh vector of a word counts the number of occurrences of the letters in a word. By arranging the
weight vectors of the transitions of A as columns into a matrix Ω, we see that the weight of a run of A
is simply the result of multiplying the matrix Ω with the Parikh vector of the run.

We proceed to show that the set of Parikh vectors of the accepting runs of A can also be expressed
as the Parikh image of a context free language over the alphabet of transitions from ∆A. By Parikh’s
theorem, the Parikh image of a context-free language is semilinear, and thus so is the set of Parikh
vectors of the accepting runs of A.

It follows that the set O can be represented as the image of a semilinear set, namely the set of Parikh
vectors of the accepting runs of A, under a matrix with rational entries, namely the matrix Ω. We then
use Proposition 5 to reduce the dominance problem to the satisfiability problem of systems of linear
inequalities over the rationals with an integer solution. The latter problem is decidable [2, Theorem 3.4].
We begin by constructing A.

Lemma 6. There exists a weighted tree automaton A = (Q,Γ, µ, ν) over the product semiring (Qmax)M+1

such that O = {wtA(t, r) | t ∈ TΓ, r ∈ AccA(t)}. The automaton A can be effectively constructed from
A1 and A2.

Proof. We let Q = QM
1 ×Q2×P({1, . . . ,M}2). The first M + 1 entries of the states from Q are used to

simulate the M runs of A1 and one run of A2, and the last entry is used to keep a record of which runs
from A1 are distinct in order to ensure that accepting runs of A simulate all accepting runs of A1 in the
respective entries. For a ∈ Γ with rkΓ(a) = m and p0, . . . ,pm ∈ Q with pi = (pi1, . . . , piM , piM+1, Ri),
we define weights as follows. For i ∈ {1, . . . ,M}, we let xi = µ1(p1i, . . . , pmi, a, p0i) and yi = ν1(p0i),
and we let xM+1 = µ2(p1M+1, . . . , pmM+1, a, p0M+1) and yM+1 = ν2(p0M+1). Furthermore, we let

R = {(k, l) ∈ {1, . . . ,M}2 | p0k 6= p0l} ∪
⋃M

i=1Ri. Then we define µ and ν by

µ(p1, . . . ,pm, a,p0) =

{
(x1, . . . , xM+1) if (x1, . . . , xM+1) ∈ QM+1 and R0 = R

(−∞, . . . ,−∞) otherwise

ν(p0) =

{
(y1, . . . , yM+1) if (y1, . . . , yM+1) ∈ QM+1 and R0 = {(k, l) ∈ {1, . . . ,M}2 | k 6= l}
(−∞, . . . ,−∞) otherwise.

5

It is easy to see that for an accepting run of A on a tree t, projecting on each of the first M + 1 entries
yields M distinct accepting runs of A1 and one accepting run of A2 on t, and that the transition weights
are preserved by this projection.

Furthermore, for M pairwise distinct accepting runs r1, . . . , rM of A1 and one accepting run rM+1 of
A2 on a tree t, we can construct a mapping R : pos(t)→ P({1, . . . ,M}2) such that (r1, . . . , rM+1, R) is an
accepting run of A on t with wtA(t, (r1, . . . , rM+1, R)) = (wtA1

(t, r1), . . . ,wtA1
(t, rM),wtA2

(t, rM+1)).

Let A = (Q,Γ, µ, ν) be the automaton from Lemma 6 and let d1, . . . , dD be an enumeration of ∆A.
We define a matrix Ω ∈ Q(M+1)×D by Ω = (µ(d1), . . . , µ(dD)) where every vector µ(di) is considered to
be a column vector. Furthermore, for a run r of A on a tree t, we define the transition Parikh vector of
r by

p(t, r) = (|{w ∈ pos(t) | t(t, r, w) = d1}|, . . . , |{w ∈ pos(t) | t(t, r, w) = dD}|).

In the following Lemma, we show that multiplying Ω with every possible transition Parikh vector of A
yields precisely O.

Lemma 7. We have O = {Ω · p(t, r) | t ∈ TΓ, r ∈ AccA(t)}.

Proof. Let v̄ ∈ O, then by assumption on A, there exists a tree t ∈ TΓ and a run r ∈ AccA(t) with
v̄ = wtA(t, r). By definition of wtA and the commutativity of “+”, it follows that wtA(t, r) = Ω ·p(t, r).

On the other hand, let t ∈ TΓ and r ∈ AccA(t). Then with the same arguments and our assumption
on A, we have Ω · p(t, r) = wtA(t, r) ∈ O.

Next, we construct a context-free language whose Parikh image coincides with the set of possible
transition Parikh vectors of A.

Lemma 8. There exists a context-free language L over the alphabet ∆A such that p(L) = {p(t, r) | t ∈
TΓ, r ∈ AccA(t)}. A context-free grammar G generating L can be found effectively from A.

Proof. We define the context-free grammar G = (Q ∪ {S},∆A, P, S), where S is a new symbol, by

P = {S → p | ν(p) ∈ QM+1}
∪ {p→ (p1, . . . ,pm, a,p)p1 . . .pm | µ(p1, . . . ,pm, a,p) ∈ QM+1}.

Then L = L(G) is context-free and we see as follows that p(L) = {p(t, r) | t ∈ TΓ, r ∈ AccA(t)}.
“⊆”: Let w ∈ L. We construct a tree t ∈ TΓ and a run r ∈ AccA(t) such that p(w) = p(t, r). Since

w ∈ L, we find words u1, . . . , un ∈ (Q ∪ ∆A)∗ such that un = w and S ⇒G u1 ⇒G . . . ⇒G un. We
construct by induction for every i ∈ {1, . . . , n} a Γ-context ti ∈ TΓ� and a run ri ∈ Run�A(ti) such that
ν(ri(ε)) ∈ QM+1 and for every p ∈ Q and d ∈ ∆A we have

|ui|p = |{v ∈ pos(t) | ti(v) = � and ri(v) = p}|
|ui|d = |{v ∈ pos(t) | t(t, r, w) = d}|.

For i = 1, we know by the definition of G that u1 = p with ν(p) ∈ QM+1, so we let t1 = � and
r1(ε) = p. Now assume we have constructed ti and ri with the properties above. We have ui ⇒G ui+1,
so by definition of G, there exists a transition d = (p1, . . . ,pm, a,p) ∈ ∆A with µ(d) ∈ QM+1 and words
u′, u′′ ∈ (Q ∪∆A)∗ such that ui = u′pu′′ and ui+1 = u′dp1 . . .pmu

′′. Thus |ui|p ≥ 1, so by induction
we find v ∈ pos(ti) with ti(v) = � and ri(v) = p. We let ti+1 = ti〈a(�, . . . , �) → v〉 and define ri+1 by
ri+1(v′) = ri(v

′) for v′ ∈ pos(ti) and ri+1(vj) = pj for j ∈ {1, . . . ,m}. It is easy to check that ti+1 and
ri+1 satisfy all of the above properties.

Since un = w ∈ ∆∗A, the Γ-context tn is actually a Γ-tree, the run rn ∈ Run�A(tn) is an accepting run
of A on tn, and we have p(w) = p(un) = p(tn, rn). Thus, we have p(L) ⊆ {p(t, r) | t ∈ TΓ, r ∈ AccA(t)}.

“⊇”: Now let t ∈ TΓ and r ∈ AccA(t). We construct a word w ∈ L with p(w) = p(t, r). For this, we
construct by induction for every v ∈ pos(t) words u1, . . . , un such that r(v)⇒G u1 ⇒G . . .⇒G un, un ∈
∆∗A, and p(un) = p(t�v, r�v). We proceed by a reverse induction on the length of v. For |v| = height(t),
we let n = 1 and u1 = t(t, r, v), then we have r(v)⇒G u1, un ∈ ∆∗A, and p(un) = p(t�v, r�v).

For |v| < height(t), we assume that t(t, r, v) = d = (p1, . . . ,pm, a,p) and that for every i ∈ {1, . . . ,m}
we have words u

(i)
1 , . . . , u

(i)
ni with pi ⇒G u

(i)
1 ⇒G . . . ⇒G u

(i)
ni , u

(i)
ni ∈ ∆∗A, and p(u

(i)
ni) = p(t�vi, r�vi).

6

Since r ∈ AccA(t), we have µ(d) ∈ QM+1, so by the definition of G, we have p ⇒G dp1 . . .pm. Thus,
we see that

p⇒G dp1 . . .pm

⇒G du
(1)
1 p2 . . .pm ⇒G . . .⇒G du(1)

n1
p2 . . .pm

⇒G du(1)
n1
u

(2)
1 p3 . . .pm ⇒G . . .⇒G du(1)

n1
u(2)
n2

p3 . . .pm

...

⇒G du(1)
n1
. . . u

(m−1)
m−1 u

(m)
1 ⇒G . . .⇒G du(1)

n1
. . . u(m)

nm
.

From this, we obtain words u1, . . . , un ∈ (Q ∪ ∆A)∗ with p ⇒G u1 ⇒G . . . ⇒G un such that un =

du
(1)
n1 . . . u

(m)
nm ∈ ∆∗A, and therefore p(un) = p(d)+

∑m
i=1 p(u

(i)
ni) = p(d)+

∑m
i=1 p(t�vi, r�vi) = p(t�v, r�v).

For v = ε, we thus obtain words u1, . . . , un such that r(ε) ⇒G u1 ⇒G . . . ⇒G un, un ∈ ∆∗A, and
p(un) = p(t, r). Due to r ∈ AccA(t) we have r(ε) ∈ QM+1, which means that S ⇒G r(ε). Therefore
un ∈ L, which shows that p(L) ⊇ {p(t, r) | t ∈ TΓ, r ∈ AccA(t)}.

Finally, we recall Parikh’s theorem, after which we are ready to conclude the proof of Theorem 2.

Theorem 9 ([19, Theorem 2],[6]). For every context-free language L, the set p(L) is semilinear. Fur-

thermore, indices k, k1, . . . , kk and vectors α(i), β
(i)
j ∈ ND

0 (i ∈ {1, . . . , k}, j ∈ {1, . . . , ki}) with

p(L) =

k⋃
i=1

{α(i) +

ki∑
j=1

nj · β(i)
j | n1, . . . , nki ∈ N0}

can be effectively found from every context-free grammar generating L.

Proof of Theorem 2. Let L be as in Lemma 8. By Lemma 7 and Lemma 8, we then have O = {Ω·p(t, r) |
t ∈ TΓ, r ∈ AccA(t)} = {Ω · v̄ | v̄ ∈ p(L)}.

For L, let k, k1, . . . , kk, α
(i), β

(i)
j ∈ ND

0 (i ∈ {1, . . . , k}, j ∈ {1, . . . , ki}) be as in Theorem 9. Then

O =

k⋃
i=1

{Ω · α(i) +

ki∑
j=1

nj · Ω · β(i)
j | n1, . . . , nki ∈ N0}.

Let ω̄1, . . . , ω̄M+1 be the rows of Ω. Then by Proposition 5, A1 does not dominate A2 iff there exist
i ∈ {1, . . . , k} and n1, . . . , nki

∈ N0 such that for every l ∈ {1, . . . ,M} we have

ω̄l · α(i) +

ki∑
j=1

(ω̄l · β(i)
j) · nj < ω̄M+1 · α(i) +

ki∑
j=1

(ω̄M+1 · β(i)
j) · nj .

In other words, for every i ∈ {1, . . . , k} we have a system of linear inequalities

ω̄l · α(i) +

ki∑
j=1

(ω̄l · β(i)
j) ·Xj < ω̄M+1 · α(i) +

ki∑
j=1

(ω̄M+1 · β(i)
j) ·Xj (l = 1, . . . ,M)

0 ≤ Xj (j = 1, . . . , ki),

and A1 does not dominate A2 iff one of these systems possesses an integer solution. The first M
inequalities of each system form a system of the form A′X̄ < 0 for a matrix A′. The satisfiability of
this system with a non-negative integer solution is equivalent to that of the system A′X̄ ≤ −1 since
every non-negative integer solution X̄ of the first can be inflated by a sufficiently large integer C to a
solution C · X̄ of the latter system. Thus, we effectively need to check the satisfiability of systems of the
form AX̄ ≤ b̄ for a matrix A and a vector b̄, both with entries from Q, with an integer solution. By [2,
Theorem 3.4], the satisfiability of such systems with an integer solution is decidable, so we can decide
whether A1 dominates A2 or not.

7

4 The Unambiguity Problem

The unambiguity problem asks whether for a given max-plus-WTA A, there exists an unambiguous max-
plus-WTA A′ such that JAK = JA′K. In this section, we show that the unambiguity problem is decidable
for finitely ambiguous max-plus-WTA. We follow ideas from [14, Section 5], where the decidability of
this problem was shown for finitely ambiguous max-plus word automata. The unambiguity problem is
in fact known to be decidable even for polynomially ambiguous max-plus word automata [13]. We leave
the question open as to whether the same holds true for polynomially ambiguous max-plus-WTA.

Theorem 10. For a finitely ambiguous max-plus-WTA A, it is decidable whether there exists an unam-
biguous max-plus-WTA A′ with JAK = JA′K. If A′ exists, it can be effectively constructed.

The rest of this section is dedicated to the proof of Theorem 10. In the following, we will employ
the concept of an A-circuit of a WTA A. For a WTA A = (Q,Γ, µ, ν), a Γ-word s ∈ TΓ� , and a
run r ∈ Run�A(s) with r(ε) = r(♦1(s)), the pair (s, r) is called an A-circuit. We call (s, r) small if
height(s) ≤ 2|Q|.

Now let A be a finitely ambiguous max-plus-WTA. We decompose A into unambiguous max-plus-
WTA as follows.

Lemma 11. Let A be a finitely ambiguous max-plus-WTA over Γ, then there exist finitely many unam-
biguous max-plus-WTA A1, . . . ,AM over Γ with JAK = maxM

i=1JAiK and supp(A1) = . . . = supp(AM).

Proof. By [20, Theorem 1] we can find finitely many unambiguous max-plus-WTA A1, . . . ,AM over Γ

with JAK = maxM
i=1JAiK. We write Ai = (Qi,Γ, µi, νi). Let L =

⋃M
i=1 supp(Ai) and let κ be the smallest

weight used in the automata A1, . . . ,AM , i.e., for R =
⋃M

i=1(µi(∆Ai
)∪νi(Qi)) we let κ = min(R\{−∞}).

The language L is recognizable, therefore for i ∈ {1, . . . ,M}, the language Li = L \ supp(Ai) is also
recognizable and there exists a deterministic FTA A′i = (Q′i,Γ, δ

′
i, F
′
i) with L(A′i) = Li. We define the

max-plus-WTA A′′i = (Q′i,Γ, µ
′′
i , ν
′′) by

µ′′i (d) =

{
κ if d ∈ δ′i
−∞ otherwise

and ν′′i (q) =

{
κ if q ∈ F ′i
−∞ otherwise.

We assume without loss of generality that Qi ∩Q′i = ∅ and define A′′′i = (Qi ∪Q′i,Γ, µ′′′i , νi ∪ ν′′i) with

µ′′′i (d) =

µi(d) if d ∈ ∆Ai

µ′′i (d) if d ∈ ∆A′′i
−∞ otherwise

as the union of Ai and A′′i . Then A′′′i is unambiguous since Ai is unambiguous, A′′i is deterministic, and
supp(Ai) ∩ supp(A′′i) = ∅. Furthermore, for t ∈ supp(Ai) we have JA′′′i K(t) = JAiK(t).

For every t ∈ supp(A′′i), there exists some j ∈ {1, . . . ,M} with t ∈ supp(Aj) and due to the choice
of κ we have JAjK(t) ≥ JA′′i K(t). In conclusion, for all i ∈ {1, . . . ,M} we have that A′′′i is unambiguous,
supp(A′′′i) = L, and maxM

i=1JA′′′i K = maxM
i=1JAiK = JAK.

Let A1, . . . ,AM be unambiguous max-plus-WTA with supp(A1) = . . . = supp(AM) and JAK =
maxM

i=1JAiK. The product automaton B = (Q,Γ, µ, ν) of A1, . . . ,AM is a weighted tree automaton over
the product semiring (Rmax)M which, intuitively, executes all of the automata A1, . . . ,AM in parallel.
We write Ai = (Qi,Γ, µi, νi) for i ∈ {1, . . . ,M} and define B as the trim part of the automaton B′ =
(Q′,Γ, µ′, ν′) defined as follows. We let Q′ = Q1 × . . . × QM and for a ∈ Γ with rkΓ(a) = m and
p0, . . . ,pm ∈ Q′ with pi = (pi1, . . . , piM) we define, with xi = µi(p1i, . . . , pmi, a, p0i) and yi = νi(p0i),

µ′(p1, . . . ,pm, a,p0) =

{
(x1, . . . , xM) if (x1, . . . , xM) ∈ RM

(−∞, . . . ,−∞) otherwise

ν′(p0) =

{
(y1, . . . , yM) if (y1, . . . , yM) ∈ RM

(−∞, . . . ,−∞) otherwise.

Then B is unambiguous and for t ∈ TΓ we have JBK(t) = (JA1K(t), . . . , JAM K(t)).

8

Definition 12 (Victorious coordinate). Let s ∈ TΓ� be a Γ-context, r ∈ Run�B(s), and write wt�B(s, r) =
(κ1, . . . , κM). We define wti(s, r) = κi and wt(s, r) = maxM

i=1 wti(s, r).
A coordinate i ∈ {1, . . . ,M} is called victorious if wti(s, r) = wt(s, r). The set of all victorious

coordinates of (s, r) is denoted by Vict(s, r). For q ∈ Q we define

Vict([q]) =
⋂

(s,r) small B-circuit
r(ε)∈[q]

Vict(s, r)

where the empty intersection is defined as {1, . . . ,M}. For P ⊆ Q, we let Vict(P) =
⋂

p∈P Vict([p]).
We have the following lemma which relates victorious coordinates to the decidability of the unambiguity
problem.

Lemma 13. There exists an unambiguous max-plus-WTA A′ with JAK = JA′K if and only if for all
t ∈ TΓ and all r ∈ AccB(t) we have Vict(r(pos(t))) 6= ∅. The latter property is called the dominance
property and is denoted by (P). The dominance property is decidable, and therefore so is the unambiguity
problem.

Proof. Here, we only show that (P) is decidable. We defer the proof that (P) is a necessary condition
to Lemma 14. The proof for the sufficiency of (P) takes some more preparation and is split into several
lemmata.

(P) is decidable as follows. We can consider Q as an (unranked) alphabet and construct an FTA which
accepts exactly the accepting runs of B, i.e., all pairs (pos(t), r) for some t ∈ TΓ and r ∈ AccB(t). Also, for
every subset P ⊆ Q we can construct an FTA which accepts all trees in TQ in which every p ∈ P occurs
at least once as a label. By taking the intersection of these two automata and checking for emptiness, we
can decide for every P ⊆ Q whether there exists t ∈ TΓ and r ∈ AccB(t) with P ⊆ r(pos(t)). Checking
whether all P for which this is true satisfy Vict(P) 6= ∅ is equivalent to checking (P). Note that Vict(P)
can be effectively computed since there are only finitely many small B-circuits.

First, we prove that (P) is a necessary condition, i.e., that from the existence of an unambiguous
automaton A′ with JAK = JA′K it follows that B satisfies (P).

Lemma 14. If there exists an unambiguous max-plus-WTA A′ = (Q′,Γ, µ′, ν′) with JAK = JA′K then B
satisfies (P).

Proof. We proceed by contradiction and assume that A′ as above exists and that (P) is not satisfied.
Then there exists a tree t ∈ TΓ and a run r ∈ AccB(t) with Vict(r(pos(t)) = ∅. We let C be the set of all
small circuits which are relevant to show this, i.e., C = {(s, rs) small B-circuit | [rs(ε)] ∩ r(pos(t)) 6= ∅}.

Let (s, rs) ∈ C and q = rs(ε). We may assume that q ∈ r(pos(t)) due to the following argument.
If q ∈ r(pos(t)) does not hold, there exists some p ∈ r(pos(t)) with p ≈ q. Then there exist Γ-words
spq, s

q
p ∈ TΓ� and runs rpq ∈ Run�B(q, spq,p) and rqp ∈ Run�B(p, sqp,q). Thus, with s′ = spq(sqp) and

rs′ = rpq〈rqp → ♦1(spq)〉, we obtain a circuit (s′, rs′) with rs′(ε) = p and rs′(♦1(spq)) = q. We can insert
(s′, rs′) into t and r to obtain a tree t′ and a run r′ ∈ AccB(t′) with q ∈ r′(pos(t′)).

Now let c1, . . . , cn be an enumeration of C. We write ci = (si, ri) and let qi = ri(ε), wqi ∈ pos(t)
with r(wqi

) = qi, and wi = ♦1(si). We may assume that c1, . . . , cn are ordered such that wq1
≤l . . . ≤l

wqn . Then for every i ∈ {1, . . . , n}, we can insert the circuit (s
|Q′|
i , r

|Q′|〈wi〉
i) at wqi to obtain a tree

t′ = t〈s|Q
′|

n → wqn
〉 · · · 〈s|Q

′|
1 → wq1

〉 ∈ TΓ together with a run r′B = r〈r|Q
′|〈w〉

n → wqn
〉 · · · 〈r|Q

′|〈w〉
1 →

wq1
〉 ∈ AccB(t′). For simplicity, we assume that the root of each circuit (s

|Q′|
i , r

|Q′|〈wi〉
i) is still at position

wqi
in t′.

Since suppB = suppA′, we find a run r′A′ ∈ AccA′(t
′). By pigeon hole principle, we find 0 ≤

mi < ni ≤ |Q′| for each i ∈ {1, . . . , n} such that r′A′(wqi
wmi

i) = r′A′(wqi
wni

i). We thus obtain runs
rAi ∈ Run�A′(s

ni−mi) through rAi (w) = r′A′(wqiw) such that each (sni−mi
i , rAi) is an A′-circuit. We let

s̃i = sni−mi
i and rBi = r

ni−mi〈wi〉
i . Then (s̃i, r

B
i) are B-circuits with Vict(ci) = Vict(s̃i, r

B
i) for all i.

For v̄ = (v1, . . . , vn) ∈ Nn
0 , we denote by tv̄ the tree obtained by adding vi copies of s̃i to t′ for each

i ∈ {1, . . . , n}, i.e., the tree tv̄ = t′〈s̃vn
n → wqn

〉 · · · 〈s̃v11 → wq1
〉. Then we see that the runs

r′B〈(rBn)vn〈w
nn−mn
n 〉 → wqn

〉 · · · 〈(rB1)v1〈w
n1−m1
1 〉 → wq1

〉 ∈ AccB(tv̄)

r′A′〈(rAn)vn〈w
nn−mn
n 〉 → wqnw

mn
n 〉 · · · 〈(rA1)v1〈w

n1−m1
1 〉 → wq1w

m1
1 〉 ∈ AccA′(tv̄)

are accepting on tv̄.

9

By assumption, there exists I ∈ {1, . . . , n} such that
⋂I

i=1 Vict(ci) 6= ∅ and
⋂I+1

i=1 Vict(ci) = ∅. In

the following, we show that
⋂I+1

i=1 Vict(ci) 6= ∅, which yields the desired contradiction. For k, l ∈ N0, let
tk,l = t(k,...,k,l,0,...,0), where l is at index I + 1. Since A′ is unambiguous, we see that with x = JA′K(t0,0),
κ = wtA′(s̃1, r

A
1) + . . .+ wtA′(s̃I , r

A
I), and λ = wtA′(s̃I+1, r

A
I+1), we have

JA′K(tk,l) = x+ kκ+ lλ

for all k, l ∈ N0.
Due to the definition of victorious coordinates, we can find a number N ∈ N0 such that for all l ≥ N ,

the tuple JBK(t0,l) has its maximum in some victorious coordinate from Vict(cI+1); this is because with
every repetition of a circuit, non-victorious coordinates fall behind victorious coordinates in terms of
weight by a small fixed margin. Then for every l′ ≥ 0, we have

JAK(t0,N+l′) = JAK(t0,N) + l′ · wt(s̃I+1, r
B
I+1).

Since JA′K = JAK, it follows that

wt(s̃I+1, r
B
I+1) = JAK(t0,N+1)− JAK(t0,N) = x+ (N + 1)λ− (x+Nλ) = λ.

Similarly, due to the assumption that
⋂I

i=1 Vict(ci) 6= ∅, we can find for every l ∈ N0 a number
Ml ∈ N0 such that for all k ≥ Ml, the tuple JBK(tk,l) has its maximum in some victorious coordinate

jl ∈
⋂I

i=1 Vict(ci). We let M̄ = maxM
l=0Ml. By pigeon hole principle, there exist l1, l2 ∈ {0, . . . ,M} with

l1 < l2 and jl1 = jl2 . Then we see that, again due to JA′K = JAK, we have

(l2 − l1)wtjl1 (s̃I+1, r
B
I+1) = JAK(tM̄,l2)− JAK(tM̄,l1) = (l2 − l1)λ.

It follows that

wt(s̃I+1, r
B
I+1) = λ = wtjl1 (s̃I+1, r

B
I+1),

which means that jl1 ∈ Vict(cI+1). Since jl1 ∈
⋂I

i=1 Vict(ci) also holds, we have
⋂I+1

i=1 Vict(ci) 6= ∅,
which is a contradiction to the choice of I. In conclusion, t and r as chosen do not exist and therefore
B satisfies (P).

Next, we address the sufficiency of (P). In the following, we assume that B satisfies (P) and construct
an unambiguous max-plus-WTA A′ with JA′K = JAK.

The idea behind A′ is as follows. The states of A′ will be taken from RM
max ×Q. From a bottom-up

perspective, A′ remembers in each Rmax-coordinate the weight which B would have assigned to the run
in this coordinate “so far”. Since this can become unbounded, we normalize the smallest coordinate to 0
in each transition, make this coordinate’s weight the transition weight, and remember only the difference
to this weight in the remaining coordinates. Still, these differences can become unbounded. Therefore,
once the difference exceeds a certain bound (2N + 1)C, the coordinates with small weights are discarded
by being set to −∞ and only the large weights are remembered. Here, N is the maximum possible
number of nodes of a tree over Γ of height at most 2|Q|. The constant C is the largest difference between
all weights occurring in the automata A1, . . . ,AM .

We can show that the coordinate l which in B eventually yields the largest weight will not be discarded
as follows. First, we can show that the weight of a victorious coordinate of a run will never be smaller
than the largest weight (over all coordinates) minus NC. Second, we can show that if k is victorious, then
the weight of coordinate l will never be smaller than the weight of k minus NC +C. Our assumption is
that (P) holds, so there exists some victorious coordinate in every accepting run. Therefore, the weight
of l will never be smaller than the largest weight minus (2N + 1)C and is never discarded.

Formally, we define A′ as follows.

Construction 15. We let

N =

2|Q|∑
i=0

rk(Γ)i = max{|pos(t)| | t ∈ TΓ,height(t) ≤ 2|Q|}

R =

M⋃
i=1

(µi(∆Ai) ∪ νi(Qi))

10

C = maxR−min(R \ {−∞}).

For x = (x1, . . . , xM) ∈ RM
max, we denote the smallest weight of x by

x̌ = min{xi | 1 ≤ i ≤M,xi 6= −∞},

and define the normalization of x by
x = x− (x̌, . . . , x̌).

We construct an unambiguous max-plus-WTA A′ = (Q′,Γ, µ′, ν′) with JAK = JA′K and Q′ ⊂ RM
max ×Q

as follows.

Rule 1 For (a,q) ∈ ∆B ∩ (Γ×Q) with x = µ(a,q) ∈ RM , we let (x,q) ∈ Q′ and µ′(a, (x,q)) = x̌.

Rule 2 Assume we have d = (p1, . . . ,pm, a,p0) ∈ ∆B with x = µ(d) ∈ RM and (z1,p1), . . . , (zm,pm) ∈
Q′ for some z1, . . . , zm ∈ RM

max. We let t = x +
∑m

i=1 zi and define y ∈ RM
max through

yi =

{
−∞ if ti < max{tj | 1 ≤ j ≤M} − (2N + 1)C

ti otherwise.

We let (y,p0) ∈ Q′ and µ′((z1,p1), . . . , (zm,pm), a, (y,p0)) = y̌.

Rule 3 Assume (z,p) ∈ Q′ and x = ν(p) ∈ RM . Then we let ν′(z,p) = maxM
i=1(zi + xi).

Note that from the above definition, it is not obvious that Q′ is finite, which is what we will show
later on. The following is clear from the construction.

Proposition 16. The projection π : Q′ → Q, (z,p) 7→ p induces a bijection between the accepting runs
of B and A′. In particular, A′ is unambiguous.

Using a simple induction we can show the following relationship between the runs of A′ and B.

Lemma 17. Let t ∈ TΓ, r ∈ RunB(t), and r′ = π−1(r) ∈ RunA′(t). We write r′(ε) = (z,p), then for
every l ∈ {1, . . . ,M} we have

(i) if zl 6= −∞ then wtl(t, r) = wtA′(t, r
′) + zl

(ii) if zl = −∞ then for some w ∈ pos(t) we have wtl(t�w, r�w) < wt(t�w, r�w)− (2N + 1)C.

Proof. (i) We proceed by induction on the height of t. If height(t) = 0, the statement follows from
Rule 1. Otherwise, we let a = t(ε), m = rk(a), and r′(i) = (zi,pi) for i ∈ {1, . . . ,m}. Since zl 6= −∞, we
know by Rule 2 that zil 6= −∞ holds for all i ∈ {1, . . . ,m}. Thus, by induction we have wtl(t�i, r�i) =
wtA′(t�i, r

′�i) + zil for all i ∈ {1, . . . ,m}. It follows by Rule 2 that with x = µ(p1, . . . ,pm, a,p) and
y = µ′((z1,p1), . . . , (zm,pm), a, (z,p)) we have

wtl(t, r) = xl +

m∑
i=1

wtl(t�i, r�i)

= xl +

m∑
i=1

(wtA′(t�i, r
′�i) + zil)

= zl + y +

m∑
i=1

wtA′(t�i, r
′�i)

= wtA′(t, r
′) + zl.

(ii) Assume z = −∞ and let w be a prefix-maximal position with the property that for (z′,p′) = r′(w)
we have z′l = −∞. By Rule 1, w cannot be a leaf. We let a = t(w), m = rk(a), r′(w) = (z0,p0), and
r′(wi) = (zi,pi) for i ∈ {1, . . . ,m}. By choice of w, we have zil 6= −∞ for all i ∈ {1, . . . ,m}, so by
(i) we have wtl(t�wi, r�wi) = wtA′(t�wi, r

′�wi) + zil for all i ∈ {1, . . . ,m}. Let x = µ(p1, . . . ,pm, a,p0)
and y = µ′((z1,p1), . . . , (zm,pm), a, (z0,p0)). Then since z0l = −∞, there exists by Rule 2 some
j ∈ {1, . . . ,M} such that z0j 6= −∞ and xl +

∑m
i=1 zil < z0j + y − (2N + 1)C. Thereby, we have

wtl(t�w, r�w) = xl +

m∑
i=1

wtl(t�wi, r�wi)

11

= xl +

m∑
i=1

(wtA′(t�wi, r
′�wi) + zil)

< z0j + y +

m∑
i=1

wtA′(t�wi, r
′�wi)− (2N + 1)C

= z0j + wtA′(t�w, r�w)− (2N + 1)C

= wtj(t�w, r�w)− (2N + 1)C

≤ wt(t�w, r�w)− (2N + 1)C.

The dominance property (P) is defined only through small circuits. Thus, in order to use (P), we
describe in the following how to decompose pairs (t, r) of a Γ-tree or a Γ-word t and a run r of B on t into
small circuits. Intuitively, we cut circuits from the bottom of the tree using the pigeon hole principle.

Construction 18. Let t ∈ TΓ� be a Γ-tree or a Γ-word and r ∈ Run�B(t). A circuit decomposition of t
and r is a stub (t0, r0), where t0 ∈ TΓ� with height(t0) ≤ 2|Q| and r0 ∈ Run�B(t0), together with a finite
sequence of small B-circuits (s1, r1), . . . , (sn, rn) defined as follows. If height(t) ≤ 2|Q|, then we let t0 = t
and r0 = r and conclude the decomposition. Otherwise, we cut a small circuit from t and r.

If t is a Γ-tree, we proceed as follows. We choose uv ∈ pos(t) with |uv| = height(t) and |v| = |Q|. By
pigeon hole principle, we find u ≤p w1 <p w2 ≤p uv with r(w1) = r(w2). We let s = (t〈� → w2〉)�w1

,
then for w ∈ pos(s) we see that

height(t) ≥ |w1w| = |w1|+ |w| ≥ |u|+ |w| = height(t)− |Q|+ |w|

from which |w| ≤ |Q| and therefore height(s) ≤ |Q| follows. Thus from r we obtain a small circuit (s, r′′)
through r′′(w) = r(w1w) for w ∈ pos(s). With t′ = t〈t�w2

→ w1〉 we obtain from r a run r′ ∈ RunB(t′)
through r′ = r〈r�w2

→ w1〉. We continue the decomposition with t′ and r′. This procedure ends after
finitely many steps.

If t is a Γ-word, we proceed in the following way in order to ensure that the process above never creates
a 2-Γ-context when cutting a circuit. If there exists a position v′ ∈ pos(t) which is prefix-independent
from ♦1(t) and for which height(t�v′) ≥ |Q|, we let uv ∈ pos(t) with v′ ≤p uv, |uv| = |v′|+ height(t�v′),
and |v| = |Q|. By pigeon hole principle, we find u ≤p w1 <p w2 ≤p uv with r(w1) = r(w2). We let
s = (t〈� → w2〉)�w1

, then for w ∈ pos(s) we see that

|v′|+ height(t�v′) ≥ |w1w| = |w1|+ |w| ≥ |u|+ |w| = |v′|+ height(t�v′)− |Q|+ |w|

from which |w| ≤ |Q| and therefore height(s) ≤ |Q| follows. Thus from r we obtain a small circuit (s, r′′)
through r′′(w) = r(w1w) for w ∈ pos(s). With t′ = t〈t�w2

→ w1〉 we obtain from r a run r′ ∈ Run�B(t′)
through r′ = r〈r�w2

→ w1〉. Note that both s and t′ are Γ-words since v′ is prefix-independent from
♦1(t). We continue the decomposition with t′ and r′.

If t is a Γ-word but height(t�v′) < |Q| for all v′ ∈ pos(t) which are prefix-independent from ♦1(t), we
proceed as follows. First, we show that |♦1(t)| ≥ |Q|. We know that height(t) > 2|Q|, thus there exists a
position w ∈ pos(t) with |w| ≥ 2|Q|. If w ≤p ♦1(t), it immediately follows that |♦1(t)| ≥ |Q|. Otherwise,
since ♦1(t) is a leaf, w and ♦1(t) are prefix-independent and we can write w = viv1 and ♦1(t) = vjv2 for
some i, j ∈ N+ with i 6= j. As vi is prefix-independent from ♦1(t), we see that |v1| ≤ height(t�vi) < |Q|
and therefore |vi| ≥ 2|Q| − |Q| = |Q|. In particular, we have |♦1(t)| ≥ |vj| ≥ |Q|.

Since |♦1(t)| ≥ |Q|, we can write ♦1(t) = uv with |v| = |Q|. By pigeon hole principle, we find
u ≤p w1 <p w2 ≤p uv with r(w1) = r(w2). We let s = (t〈� → w2〉)�w1

and show that height(s) ≤ 2|Q|.
Let w ∈ pos(s). If uw ≤p ♦1(t), we have |w| ≤ |v| = |Q|. Otherwise, if uw is prefix-independent from
♦1(t), we can write uw = uv′ivi and ♦1(t) = uv′jvj for some i, j ∈ N+ with i 6= j. Then uv′i is prefix-
independent from ♦1(t) which means we have |vi| ≤ height(t�uv′i) < |Q|. Due to |v′jvj | = |v| = |Q|, we
see that |v′| ≤ |Q| and therefore |w| = |v′ivi| < |Q|+ 1 + |Q|. Therefore, we have height(s) ≤ 2|Q|. Thus
from r we obtain a small circuit (s, r′′) through r′′(w) = r(w1w) for w ∈ pos(s). With t′ = t〈t�w2

→ w1〉
we obtain from r a run r′ ∈ Run�B(t′) through r′ = r〈r�w2

→ w1〉. Note that both s and t′ are Γ-words
since w2 ≤p ♦1(t). We continue the decomposition with t′ and r′.

12

In the following lemma, we show that the weights of victorious coordinates never become much smaller
than the maximum weight over all coordinates.

Lemma 19. Let t ∈ TΓ� be a Γ-tree or a Γ-word and r ∈ Run�B(t). If k ∈ Vict(r(pos(t))) then
wtk(t, r) ≥ wt(t, r)−NC.

Proof. Take a circuit decomposition of t and r as in Construction 18 with stub (t0, r0) and small circuits
(s1, r1), . . . , (sn, rn). Since |pos(t0)| ≤ N , we have for all j ∈ {1, . . . ,M} that

wtk(t, r) = wtk(t0, r0) +

n∑
i=1

wtk(si, ri)

≥ wtj(t0, r0)−NC +

n∑
i=1

wtj(si, ri)

= wtj(t, r)−NC.

This is true in particular for j with wt(t, r) = wtj(t, r).

We are now able to show that Q′ is finite. We proceed by contradiction and show that if Q′ was
infinite, we would be able to find arbitrarily long successions (zn,p) � . . . � (z1,p) in Q′ with z1, . . . , zn
pairwise distinct. Then we show that such successions can in fact not be arbitrarily long, as from
every zi to the next, the difference in weights of at least one non-victorious coordinate to the victorious
coordinates grows by at least δ, where δ is a fixed constant. Thus, after some zi, these differences exceed
(2N + 1)C for all all non-victorious coordinates, and all subsequent zi remain constant.

Lemma 20. Q′ is a finite set.

Proof. We show first that if Q′ is infinite, then for at least one p ∈ Q we can find arbitrarily long
successions (zn,p) � . . . � (z1,p) with z1, . . . , zn pairwise distinct. Let P0 ⊆ Q′ be the set of all states
added to Q′ by Rule 1. For i ≥ 0, let Pi+1 ⊆ Q′ be the set of all states added to Q′ by Rule 2 using
only states (z1,p1), . . . , (zm,pm) ∈ Pi. Then for all i ≥ 0 we have Pi ⊆ Pi+1, Pi+1 \ Pi 6= ∅ since Q is
infinite, and Pi is finite.

Let i > 0 and (z,p) ∈ Pi+1 \ Pi. Then there are (z1,p1), . . . , (zm,pm) ∈ Pi with at least one
(zj ,pj) ∈ Pi \ Pi−1 such that (z,p) is added to Q′ by Rule 2 using (z1,p1), . . . , (zm,pm) ∈ Pi, and a
valid transition (p1, . . . ,pm, a,p) ∈ ∆B. In particular, we have (z,p) � (zj ,pj).

Now let H > 0, n > H|Q|, and p ∈ Pn \ Pn−1. Then according to the argumentation we just did,
we can find (zn,pn) � . . . � (z0,p0) with (z0,p0) ∈ P0 and (zi,pi) ∈ Pi \ Pi−1 for i > 0. In particular,
(z0,p0), . . . , (zn,pn) are pairwise distinct. By pigeon hole principle, at least one p ∈ Q occurs H or
more times among p0, . . . ,pn. Hence, we find i1 < . . . < iH with pi1 = . . . = piH = p and have
(ziH ,p) � . . . � (zi1 ,p) with zi1 , . . . , ziH pairwise distinct.

Now we show that there can be no arbitrarily long successions (zn,p) � . . . � (z1,p) with z1, . . . , zn
pairwise distinct in Q′. This shows in particular that Q′ must be finite. We define the constant

δ = min
(s,r) small B-circuit

wti(s,r)<wt(s,r) for some i

wt(s, r)−max{wti(s, r) | wti(s, r) < wt(s, r)}

where the minimum over the empty set is defined as ∞. Assume we have (x,p) � (y,p) with x 6= y.
Then there exists a Γ-word s ∈ TΓ� with a run r′ ∈ Run�A′((y,p), s, (x,p)). By projecting r to Q, we
obtain a run r ∈ Run�B(p, s,p). Take a circuit decomposition of s and r as in Construction 18 with stub
(s0, r0) and small circuits (s1, r1), . . . , (sn, rn). Note that now, (s0, r0) is also a small circuit. Since B
satisfies (P), there exists k ∈ Vict(r(pos(t))). Due to Lemma 17(ii) and Lemma 19, we have xk, yk ∈ R.

For all i ∈ {0, . . . , n} and j ∈ {1, . . . ,M}, we have either wtj(si, ri) = wtk(si, ri) or wtj(si, ri) ≤
wtk(si, ri)− δ. Hence, for all j ∈ {1, . . . ,M} we have either xk − xj = yk − yj or xk − xj ≥ yk − yj + δ.
Since x 6= y, we have xk − xj ≥ yk − yj + δ for at least one j ∈ {1, . . . ,M}.

Now let (zn,p) � . . . � (z1,p) be a succession as above with z1, . . . , zn pairwise distinct. Then
in every step from zi to zi+1, for at least one non-victorious coordinate the difference the victorious
coordinates grows by at least δ. If this differences exceeds (2N + 1)C, the coordinate is set to −∞.
Thus, at some point all non-victorious coordinates are −∞. It follows that n cannot be arbitrarily
large.

13

Next, we show that if a coordinate yields the maximum weight in B, then during the whole com-
putation of the weight of the run, the distance to the maximum weight does not exceed the bound
(2N + 1)C.

Lemma 21. Let t ∈ TΓ and r ∈ AccB(t). If for l ∈ {1, . . . ,M} we have JAK(t) = JAlK(t), then for all
w ∈ pos(t) we have wtl(t�w, r�w) ≥ wt(t�w, r�w)− (2N + 1)C.

Proof. We let w ∈ pos(t), t′ = t〈� → w〉, and let r′ be the run on t′ we obtain from r through r′(v) = r(v).
We write r(ε) = (q1, . . . , qM) and let k ∈ Vict(r(pos(t))). By assumption, we have

νl(ql) + wtl(t
′, r′) + wtl(t�w, r�w) ≥ νk(qk) + wtk(t′, r′) + wtk(t�w, r�w).

Due to Lemma 19, we have

wtl(t
′, r′) ≤ wt(t′, r′) ≤ wtk(t′, r′) +NC.

Thus, applying Lemma 19 also to wtk(t�w, r�w) we can conclude

wtl(t�w, r�w) ≥ νk(qk)− νl(ql) + wtk(t′, r′)− wtk(t′, r′)−NC + wtk(t�w, r�w)

≥ −C −NC + wt(t�w, r�w)−NC
= wt(t�w, r�w)− (2N + 1)C.

We are now ready to show that the behaviors of A′ and A coincide.

Lemma 22. We have JAK = JA′K.

Proof. It is clear that suppA = suppB = suppA′. Let t ∈ suppA and let r ∈ AccB(t) and r′ ∈ AccA′(t)
be the unique accepting runs on t. We write r′(ε) = (z,q) and let l ∈ {1, . . . ,M} with JAlK(t) =
maxM

i=1JAiK(t). Combining Lemma 17(ii) and Lemma 21, we see that we have zl 6= −∞. Thus, by
Lemma 17(i) we have for all i ∈ {1, . . . ,M} that

νi(qi) + zi ≤ νi(qi) + wti(t, r)− wtA′(t, r
′)

= JAiK(t)− wtA′(t, r
′)

≤ JAlK(t)− wtA′(t, r
′)

= νl(ql) + wtl(t, r)− wtA′(t, r
′)

= νl(ql) + zl.

Therefore, again by Lemma 17(i) we have

JAK(t) =
M

max
i=1

JAiK(t)

= JAlK(t)
= νl(ql) + wtl(t, r)

= νl(ql) + wtA′(t, r
′) + zl

= wtA′(t, r
′) +

M
max
i=1

(νi(qi) + zi)

= wtA′(t, r
′) + ν′(z,q)

= JA′K(t).

In conclusion, A′ is an unambiguous max-plus-WTA with JAK = JA′K.

14

5 The Sequentiality Problem

The sequentiality problem asks whether for a given max-plus-WTA A, there exists a deterministic max-
plus-WTA A′ such that JAK = JA′K. The term “sequentiality” stems from the fact that in the weighted
setting, deterministic automata are also often called sequential. In this section, we show that the sequen-
tiality problem is decidable for finitely ambiguous max-plus-WTA. For words, this is known due to [14].

Let A = (Q,Γ, µ, ν) be an unambiguous max-plus-WTA. We say that A satisfies the twins property
[17, 4] if the following holds. Whenever for p, q ∈ Q there exists a tree u ∈ TΓ such that RunA(u, p) 6= ∅
and RunA(u, q) 6= ∅ and a Γ-word s ∈ TΓ� and runs rp ∈ Run�A(p, s, p) and rq ∈ Run�A(q, s, q), then
wt�A(s, rp) = wt�A(s, rq).

Lemma 23. Let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA. There exists a deterministic
max-plus-WTA A′ with JAK = JA′K if and only if A satisfies the twins property. If it exists, it can be
effectively constructed.

Proof. If A satisfies the twins property, we know due to [4, Lemma 5.10] that a deterministic max-plus-
WTA A′ with JA′K = JAK can be effectively constructed.

We show that the twins property is also a necessary condition. The proof follows the idea for the
proof of [17, Theorem 9]. Let p, q ∈ Q such that there exists a tree u ∈ TΓ with runs rp ∈ RunA(u, p)
and rq ∈ RunA(u, q) and a Γ-word s ∈ TΓ� with runs rp ∈ Run�A(p, s, p) and rq ∈ Run�A(q, s, q). Since A
is trim, there exist Γ-words ûp and ûq with runs r̂p ∈ Run�A(p, ûp, p

′) and r̂q ∈ Run�A(q, ûq, q
′) such that

p′ and q′ are final.

We define t
(n)
p = ûp(sn(u)) and t

(n)
q = ûq(sn(u)) for n ≥ 1. Then since A is unambiguous, we see

that with the constants λp = wt�A(s, rp) and λq = wt�A(s, rq) and the constants κp = wtA(u, rp) +
wt�A(ûp, r̂p) + ν(p′) and κq = wtA(u, rq) + wt�A(ûq, r̂q) + ν(q′) we have

JAK(t(n)
p) = κp + nλp

JAK(t(n)
q) = κq + nλq

for all n ≥ 1.
Now let A′ be a deterministic max-plus-WTA with JA′K = JAK and let κ1 be the largest weight in

terms of absolute value which occurs in A′, excluding −∞. Since A′ is deterministic, we see that for the
constant κ2 = |κ1|(|pos(ûp)|+ |pos(ûq)|+ 2), we have

|JAK(t(n)
p)− JAK(t(n)

q)| ≤ κ2

for all n ≥ 1.
In particular, we have

|κp − κq + n(λp − λq)| = |JAK(t(n)
p)− JAK(t(n)

q)| ≤ κ2.

for all n ≥ 1. This can only hold if λp = λq. Thus, A satisfies the twins property.

Lemma 24 ([4, Theorem 5.17]). For an unambiguous max-plus-WTA A it is decidable whether A
satisfies the twins property.

Theorem 25. For a finitely ambiguous max-plus-WTA A it is decidable whether there exists a de-
terministic max-plus-WTA A′ with JAK = JA′K. If such an automaton A′ exists, it can be effectively
constructed.

Proof. Let A be a finitely ambiguous max-plus-WTA. Due to Theorem 10 we can decide whether there
exists an equivalent unambiguous max-plus-WTA. If this is not the case, A can also not be determinizable.
Otherwise we can effectively construct an unambiguous max-plus-WTA A′ with JAK = JA′K. Due to
Lemma 24, we can decide whether A′ satisfies the twins property, which according to Lemma 23 is
equivalent to deciding whether A is determinizable.

References

[1] J. Berstel and C. Reutenauer. Rational Series and Their Languages. Springer, 1988.

15

[2] A. Bockmayr, V. Weispfenning, and M. Maher. Chapter 12 - solving numerical constraints. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, pages 751 –
842. Elsevier and MIT Press, 2001.

[3] B. Borchardt. A pumping lemma and decidability problems for recognizable tree series. Acta
Cybern., 16(4):509–544, 2004.

[4] M. Büchse, J. May, and H. Vogler. Determinization of weighted tree automata using factorizations.
Journal of Automata, Languages and Combinatorics, 15(3/4):229–254, 2010.

[5] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer, 2009.

[6] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple and direct
automaton construction. Inf. Process. Lett., 111(12):614–619, 2011.

[7] S. Gaubert. Performance evaluation of (max,+) automata. IEEE T. Automat. Contr., 40(12):2014–
2025, Dec 1995.

[8] S. Gaubert and J. Mairesse. Modeling and analysis of timed Petri nets using heaps of pieces. IEEE
T. Automat. Contr., 44(4):683–697, 1999.

[9] F. Gécseg and M. Steinby. Tree automata. CoRR, abs/1509.06233, 2015. Available at http:

//arxiv.org/abs/1509.06233.

[10] K. Hashiguchi. Algorithms for determining relative star height and star height. Inf. Comput.,
78(2):124–169, 1988.

[11] K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the equivalence problem for finitely
ambiguous finance automata. IJAC, 12(3):445–461, 2002.

[12] D. Kirsten. An algebraic characterization of semirings for which the support of every recognizable
series is recognizable. Theoretical Computer Science, 534:45–52, 2014.

[13] D. Kirsten and S. Lombardy. Deciding unambiguity and sequentiality of polynomially ambiguous
min-plus automata. In S. Albers and J. Marion, editors, Proc. STACS, volume 3 of LIPIcs, pages
589–600. LZI, 2009.

[14] I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity and sequentiality from
a finitely ambiguous max-plus automaton. Theor. Comput. Sci., 327(3):349–373, 2004.

[15] D. Krob. The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. IJAC, 4(3):405–426, 1994.

[16] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer, 1986.

[17] M. Mohri. Finite-state transducers in language and speech processing. Comput. Linguist., 23(2):269–
311, 1997.

[18] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
1988.

[19] R. J. Parikh. On context-free languages. J. Assoc. Comput. Mach., 13(4):570–581, 1966.

[20] E. Paul. On finite and polynomial ambiguity of weighted tree automata. In S. Brlek and
C. Reutenauer, editors, Proc. DLT, volume 9840 of LNCS, pages 368–379. Springer, 2016.

[21] E. Paul. The equivalence, unambiguity and sequentiality problems of finitely ambiguous max-plus
tree automata are decidable. In K. G. Larsen, H. L. Bodlaender, and J. Raskin, editors, Proc.
MFCS, volume 83 of LIPIcs, pages 53:1–53:13. LZI, 2017.

[22] S. Petrov. Latent variable grammars for natural language parsing. In Coarse-to-Fine Natural
Language Processing, chapter 2, pages 7–46. Springer, 2012.

[23] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer, 1978.

16

http://arxiv.org/abs/1509.06233
http://arxiv.org/abs/1509.06233

[24] M.-P. Schützenberger. On the definition of a family of automata. Inform. Control, 4(2–3):245 – 270,
1961.

[25] I. Simon. Limited subsets of a free monoid. In Proc. FOCS, pages 143–150. IEEE Computer Society,
1978.

[26] I. Simon. Recognizable sets with multiplicities in the tropical semiring. In M. Chytil, L. Janiga,
and V. Koubek, editors, Proc. MFCS, volume 324 of LNCS, pages 107–120. Springer, 1988.

[27] A. Weber. Finite-valued distance automata. Theor. Comput. Sci., 134(1):225–251, 1994.

17

	Introduction
	Preliminaries
	The Equivalence Problem
	The Unambiguity Problem
	The Sequentiality Problem

