FINITE SEQUENTIALITY OF FINITELY AMBIGUOUS MAX-PLUS TREE AUTOMATA

Erik Paul

Leipzig University

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

MAX-PLUS AUTOMATA

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

1

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

1

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

1

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

sequential / deterministic

one "initial state" no two valid $p \stackrel{a}{\to} q_1, \ p \stackrel{a}{\to} q_2$

sequential / deterministic

one "initial state" no two valid $p\stackrel{a}{\to}q_1,\ p\stackrel{a}{\to}q_2$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

one "initial state" no two valid
$$p\stackrel{a}{
ightarrow} q_1$$
, $p\stackrel{a}{
ightarrow} q_2$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

$$|\mathsf{Run}(w)| \leq 1$$

one "initial state" no two valid
$$p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

Sequentiality problem

Given ${\mathcal A}$

Is there determ \mathcal{A}' with $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$?

sequential / deterministic

one "initial state" no two valid
$$p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

Sequentiality problem

Given ${\cal A}$

Is there determ \mathcal{A}' with $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$?

decidable on words for unamb ${\mathcal A}$

[Mohri]

|w| even $\rightsquigarrow |w|$

 ${\mathcal A}$ max-plus automaton

[A](w) =

p, q states

|w| even $\rightsquigarrow |w|$

 ${\cal A}$ max-plus automaton

p, q states

p, q rivals iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$\llbracket \mathcal{A} \rrbracket (w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

 ${\mathcal A}$ max-plus automaton

p, q states

p, q rivals iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$\llbracket \mathcal{A} \rrbracket (w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

SEQUENTIALITY PROBLEM: A DETERMINIZABLE?

 ${\cal A}$ max-plus automaton

p, q states

p, q rivals iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$\llbracket \mathcal{A} \rrbracket (w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

THM [MOHRI] A unamb \Rightarrow

 ${\mathcal A}$ determinizable $\ \leftrightarrow \$ no rivals in ${\mathcal A}$

Finite Sequentiality problem Given \mathcal{A}

Is $[\![\mathcal{A}]\!] = \mathsf{max}_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

Finite Sequentiality problem Given \mathcal{A}

decidable on words for unamb ${\mathcal A}$

Is $[A] = \max_{i=1}^{n} [A_i]$ for some determ A_i ?

[Bala, Koniński]

Finite Sequentiality problem

Given $\mathcal A$

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb ${\mathcal A}$

[Bala, Koniński]

Finite Sequentiality problem

Given \mathcal{A}

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb A

[Bala, Koniński]

DEF

for rivals p, q:

word f fork

iff

 $p \xrightarrow{f} p \qquad p \xrightarrow{f} q$

Finite Sequentiality problem

Given \mathcal{A}

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb A

[Bala, Koniński]

for rivals p, q: DEF

word f fork

iff

 $p \xrightarrow{f} p \qquad p \xrightarrow{f} q$

THM [BALA, KONIŃSKI] A unamb \Rightarrow

Finite Sequentiality problem

Given \mathcal{A}

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb A

[Bala, Koniński]

for rivals p, q: DEF

word f fork

iff

 $p \xrightarrow{f} p \qquad p \xrightarrow{f} q$

THM [BALA, KONIŃSKI] \mathcal{A} unamb \Rightarrow

Finite Sequentiality problem

Given \mathcal{A}

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$0 \longrightarrow P$$

$$a \mid 0$$

$$a \mid 0$$

$$b \mid -1$$

$$a \mid 0$$

$$q \longrightarrow 0$$

for rivals p, q: DEF

word f fork

iff

 $p \xrightarrow{f} p \qquad p \xrightarrow{f} q$

THM [BALA, KONIŃSKI] \mathcal{A} unamb \Rightarrow

Finite Sequentiality problem

Given \mathcal{A}

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$f = a$$

$$0 \longrightarrow P$$

$$a \mid 0$$

$$a \mid 0$$

$$a \mid 0$$

$$a \mid 0$$

$$q \longrightarrow 0$$

for rivals p, q: DEF

word f fork

iff

 $p \xrightarrow{f} p \qquad p \xrightarrow{f} q$

THM [BALA, KONIŃSKI] A unamb \Rightarrow

Finite Sequentiality problem

Given \mathcal{A}

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ?

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$f = a$$

$$0 \rightarrow p$$

$$a \mid 0$$

$$b \mid 1$$

$$b \mid -1$$

$$a \mid 0$$

$$q \rightarrow 0$$

h's before last a b's after last a

for rivals p, q: DEF

word f fork

iff

 $p \xrightarrow{f} p \qquad p \xrightarrow{f} q$

THM [BALA, KONIŃSKI] \mathcal{A} unamb \Rightarrow

 $|\mathsf{Run}(w)| \leq 1$

unambiguous $|{\rm Run}(w)| \leq 1$ finitely ambiguous $|{\rm Run}(w)| \leq M$

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$

Finite Sequentiality problem

Given \mathcal{A} Is $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

unambiguous finitely ambiguous

 $|\mathsf{Run}(w)| \le 1$ $|\mathsf{Run}(w)| \le M$

Finite Sequentiality problem

Given ${\mathcal A}$

Is $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

Finite Sequentiality problem

Given ${\mathcal A}$

Is $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

$$|\mathsf{Run}(w)| \le 1$$

 $|\mathsf{Run}(w)| \le M$

Finite Sequentiality problem

Given ${\cal A}$

Is
$$[A] = \max_{i=1}^n [A_i]$$
 for some determ A_i ?

$$u = a$$

$$v = b$$

$$f = a$$

$$0 \longrightarrow p$$

$$a \mid 0$$

$$b \mid 1$$

$$b \mid -1$$

$$b \mid 2$$

$$0 \longrightarrow p$$

$$a \mid 0$$

$$q \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

THM [KLIMANN ET AL.]

 \mathcal{A} fin amb \Rightarrow

 $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{U}_i \rrbracket$ for unamb \mathcal{U}_i

unambiguous $|\mathsf{Run}(w)| \leq 1$ finitely ambiguous $|\mathsf{Run}(w)| \leq M$

Finite Sequentiality problem

Given ${\mathcal A}$

Is $\llbracket \mathcal{A}
rbracket = \mathsf{max}_{i=1}^n \, \llbracket \mathcal{A}_i
rbracket$ for some determ \mathcal{A}_i ?

THM [KLIMANN ET AL.]
$$\mathcal{A}$$
 fin amb \Rightarrow

 $\llbracket \mathcal{A}
rbracket = \mathsf{max}_{i-1}^n \llbracket \mathcal{U}_i
rbracket$ for unamb \mathcal{U}_i

 $\exists C \forall w \exists i : |[A](w) - [U_i](w)| \leq C$

THM [BaLa]
$$\mathcal{A}$$
 fin amb \Rightarrow

$$\llbracket \mathcal{A}
rbracket$$
 fin seq $\ \leftrightarrow$

no fork
$$p \xrightarrow{f} q$$
 in run of \mathcal{U}_i on w

weight of run = transition weights + final weight (p_{11}, p_{12}, a, p_1)

weight of run = transition weights + final weight
$$(p_{11}, p_{12}, a, p_1)$$
 determinism: bottom-up

Finite Sequentiality:

 $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

 $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

 $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

Finite Sequentiality:

f fork q

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

 $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

Finite Sequentiality:

determinism: bottom-up

 $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

Finite Sequentiality:

 \mathcal{A} fin amb \Rightarrow

 $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{U}_i \rrbracket$ for unamb \mathcal{U}_i

no fork, no split in run of U_i on t