
Weighted Automata and Logics for
Infinite Nested Words

Manfred Droste and Stefan Dück⋆

Institut für Informatik, University Leipzig, D-04109 Leipzig, Germany
{droste,dueck}@informatik.uni-leipzig.de

Abstract. Nested words introduced by Alur and Madhusudan are used
to capture structures with both linear and hierarchical order, e.g. XML
documents, without losing valuable closure properties. Furthermore, Alur
and Madhusudan introduced automata and equivalent logics for both
finite and infinite nested words, thus extending Büchi’s theorem to nested
words. Recently, average and discounted computations of weights in
quantitative systems found much interest. Here, we will introduce and
investigate weighted automata models and weighted MSO logics for
infinite nested words. As weight structures we consider valuation monoids
which incorporate average and discounted computations of weights as
well as the classical semirings. We show that under suitable assumptions,
two resp. three fragments of our weighted logics can be transformed into
each other. Moreover, we show that the logic fragments have the same
expressive power as weighted nested word automata.

Keywords: nested words, weighted automata, weighted logics, quanti-
tative automata, valuation monoids

1 Introduction

Nested words, introduced by Alur and Madhusudan [2], capture models with
both a natural sequence of positions and an hierarchical nesting of these positions.
Prominent examples include XML documents and executions of recursively
structured programs. Automata on nested words, logical specifications, and
corresponding languages of nested words have been intensively studied, see [1],
[2], [17]. Recently, there has been much interest in quantitative features for the
specification and analysis of systems. Quantitative automata modeling the long-
time average or discounted behavior of systems were investigated by Chatterjee,
Doyen, and Henzinger [6], [7]. It is the goal of this paper to present quantitative
logics for such quantitative automata on nested words.

The connection between MSO logic and automata due to Büchi, Elgot, and
Trakhenbrot [5], [15], [21] has proven most fruitful. Weighted automata over
semirings (like (N,+, ⋅,0,1)) were already investigated by Schützenberger [20]

⋆ supported by Deutsche Forschungsgemeinschaft (DFG), project DR 202/11-1 and
Graduiertenkolleg 1763 (QuantLA)



2 M. Droste and S. Dück

and soon developed a flourishing theory, cf. the books [3], [14], [16], [19] and the
recent handbook [8]. However, an expressively equivalent weighted MSO logic was
developed only recently [9]. This was extended to semiring-weighted automata
and logics over finite nested words in [18], and further to strong bimonoids as
weight structures in [12]. For quantitative automata and logics, incorporating
average and discounting computations of weights over words, such an equivalence
was given in [11].

In this paper, we will investigate quantitative nested word automata and
suitable quantitative MSO logics. We will concentrate on infinite nested words,
although our results also hold for finite nested words. We employ the stair Muller
nested word automata of [2], [17], since these can be determinized without losing
expressive power. As weight structures we take the valuation monoids of [11].
These include infinite products as in totally complete semirings [13], but also
computations of long-time averages or discountings of weights. As example for
such a setting we give the calculation of the long-time ratio of bracket-free
positions in prefixes of an infinite nested word. As our first main result, we show
that under suitable assumptions on the valuation monoid D, two resp. three
versions of our weighted MSO logic have the same expressive power. In particular,
if D is commutative, then any weighted MSO-formula is equivalent to one in
which conjunctions occur only between ’classical’ boolean formulas and constants.
In contrast to [11], our proof uses direct conversions of the formulas and thus
has much better complexity than using the automata-theoretic constructions of
[11]. These conversions are new even for the case of weighted logics on words.

In our second main result, we show under suitable assumptions on the valuation
monoid that our weighted MSO logics have the same expressive power as weighted
nested automata. These assumptions on the valuation monoid are satisfied by
long-time average resp. discounted computations of weights; therefore our results
apply to these settings. All our constructions of automata from formulas or
conversely are effective.

2 Automata and Logics for Nested ω-Words

In this section we describe basic background for classical (unweighted) automata
and logics on nested-ω-words. We denote by Σ an alphabet and by Σω the set
of all ω-words over Σ. N is the set of all natural numbers without zero. For a
binary relation R, we denote with R(x, y) that (x, y) ∈ R.

Definition 1. A matching relation ν over N is a subset of ({−∞}∪N)×(N∪{∞})
such that:

(i) ν(i, j)⇒ i < j,
(ii) ∀i ∈ N ∶ ∣{j ∶ ν(i, j)}∣ ≤ 1 ∧ ∣{j ∶ ν(j, i)}∣ ≤ 1,

(iii) ν(i, j) ∧ ν(i′, j′) ∧ i < i′ ⇒ j < i′ ∨ j > j′,
(iv) (−∞,∞) ∉ ν.

A nested ω-word nw over Σ is a pair (w,ν) = (a1a2..., ν) where w = a1a2... is an
ω-word over Σ and ν is a matching relation over N. We denote by NW ω(Σ) the



Weighted Automata and Logics for Infinite Nested Words 3

set of all nested ω-words over Σ and we call every subset of NW ω(Σ) a language
of nested ω-words.

If ν(i, j) holds, we call i a call position and j a return position. In case of
j = ∞, i is a pending call otherwise a matched call. In case of i = −∞, j is a
pending return otherwise a matched return. If i is neither call nor return, then
we say i is an internal.

Definition 2. A deterministic stair Muller nested word automaton (sMNWA)
over Σ is a quadruple A = (Q, q0, δ,F), where δ = (δcall, δint, δret), consisting of:

– a finite set of states Q,
– an initial state q0 ∈ Q,
– a set F ⊆ 2Q of accepting sets of states,
– the transition functions δcall, δint ∶ Q ×Σ → Q,
– the transition function δret ∶ Q ×Q ×Σ → Q.

A run r of the sMNWA A on the nested ω-word nw = (a1a2..., ν) is an infinite
sequence of states r = (q0, q1, ...) where qi ∈ Q for each i ∈ N and q0 is the inital
state of A such that for each i ∈ N the following holds:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δcall(qi−1, ai) = qi , if ν(i, j) for some j > i (or j =∞)
δint(qi−1, ai) = qi , if i is an internal
δret(qi−1, qj−1, ai) = qi , if ν(j, i) for some 1 ≤ j < i
δret(qi−1, q0, ai) = qi , if ν(−∞, i) .

We call i ∈ N a top-level position if there exist no positions j, k ∈ N with j < i < k
and ν(j, k). We define

Qt∞(r) = {q ∈ Q ∣ q = qi for infinitely many top-level positions i} .

A run r of an sMNWA is accepted if Qt∞(r) ∈ F. An sMNWA A accepts the nested
ω-word nw if there is an accepted run of A on nw . We denote with L(A) the
set of all accepted nested ω-words of A. We call a language L of nested ω-words
regular if there is an sMNWA A with L(A) = L.

Alur and Madhusudan [2] considered nondeterministic Büchi NWA and
nondeterministic Muller NWA. They showed that the deterministic versions of
these automata have strictly less expressive power than the nondeterministic
automata. However, refering to Löding, Madhusudan and Serre [17], Alur and
Madhusudan stated that deterministic stair Muller NWA have the same expressive
power as their nondeterministic versions as well as nondeterministic Büchi NWA.
Moreover, the class of regular languages of nested-ω-words is closed under union,
intersection and complement ([2]).

Definition 3. The monadic second order logic for nested words MSO(NW (Σ))
contains exactly all formulas ϕ which are given by the following syntax:

ϕ ∶∶= Laba(x) ∣ call(x) ∣ ret(x) ∣x ≤ y ∣ν(x, y) ∣x ∈X ∣¬ϕ ∣ϕ ∨ ϕ ∣∃x.ϕ ∣∃X.ϕ

where a ∈ Σ and x, y are first order variables and X is a second order variable.



4 M. Droste and S. Dück

The semantics of these formulas is given in a natural way, cf. [2]. Later we
give a full definition of the semantics of weighted MSO-formulas. We call ϕ a
sentence if ϕ contains no free variables. If ϕ is a sentence, then L(ϕ) = {nw ∈
NW ω(Σ) ∣ nw ⊧ ϕ} is the language defined by ϕ.

Theorem 4 (Alur, Madhusudan [2]). Let L be a language of nested ω-words
over Σ. Then L is regular if and only if L is definable by some MSO(NW (Σ))-
sentence ϕ.

3 Weighted Stair Muller Nested Word Automata

In this section, we introduce weighted versions of stair Muller nested word
automata. As weight structures, we will employ ω-valuation monoids introduced
in [11]. We recall the definitions.

A monoid (D,+, 0) is complete if it has infinitary sum operations ∑I ∶DI →D
for any index set I such that

– ∑i∈∅ di = 0, ∑i∈{k} di = dk, ∑i∈{j,k} di = dj + dk for j ≠ k,
– ∑j∈J(∑i∈Ij di) = ∑i∈I di if ⋃j∈J Ij = I and Ij ∩ Ik = ∅ for j ≠ k.

Note that in every complete monoid the operation + is commutative. We let Dω

comprise all infinite sequences of elements of D.

Definition 5 (Droste, Meinecke [11]). An ω-valuation monoid (D,+,Valω, 0) is
a complete monoid (D,+, 0) equipped with an ω-valuation function Valω ∶Dω →D
with Valω((di)i∈N) = 0 if di = 0 for some i ∈ N.

A product ω-valuation monoid (D,+,Valω,◇,0,1) (short ω-pv-monoid) is
an ω-valuation monoid (D,+,Valω,0) with a constant 1 ∈ D and an operation
◇ ∶D2 →D satisfying Valω(1ω) = 1, 0◇d = d◇0 = 0 and 1◇d = d◇1 = d for all d ∈
D.

Let (D,+,Valω,◇, 0, 1) be an ω-pv-monoid. D is called associative resp. com-
mutative if ◇ is associative resp. commutative. D is left-+-distributive if for all
d ∈D, for any index set I and (di)i∈I ∈DI :

d ◇∑
i∈I
di =∑

i∈I
(d ◇ di) .

Right-+-distributivity is defined analogously. We call D +-distributive if D is
left- and right-+-distributive. D is left-Valω-distributive if for all d ∈ D and
(di)i∈N ∈Dω:

d ◇Valω((di)i∈N) = Valω((d ◇ di)i∈N) .

D is left-multiplicative if for all d ∈D and (di)i∈N ∈Dω:

d ◇Valω((di)i∈N) = Valω(d ◇ d1, (di)i≥2) .



Weighted Automata and Logics for Infinite Nested Words 5

D is called conditionally commutative, if for all (di)i∈N, (d′i)i∈N ∈Dω with di◇d′j =
d′j ◇ di for all j < i, the following holds:

Valω((di)i∈N) ◇Valω((d′i)i∈N) = Valω((di ◇ d′i)i∈N) .

We call D left-distributive if D is left-+-distributive and, additionally, left-Valω-
distributive or left-multiplicative. If D is +-distributive and associative, then
(D,+,◇, 0, 1) is a complete semiring and we call (D,+,Valω,◇, 0, 1) an ω-valuation
semiring. A cc-ω-valuation semiring is an ω-valuation semiring D which is
conditionally commutative and left-distributive.

Example 1 ([11]). We set R̄ = R ∪ {−∞,∞} and −∞+∞ = −∞. We let

(D1,+,Valω,◇,0,1) = (R̄, sup, lim avg,+,−∞,0),

where lim avg((di)i∈N) = lim inf
n→∞

1

n

n

∑
i=1
di .

Let 0 < λ < 1 and R̄+ = {x ∈ R̄ ∣ x ≥ 0} ∪ {−∞}. We put

(D2,+,Valω,◇,0,1) = (R̄+, sup,discλ,+,−∞,0),

where discλ((di)i∈N) = lim
n→∞

n

∑
i=1
λi−1di .

Then D1 is a left-+-distributive and left-Valω-distributive ω-valuation monoid
but not conditionally commutative. Furthermore, D2 is a left-multiplicative
cc-ω-valuation semiring.

Definition 6. A weighted stair Muller nested word automaton (wsMNWA)
A = (Q, I, δ,F), where δ = (δcall, δint, δret), over the alphabet Σ and the ω-valuation
monoid (D,+,Valω,0) consists of:

– a finite set of states Q,
– a set I ⊆ Q of initial states,
– a set F ⊆ 2Q of accepting sets of states,
– the weight functions δcall, δint ∶ Q ×Σ ×Q→D,
– the weight function δret ∶ Q ×Q ×Σ ×Q→D.

A run r of the wsMNWA A on the nested ω-word nw = (a1a2..., ν) is an
infinite sequence of states r = (q0, q1, ...). We denote with wtA(r,nw , i) the weight
of the transition of r used at position i ∈ N, defined as follows

wtA(r,nw , i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δcall(qi−1, ai, qi) , if ν(i, j) for some j > i
δint(qi−1,ai, qi) , if i is an internal
δret(qi−1, qj−1, ai, qi) , if ν(j, i) for some 1 ≤ j < i
δret(qi−1, qI , ai, qi) , if ν(−∞, i) for some qI ∈ I .

(1)

Then we define the weight wtA(r,nw) of r on nw by letting

wtA(r,nw) = Valω((wtA(r,nw , i))i∈N) .



6 M. Droste and S. Dück

We define top-level positions and the set Qt∞(r) as before. A run r is accepted if
q0 ∈ I and Qt∞(r) ∈ F. We denote with acc(A) the set of all accepted runs in A.
We define the behavior of the automaton A as the function ∥A∥ ∶ NW ω(Σ)→D
given by (where as usual, empty sums are defined to be 0)

∥A∥(nw) = ∑
r∈acc(A)

wtA(r,nw)

= ∑
r∈acc(A)

Valω((wtA(r,nw , i))i∈N) .

We call every function S ∶ NW ω(Σ) → D a nested ω-word series (short:
series). We call a series S regular if there exists an automaton A with ∥A∥ = S.

Example 2. Within the following example we call a position i of a nested ω-word
nw = (w,ν) bracketfree if there are no positions j, k ∈ (N∪{−∞,∞}) with j < i < k
and ν(j, k). This requirement is stronger than i being a top-level position because
it contains −∞ and ∞ thus also banning i being in the scope of pending calls
and pending returns. Only for well-matched nested ω-words, i.e. nested ω-words
without pending edges, the two properties coincide.

We consider the series S assigning to every nested ω-word nw the greatest
accumulation point of the ratio of bracketfree positions in finite prefixes of nw .

To model S we use the ω-valuation monoid D = (R̄, sup, lim avg,−∞). If
we want to analyze this property for well-matched nested ω-words only, then
automaton A1 given below recognizes S. In the general case including pending
edges, automaton A2 recognizes S. Note that we denote the call transitions with
⟨Σ and the return transitions with Σ⟩/q where q has to be the state where the
last open call was encountered. The weights 1 resp. 0 are given in brackets.

Automaton 1: wsMNWA A1 with F1 = {{q0}}

q0 q1

Σ(1) Σ(0), ⟨Σ(0),Σ⟩/q1(0)

⟨Σ(1)

Σ⟩/q0(1)

Automaton 2: wsMNWA A2 with F1 = {{q2},{qp},{q2, qp},{q0, q1},{q0},{q1}}

qp q0q2 q1

Σ(1) Σ(0), ⟨Σ(0),Σ⟩/q1(0)Σ(0),Σ⟩/qp(0)

Σ⟩/qp(1) ⟨Σ(1)

Σ⟩/q0(1)

Σ(0), ⟨Σ(0),Σ⟩/q2(0)

⟨Σ(0)

Σ⟩/qp(0)



Weighted Automata and Logics for Infinite Nested Words 7

As usual, we extend the operation + and ◇ to series S,T ∶ NW ω(Σ)→D by
means of pointwise definitions as follows:

(S ⋆ T )(nw) = S(nw) ⋆ T (nw) for each nw ∈ NW ω(Σ),⋆ ∈ {+,◇} .

We let d ∈ D also denote the constant series with value d, i.e. ∥d∥(nw) = d
for each nw ∈ NW ω(Σ). For L ⊆ NW ω(Σ), we define the characteristic series
1L ∶ NW ω(Σ) → D by letting 1L(nw) = 1 if nw ∈ L, and 1L(nw) = 0 otherwise.
We call a series S a regular step function if

S =
k

∑
i=1
di ◇ 1Li , (2)

where Li are regular languages of nested-ω-words forming a partition of NW ω(Σ)
and di ∈D for each i ∈ {1, ..., k}; so S(nw) = di iff nw ∈ Li for each i ∈ {1, ..., k}.

An ω-pv-monoid D is regular if for any alphabet Σ we have: For each d ∈D
there exists a wsMNWA Ad with ∥Ad∥ = d. Analogously to Droste and Meinecke
[11] we can show that every left-distributive ω-pv-monoid is regular.

Proposition 7. Let D be a regular ω-pv-monoid. Then each regular step function
S ∶ NW ω(Σ)→D is regular. Furthermore, the set of all regular step functions is
closed under + and ◇.

Next we show that regular series are closed under projections. Consider a
mapping h ∶ Σ → Γ between two alphabets. Then h extends uniquely to an
homomorphism between Σω and Γω, also denoted by h. Hence h is length-
preserving and we can extend h to a function h ∶ NW ω(Σ)→ NW ω(Γ ) by defin-
ing h(nw) = h(w,ν) = (h(w), ν) for each nw ∈ NW ω(Σ). Let S ∶ NW ω(Σ)→D
be a series. Then we define h(S) ∶ NW ω(Γ )→D for each nv ∈ NW ω(Γ ) by

h(S)(nv) =∑(S(nw) ∣ nw ∈ NW ω(Σ), h(nw) = nv) .

Proposition 8. Let D be an ω-valuation monoid, S ∶ NW ω(Σ) → D regular
and h ∶ Σ → Γ . Then h(S) ∶ NW ω(Γ )→D is regular.

4 Weighted MSO-Logic for Nested ω-Words

In this section, we will present different fragments of our weighted MSO logic, and
we give our first main result on the equivalence of these fragments. In the following
D is always an ω-pv-monoid. We combine ideas of Alur and Madhusudan [2],
Droste and Gastin [9], and Bollig and Gastin [4], and divide the syntax of the
weighted logic into a boolean part and a weighted part.

Definition 9 (Syntax). The weighted monadic second order logic for nested
words MSO(D,NW (Σ)) is given by the following syntax

β ∶∶= Laba(x) ∣ call(x) ∣ ret(x) ∣x ≤ y ∣ν(x, y) ∣x ∈X ∣¬β ∣β ∧ β ∣∀x.β ∣∀X.β
ϕ ∶∶= d ∣ β ∣ ϕ ∨ ϕ ∣ ϕ ∧ ϕ ∣ ∀x.ϕ ∣ ∃x.ϕ ∣ ∃X.ϕ

where d ∈D, a ∈ Σ and x, y, X are first resp. second order variables. We call all
formulas β boolean formulas.



8 M. Droste and S. Dück

The set of all positions of nw ∈ NW ω(Σ) is N. Let ϕ ∈ MSO(D,NW (Σ)).
We denote the set of free variables of ϕ by free(ϕ). Let V be a finite set of
variables containing free(ϕ). As usual, we define a (V,nw)-assignment γ as
function assigning to every first order variable of V a position of nw and to
every second order variable a subset of positions of nw . We let γ[x → i] (resp.
γ[X → I]) be the (V ∪ {x},nw)-assignment (resp. (V ∪ {X},nw))-assignment)
mapping x to i (resp. X to I) and equaling γ anywhere else.

We encode a pair (nw , γ) as nested ω-word as usual over the extended
alphabet ΣV = Σ × {0,1}V with the same matching relation ν (cf. [9], [12]). We
call (nw , σ) ∈ NW ω(ΣV) valid if σ emerges from a (V,nw)-assignment. Clearly
the language NV of all valid words is regular.

Definition 10 (Semantics). The semantics of ϕ is a series ⟦ϕ⟧V ∶ NW ω(ΣV)→
D. If (nw , σ) is not valid, we set ⟦ϕ⟧V(nw , σ) = 0. Otherwise we define
⟦ϕ⟧V(nw , σ) for (nw , σ) = ((a1a2..., ν), σ) inductively as follows:

⟦Laba(x)⟧V(nw , σ) = {
1 , if aσ(x) = a
0 ,otherwise,

⟦call(x)⟧V(nw , σ) = {
1 , if σ(x) is a call
0 ,otherwise,

⟦ret(x)⟧V(nw , σ) = {
1 , if σ(x) is a return
0 ,otherwise,

⟦x ≤ y⟧V(nw , σ) = {
1 , if σ(x) ≤ σ(y)
0 ,otherwise,

⟦ν(x, y)⟧V(nw , σ) = {
1 , if ν(σ(x), σ(y))
0 ,otherwise,

⟦x ∈X⟧V(nw , σ) = {
1 , if σ(x) ∈ σ(X)

0 ,otherwise,

⟦¬β⟧V(nw , σ) = {
1 , if ⟦β⟧V(nw , σ) = 0
0 ,otherwise,

⟦d⟧V(nw , σ) = d for all d ∈D,

⟦ϕ ∨ ψ⟧V(nw , σ) = ⟦ϕ⟧V(nw , σ) + ⟦ψ⟧V(nw , σ),

⟦ϕ ∧ ψ⟧V(nw , σ) = ⟦ϕ⟧V(nw , σ) ◇ ⟦ψ⟧V(nw , σ),

⟦∃x.ϕ⟧V(nw , σ) =∑
i∈N

(⟦ϕ⟧V∪{x}(nw , σ[x→ i])),

⟦∃X.ϕ⟧V(nw , σ) = ∑
I⊆N

(⟦ϕ⟧V∪{X}(nw , σ[X → I])),

⟦∀x.ϕ⟧V(nw , σ) = Valω((⟦ϕ⟧V∪{x}(nw , σ[x→ i]))i∈N),

⟦∀X.β⟧V(nw , σ) = {
1 , if ⟦β⟧V∪{X}(nw , σ[X → I]) = 1 for all I ⊆ N
0 , otherwise .

We write ⟦ϕ⟧ for ⟦ϕ⟧free(ϕ), so ⟦ϕ⟧ ∶ NW ω(Σfree(ϕ)) → D. If ϕ contains no
free variables, ϕ is a sentence and ⟦ϕ⟧ ∶ NW ω(Σ)→D.

Example 3. Continuing Example 2 with D = (R̄, sup, lim avg,+,−∞, 0) we define

pcall(x) = call(x) ∧ ∀w.¬ν(x,w), pret(z) = ret(z) ∧ ∀u.¬ν(u, z),
bfr(y) = ∀x∀z.(¬(x < y < z ∧ ν(x, z)) ∧ ¬(x < y ∧ pcall(x)) ∧ ¬(y < z ∧ pret(z))),

where x < y < z = ¬(y ≤ x) ∧ ¬(z ≤ y). Then ⟦∀y.((bfr(y) ∧ 1) ∨ 0)⟧ = S = ∥A2∥.
Analogously to [9] and [12] we can show:

Proposition 11. Let ϕ ∈ MSO(D,NW (Σ)) and let V be a finite set of vari-
ables with free(ϕ) ⊆ V. Then ⟦ϕ⟧V(nw , σ) = ⟦ϕ⟧(nw , σ ↾ free(ϕ)) for each valid
(nw , σ) ∈ NW ω(ΣV). Furthermore, ⟦ϕ⟧ is regular iff ⟦ϕ⟧V is regular.



Weighted Automata and Logics for Infinite Nested Words 9

Clearly, every boolean formula β ∈ MSO(D,NW (Σ)) can be interpreted as
an unweighted MSO-formula ψ ∈ MSO(NW (Σ)) with ⟦β⟧ = 1L(ψ), since ⟦β⟧
only yields the values 0 and 1. Conversely, for every formula ψ ∈ MSO(NW (Σ))
there exists a boolean MSO-formula β ∈ MSO(D,NW (Σ)) with ⟦β⟧ = 1L(ψ),
since we can replace disjunctions by conjunctions and negations and we can
replace existential quantifiers by universal quantifiers and negations.

In order to obtain a Büchi-like theorem (as Theorem 17 below) for weighted
automata on finite words, it is necessary to restrict the weighted MSO logic (cf.
[9]). Therefore we introduce and study suitable fragments of MSO(D,NW (Σ))
as in the following.

Definition 12. The set of almost boolean formulas is the smallest set of all
formulas of MSO(D,NW (Σ)) containing all constants d ∈ D and all boolean
formulas, which is closed under disjunction and conjunction.

Proposition 13. (a) If ϕ ∈ MSO(D,NW (Σ)) is an almost boolean formula,
then ⟦ϕ⟧ is a regular step function.

(b) For every regular step function S ∶ NW ω(Σ)→D, there exists an almost
boolean sentence ϕ with S = ⟦ϕ⟧.

Definition 14. Let ϕ ∈ MSO(D,NW (Σ)). We denote by const(ϕ) the set of
all elements of D occurring in ϕ. We call ϕ

1. strongly-∧-restricted if for all subformulas ψ ∧ θ of ϕ:
Either ψ and θ are almost boolean or ψ is boolean or θ is boolean.

2. ∧-restricted if for all subformulas ψ ∧ θ of ϕ:
Either ψ is almost boolean or θ is boolean.

3. commutatively-∧-restricted if for all subformulas ψ ∧ θ of ϕ:
Either const(ψ) and const(θ) commute or ψ is almost boolean.

4. ∀-restricted if for all subformulas ∀x.ψ of ϕ: ψ is almost boolean.

We call a formula of MSO(D,NW (Σ)) syntactically restricted if it is both ∀-
restricted and strongly-∧-restricted. Note that every subformula of a syntactically
restricted formula is syntactically restricted itself.

Now we show that under suitable assumptions on the ω-pv-monoid D, par-
ticular classes of MSO(D,NW (Σ))-formulas have the same expressive power.
In [11] these equivalences (for unnested words) followed from the main result
and thus needed constructions of automata. Here we show the equivalence of the
logic fragments directly.

Theorem 15. (a) Let D be left-distributive and ϕ ∈ MSO(D,NW (Σ)) be
∧-restricted. Then there exists a strongly-∧-restricted formula
ϕ′ ∈ MSO(D,NW (Σ)) with ⟦ϕ⟧ = ⟦ϕ′⟧. Moreover, if ϕ is also ∀-restricted,
then ϕ′ can also be chosen to be ∀-restricted.

(b) Let D be a cc-ω-valuation semiring and let ϕ ∈ MSO(D,NW (Σ)) be
commutatively-∧-restricted. Then there exists a strongly-∧-restricted for-
mula ϕ′ ∈ MSO(D,NW (Σ)) with ⟦ϕ⟧ = ⟦ϕ′⟧. Moreover, if ϕ is also
∀-restricted, then ϕ′ can also be chosen to be ∀-restricted.



10 M. Droste and S. Dück

Proof (sketch). We use an induction on the structure of ϕ. The interesting case
is ϕ = ψ ∧ θ and ψ is almost boolean. By induction we can assume that ψ and θ
are strongly-∧-restricted (and resp. ∀-restricted). As an example, we consider the
case of the universal quantification in (a) as follows. Assume θ = ∀x.θ1 and ψ
does not contain x. By the induction hypothesis, we obtain a strongly-∧-restricted
formula ϕ1 such that ⟦ϕ1⟧ = ⟦ψ ∧ θ1⟧.

First let D be left-Valω-distributive. Using this assumption at equation *, we
get for V = free(ψ) ∪ free(∀x.θ1) and each (nw , σ) ∈ NW ω(ΣV):

⟦ϕ⟧(nw , σ) = ⟦ψ ∧ ∀x.θ1⟧V(nw , σ)
= ⟦ψ⟧V(nw , σ) ◇Valω((⟦θ1⟧V∪{x}(nw , σ[x→ i]))i∈N)
∗= Valω((⟦ψ⟧V(nw , σ) ◇ ⟦θ1⟧V∪{x}(nw , σ[x→ i]))i∈N)
= Valω((⟦ψ⟧V∪{x}(nw , σ[x→ i]) ◇ ⟦θ1⟧V∪{x}(nw , σ[x→ i]))i∈N)
= Valω((⟦ψ ∧ θ1⟧V∪{x}(nw , σ[x→ i]))i∈N)
= ⟦∀x.(ψ ∧ θ1)⟧V(nw , σ) .

So ϕ′ = ∀x.ϕ1 is strongly-∧-restricted and ⟦ϕ⟧ = ⟦ϕ′⟧. If ϕ is ∀-restricted, θ1
is almost boolean. In this case we can put directly ϕ′ = ∀x.(ψ ∧ θ1). Then ϕ′

is strongly-∧-restricted and ∀-restricted because ψ and θ1 are almost boolean
formulas.

Now let D be left-multiplicative. Using the formulas min(x) = ∀y.(x ≤ y) and
min(x)→ ψ = ¬min(x) ∨ (min(x) ∧ ψ) it can be shown that

⟦ϕ⟧ = ⟦ψ ∧ ∀x.θ1⟧
= ⟦∀x.((min(x)→ ψ) ∧ θ1)⟧
= ⟦∀x.((¬min(x) ∧ θ1) ∨ (min(x) ∧ ψ ∧ θ1))⟧ .

Then ϕ′ = ∀x.((¬min(x) ∧ θ1) ∨ (min(x) ∧ ϕ1)) is strongly-∧-restricted since
min(x) is boolean. Furthermore, ⟦ϕ⟧ = ⟦ϕ′⟧. If ϕ is ∀-restricted, we can put
directly ϕ′ = ∀x.((min(x) → ψ) ∧ θ1). Then ϕ′ is strongly-∧-restricted and
∀-restricted because min(x)→ ψ and θ1 are almost boolean formulas.

If D is a cc-ω-valuation semiring, clearly almost boolean formulas can be
written as disjunctions of conjunctions of boolean formulas or constants from D.
Our proof of Theorem 15 (b) shows the following corollary.

Corollary 16. Let D be a commutative cc-ω-valuation semiring. Then for any
formula ϕ ∈ MSO(D,NW (Σ)) there exists a formula ϕ′ ∈ MSO(D,NW (Σ)) in
which conjunctions occur only between boolean formulas and constants such that
⟦ϕ⟧ = ⟦ϕ′⟧.

This follows also from a slightly modified proof of Theorem 17, but the present
proof gives direct and efficient conversions of the formulas.



Weighted Automata and Logics for Infinite Nested Words 11

5 Characterization of Regular Series

In this section, we give our second main result on the expressive equivalence
of weighted stair Muller nested word automata and our different fragments of
weighted MSO logic.

Theorem 17. Let D be a regular ω-pv-monoid and S ∶ NW ω(Σ)→D a series.

1. The following are equivalent:
(a) S is regular.
(b) S = ⟦ϕ⟧ for some syntactically restricted sentence ϕ of

MSO(D,NW (Σ)).
2. Let D be left-distributive. Then the following are equivalent:

(a) S is regular.
(b) S = ⟦ϕ⟧ for some ∀-restricted and ∧-restricted sentence ϕ of

MSO(D,NW (Σ)).
3. Let D be cc-ω-valuation semiring. Then the following are equivalent:

(a) S is regular.
(b) S = ⟦ϕ⟧ for some ∀-restricted and commutatively-∧-restricted sentence

ϕ of MSO(D,NW (Σ)).

Proof. ’(i)⇒ (ii)’: We construct a syntactically restricted MSO-sentence simu-
lating the given wsMNWA, thus showing all three statements.

’(ii)⇒ (i)’: By Theorem 15 we may assume ϕ to be syntactically restricted.
We prove the regularity of ⟦ϕ⟧ by induction on the structure of ϕ as follows. If
ϕ is almost boolean, by Propositions 13(a) and 7, ⟦ϕ⟧ is regular. Next we have
to prove that the regularity is preserved under the non-boolean operations. We
only sketch the ideas. Closure under disjunction follows from Proposition 8 and
a union construction of automata. If ϕ is a conjunction, the regularity of ⟦ϕ⟧
follows from a product construction of automata. The regularity of ⟦∃x.ϕ⟧ and
⟦∃X.ϕ⟧ follows from Proposition 8. For ∀x.ϕ, ϕ is almost boolean. Then ⟦∀x.ϕ⟧
can also be shown to be regular.

6 Conclusion

We have introduced a weighted automaton model for infinite nested words and
weighted MSO logics. We could show that under suitable assumptions on the
valuation monoids, two resp. three fragments of the weighted logics have the same
expressive power with efficient conversions into the smallest fragment. Moreover,
the weighted automata and our logic fragments have the same expressive power.
The valuation monoids form very general weight structures; they model long-time
average and discounted computations of weights as well as the classical complete
semirings [9]. As in [2], we considered nested words possibly containing pending
edges. We remark that our results also hold similarly for finite nested words,
and our conversions of the weighted logic formulas also work, similarly, for other
discrete structures like trees, cf. [10].

It would be interesting to investigate decision problems for weighted nested
word automata, e.g., like done in [6], [7] for automata on words and with average
or discounted computations of weights.



12 M. Droste and S. Dück

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Logical Methods in Computer Science
4(4), 1–44 (2008)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM
56(3), 16:1–16:43 (2009)

3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages, EATCS Mono-
graphs in Theoretical Computer Science, vol. 12. Springer (1988)

4. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka,
D. (eds.) Developments in Language Theory. Lecture Notes in Computer Science,
vol. 5583, pp. 18–38. Springer (2009)

5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski,
M., Martini, S. (eds.) CSL. LNCS, vol. 5213, pp. 385–400. Springer (2008)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. In: LICS. pp. 199–208. IEEE Computer Society (2009)

8. Droste, M., Kuich, W., Vogler, H., (eds.): Handbook of Weighted Automata. EATCS
Monographs in Theoretical Computer Science, Springer (2009)

9. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69–86 (2007)

10. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over
valuation monoids and their characterization by weighted logics. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. Lecture Notes in
Computer Science, vol. 7020, pp. 30–55. Springer (2011)

11. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 44–59 (2012)

12. Droste, M., Pibaljommee, B.: Weighted nested word automata and logics over
strong bimonoids. In: Moreira, N., Reis, R. (eds.) 17th CIAA. Lecture Notes in
Computer Science, vol. 7381, pp. 138–148. Springer (2012)

13. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: Ibarra, O.H., Dang, Z. (eds.) Developments in Language Theory. Lecture Notes
in Computer Science, vol. 4036, pp. 49–58. Springer (2006)

14. Eilenberg, S.: Automata, Languages, and Machines, Volume A, Pure and Applied
Mathematics, vol. 59. Academic Press (1974)

15. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society 98(1), 21–52 (1961)

16. Kuich, W., Salomaa, A.: Semirings, Automata, Languages, EATCS Monographs in
Theoretical Computer Science, vol. 6. Springer (1986)

17. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K.,
Mahajan, M. (eds.) FSTTCS. Lecture Notes in Computer Science, vol. 3328, pp.
408–420. Springer (2004)

18. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
LNCS 6(1), 1–34 (2010), special issue of ICALP 2008

19. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science, Springer (1978)

20. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4(2-3), 245–270 (1961)

21. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSR 140, 326–329 (1961)


