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Self-organization is a key phenomenon in many systems be they physical, chemical, so-

cial or economical in nature. The realisation of agents which are able of self-organizing
their behavior forms a major challenge for the engineering of artificial systems. The
talk demonstrates our general approach to the self-organization of robotic forms of life
which has been developed and tested in various examples in recent years. The robot’s

”brain” consists of a controller and a self model both realized by a neural network. By
minimizing the so called time loop error, both the model and the controller are adapted
concomitantly from scratch. We apply this approach to different robots with compli-

cated physical properties which are completely unknown to the ”brain”. Nevertheless
after some time the robots develop behaviors which are both body and environment
related in a completely self-organized way. The applications are demonstrated by several
videos of a spherical robot, various snake like artefacts, an artificial dog and a humanoid

robot. More information may be found on our video page http://robot.informatik.uni-
leipzig.de/research/videos/.
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1. Introduction

The rapid technical progress in the fields of sensor, mechanotronic, and precessing

technology gives rise to more and more complex robotic systems. This concerns

on the one hand dedicated systems operating under some structural or functional

constraints like sophisticated humanoid hand models with many degrees of freedom

for specific grasping tasks. On the other hand, there is a growing tendency of devel-

oping more and more phantasy objects like snakes and other artifacts with tens of

degrees of freedom. Besides of their intellectual challenge, these robotic objects may

serve as tools for inspection (snakes creeping into impassable regions), exploration,

and supply in unstructured and highly dynamic environments. The main problem

in these fields is not so much in the technical realization but in the control of such

objects under complex environmental conditions.

It is here where the principles of embodied robotics find their real playground. In

fact, there is no chance of anything like classical AI realization, based on planning

and a concrete world model, under these conditions. Instead, the controller has to

learn to maximally exploit the physical peculiarities of the body in its interaction

with the environment. So it is less an understanding but a ”feeling” of the body

which has to be developed by the brain. Basic to this is the general idea of embod-

iment, meaning that the brain, body and environment form a common dynamical
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system that can not be simply divided into separate operational units. Such a com-

plex dynamical system of course is apt to nearly any kind of dynamics and there

are many coarse ideas of what a convenient working regime for such a system might

be. Noteworthy are notions like the edge of chaos, self-organized criticality, and the

like, which however up to date are not made sufficiently operational in order to be

useful for a concrete implementation in such complex robotic systems.

In particular, these approaches do not give a detailed prescription of how a

complex robotic system can self-regulate into such an interesting working regime.

Nature may help to give some hints. Homeostasis, one favorite (since constructive)

candidate of sufficient generality has been considered in some recent papers [11],

[15], see also [1]. However, the state of overall stasis can not be the best working

regime for a behaving agent. Other general paradigms like autopoiesis [14], although

very appealing in describing the fundamental nature of living systems, are not

constructive enough so that they are difficult to operationalize.

This paper tries to elucidate further the principle of homeokinesis [10], [2], [7]

which has been introduced earlier as dynamical counterpart of homeostasis. The

idea on the one hand is that, in a behaving agent, body brain and environment are

to be in a common kinetic regime. This of course is nothing else but the common

thinking of embodied robotics on the basis of dynamical systems. However, besides

of that, there is a concrete prescription, the minimization of the so called time-loop

error, which tells us how to reach this regime under very general conditions.

The approach has been reported upon in a series of papers, see [3], [4] [6], and [8]

for instance, which however have been devoted mainly to low-dimensional systems.

This paper reports on the application to high dimensional robotic systems both in

static and highly dynamic environments, it gives an improvement over the original

learning rule (minimization of the time-loop error) which makes the algorithm more

stable and introduces several possible applications.

The aim of the present paper is not to give a conclusive account of accomplished

work. Instead we try to sketch the potentials of the homeokinesis approach and in

particular to draw attention to the self-referential dynamical systems as tools for

the self-organization of highly complex systems where conventional approaches fail

so far.

2. The robots

Before presenting the general approach to self-organization I briefly introduce the

robotic systems used in the work. We may coarsely split the system into a body in

interaction with the environment and a ”brain”, comprising both the controller and

the rudimental self-model we are using in order to estimate the sensor reactions to

the motor signals.
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2.1. The body

Our robots (constructed by Georg Martius) are simulated physically realisitc in the

lpzrobots simulation system [13]. They consists of geometrical primitives, connected

with each other by joints. Each joint is driven by a simulated servo–motor, i.e. an

angular ODE motor combined with a PID controller with parameters fixed by hand.

Each motor command −1 < yi < 1 is the target position of the angle of joint i.

The robots have proprioceptive sensors only, each sensor value xi being the true

angle of joint i. If the joints are moving freely, motor and sensor values xi agree at

each instant of time but in general there may be great differences due to physical

effects like inertia and/or collisions with objects or with other limbs. The difference

between true and ideal sensor values (xi = yi) is the only information the agent has

about its body in interactions with the environment.

2.2. The ”brain”

The brain of the agents consists of a controller and a self-model. The controller is

realized as a simple neural network mapping at each step of time t the vector of

sensor values xt ∈ Rn to the vector of motor commands yt ∈ Rn, i.e. the net is the

map K : Rn → Rn so that yt = K (xt). Moreover there is a neural network F :

Rn → Rn acting as a self-model, mapping current motor values yt to the sensor

values in the next time step, i.e. xt+1 = F (yt) + ξt+1 where ξ is the model error.

The dynamics of the sensorimotor loop is modelled by the brain as

xt+1 = ψ (xt) + ξt+1 (1)

where ψ (x) = F (K (x)). The prediction network F is learned on-line by any su-

pervised learning algorithm with the target values given by xt+1.

A true self-organization approach should be able to solve the following problem:

Given an arbitrary body, connect it to our brain in a ”juvenile” state and then let

self-organization drive the development of the behavior of the robot. This is what

we are doing in the experiments described below.

2.3. Realizing self-organization

As known from physics, self-organization results from the compromise between a

driving force which amplifies fluctuations and a regulating force which tries to con-

strain the system. In our paradigm the destabilization is achieved by increasing the

sensitivity of the sensor response induced by the actions taken. Since the controls

(motor values) are based on the current sensor values, increasing the sensitivity in

this sense means amplifying small changes in sensor values over time. This drives

the robot towards a chaotic regime.

The counteracting force is obtained from the requirement that the consequences

of the actions are still predictable. This should keep the robot in ”harmony” with the

physics of its body and the environment. It has been shown in earlier work, cf. [8],
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that these two objectives can be combined in the so called time loop error obtained

from the virtual sensor values x̂t defined from the requirement that ‖xt+1 − ψ (x̂t)‖

is minimal. We define the time loop error

E = vT v (2)

where v = x̂t−xt and drive the parameters c of the controller networkK by gradient

descending E as

∆c = −ε
∂E

∂c
(3)

The gradient dynamics is updated in each time step so that eqs. (1) and (3) form a

combined dynamical system. An important feature of our approach is that the time

scale for the gradient dynamics is of the same order than that of the behavior. In

this way we have a fast synaptic dynamics which is constitutive for the behavior.

3. Experiments

The aim of the present section is to show that this general paradigm will drive

artificial systems towards a creative exploration of their bodily affordances. We

will consider first two of the many robots studied so far, the dog and snake like

artifacts. We have chosen these objects with morphology close to biology since

we want to demonstrate that behaviors may emerge which one might expect as a

result of selection according to ”survival of the fittest” although we do not have

any fitness function as in artificial evolution. Instead these behaviors emerge as a

consequence of the specific brain-body-environment interaction driven by the forces

of self-organization.

3.1. The dog

In a typical run the controller is initialized in a ”do nothing” state so that in this

phase the feed back strength of the sensorimotor loop is subcritical and the robot

will not muster enough strength to move its limbs. Instead it will stay in a resting

position. The parameter dynamics, eq. 3, in this situation will change gradually the

values of c so that after some time the feed back strength is large enough so that

the dogs starts moving its legs in a more or less random fashion. After about one

hour or so (real time) the ever increasing sensorimotor coordination is driving the

dog to motions like jumping in many different kinds, hopping on its hind legs for

quite some time, and so on, see the videos [9].

3.2. Dog fixed in the air

In a first series of experiments we fix the dog in the air so that the legs may move

freely. In order that the ”brain” may feel the embodiment we use the case of an

underactuated system where the torques are so weak that large angular values can
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only be reached by getting the legs into a swinging motion, exploiting the inertia

of the legs itself. The interesting point is that after some while (typically 20 to 50

minutes real time) the legs start swinging in different modi, the interesting point

being the emerging coordination between the legs. This means that the legs swing

with about the same frequency with phase relation being constant over some time.

So we observe both in-phase and anti-phase correlations in the leg motions much

in the way necessary for different gaits.

However, this is highly nontrivial since there is no direct information exchange

between motor neurons, the only way of establishing correlations being the feed

back of the motor outputs by the sensor values in the next time step which includes

the physical reaction of the system to the motor outputs. This in a first step explains

the origin of the correlations, since our paradigm tries to make each motor neuron

sensitive to the inputs by all sensors and this can be realized best if there is some

correlation between the sensor inputs.

On a more general level the coordinated swinging motion is emerging due to the

fact that our parameter dynamics preserves the symmetries of the physical system

so that, with a convenient initialization and isotropic sensor noise, any motions can

only arise from spontaneously breaking these symmetries. In particular the dog is

a physical system with time reversal symmetry so that a collective oscillation of

the system seems to be the most natural mode. Moreover, due to the explorative

character of the full dynamics the system is not going to establish and stabilize

a specific mode. Instead modes are of a transient nature, so that we observe the

playful realization of several such collective modes.

3.3. Dog on the ground

The main interest of course is the behavior of the dog when on the ground. In our

experimental settings we often let the dog for some time fixed in the air so that

the ”brain” can feel the motions of the unperturbed legs. After that we let the

dog fall to the ground. However, the normal setting is to start the dog directly on

the ground with the ”do nothing” initialization. In order to illustrate the emerging

sensorimotor coordination we use an environment consisting of three concentric

squares with barriers of increasing height. After its initial phase of getting into

activities, the robot rather soon surmounts the innermost barrier and then lingers

around for quite some time with the next barrier which has a height of about half

the dogs clearance. From the video [9] one sees that the dog keeps its body low

most of the time so that it has good contact with the barrier. During all that time

it moves its legs repeatedly forward and backward over the barrier.

After some time the dog surmounts also this barrier completely and eventually

approaches the outer barrier. It manages quite often to move its forefeet over the

barrier and then after some time the hind legs, see Fig. 1.

The emerging behaviors depend much on the special anatomy. In the above

experiments the dog was supported by a large weightless box on its back preventing
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Fig. 1. The dog at the third barrier about one hour after starting in the innermost square. The dog
has acquired a rather cautious behavior slowly probing different possibilities of interacting with

the barrier. After some time the left hind leg is swung onto the barrier and after several minutes
it climbes out completely.

it from falling over.

It should be mentioned that, according to our self-referential approach, all be-

haviors are contingent, meaning that the scenarios described can all happen in very

different forms. In particular, the dog has no aim of surmounting any barrier so

that often it returns instead of moving further ahead. The point I want to make

is that the motion patterns realized by the dog may be described as activities in

close dynamical contact with objects like the barrier. This leads to an increased

probability for seemingly dedicated acts like surmounting the barrier.

3.4. The hippodog

In another artifact, the ”hippodog” we have altered the above dog by giving it a

spherical body. In this way we did not need the artificial backup box. Instead the

spherical shape of the body is sufficient that the robot after falling over manages to

get back to its ”working” stance from nearly any situation. Thus one may the robot

leave to itself in the same way as with its ”ancestor” protected by the invisible box.

In the course of time we observe similar behaviors as described with the dog above.

However due to its higher mobility, the hippodog has more the tendency to reach

a very active, jumpy regime. In particular, getting back to its feet is not realized

by rolling over, keeping the legs stretched so that they are out of the way. Instead,

the robot gets back to its feet by heavily agitating its legs catapulting itself up by

ground contact with its feet, exploiting the high ground-foot friction.
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Fig. 2. The ”hippodog” in full action, above when encountering a wall and below while in a curve.

3.5. Snakes

Snake like artifacts have also been described in [5]. These however have been of

a simple construction with only a hinge joint connecting the flat segments. The

experiments described here use capsules as geometric primitives connected by a

universal joint releasing two degrees of freedom. Angles are constrained so that a

joint can not freely rotate. When in free space, the kind of motions emerging depends

very much on the friction with the ground and the torques that can be realized.

The snakes display a vary wide ranging set of motions which are difficult to classify.

The reason is that the physical constraints on the motion are not so stringent.

The situation is different however, if the snake is in a narrow pit with diameter of

about two segment lengths so that the motions are heavily constrained. Under this

condition the snake displays typical modes repeatedly in a loose succession. In the

videos [9] you may find the coiling mode with the snake coiling into the vessel while

still rotating around its axis. In this way the snake can be active while still being

in good agreement with the physical constraints given by the vessel.

The most interesting effect however is in the fact that sometimes the snake

manages to escape from the vessel in a rather spectacular way, see the Fig. 3.

4. Humanoids

Most recent experiments have been carried out with a human like artifact, also

simulated in the lpzrobots simulation system. Like the dog it consists of boxes and

capsules and has human like proportions. The robot has 15 degrees of freedom,

including the joint for the head and the feet. The emerging behaviors largely depend

on the environmental conditions, we run the robot alone on a plane, in a cluttered

environment, and together with other robots where often one observes a wrestling
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Fig. 3. How the snake may manage to get out of the narrow pit. The first picture in the sequence
shows the snake in a seemingly relaxed situation. However, as the video [9] shows there are tensions

building up in the body and after some time it suddenly crunches into a tight bundle of wich it
decoils with very high velocity so that by the inertia effects it manages to nearly jump out of this
very deep pit.

like behavior, see below.

4.1. A step towards open ended development

In the experiments described below, we have used an extension of our self-org con-

troller aimed at realizing an open ended ontological development of the robot. As

mentioned already, with our self-referential system behaviors are all contingent since

there is no specific aim for the learning given. As a consequence, all motion pat-

terns are transient. In order to perpetuate patterns we integrated a second controller

neural network which works as a kind of satellite network (SaNN). This network is

much more complicated than our self-org controller neural network (SONN), in the

practical applications it is an Elman/Jordan network with one hidden layer of 40

neurons with an equal number of context neurons. The output layer of 15 neurons

also has a context layer of 15 neurons. This recurrent network is able of learning

many different motion patterns.

The two networks, SONN and SaNN, teach each other constantly, i. e. in each

instant of time the output of the SONN is used as the target output for the learn-

ing of the SaNN and vice versa. The SONN is learning, however, preferentially as

described above. In this scenario, it is hoped that the SaNN, which is capable of

storing persevered motion patterns with greater probability, will manage to stabilize

such patterns in the stream of transients so that the latter are recurring more often
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and for a longer duration. A typical example are the push up motions which are

seen in tendency already without the SaNN but are, as a preliminary result, realized

more often and more pronounced in later stages of the development. However, it

should be mentioned that these investigations are just in the beginning.

4.2. Robot on a flat plane

In the most simple environmental situation the robot develops after some time

behaviors which may be paralleled with floor exercises. One observes in the course

of time occasionally figures like doing the splits, rolling over, jumping to its feet

(seldom), push ups, and others, see the videos [9].

Fig. 4. The humanoid robot in a kind of back flip. The motion is from left to right and starts from
a resting position (on the back) by a rapid swing of the left leg (not depicted).

However one of the observations we have to make is the fact that the open

ended development is realized only in a certain sense. What one observes is that the

repertoire of motion patterns reduces somewhat. In the earlier phases one observes

a wide variety of poses and motion patterns, not only the ones mentioned but ever

new and different ones which last only over a very short time or are seen only

as tendencies. Later on (after 10 to 20 hours) the behaviors consist of a smaller

variety of poses and patterns which last over longer times. This may be seen as a

development but as already mentioned these are preliminary results.

4.3. Strong interaction – The robot wrestling scenario

The behavior in highly dynamic environments is one of the most challenging prob-

lems in robotics. The dynamics can be created by independent objects but it is
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even more interesting to consider the interaction between different robots of the

same or different kind. On the video page [9] of the lpzrobots project you may find

examples of very many different robots in interaction. The most interesting point

in these scenarios is that the robots develop a much higher variety of behavioral

modes than in the case of a static environment. We demonstrate this in particular

by two humanoid robots in a narrow arena where contact between the two is nearly

unavoidable. Fig. 5 displays some of the typical poses the robots are undertaking.

Although without any aim of fighting each other, you observe scenes like in a real

wrestling. This however is also a consequence of the general phenomenon, that our

self-learning controller tries to create activity while still trying to ”keep things un-

der control”. The sensitivity paradigm on the one hand makes the robot to react

to collisions caused by the opponent and on the other hand control is maintained if

the tactile contact is present. From the dynamical systems perspective we now have

Fig. 5. Wrestling like situations in a scenario with two humaoids in a narrow arena.

two separate dynamical systems (consisting of robot + controller each) which are in

heavy interaction due to the physical (spatial) constraints. Obviously one may say

again that the combined dynamical system is driven by the time-loop error gradient

flow towards a working regime characterized by high activity while still avoiding

the strongly chaotic region.
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5. The self-rescue scenario

The experiences collected over the years suggest a possible application of this self-

organization system. What we have observed in many different scenarios is that

the robotic objects manage to free themselves from very intricate situations. We

therefore suggest to use our self-org controller as a kind of rescue system if a robot,

driven by a standard controller, has maneuvered itself into a situation it can not

cope with. The idea is to use in such a situation our self-org controller which will

adapt after some time, usually several minutes to one hour with the robot trying

ever new movements which are more or less in correspondence with the interaction

of body and environment.

The guiding idea in this scenario is the robot which has been fallen into some pit

or ditch or the like. The example of the snake in the vessel, see Figure 3 above, may

serve as a first example. The most recent results have been done with a simulated

humanoid robot in more or less hopeless situations, see the videos [9].

6. Discussion

This contribution reports, at a phenomenological level, about our approach to self-

organization of behavior with self-referential dynamical systems. Far from being

conclusive in a scientific sense, we have tried to illustrate some of the phenomena

we have observed in many long-time experiments with this kind of systems. What we

observe ever and ever again is the emergence of fundamental modes, identifiable by

a high degree of activity coupled with high sensorimotor coordination. These modes

may serve as behavioral primitives in more elaborate behavioral architectures, may

be reinforced by task specific rewards, and eventually can form the basis for an open

ended development of highly complex robotic systems which are difficult to control

with conventional methods.

From a dynamical systems perspective, it is difficult to classify what exactly

happens in the systems considered. Analytical work done so far has revealed in low-

dimensional systems phenomena like fixed point flows and the self-tuning of limit

cycles, see e.g. [12] which however do not explain satisfyingly the phenomena in

the higher dimensional systems like our dogs, snakes, or the humanoid. This is no

surprise. In fact, the combined system, state and learning dynamics, is a dynamical

system of several hundred dimensions driven by both the physics and the gradient

flow on the time loop error on comparable time scales. Speaking in neural terms

we have a system with fast synaptic dynamics. We have termed such systems self-

referential since the state dynamics depends on the parameters of the system which

are driven by the state dynamics itself. These systems seem to have many interesting

and unknown so far properties which deserve further investigation.
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