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Abstract. Abstract dialectical frameworks (ADFs) are one of the most
powerful generalization of classical Dung-style AFs. In this paper we
show how to use ADFs if we want to deal with acceptance conditions
changing over time. We therefore introduce so-called timed abstract di-
alectical frameworks (tADFs) which are essentially ADFs equipped with
time states. Beside a precise formal de�nition of tADFs and an illus-
trating example we prove that Kleene's three-valued logic K3 facilitate
the evaluation of acceptance functions if we do not allow multiple oc-
currences of atoms.
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Introduction

Argumentation has become one of the major �elds within AI over the last two
decades [1,2]. In particular, Dung's abstract argumentation frameworks (AFs)
are a by now widely used formalism [3]. Main reasons for this success story are
the simplicity of AFs and the plethora of existing semantics [4], the ability to
reconstruct mainstream nonmonotonic formalisms [3] as well as their potential to
be used as core method in advanced argumentation formalisms [5,6]. However,
through the years the community realized that the limited expressive capability
of AFs, namely the option of single attacks only, reduce their suitability as right
target systems for more complex applications [7]. Therefore a number of additional
functionality were introduced encompassing preferences, values, collective attacks,
attacks on attacks as well as support relations between arguments [8,9,10,11,12].
One of the most powerful generalizations of Dung AFs, yet staying on the abstract
layer, are so-called abstract dialectical frameworks (ADFs) [13]. The additional
expressive power is achieved by adding acceptance conditions to the arguments
which allow for the speci�cation of arbitrary relationships between arguments and
their parents in the argument graph.

In this paper we show how to use classical ADFs if we are faced with conditions
changing over time. We therefore introduce so-called timed abstract dialectical
frameworks (tADFs) which are essentially classical ADFs plus time states. In this
way we are able to speak about the same statement s at di�erent time points t.
For instance, an acceptance condition like φs4 = a1∨a2∨a3 encodes that s should
be accepted at time point 4 if statement a is at least ones accepted between time



points 1 and 3. If the numbers are interpreted as the �rst months of the year
and if s and a are standing for �I am on vacation in France� or �I have a salary
increase�, respectively, then φs4 expresses �I will be vacationing in France in April,
if I get a salary increase between January and March.�

The paper is organized as follows: Section 1 reviews necessary background
regarding ADFs. In Section 2 we proceed with the formal introduction of tADFs
and a presentation of useful timed acceptance conditions. Moreover, we give an
illustrating example. Section 3 provides two theoretical insights regarding the
evaluation of acceptance functions with the help of three-valued logics. Finally,
Section 4 discusses related work and give pointers for future work.

1. Background

1.1. Classical ADFs, Information Order and Consensus

The de�nition of ADFs [14] was motivated by the e�ort to obtain more expressive
power than classical AFs. This is achieved by equipping each argument with a
so-called acceptance condition which can be given as a logical formula [15].

De�nition 1. An abstract dialectical framework is a tuple D = (S,Φ) where S is
a set of statements and Φ = {ϕs | s ∈ S} is a set of propositional formulae.

The formal de�nitions of the di�erent semantics are based on three-valued
operators which handle two-valued interpretations.

De�nition 2. Let D = (S,Φ) be an ADF. A two-valued resp. three-valued inter-
pretation v for D is a total function v : S 7→ {t, f} or v : S 7→ {t, f ,u}. We use
VD
2 and VD

3 for the set of all two resp. three valued interpretations for D.

Next we de�ne the so-called information order. It orders the three values u
(undecided), t (true) and f (false) based on their information content.

De�nition 3. Let D = (S,Φ) be an ADF. The information order ≤i over {t,f ,u}
is the re�exive closure of <i, where u <i t and u <i f . This is generalised for
three-valued interpretations for D in a point-wise fashion:

v1 ≤i v2 if and only if ∀s ∈ S : v1(s) ∈ {t, f} =⇒ v1(s) = v2(s).

The consensus operator ui assigns t ui t = t, f ui f = f , and u otherwise.

Let u ∈ VD
3 , s.t. u(s) = u for any s ∈ S. Note that for any v ∈ VD

3 , u ≤i v.
This means, u is the ≤i-least element in VD

3 . We will call u the least information
interpretation. Moreover, for v ∈ VD

3 we de�ne [v]D2 = {w ∈ VD
2 | v ≤i w}. This

means, [v]D2 contains all two-valued completions of v.

1.2. Semantics

To de�ne the semantics the approximation �xpoint theory of Denecker, Marek,
and Truszczy«ski [16] has been used.

De�nition 4. Given an ADF D = (S,Φ). We de�ne ΓD : VD
3 7→ VD

3 as

ΓD(v) : S 7→ {t, f ,u} with s 7→ ui{w(ϕs) | w ∈ [v]D2 }.



The idea behind the operator is, that based on a given three-valued inter-
pretation, it is checked for every two-valued interpretation with at least as much
information whether a consensus on the valuation of the acceptance conditions
can be found. If all two valued interpretations consent on either t or f , then
the respective truth value can be assigned by the operator, otherwise it will be
evaluated with u. In the following we introduce so-called admissible, complete,
preferred and grounded interpretation (abbr. by adm, cmp, prf , grd).

De�nition 5. Given an ADF D = (S,Φ) and v ∈ VD
3 .

1. v ∈ adm(D) if and only if v ≤i ΓD(v),
2. v ∈ cmp(D) if and only if v = ΓD(v),
3. v ∈ prf (D) if and only if v is ≤i-maximal in cmp(D),
4. v ∈ grd(D) if and only if v is ≤i-least in cmp(D).

The de�nitions above justify the following two subset chains for any ADF D,
namely prf (D) ⊆ cmp(D) ⊆ adm(D) as well as grd(D) ⊆ cmp(D) ⊆ adm(D).

Example 1. Consider the ADF D = ({a, b, c}, {φa = ¬b, φb = ¬a, φc = a}). Let

a

¬b

b

¬a

c

a

D :

us verify that {u} = grd(D). It su�ces to show that u satis�es u = ΓD(u). Note
that ≤i-leastness is immediately apparent since u is even ≤i-least in VD

3 . Consider
the two-valued interpretation I1, I2, s.t. I1(a) = I1(b) = I1(c) = t and I2(a) =
I2(b) = I2(c) = f . We obtain I1(φa) ui I2(φa) = u since I1(φa) = I1(¬b) = f and
I2(φa) = I2(¬b) = t. Analogously, one may easily check that I1(φb)ui I2(φb) = u
and I1(φc) ui I2(φc) = u justifying u = ΓD(u). The other semantics are given
as adm(D) = {v1, v2, v3, v4, u}, cmp(D) = {v1, v3, u}, prf (D) = {v1, v3} with
v1 = {a : t, b : f , c : t}, v2 = {a : t, b : f , c : u}, v3 = {a : f , b : t, c : f} and
v4 = {a : f , b : t, c : u}.

2. Temporal Aspects and Timed ADFs

2.1. Timed Abstract Dialectical Framework

The classical de�nition of ADFs does not provide one with temporal notions.
However, in daily life we are often faced with statements/laws which are valid for
a certain time only or depend on the past development, e.g. �You can continue
working in the company as long as the Brexit is not delivered.� or �From the be-
ginning of next year it will be not allowed to build a nightclub near a residential
area.�. In order to encode statements like the ones before we need to be able to
distinguish between di�erent time states related via a certain ordering. In this
very �rst paper we decided to keep things as simple as possible. Nevertheless, we
will see that this approach is powerful enough to model many frequently occur-
ing temporal restrictions. More precisely, a timed abstract dialectical framework
(tADF) is a classical ADF equipped with a countable set T of time states. We



assume that this set is totally ordered, i.e. there is a binary relation ≤ over T
which is antisymmetric, transitive and connex. Many times T will simply be a
subset of the �rst natural numbers with the inherited standard ordering. Hereby,
a certain time state n might stand for an hour, a day, a week or a month or
whatever granularity is needed. In this way we are able to speak about the same
statement s at di�erent time points t in the future, denoted as st. Accordingly, we
will have timed acceptance conditions φst for any statement s at any time point t.

De�nition 6. A timed abstract dialectical framework (for short, tADF) is a tuple
D = (S, T,Φ) where S is a set of statements, T total ordered set of time states
and Φ = {ϕst | s ∈ S, t ∈ T} is a set of propositional formulae, one for each
statement s ∈ S and time state t ∈ T .

In tADFs we treat each argument at each time step as one single classical
statement. This means, a tADF with n statements and m time states corresponds
to a classical ADF with n·m statements. Moreover, the de�nition of tADFs allows
us to apply the standard semantics of classical ADFs (cf. Example 2).

2.2. Temporal Acceptance Functions

To facilitate the use of tADFs we introduce additional temporal shorthands, which
can be used for the corresponding acceptance conditions. Note that any shorthand
can be retranslated to classical propositional logic. Given D = (S, T,Φ) and
statements a, c ∈ S as well as a time interval [i, j] ⊆ T .

1. ϕct = a
[i,j]
≥1 :=

∨
i≤k≤j

ak.

This formula expresses that c should be accepted at time state t, if a is at
least ones accepted in [i, j]. Hence, a supports c at least ones inbetween
time states i and j.

2. ϕct = a
[i,j]
≥n :=

∨
{k1,...,kn}⊆[i,j]
|{k1,...,kn}|=n

ak1
∧ . . . ∧ akn

.

This formula expresses that c should be accepted at time state t, if a is at
least n-times accepted in [i, j]. This means, a supports c at least n-times
during the time interval [i, j].

3. ϕct = a
[i,j]
≤n := ¬(a

[i,j]
≥n+1) =

∧
{k1,...,kn+1}⊆[i,j]
|{k1,...,kn+1}|=n+1

¬ak1 ∨ . . . ∨ ¬akn+1 .

This formula expresses that c should be accepted at time state t, if a is
at most n-times accepted in [i, j]. This means, an n-fold acceptance of a
during the time interval [i, j] prevents the acceptance of c.

4. ϕct = a
[i,j]
≤1 := ¬(a

[i,j]
≥2 ) =

∧
{k1,k2}⊆[i,j]
|{k1,k2}|=2

¬ak1
∨ ¬ak2

.

For the sake of completeness we also present an important instantiation of

the timed acceptance formula above, namely a
[i,j]
≤1 expressing that c should

be accepted at time state t, if a is at most ones accepted in [i, j].

5. ϕct = a
[i,j]
=n := ϕct = a

[i,j]
≤n ∧ a

[i,j]
≥n

This formula expresses that c should be accepted at time state t, if a is
exactly n-times accepted in [i, j].



A timed ADF as well as the above introduced shorthands are illustrated in
the following example.

Example 2. Suppose that Charles is making plans for the �rst months of the new
year. He will spend his vacation (v) in France in April if he gets a salary raise
(s) in the months before the vacation. In order to get to the desired location he
would like to take a plane (p). Unfortunately, such a �ight line (l) is currently
only planned but Charles knows that it will be introduced between March and May.
If no �ight is available, he will take the train (t).

This example can be therefore represented as a tADF D = (S, T,Φ) where
S = {v, s, t, p, l} and T = {1, 2, 3, 4, 5} (cf. Figure 1). Here, any time state n ∈ T
corresponds to the nth month of the year as expected. The acceptance functions
are listed in Table 2. For instance, the formula ϕl4 expresses that the �ight line
will be set up in April, if it is neither introduced in March, nor in May. ϕl4

supports vacation in France provided that Charles received at least one raise in
the �rst three months of the year and if a train or plane goes there. Moreover,
the condition ϕt4 encodes that Charles will take the train if there is no plane
available in April and �nally, ϕp4

expresses that Charles will take an airplane if
the �ight connection has been established previously and if he is not traveling by
train. Salary increases are possible for any month and do not depend on other
events. Consequently, ϕsi = si for any i ∈ {1, 2, 3, 4, 5}.

v1

s1

t1

p1

l1

v2

s2

t2

p2

l2

v3

s3

t3

p3

l3

v4

s4

t4

p4

l4

v5

s5

t5

p5

l5

Figure 1. The tADF D

at ϕat

v1, v2, v3, v5 ⊥
v4 s

[1,3]
≥1 ∧ (p4 ∨ t4)

t1, t2, t3, t5 >
t4 > ∧ ¬p4 ≡ ¬p4

p1, p2 ⊥
p3 l3

p4 l
[3,4]
≥1 ∧ ¬t4

p5 l
[3,5]
≥1

l1, l2 ⊥
l3 ¬

(
l
[4,5]
≥1

)
l4 ¬l3 ∧ ¬l5
l5 ¬

(
l
[3,4]
≥1

)
si si

Table 1. Acceptance functions of D

For the evaluation of the tADFs D we use classical ADF semantics. In the
following we stick to preferred interpretations as they maximize the information
content which appears desirable for the planning context. Table 2 shows 8 out of
forty preferred interpretations1 of the tADF D. Any interpretation describes a
possible scenario. The selected interpretations agree on the availability of the plane
in May since for any considered scenario the �ight line was only introduced in

1All preferred interpretation can be found under https://github.com/kmax-tech/ADF.



May meaning that Charles has to take the train in April in order to get to France.
The �rst interpretation v1 expresses that the vacation cannot take place since no
salary increase happened in the months before. In any other interpretations one
or more salary increases happened implying that Charles can take his vacation.

prf (D) l3 l4 l5 p3 p4 p5 s1 s2 s3 t4 v4

v1 f f t f f t f f f t f

v2 f f t f f t f f t t t

v3 f f t f f t f t f t t

v4 f f t f f t f t t t t

v5 f f t f f t t f f t t

v6 f f t f f t t f t t t

v7 f f t f f t t t f t t

v8 f f t f f t t t t t t

Table 2. Selected preferred interpretations of D.

3. Evaluation of Acceptance Functions and Three-Valued Logics

In order to facilitate the use of (t)ADFs, we developed a Python script2, which
enables an easy calculation of the desired semantics. During creation of the script
the questions occurred, whether the computational expensive calculation of the
gamma operator can be somehow simpli�ed. According to De�nition 4 the opera-
tor takes a three-valued interpretation v and outputs a three-valued one v′. More
precisely, for any statement s we have to evaluate the corresponding acceptance
function ϕs w.r.t. all two-valued completions of v. Now, applying the consensus
operator on these two-valued outputs leaves us with the assignment to s under
v′. The idea was to use a three-valued logic L3, s.t. the evaluation of ϕs can be
done directly in L3 without any computation of two-valued completions and the
use of the consensus operator. The following theorem shows that this endeavour
is doomed to failure.

Theorem 1. There is no truth-functional three-valued logic L3, s.t. for any propo-
sitional formula ϕ and any three-valued interpretation v:

vL3(ϕ) = ui{w(ϕ) | w ∈ [v]2}.

The decisive point for the impossibility of using a three-valued logic in gen-
eral is that two-valued completions of parts of a composed formula cannot be
considered independently. However, such behaviour can be enforced if consider-
ing acceptance conditions where each atom appears at most ones. We therefore
de�ne the following fragment of classical propositional logic. Let A = {a, b, c, ...}
be the set of atomic formulas and σ(ϕ) the set of all atoms occuring in ϕ, e.g. for
ϕ = a ∨ ¬a we have σ(ϕ) = {a}.

De�nition 7. The set F is de�ned inductively as:

1. A ⊆ F ,
2. If ϕ ∈ F , then ¬ϕ ∈ F ,
3. If ϕ,ψ ∈ F and σ(ϕ) ∩ σ(ψ) = ∅, then ϕ ∨ ψ,ϕ ∧ ψ ∈ F .

2Submitted to SAFA 2020. http://safa2020.argumentationcompetition.org/



a b a ∨ b a ∧ b ¬a
t t t t f

t f t f f

t u t u f

f t t f t

f f f f t

f u u f t

u t t u u

u f u f u

u u u u u
Table 3. Kleene's three-valued logic K3

It is easy to see that any formula ϕ ∈ F does not have multiple occurrences
of atoms. The following theorem shows that if restricting acceptance functions
to F the use of Kleenes strong three valued logic K3 [17] is enabled. The thruth
tables regarding disjunction, conjunction and negation are given in Table 3.

Theorem 2. For any ϕ ∈ F and any three-valued interpretation v we have:

vK3(ϕ) = ui{w(ϕ) | w ∈ [v]2}.

4. Discussion and Conclusion

The concept of time in regard to argumentation is not new. In [18] a timed
argumentation framework (TAFs) is considered, which can be used for classical
AFs and bipolar AFs [12]. In comparison tADFs are o�ering a more �ne-grained
approach, because not only pure attack and support relations between nodes can
be considered but also mixed forms. In addition tADFs are o�ering the possibility
to make statements about events which depends on other timesteps in the past or
the near future. Therefore it is not required to consider a speci�c time-interval as
in TAFs. An other approach to the time topic is the LARS-framework [19] which
uses a logic-based framework and a window operator for modeling datatstreams
at given time-intervals. Here the focus is on a continous stream of input and
evaluation of possible actions. Timed ADFs are designed to consider all time
points through the de�ned acceptance conditions. Therefore there is no narrowing
to a current time step with information available at that moment, through this
could be considered with specifc semantics. The de�nition of tADFs allows us to
use all theoretical results about ADFs. In order to facilitate the calculation of
ADFs semantics, we introduced a special subclass of formulas, where the value of
the gammaoperator can be calculated directly with Kleenes strong-three valued
logic. Also it could be shown that no three-valued logic in general can exist in
order to model the gammaoperator. In further research we want to evaluate,
whether there exist further subclasses of ADFs, which can be calculated with a
pure logic approach. Also it appears feasible to look for speci�c time semantics,



e.g. where the truth-value of an argument has the least changes over a given time
period.
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