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Abstract

Abstract argumentation as defined by Dung in his
seminal 1995 paper is by now a major research area
in knowledge representation and reasoning. Dynam-
ics of abstract argumentation frameworks (AFs) as
well as syntactical consequences of semantical facts
of them are the central issues of this paper. The first
main part is engaged with the systematical study of
the influence of attackers and supporters regarding
the acceptability status of whole sets and/or single
arguments. In particular, we investigate the impact
of addition or removal of arguments, a line of re-
search that has been around for more than a decade.
Apart from entirely new results, we revisit, gener-
alize and sum up similar results from the literature.
To gain a comprehensive formal and intuitive un-
derstanding of the behavior of AFs we put special
effort in comparing different kinds of semantics. We
concentrate on classical admissibility-based seman-
tics as well as semantics based on naivity. In the
second main part we show how to infer syntactical
information from semantical one. For instance, it
is well-known that if a finite AF possesses no sta-
ble extension, then it has to contain an odd-cycle.
In this paper, we even present a characterization of
this issue. Moreover, we show that the change of
the number of extensions if adding or removing an
argument allows to conclude the existence of certain
even or odd cycles in the considered AF without
having further information.

1 Introduction

Abstract argumentation as defined by Dung in his seminal
paper [Dung, 1995] is by now a major research area in knowl-
edge representation and reasoning. Around the beginning
of the 2010s several problems regarding dynamics of ab-
stract argumentation have been addressed in the literature
[Boella et al., 2009; Cayrol et al., 2010; Bisquert et al., 2011;
Liao et al., 2011]. Within argumentation dynamics, a ma-
jor strand of research is concerned with the so-called en-
forcing problem dealing with the question of how to mod-
ify a given AF such that a desired set of arguments becomes
an extension [Baumann and Brewka, 2010; Baumann, 2012;

Doutre and Mailly, 2018; Wallner, 2020; Wallner et al., 2017].
In this paper we continue another line of research, namely the
formal study of syntactic manipulations preserving the accept-
ability status of former extensions and/or single arguments.
Consider the following example.

Example 1.1 (Preserving acceptability). The graph below
represents two AFs F' and F., s.t. z and its associated attacks
are contained in F but not in F),. The two sets £ = {a, b1}
and E2 = {a,bs} are so-called preferred extensions of F’
(cf. background section). It is interesting to see that these
sets semantically survive if we syntactically remove z. Note
that x attacks both extensions. Moreover, deleting b, which
also questions both sets would result in the same monotonic
behavior. We will see that this is no coincidence since this
kind of acceptability preserving can be shown formally.
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In the second main part we consider how to infer syntactical
information from semantical information. This line of research
was already initiated by Dung. For instance, it is well-known
that if a finite AF possesses no stable extension, then it has
to contain an odd-cycle. We will strengthen this result in by
presenting a first characterization of this issue. Further results
are in the following spirit: If the number of stable extensions
changes (semantical information) if moving from F' to F,,
then there has to be a cycle in F' (existence of cycles), s.t.
possesses a path to it (existence of a path).

The paper is organized as follows:

e We provide the formal background in Section 2.

e We investigate the impact of removing (Section 3) and
adding (Section 4) arguments on the given AF.

e In Section 5, we focus on syntactical information that can
be inferred about the AF at hand.

Throughout the paper we distinguish semantics based on
admissibility and naivity [van der Torre and Vesic, 2018], with
a special focus on the former. In the last part of the paper we
briefly discuss and compare our results and present pointers for
future work. Due to the limited space we present particularly
interesting proofs only.



2 Formal Background

Syntax. We fix a non-finite background set U/. An argumen-
tation framework (AF) [Dung, 1995] is just a directed graph
F = (A, R) with a set of arguments A C I/ and the attack
relation R C A x A. If not stated otherwise we assume any
AF to be finite and we use F for the set of all these graphs. If
(a,b) € R we say that a attacks b as well as a attacks (the set)
E given that b € E C A. This situation is denoted as a — b
or a — E, respectively. The meaning of £ — a is analogous.

We frequently use the so-called range of a set E defined as
E® = EUFE™ where ET = {a € A | F attacks a}. We also
let E- = {a € A| aattacks E'}. The E-reduct of F is the
AF FP = (E*, RN (E* x E*)) where E* = A\ E®. This
means, F'Z is the subframework of F' obtained by removing
the range of E. For an argument x, we use F}, for the induced
AF without z, i.e. Fyy = (A\ {z}, RN (A\ {z} x A\ {z})).

A sequence ag,a1,...,a, wWitha; = a;41 for0 <i<n
and a; # a; for 0 < i < j < nis called a path. If n is odd,
then it is an attack path, otherwise we call it support path.
If additionally a,, = ag we call the path a cycle. A cycle is
odd if [{ag,a1,...,a,}| is odd, otherwise even. We say a
purely attacks (purely supports) b if each path from a to b is
an attack (support) path. Moreover, we say a is controversial
w.r.t. b if there are both attack and support paths from a to b.
‘We mention that it is intended that by the above definitions an
argument a with no path at all to b is both a pure supporter
and a pure attacker of it, but not controversial.

Semantics. A semantics is a function o : F — 22 with
F = (A, R) — o(F) C 24, This means, a semantics returns
a set of subsets of A, so-called o-extensions. We say that an
argument a € A is credulously accepted if a € | Jo(F'). Sim-
ilarly, a is considered as skeptically accepted if |o(F)| > 1
and a € (o (F). In case of uniquely defined semantics, i.e.
|o(F)| = 1 for any F' we may simply speak of acceptred
arguments as both notions coincide.

In this paper we consider so-called naive, stage, admissible,
complete, preferred, grounded and stable semantics (abbr. na,
stg, ad, co, pr, gr, stb) [Dung, 1995; Verheij, 1996]. All
mentioned semantics satisfy conflict-freeness. A set £ C A is
conflict-free in F' (for short, E € ¢f (F)) iff forno a,b € E,
a — b. For the present paper it will be convenient to utilize
the so-called characteristic function I'r: For E C A we have
I'r(E) = {a € A | Edefends a}. A set E defends a if any
attacker of a is attacked by some argument of E.

Definition 2.1. Let F = (A, R) be an AF and E € c¢f (F).
1. E € na(F)iff E is C-maximal in ¢f (F),

2. E € stg(F) iff E € na(F) and E® is C-maximal in
{I® | I € na(F)},

E € ad(F)iff E C Tp(E),

E € co(F)iff E =Tr(FE),

E € pr(F) iff E is C-maximal in co(F),
E € gr(F)iff E = U,y Tr(0),

E € stb(F) iff E attacks anya € A\ E.
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3 Acceptability and Removal of Arguments

In this section we investigate the impact of removing argu-
ments from a given AF I on the acceptability status of former
extensions or single arguments.

Preserving Extensions
Let us start with the following question:

Given some E € o(F'), under which conditions can
E € o(F;) be guaranteed?

Admissibility-based Semantics

Our first results is regarding admissible and stable extensions.
On the one hand, they are quite different: Stable extensions are
among the most restricted ones in the literature, while admissi-
bility is such a basic concept that a whole family of semantics
exists on top of the admissibility requirement. However, they
have something essential in common: Both require E to be
conflict-free and that E7 is sufficiently large. This common
ground yields the following result.

Proposition 3.1. Given an AF F, a semantics o € {ad, stb}
and E € o(F). Ifv ¢ E, then E € o(F,).

Does the above assertion conveys to complete, preferred
and grounded semantics? The following example provides us
with a negative answer.

Example 3.2. Let I be as depicted below.
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We have gr(F) = co(F) = pr(F) = {0} and obviously
x ¢ (). The fact gr(F,) = co(Fy,) = pr(F,) = {{a}} proves
that the empty set does not survive changing F' to F.

However, if we require that “z is an immediate attacker
of E” we obtain the persistence of F again. Note that this
condition is indeed a strengthening of “not being contained in
E” since the latter is implied by the conflict-freeness of the
considered semantics.

Theorem 3.3. Givenan AF F, o € {ad, stb, co, pr, gr} and
Eco(F). Ifx — E, then E € o(Fy).

Naivity-based Semantics.
We start by stating the counterpart to Proposition 3.1 in case
of naive semantics.

Proposition 3.4. Let F be an AF. If E € na(F) and x ¢ E,
then E € na(F,).

For stage semantics these assumptions are too weak as the
following example shows.

Example 3.5. Consider the following AF F":

We have stg(F) = {{a},{b}} since the ranges {a}® and
{b}® are incomparable, but stg(F,) = {{b}}.

Indeed, we require stronger assumptions for stage seman-
tics. The intuitive reason is that we mainly take the range of
FE into consideration and only check conflict-freeness of the
extension itself. Hence if we make sure that removing x does
not undermine £, then E survives the transition to F,.



Proposition 3.6. Let F be an AF. If E € stg(F) and x ¢ E?,
then E € stg(Fy).

The reader is presumably not surprised about the fact that
we did not make any assumption about incoming attacks (cf.
Propositions 3.4 and 3.6). The intuitive reason is that naivity-
based semantics do not tend to take incoming attacks seriously.

Credulous Acceptance

Let us now focus on acceptability of single arguments, rather
than whole extensions. More concisely:

Given some credulously accepted argument a in F,
under which conditions is a still accepted in F,?

From an intuitive point of view, a support path from x to a
should be beneficial for the acceptance of a whereas an attack
path should be harmful. This means, deleting benificial paths
may cause non-acceptance and deleting harmful ones should
not change the former acceptance as already proven for direct
attackers in Theorem 3.3.

Admissibility-based Semantics

We start with showing that there is no analogy to Theorem 3.3
in case of pure attackers because they themselves could be
part of a given extension E. Remember that for pure attackers
each path to arguments in the set has to be odd.

Example 3.7. We find E = {z, f,a} € pr(F'). Moreover, x

purely attacks F.

F- =0
However, obviously E ¢ pr(F,) since z is not even con-

tained in F.. Please observe that a and f are still credulously

accepted in F, since {c, f,a} € pr(F;).

The last observation can be formally proven for several
admissible-based semantics. This means, although whole
extensions do not necessarily survive we may at least ensure
credulous acceptance.

Proposition 3.8. Given an AF F, o € {ad, co, pr} as well
as two arguments a € | Jo(F) and x # a. If x purely attacks
a, then a € | Jo(Fy).

Proof. 1t suffices to show the assertion for admissible sets
since |J ad(G) = |Jpr(G) = co(G) for any AF G.
Given F = (A,R) andleta € E' € ad(F). If x ¢ E’,
then Proposition 3.1 ensures the credulous acceptance of a in
F, since E' € ad(F,). Consider now x € E’. We inductively
construct a set £ C E’ with £/ € ad(F,) and a € E. We set:

.EOZ{U,},
.SOZ{dEA\E8_|d—>EQ}aIId
o By =(S; NE)\ Ey

Note that since E’ is admissible in F' we always find ar-
guments in E’ counter-attacking all arguments in Sy. This
means, Ey U E; defends a. In general, assume we are given
an integer n as well as Ey, ..., E,. We proceed as follows:

o Sp={de A\ (BoU ... UE)* |d— En}
° En_t,_l = (S; QEI)\EH

This way we obtain a sequence Fr, . ..
disjoint sets. We show that for each n

, By 41 of pairwise

1) each argument in E,,;; possesses a support path to a,
ii) EgU ... UE, 1 defends E,,, and
iii) forany 0 <i < j<mn,S;NS;=0.

(base case) i) We have Ey = {a}. ii)) By U E; =S5 N E’
defends Ey since £’ is admissible. iii) Since Sy C (EqUE;)™T,
S1 NSy = O by construction.

For the inductive step let the assertion be true for some
integer n.

1) If E,, 4+ is empty, we are done. Otherwise lete € E), .
Then e attacks some s € S, which in turn attacks some
e’ € E,. Since ¢’ possesses some support path to a and all
sets are disjoint, we found our support path from e to a.

ii) Due to admissibility of £’ we have S, N E" = S,
and from E, ;2 = (S, ; N E') \ E, 1 we hence infer that
EiU...UE, o defends E, 1.

iii) Hence the set S,, 41 of attackers of F,, 1 not occurring
in the range of By U ... UE, ;| must be disjoint with S;,
0<i<n.

This finishes our induction. Since z is a pure attacker of
a we conclude © ¢ E,, for each n. We thus have for each
integer n that 0) J;_, E; C E' € ¢f(F), Dz ¢ U, E;,
and 2) |J!_, E; defends F,,_;. Due to finiteness, Uien Ei is
an admissible extension of F' containing a, but not z. O

Observe that the proof above is constructive. This means, it
shows how to obtain a witnessing set for credulous acceptance
as illustrated in the following example.

Example 3.9. In Example 3.7, a € {z, f,a} € pr(F). Ob-
viously, = purely attacks a, a € |Jad(F) and z # a. So
we find By = {a}, Ef = 0 as well as Sy = {b}. Since
Sy = {ef) we get By = (S5 01 {w. foa)) \ Eo = {f}.
Observe that the only attacker of E; is e and moreover,
e € (EgUE)T = {a, f}T = {e,b}. This means we get
Si={be A\ (EyUE)T |b— E1} = 0and Ey = 0, too.
The procedure stops and outputs Eg U By = {a, f} and we
verify that a € {a, f} € ad(F;) as required.

The attentive reader may have noted that so far, the case of
grounded semantics is still missing.! Indeed, an analogous
result can be shown here, but the proof needs to be adjusted
since credulous acceptance for ¢ = gr is more restrictive than
in the previous cases.

Proposition 3.10. Given an AF F as well as a € | gr(F)
and x # a. If x purely attacks a, then a € | gr(Fy).

lProposition 3.10 can also be inferred from [Cayrol et al., 2010,
Proposition 7]. However, we noted a sneaky error in the proof, which
is about the existence of attack paths: If x is a pure attacker of a and
y has support paths to a, then — although counter-intuitive at first
glance — x is not necessarily a pure attacker of y. We thus decided to
give a novel proof.



Proof. Let G be the grounded extension of F. If z ¢ G, then
the claim follows since we obtain I'; () C T'% (9) for each
integer ¢ > 1.

If x € G, we consider the procedure from the proof of
Proposition 3.8. This way, we obtain an admissible extension
Eof Fwitha € Fandz ¢ E. Since E C G and by
definition of the grounded extension, E' can be traced back
to unattacked arguments, i.e. there is a sequence Ey, ..., F,
st.i) E = FEqU ... UE,,ii) Ey is unattacked in F, and iii)
E,;_; defends E; for each 1 < i < n. One can verify that
these properties also hold in F), and hence, F C G, for the
grounded extension G, of F,. O

Combining all results leads to the following final theorem
regarding pure attackers.
Theorem 3.11. Given an AF F, o € {ad, co, pr, gr} as well
as two arguments a € | Jo(F) and x # a. If x purely attacks
a, then a € | Jo(Fy).

This theorem in turn helps us to obtain the analogous result
for pure supporters.
Theorem 3.12. Given an AF F, o € {ad, co, pr, gr} as well

as two arguments a ¢ \ Jo(F) and x # a. If x purely supports
a, thena ¢ | Jo(Fy).

Naivity-based Semantics

We start with mentioning that neither Theorem 3.11, nor Theo-
rem 3.12 hold for stable semantics. This means, the deletion of
pure attackers or pure supporters of an argument may indeed
negate its former credulous acceptance or non-acceptance. The
following example illustrates this assertion for pure attackers.

Example 3.13. Let F' be as depicted below. We have that
stb(F) = {{a, z},{b, e, x}} and x is a pure attacker of a.
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However, stb(F,) = {{b,d}} showing that a is not credu-
lously accepted anymore.

For stable semantics, it suffices to assume that a attacks x:
Proposition 3.14. Given an AF F as well as a € | stb(F')
and x # a. If a — x, then a € | stb(F}).

For naive semantics, we find that a is accepted in F, when-

ever x and a are different. As for stb this does not depend on
the kind of paths from x to a in F'.

F:

Proposition 3.15. Given an AF F as well as two arguments
x # a. Ifa € Jna(F), then a € |Jna(Fy).

We also present some first result concerned with stage se-
mantics. The assumptions we make are rather restrictive and
closely related to Proposition 3.6. The reason is that it is hard
to predict the structure of stg(F') after removing a certain
argument. Finding milder conditions ensuring an analogous
result is left for future work.

Proposition 3.16. Given an AF F and two arguments a and
x. If there is some E € stg(F) witha € E and v ¢ E®, then
aco(Fy).

4 Acceptability and Addition of Arguments

Preserving Extensions

In the following we consider a subclass of normal expansions
[Baumann and Brewka, 20101, so-called z-expansions firstly
introduced in [Cayrol et al., 2010]. The former adds new argu-
ments and attacks to F’, but does not introduce novel attacks
within F. The latter is a special case of normal expansions,
where only one argument x is added to F.

Definition 4.1. The AF G = (B, S) is a x-expansion of an AF
F = (A, R) wheneveri) B = AU{z} andii)if (a,b) € S\R,
thena = x or b = x.

Example 4.2. Consider the x-expansion G of F. We have
ad(F) = {0,{c},{c,a}}. Hence, z does not attack any ad-
missible set.

HOMO= 00

We observe that any admissible set survives since we obtain
ad(G) = {0,{c},{c,a},{z},{z,c},{z,c,a}}.

The following proposition shows that the above observation
holds in general.

Proposition 4.3. Let G be an x-expansion of F = (A, R)
and E € ad(F). If v 4 E, then E € ad(G).

Example 4.2 reveals that the above assertion is not true
for the remaining semantics. Indeed, {c,a} is stable, pre-
ferred, complete and grounded in F', but not in G. Apart
from grounded semantics we may state that the extension E
survives if E attacks z.

Proposition 4.4. Ler G be an x-expansion of F, E € o(F)
with o € {ad, co, pr, stb}. If E — x, then E € o(G).

This does not suffice for the grounded extension since z
may ensure that G’ does not contain any unattacked arguments.

Example 4.5. The following AFs exemplify Proposition 4.4.
However, for grounded semantics we have gr(F) = {{c,a}}
and gr(G) = {0}.

In fact, in order to ensure that the grounded extension sur-
vives the x-expansion we have to combine the requirements of
Propositions 4.3, 4.4.

Proposition 4.6. Let G be an x-expansion of F = (A, R)
and E € gr(F). Ifv / Eand E — x, then E € gr(QG).
Let us now turn to naivity-based semantics. If we have
neither z — E nor E — x forsome E € ¢f (F'), then EU{x}
is conflict-free as well. Hence in this case £ cannot be naive
in the z-expansion G. Otherwise, we obtain the following:

Proposition 4.7. Let G be an x-expansion of F = (A, R)
and E € na(F). Ifv — E or E — x, then E € na(G).

For stage semantics it might happen that F' possesses no
stable extension at all, and stb(G) = stg(G) = {z}. Hence it
is clear that an analogous result for stage semantics can only
be inferred under quite restrictive conditions; for example
whenever x cannot be in any extension itself.



Proposition 4.8. Letr G be an z-expansion of F = (A, R)
and E € stg(F). IfE — x and x — x, then E € stg(QG).

Again, finding milder conditions ensuring an analogous
result is left for future work.

Credulous Acceptance

In this section we will strongly benefit from previous results
and show that the credulous (non-)acceptance of arguments
is intimately linked to the addition of pure attackers and pure
supporters. The decisive point is that by definition of an x-
expansion G of F' we have G, = F.

Theorem 4.9. Given an AF F' = (A, R) and a semantics
o €{ad,co,pr,gr}. Leta € Awitha ¢ \Jo(F). If G is an
x-expansion of F, s.t. x purely attacks a, then a ¢ |Jo(Q).
Theorem 4.10. Given an AF F' = (A, R) and a semantics
o € {ad,co,pr,gr}. Leta € Awitha € \Jo(F). If G is an
x-expansion of F, s.t. x purely supports a, then a € | Jo(G).

Regarding naivity-based semantics, the case 0 = na is
based on the observation that any argument occurs in a naive
extension iff it is no self-attacker.

Proposition 4.11. Given an AF F = (A, R) and an argument
a € Awitha € |Jna(F). If G is an x-expansion of F, then
a € Jna(G).

Considering stage semantics, we require quite strong as-
sumptions as it was the case in Proposition 4.6.

Proposition 4.12. Given an AF F' = (A, R) and a € A with
a € |Jstg(F). If G is an x-expansion of F with a — x and
x — x, then a € | stg(G).

5 On Cycles, Circuits and Infinite Sequences
This section is dedicated to cycles in AFs.

Revisiting and Strengthening Former Results

In the argumentation community the following two results are
widely known as well as frequently used in proofs.

Proposition 5.1. Any odd-cycle-free F' possesses at least one
stable extension.

Proposition 5.2. Any acyclic F' has exactly one complete
extension which is grounded, preferred and stable.

However, inspecting the seminal paper [Dung, 1995] reveals
that neither of those assertions was presented by Dung. Even
worse, both propositions are wrong if not restricted properly.
For instance, Example 5.4 presents an acyclic (hence odd-
cycle free) AF which does not possess any stable extension
[Baumann and Spanring, 2015, Example 2]. Dung formulated
Proposition 5.1 with “limited controversial” instead of “odd-
cycle-free” [Dung, 1995, Corollary 36] and Proposition 5.2
with “well-founded” instead of “acyclic” [Dung, 1995, The-
orem 30]. Both concepts are actually closer to the definition
of a so-called circuit than the one of a cycle. The former
generalizes the concept of a cycle by tolerating the repetition
of vertices (not only the first/last vertex).

Definition 5.3. An AF F' is well-founded if there is no in-
finite sequence ag, ai,... with a;41 — a; for each ¢ > 1;
F is limited controversial if there exists no infinite sequence
ag, a1, ... s.t. a;41 is controversial wrt. a; for each ¢ > 1.

Example 5.4. Consider the following infinite AF F.

" _, )

The AF is not well-founded since it possesses an infinite attack
sequence, namely ag, a1, .... It is not limited controversial,
either, because of the sequence ag, a2, a4 ...: We have that
aan+2 1S controversial to ag,, witnessed by the support path
Q2n+2, G2n+1, G2, and the attack path agy, 42, agy.

The following two Lemmata justify Propositions 5.1 and 5.2
as they allow to translate Dungs original versions into the
usually quoted ones in the realm of finiteness.

Lemma 5.5. Let F' be a finite AF. The following statements
are equivalent: i) There is no cycle in F, ii) there is no circuit
in F, iii) there is no even circuit in F', iv) F is well-founded.

Lemma 5.6. Let F' be a finite AF. The following statements
are equivalent: i) There is no odd cycle in F), ii) there is no
odd circuit in F, iii) F is limited controversial.

We want to emphasize that Lemmata 5.5 and 5.6 do not hold
for infinite AFs. Hence infinite AFs with no stable extension
do not necessarily contain odd cycles. Indeed, the AF from
Example 5.4 is acyclic, yet not limited controversial.

Dung’s controversiality notion is rarely used and most pa-
pers in the literature focus on finite AFs anyway. In this regard
Dung’s proof seems unnecessarily complicated and we hence
decided to provide a concise proof tailored for finite AFs only.
The recently introduced modularization property plays the key
role in this proof and underlines again its important role in
the foundations of abstract argumentation [Baumann er al.,
2020al. Besides this, our proof relies on the notion of direc-
tionality [Baroni and Giacomin, 2007] showing nicely how
we can benefit from former foundational research here.

Proof of Proposition 5.1. The punchline is at follows: We
show that if F'is odd-cycle free, then it contains a non-empty
admissible set. We may then argue as follows: There is a
preferred extension £ € pr(F'). Assume that E is not stable
in F. Thus, F¥ is non-empty. Now, since the reduct contains
a non-empty admissible extension E’, then E U E’ € ad(F)
by [Baumann et al., 2020a, Proposition 3.4], contradiction.
We have thus left to prove the existence of such a non-empty
admissible extension. This is equivalent to the existence of a
non-empty complete one. Due to the directionality principle
[Baroni and Giacomin, 2007, Section 3.3 and Table 1], it
suffices to proof the claim for an AF F' forming an SCC.
Consider a circuit C = (ay, ..., ay) through all arguments
in A and let E = (Jag,—;. Trivially, E® = A. Moreover,
if £ was conflicting we would immediately obtain an odd
sub-circuit, yielding a contradiction via Lemma 5.6. Hence,
E € sth(F) C co(F) concluding the proof. O

The following theorem sharpens Dung’s result regarding
the existence of stable extensions as it presents the very first
characterization of this issue. This means, we provide a suf-
ficient and necessary condition for the existence of a stable
extension. For notational convenience we use OC(F) =
{{ao,a1...,an} ]| ag,a1,...,a, is an odd-cycle in F'}.



Theorem 5.7. Given a finite AF F. stb(F) # () if and only if
3E € ad(F) s.t. ET N C # 0 for each C € OC(F).

Proof. (=) If E € stb(F), then E® N C # (0 by definition
for any C' € OC(F'). Moreover, by the definition of a cycle,
E®NC # () implies ET N C # 0.

(<) Let E € ad(F) with ET N C # ( for each odd cycle
C. Now the reduct F'¥ is odd-cycle free. There is thus a
stable extension £’ € stb (F B ) due to Proposition 5.1. Since
each stable extension is trivially admissible, £ U E’ € ad(F)
due to [Baumann et al., 2020a, Proposition 3.4]. However, by
assumption (FU E’)® = A and hence EUE’ € stb(F). O

We want to emphasize that the “<”-direction in Theo-
rem 5.7 is the crucial one as it provides a sufficient condition
for the existence of a stable extension. Roughly speaking, if
we find an admissible extension which is capable of disrupting
all odd cycles in F', then the AF possesses stable extensions.

Syntactical Implications
Derivable by the Number of Extensions

As recalled in the previous section, oftentimes semantical
properties yield syntactical conditions a given AF must satisfy.
In this section we return to our initial setting and investigate
derivable connections between F' and F,. More specifically
we address the following issue:

Given some connection between |o(F')| and
|o(F;)|, which connections between 2 and cycles
occurring in F' can be guaranteed?

Most of the presented results utilize the following observation
as important cornerstone (see also [Dunne and Bench-Capon,
2001, Theorem 8] and [Dvorak, 2012, Proposition 15]).

Lemma 5.8. Leto € {co,pr, st} and E,E' € co(F). Then
E # E' iff there is an argument a contained in an even cycle

witha € Eanda ¢ E'.

We proceed with the main results of this section. Most of
them utilize analogous proof techniques, with suitable adjust-
ments tailored for the given situation. We thus decided to
demonstrate the technique only once and omit the remaining
proofs due to space restrictions.

Theorem 5.9. Let 0 € {co,pr}. Let F be an AF with
lo(Fy)| # |o(F)|. Then there is some path from x to an
even cycle in F.

Proof. Let o = co (the other case is similar). Assume there is
no such path. We show |co(F,)| = |co(F)].

Given E, € co(Fy), let us consider the whole AF F'. We
let P C A be the arguments s.t. there is a path from a to P.
We let C' be the arguments contained in an even cycle. By
assumption, all even cycles in F are contained in A\ P. Since
there is no path from P to any argumentin A\ P, E,N(A\ P)
is admissible in F’ by the directionality principle [Baroni and
Giacomin, 2007]. Hence there is some complete extension E
of Fwith E; N (A\ P) C E. Now E and E, coincide on
all arguments occurring in an even cycle. Since this uniquely
determines E € co(F') (see Lemma 5.8) this induces a one-
to-one mapping co(F,) — co(F) by letting E, — E; we get
lo(Fy)| < |o(F)|. Starting the same line of reasoning with
E € co(F)yields |o(F)| < |o(Fy)|. O

While even cycles provide alternatives, odd ones oftentimes
constrain the set of extensions. The following theorem formal-
izes that a connection to an odd cycle can be found, whenever
 is responsible for rendering o (F) trivial.

Theorem 5.10. If ad(F) = {0} as well as ad(F,) # {0},
then there is some path from an odd cycle to x in F.

Observe that these results transfer to o € {co, pr} since
ad(F') = {0} iff this is the case for o € {co, pr}.

Finally, stable extensions are quite sensitive to odd cycles
as indicated by Proposition 5.1. The following can thus only
guarantee the existence of any cycle, not necessarily even.

Theorem 5.11. Let F' be an AF with |stb(F,)| # |stb(F)|.
Then there is some path from x to a cycle in F.

However, the result regarding degenerated AFs transfers to
stb. Note that we move from ad(F) = {0} to stb(F) = ().

Theorem 5.12. If stb(F') = () as well as stb(Fy,) # {0}, then
there is some path from x to an odd cycle in F.

6 Summary and Related Work

In this paper, we systematically analyzed the impact of adding
or removing attackers or supporters to the acceptance status of
certain arguments in a given AF. In particular the part about
adding arguments is closely related to [Cayrol et al., 2010].
However, our investigation covers significantly more seman-
tics as only grounded and preferred extensions are formally
studied in [Cayrol et al., 2010, Section 4]. The presented
results concerning removal of arguments are similar to those
shown in [Amgoud and Vesic, 2020] (see also [Bisquert et
al., 2011; Ulbricht and Baumann, 2019]). Our investigation
is less general in the sense that fewer cases are considered
(only credulous acceptance vs. no credulous acceptance), but
more general in the sense that pure attackers are considered
in contrast to immediate attackers only. It is hence an in-
teresting future direction to study more cases of acceptance
and rejection as done in [Amgoud and Vesic, 2020]. Some
of our results from Section 3 are comparable to [Alfano et
al., 2017]. Tt presents a similar investigation in the realm of
labeling-based semantics. It will be future work to compare
these results in a comprehensive fashion. One of the central
insights Sections 3 and 4 provide is the confirmation of the
intuition that admissibility-based semantics tend to be sensible
to the length of paths. In particular, it is essential whether
it is even or odd. The same does not hold for naivity-based
semantics confirmed by several formal results and provided
counterexamples. Recently, so-called weak admissibility [Bau-
mann et al., 2020b] has been introduced. Weak admissibility
establishes a third line of semantics beside admissibility-based
and naivity-based ones. It would thus be exciting to see how
the results from this paper transfer to these newly introduced
semantics.
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