
Revisiting the Foundations of Abstract Argumentation –
Semantics Based on Weak Admissibility and Weak Defense

Ringo Baumann
Department of Computer Science

Leipzig University
Germany

Gerhard Brewka
Department of Computer Science

Leipzig University
Germany

Markus Ulbricht
Department of Computer Science

Leipzig University
Germany

Abstract
In his seminal 1995 paper, Dung paved the way for abstract
argumentation, a by now major research area in knowledge
representation. He pointed out that there is a problematic is-
sue with self-defeating arguments underlying all traditional
semantics. A self-defeat occurs if an argument attacks itself
either directly or indirectly via an odd attack loop, unless
the loop is broken up by some argument attacking the loop
from outside. Motivated by the fact that such arguments repre-
sent self-contradictory or paradoxical arguments, he asked for
reasonable semantics which overcome the problem that such
arguments may indeed invalidate any argument they attack.
This paper tackles this problem from scratch. More precisely,
instead of continuing to use previous concepts defined by
Dung we provide new foundations for abstract argumentation,
so-called weak admissibility and weak defense. After showing
that these key concepts are compatible as in the classical case
we introduce new versions of the classical Dung-style seman-
tics including complete, preferred and grounded semantics.
We provide a rigorous study of these new concepts including
interrelationships as well as the relations to their Dung-style
counterparts. The newly introduced semantics overcome the
issue with self-defeating arguments, and they semantically
insensitive to syntactic deletions of self-attacking arguments,
a special case of self-defeat.

1 Introduction
Computational models of argumentation have received a lot
of attention in AI for more than two decades now. The semi-
nal paper boosting this interest was Dung’s paper on abstract
argumentation frameworks (AFs) (Dung 1995). Dung’s work
is based on the observation that argument evaluation, more
precisely the selection of reasonable sets of arguments con-
stituting a coherent world view, can be done without taking
into account the internal structure of arguments. Arguments
can be treated as abstract, atomic entities. All that is needed
is information about the attack relation among such argu-
ments. Consequently, Dung’s AFs are just directed graphs.
The nodes in this graph represent abstract arguments, the
edges describe attacks among arguments.

Dung defines various semantics for AFs. Here, a semantics
assigns to each AF a collection of extensions, that is jointly
acceptable subsets of the arguments. The different semantics
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reflect different ways of resolving conflicts among arguments.
In the meantime, several additional semantics have been
defined, see (Baroni, Caminada, and Giacomin 2018) for an
overview.

At the end of his seminal paper (Dung 1995) Dung points
out an issue he left open in his approach. He writes (p. 351):

“An interesting topic of research is the problem of
self-defeating arguments as illustrated in the follow-
ing example. Consider the argumentation framework
({A,B}, {(A,A), (A,B)}). The only preferred exten-
sion here is empty though one can argue that since A
defeats itself, B should be acceptable.”

The goal of this paper is to address exactly this problem.
We will do so by introducing modified versions of some
of the central notions in Dung’s approach. Besides conflict-
freeness, one of these notions is admissibility. According
to Dung, a conflict-free set of arguments is admissible if it
defends itself against all attackers. In other words, a set of
arguments S is admissible whenever each argument attacking
S from the outside is itself attacked by some element of S.
An admissible set can thus not contain any argument which
is attacked without at the same time being defended.

We will show in this paper that alternative and, as we claim,
reasonable modifications of this and other fundamental no-
tions of abstract argumentation exist. Our motivation is as
follows. It is indeed important that a set of arguments defends
itself. However, does it have to defend itself against all at-
tackers? Isn’t it sufficient to counterattack those arguments
which have the slightest chance of being accepted? Let us
illustrate this using the following simple examples.

Example 1.1 (Self-Defeat and Acceptance). Consider the
AF F . According to Dung’s definition {b} is not admissible1

because it does not defend itself against a.

aF : b

a1

a2

a3G : b

But what kind of attacker is a? Does b really have to defend
itself against an argument that ”kills” itself, so-to-speak? Why

1We refer to the background section for precise definitions.



does b have to counterattack if a itself does this job anyway?
a is like a zombie, it is there but can do no harm.

Consider now G . Self-attack is only one special case of
self-defeat. Why should b have to defend itself against a3 if a3
is among those arguments that defeat themselves indirectly,
by attacking the only argument (here a1) that could help them
to defend themselves against an attacker (here a2)? Our new
notion of admissibility should classify {b} as acceptable in
both frameworks. Note that, unlike for self-attack, indirect
self-defeat through an odd loop of length ≥ 3 can be broken
up by additional arguments as depicted in AF H . Here an
additional new argument c attacking a2 helps a3 to become
credible again. Consequently, the attack on b should not be
ignored leading to the non-acceptance of {b}.

c

a1

a2

a3H : b

We are aware that there exist semantics which, for instance,
yield {b} as an extension for framework F , namely naive se-
mantics (Baroni, Caminada, and Giacomin 2018). However,
naive semantics also yields extension {b} for the self-attack
free framework F ′ = ({a, b}, {(a, b)}) which we find unsat-
isfactory. What we are aiming for is a semantics that limits
the effects of self-attacking arguments, but is as close as pos-
sible to Dung’s semantics whenever there is no self-attack.
Naive semantics clearly fails this requirement.

The idea underlying this paper is to weaken admissibility,
requiring counterattack only against proper, that is, not di-
rectly or indirectly self-defeating arguments. To the best of
our knowledge, such weaker notions of admissibility have
never been investigated. Interestingly, Baroni and Giacomin
(Baroni and Giacomin 2007) proposed a stronger variant
called strong admissibility which requires that defense is ulti-
mately rooted in the empty set. Consequently, only subsets
of the grounded extensions can be strongly admissible. We
will briefly discuss this concept in Section 6.

The structure of the paper is as follows. Section 2 provides
the necessary background material. The main contributions
of the paper are briefly summarised in the next three items:
• Introducing weak admissibility based on a recursive defini-

tion and showing that the motivating examples are handled
as desired. It is formally proven that weak admissibility
indeed extends classical admissibility and moreover, it is
insensitive regarding the deletion of self-loops. A general-
ized version of Dungs fundamental lemma is shown.

(Section 3)
• In the spirit of weak admissibility a new notion of defense,

so-called weak defense is presented. A series of formal
results show that the new notions are compatible as ap-
preciated in the classical case, e.g. any conflict-free set is
weakly admissible if and only if it weakly defends itself.

(Section 4)
• Defining weak complete semantics based on the newly

introduced notions as done in the classical theory. Pro-
vide an in-depth study of their properties including: subset

relations to each other as well as to their Dung-style coun-
terparts, universal definedness, uniqueness and the role of
self-attacking arguments. (Section 5)

Finally, we discuss and compare our results and present point-
ers for future work. Due to limited space we present the
proofs of the theorems only.

2 Background
We fix a non-finite background set U . An argumentation
framework (AF) (Dung 1995) is a directed graph F = (A,R)
where A ⊆ U represents a set of arguments and R ⊆ A×A
models attacks between them. In this paper we consider finite
AFs only (cf. (Baumann and Spanring 2015; 2017) for a
consideration of infinite AFs). For a, b ∈ A, if (a, b) ∈ R
we say that a attacks b as well as a attacks (the set) E given
that b ∈ E ⊆ A. Moreover, E is conflict-free in F (for short,
(E ∈ cf (F ) iff for no a, b ∈ E, (a, b) ∈ R. We say a set
E classically defends (or simply, c-defends) an argument
a if any attacker of a is attacked by some argument of E.
In this paper we consider so-called admissible, complete,
preferred and grounded semantics (abbr. ad , co, pr , gr ).
Each semantics returns a set of sets of acceptable positions
which are defined as follows (cf. (Baroni, Caminada, and
Giacomin 2018) for a recent overview).

Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (A).

1. E ∈ad(F ) iff E c-defends all its elements,

2. E ∈co(F ) iff E ∈ ad(F ) and for any x c-defended by E
we have, x ∈ E,

3. E ∈pr(F ) iff E is ⊆-maximal in co(F ) and

4. E ∈gr(F ) iff E is ⊆-minimal in co(F ).

3 Weak Admissibility
Dung’s definition of admissibility requires that an extension
E defends itself against all attackers. As we already men-
tioned, the core idea behind our revised version of admissi-
bility is to weaken this condition and only require defense
against reasonable arguments. To formalize this approach,
we use the so-called E-reduct of an AF which only contains
the arguments which are neither in E nor attacked by E.

Definition 3.1. Let F = (A,R) be an AF and let E ⊆ A.
The E-reduct of F is the AF FE = (E∗, R ∩ (E∗ × E∗))
where E∗ = A \ (E ∪ {a ∈ A | E attacks a}).

Intuitively, the E-reduct of F is the subframework of F
containing those arguments whose status still needs to be de-
cided, assuming the arguments in E are accepted. Moreover,
as a matter of fact, a set E is admissible in F iff E ∈ cf (F )
and E∗ contains no attacker of an argument a ∈ E. Consider
therefore the following illustrating example.

Example 3.2 (Reduct and Admissibility). The reduct F {b}
contains only argument c which does not attack b. Hence {b}
is admissible. However, c occurs in F {a} as well. Since c at-
tacks a, {a} does not defend itself and is thus not admissible.



a bc

F :

a bc

F {a} = F {b} :

Although the {a}-reduct from the previous example con-
tains an attacker of a, it is not necessarily an unreasonable
argument. In fact, the AF F from above contains a pair a
and b of conflicting arguments which is disturbed by some
dummy attacking a. To formalize that c is negligible in this
situation we consider the reduct F {a}. Since c attacks itself,
it cannot occur in any reasonable extension of F {a}. How-
ever, in general, what arguments are the negligible ones in
an E-reduct FE at hand? To solve this issue, we utilize the
following recursive definition.

Definition 3.3. Let F = (A,R) be an AF. E ⊆ A is called
weakly admissible (or w-admissible) in F (E ∈ adw(F )) iff

1. E ∈ cf (F ), and

2. for any attacker y of E we have y /∈
⋃
adw(FE).

The major difference between the standard definition of
admissibility and our new one is that arguments do not have
to c-defend themselves against all attackers: attackers which
do not appear in any w-admissible set of the reduct can be
neglected. In order to familiarize the reader with weak admis-
sibility, let us consider some examples to see our definition
at work.

Example 3.4 (Example 3.2 ctd.). In the previous example we
had F {a} = ({c}, {(c, c)}) where {c} is not conflict-free and
hence not w-admissible. Since the empty set is conflict-free
and not attacked by any argument we deduce adw(F {a}) =
{∅}. Now let us verify that {a} ∈ adw(F ). The following
observations justify the claim. First, {a} ∈ cf (F ) and more-
over, since

⋃
adw(F {a}) = ∅ no attacker of {a} (argument

c only) may be an element of
⋃
adw(F {a}). In anticipation

of Proposition 3.7 below we mention that {b} and ∅ are w-
admissible in F too due to their admissibility.

Example 3.5 (Odd loop). In order to see that no non-empty
conflict-free set is w-admissible in F consider E = {a1}.

a1

a2F :

a3

a1

a2F {a1} :

a3

The E-reduct of F contains a3 which attacks a1. Since a3
is unattacked in FE , it is w-admissible in FE which means
in turn that {a1} is not w-admissible. Due to symmetry, no
singleton is w-admissible in F justifying adw(F ) = {∅}.

Example 3.6 (Example 1.1 ctd.). Let us check that the new
notion of admissibility indeed handle the motivating exam-
ples as desired.

aF {b} : b

a1

a2

a3G{b} : b

The conflict-free set {b} is attacked by a or a3, respectively.
Neither of the attackers is contained in a w-admissible set
of the associated reducts F {b} or G{b} as already seen in
Examples 3.4 and 3.5. This means, we have {b} ∈ adw(F )
and {b} ∈ adw(G) as desired.

Recall the AF H . We argued that in this case, {b} should
not be w-admissible since the attacker a3 is now relevant.

c

a1

a2

a3H {b} : b

Indeed, since {c, a3} is admissible in H {b} we deduce its
w-admissibility (see Proposition 3.7 below). Hence {b} is
attacked by a3 ∈

⋃
adw(H {b}) and thus {b} /∈ adw(G) as

requested.

Let us proceed with some basic considerations. Since the
empty set does not possess any attacker it is w-admissible in
each AF. Moreover, the restriction to finite AFs guarantees the
well-definedness of the recursive procedure. In other words,
for any candidate set E the recursion will stop in finitely
many steps. Finally, w-admissibility indeed generalizes the
classical notion of admissibility as defined by Dung. This
means, we do not lose any admissible set if sticking to w-
admissibility as stated below.

Proposition 3.7. For any AF F , ad(F ) ⊆ adw(F ).

Definition 2.1 presents preferred extensions as ⊆-maximal
complete ones. In case of classical semantics one may alterna-
tively define an preferred extension as⊆-maximal admissible
one. This second variant will now be used for the weak vari-
ant of preferred semantics.

Definition 3.8. Let F = (A,R) be an AF, E ⊆ A
is called weakly preferred (or simply, w-preferred) in F
(E ∈ prw(F )) iff E is ⊆-maximal in adw(F ).

To illustrate the new preferred version and to compare it
with its Dung-style counterpart consider again the motivating
example G .

Example 3.9 (Example 3.6 ctd.). We already discussed that
the singleton {b} is w-admissible without being admissible.
This means, ad(G) = {∅} 6= {∅, {b}} = adw(G). Hence,
we obtain different preferred versions too, namely pr(G) =
{∅} 6= {{b}} = prw(G).

Let us now have a look at self-attacking arguments. As
extensions are required to be conflict-free by almost all rea-
sonable AF semantics, self-attacking arguments never have
a chance to be accepted. However, for no admissible-based
semantics it is possible to ignore these arguments since they
may influence the acceptance status of others. Our new no-
tion of w-admissibility does support the syntactical deletion



of self-attacking arguments, i.e. the status of an argument is
independent of any self-attacker.

For an AF F = (A,R) we use the shorthand F ◦ for the
restriction F|A◦ where A◦ = {a ∈ A | (a, a) /∈ R}. The
following main theorem proves the semantical insensitivity
of w-admissibility regarding self-attacker.

Theorem 3.10. Given an AF F = (A,R) and a semantics
σ ∈ {ad , pr}. We have σw(F ) = σw(F ◦).

Proof. It suffices to prove the claim for σ = ad since
adw(F ) = adw(F ◦) implies prw(F ) = prw(F ◦).

We will prove our claim by induction over the size |A| of
an AF F = (A,R). Remember that we consider finite AFs
only. The base case is clear.

(inductive step) Let n ∈ N and assume the claim holds
for any AF with at most n arguments. Consider an AF
F = (A,R) with |A| = n + 1. We will show E ∈ adw(F )
iff E ∈ adw(F ◦) for any E ⊆ A. In case of E = ∅ we
immediately obtain E ∈ adw(F ) and E ∈ adw(F ◦). From
now on we will assume E 6= ∅.
(⊆) LetE ∈ adw(F ). ThenE is conflict-free and no attacker
y of E occurs in a w-admissible extension of FE . Observe
that since E is conflict-free, E in particular does not contain
self-attacking arguments, so (FE)◦ = (F ◦)E . Moreover,
since E is non-empty, FE contains at most n arguments. By
our induction hypothesis, adw

(
FE
)
= adw

(
(FE)◦

)
. Con-

sequently, adw
(
FE
)
= adw

(
(F ◦)E

)
. Hence E is conflict-

free and no attacker y of E occurs in a w-admissible exten-
sion of (F ◦)E , that is, E ∈ adw(F ◦).
(⊇) We show the contrapositive. Let E /∈ adw(F ). Assume
E is conflict-free. Then E must be attacked by an argument
y which occurs in a w-admissible extension of FE , say Ey.
Due to the induction hypothesis, adw(FE) = adw

(
(F ◦)E

)
implying Ey ∈ adw((F ◦)E) as well. Consequently, E is
also attacked by a w-admissible extension of (F ◦)E , i.e.
E /∈ adw(F ◦). Finally, if E is not conflict-free, then ob-
viously E /∈ adw(F ◦).

The last central result we are going to present before in-
troducing weak defense is a generalized version of Dung’s
fundamental lemma, which states that if E is admissible and
c-defends a, then E ∪ {a} is admissible as well. It turns out
that this results extends to w-admissibility. We state it here
explicitly and use it later on in Section 5 to provide some
technical foundations.

Theorem 3.11. If F = (A,R) is an AF, E ∈ adw(F ) and
E c-defends a, then E ∪ {a} ∈ adw(F ).

Proof. The first observation we are going to make is that
E ∪ {a} is conflict-free: Since {a} occurs in the reduct FE ,
E does not attack a. So assume {a} attacks E. Since {a} is
unattacked in FE , {a} ∈ adw(FE). Hence if {a} attacks E,
then E is not w-admissible, a contradiction.

Consider now E ∪ {a}. For the sake of contradiction as-
sumeE∪{a} is not w-admissible. Then there is an extension
E′ ∈ adw(FE∪{a}) attacking E ∪ {a}.

So E′ is conflict-free and has no attacker in⋃
adw

((
FE∪{a})E′). Observe that E′ ∪ {a} is conflict-

free: E′ cannot attack {a} since the latter is c-defended
by E and thus unattacked in FE . It therefore must also
be unattacked in FE∪{a}. Moreover, {a} cannot attack E′

because otherwise, E′ could not be an extension of FE∪{a}.
Since the reduct can be computed in any order when con-

sidering conflict-free sets, we have(
FE∪{a}

)E′
=
((
FE
){a})E′

=
(
FE
)E′∪{a}

.

Thus E′ is conflict-free and has no attacker in⋃
adw

((
FE
)E′∪{a})

. Since E′ ∪ {a} is conflict-free and

{a} is unattacked in FE this means also that E′ ∪ {a} is

conflict-free and unattacked in
⋃

adw
((
FE
)E′∪{a})

. So

E′ ∪ {a} ∈ adw(FE).
Recall that E′ attacks E ∪ {a}. Since E′ ∪ {a} is conflict-

free, E′ attacks E. Hence, E′ ∪ {a} attacks E. We conclude
that there is a w-admissible extension of FE attacking E,
namely E′ ∪ {a}. Thus, E is not w-admissible, a contradic-
tion.

4 Weak Defense
The classical notion of defense requires that an argument a is
defended against every attacker. As defense is an important
concept in abstract argumentation, we seek for a notion of
weak defense, which we desire to have the following proper-
ties:

D1. Weak defense should generalize classical defense: if a
is c-defended by E, then a is w-defended by E as well.

D2. Weak defense should be compatible with weak admis-
sibility: if E is conflict-free, then E is w-admissible if
and only if it w-defends itself.

D3. The induced versions of complete semantics should ac-
cept at least as much as their Dung-style counterparts.

The following definition captures the idea that in order
to defend arguments X , a set E does not necessarily have
to counterattack each attacker y of X (as required in the
classical case). Whenever y is not “serious” enough - which
here means y fails to appear in at least one w-admissible set
of the reduct - then y can be disregarded if two additional
conditions are satisfied: y is not allowed to appear in E, and
X must be a reasonably trustworthy set, meaning that the
arguments of X are elements of one single w-admissible set.
These two additional conditions are required to satisfy the
desiderata.

Definition 4.1. Let F = (A,R) be an AF. Given two sets
E,X ⊆ A. We say E weakly defends (or w-defends) X iff
for any attacker y of X we have,

1. E attacks y, or (c-defense)
2. y /∈

⋃
adw(FE), y /∈ E and X ⊆ X ′ ∈ adw(F ).

Note that desideratum D1 is fulfilled due to the first option
of the definition above. Consider the motivating example G .



Example 4.2 (Example 3.9 ctd.). Let us verify that ∅ w-
defends {b}. Since b is attacked by a3, {b} is not c-defended
by ∅. However, the following three conditions are met: i)
trivially, a3 /∈ ∅, ii) since G∅ = G we deduce that a3 /∈⋃

adw
(
G∅
)
=
⋃

adw(G) = {b}, and iii) {b} ⊆ {b} ∈
adw(G). Thus, the second option of Definition 4.1 is satisfied.
Moreover, {b} w-defends itself.

Consider now a more involved example which does not
possess any non-trivial admissible or complete extension.
Example 4.3. The reader may verify that adw(F ) =
{∅, {a1}, {a2}, {a1, a2}, {b1}, {b2}, {b1, b2}}. For example,
take E = {a1, a2}. Since adw(FE) = {∅} we infer that
the remaining attacker b1 of E is not contained in any w-
admissible set of FE . Thus, E ∈ adw(F ).

b1

F :

b2 a2

a1 d1

b1

FE :

b2 a2

a1 d1

Let us verify now that ∅ w-defends {a1} and {b1}, but not
{a1, b1}. Since ∅ does not c-defend {a1}, we require the
second item of Definition 4.1: i) clearly, the attacker d1 of
a1 is not contained in ∅, ii) since F = F ∅ we deduce d1 /∈⋃

adw(F ∅) = {a1, a2, b1, b2}, and iii) {a1} is a subset of
{a1, a2}. Thus, ∅ w-defends {a1}. Due to symmetry, {b1} is
w-defended as well. However, since a1 and b1 do not occur
in the same w-admissible extension of F , {a1, b1} is not w-
defended by ∅. Furthermore, facing all mentioned results it
can be easily seen that E w-defends itself. The same applies
to {b1, b2} for symmetry reasons.

Let us prove some basic relations involving c-defense, w-
defense as well as w-admissibility.
Proposition 4.4. Given an AF F = (A,R) and two sets
E,X ⊆ A. We have

1. If E c-defends X , then E w-defends. X
(w-defends weakens c-defends)

2. If E w-defends X and E ∈ cf (F ), then X ∈ cf (F ).
(conflict-free transfer)

3. If E ∈ adw(F ), then E w-defends E.
(a w-adm set w-defends itself)

4. If E ∈ cf (F ) and E w-defends E, then E ∈ adw(F ).
(a conflict-free set which w-defends itself is w-adm)

We mention that desideratum D2 is an immediate conse-
quence of the last two items of the proposition above.

5 Weak Complete Semantics
Many argumentation semantics can be defined using Dung-
style admissibility and classical defense. For instance, com-
plete semantics requires that a set E has to be admissible and

any argument x being c-defended by E has to be contained
in E (cf. Definition 2.1). Since any admissible set c-defends
itself, complete semantics can be equivalently expressed in
terms of set defense as follows: First, E has to be admissible
and secondly, any superset X of E being c-defended by E
has to be contained in E as shown below.

Proposition 5.1. Let F = (A,R) be an AF. If E is admissi-
ble, then E is complete iff for any set E ⊆ X defended by E,
we have X ⊆ E as well.

We now introduce the weak variant of complete semantics
by using the equivalent characterization shown above.

Definition 5.2. Let F = (A,R) be an AF. A set E ⊆
A is called weakly complete (or just, w-complete) in F
(E ∈ cow(F )) iff E ∈ adw(F ) and for any X , s.t. E ⊆ X
and X w-defended by E, we have X ⊆ E.

We obtain the following non-trivial connection between w-
complete and w-preferred semantics which holds for the clas-
sical theory too, namely subset maximizing w-admissibility
is nothing else than subset maximizing w-completeness.
This coincidence can be seen as a further indication that w-
admissibility and w-defense are compatible even in a strong
formal sense.

Theorem 5.3. Let F = (A,R) be an AF. A set E ⊆ A is
w-preferred iff it is ⊆-maximal in cow(F ).

Proof. (⊆) Striving for a contraction we assume E ∈
prw(F ), i.e. E is ⊆-maximal in adw(F ) and E is not ⊆-
maximal in cow(F ). The latter condition may hold for two
reasons:

1. E /∈ cow(F ) or
2. E ∈ cow(F ) but not ⊆-maximal in cow(F ).

In the following we show that both options are impossible.

1. E /∈ cow(F ). Since E ∈ adw(F ) is given we deduce
there is an X , s.t. E ⊆ X and X w-defended by E. Due
to Statement 3 in Proposition 4.4 we have E ( X . As-
sume there is at least one attacker y of X , s.t. the sec-
ond condition of Definition 4.1 holds. Hence, there is
an X ′, s.t. X ⊆ X ′ ∈ adw(F ) contradicting the ⊆-
maximality of E in adw(F ) since E ( X ⊆ X ′. Con-
sequently, any attacker y of X is counter-attacked by E
(first condition of Definition 4.1). This means, X is c-
defended by E which implies that X is c-defended by X
too (monotonicity of c-defense). Moreover, X ∈ cf (F ) is
given (Statement 2, Proposition 4.4) which finally leads to
X ∈ adw(F ) (Statement 4, Proposition 4.4) contradicting
the ⊆-maximality of E in adw(F ).

2. E ∈ cow(F ) but not ⊆-maximal in cow(F ). Hence, there
is an other E′ ∈ cow(F ), s.t. E ( E′. By definition
of w-complete extensions we have E′ ∈ adw(F ) which
contradicts the ⊆-maximality of E in adw(F ).

(⊇) Assume now that E is ⊆-maximal in cow(F ) without
being ⊆-maximal in adw(F ). Due to w-completeness of E
we deduce E ∈ adw(F ). Since E is assumed to be not ⊆-
maximal in adw(F ) we deduce (due to finite assumption)
the existence of a proper superset E′ of E being ⊆-maximal



in adw(F ), i.e. E′ ∈ prw(F ). Now applying the already
shown direction (⊆) we deduce that E′ is ⊆-maximal in
cow(F ) in contradiction to the assumed ⊆-maximality of E
in cow(F ).

Now let us introduce the remaining prominent actor in
the field of complete semantics, namely the weak version of
grounded semantics.
Definition 5.4. Let F = (A,R) be an AF. A set
E ⊆ A is called weakly grounded (or w-grounded) in F
(E ∈ grw(F )) iff E is ⊆-minimal in cow(F ).

The following example illustrates w-complete extensions.
Note that by Definition 5.2 w-complete extensions can be
found among w-admissible ones only.
Example 5.5 (Example 4.3 ctd.). We have already seen
that ∅ w-defends {a1}. Hence, ∅ /∈ cow(F ) since
{a1} * ∅. We show that {a2} w-defends {a1, a2}
and is thus not w-complete. Since {a2} classically de-
fends a1, there is only one relevant attacker, namely b1.
We check the requirements of Definition 4.1, item 2:
i) b1 /∈ {a2} is clear, ii) adw

(
F {a2}

)
= {a1} as the reader

may straightforwardly verify, so b1 /∈
⋃
adw

(
F {a2}

)
, and

iii) {a1, a2} itself is w-admissible as we saw in Example 4.3.

b1

F :

b2 a2

a1

b1

F {a2} :

b2 a2

a1

Due to symmetry, {b2} /∈ cow(F ) either. One may ver-
ify that cow(F ) = {{a1}, {a1, a2}, {b1}, {b1, b2}}. Hence,
grw(F ) = {{a1}, {b1}}.

The reader may have surprisingly noticed that the exam-
ple considered above possesses two w-grounded extensions
which is impossible for the uniquely defined classical notion
of grounded semantics. Let us approach this feature carefully
by starting to examine the fundamental intersemantic rela-
tions between the newly introduced weak versions as well as
their classical counterparts.

The following proposition shows that well-known subset
relation of Dung-style semantics transfer to their weak ver-
sions. For the sake of completeness we add one of the most
important argumentation semantics, namely the stable se-
mantics (stb) (Dung 1995) as well as a further variation of
classical admissibility captured by so-called strong admissi-
ble sets (ads) firstly introduced in (Baroni, Caminada, and
Giacomin 2018).
Proposition 5.6. Let σ and τ be semantics. Then σ(F ) ⊆
τ(F ) for any F iff there is a directed path from σ to τ in the
following graph:

pr
co

ads

cf

ad

gr

stb

prw

cow

grw

adw

Figure 1: Subset Relations

We proceed with stating the universal definedness of any
newly introduced semantics.

Proposition 5.7. Given an AF F = (A,R) and a semantics
σ ∈ {ad , pr , co, gr}. We have, σw(F ) 6= ∅.

According to Proposition 5.6 we already know that neither
are w-complete (w-preferred) extension necessarily complete
(preferred) ones nor vice versa. Nevertheless, both versions
are not totally unrelated as shown below. More precisely, the
following proposition shows that one can find weak exten-
sions by augmenting a corresponding classical one.

Proposition 5.8. Given an AF F = (A,R) and a semantics
σ ∈ {co, pr}. If E ∈ σ(F ), then there is an Ew ∈ σw(F ),
s.t. E ⊆ Ew.

For complete semantics we may even show the converse
result, i.e. a weak complete extensions always contains a
classical complete part. The proof of this result is based on
the observation that w-complete extensions contain all their
classically defended arguments. Since this result is interesting
on its own, we state it explicitly here.

Proposition 5.9. Let F = (A,R) be an AF. IfEw ∈ cow(F )
and Ew c-defends a, then a ∈ Ew.

Proposition 5.10. Let F = (A,R) be an AF. If Ew ∈
cow(F ), then there is an E ∈ co(F ), s.t. E ⊆ Ew.

One may wonder whether the result above does hold for
preferred semantics too. We mention that this is not the case
(consider AF F depicted in Example 3.2).

Let us turn now to w-grounded semantics. In the classi-
cal case the grounded extension is uniquely determined and
moreover, it meets the requirement of a ⊆- least complete
extension (although introduced as a ⊆-minimal one only).
As an analogy to Propositions 5.8 and 5.10 we obtain the
following revealing result for w-grounded semantics. Any w-
grounded extension contains at least the arguments which can
be traced back (via c-defence) to undisputable arguments, i.e.
arguments which are not questioned/attacked by any other ar-
gument. In other words, although w-grounded extensions are
not uniquely determined they always contain a common core,
namely the classical grounded extension G and moreover
(due to universal definedness), G can always be extended to
a w-grounded extension.

Proposition 5.11. Given F = (A,R) and {G} = gr(F ).



1. If Gw ∈ grw(F ), then G ⊆ Gw and
2. there is a set Gw ∈ grw(F ), s.t. G ⊆ Gw.

According to Proposition 5.8 and the above shown results
we have finally shown that the weak versions of complete
semantics do not reject any argument accepted by their Dung-
style counterparts. This means, desideratum D3 is indeed
fulfilled.

As a by-product we obtain that w-complete extension
always contain the classical grounded part. This property
might be interesting for finding w-complete extensions since
grounded semantics can be computed in polynomial time
(Dvorák and Dunne 2018).
Corollary 5.12. For any F = (A,R), semantics σ ∈
{gr , pr , co} and gr(F ) = {G}. If Ew ∈ σw(F ), then
G ⊆ Ew.

In Theorem 3.10 we observed that self-attacking arguments
do not influence w-admissible extension of an AF. This result
even extends to complete semantics. The key feature for
showing this assertion is the following proposition stating
that in the crucial cases w-defends is not influenced by self-
attacking arguments.
Proposition 5.13. Let F = (A,R) be an AF. Given E,X ⊆
A, s.t. E ∈ cf (F ) and X ⊆ A◦. Then. E w-defends X in F
iff E w-defends X in F ◦.

Having Proposition 5.13 at hand we are now able to prove
the main theorem stating the independence of self-attacking
arguments regarding w-complete as well as w-grounded ex-
tensions.
Theorem 5.14. Given an AF F = (A,R) and a semantics
σ ∈ {co, gr}. We have σw(F ) = σw(F ◦).

Proof. It suffices to prove the claim for σ = co since
cow(F ) = cow(F ◦) implies grw(F ) = grw(F ◦).
(⊆) Let E ∈ cow(F ). By definition, E ∈ adw(F ) and
for any X , s.t. E ⊆ X and X w-defended by E, we have
X ⊆ E. First observe that E ∈ adw(F ◦) (Theorem 3.10).
So let X ⊆ E. Assume X is not w-defended by E in F . We
have to show that X is not w-defended in F ◦, either. Since E
is conflict-free, this is guaranteed by Proposition 5.13 when-
ever X does not contain self-attacking arguments. Otherwise
X cannot be defended in F ◦ due to conflict-free transfer
from Proposition 4.4.
(⊇) We show the contrapositive, i.e. assume E /∈ cow(F ).
We may assume E ∈ adw(F ), otherwise we apply The-
orem 3.10 to obtain E /∈ cow(F ◦). Let E ⊆ X be w-
defended by E with X * E. We deduce that X is conflict-
free due to conflict-free transfer. It thus does not contain
any self-attacking arguments. By Proposition 5.13, E is also
w-defended in F ◦. To summarize, X satisfies E ⊆ X , is
w-defended by E in F ◦, but X * E. So E /∈ cow(F ◦),
either concluding the proof.

6 Summary and Related Work
Based on the motivation that the effect of self-defeating ar-
guments should be limited, we developed in this paper new
semantics for abstract argumentation frameworks which are
based on weakened versions of admissibility and defense.

We introduced refined versions of complete, preferred and
grounded semantics and thoroughly studied their properties
and interrelationships. The new semantics lead to more in-
formative extensions and provide us with reasonable sets of
arguments where classical Dung-style semantics fail, see for
instance Example 4.3. Moreover, in contrast to their classical
counterparts, they also allow for certain syntactic manipula-
tions (deletion of self-attacking arguments) without affecting
the meaning of the frameworks. This unique feature can be
used as preprocessing step for any system engaged with the
solution of central reasoning problems for abstract argumen-
tation (Dvorák et al. 2019). Beside this specific use case
we expect that our new semantics are widely applicable: it
will be interesting to investigate whether approaches which
directly or indirectly rest upon Dung semantics - like the
treatment of preferences in (Amgoud and Cayrol 1998), the
assumption-based approach to argumentation (Toni 2014), or
the ASPIC+ framework (Modgil and Prakken 2014), to name
a few prominent examples - can benefit from our concepts.

There are numerous papers studying notions of self-defeat
in argumentation. Such studies can be traced back at least to J.
Pollock (Pollock 1987), one of the pioneers of computational
models of argumentation. In his study of argument-based
defeasible reasoning, which preceded Dung’s seminal paper,
he proposed a semantics similar to grounded semantics. This
semantics considers self-defeat via self-attack, but not via
odd loops of length ≥ 3. We will focus in this section on
approaches which, explicitly or implicitly, modify some of
the notions underlying Dung’s work.

As mentioned in the Introduction, in (Baroni and Giacomin
2007) a stronger variant of admissibility called strong admis-
sibility is proposed. Their purpose was to highlight some
of the intrinsic properties of grounded semantics and they
showed (among other things) that Dung’s grounded extension
is the ⊆-greatest strongly admissible set. In further studies,
strong admissibility was used to investigate the computational
behaviour of discussion-based proof procedures (Caminada
2014) and its strong equivalence as well as verifiability was
analyzed (Baumann, Linsbichler, and Woltran 2016). None of
these papers discusses options to modify classical semantics
based on a new notion of admissibility.

Another relevant line of research regarding basic require-
ments of argumentation semantics are conflict-tolerant ap-
proaches. As the name suggests, such semantics may return
extensions which are not necessarily conflict-free (Arieli
2012). An interesting example is weighted argument systems
as defined in (Dunne et al. 2011). Here each attack is as-
signed a numerical weight and conflicts within extensions are
allowed as long as a certain predefined inconsistency budget
is not exceeded. Although this also leads to extensions which
are not admissible in Dung’s original sense, it is substantially
different from what we do. Rather than allowing conflicts
to a certain extent, we limit the effects of a specific type of
arguments but insist on conflict-freeness of extensions. The
two approaches thus address complementary issues. They
certainly could be combined in a straightforward manner. An-
other conflict-tolerant approach is so-called graded semantics
(Grossi and Modgil 2015). This approach relies on the syntac-
tic structure of AFs only. More precisely, in order to obtain



generalized versions of Dung’s semantics it takes the number
of attackers and defenders into account. Checking to which
extent both approaches can be combined is on our agenda.

We also plan a systematic study of further properties of
our semantics like the ones discussed in (Baroni, Cami-
nada, and Giacomin 2018) and (van der Torre and Vesic
2018). A prominent example is SCC-recursiveness. Table
1 in the latter paper describes 15 different semantics for ar-
gumentation frameworks together with principles they sat-
isfy. It turns out that all these semantics either satisfy ad-
missibility (each extension is admissible) or naivety (each
extension is a maximal conflict-free set). As an initial ob-
servation we would like to mention that our semantics (in-
tentionally) do not belong to any of these two categories,
which shows that they significantly differ from existing
semantics.2 Furthermore, there is the recently introduced
research direction of inconsistency in abstract argumenta-
tion theory which deals with possible repairs of AFs that
prevent one from drawing any plausible conclusion, i.e.
no argument is accepted (Baumann and Ulbricht 2018;
Ulbricht 2019). It will be interesting to see how weak
admissibility-based semantics behave in this regard.

In addition, we plan to study computational aspects of the
new semantics (complexity and algorithms) as well as the
possibility of transferring the new concepts of admissibility
and defense to further classical semantics. It will also be inter-
esting to see whether the ideas underlying our approach can
be fruitfully applied to other AI formalisms like for instance
answer set programming (Brewka, Eiter, and Truszczynski
2011). We believe the concepts introduced here may turn
out to be the basis for a completely new line of fundamental
research in abstract argumentation.
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