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Restricted Ambiguity in Weighted Automata

Given a nondeterministic (weighted) finite automaton A over Σ:
I Call a run from an initial state to a terminal state successful.
I Let AmbA : Σ∗ → N count successful runs of A.

The automaton A is:
I Unambiguous if AmbA(w) ≤ 1 for all w ∈ Σ∗.
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I k-ambiguous for k ≥ 1 if AmbA(w) ≤ k for all w ∈ Σ∗.
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a:1 a:2 a:k

1 1 11 1 1

I Finitely ambiguous if it is k-ambiguous for some k .
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Restricted Ambiguity in Weighted Automata: Why?

Decision problems may become easier:
I Determinisability is decidable for polynomially ambiguous

tropical automata (D. Kirsten and S. Lombardy, 2009).
I Equivalence of finitely ambiguous tropical automata

is decidable (K. Hashiguchi, K. Ishiguro, and S. Jimbo, 2002).
I The gap emptiness problem is decidable for polynomially

ambiguous probabilistic automata (L. Daviaud et al., 2021).
I . . .

Natural classes of series can be characterised:
I Series defined by weighted first-order logics and their

restrictions (M. Droste and P. Gastin, 2019).
I Unambiguous series over fields are exactly the Pólya series

(J. P. Bell and D. Smertnig, 2021).
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Finitely and Polynomially Ambiguous Automata. . .

I Degree of ambiguity does not depend on weights. . .
I . . . so we may recall:

Theorem (A. Weber and H. Seidl, 1991)
A trim finite automaton is:
(i) Polynomially ambiguous iff there is no state q with two

distinct runs from q to q upon some w .

q ww

(ii) Finitely ambiguous iff there are no distinct states p, q with
runs upon some w from p to p, from p to q, and from q to q.

p qw
w

w
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. . . Over Unary Alphabets

The characterisations take a simpler form for unary automata:

Theorem
A trim finite automaton over a unary alphabet is:
(i) Polynomially ambiguous iff its strongly connected components

are all either single vertices or directed cycles.
(ii) Finitely ambiguous iff, in addition to (i), there is no run

passing through two distinct directed cycles.
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I Rat(S ,Σ) the set of all rational series over S and Σ, i.e.,

series realised by unrestricted automata over S and Σ.
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Ambiguity Hierarchies

Given a semiring S and alphabet Σ, denote by:
I Det(S ,Σ) the set of all series realised by deterministic

weighted automata over S and Σ.
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Ambiguity Hierarchies

Given a semiring S and alphabet Σ, denote by:
I UnAmb(S ,Σ) the set of all series realised by unambiguous

weighted automata over S and Σ.
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Ambiguity Hierarchies

Given a semiring S and alphabet Σ, denote by:
I k-Amb(S ,Σ), for k ≥ 1, the set of all series realised by

k-ambiguous weighted automata over S and Σ.
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Ambiguity Hierarchies

Given a semiring S and alphabet Σ, denote by:
I FinAmb(S ,Σ) the set of all series realised by finitely

ambiguous weighted automata over S and Σ.

Rat(S,Σ)

FinAmb(S,Σ)
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Ambiguity Hierarchies

Given a semiring S and alphabet Σ, denote by:
I PolyAmb(S ,Σ) the set of all series realised by polynomially

ambiguous weighted automata over S and Σ.

Rat(S,Σ)

PolyAmb(S,Σ)

FinAmb(S,Σ)

UnAmb(S,Σ)

Det(S,Σ)



Ambiguity Hierarchies

Given a semiring S and alphabet Σ, denote by:
I FinSeq(S ,Σ) the set of all series realised by finitely sequential

weighted automata over S and Σ.

Rat(S,Σ)

PolyAmb(S,Σ)

FinAmb(S,Σ)

UnAmb(S,Σ)

Det(S,Σ)FinSeq(S,Σ)



Ambiguity Hierarchies

We obtain the following hierarchies for each S and Σ:
I The ambiguity hierarchy:

Det(S ,Σ) ⊆ UnAmb(S ,Σ) ⊆ FinAmb(S ,Σ) ⊆
⊆ PolyAmb(S ,Σ) ⊆ Rat(S ,Σ).

I The finite ambiguity hierarchy:
k-Amb(S ,Σ) ⊆ (k + 1)-Amb(S ,Σ) for all k ≥ 1

with
∞⋃
k=1

k-Amb(S ,Σ) = FinAmb(S ,Σ).

I Finite sequentiality relates to the above as follows:
Det(S ,Σ) ⊆ FinSeq(S ,Σ) ⊆ FinAmb(S ,Σ).

Which of these inclusions are strict depending on S and Σ?
I A trivial case: Det(S ,Σ) = Rat(S ,Σ) for all alphabets Σ

when the semiring S is locally finite.
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Ambiguity Hierarchy over The Tropical Semiring Nmin

I Let Σ contain at least two different letters.
I. Klimann et al. (2004):
I Det(Nmin,Σ) ( UnAmb(Nmin,Σ) ( FinAmb(Nmin,Σ).

D. Kirsten (2008):
I FinAmb(Nmin,Σ) ( PolyAmb(Nmin,Σ).

F. Mazowiecki and C. Riveros (2018):
I PolyAmb(Nmin,Σ) ( Rat(Nmin,Σ).

Theorem
If |Σ| ≥ 2, the ambiguity hierarchy over Nmin and Σ is strict.

A. Maletti et al. (2021):
I The result lifted to weighted tree automata.

S. Gaubert (1994) / A. Bonnier-Rigny and D. Krob (1994):
I Different story for unary alphabets.
I Det(Nmin, {a}) ( UnAmb(Nmin, {a}) = Rat(Nmin, {a}).
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Ambiguity Hierarchies over Q

Theorem (C. Barloy et al., 2020)
The ambiguity and finite ambiguity hierarchies over Q are strict
already for unary alphabets:

Det(Q, {a}) ( UnAmb(Q, {a}) ( FinAmb(Q, {a}) (
( PolyAmb(Q, {a}) ( Rat(Q, {a}).

and

k-Amb(Q, {a}) ( (k + 1)-Amb(Q, {a}) for all k ≥ 1.

I Motivation coming from the study of decision problems
for linear recurrence sequences.

I Techniques often largely dependent on the structure of Q.
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Unary Weighted Automata over Fields

I Realise the univariate rational series, i.e., the coefficient
sequences are described by linear recurrences.

I Linear representation of A over F and Σ = {a} by:
I A row vector i of initial weights.
I A square matrix A of transition weights.
I A column vector f of final weights.

I The coefficient at at in ‖A‖ is given by iAtf.
Via the Jordan canonical form, one obtains the classical expression

(
‖A‖, at

)
=

∑
λ∈sp(A)

α(λ)−1∑
j=0

cλ,j

(
t

j

)
λt−j .

I sp(A) is the spectrum of A over F;
I α(λ) is the algebraic multiplicity of the eigenvalue λ;
I cλ,j ∈ F are uniquely determined constants.

Distinct functions f (t) =
(t
j

)
λt−j are linearly independent.
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Our Questions

Given a field F and alphabet Σ, which of the inclusions

Det(F,Σ) ⊆ UnAmb(F,Σ) ⊆ FinAmb(F,Σ) ⊆
⊆ PolyAmb(F,Σ) ⊆ Rat(F,Σ)

and
k-Amb(F,Σ) ⊆ (k + 1)-Amb(F,Σ) for k ≥ 1

are strict?
I (How) do the answers depend on the properties of F?
I (How) do the answers differ for Σ unary vs. arbitrary?
I How does finite sequentiality fit into this picture?

What was known until recently:
I None of the inclusions is strict for F locally finite.
I Det(F, {a}) ( UnAmb(F, {a}) when F is not locally finite.
I All inclusions are strict already for Σ = {a} when F = Q

(C. Barloy et al., 2020).
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The Finite Ambiguity Hierarchy

Theorem (K., 2022)
When F is not locally finite, k-Amb(F, {a}) ( (k + 1)-Amb(F, {a})
holds for all k ≥ 1.
I F contains an element α of infinite multiplicative order.
I Let (r , at) = αt + α2t + . . .+ α(k+1)t for all t.
I Then r ∈ (k + 1)-Amb(F, {a}):

1 2 . . . k + 1

a:α a:α2
a:αk+1

1 1 11 1 1

I Every A realising r “needs” the eigenvalues α, α2, . . . , αk+1.
I No cycle has two such eigenvalues in common

(characteristic polynomials of cycles take the form x` − a).
I A “needs” k + 1 cycles with a successful run through each

upon every at with t sufficiently large.
I A cannot be k-ambiguous, so r 6∈ k-Amb(F, {a}).
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upon every at with t sufficiently large.
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the field F is not locally finite.
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FinAmb(F,Σ) vs. PolyAmb(F,Σ): Unary Alphabets

I Let r be a series such that (r , at) = t for all t ≥ 0.
I C. Barloy et al.: r ∈ PolyAmb(Q, {a}) \ FinAmb(Q, {a}).

Trivial Generalisation (K., 2022)
For F of characteristic 0, r ∈ PolyAmb(F, {a}) \ FinAmb(F, {a}).

No longer true in characteristic p > 0:
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FinAmb(F,Σ) vs. PolyAmb(F,Σ): Unary Alphabets

Theorem (K., 2022)
Let F be an algebraically closed field of characteristic p > 0.
Then PolyAmb(F, {a}) = FinAmb(F, {a}).

Theorem (K., submitted)
Let F be an arbitrary field of characteristic p > 0.
Then PolyAmb(F, {a}) = FinAmb(F, {a}).

Corollary
The inclusion FinAmb(F, {a}) ⊆ PolyAmb(F, {a}) is strict iff F is
of characteristic 0.

A rough idea:
I All nonzero eigenvalues come from directed cycles.
I When F is of characteristic p > 0, lengthening a cycle may

increase multiplicities of its eigenvalues.
I There is no need to go through more cycles in a single run.
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FinAmb(F,Σ) vs. PolyAmb(F,Σ): Larger Alphabets

Theorem (K., submitted)
Let F be a field that is not locally finite and Σ contain at least two
letters. Then FinAmb(F,Σ) ( PolyAmb(F,Σ).

Corollary
Let Σ contain at least two letters. Then the inclusion
FinAmb(F,Σ) ⊆ PolyAmb(F,Σ) is strict iff F is not locally finite.
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Proof idea:
I Let α ∈ F be of infinite multiplicative order.
I Let Σ = {0, 1} and (r , a1 . . . at) =

∑t
k=1 akα

t−k .

1:1

{0, 1}:1 {0, 1}:α

1 1

I Binary words evaluated in base α ∈ F instead of 2.
I Suppose r is realised by a k-ambiguous automaton A.
I Consider words of the form wt = (10t)k+1.
I Each f (t) = (r ,wt0+tM) =

∑k+1
j=1 cjλ

t
j (λj ’s distinct, cj 6= 0).

I For suitable t0 and M, (‖A‖,wt0+tM) is a linear combination
of at most k functions λt (a pumping argument).

I Linear independence  (‖A‖,wt0+tM) 6= f (t)  ‖A‖ 6= r .
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I Consider words of the form wt = (10t)k+1.
I Each f (t) = (r ,wt0+tM) =

∑k+1
j=1 cjλ

t
j (λj ’s distinct, cj 6= 0).

I For suitable t0 and M, (‖A‖,wt0+tM) is a linear combination
of at most k functions λt (a pumping argument).

I Linear independence  (‖A‖,wt0+tM) 6= f (t)  ‖A‖ 6= r .
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PolyAmb(F,Σ) vs. Rat(F,Σ): Unary Alphabets

In contrast to the result of C. Barloy et al. over Q:

Theorem (K., 2023)
Rat(F, {a}) = PolyAmb(F, {a}) for F algebraically closed.

Proof sketch:
I Consider an arbitrary unary weighted automaton over F with

linear representation given by i, A, and f.
I Transform A into its Jordan canonical form J = PAP−1, which

again is a matrix over F (thanks to algebraic closedness).
I Take an automaton represented by iP−1, J, and Pf.
I This is equivalent to the original one, as iP−1JtPf = iAtf. . .
I . . . and polynomially ambiguous, as J is upper triangular.
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PolyAmb(F,Σ) vs. Rat(F,Σ): Unary Alphabets

When F is not algebraically closed, we may use:

Theorem (K., 2023)
If there is an irreducible p(x) ∈ F[x ] not dividing any xn − a with
n ∈ N \ {0} and a ∈ F, then PolyAmb(F, {a}) ( Rat(F, {a}).

Proof sketch:
I Let p(x) = xm + am−1x

m−1 + . . .+ a1x + a0 and consider its
companion matrix:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −am−1

 .

I Let A be represented by i = (1, 0, . . . , 0), A, and f 6= 0.
I Suppose A has a polynomially ambiguous equivalent B

represented by j, B, g.
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PolyAmb(F,Σ) vs. Rat(F,Σ): Unary Alphabets

When F is not algebraically closed, we may use:
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I Hence p(x) is the minimal polynomial of λ over F and divides

the characteristic polynomial of B.
I As the strongly connected components of B are single vertices

and cycles, this takes a form

x`
s∏

j=1

(xnj − aj).

I p(x) divides some of the factors: a contradiction.
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PolyAmb(F,Σ) vs. Rat(F,Σ): Unary Alphabets

Corollary
PolyAmb(F, {a}) ( Rat(F, {a}) when some irreducible p(x) ∈ F[x ]
has roots ν, ξ ∈ F such that νn = ξn ∈ F never holds with n > 0.

I Such a polynomial turns out to exist over every other than
algebraically closed field of characteristic 0 – at least.

When F ( F is an uncountable field of characteristic 0:
I For any irreducible polynomial p(x) of degree at least 2,

at least one p
(
x−1
a

)
with a ∈ F \ {0} has the desired property.

I Proof via a cardinality argument.
When F ( F is a countable field of characteristic 0:
I The transcendence degree of F over Q is at most ℵ0.
I F is isomorphic to a field Q(S) ⊆ C for some S ⊆ R.
I It suffices to focus on proper subfields of Q(S), over which

such a polynomial can be found.
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Conjecture
Let Σ be an alphabet containing at least two letters. Then
the inclusion PolyAmb(F,Σ) ⊆ Rat(F,Σ) is strict if and only if
the field F is not locally finite.
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Finite Sequentiality

I Different results for unary and for larger alphabets.

Theorem (K., 2022)
FinAmb(S , {a}) = FinSeq(S , {a}) for any commutative semiring S .

Theorem (K., submitted)
When F is not locally finite and Σ contains at least two letters,
FinSeq(F,Σ) ( FinAmb(F,Σ).

Separating example:
I Let α ∈ F be of infinite multiplicative order.
I Let r =
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t∈N\{0} (atb + αt atbb)

)∗
.
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Conclusions

The ambiguity hierarchy:
I Det(F,Σ) ⊆ UnAmb(F,Σ) ⊆ FinAmb(F,Σ) both strict

iff F is not locally finite (regardless of Σ).
I FinAmb(F,Σ) ⊆ PolyAmb(F,Σ) strict for |Σ| ≥ 2

iff F is not locally finite.
I FinAmb(F, {a}) ⊆ PolyAmb(F, {a}) strict

iff F is of characteristic zero.
I PolyAmb(F,Σ) ⊆ Rat(F,Σ) understood only partially:

I Strict when F is of characteristic zero and not algebraically
closed.

I Not strict when Σ = {a} and F is algebraically closed.
I Not strict when F is locally finite.
I Open in the remaining cases.

The finite ambiguity hierarchy:
I Strict iff F is not locally finite (regardless of Σ).

FinSeq(F,Σ) ⊆ FinAmb(F,Σ):
I Strict iff F is not locally finite and |Σ| ≥ 2.
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