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Krohn-Rhodes

Theorem

Any (letter-to-letter) sequential transducer & can be realised by a cascade
product of reset or permutation transducers:
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Krohn-Rhodes

Reset or Permutation automatas:
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Theorem

-Rhodes

* Any regular language can be accepted by a cascade product of reset or
permutation automata.
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* Any regular language can be accepted by a cascade product of reset or
permutation automata.

Theorem

* Any aperiodic language can be accepted by a cascade product of reset
automata.

Reset or Permutation automata:
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KR proof for aperiodic

on|L on|M on|H
0ff|0 OffIO off | O

+|H +|H

* |[f we ignore on and off

State 1={+,— }*——(+ —)*

» With A = {on, off, +, — } and B = {on, off}
State 1 = A* — B* — B* (+ B* — B*)*
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KR proof for aperiodic

Given a PastLTL formula ¢, we will implement 9¢ with a transducer 5’7¢ constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since
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KR proof for aperiodic

o
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Given a PastLTL formula ¢, we will implement 9¢ with a transducer 5’7¢ constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since
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Given a PastLTL formula ¢, we will implement H¢ with a transducer
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

17

@

KR proof for aperiodic

constructed




Given a PastLTL formula ¢, we will implement Qw with a transducer J _ constructed

@
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since
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Mazurkiewicz Iraces

Architecture

P =11,2,3) 1 C
Z:{a,b,c,d,e} o d ¢ d
loc(a) = {1,2} b

loc(b) = {2,3) 3 e

loc(c) = {1}

loc(d) = {2}

e set of traces denoted Tr(X, <P, loc) or simply Tr(2)

loc(e) = {3} ® Trace Language: L C Tr(X)
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Concatenation, Independence,
Commutation, Monoid

1 C C
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Concatenation, Independence,
Commutation, Monoid

C

C

e x [y iff loc(x) Nloc(y) =&
eale

®ed-e=¢€¢-d

e Tr(2) with trace concatenation is a monoid

® free partially commutative monoid

o . C Tr(X)is reqularif L = n~1(n(L))
for some morphism n. Tr(X) — M (finite monoid)
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Asynchronous automata (Zielonka)

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

in _.in

. s = (S{”, s,', $5') global initial state

» [ global accepting states



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [ global accepting states



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [ global accepting states

0.: 91 = 9



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [ global accepting states

0.: 91 = 9
Op: 9y X 83 = 55 X 53



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [ global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 55
07: 99 = 5



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [ global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 53
07: 99 = 5
0,: 9 XS = 5§ XS,



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [ global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 55
07: 99 = 5
0,: 9 X5 = 5 X5,
0,: 93 = &3



Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

« [ global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 55
07: 99 = 5
0,: 9 X5 = 5 X5,
0,: 93 = &3



Asynchronous automata (Zielonka)

o = ({Si}iegj’ {éa}aEZ’Sm’ F)

| i C 2 1 C 5 « S local states for process i
. d e 0, transition function for action a
) 2 > d 4 2 d / | . s = (Sf”, Sé”, S§”) global initial state
gin b 1 2 b 2 « [ global accepting states
3 = € -
0.: 91 = 9
_‘ o _ o _ G X 83— 5 X S;
| Theorem (Zielonka, 1987) 0gt 9y = 9y
| Asynchronous Automata = Regular Trace Languages 040 91 X3y = 51 X 5,
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Asynchronous (letter-to-letter) transducer &

o ({S }legﬁa {561}61629 m)
* Hy- S - F

1 51 C 2 1 C
0 ) 1
2 Sén b 3 d 4 2 d 4 b 2
Sén 0 |1 e 3 0

0: Tr(X) - Tr(Z XTI

In the strict past,
the last event on process 3 is below
the last event on process 2
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0: Tr(X) - Tr(Z XTI

st C 2 1 C 3
0 d 1 ['=1{0,1}and Y; <Y,
Sén 3 d 41112 d 4 _2 In the strict past,
b 1 1 b the last event on process 3 is below
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1 =
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Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

I = ({Si}ieg, 0.} s, {//ta}) is local if at most one process is non-trivial (|5, | # 1)

Corollary: Zielonka’s theorem
Asynchronous Automata = Regular Trace Languages
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Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Bonus: Using Krohn-Rhodes theorem
Each local asynchronous transducer & can be chosen to be (on its non-trivial component)

ToUZ, oUZ, < < @« ©

Z2
Reset - %2 Permutation

2
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Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Proof sketch:
* Design a local and past propositional dynamic logic (locPastPDL)

« State/Event formulas . =aleVo|e| ()
» Program/Path expressions 7 :=¢@? |« |n+7x|xn x| x*
* Prove that event formulas are expressively complete wrt regular past predicates (difficult)

* For each event formula ¢, construct by structural induction a cascade product of local
asynchronous transducers computing its labelling function ‘940 (easier)

29
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Propositional Dynamic Logic

* First introduced to reason about programs (Fischer, Ladner 1979)
» State formulas . =ploeVve|e|{(t)e

» Program expressions ri=@?|x=¢e|lnt+n|n-n|nx*
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Propositional Dynamic Logic

* First introduced to reason about programs (Fischer, Ladner 1979)

e State formulas p:=ploVve|e| (e
» Program expressions ri=@!|\x=el|ln+rn|rn -n|rx*
e If @ then 7, else x, (p? -m)+ (! - )

» While ¢ do x; od; «, (@? )™ @?-m,

* |nterpretation over words: Linear Dynamic Logic (Giacomo, Vardi 2013)

Regular word languages = MSO definable = LDL definable
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0 d d - 2
b b
3 € @dVY,c) S, b

((@V(=))? <) )b
» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32



Past PDL for Iraces

1 C C

2 d d —

3 € —

» Sentences/ Trace formulas @ ::=EM;p | OV D | =D

» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

33



Past PDL for Iraces

I'FEEM;c

1 C C

2 d d —

3 € —

» Sentences/ Trace formulas @ ::=EM;p | OV D | =D

» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

33



Past PDL for Iraces

TEEM e ABMs (A (y - (@Vd)?- =) )b)

1 C C

2 d d —

3 € —

» Sentences/ Trace formulas @ ::=EM;p | OV D | =D

» State/Event formulas . =aleVe|e| (D
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Open problem
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Thank you for your attention!
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