Cascade Decomposition of
Asynchronous Zielonka Automata

Paul Gastin
LMF, ENS Paris-Saclay, IRL RelLaX

Joint Work with Bharat Adsul (IIT Bombay), Saptarshi Sarkar (IIT Bombay)
and Pascal Weil (LaBRI, Univ. Bordeaux)

Based on CONCUR’20, LMCS’22, CONCUR’22 and work in progress

1

Outline

Labelling functions, sequential transducers and cascade product

Krohn-Rhodes theorem for aperiodic/regular word languages

Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata
Asynchronous labelling functions, transducers and cascade product

Propositional dynamic logic for traces

Conclusion

Labelling function ¢: 2% — '™

Z:{C),_,+}andF:{OaLaMaH}

letter-to-letter sequential transducer = (Q, do> 2 0, 1, ,u)

Composition - Cascade product

Composition - Cascade product

 Composition of labelling functions

G G
P IS R RN | L

Composition - Cascade product

 Composition of labelling functions

0,

s O s % e

 Cascade product of (letter-to-letter) sequential transducers

Composition - Cascade product

 Composition of labelling functions

5((]?9 Q)a Cl) — (51(]?9 Cl), 52(q9 /’tl(pa Cl)))

‘91 6)2
, % > TT* u((p,q),a) = u,(q, u(p,a))

YK

 Cascade product of (letter-to-letter) sequential transducers

> T, I 7, I
(Qla 01, an» ﬂ1) (Qza 0y, 615”, //tz)

T 10T 2= (01X 050,(q/" 4", 1)

Q] on
() | off

+ | off
- | off

+ | off \ + | +
on
off Ld__O -
L')Ioff
on|L on| M on|H
off | O off | O off | O

Outline

Labelling functions, sequential transducers and cascade product

Krohn-Rhodes theorem for aperiodic/regular word languages

Model of concurrency:. Mazurkiewicz traces and asynchronous Zielonka automata
Asynchronous labelling functions, transducers and cascade product

Propositional dynamic logic for traces

Conclusion

Krohn-Rhodes

Theorem

Any (letter-to-letter) sequential transducer & can be realised by a cascade
product of reset or permutation transducers:

gzglogzo"‘ogn

Reset or Permutation is a property of the underlying input automaton:

Reset or Permutation is a property of the underlying input automaton:

2

Theorem

Krohn-Rhodes

Any (letter-to-letter) sequential transducer & can be realised by a cascade
product of reset or permutation transducers:

S UZ,

95910920‘“°g

n

INUPIA

2
eset - U,

2

Krohn-Rhodes

Theorem
Any (letter-to-letter) sequential transducer & can be realised by a cascade
product of reset or permutation transducers:

95910920“‘°g

Reset or Permutation is a property of the underlying input automaton:

S0 UZ, 50U,

2
Reset - %, Permutation

2

)
‘M e
-

| Permutation |

B R
| off - | - .
| Permutation |
S
O | off
on|L on| M on|H I
off | O off | O off | O - _ I
-IL +| M +|H ()+|H | Neither Reset
0 L ewe P nor Permutation

10

10

)
‘M e
. o

| Permutation |

10

- -
L L O
R
| Permutation |

10

- -
L L O
R
| Permutation |

Krohn-Rhodes

Reset or Permutation automatas:

S0 UZ, 50U,
Z2

Reset - %, Permutation

2

11

Theorem

-Rhodes

* Any regular language can be accepted by a cascade product of reset or
permutation automata.

Reset or Permutation automata:

S UZ,

2
Reset - %, Permutation

2

INUPIA

11

* Any regular language can be accepted by a cascade product of reset or
permutation automata.

Theorem

* Any aperiodic language can be accepted by a cascade product of reset
automata.

Reset or Permutation automata:

S0 UZ, 50U,

2
Reset - %, Permutation

2

11

KR proof for aperiodic

on|L on|M on|H
0ff|0 OffIO off | O

+|H +|H

* |[f we ignore on and off

State 1={+,— }*——(+ —)*

» With A = {on, off, +, — } and B = {on, off}
State 1 = A* — B* — B* (+ B* — B*)*

12

KR proof for aperiodic

on|L on| M on|H
off | O off | O off | O

- | L +| M
(e L2 m (=)

* |f we ignore on and off

State 1={+,— }*——(+—)*

» With A = {on, off, +, — } and B = {on, off}
State 1 = A* — B* — B* (+ B* — B*)*

12

KR proof for aperiodic

: Theorem (Kamp)

Aperiodic = Past Temporal Logic

* |f we ignore on and off
State 1={+,— }*——(+—)*

13

KR proof for aperiodic

: Theorem (Kamp)

Aperiodic = Past Temporal Logic

* |f we ignore on and off
State 1={+,— }*——(+—)*

A ((Y=) v (+=Y=)sS (-av-))

13

KR proof for aperiodic

: Theorem (Kamp)

Aperiodic = Past Temporal Logic

Each PastLTL formula @ defines a boolean labelling function
0, 2* — {0,1}

Each position is labelled with the truth value of @ at this position.

14

KR proof for aperiodic

| Theorem (Kamp)
| Aperiodic = Past Temporal Logic

Each PastLTL formula @ defines a boolean labelling function
0, ~* - {0,1}
Each position is labelled with the truth value of @ at this position.

Example ¢ = Y a

abbbaababba
01000110100

14

KR proof for aperiodic

| Theorem (Kamp)
| Aperiodic = Past Temporal Logic

Each PastLTL formula @ defines a boolean labelling function
0, 2* — {0,1}

Each position is labelled with the truth value of @ at this position.

Example ¢ = Y a Example ¢ = a SS b
abbbaababba abbaaccbaac
01000110100 00111100111

14

KR proof for aperiodic

: Theorem (Kamp)

Aperiodic = Past Temporal Logic

Each PastLTL formula @ defines a boolean labelling function
0, 2* — {0,1}

Each position is labelled with the truth value of @ at this position.

15

KR proof for aperiodic

Theorem (Kamp)
Aperiodic = Past Temporal Logic

Each PastLTL formula @ defines a boolean labelling function
0, 2* — {0,1}

Each position is labelled with the truth value of @ at this position.

Given a PastLTL formula ¢, we will implement ‘940 with a transducer » constructed

inductively as a cascade product of reset transducers.

15

KR proof for aperiodic

Theorem (Kamp)
Aperiodic = Past Temporal Logic

Each PastLTL formula @ defines a boolean labelling function
0, 2* — {0,1}

Each position is labelled with the truth value of @ at this position.

Given a PastLTL formula ¢, we will implement 6’40 with a transducer » constructed

inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

Yy=1LSSy and o Swywy=ywyV(@A(@SSy))

15

KR proof for aperiodic

Given a PastLTL formula ¢, we will implement «9¢ with a transducer » constructed

inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

Yy=1LSSy and o Swywy=ywyV(@A(@SSy))

16

KR proof for aperiodic

Given a PastLTL formula @, we will implement «9¢ with a transducer 9¢QQW R

inductively as a cascade product of reset transducers. Example ¢ = a SS b

abbaaccbaac

PastLTL: boolean connectives and strict-since 00111100111

Yy=1SSw and @ Sw=wV(@A@SSy)

16

KR proof for aperiodic

Given a PastLTL formula ¢, we will implement «9¢ with a transducer p constructed _
inductively as a cascade product of reset transducers. Example @ = a SS 19

abbaaccbaac

PastLTL: boolean connectives and strict-since 00111100111

Yy=1SSw and @ Sw=wV(@A@SSy)

16

KR proof for aperiodic

Given a PastLTL formula @, we will implement «9¢ with a transducer 9¢QQW R

inductively as a cascade product of reset transducers. Example ¢ = a SS b

abbaaccbaac

PastLTL: boolean connectives and strict-since 00111100111

Yy=1SSw and @ Sw=wV(@A@SSy)

16

KR proof for aperiodic

Given a PastLTL formula ¢, we will implement 9¢ with a transducer 5’7¢ constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

17

KR proof for aperiodic

o
—

Given a PastLTL formula ¢, we will implement 9¢ with a transducer 5’7¢ constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

17

Given a PastLTL formula ¢, we will implement H¢ with a transducer
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

17

@

KR proof for aperiodic

constructed

Given a PastLTL formula ¢, we will implement Qw with a transducer J _ constructed

@
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives and strict-since

17

Outline

Labelling functions, sequential transducers and cascade product

Krohn-Rhodes theorem for aperiodic/regular word languages

Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata
Asynchronous labelling functions, transducers and cascade product

Propositional dynamic logic for traces

Conclusion

18

Mazurkiewicz Iraces

Architecture

P =11,2,3) 1 C
Z:{a,b,c,d,e} o d ¢ d
loc(a) = {1,2} b

loc(b) = {2,3) 3 e

loc(c) = {1}

loc(d) = {2}

e set of traces denoted Tr(X, <P, loc) or simply Tr(2)

loc(e) = {3} ® Trace Language: L C Tr(X)

19

Concatenation, Independence,
Commutation, Monoid

1 C C

20

Concatenation, Independence,
Commutation, Monoid

1 C

C

e 7r(2) with trace concatenation is a monoid

20

Concatenation, Independence,
Commutation, Monoid

C

C

e x [y iff loc(x) Nloc(y) =&
eale

®ed-e=¢€¢-d

e Tr(2) with trace concatenation is a monoid

® Free partially commutative monoid

20

Concatenation, Independence,
Commutation, Monoid

C

C

e x [y iff loc(x) Nloc(y) =&
eale

®ed-e=¢€¢-d

e Tr(2) with trace concatenation is a monoid

® Free partially commutative monoid

21

Concatenation, Independence,
Commutation, Monoid

C

C

e x [y iff loc(x) Nloc(y) =&
eale

®ed-e=¢€¢-d

e Tr(2) with trace concatenation is a monoid

® free partially commutative monoid

o . C Tr(X)is reqularif L = n~1(n(L))
for some morphism n. Tr(X) — M (finite monoid)

21

Asynchronous automata (Zielonka)

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

in _.in

. s = (S{”, s,', $5') global initial state

» [global accepting states

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [global accepting states

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [global accepting states

0.: 91 = 9

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [global accepting states

0.: 91 = 9
Op: 9y X 83 = 55 X 53

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 55
07: 99 = 5

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 53
07: 99 = 5
0,: 9 XS = 5§ XS,

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

» [global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 55
07: 99 = 5
0,: 9 X5 = 5 X5,
0,: 93 = &3

Asynchronous automata (Zielonka)

in
51

in
)

in
53

22

o = ({Si}ie% {5a}a€Z9Sm’ F)

» S, local states for process i

e 0, transition function for action a

n .in _.in

. s = (51", 85", 8;") global initial state

« [global accepting states

0.: 91 = 9
Op: 9y X 53 = 55 X 55
07: 99 = 5
0,: 9 X5 = 5 X5,
0,: 93 = &3

Asynchronous automata (Zielonka)

o = ({Si}iegj’ {éa}aEZ’Sm’ F)

| i C 2 1 C 5 « S local states for process i
. d e 0, transition function for action a
) 2 > d 4 2 d / | . s = (Sf”, Sé”, S§”) global initial state
gin b 1 2 b 2 « [global accepting states
3 = € -
0.: 91 = 9
_‘ o _ o _ G X 83— 5 X S;
| Theorem (Zielonka, 1987) 0gt 9y = 9y
| Asynchronous Automata = Regular Trace Languages 040 91 X3y = 51 X 5,

0,: 93 = 53

22

Outline

Labelling functions, sequential transducers and cascade product

Krohn-Rhodes theorem for aperiodic/regular word languages

Model of concurrency:. Mazurkiewicz traces and asynchronous Zielonka automata
* Asynchronous labelling functions, transducers and cascade product
* Propositional dynamic logic for traces

e Conclusion

23

Labelling function

0: Tr(X) - Tr(X xXI')

Labelling function

0: Tr(X) - Tr(Z XTI

= {0,1)

Y5 < Y, In the strict past,

b the last event on process 3 is below
the last event on process 2

24

Labelling function

0: Tr(X) - Tr(Z XTI

= {0,1)

Y5 < Y, In the strict past,

b the last event on process 3 is below
0 the last event on process 2

24

O G

Labelling function

0: Tr(X) - Tr(Z XTI

-

= {0,1)

Y5 < Y, In the strict past,

b the last event on process 3 is below
0 the last event on process 2

24

O G

Labelling function

-

24

0: Tr(X) - Tr(Z XTI

= {0,1)

Y5 < Y, In the strict past,

the last event on process 3 is below
the last event on process 2

O G

Labelling function

-

24

0: Tr(X) - Tr(Z XTI

= {0,1)

Y5 < Y, In the strict past,

the last event on process 3 is below
the last event on process 2

O G

Labelling function

-

24

0: Tr(X) - Tr(Z XTI

= {0,1)

Y5 < Y, In the strict past,

the last event on process 3 is below
the last event on process 2

Asynchronous Labelling function

C

C

25

0: Tr(X) - Tr(Z XTI

In the strict past,
the last event on process 3 is below
the last event on process 2

Asynchronous Labelling function

1 C C

Asynchronous (letter-to-letter) transducer &

o — ({Si}iegéa {561}6162’ m)

(*Q[{/’ta}a62>

0: Tr(X) - Tr(Z XTI

In the strict past,
the last event on process 3 is below
the last event on process 2

Asynchronous Labelling function

Asynchronous (letter-to-letter) transducer &

o — ({Si}iegéa {561}6162’ m)

(*Q[{/’ta}aEZ)

0: Tr(X) - Tr(Z XTI

In the strict past,
the last event on process 3 is below
the last event on process 2

Asynchronous Labelling function

0: Tr(X) - Tr(Z XTI
1 S C 2 1 C 3
0 d 1 ['=1{0,1}and Y; <Y,
2 Sén 3 d 4 2 d 4 _2 In the strict past,
b b the last event on process 3 is below
3 Sé” 1 e 3 _2 the last event on process 2
M- Sl — I
Asynchronous (letter-to-letter) transducer & (&27 M,) an)
¢ ({S }16@’ {561}61629 m)

-,uaS—>F

Asynchronous Labelling function

Asynchronous (letter-to-letter) transducer &

o ({S }legﬁa {561}61629 m)
* Hy- S - F

1 51 C 2 1 C
0) 1
2 Sén b 3 d 4 2 d 4 b 2
Sén 0 |1 e 3 0

0: Tr(X) - Tr(Z XTI

In the strict past,
the last event on process 3 is below
the last event on process 2

p.: S =1

f= e

— (&Zf {ﬂa}ae> Hp: SH XSy =T

Asynchronous Labelling function

0: Tr(X) - Tr(Z XTI

st C 2 1 C 3
0 d 1 ['=1{0,1}and Y; <Y,
Sén 3 d 41112 d 4 _2 In the strict past,
b 1 1 b the last event on process 3 is below
Sé” 0 |1 e 3 0O | 2 the last event on process 2
1 =
Asynchronous (letter-to-letter) transducer I (&zf (Halaes) | 1 5 X5 = 1
gin oo S, = I
° ({S }16@’ {561}61629)
S, — F

'Il/td

H,: 5y =1

Composition - Cascade product

Composition - Cascade product

 Composition of labelling functions

0

THE) -2y THE X T) —

5 Tr(Z x 1)

Composition - Cascade product

 Composition of labelling functions

0

THE) -2y THE X T) —

5 Tr(Z x 1)

 (Cascade product of asynchronous (letter-to-letter) transducers

Tr(2) Ve TrZxI) VD Tr(2 X II)

— —— —_—

({S;), {8,), 5™, {11 }) ({0} (80 a™ (i)

20

Composition - Cascade product

 Composition of labelling functions

0

THE) -2y THE X T) —

2, THE X IT) 5405, @) = (8a(8): a5 @)
Ha(S> 4) = Mgy, »)(9)

 (Cascade product of asynchronous (letter-to-letter) transducers

Tr(2) Ve TrZxI) VD Tr(2 X II)

—_— - —

({S;), {8,), 5™, {11 }) ({0} (80 a™ (i)

T 10T, = (1S;x 0}, (/). (s™ g™, {u.})

20

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

27

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

I = ({Si}ieg, 0.} s, {//ta}) is local if at most one process is non-trivial (|5, | # 1)

27

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

I = ({Si}ieg, 0.} s, {//ta}) is local if at most one process is non-trivial (|5, | # 1)

Corollary: Zielonka’s theorem
Asynchronous Automata = Regular Trace Languages

27

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Bonus: Using Krohn-Rhodes theorem
Each local asynchronous transducer & can be chosen to be (on its non-trivial component)

ToUZ, oUZ, < < @« ©

Z2
Reset - %2 Permutation

2

28

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

29

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Proof sketch:

29

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Proof sketch:
* Design a local and past propositional dynamic logic (locPastPDL)

« State/Event formulas . =aleVo|e| ()

» Program/Path expressions 7 :=¢@? |« |n+7x|xn x| x*

29

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Proof sketch:
* Design a local and past propositional dynamic logic (locPastPDL)

« State/Event formulas . =aleVo|e| ()
» Program/Path expressions 7 :=¢@? |« |n+7x|xn x| x*

* Prove that event formulas are expressively complete wrt regular past predicates (difficult)

29

Cascade Decomposition

Theorem (main)

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

Proof sketch:
* Design a local and past propositional dynamic logic (locPastPDL)

« State/Event formulas . =aleVo|e| ()
» Program/Path expressions 7 :=¢@? |« |n+7x|xn x| x*
* Prove that event formulas are expressively complete wrt regular past predicates (difficult)

* For each event formula ¢, construct by structural induction a cascade product of local
asynchronous transducers computing its labelling function ‘940 (easier)

29

Outline

Labelling functions, sequential transducers and cascade product
Krohn-Rhodes theorem for aperiodic/regular word languages
Model of concurrency:. Mazurkiewicz traces and asynchronous Zielonka automata
Asynchronous labelling functions, transducers and cascade product
* Propositional dynamic logic for traces

e Conclusion

30

Propositional Dynamic Logic

Propositional Dynamic Logic

* First introduced to reason about programs (Fischer, Ladner 1979)
» State formulas . =ploeVve|e|{(t)e

» Program expressions ri=@?|x=¢e|lnt+n|n-n|nx*

31

Propositional Dynamic Logic

* First introduced to reason about programs (Fischer, Ladner 1979)
e State formulas p:=ploVve|e| (e
» Program expressions ri=@?|x=¢e|lnt+n|n-n|nx*

e If @ then 7, else x, (p? 7))+ (! -)

31

Propositional Dynamic Logic

* First introduced to reason about programs (Fischer, Ladner 1979)

e State formulas p:=ploVve|e| (e
» Program expressions ri=@?|x=¢e|lnt+n|n-n|nx*
e If @ then 7, else x, (p? 7))+ (! -)

» While ¢ do x; od; «, (@?)™ @?-m,

31

Propositional Dynamic Logic

* First introduced to reason about programs (Fischer, Ladner 1979)

e State formulas p:=ploVve|e| (e
» Program expressions ri=@!|\x=el|ln+rn|rn -n|rx*
e If @ then 7, else x, (p? -m)+ (! -)

» While ¢ do x; od; «, (@?)™ @?-m,

* |nterpretation over words: Linear Dynamic Logic (Giacomo, Vardi 2013)

Regular word languages = MSO definable = LDL definable

31

Past PDL for Iraces

Past PDL for Iraces

1 C C
d
2 d d —
s, s,
3 e —
o State/Event formulas . =aleVel|e| (Tt

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

(e<1)a

1 C C
d
2 d d —
s, s,
3 e —
o State/Event formulas . =aleVel|e| (Tt

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

(e<1)a

1 C C
d
2 d d —
s, s,
3 e —
o State/Event formulas . =aleVel|e| (Tt

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

(1) a Yia
1 C C ((avd)?- <))b
d
2 d d —
b s,
3 e —
» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

(1) a Yia
1 C C ((avd)?- <))b
d (avd) S, b
2 d d —
b s,
3 e —
» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

(e1)a Y,a
1 C C ((avd)?- <))b
d (avd) S, b
2 d d —
),),
3 e —

K

((dV (<))))b
» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

(<) a Y, a
1 C C ((avd)?- <))b
a (avd) S, b
0 d d - 2
b b
3 € @dVY,c) S, b

((@V(=))? <))b
» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

32

Past PDL for Iraces

1 C C

2 d d —

3 € —

» Sentences/ Trace formulas @ ::=EM;p | OV D | =D

» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

33

Past PDL for Iraces

I'FEEM;c

1 C C

2 d d —

3 € —

» Sentences/ Trace formulas @ ::=EM;p | OV D | =D

» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

33

Past PDL for Iraces

TEEM e ABMs (A (y - (@Vd)?- =))b)

1 C C

2 d d —

3 € —

» Sentences/ Trace formulas @ ::=EM;p | OV D | =D

» State/Event formulas . =aleVe|e| (D

» Program/Path expressions 7 :=@? |« |z+x|n-7| 7"

33

(Local) Past-PDL for Traces

_(Local) for Traces

Theorem 2

e Sentences locPastPDL = PastPDL = Regular Trace Languages

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

34

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL
N easy
MSO

34

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL
N easy
MSO

M kKnown

Morphisms

34

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL
N easy
MSO

M kKnown

Morphisms
N difficult
locPastPDL

34

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL o Letn: Tr(X) — M be a morphism to a finite monoid

N easy
MSO

M kKnown

Morphisms
N difficult
locPastPDL

34

_ (Local) for Traces

Theorem 2

e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL o Letn: Tr(X) — M be a morphism to a finite monoid
N easy e Foreachm € M, we construct a locPastPDL event formula qa(m) such that,
MSO if 1"is a prime trace (i.e., having a single maximal event),
N known n(T) =mifand only if T, max(7T) F (p(m)
Morphisms Induction on the number of processes
IN difficult
locPastPDL

34

_ (Local) tor Traces

Theorem 2

e Sentences locPastPDL = PastPDL = Regular Trace Languages

PastPDL

C d

N easy
MSO

]

M kKnown

1
2
Morphisms 3
4

N difficult

locPastPDL

35

d

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL
N easy
MSO

M kKnown

Morphisms
N difficult
locPastPDL

36

_ (Local) for Traces

Theorem 2

e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL o Letn: Tr(X) — M be a morphism to a finite monoid
N easy e Foreachm € M, we construct a locPastPDL event formula qa(m) such that,
MSO if 1"is a prime trace (i.e., having a single maximal event),
N known n(T) =mifand only if T, max(7T) F (p(m)
Morphisms Induction on the number of processes
IN difficult
locPastPDL

36

~ (Local) for Traces

Theorem 2

e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL o Letn: Tr(X) — M be a morphism to a finite monoid
N easy e Foreachm € M, we construct a locPastPDL event formula qa(m) such that,
MSO if 1'is a prime trace (i.e., having a single maximal event),
N known n(T) =mifand only if T, max(7T) F (p(m)
Morphisms Induction on the number of processes
N difficult For each m € M, we construct a sentence ®" which defines n_l(m)

locPastPDL decompose an arbitrary (non prime) trace into a product of prime traces.

36

_(Local) for Traces

Theorem 2
e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL

N easy

MSO

M kKnown

N difficult

1
2
Morphisms 3
A

locPastPDL

37

~ (Local) for Traces

Theorem 2

e Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL o Letn: Tr(X) — M be a morphism to a finite monoid
N easy e Foreachm € M, we construct a locPastPDL event formula qa(m) such that,
MSO if 1'is a prime trace (i.e., having a single maximal event),
N known n(T) =mifand only if T, max(7T) F (p(m)
Morphisms Induction on the number of processes
N difficult For each m € M, we construct a sentence ®" which defines n_l(m)

locPastPDL decompose an arbitrary (non prime) trace into a product of prime traces.

38

(Local) for Traces

Theorem 2

Sentences locPastPDL = PastPDL = Regular Trace Languages

e Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL e Lety: Tr(X) — M be a morphism to a finite monoid (\
N easy « Foreach m € M, we construct a locPastPDL evet f@ 0(6\0\“) L/t,
MSO if 1'is a prime trace (i.e., having a single maxigs CSQ@(\ -’
N known n(1') = mif and 'o \&\0(\6
Morphisms Induction on the number of pr O(OQ \(\
N difficult . For each m € M, we constN \(P M) \which defines n~1(m)
locPastPDL decompose an arbitrary (non . \L v ace into a product of prime traces.

38

Extended locPastPDL for Traces

1 C C

2 d d —

3 € —

» Trace formulas / Sentences @ =EM; ¢ [OVD |-D|L, <L [L; <L,

. State/Event formulas pr=aloVe|l-@[mMp|Y, Y| Y, Y,

» Program/Path expressions 7 :=@? |« |n+7xn|n-7n|x*
39

Extended locPastPDL for Traces

Y357
1 C C
d
2 d d - _'(Y3 < Yz)
b b
3 e —

» Trace formulas / Sentences @ =EM; ¢ [OVD |-D|L, <L [L; <L,
. State/Event formulas pr=aloVe|l-@[mMp|Y, Y| Y, Y,

» Program/Path expressions 7 :=@? |« |n+7xn|n-7n|x*
39

Extended locPastPDL for Traces

Y3 <Y,
1 C C
d
2 d d - _'(Yg < Yz)
b b
3 € — Y, < Y,

» Trace formulas / Sentences @ =EM; ¢ [OVD |-D|L, <L [L; <L,
. State/Event formulas pr=aloVe|l-@[mMp|Y, Y| Y, Y,

» Program/Path expressions 7 :=@? |« |n+7xn|n-7n|x*
39

Extended locPastPDL for Traces

Y357
| C C
. TE=(L; <L) a
2 d d — TSN
b b
3 € — Y, < Y,

» Trace formulas / Sentences @ =EM; ¢ [OVD |-D|L, <L [L; <L,
. State/Event formulas pr=aloVe|l-@[mMp|Y, Y| Y, Y,

» Program/Path expressions 7 :=@? |« |n+7xn|n-7n|x*
39

Extended locPastPDL for Traces

Y357
1 C C
TEaLsLhy) ¢ (Y5 < Yy)
2 d d - 3= 1)
CTEL, <L, b b
3 e — Y, < Y,

» Trace formulas / Sentences @ =EM; ¢ [OVD |-D|L, <L [L; <L,
. State/Event formulas pr=aloVe|l-@[mMp|Y, Y| Y, Y,

» Program/Path expressions 7 :=@? |« |n+7xn|n-7n|x*
39

Extended locPastPDL for Traces

Extended locPastPDL for Traces

Theorem (Adsul Gastln Sarkar We|I CONCUR 22)
 Extended locPastPDL is expressively complete for regular trace languages

40

‘ Extended locPastPDL for Traces

Theorem (Adsul Gastln Sarkar We|I CONCUR 22)
 Extended locPastPDL is expressively complete for regular trace languages

Theorem (Mukund-Sohoni 1997)
There is an asynchronous letter-to-letter transducer & which computes the
truth values of the constants from

?={Yz‘<Y sz<Y ‘ lJ,kG@}

40

Extended locPastPDL for Traces

Theorem (Adsul Gastln Sarkar We|I CONCUR 22)
 Extended locPastPDL is expressively complete for regular trace languages

* Any regular trace language is accepted by a cascade product of the gossip
transducer followed by a sequence of local asynchronous transducers: I

56057105720---057”

Theorem (Mukund-Sohoni 1997)

There is an asynchronous letter-to-letter transducer & which computes the
truth values of the constants from

?={Yl-<Y Y,k<Y | i,j, ke P}

40

Extended locPastPDL for Traces

Theorem (Adsul, Gastin, Sarkar, Weill — CONCUR’22)
 Extended locPastPDL is expressively complete for regular trace language

2

» Any regular trace language is accepted by a cascade product of the”
transducer followed by a sequence of local asynchronous trge 'QO\’

56057105720...057

| Theorem (Mukund-Sohoni 1997)
There is an asynchronous letter-to-letter tran'- P “vhich computes the
truth values of the constants from

Y=Y, <Y .Y LY, | ij ke P}

L,

40

Aperlodlc FO deflnale

Theorem [Adsul, Gastin, Sarkar, Well Concur 20 LI\/ICS 22]

Any aperiodic (FO) trace language is accepted by a cascade product of the
gossip transducer followed by a sequence of local reset transducers:

?0%20%20‘“0%2

S0 U, 50U,

24)
Reset - %,

2

41

Aperlcdlc FO deflnale

Theorem [Adsul, Gastin, Sarkar, Well — Concur 20 LI\/ICS 22]

Any aperiodic (FO) trace language is accepted by a cascade product of the
gossip transducer followed by a sequence of local reset transducers:

?0%20%20‘“0%2

Direct proof (Not using Krohn-Rhodes theorem)
based on a past temporal logic LTL(Yl- <Y, Sl-) proved expressively complete for FO

S0 U, 50U,

24)
Reset - %,

2

41

Outline

Labelling functions, sequential transducers and cascade product

Krohn-Rhodes theorem for aperiodic/regular word languages

Model of concurrency:. Mazurkiewicz traces and asynchronous Zielonka automata
Asynchronous labelling functions, transducers and cascade product

Propositional dynamic logic for traces

e Conclusion

42

Conclusion

Main results
* (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

2 Specification language: natural, easy, expressive, good complexity

43

Main results
* (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

2 Specification language: natural, easy, expressive, good complexity
 Cascade decomposition using simple & local asynchronous automata/transducers

i,

2 Allows inductive reasoning on automata

43

Main results
* (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

2 Specification language: natural, easy, expressive, good complexity
 Cascade decomposition using simple & local asynchronous automata/transducers

2 Allows inductive reasoning on automata
o Uyo -0 Uy =1ocTL(SS;) C Aperiodic =FO =locTL(SS;,Y; < Y)) =G o U,o0 -0 U,

43

Main results
* (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

2 Specification language: natural, easy, expressive, good complexity
 Cascade decomposition using simple & local asynchronous automata/transducers
2 Allows inductive reasoning on automata
o Uyo -0 Uy=10cTL(SS;) C Aperiodic = FO =locTL(SS;,Y; < Y)) = G o U)o --- o U,

2 Equality for acyclic architectures (communication graph).

43

Main results

* (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

2 Specification language: natural, easy, expressive, good complexity
 Cascade decomposition using simple & local asynchronous automata/transducers

2 Allows inductive reasoning on automata
o Uyo -0 Uy =1locTL(SS;) C Aperiodic =FO =locTL(SS;,Y; < Y;) =G o Uyo -0 U,

2 Equality for acyclic architectures (communication graph).

2 Inclusion strict in general: gossip is (past) first-order definable, but cannot be computed
with an aperiodic asynchronous transducer, hence also with a cascade of 7%/.

43

Main results

* (Local) (past) Propositional dynamic logic expressively complete for regular trace languages
2 Specification language: natural, easy, expressive, good complexity

 Cascade decomposition using simple & local asynchronous automata/transducers

2 Allows inductive reasoning on automata
o Uyo -0 Uy =1ocTL(SS;) C Aperiodic =FO =locTL(SS;,Y; < Y)) =G o U,o0 -0 U,

2 Equality for acyclic architectures (communication graph).

2 Inclusion strict in general: gossip is (past) first-order definable, but cannot be computed
with an aperiodic asynchronous transducer, hence also with a cascade of 7%/.

Open problem
* Generalisation to other structures, eg, Message sequence charts & Message passing automata®

.

Thank you for your attention!

Outline

Labelling functions, sequential transducers and cascade product

Krohn-Rhodes theorem for aperiodic/regular word languages

Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata
Asynchronous labelling functions, transducers and cascade product

Propositional dynamic logic for traces

Conclusion

45

