Towards Neuro-Symbolic Tree and Graph Transformation – an Invitation

WATA 2023, Leipzig

Frank Drewes Joint work with Johanna Björklund, Anna Jonsson, and Yannick Stade

Contents

- Graph expansion grammars
- An example
- Graph expansion grammars with weighted MSO logic
- Neuro-symbolic graph expansion grammars

Graph Expansion Grammars

- We have been trying for a long time now to find "the right" formalism for recognizing/generating semantic graphs in Natural Language Processing.
- Desiderata:
 - (1) can enforce local structural requirements
 - (2) can disregard structure where necessary
 - (3) has nice algorithmic properties
- Graph automata tend to fail at either (1) or (3).
- Hyperedge-replacement graph grammars are good at (1) and reasonably so at (3) but fail at (2).
- Graph expansion generalizes hyperedge replacement to support (2).

Illustrating example

Emma asks Jane to believe in her.

Constructing $H^{e,e'}(G_1, G_2)$:

Constructing $H^{e,e'}(G_1, G_2)$:

Constructing $H^{e,e'}(G_1, G_2)$:

Simpler primitives:

Graph expansion operations have additional context nodes:

- Nodes which are neither ports nor docks are context nodes.
- When the operation is applied, context nodes are identified with nondeterministically chosen nodes in the argument graph.
- To make this useful, we need a way to limit which nodes a context node can be identified with.
- In a recent paper, we proposed to use formulas φ of counting monadic second-order (CMSO) logic for this purpose.
- The context nodes x_1, \ldots, x_k are the free variables of φ .
- x_i may be identified with v_i if $G \models \varphi(x_1/v_1, \dots, x_k/v_k)$.

 \Rightarrow Graph expansion operations are nondeterministic!

Definition: Graph Expansion Grammar

A graph expansion grammar is a pair $\Gamma = (g, \mathcal{A})$ where

- ullet g is a regular tree grammar over a ranked alphabet Σ and
- \mathcal{A} is a Σ -algebra which interprets every symbol of Σ as an expansion operation, \sqcup , or the empty graph \emptyset .¹

The graph language generated by G is $L(\Gamma) = \bigcup_{t \in L(q)} \operatorname{val}_{\mathcal{A}}(t)$.

¹The domain of \mathcal{A} is the powerset of the set of graphs.

An Example

$$S \rightarrow \begin{bmatrix} \mathbf{1}, \mathbf{2} \\ \mathbf{0} \end{bmatrix} (\emptyset)$$

$$S \rightarrow \begin{array}{c} \mathbf{1,2} \\ \mathbf{3,3} \\ S \rightarrow \end{array} \begin{array}{c} \mathbf{3,3} \\ \mathbf{3,3} \\$$

A graph expansion grammar for all trees in which each node has a "shortcut" to a leaf in each of its direct subtrees.

Some Results

Ð

Observation

Graph expansion is more powerful than both CMSO and HR.

Proof. HR is included by definition. The rules

$$S_0 \rightarrow \varnothing(S)$$
 where φ
 $S \rightarrow \textcircled{\circ}(S)$ where true $| S \sqcup S |$

generate all graphs satisfying φ .

Now, take the union of a graph language in $\rm CMSO \setminus HR$ with one in $\rm HR \setminus CMSO$. . .

Harnessing the power of graph expansion: graph extension with local conditions

Extension operations are restricted expansion operations:

- (1) Edges only from new to old nodes.
- (2) All non-ports have incoming edges.
- (3) Docks are pairwise distinct.

Local CMSO conditions:

- (1) No direct use of the edge predicate.
- (2) Instead "local" node predicates $\pi(x)$ like for all edges (x, y) labeled a there is an edge (y, z) labeled bsuch that there is no edge from y to z labeled c.

Can this graph be generated from nonterminal A?

Can this graph be generated from nonterminal A?

Case 1: $A \rightarrow B \sqcup C$.

Can this graph be generated from nonterminal A?

Case 1: $A \rightarrow B \sqcup C$.

Can this graph be generated from nonterminal A?

Case 2: $A \to \Xi(B)$ where φ .

Can this graph be generated from nonterminal A?

Case 2: $A \to \Xi(B)$ where φ .

Can this graph be generated from nonterminal A?

Case 2: $A \to \Xi(B)$ where φ .

Additionally: is $\varphi(u, v)$ true in G?

Some additional results

- "Edge-agnostic" graph extension grammars admit a pumping lemma, and their Parikh image is semi-linear.
- This does not hold for graph extension grammars with local conditions.
- In fact, those can (in a weak sense) simulate Turing machines.

Using Weighted MSO Logic

Beware! Uncooked material ahead...

Informally recalling (one type of) weighted MSO logic

Prerequisite: a commutative semiring $(\mathbb{S}, \oplus, \otimes, 0, 1)$.

Weighted MSO logic (à la Droste & Dück 2015) has

- \bullet ordinary MSO formulas evaluating to 0 (false) or 1 (true),
- formulas $\varphi \odot \varphi'$ summing up/multiplying the weights of φ and φ' using $\odot \in \{\oplus, \otimes\}$,
- formulas $\bigcirc_x \varphi$ summing up/multiplying the weights of $\varphi(x/v)$ over all nodes v, where $\odot \in \{\oplus, \otimes\}$, and
- formulas $\bigoplus_X \varphi$ summing up the weights of $\varphi(X/V)$ for all node sets V by applying \oplus .

Note: we could add \bigotimes_X , or may want to exclude \bigoplus_X as well.

A proposal for weighted graph expansion grammars

- Replace the CMSO conditions by weighted MSO formulas.
- Applying an expansion operation Ξ to an argument graph G then yields weighted graphs, i.e., Ξ(G): G → S:
 Every assignment α of context nodes of Ξ to nodes in G determines a weighted graph (Ξ_α(G), φ(G, α)). We let

 $\Xi(G)(G') = \bigoplus \{ \varphi(G, \alpha) \mid \alpha \in \mathcal{A}, \ \Xi_{\alpha}(G) \simeq G' \}.$

- For weighted input graphs (G, w), let $\Xi(G, w) = w \otimes \Xi(G)$.
- We let \sqcup translate to \otimes or \oplus and assign the weight 0 to \emptyset .
- With this, weighted graph expansion algebras A recursively evaluate each tree to a (finite) weighted graph language.
- Now, $L(\Gamma) = \bigoplus_{t \in L(g)} \operatorname{val}_{\mathcal{A}}(t)$.

Note: In general, the last item requires infinite sums to be defined.

We want the weight to be the length of the longest shortcut, using $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0).$

We define φ as follows:

• path(X, p, x) = "X is a path from p to x, which is a leaf"

•
$$\operatorname{len}(p, x) = \operatorname{MAX}_X \max(\operatorname{path}(X, p, x), |X|)$$
 where
 $|X| = \sum_z \max(z \notin X, 1 + (z \in X))$
• $\varphi(x) = \operatorname{MAX}_p(\operatorname{port}_1(p) + \operatorname{len}(p, x))$

- Is the use of non-idempotent (or non-extremal) addition operators meaningful?
- In the previous example, the weight of a graph in the support of val_A(t) does not depend on t. This seems to be a useful property. Can it be decided/guaranteed?
- When can we efficiently compute the weight of a graph?
- In particular, can the parsing algorithm for the unweighted case be "made weighted"?
- How to characterize the generated weighted graph languages?
- Are there equivalent (graph) automata models?

Neuro-Symbolic Graph Expansion Grammars

Beware! Raw meat ahead...

Why "neuro-symbolic" and what does it mean?

- Neuro-symbolic systems combine neural and symbolic components.
- Often, the neural component produces "input" to a symbolic system.
- I am more interested in having neural components inside the symbolic one.

Coreference resolution in natural language processing:

We may want to train a neural network to pick suitable targets!

- Can we train a neural network to pick reasonable targets for context nodes?
- If so, how? For which type of neural network? Using which kind of training data?
- How to incorporate and make use of context information, including other modalities (images, input strings, etc)?

Finally, something entirely different

We (Johanna, Henrik Björklund, and I) have funding for a postdoc/PhD position in this broad area. If you know interested and capable candidates, let us know.

