
Towards Neuro-Symbolic Tree and
Graph Transformation – an Invitation

WATA 2023, Leipzig

Frank Drewes
Joint work with Johanna Björklund, Anna Jonsson, and Yannick Stade

Contents
* Graph expansion grammars
* An example
* Graph expansion grammars with weighted MSO logic
* Neuro-symbolic graph expansion grammars

Graph Expansion Grammars

Motivation

* We have been trying for a long time now to find “the right”
formalism for recognizing/generating semantic graphs in
Natural Language Processing.

* Desiderata:
(1) can enforce local structural requirements
(2) can disregard structure where necessary
(3) has nice algorithmic properties

* Graph automata tend to fail at either (1) or (3).
* Hyperedge-replacement graph grammars are good at (1) and

reasonably so at (3) but fail at (2).
* Graph expansion generalizes hyperedge replacement to

support (2).

Illustrating example
From Syntax to Semantics

Trees = syntax, graphs = semantics?

Emma asks Jane to believe in her.

ask

Emma Jane

believe-in

her

arg0 arg1

arg2

arg0
arg1

ask

Emma Jane

believe-in

her

arg0 arg1

arg2

arg1arg0

ask

Emma Jane

believe-inarg0 arg1

arg2

arg0
arg1

ask

Emma Jane

believe-inarg0 arg1

arg2

arg0

arg1

(correct) (incorrect) (more likely?) (incorrect?)

asks

Emma Jane

believe

to her

in

0.9

ask

Emma Jane

believe-inarg0 arg1

arg2

arg0
arg1

From Syntax to Semantics

Trees = syntax, graphs = semantics?

Emma asks Jane to believe in her.

ask

Emma Jane

believe-in

her

arg0 arg1

arg2

arg0
arg1

ask

Emma Jane

believe-in

her

arg0 arg1

arg2

arg1arg0

ask

Emma Jane

believe-inarg0 arg1

arg2

arg0
arg1

ask

Emma Jane

believe-inarg0 arg1

arg2

arg0

arg1

(correct) (incorrect) (more likely?) (incorrect?)

asks

Emma Jane

believe

to her

in

0.9

ask

Emma Jane

believe-inarg0 arg1

arg2

arg0
arg1

From hyperedge replacement to graph expansion (1)

Hypergraph:

G1 = G2 =

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Constructing He,e′(G1, G2):

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Constructing He,e′(G1, G2):

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Constructing He,e′(G1, G2):

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Constructing He,e′(G1, G2):

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Constructing He,e′(G1, G2):

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Constructing He,e′(G1, G2):

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Simpler primitives:

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Simpler primitives:

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Simpler primitives:

From hyperedge replacement to graph expansion (1)

Hypergraph: G1 = G2 =

Simpler primitives:

i = i-th port
〈j〉 = j-th dock

From hyperedge replacement to graph expansion (2)

Graph expansion operations have additional context nodes:

* Nodes which are neither ports nor docks are context nodes.
* When the operation is applied, context nodes are identified

with nondeterministically chosen nodes in the argument graph.
* To make this useful, we need a way to limit which nodes a

context node can be identified with.
* In a recent paper, we proposed to use formulas ϕ of counting

monadic second-order (CMSO) logic for this purpose.
* The context nodes x1, . . . , xk are the free variables of ϕ.
* xi may be identified with vi if G |= ϕ(x1/v1, . . . , xk/vk).

⇒ Graph expansion operations are nondeterministic!

From hyperedge replacement to graph expansion (3)

Definition: Graph Expansion Grammar

A graph expansion grammar is a pair Γ = (g,A) where
* g is a regular tree grammar over a ranked alphabet Σ and
* A is a Σ-algebra which interprets every symbol of Σ as an

expansion operation, t, or the empty graph ∅.1

The graph language generated by G is L(Γ) =
⋃
t∈L(g) valA(t).

1The domain of A is the powerset of the set of graphs.

An Example

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S → (∅)

S → (S t S)

effect:

S → (S)

effect:

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S → (∅)

S → (S t S)

effect:

S → (S)

effect:

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S → (∅)

S → (S t S)

effect:

S → (S)

effect:

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S → (∅)

S → (S t S) effect:

S → (S)

effect:

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S → (∅)

S → (S t S) effect:

S → (S)

effect:

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S → (∅)

S → (S t S) effect:

S → (S) effect:

Trees with shortcuts to leaves (2)

Example tree generated:

Trees with shortcuts to leaves (3)

A graph expansion grammar for all trees in which each node
has a “shortcut” to a leaf in each of its direct subtrees.

S → (S)

where ¬∃y.edg(x, y)

effect:

S → (S t S) effect:

S (∅)

Trees with shortcuts to leaves (4)

Example tree generated:

Some Results

Power

Observation
Graph expansion is more powerful than both CMSO and HR.

Proof. HR is included by definition. The rules

S0 → ∅(S) where ϕ

S → (S) where true | S t S |

generate all graphs satisfying ϕ.

Now, take the union of a graph language in CMSO \HR with one
in HR \ CMSO . . .

Polynomial parsing

Harnessing the power of graph expansion: graph extension with
local conditions

Extension operations are restricted expansion operations:

(1) Edges only from new to old nodes.
(2) All non-ports have incoming edges.
(3) Docks are pairwise distinct.

Local CMSO conditions:

(1) No direct use of the edge predicate.
(2) Instead “local” node predicates π(x) like

for all edges (x, y) labeled a there is an edge (y, z) labeled b
such that there is no edge from y to z labeled c.

Idea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A→ Ξ(B) where ϕ.

Additionally: is ϕ(u, v) true in G?

Idea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 1: A→ B t C.

Additionally: is ϕ(u, v) true in G?

Idea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 1: A→ B t C.

Additionally: is ϕ(u, v) true in G?

Idea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A→ Ξ(B) where ϕ.

Additionally: is ϕ(u, v) true in G?

Idea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A→ Ξ(B) where ϕ.

Additionally: is ϕ(u, v) true in G?

Idea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A→ Ξ(B) where ϕ.

Additionally: is ϕ(u, v) true in G?

More results about graph extension

Some additional results
* “Edge-agnostic” graph extension grammars admit a pum-

ping lemma, and their Parikh image is semi-linear.
* This does not hold for graph extension grammars with

local conditions.
* In fact, those can (in a weak sense) simulate Turing ma-

chines.

Using Weighted MSO Logic

Beware! Uncooked material ahead. . .

Informally recalling (one type of) weighted MSO logic

Prerequisite: a commutative semiring (S,⊕,⊗, 0, 1).

Weighted MSO logic (à la Droste & Dück 2015) has

* ordinary MSO formulas evaluating to 0 (false) or 1 (true),
* formulas ϕ� ϕ′ summing up/multiplying the weights of ϕ and

ϕ′ using � ∈ {⊕,⊗},
* formulas

⊙
x ϕ summing up/multiplying the weights of

ϕ(x/v) over all nodes v, where � ∈ {⊕,⊗}, and
* formulas

⊕
X ϕ summing up the weights of ϕ(X/V) for all

node sets V by applying ⊕.

Note: we could add
⊗

X , or may want to exclude
⊕

X as well.

A proposal for weighted graph expansion grammars

* Replace the CMSO conditions by weighted MSO formulas.
* Applying an expansion operation Ξ to an argument graph G

then yields weighted graphs, i.e., Ξ(G) : G→ S:
Every assignment α of context nodes of Ξ to nodes in G
determines a weighted graph (Ξα(G), ϕ(G,α)). We let

Ξ(G)(G′) =
⊕
{ϕ(G,α) | α ∈ A, Ξα(G) ' G′}.

* For weighted input graphs (G,w), let Ξ(G,w) = w ⊗ Ξ(G).
* We let t translate to ⊗ or ⊕ and assign the weight 0 to ∅.
* With this, weighted graph expansion algebras A recursively

evaluate each tree to a (finite) weighted graph language.
* Now, L(Γ) =

⊕
t∈L(g) valA(t).

Note: In general, the last item requires infinite sums to be defined.

An example

We want the weight to be the length of the longest shortcut, using
(N ∪ {−∞},max,+,−∞, 0).

S → (S) where ϕ

We define ϕ as follows:

* path(X, p, x) = “X is a path from p to x, which is a leaf”
* len(p, x) = MAXX max(path(X, p, x), |X|) where
|X| =

∑
z max(z /∈ X, 1 + (z ∈ X))

* ϕ(x) = MAXp(port1(p) + len(p, x))

Questions to ponder

* Is the use of non-idempotent (or non-extremal) addition
operators meaningful?

* In the previous example, the weight of a graph in the support
of valA(t) does not depend on t. This seems to be a useful
property. Can it be decided/guaranteed?

* When can we efficiently compute the weight of a graph?
* In particular, can the parsing algorithm for the unweighted

case be “made weighted”?
* How to characterize the generated weighted graph languages?
* Are there equivalent (graph) automata models?

Neuro-Symbolic Graph Expansion
Grammars

Beware! Raw meat ahead. . .

Why “neuro-symbolic” and what does it mean?

Rule-based graph transformation

transparent rich
theory

resource
efficient

vs
inflexible no learning

Neural models

black
box

rescource
demanding

vs

adaptive learnable

Figure 1: Rule-based models of computation on graphs provide transparency, a rich theory, and resource
efficiency, but their discrete nature makes them inflexible and difficult to learn. In contrast, neural mod-
els are opaque and resource-demanding black boxes, but they come with powerful machine learning
algorithms and can flexibly adapt to unanticipated inputs. I want to integrate the latter into the former to
combine their advantages in a theory of neuro-symbolic graph transformation.

case of trees) by replacing local subgraphs in a stepwise fashion. Books that cover significant
parts of these fields are [KDV09; CE12; Ehr+15; FV22]. I am mostly interested in formalisms
well below the power of Turing-complete devices, the reason being that limited power is a nec-
essary prerequisite for good algorithmic properties. Work related to my own efforts regarding
graph grammar formalisms for natural language semantics (see Section 4.1) has been done by
Groschwitz et al.; see, e.g., [GFK21].

2.2 Neural Networks
Equally important for the project is the area of neural networks. While not in themselves the
object of our study, they will be used to enhance rule-based systems. In this role, I expect in
particular graph neural networks (see [Zho+20] for a survey) to be a useful tool and source of
inspiration. These networks act on graphs usingmessage passing, where the state of each node
is updated on the basis of the aggregated state information from its neighbors. Interestingly, one
of the unsolved problems in graph neural networks is to enable them to pass information reliably
between distant nodes (see, e.g., [AY21]). Rule-based methods of graph transformation do not
share this difficulty, and if graph neural networks are used to enhance local rule applications,
then no long-distance message passing is required at the neural level. Further, it is not easy
to use graph neural networks to actually transform input graphs into structurally different output
graphs by a computational process – which is precisely what graph transformation does.

2.3 Neuro-Symbolic Models
Since a few years back, proposals for neuro-symbolic models have become popular, essen-
tially motivated by the same observations as those underlying this proposal (see Section 1).
The common denominator of these models is that they combine neural methods with symbolic
computation to combine their strengths. Below follows a small selection of typical works.

Yi et al. [Yi+18] propose NS-VQA, an approach to visual question answering (i.e., answering
questions asked in natural language about the content of an image) that combines neural meth-
ods with symbolic program execution. Another example is [Sme+23], the hitherto latest addition
to a line of work which started with the proposal of DeepProbLog by Manhaeve et al. [Man+18],
a neuro-symbolic extension of ProbLog [DKT07]. The language DeepSeaProbLog proposed in
[Sme+23] incorporates so-called deep probabilistic programming to allow for continuous prob-
ability distributions instead of the discrete ones of DeepProbLog.

In recent years, there has also been considerable research effort with the goal to enable
deep learning under logical constraints. The advantages of this combination is that it enables N

eu
ro
-S
ym

bo
lic

G
ra
ph

Tr
an

sf
or
m
at
io
n

(p
ag

e
2
of

10
)

* Neuro-symbolic systems combine neural and symbolic
components.

* Often, the neural component produces “input” to a symbolic
system.

* I am more interested in having neural components inside the
symbolic one.

The case of graph expansion grammars

Coreference resolution in natural language processing:

We may want to train a neural network to pick suitable targets!

Questions

* Can we train a neural network to pick reasonable targets for
context nodes?

* If so, how? For which type of neural network? Using which
kind of training data?

* How to incorporate and make use of context information,
including other modalities (images, input strings, etc)?

Finally, something entirely different

We (Johanna, Henrik Björklund, and I) have funding for a
postdoc/PhD position in this broad area. If you know interested

and capable candidates, let us know.

Finally, something entirely different

We (Johanna, Henrik Björklund, and I) have funding for a
postdoc/PhD position in this broad area. If you know interested

and capable candidates, let us know.

