Towards Neuro-Symbolic Tree and
Graph Transformation — an Invitation

WATA 2023, Leipzig

Frank Drewes
Joint work with Johanna Bjorklund, Anna Jonsson, and Yannick Stade

Contents
@ Graph expansion grammars
@ An example
@ Graph expansion grammars with weighted MSO logic

@ Neuro-symbolic graph expansion grammars

Graph Expansion Grammars

Motivation

We have been trying for a long time now to find “the right”
formalism for recognizing/generating semantic graphs in
Natural Language Processing.

Desiderata:

(1) can enforce local structural requirements

(2) can disregard structure where necessary

(3) has nice algorithmic properties

Graph automata tend to fail at either (1) or (3).
Hyperedge-replacement graph grammars are good at (1) and
reasonably so at (3) but fail at (2).

Graph expansion generalizes hyperedge replacement to
support (2).

[llustrating example

Emma asks Jane to believe in her.

ask ask ask ask
g2 \fz \ifz \i'fz
argg/ argl believe-in argg/ argl believe-in aey/ el believe-in argy/ argl believe-in
arg0
arg0 argl arg0 arg1 el //argl
Emma Jane her Emma Jane her Emma Jane Emma Jane
(correct) (incorrect) (more likely?) (incorrect?)
asks\
believe —
0.9
Emma Jane to her

From hyperedge replacement to graph expansion (1)

1 2
O0e———— 0O,
f /
Hypergraph: € o5—
0/3 7\2'_/2

From hyperedge replacement to graph expansion (1)

Hypergraph: € \/\

1_/°

Constructing He’el(Gl, G9):

Gy = "

From hyperedge replacement to graph expansion (1)

fe——— 1.2
4 / S
Hypergraph: ¢ ‘LT \ Gi= Gy=" ?

3

1 2
Oe——
J;
€ hy—d
/o
d 1 ,,/2
e
. !
Constructing H*¢ (G1, G2):
1 . 2 1 2
aOMEffu
3 SEE
o A

From hyperedge replacement to graph expansion (1)

2
T/ °\’°
Hypergraph: C \ Go = 1 2
Q<—-/O\'

U _/°
Constructing He’e'(Gl, G9):

From hyperedge replacement to graph expansion (1)

— ;2’
Hypergraph: € \/\ Gy = " 2

1_/°

Constructing He’el(Gl, G9):

From hyperedge replacement to graph expansion (1)

. ;2’
Hypergraph: € \/\' Gy = 1 v

1_/°

Constructing H¢ (G, G2):

From hyperedge replacement to graph expansion (1)

2
Hypergraph: € \/\' Gy = 1 v

1_/°

Constructing He’el(Gl, G9):

From hyperedge replacement to graph expansion (1)

Hypergraph: € \/\

Simpler primitives:

1_/°

Gy = "

From hyperedge replacement to graph expansion (1)

fe——— 1.2
4 / S
Hypergraph: ¢ ‘LT \ Gi= Gy=" ?

3

Simpler primitives:

2
4 5
aOME4u
Gq o 6?_ 1} £

From hyperedge replacement to graph expansion (1)

— ;2
Hypergraph: € \/\' Gy = 1

o]
1 _/ 3
04———0
<1> /
[
<2 <yHy
o <55
. . P <3>
Simpler primitives:
2
4 5
3
G_, [N} é,_

From hyperedge replacement to graph expansion (1)

. ;2’
Hypergraph: € \/\' Gy = 1 v

o]
1 _/ 3
04———0
<1>
i = 1i-th port
<oxcu> (j) = j-th dock
o <55
. . P <3>
Simpler primitives:
2
4 5
3 S
G_' K] 62_ % ARR &

From hyperedge replacement to graph expansion (2)

Graph expansion operations have additional context nodes:

@ Nodes which are neither ports nor docks are context nodes.

@ \When the operation is applied, context nodes are identified
with nondeterministically chosen nodes in the argument graph.

@ To make this useful, we need a way to limit which nodes a
context node can be identified with.

@ |n a recent paper, we proposed to use formulas ¢ of counting
monadic second-order (CMSO) logic for this purpose.

@ The context nodes x1,...,x, are the free variables of ¢.
@ 1; may be identified with v; if G |= p(z1/v1,. .., 2K/ /vK).

= Graph expansion operations are nondeterministic! J

From hyperedge replacement to graph expansion (3)

Definition: Graph Expansion Grammar
A graph expansion grammar is a pair I' = (g,.A) where
@ ¢ is a regular tree grammar over a ranked alphabet ¥ and

@& A is a Y-algebra which interprets every symbol of ¥ as an
expansion operation, LI, or the empty graph @.1

The graph language generated by G is L(I') = U,y () vala(t).

1The domain of A is the powerset of the set of graphs.

An Example

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S — 2 (9

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S — 2 (9

o
<15 €3y

S — (SUS)

o o
<2 <4y

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

S — 2 (9

2 1
o 0
<15 <3 AN
S — (SuS) effect: /’~S S Oy
o o i..%../ "_.,5,--‘4
<as LW

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

J

S — 2 (9

1 1
o 0.
<1>‘(3) ’;” ,”\ll L\\
S - (SUS) effect: /579N
o o {..%--4’ "--—Grv-“
<2 <y
S <1 (S’)
S
<25

Trees with shortcuts to leaves (1)

An HR grammar for trees in which each node has a
“shortcut” to a leaf in each of its direct subtrees.

J

S — 2 (9

1

o
<1943y
S —
o o
<2 <4y
4
IS <1 (S)
Q,
o
<25

(SUS)

4
PoPAt L\\
-]
effect: /S AN
- .
L.0gr f@e
effect:

Trees with shortcuts to leaves (2)

)
N

[[}

Q‘N
SN

Example tree generated:

N

M}

Trees with shortcuts to leaves (3)

A graph expansion grammar for all trees in which each node

has a “shortcut” to a leaf in each of its direct subtrees. J

A
o

a)

effect:
x

where —Jy.edg(x, y)

1 .
S - <1>i’<2> (SusS) effect: -

Trees with shortcuts to leaves (4)

N

Example tree generated: % 4

9T—K——0o
&

4

[~

Some Results

Power

Observation
Graph expansion is more powerful than both CMSO and HR.

Proof. HR is included by definition. The rules
So — (S) where ¢
S — o—2 (S5) where true | SUS | °

generate all graphs satisfying .

Now, take the union of a graph language in CMSO \ HR with one
in HR \ CMSO ...

Polynomial parsing

Harnessing the power of graph expansion: graph extension with
local conditions

Extension operations are restricted expansion operations:

(1) Edges only from new to old nodes. >z
(2) All non-ports have incoming edges. /
(3) Docks are pairwise distinct. 38

D L2y

Local CMSO conditions:

(1) No direct use of the edge predicate.

(2) Instead “local” node predicates m(x) like
for all edges (x,y) labeled a there is an edge (y, z) labeled b
such that there is no edge from y to z labeled c. OMEg

|dea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

|dea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 1: A - BUC.

|dea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 1: A - BUC.

gtn erates] gene rade
fom 31/ fran C

|dea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A — =(B) where ¢.

|dea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A — =(B) where ¢.

)

19‘—--00
/ =
o (4
< | < —
w v

generatal from X

|dea of the dynamic programming parsing algorithm

Can this graph be generated from nonterminal A?

Case 2: A — =(B) where ¢.

)

19‘—--00
/ =
o (4
< | < —
w v

generatal from X

Additionally: is ¢(u,v) true in G7 o~

More results about graph extension

Some additional results
@ “Edge-agnostic” graph extension grammars admit a pum-
ping lemma, and their Parikh image is semi-linear.
@ This does not hold for graph extension grammars with
local conditions.
@ |n fact, those can (in a weak sense) simulate Turing ma-
chines.

Using Weighted MSO Logic

Beware! Uncooked material ahead. ..

Informally recalling (one type of) weighted MSO logic

Prerequisite: a commutative semiring (S, ®, ®,0,1).

Weighted MSO logic (a la Droste & Diick 2015) has

@ ordinary MSO formulas evaluating to 0 (false) or 1 (true),

@ formulas ¢ ® ¢’ summing up/multiplying the weights of ¢ and
¢ using ® € {®,®},

@ formulas (), ¢ summing up/multiplying the weights of
o(x/v) over all nodes v, where ® € {®,®}, and

@ formulas € y ¢ summing up the weights of ¢(X/V') for all
node sets V' by applying &.

Note: we could add @), or may want to exclude € y as well.

A proposal for weighted graph expansion grammars

@ Replace the CMSO conditions by weighted MSO formulas.
@ Applying an expansion operation = to an argument graph G
then yields weighted graphs, i.e.,, Z(G): G — S:
Every assignment « of context nodes of = to nodes in G
determines a weighted graph (Z2,(G), (G, «)). We let

E(G)(G) = Ble(G,a) |a € A, Ea(G) = G}

@ For weighted input graphs (G, w), let Z(G,w) = w ® Z(G).

@ We let LI translate to ® or & and assign the weight 0 to &.

@ With this, weighted graph expansion algebras A recursively
evaluate each tree to a (finite) weighted graph language.

@ Now, L(I') = By vala(t).

Note: In general, the last item requires infinite sums to be defined. %+,

5

; FEE]
e
ERS

An example

We want the weight to be the length of the longest shortcut, using
(NU {—o00}, max, +, —00, 0).

(CAN

S — <;>> (S) where ¢

We define ¢ as follows:

@ path(X,p,z) =“X is a path from p to z, which is a leaf”
@ len(p,x) = MAX x max(path(X,p,z), | X|) where

|X| =3, max(z ¢ X,1+ (2 € X))
® o(z) = MAX,(port; (p) + len(p, z)) %E

Questions to ponder

Is the use of non-idempotent (or non-extremal) addition
operators meaningful?

In the previous example, the weight of a graph in the support
of val4(t) does not depend on ¢. This seems to be a useful
property. Can it be decided/guaranteed?

When can we efficiently compute the weight of a graph?

In particular, can the parsing algorithm for the unweighted
case be “made weighted'”?

How to characterize the generated weighted graph languages?

Are there equivalent (graph) automata models?

Neuro-Symbolic Graph Expansion
Grammars

Beware! Raw meat ahead. ..

Why “neuro-symbolic” and what does it mean?

N 7
Rule-based graph transformation Neural models
T —— rich resource black rescource
P theory efficient box demanding
VS vs
inflexible no learning adaptive learnable)

@ Neuro-symbolic systems combine neural and symbolic
components.

@ Often, the neural component produces “input” to a symbolic
system.

@ | am more interested in having neural components inside the
symbolic one.

The case of graph expansion grammars

Coreference resolution in natural language processing:

Q99
osk ﬂ
23 <\1 Y bl

Emma

£l ¢
['“/Wﬂaﬂﬂlf{mo{

JOL”L The axiem
ojﬁ choie

We may want to train a neural network to pick suitable targets!

Questions

@ Can we train a neural network to pick reasonable targets for
context nodes?

@ |f so, how? For which type of neural network? Using which
kind of training data?

@ How to incorporate and make use of context information,
including other modalities (images, input strings, etc)?

Finally, something entirely different

Finally, something entirely different

We (Johanna, Henrik Bjérklund, and I) have funding for a
postdoc/PhD position in this broad area. If you know interested
and capable candidates, let us know.

