The normal subsemigroups of the monoid OF INJECTIVE MAPS *

Manfred Droste and Rüdiger Göbel

Abstract

We consider the monoid $\operatorname{Inj}(M)$ of injective self-maps of a set M and want to determine its normal subsemigroups by numerical invariants. This was established by Mesyan in 2012 if M is countable. Here we obtain an explicit description of all normal subsemigroups of $\operatorname{Inj}(M)$ for any uncountable set M.

1 Introduction

In two recent papers, Mesyan [11, 12] investigated the monoid $\operatorname{Inj}(M)$ of all injective self-maps of an infinite set M. A subsemigroup U of $\operatorname{Inj}(M)$ is normal if it is closed under conjugations by elements from $S(M)$, the symmetric group of all permutations of M. In a well-kown result, Schreier and Ulam [17] and Baer [1] showed that $S(M)$ has only few normal subgroups. Surprisingly, Mesyan [12] completely described the normal subsemigroups of $\operatorname{Inj}(M)$ if M is countable; there are uncountably many - determined by numerical invariants and subsemigroups of the monoid $(\mathbb{N},+)$.

In this paper we will describe the normal subsemigroups of $\operatorname{Inj}(M)$ for all uncountable sets M. Due to the uncountability of M new classes of normal subsemigroups arise stemming from injections behaving on an uncountable subset of M like a permutation. Thus a combination of Mesyan's methods for injective functions and their conjugacy classes as well as results on permutation groups is needed.

[^0]For the permutation group methods we employ a deep analysis of products of conjugacy classes in symmetric groups obtained by Moran [13, 14, 15]. In particular, he characterized products of conjugacy classes of the maximal factor group of $S(M)$. We extend his result to products of particular conjugacy classes of $S(M)$. Any normal subsemigroup G of $\operatorname{Inj}(M)$ decomposes into three parts: the group part G_{grp}, the subsemigroup $G_{\text {fin }}$ comprising all elements with finite, non-trivial co-image and G_{inf}, the infinitary analog version of $G_{\text {fin }}$. The critical part of the characterization concerns G_{fin}. Here we need the results on products of conjugacy classes in symmetric groups of uncountable sets to obtain the description of G_{fin}.

Our main results are contained in Theorems 3.10, 5.1, 5.2 and 5.5. As a consequence we derive the precise number of normal subsemigroups of $\operatorname{Inj}(M)$, which is $2^{c(M)^{\aleph_{0}}}$, where $c(M)=\mid\{\mu|\mu \leq|M|$ is a cardinal $\} \mid$. In contrast we show that $\operatorname{Inj}(M)$ has only $|i|+3$ maximal normal subsemigroups if $|M|=\aleph_{i}$. (i an ordinal).

We just note that the semigroup $\operatorname{Inj}_{\text {fin }}(M)$ is also known as Baer-Levi semigroup, see $[2,9]$ for its importance in semigroup theory. In [7] its maximal subsemigroups were investigated, and in [10] it was shown not to have the Bergman property. Related results on products of conjugacy classes in the symmetric groups are contained in $[3,4,6]$.

2 Definitions

Let M be an infinite set, $\operatorname{Inj}(M)$ the monoid of all injective maps of M and $S(M)$ the symmetric group of all permutations of M. If $f \in \operatorname{Inj}(M)$, we put $f^{S(M)}=\left\{g^{-1} f g \mid g \in S(M)\right\}$, the set of conjugates of f. We let $[f]=\{x \in M \mid x f \neq x\}$ denote the support of f. Moreover, we will write $|f|=|[f]|$ for the size of the support. Also $\operatorname{Fix}(f)=M \backslash[f]$ denotes the set of fixed points of f. If $x \in M$, the set $\left\{y \in M \mid y^{f^{i}}=x\right.$ or $x^{f^{i}}=y$ for some $\left.i \geq 0\right\}$ is called the f-orbit of x, or an orbit of f. If $x \notin M f$, we call this orbit also a forward orbit. Observe that then the set $\left\{x^{f^{i}} \mid i \geq 0\right\}$, the f-orbit of x, is infinite; in particular, $[f]$ is infinite and $|M \backslash M f| \leq|f|$. We call any orbit U of f with $U \subseteq M f$ a closed orbit; then clearly $f \upharpoonright U \in S(U)$.

We let \mathbb{N} denote the set of positive integers, and $\mathbb{N}_{\infty}=\mathbb{N} \cup\left\{\aleph_{0}\right\}$. We let \bar{f} be the map from \mathbb{N}_{∞} to the cardinals, where $\bar{f}(n)$ is the number of closed orbits of size n of f for each $n \in \mathbb{N}_{\infty}$.

Recall that κ^{+}denotes the successor cardinal of κ. If $\aleph_{0} \leq \nu \leq|M|^{+}$, then let $S^{\nu}(M)=\{f \in S(M)| | f \mid<\nu\}$ which is a normal subgroup of $S(M)$. We
also write $\operatorname{Fin}(M)=S^{\aleph_{0}}(M)$, the group of finitary permutations of M, and we let $\operatorname{Alt}(M)=\{f \in \operatorname{Fin}(M) \mid f \upharpoonright[f]$ is even $\}$, the infinite alternating group on M. Now let us consider $\operatorname{Inj}(M)$. We say that a subset $U \subseteq \operatorname{Inj}(M)$ is normal in $\operatorname{Inj}(M)$ if $U^{f}=f^{-1} U f \subseteq U$ for all $f \in S(M)$. We will write $U \triangleleft \operatorname{Inj}(M)$ for normal subsemigroups.

For the rest of this paper, M will denote an infinite set.

3 Products of conjugates

In this section, we recall results about $S(M)$ and $\operatorname{Inj}(M)$ which will be needed later on. First we deal with the symmetric group. As is well-known, two permutations $f, g \in S(M)$ are conjugate if and only if $\bar{f}=\bar{g}$.

Lemma 3.1. ([5]) Let $f, h \in S(M)$ with $|h| \leq|f|$ and let f have infinite support. Then $h \in\left(f^{S(M)}\right)^{4}$.

Next we turn to a sharpening of Lemma 3.1.
Definition 3.2. Following [13, p. 325] we say that $f \in S(M)$ is of type 0 if the following holds.
(i) $\bar{f}(1)=0$ or $\bar{f}(1)=|M|$.
(ii) $\bar{f}(n)=0$ or $\bar{f}(n) \geq \aleph_{0}$ for all $2 \leq n \in \mathbb{N}_{\infty}$.

Moreover, we say that $f \in S(M)$ is almost of type 0 if $\bar{f}(n)=0$ or $\bar{f}(n) \geq \aleph_{0}$ for all $n \in \mathbb{N}_{\infty}$.

Lemma 3.3. (Moran [13, Theorem 2]) Let $f, h \in S(M)$ be two permutations of type 0 with $|h| \leq|f|$. Then $h \in\left(f^{S(M)}\right)^{2}$.

Now we can derive the following strengthening of Lemmas 3.1 and 3.3 for uncountable sets M.

Proposition 3.4. Let M be uncountable and let $f, h \in S(M)$ be two permutations which are almost of type 0 with $|h| \leq|f|$. Then $h \in\left(f^{S(M)}\right)^{2}$.

Proof. If h, f are of type 0 , then the claim is straightforward by Lemma 3.3.
In the second case we assume that h is of type 0 but f is not. Hence $\aleph_{0} \leq \bar{f}(1)<$ $|M|$. Choose $m \in \mathbb{N}_{\infty}$ such that $\bar{f}(m)>\bar{f}(1)$. We can split $M=M_{1} \dot{\cup} M_{2}$ such that M_{1} consists of $\operatorname{Fix}(f)$ and $\bar{f}(1)$-many m-orbits of f. Hence $f_{i}=f \upharpoonright M_{i} \in S\left(M_{i}\right)$ for $i=1,2$, and $\left|M_{1}\right|=|\operatorname{Fix}(f)|=\left|f_{1}\right|$, and f_{1} and f_{2} both are of type 0 .

Choose $h_{1} \in S\left(M_{1}\right), h_{2} \in S\left(M_{2}\right)$ of type 0 with $\bar{h}_{1}+\bar{h}_{2}=\bar{h}$, hence $\overline{h_{1} \cup h_{2}}=\bar{h}$. Note that $\left|h_{2}\right| \leq|h| \leq|f|=\left|f_{2}\right|$. By the first case it follows that $h_{1} \in\left(f_{1}^{S\left(M_{1}\right)}\right)^{2}$ and similarly $h_{2} \in\left(f_{2}^{S\left(M_{2}\right)}\right)^{2}$. Thus $h \in\left(h_{1} \cup h_{2}\right)^{S(M)} \subseteq\left(f^{S(M)}\right)^{2}$ as required.

In the final case we assume that h is not of type 0 , thus $\aleph_{0} \leq \bar{h}(1)<|M|$. Choose $m \in \mathbb{N}_{\infty}$ such that $\bar{h}(m)>\bar{h}(1)$. We split $M=M_{1} \dot{\cup} M_{2}$ such that M_{1} consists of $\operatorname{Fix}(h)$ and $\bar{h}(1)$-many m-orbits of h. Then $h_{i}=h \upharpoonright M_{i} \in S\left(M_{i}\right)$ for $i=1,2$ and $\left|M_{1}\right|=|\bar{h}(1)|=\left|h_{1}\right|$. Hence h_{1} and h_{2} are both of type 0 . Now we choose $f_{1} \in S\left(M_{1}\right)$, $f_{2} \in S\left(M_{2}\right)$ both almost of type 0 with $\bar{f}_{1}+\bar{f}_{2}=\bar{f}$ and $\left|f_{1}\right|=\left|M_{1}\right|$; so $\left|f_{2}\right|=|f|$. By the first two cases it follows $h_{1} \in\left(f_{1}^{S\left(M_{1}\right)}\right)^{2}$ and similarly $h_{2} \in\left(f_{2}^{S\left(M_{2}\right)}\right)^{2}$, hence $h \in\left(f_{1} \cup f_{2}^{S(M)}\right)^{2}=\left(f^{S(M)}\right)^{2}$ as required.

Now we turn to $\operatorname{Inj}(M)$.
Observation 3.5. (Mesyan [11, Lemma 5]) If $f, g \in \operatorname{Inj}(M)$, then

$$
|M \backslash M f g|=|M \backslash M f|+|M \backslash M g|
$$

Let $U \subseteq M$ be a subset and $f \in \operatorname{Inj}(M)$. We say that U is $f^{ \pm 1}$-invariant, if whenever $x \in U, y \in M$, and $y=x^{f^{i}}$ or $y^{f^{i}}=x$ for some $i \in \mathbb{N}$, then $y \in U$. That is, U is a union of f-orbits. If $f_{i} \in \operatorname{Inj}(M)(i \in I)$, we say that U is $\left\{f_{i}^{ \pm 1} \mid i \in I\right\}$-invariant if U is $f_{i}^{ \pm 1}$-invariant for each $i \in I$. If $U^{\prime} \subseteq M$ is a subset and U is the smallest $\left\{f_{i}^{ \pm 1} \mid i \in I\right\}$ invariant subset of M with $U^{\prime} \subseteq U$, we call U the $\left\{f_{i}^{ \pm 1} \mid i \in I\right\}$-closure of U^{\prime}. Note that then $|U| \leq \max \left\{\left|U^{\prime}\right|,|I|, \aleph_{0}\right\}$. Trivially, $M \backslash U$ is also $\left\{f_{i}^{ \pm 1} \mid i \in I\right\}$-invariant, and such splittings of M into invariant subsets will be very important for the rest of this paper. It can be used for the following basic result which describes conjugacy of elements of $\operatorname{Inj}(M)$.

Lemma 3.6. (Mesyan [11, Proposition 3]) Let $f, g \in \operatorname{Inj}(M)$. Then

$$
g \in f^{S(M)} \Longleftrightarrow(|M \backslash M f|=|M \backslash M g| \text { and } \bar{f}=\bar{g}) .
$$

Proof. The claim " \Rightarrow " is trivial, and we only must show " \Leftarrow ":
We indicate the proof for illustration. Let M_{1} be the $f^{ \pm 1}$-closure of $M \backslash M f$, which is the union of all forward orbits of f, and $M_{2}=M \backslash M_{1}$. Hence $\left|M_{2}\right|=\sum_{k \in \mathbb{N}_{\infty}} k \bar{f}(k)$. Similarly, we define $M=M_{1}^{\prime} \dot{\cup} M_{2}^{\prime}$ for g.

From $\left|M_{1}\right|=\left|M_{1}^{\prime}\right|$ we have a bijection $h_{1}: M_{1} \longrightarrow M_{1}^{\prime}$ such that $x^{h_{1}^{-1} f h_{1}}=x^{g}$ for all $x \in M_{1}^{\prime}$. We can also choose $h_{2}: M_{2} \longrightarrow M_{2}^{\prime}$ such that $h_{2}^{-1} f h_{2}=g$ on M_{2}, thus $h=h_{1} \cup h_{2} \in S(M)$ satisfies $f^{h}=g$.

Next we consider products of conjugacy classes in $\operatorname{Inj}(M)$.
Lemma 3.7. (Mesyan [11, Corollary 10]) Let M be countable and $f, g, h \in \operatorname{Inj}(M) \backslash$ $S(M)$. Then $h \in f^{S(M)} \cdot g^{S(M)}$ if and only if $|M \backslash M h|=|M \backslash M f|+|M \backslash M g|$.

Lemma 3.8. (Mesyan [11, Corollary 13]). If $f, h \in \operatorname{Inj}(M)$ and

$$
|M \backslash M f|=|M \backslash M h|=|f|=|h| \geq \aleph_{0},
$$

then $h \in\left(f^{S(M)}\right)^{2}$.
Now we can show:
Lemma 3.9. If $f, h \in \operatorname{Inj}(M),|M \backslash M f|=|M \backslash M h| \geq \aleph_{0}$ and $|h| \leq|f|$, then $h \in\left(f^{S(M)}\right)^{2}$.

Proof. If $|M \backslash M f|=|f|$, then Lemma 3.8 applies. Thus we may assume that $|M \backslash M f|<|f|$. Let M_{1}^{\prime} contain $(M \backslash M f) \cup(M \backslash M h)$ and all closed f-orbits and h-orbits of size $n \in \mathbb{N}_{\infty}$ for which $\bar{f}(n) \in \mathbb{N}$ or $\bar{h}(n) \in \mathbb{N}$. Let M_{1} be the $\left\{f^{ \pm 1}, h^{ \pm 1}\right\}$ closure of M_{1}^{\prime}, and put $M_{2}=M \backslash M_{1}$. Then $\left|M_{1}\right|=|M \backslash M f|$. Let $f_{i}=f \upharpoonright M_{i}$ and $\underline{h_{i}}=h \upharpoonright M_{i}$ for $i=1,2$. Then $f_{2}, h_{2} \in S\left(M_{2}\right)$. Also $\overline{h_{2}}(n)=0$ or $\overline{h_{2}}(n) \geq \aleph_{0}$ and $\overline{f_{2}}(n)=0$ or $\overline{f_{2}}(n) \geq \aleph_{0}$ for all $n \in \mathbb{N}_{\infty}$. Now we can apply Lemma 3.8 on M_{1} and obtain $h_{1} \in\left(f_{1}^{S\left(M_{1}\right)}\right)^{2}$. On M_{2} we apply Proposition 3.4 to get that $h_{2} \in\left(f_{2}^{S\left(M_{2}\right)}\right)^{2}$. Thus $h=h_{1} \cup h_{2} \in\left(f^{S(M)}\right)^{2}$.

There are obvious normal subsemigroups of $\operatorname{Inj}(M)$: Let $\aleph_{0} \leq \mu, \nu \leq|M|^{+}$, then $\operatorname{Inj}^{\nu}(M)=\{f \in \operatorname{Inj}(M)| | f \mid<\nu\}$ and $\operatorname{Inj}_{\mu}(M)=\{f \in \operatorname{Inj}(M)| | M \backslash M f \mid=\mu\}$ are normal in $\operatorname{Inj}(M)$. If $\mu<\nu$, also $\operatorname{Inj}_{\mu}^{\nu}(M)=\operatorname{Inj}_{\mu}(M) \cap \operatorname{Inj}^{\nu}(M)$ is normal in $\operatorname{Inj}(M)$.

We also let

$$
\begin{equation*}
\operatorname{Inj}_{\mathrm{fin}}(M)=\{f \in \operatorname{Inj}(M)|M \neq M f,|M \backslash M f| \text { is finite }\} . \tag{3.1}
\end{equation*}
$$

If $G \subseteq \operatorname{Inj}(M)$, then let $G_{\mathrm{grp}}=G \cap S(M), G_{\mathrm{fin}}=G \cap \operatorname{Inj}_{\mathrm{fin}}(M)$ and $G_{\mu}=G \cap \operatorname{Inj}_{\mu}(M)$ for any $\mu \leq|M|$. If $G \triangleleft \operatorname{Inj}(M)$, then also $G_{\text {grp }}, G_{\text {fin }}$ and G_{μ} are normal in $\operatorname{Inj}(M)$ because $S(M), \operatorname{Inj}_{\mathrm{fin}}(M), \operatorname{Inj}_{\mu}(M) \triangleleft \operatorname{Inj}(M)$. As noted in [12], $G_{\text {grp }}$ is a group, since if $g \in G_{\mathrm{grp}}$, then $\bar{g}=\overline{g^{-1}}$, so $g^{-1} \in G$ by $G \triangleleft \operatorname{Inj}(M)$.

Now we can describe the structure of G_{grp} and G_{μ} for all $\mu \leq \kappa$.
Theorem 3.10. Let $|M|=\kappa \geq \aleph_{0}$ and $G \triangleleft \operatorname{Inj}(M)$. Then

$$
G=G_{\mathrm{grp}} \dot{\cup} G_{\mathrm{ffi}} \dot{\cup} \bigcup_{\aleph_{0} \leq \mu \leq \kappa} G_{\mu}
$$

(i) $G_{\text {grp }}$ is either $S^{\nu}(M)$ for some $\nu \leq \kappa^{+}$or $\operatorname{Alt}(M)$ or $\{1\}$ or \emptyset.
(ii) For all $\mu \leq \kappa$ either $G_{\mu}=\emptyset$ or $G_{\mu}=\operatorname{Inj}_{\mu}^{\nu}(M)$ for some $\mu<\nu \leq \kappa^{+}$.
(iii) For all $\mu<\mu^{\prime}<\nu$ if $G_{\mu}=\operatorname{Inj}_{\mu}^{\nu}(M)$ and $G_{\mu^{\prime}} \neq \emptyset$, then $\operatorname{Inj}_{\mu^{\prime}}^{\nu}(M) \subseteq G_{\mu^{\prime}}$.
(iv) For all $\mu^{\prime} \leq \nu$ if $G_{\text {fin }} \nsubseteq \operatorname{Inj}^{\nu}(M)$ and $G_{\mu^{\prime}} \neq \emptyset$, then $\operatorname{Inj}_{\mu^{\prime}}^{\nu^{+}}(M) \subseteq G_{\mu^{\prime}}$.

All these combinations with a normal subsemigroup $G_{\mathrm{fin}} \subseteq \operatorname{Inj}_{\mathrm{fin}}(M)$ give rise to normal subsemigroups $G \triangleleft \operatorname{Inj}(M)$.

Proof. (i) Since $G_{\text {grp }}$ is a normal subgroup of $S(M)$, this is the main result of [1]. It also follows from Lemma 3.1.
(ii) Let $\aleph_{0} \leq \mu \leq \kappa$ and assume there is $f \in G_{\mu}$. Let $\nu=|f|$. Clearly $\mu \leq \nu$ and we claim that then $\operatorname{Inj}_{\mu}^{\nu^{+}}(M) \subseteq G_{\mu}$. For this, choose $h \in \operatorname{Inj}_{\mu}^{j^{+}}(M)$. Then $|M \backslash M f|=$ $\mu=|M \backslash M h|$ and $|h| \leq \nu=|f|$. By Lemma 3.9, we obtain $h \in\left(f^{S(M)}\right)^{2} \in G$ and our claim. This implies the assertion of (ii) with $\nu=\sup \left\{|f|^{+} \mid f \in G_{\mu}\right\}$.
(iii) Let $h \in \operatorname{Inj}_{\mu^{\prime}}^{\nu}(M)$. Then $\alpha:=|h|<\nu$. Choose any $f \in G_{\mu^{\prime}}$. In case $|f| \geq \alpha$, by Lemma 3.9 we obtain $h \in\left(f^{S(M)}\right)^{2} \in G_{\mu^{\prime}}$. Now assume that $|f|<\alpha<\nu$. By assumption, there is $g \in G_{\mu}$ with $|g|=\alpha$. Then $f g \in G_{\mu^{\prime}}$ and $|f g|=\alpha$. Hence, by Lemma 3.9, we have $h \in\left((f g)^{S(M)}\right)^{2} \subseteq G_{\mu^{\prime}}$.
(iv) We proceed similarly to the argument for (iii). Let $h \in \operatorname{Inj} \mu_{\mu^{\prime}}^{\nu^{+}}(M)$. Choose any $f \in G_{\mu^{\prime}}$. If $|h| \leq|f|$, again by Lemma 3.9 we have $h \in\left(f^{S(M)}\right)^{2} \in G_{\mu^{\prime}}$. Therefore now assume that $|f|<|h|$. By assumption, there is $g \in G_{\text {fin }}$ with $|g| \geq \nu$. Then $f g \in G_{\mu^{\prime}}$ and $|h| \leq \nu \leq|g|=|f g|$. So by Lemma 3.9 we obtain $h \in\left((f g)^{S(M)}\right)^{2} \subseteq G_{\mu^{\prime}}$ and the result.

Hence it remains to describe the structure of $G_{\text {fin }}$. As in Mesyan [12], this depends on the value of $G_{\text {grp }}$. Therefore we proceed by the case distinction given by Theorem 3.10(i).

4 Products of conjugacy classes for uncountable sets

Throughout this section we assume that $G \triangleleft \operatorname{Inj}(M)$. Let

$$
\begin{equation*}
N(G)=\left\{|M \backslash M f| \mid f \in G_{\mathrm{fin}}\right\} . \tag{4.1}
\end{equation*}
$$

It is clear by Observation 3.5 that $N(G) \subseteq \mathbb{N}$ is a subsemigroup.
Conversely, if N is a subsemigroup of $(\mathbb{N},+)$, then following [12], we let

$$
\begin{equation*}
\operatorname{Inj}_{N}(M)=\{g \in \operatorname{Inj}(M)| | M \backslash M g \mid \in N\} \triangleleft \operatorname{Inj}(M) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Inj}_{N}^{\alpha}(M)=\left\{g \in \operatorname{Inj}_{N}(M)| | g \mid<\alpha\right\}=\operatorname{Inj}_{N}(M) \cap \operatorname{Inj}^{\alpha}(M) \tag{4.3}
\end{equation*}
$$

for any $\alpha \leq|M|^{+}$. Clearly $\operatorname{Inj}_{N}(M) \subseteq \operatorname{Inj}_{\text {fin }}(M)$. By Observation 3.5 it is easy to see that $\operatorname{Inj}_{N}(M) \triangleleft \operatorname{Inj}(M)$, cf. [12, p. 292].

Lemma 4.1. Let $G \triangleleft \operatorname{Inj}(M)$ and $\alpha>\aleph_{0}$ with $G_{\text {fin }} \subseteq \operatorname{Inj}^{\alpha}(M)$ and $S^{\alpha}(M) \subseteq G$. Then $G_{\text {fin }}=\operatorname{Inj}_{N}^{\alpha}(M)$ for $N=N(G)$.

Proof. If $h \in \operatorname{Inj}_{N}^{\alpha}(M)$, then by (4.2) and (4.1) there is some $f \in G_{\text {fin }}$ such that $|M \backslash M f|=|M \backslash M h|$, so $|f|<\alpha$. Choose any bijection $k_{1}: M \backslash M f \rightarrow M \backslash M h$, and define $k_{2}: M f \rightarrow M h$ by $x f \mapsto x h$, which is also bijective. Then $k=k_{1} \cup k_{2} \in S(M)$. Since $[k] \backslash[f] \subseteq \operatorname{Fix}(f) \cap[h]$, we have $[k] \subseteq[f] \cup[h]$ and by $|f|,|h|<\alpha$ it also follows $k \in S^{\alpha}(M) \subseteq G$. So $h=f k \in G$ and $|M \backslash M h|=|M \backslash M f|$, hence also $h \in G_{\text {fin }}$, so $\operatorname{Inj}_{N}^{\alpha}(M) \subseteq G_{\mathrm{fin}}$.

In this context, we note that each subsemigroup of \mathbb{N} is finitely generated, cf. [16]. Consequently, \mathbb{N} contains precisely \aleph_{0} subsemigroups.

For the remaining part of this section we consider the case that $G_{\mathrm{fin}} \nsubseteq \operatorname{Inj}^{\aleph_{1}}(M)$, i.e. there is $f \in G_{\text {fin }}$ with $|f| \geq \aleph_{1}$.

4.1 Moran's characterization \mathcal{P} and products of types

Our goal is to extend the crucial Lemma 3.7 to the uncountable case. For this, we will use Moran's property \mathcal{P} which describes products of conjugacy classes.

Definition 4.2. Let M be an uncountable set.
(i) We call each function $T: \mathbb{N}_{\infty} \longrightarrow\{0\} \cup\left\{\mu\left|\aleph_{1} \leq \mu \leq|M|\right\}\right.$ such that $\sum_{n \in \mathbb{N}_{\infty}} T(n)=|M| a$ type (of $S(M)$). We let \mathfrak{T}_{M} be the collection of all types of $S(M)$.
(ii) For a type T of $S(M)$ let $C_{T}=\{f \in S(M) \mid \bar{f}=T\}$, a conjugacy class in $S(M)$. We put $\mathcal{P}\left(T, T_{1}, T_{2}\right)$ if and only if $C_{T} \subseteq C_{T_{1}} \cdot C_{T_{2}}$ in $S(M)$.

Our aim is to characterize the relation \mathcal{P}. Moran [14] completely described all conjugacy classes C_{1}, C_{2}, C_{3} with $\mathcal{P}\left(C_{1}, C_{2}, C_{3}\right)$ in the factor groups $H_{\nu}=S(M) / S^{\nu}(M)$ for $\nu=|M| \geq \aleph_{1}$. He reduced this to a description of the relation \mathcal{P} for simple types; a type T of $S(M)$ is simple, if $T(n) \in\{0,|M|\}$ for each $n \in \mathbb{N}_{\infty}$. In our setting, if $|M| \geq \aleph_{1}$, we have to consider all possible values of T in $\{0\} \cup\left\{\mu\left|\aleph_{1} \leq \mu \leq|M|\right\}\right.$.

We recall Moran's results. For this we define a few particular types. If $F \subseteq \mathbb{N}_{\infty}$ is a subset, then let \widehat{F} be the simple type satisfying $\widehat{F}(n)=|M|$ if and only if $n \in F$ (for $n \in \mathbb{N}_{\infty}$). If $k \in \mathbb{N}_{\infty}$, we put $\widehat{k}=\widehat{\{k\}}$. We let $\mathrm{OD}(\mathrm{M})$ be the set of all simple types T satisfying $T(n)=0$ for any even $n \in \mathbb{N}$ and for $n=\aleph_{0}$. Clearly $\mathcal{P}\left(\widehat{1}, T_{1}, T_{2}\right)$ holds if and only if $T_{1}=T_{2}$. Since the relation \mathcal{P} is symmetric, it remains to characterize it for non-unit types T, T_{1}, T_{2}, i.e. for T, T_{1}, T_{2} different from $\widehat{1}$. Following [14], we call a set $\left\{T, T_{1}, T_{2}\right\}$ of types a non- \mathcal{P}-set if $\mathcal{P}\left(T, T_{1}, T_{2}\right)$ does not hold. The following gives an explicit description of non- \mathcal{P}-sets.

Theorem 4.3. (Moran [14, Theorem 1]) Let M be uncountable and T, T_{1}, T_{2} non-unit simple types of $S(M)$. Then $\left\{T, T_{1}, T_{2}\right\}$ is a non- \mathcal{P}-set if and only if one of the following two mutually exclusive conditions holds:
(i) $\left\{T, T_{1}, T_{2}\right\}=\{\widehat{2}, \widehat{\{1,2\}}, U\}$ for some $U \in \mathrm{OD}(\mathrm{M})$.
(ii) $\left\{T, T_{1}, T_{2}\right\}$ is one of the sets $\{\widehat{3}, \widehat{\{1,3\}}, \widehat{2}\}$ or $\{\widehat{3}, \widehat{\{1,3\}}, \widehat{\{1,2\}}\}$ or $\{\widehat{2}, \widehat{3},\{\widehat{1,2,3}\}\}$.

Let α be a cardinal with $\aleph_{1} \leq \alpha \leq|M|$. We let $\operatorname{cf}(\alpha)$ denote the cofinality of α. Now let T be a type of $S(M)$. We define a function $T^{\alpha}: \mathbb{N}_{\infty} \rightarrow\{0, \alpha\}$ by letting (for $n \in \mathbb{N}_{\infty}$)

$$
T^{\alpha}(n)= \begin{cases}\alpha & \text { if } T(n) \geq \alpha \\ 0 & \text { otherwise }\end{cases}
$$

If $\alpha<|M|$ or $\operatorname{cf}(\alpha) \neq \omega$, the condition $\sum_{n \in \mathbb{N}_{\infty}} T(n)=|M|$ implies that $T(n) \geq \alpha$ for some $n \in \mathbb{N}_{\infty}$, hence T^{α} is a simple type of $S\left(M_{\alpha}\right)$ where $\left|M_{\alpha}\right|=\alpha$. Now we show:

Theorem 4.4. Let M be uncountable and T, T_{1}, T_{2} types of $S(M)$. Then $\mathcal{P}\left(T, T_{1}, T_{2}\right)$ if and only if

$$
\begin{equation*}
\mathcal{P}\left(T^{\alpha}, T_{1}^{\alpha}, T_{2}^{\alpha}\right) \text { for each cardinal } \alpha \text { with } \aleph_{1} \leq \alpha \leq|M| \text { and } \operatorname{cf}(\alpha) \neq \omega \tag{4.4}
\end{equation*}
$$

Proof. " \Rightarrow " Let $\mathcal{P}\left(T, T_{1}, T_{2}\right)$ and α a cardinal with $\aleph_{1} \leq \alpha \leq|M|$ and $\operatorname{cf}(\alpha) \neq \omega$. We choose $h, f, g \in S(M)$ with $\bar{h}=T, \bar{f}=T_{1}, \bar{g}=T_{2}$ and $h=f g$. Let M_{1}^{\prime} be the union of all orbits of h, f and g of length $n \in \mathbb{N}_{\infty}$ for which $\bar{h}(n)<\alpha$ resp. $\bar{f}(n)<\alpha$ or $\bar{g}(n)<\alpha$, and let M_{1} be the $\left\{h^{ \pm 1}, f^{ \pm 1}, g^{ \pm 1}\right\}$-closure of M_{1}^{\prime}. Since $\operatorname{cf}(\alpha) \neq \omega, \alpha$ is not the sum of countably many smaller cardinals. Hence $\left|M_{1}\right|<\alpha$. Put $M_{2}=M \backslash M_{1}$, so $\left|M_{2}\right|=|M|$.

Choose $M^{\prime} \subseteq M_{2}$ such that M^{\prime} is $\left\{h^{ \pm 1}, f^{ \pm 1}, g^{ \pm 1}\right\}$-invariant and $\left|M^{\prime}\right|=\alpha$. Let $h^{\prime}=h \upharpoonright M^{\prime}, f^{\prime}=f \upharpoonright M^{\prime}$ and $g^{\prime}=g \upharpoonright M^{\prime}$. Then $h^{\prime}=f^{\prime} g^{\prime}$ and $\overline{h^{\prime}}(n)=0$ or $\overline{h^{\prime}}(n)=\alpha$ for each $n \in \mathbb{N}_{\infty}$, and similarly for f^{\prime} and g^{\prime}. Hence $\overline{h^{\prime}}, \overline{f^{\prime}}$, and $\overline{g^{\prime}}$ are simple types of $S\left(M^{\prime}\right)$ and $\overline{h^{\prime}}=T^{\alpha}, \overline{f^{\prime}}=T_{1}^{\alpha}, \overline{g^{\prime}}=T_{2}^{\alpha}$, proving $\mathcal{P}\left(T^{\alpha}, T_{1}^{\alpha}, T_{2}^{\alpha}\right)$.
" \Leftarrow " Assume (4.4). We wish to construct $h, f, g \in S(M)$ such that $h=f g$ and $\bar{h}=T, \bar{f}=T_{1}, \bar{g}=T_{2}$; then $\mathcal{P}\left(T, T_{1}, T_{2}\right)$. We decompose $M=\dot{\cup}_{\alpha \in D} M_{\alpha}$ (with $D=\left\{\alpha\left|\aleph_{1} \leq \alpha \leq|M|\right.\right.$ and $\left.\operatorname{cf}(\alpha) \neq \omega\right\}$ into pairwise disjoint sets M_{α} of cardinality $\left|M_{\alpha}\right|=\alpha$. By assumption, for each $\alpha \in D$ we have $\mathcal{P}\left(T^{\alpha}, T_{1}^{\alpha}, T_{2}^{\alpha}\right)$, hence there are $h_{\alpha}, f_{\alpha}, g_{\alpha} \in S\left(M_{\alpha}\right)$ such that $h_{\alpha}=f_{\alpha} g_{\alpha}$ and $\overline{h_{\alpha}}=T^{\alpha}, \overline{f_{\alpha}}=T_{1}^{\alpha}, \overline{g_{\alpha}}=T_{2}^{\alpha}$. Put $h=\dot{U}_{\alpha \in D} h_{\alpha}, f=\dot{\bigcup}_{\alpha \in D} f_{\alpha}$ and $g=\dot{U}_{\alpha \in D} g_{\alpha}$. Clearly $h=f g$, and for each $n \in \mathbb{N}_{\infty}$ we have $\bar{h}(n)=\sum_{\alpha \in D} \overline{h_{\alpha}}(n)=\sum_{\alpha \in D} T^{\alpha}(n)=\sup _{\alpha \in D} T^{\alpha}(n)$. Note that $T^{\alpha}(n)=0$ if $\alpha>T(n)$. If $\operatorname{cf}(T(n)) \neq \omega$ and $\alpha=T(n)$, we have $T^{\alpha}(n)=\alpha=T(n)$. If $\operatorname{cf}(T(n))=\omega$, we have $T^{\alpha}(n)=\alpha$ for each $\alpha \in D$ with $\alpha<T(n)$, and the supremum of all these α equals $T(n)$. Hence in any case $\bar{h}(n)=T(n)$, showing $\bar{h}=T$. Similarly, $\bar{f}=T_{1}$ and $\bar{g}=T_{2}$.

Observe that condition (4.4) for each α is characterized by Theorem 4.3. Hence Theorem 4.3 and Theorem 4.4 together give a complete description of the relation \mathcal{P} on \mathfrak{T}_{M}.

Now we turn $\operatorname{Inj}(M)$ for uncountable sets M. If $f \in \operatorname{Inj}(M)$ with $M \backslash M f$ countable, we define $T_{f}: \mathbb{N}_{\infty} \longrightarrow\{0\} \cup\left\{\mu\left|\aleph_{1} \leq \mu \leq|M|\right\}\right.$ by letting

$$
T_{f}(n)= \begin{cases}\bar{f}(n) & \text { if } \bar{f}(n) \geq \aleph_{1} \\ 0 & \text { otherwise }\end{cases}
$$

Then T_{f} is a type of $S(M)$, the type of f. Observe that if $f \in \operatorname{Inj}(M)$ satisfies $|f| \leq \aleph_{0}$, then $T_{f}(1)=|M|$ and $T_{f}(n)=0$ for all $n \geq 2$. Also, for $f \in \operatorname{Inj}(M)$, we let

$$
\operatorname{orb}(f, \omega)=\bigcup\left\{\text { closed orbits of } f \text { of size } n \mid n \in \mathbb{N}_{\infty} \text { with } \bar{f}(n) \leq \aleph_{0}\right\}
$$

Now we state our extension of Lemma 3.7 to the uncountable case.
Proposition 4.5. Let M be uncountable. For $f, g, h \in \operatorname{Inj}(M) \backslash S(M)$ with $M \backslash$ $M f, M \backslash M g, M \backslash M h$ countable, the following conditions are equivalent.
(i) $h \in f^{S(M)} \cdot g^{S(M)}$
(ii) $|M \backslash M h|=|M \backslash M f|+|M \backslash M g|$ and $\mathcal{P}\left(T_{h}, T_{f}, T_{g}\right)$ holds.

Proof. Let

$$
M_{1}^{\prime}=(M \backslash M f) \cup(M \backslash M g) \cup(M \backslash M h) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega) \cup \operatorname{orb}(h, \omega) .
$$

" $(i i) \Rightarrow(i)$ ": Let M_{1} be the $\left\{f^{ \pm 1}, g^{ \pm 1}, h^{ \pm 1}\right\}$-closure of M_{1}^{\prime} and $M_{2}=M \backslash M_{1}$. Then $\left|M_{1}\right|=\aleph_{0}$ and $\left|M_{2}\right|=|M|$. Put $f_{i}=f \upharpoonright M_{i}, g_{i}=g \upharpoonright M_{i}, h_{i}=h \upharpoonright M_{i}$ for $i=1,2$. Clearly $f_{2}, g_{2}, h_{2} \in S\left(M_{2}\right)$, and (by definition of types T), we have $T_{f_{2}}=T_{f}, T_{g_{2}}=T_{g}$ and $T_{h_{2}}=T_{h}$.

By Lemma 3.7 it follows that $h_{1} \in f_{1}^{S\left(M_{1}\right)} \cdot g_{1}^{S\left(M_{1}\right)}$ and the property $\mathcal{P}\left(T_{h}, T_{f}, T_{g}\right)$ implies that $h_{2} \in f_{2}^{S\left(M_{2}\right)} \cdot g_{2}^{S\left(M_{2}\right)}$. Patching the components together we get $h \in$ $f^{S(M)} \cdot g^{S(M)}$.
" $(i) \Rightarrow(i i) ":$ Let $h=f^{k} \cdot g^{k^{\prime}}$ with $k, k^{\prime} \in S(M)$ be chosen by (i). Then by Observation 3.5 the first claim in (ii) follows immediately. Now let M_{1} be the $\left\{f^{ \pm 1}, g^{ \pm 1}, h^{ \pm 1}, k^{ \pm 1},\left(k^{\prime}\right)^{ \pm 1}\right\}$-closure of M_{1}^{\prime}, which is countable, and put $M_{2}=M \backslash M_{1}$. Thus $\left|M_{2}\right|=|M|$. Again, let $f_{2}=f \upharpoonright M_{2}, g_{2}=g \upharpoonright M_{2}, h_{2}=h \upharpoonright M_{2}, k_{2}=k \upharpoonright M_{2}$ and $k_{2}^{\prime}=k^{\prime} \upharpoonright M_{2}$. Then $h_{2}=f_{2}^{k_{2}} g_{2}^{k_{2}^{\prime}}$ on M_{2} and $\bar{h}_{2}(n)=0$ or $\bar{h}_{2}(n)=\bar{h}(n) \geq \aleph_{1}$ for all $n \in \mathbb{N}_{\infty}$, so $T_{h_{2}}=T_{h}$ and the same holds for f_{2}, g_{2}. Thus we have $\mathcal{P}\left(T_{h_{2}}, T_{f_{2}}, T_{g_{2}}\right)=$ $\mathcal{P}\left(T_{h}, T_{f}, T_{g}\right)$, so \mathcal{P} holds in (ii).

4.2 Normal subsemigroups of $\operatorname{Inj}(M)$

Throughout this section, let M be uncountable. Let $N \subseteq \mathbb{N}$ be a subsemigroup. Now we want to refine the correspondence between the subsemigroup N and the normal subsemigroup $\operatorname{Inj}_{N}(M)$ obtained in (4.1) and (4.2). We fix the family of pairs

$$
\begin{equation*}
\mathfrak{P}=\mathbb{N} \times \mathfrak{T}_{M} \tag{4.5}
\end{equation*}
$$

We call a subset P of \mathfrak{P} an N-type set if it satisfies the following conditions:
(i) If $(n, T) \in P$, then $n \in N$.
(ii) For each $n \in N$ there is $T \in \mathfrak{T}_{M}$ such that $(n, T) \in P$.
(iii) If $\left(n_{1}, T_{1}\right),\left(n_{2}, T_{2}\right) \in P$ and $T \in \mathfrak{T}_{M}$ satisfies $\mathcal{P}\left(T, T_{1}, T_{2}\right)$, then $\left(n_{1}+n_{2}, T\right) \in P$.

As an illustration we just note:
Corollary 4.6. Let N be a subsemigroup of \mathbb{N} and P an N-type set. If $(n, T) \in P$ with $\sum_{n \geq 2} T(n)=|M|$, then $\left(2 n, T^{\prime}\right) \in P$ for any $T^{\prime} \in \mathfrak{T}_{M}$.

Proof. Let $T^{\prime} \in \mathfrak{T}_{M}$. We claim that $P\left(T^{\prime}, T, T\right)$ holds. This follows from Theorem 4.4, since condition (4.4) is satisfied by Theorem 4.3. Now condition (iii) implies $\left(2 n, T^{\prime}\right) \in P$.

We observe that for a normal subsemigroup $G \triangleleft \operatorname{Inj}(M)$ the family

$$
\begin{equation*}
P(G)=\left\{\left(|M \backslash M f|, T_{f}\right) \mid f \in G_{\mathrm{fin}}\right\} \tag{4.6}
\end{equation*}
$$

satisfies the
Remark 4.7. $P(G)$ is an $N(G)$-type set.
Proof. Conditions (i) and (ii) are obvious. Now let $f, g \in G_{\text {fin }}$ and $m=|M \backslash M f|, n=$ $|M \backslash M g|$ and let $T \in \mathfrak{T}_{M}$ with $\mathcal{P}\left(T, T_{f}, T_{g}\right)$. Choose $h \in \operatorname{Inj}(M)$ with $|M \backslash M h|=$ $m+n$ and $T_{h}=T$. By Proposition 4.5, we obtain $h \in f^{S(M)} g^{S(M)} \subseteq G$. So, $(m+n, T) \in P(G)$, proving condition (iii).

Now let N be a subsemigroup of \mathbb{N} and let P be an N-type set. We put

$$
\operatorname{Inj}_{P}(M)=\left\{f \in \operatorname{Inj}(M) \mid\left(|M \backslash M f|, T_{f}\right) \in P\right\}
$$

We have an easy
Observation 4.8. $\operatorname{Inj}_{P}(M)$ is a normal subsemigroup of $\operatorname{Inj}(M)$, and $\operatorname{Inj}_{P}(M) \subseteq$ $\operatorname{Inj}_{N}(M)$.

Proof. Let $f, g \in \operatorname{Inj}_{P}(M), h=f g$, and $m=|M \backslash M f|, n=|M \backslash M g|$. So $\left(m, T_{f}\right),\left(n, T_{g}\right) \in P$. By Proposition 4.5 we have $\mathcal{P}\left(T_{h}, T_{f}, T_{g}\right)$ and so $\left(m+n, T_{h}\right) \in P$ by condition (iii) for P. Since $|M \backslash M h|=m+n$, we obtain $h \in \operatorname{Inj}_{P}(M)$. Clearly, $\operatorname{Inj}_{P}(M)$ is normal and $\operatorname{Inj}_{P}(M) \subseteq \operatorname{Inj}_{N}(M)$.

We give two examples of extreme cases. Let $N=N(G)$ and $P=P(G)$.
First assume that $G_{\mathrm{fin}} \subseteq \operatorname{Inj}^{\aleph_{1}}(M)$. Then $T_{f}=\widehat{1}$ for each $f \in G_{\text {fin }}$, so $P=N \times\{\widehat{1}\}$ and $\operatorname{Inj}_{P}(M)=\operatorname{Inj}_{N}^{\aleph_{1}}(M)$.

Secondly, assume that $G_{\text {grp }}=S(M)$. We claim that then $P=N \times \mathfrak{T}_{M}$. Indeed, choose any $n \in N$ and $T \in \mathfrak{T}_{M}$. There is $f \in G_{\text {fin }}$ with $|M \backslash M f|=n$. Let M_{1} be the $f^{ \pm 1}$-closure of $M \backslash M f$, which is countable. Put $M_{2}=M \backslash M_{1}$ and let $f_{i}=f \upharpoonright M_{i}(i=1,2)$. Then $f_{2} \in S\left(M_{2}\right)$. We put $f^{\prime}=\operatorname{id}_{M_{1}} \dot{\cup} f_{2}^{-1} \in S(M)$. Also, there is $g \in S(M)$ with $T_{g}=T$. Then $f^{\prime} g \in S(M)=G_{\text {grp }}$, so $f f^{\prime} g \in G$, $\left|M \backslash M f f^{\prime} g\right|=|M \backslash M f|=n$, and $T_{f f^{\prime} g}=T_{g}=T$, showing $(n, T) \in P$ and our claim. Hence $\operatorname{Inj}_{P}(M)=\operatorname{Inj}_{N}(M)$.

Lemma 4.9. If $f, g \in \operatorname{Inj}_{\mathrm{fin}}(M) \cup \operatorname{Inj}_{\aleph_{0}}(M)$, then

$$
f \in g^{S(M)} S^{\aleph_{1}}(M) \Longleftrightarrow\left(|M \backslash M f|=|M \backslash M g| \text { and } T_{f}=T_{g}\right) .
$$

Proof." \Rightarrow ": The first condition $|M \backslash M f|=|M \backslash M g|$ is clear. If $f=g^{h} \cdot k$ for $h \in S(M)$ and $k \in S^{\aleph_{1}}(M)$, then let

$$
M_{1}^{\prime}=[k] \cup(M \backslash M f) \cup(M \backslash M g) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega),
$$

and let M_{1} be the $\left\{f^{ \pm 1}, g^{ \pm 1}, h^{ \pm 1}, k^{ \pm 1}\right\}$-closure of M_{1}^{\prime}, which is countable. Set $M_{2}=M \backslash M_{1}$ and consider the restrictions $f_{2}, g_{2}, k_{2}, h_{2}$ of f, g, k, h to M_{2}, respectively. It follows that $k_{2}=\operatorname{id}_{M_{2}}, f_{2}=g_{2}^{h_{2}}$, and $T_{f}=T_{f_{2}}=T_{g_{2}}=T_{g}$, as required.
$" \Leftarrow "$: We let M_{1} be the $\left\{f^{ \pm 1}, g^{ \pm 1}\right\}$-closure of

$$
M_{1}^{\prime}=(M \backslash M f) \cup(M \backslash M g) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega),
$$

which is countable, and let $M_{2}=M \backslash M_{1}$. Let f_{i}, g_{i} be the restrictions of f, g on M_{i} $(i=1,2)$. Then $M_{1} \backslash M_{1} f_{1}=M \backslash M f$ and $M_{1} \backslash M_{1} g_{1}=M \backslash M g$. We define $h_{1} \in S\left(M_{1}\right)$ such that

$$
h_{1} \upharpoonright\left(M_{1} \backslash M_{1} g_{1}\right): M_{1} \backslash M_{1} g_{1} \longrightarrow M_{1} \backslash M_{1} f_{1}
$$

is any bijection and

$$
h_{1} \upharpoonright M_{1} g_{1}: M_{1} g_{1} \longrightarrow M_{1} f_{1}\left(x g_{1} \mapsto x f_{1}\right)
$$

which is also bijective. Then $f_{1}=g_{1} h_{1}$. Also, $f_{2}, g_{2} \in S\left(M_{2}\right)$ which are conjugates by $T_{f_{2}}=T_{f}=T_{g}=T_{g_{2}}$. We write $f_{2}=\left(g_{2}\right)^{h_{2}}, h_{2}^{\prime}=\operatorname{id}_{M_{1}} \dot{\cup} h_{2}$ and $h_{1}^{\prime}=h_{1} \dot{\cup} \mathrm{id}_{M_{2}}$. Thus $\left|h_{1}^{\prime}\right| \leq \aleph_{0}$ and $f=g^{h_{2}^{\prime}} h_{1}^{\prime}$ is as required.

Lemma 4.10. Let $G_{\text {grp }} \supseteq S^{\aleph_{1}}(M)$ and $G_{\text {fin }} \nsubseteq \operatorname{Inj}^{\aleph_{1}}(M)$. Then $G_{\text {fin }}=\operatorname{Inj}_{P(G)}(M)$.
Proof. The inclusion $G_{\text {fin }} \subseteq \operatorname{Inj}_{P(G)}(M)$ is trivial. For the converse, let $f \in$ $\operatorname{Inj}_{P(G)}(M)$. So there is $g \in G_{\text {fin }}$ with $|M \backslash M f|=|M \backslash M g|$ and $T_{f}=T_{g}$. By Lemma 4.9 and the assumption on $G_{\text {grp }}$, we obtain $f \in g^{S(M)} S^{\aleph_{1}}(M) \subseteq G$. Hence $f \in G_{\text {fin }}$.

5 Characterizing $G_{\text {fin }}$ for uncountable sets M

5.1 The case: G contains a permutation with infinite support

We are ready to characterize the normal subsemigroups of $\operatorname{Inj}(M)$ under the restrictions of this section. By Theorem 3.10 we have $S^{\aleph_{1}}(M) \subseteq G_{\text {grp }}$.

Theorem 5.1. Let M be uncountable, $G \triangleleft \operatorname{Inj}(M)$ with $G_{\text {fin }} \neq \emptyset$ and $S^{\aleph_{1}}(M) \subseteq G_{\text {grp }}$.
Then there is a subsemigroup $N \subseteq(\mathbb{N},+)$ such that $G_{\mathrm{fin}} \subseteq \operatorname{Inj}_{N}(M)$. Moreover, we have:
(i) If $G_{\mathrm{fin}} \subseteq \operatorname{Inj}^{\aleph_{1}}(M)$, then $G_{\mathrm{fin}}=\operatorname{Inj}_{N}^{\mathrm{N}_{1}}(M)$.
(ii) If $G_{\mathrm{fin}} \nsubseteq \operatorname{Inj}^{\aleph_{1}}(M)$, there is an N-type set P such that $G_{\mathrm{fin}}=\operatorname{Inj}_{P}(M)$.
(iii) If $G_{\mathrm{grp}}=S(M)$, then $G_{\mathrm{fin}}=\operatorname{Inj}_{N}(M)$.

All these combinations give rise to normal subsemigroups $G \triangleleft \operatorname{Inj}(M)$.
Proof. Let $N=N(G)$. The descriptions of $G_{\text {fin }}$ in (i) and (iii) follow from Lemma 4.1 (with $\alpha=\aleph_{1}$, respectively $\alpha=|M|^{+}$) and in (ii) from Lemma 4.10. The last statement is immediate by Observation 4.8.

5.2 The case $G \cap S(M)=1$

In this section, we assume that $G \cap S(M)=1$. Then it may be the case that there are $f \in G_{\text {fin }}$ and $g \in \operatorname{Inj}(M)$ with $|M \backslash M f|=|M \backslash M g|$ and $T_{f}=T_{g}$, but $\bar{f} \neq \bar{g}$ and $g \notin G_{\text {fin }}$. (For instance, we may choose any $f \in \operatorname{Inj}(M) \backslash S(M)$ with $\bar{f}(n) \leq \aleph_{0}$ for some $n \in \mathbb{N}$. Let G be the normal subsemigroup of $\operatorname{Inj}(M)$ generated by f. If $g \in \operatorname{Inj}(M)$ with $|M \backslash M f|=|M \backslash M g|$ and $\bar{g}(n) \neq f(n)$, then $g \notin G$ by Lemma 3.6 and Observation 3.5.) Then $G_{\mathrm{fin}} \neq \operatorname{Inj}_{P(G)}(M)$, so we do not have the characterization of Theorem 5.1.

For any subset $B \subseteq \operatorname{Inj}_{\mathrm{fin}}(M)$ let

$$
\begin{equation*}
P(B)=\left\{\left(|M \backslash M f|, T_{f}\right) \mid f \in B\right\} \subseteq \mathfrak{P} \tag{5.1}
\end{equation*}
$$

We also say that $(k, T) \in P$ is reducible if and only if there are two types $\left(n_{1}, T_{1}\right)$, $\left(n_{2}, T_{2}\right) \in P$ such that $k=n_{1}+n_{2}$ and $P\left(T, T_{1}, T_{2}\right)$ holds. Otherwise, (k, T) is called irreducible.

Theorem 5.2. If M is uncountable, $G \triangleleft \operatorname{Inj}(M), G \cap S(M)=1$ and $P=P(G)$, then

$$
\begin{equation*}
G_{\mathrm{fin}}=B \dot{\cup}\left\{f \in \operatorname{Inj}(M) \mid\left(|M \backslash M f|, T_{f}\right) \in P \text { is reducible }\right\} \tag{5.2}
\end{equation*}
$$

and $B \subseteq \operatorname{Inj}_{\mathrm{fin}}(M)$ is a normal subset which satisfies

$$
\begin{equation*}
P(B)=\{(n, T) \in P \mid(n, T) \text { is irreducible }\} . \tag{5.3}
\end{equation*}
$$

Conversely, each righthand side of the displayed equation (5.2) is a subsemigroup of $\operatorname{Inj}_{\mathrm{fin}}(M)$ normal in $\operatorname{Inj}(M)$. Moreover, in this case $G_{\text {fin }}$ is the subsemigroup generated by B.

Proof. Put $B=\left\{f \in G_{\text {fin }} \mid\left(|M \backslash M f|, T_{f}\right)\right.$ irreducible in $\left.P\right\}$. Then B is normal in $\operatorname{Inj}(M)$ and we claim that (5.2) holds.

If $h \in \operatorname{Inj}(M)$ and $\left(|M \backslash M h|, T_{h}\right) \in P(G)$ is reducible, then there are $f, g \in G_{\text {fin }}$ such that $|M \backslash M h|=|M \backslash M f|+|M \backslash M g|$ and $\mathcal{P}\left(T_{h}, T_{f}, T_{g}\right)$ holds. By Proposition 4.5 it follows that $h \in f^{S(M)} g^{S(M)} \subseteq G_{\mathrm{fin}}$. This is one inclusion of (5.2), and the converse inclusion holds trivially.

To verify (5.3), let $(n, T) \in P(G)$ be irreducible. So there is $f \in G_{\text {fin }}$ with $|M \backslash M f|=n$ and $T_{f}=T$. By definition, then $f \in B$, proving (5.3).

Given a subsemigroup $N \subseteq \mathbb{N}$ and an N-type set P, then the corresponding righthand side of (5.2) is a normal subsemigroup of $\operatorname{Inj}(M)$ as seen by the proof of Observation 4.8.

It remains to show that G_{fin} is generated by B. Let $h \in G_{\mathrm{fin}} \backslash B$. First assume that there are two irreducible types $\left(n_{1}, T_{1}\right),\left(n_{2}, T_{2}\right) \in P$ such that $|M \backslash M h|=$ $n_{1}+n_{2}$ and $P\left(T_{h}, T_{1}, T_{2}\right)$. Then $\left(n_{1}, T_{1}\right),\left(n_{2}, T_{2}\right) \in P(B)$, so there are $f, g \in B$ with $n_{1}=\left|M \backslash M_{f}\right|, T_{1}=T_{f}, n_{2}=\left|M \backslash M_{g}\right|, T_{2}=T_{g}$. By Proposition 4.5, we obtain $h \in f^{S(M)} g^{S(M)} \subseteq B \cdot B$. In the general case, an induction shows that h is a finite product of elements from B.

5.3 The cases $G \cap S(M)=\operatorname{Fin}(M)$ and $G \cap S(M)=\operatorname{Alt}(M)$

In this case we adopt an equivalence relation $\approx \operatorname{on} \operatorname{Inj}(M)$ from Mesyan [12, Definition 19] and say that $f \approx g$ for $f, g \in \operatorname{Inj}(M)$ if the following conditions hold:
(i) $F=\{n \in \mathbb{N} \mid \bar{f}(n) \neq \bar{g}(n)\}$ is finite, and if $n \in F$, then $\bar{f}(n), \bar{g}(n) \in \mathbb{N}$.
(ii) $\bar{f}\left(\aleph_{0}\right)=\bar{g}\left(\aleph_{0}\right)$
(iii) $|M \backslash M f|=|M \backslash M g|$

A set $B \subseteq \operatorname{Inj}(M)$ is \approx-closed if for any $f \in B, f \approx g \in \operatorname{Inj}(M)$ implies $g \in B$. Clearly, then B is normal in $\operatorname{Inj}(M)$. The following characterization of \approx can be shown just as in [12]. It rests on the effect of multiplying one or two infinite orbits by a transposition.

Proposition 5.3. (Mesyan [12, Proposition 24]) Let M be any infinite set and $f, g \in$ $\operatorname{Inj}(M) \backslash S(M)$. Then $f \approx g$ if and only if $f \in \operatorname{Fin}(M)\left(g^{S(M)}\right) \operatorname{Fin}(M)$.

For uncountable sets M, we can strengthen this result as follows.
Proposition 5.4. Let M be any uncountable set and $f, g \in \operatorname{Inj}_{\text {fin }}(M) \backslash S(M)$. Then $f \approx g$ if and only if $f \in \operatorname{Alt}(M)\left(g^{S(M)}\right) \operatorname{Alt}(M)$.

Proof. The 'if'-direction is immediate by Proposition 5.3. Hence we may assume $f \approx g$. Choose $n \in \mathbb{N}_{\infty}$ such that $\bar{f}(n)$ is uncountable, hence $\bar{g}(n)=\bar{f}(n)$. Let A (resp. B) be the union of countably-infinitely many n-orbits of f (resp. g). Let M_{1} be the $\left\{f^{ \pm 1}, g^{ \pm 1}\right\}$-closure of the set

$$
(M \backslash M f) \cup(M \backslash M g) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega) \cup A \cup B,
$$

which is countable, and $M_{2}=M \backslash M_{1}$. Let $f_{i}=f \upharpoonright M_{i}, g_{i}=g \upharpoonright M_{i}$ for $i=1,2$. Then $f_{1} \approx g_{1}$ in $\operatorname{Inj}\left(M_{1}\right)$ and $\overline{f_{1}}(n)=\overline{g_{1}}(n)=\aleph_{0}$. Applying Proposition 5.3 we obtain
$f_{1} \in \operatorname{Fin}\left(M_{1}\right)\left(g_{1}^{S\left(M_{1}\right)}\right) \operatorname{Fin}\left(M_{1}\right)$, and [12, Lemma 26] using that $\overline{f_{1}}(n)=\overline{g_{1}}(n)=\aleph_{0}$ implies $f_{1} \in \operatorname{Alt}\left(M_{1}\right)\left(g_{1}^{S\left(M_{1}\right)}\right) \operatorname{Alt}\left(M_{1}\right)$. Also $f_{2}, g_{2} \in S\left(M_{2}\right)$ and $f_{2} \approx g_{2}$, so $\overline{f_{2}}=\overline{g_{2}}$. Hence $f_{2} \in g_{2}^{S\left(M_{2}\right)}$. Thus $f \in \operatorname{Alt}(M)\left(g^{S(M)}\right) \operatorname{Alt}(M)$ as needed.

This result will enable us to use in Theorem 5.5 the same relation \approx for both cases $G_{\mathrm{grp}}=\operatorname{Fin}(M)$ and $G_{\text {grp }}=\operatorname{Alt}(M)$, which provides a contrast to the result for countable sets M, cf. [12, Theorem 34].

Theorem 5.5. Let M be uncountable, $G \triangleleft \operatorname{Inj}(M), G_{\operatorname{grp}}=\operatorname{Fin}(M)$ or $G_{\operatorname{grp}}=\operatorname{Alt}(M)$, $G_{\mathrm{fin}} \neq \emptyset$ and $P=P(G)$. Then

$$
\begin{equation*}
G_{\mathrm{fin}}=B \dot{\cup}\left\{f \in \operatorname{Inj}(M) \mid\left(|M \backslash M f|, T_{f}\right) \in P \text { is reducible }\right\} \tag{5.4}
\end{equation*}
$$

and $B \subseteq \operatorname{Inj}_{\mathrm{fin}}(M)$ is $a \approx$-closed subset which satisfies

$$
\begin{equation*}
P(B)=\{(n, T) \in P \mid(n, T) \text { is irreducible }\} . \tag{5.5}
\end{equation*}
$$

Conversely, each righthand side of the displayed equation (5.5) is a normal subsemigroup of $\operatorname{Inj}_{\mathrm{fin}}(M)$. Moreover, in this case G_{fin} is the subsemigroup generated by B.

Proof. Assume $G_{\text {grp }}=\operatorname{Fin}(M)$. Put

$$
B=\left\{f \in G_{\text {fin }} \mid\left(|M \backslash M f|, T_{f}\right) \text { irreducible in } P\right\} .
$$

Then B is \approx-closed by Proposition 5.3 and $\operatorname{Fin}(M) \subseteq G$. The remaining arguments for the theorem are the same as in Theorem 5.2.

Now let $G_{\mathrm{grp}}=\operatorname{Alt}(M)$. We can follow the above argument, but we use Proposition 5.4 to get that B is \approx-closed to obtain the result.

6 Maximal normal subsemigroups of $\operatorname{Inj}(M)$

We determine the maximal normal subsemigroups of $\operatorname{Inj}(M)$.
Theorem 6.1. The following constitute all the maximal normal subsemigroups of $\operatorname{Inj}(M)$ where $\kappa=|M|$:
(i) $S^{\kappa}(M) \dot{\cup} \operatorname{Inj}_{\mathrm{fin}}(M) \dot{\cup} \dot{U}_{\aleph_{0} \leq \mu \leq \kappa} \operatorname{Inj}_{\mu}^{\kappa^{+}}(M)$.
(ii) $S(M) \dot{\cup} \operatorname{Inj}_{\mathbb{N} \backslash\{1\}}(M) \dot{\cup} \dot{U}_{\aleph_{0} \leq \mu \leq \kappa} \operatorname{Inj}_{\mu}^{\kappa^{+}}(M)$.
(iii) $S(M) \dot{\cup} \operatorname{Inj}_{\text {fin }}(M) \dot{\cup} \dot{U}_{\mu \in X} \operatorname{Inj}{ }_{\mu}^{\kappa^{+}}(M)$, for some $\aleph_{0} \leq \mu^{\prime} \leq \kappa$ and $X=\left\{\mu \mid \mu \neq \mu^{\prime}, \aleph_{0} \leq \mu \leq \kappa\right\}$.
Each proper normal subsemigroup of $\operatorname{Inj}(M)$ is contained in a maximal one.
Proof. By Theorems 3.10 and 5.1, the above sets in (i)-(iii) are normal subsemigroups of $\operatorname{Inj}(M)$. Clearly, $\mathbb{N} \backslash\{1\}$ is the greatest proper subsemigroup of \mathbb{N}. Hence, by Theorems 3.10 and 5.1, each proper, normal subsemigroup $\operatorname{fnj}(M)$ is contained in one of the subsemigroups of (i)-(iii). Hence these are maximal.

Consequently, if $|M|=\aleph_{i}(i$ an ordinal $)$, then $\operatorname{Inj}(M)$ has precisely $|i|+3$ maximal normal subsemigroups. In the contrast we note:
Corollary 6.2. $\operatorname{Inj}(M)$ contains precisely $2^{c(M)^{\aleph_{0}}}$ normal subsemigroups, where $c(M)=$ $\mid\{\mu \mid \mu$ cardinal, $\mu \leq|M|\} \mid$.

For instance, if $|M|=\aleph_{0}$ or $|M|=\aleph_{1}$, we have $c(M)=\aleph_{0}$ and $2^{c(M)^{\aleph_{0}}}=2^{2^{\aleph_{0}}}$.
Proof. We can obtain $2^{c(M)^{\aleph_{0}}}$ normal subsemigroups as follows. For any set X of functions $T: \mathbb{N}_{\infty} \longrightarrow c(M)$ put

$$
B_{X}=\{f \in \operatorname{Inj}(M)| | M \backslash M f \mid=1, \bar{f} \in X\}
$$

and let

$$
G_{X}=B_{X} \dot{\cup}\left\{f \in \operatorname{Inj}_{\mathrm{fin}}(M)| | M \backslash M f \mid \geq 2\right\}
$$

By Theorem 5.2, G_{X} is a normal subsemigroup, and $G_{X} \subseteq G_{Y}$ if and only if $X \subseteq Y$. Since the powerset of a set of size $c(M)^{\aleph_{0}}$ contains an antichain of subsets of size $2^{c(M)^{\aleph_{0}}}$, we even obtain such a large antichain in the lattice of normal subsemigroups of $\operatorname{Inj}(M)$.

It remains to show that $2^{c(M)^{\aleph_{0}}}$ is the maximal number of normal subsemigroups G of $\operatorname{Inj}(M)$. If M is countable, this is clear since $|\operatorname{Inj}(M)|=2^{\aleph_{0}}$. Hence we may assume that M is uncountable. By Theorem 3.10, we have to show that there are no more than $2^{c(M)^{\aleph_{0}}}$ choices for $G_{\text {fin }}$. Recall that \mathbb{N} contains only countably many subsemigroups, cf. [16]. Hence it suffices to consider the possibilities for Theorems 5.1(ii), 5.2 and 5.5. For Theorem 5.1(ii), let N be any subsemigroup of \mathbb{N}. Any N-type set P contains for each $n \in \mathbb{N}$ at most $c(M)^{\aleph_{0}}$ pairs (n, T) with $T \in \mathfrak{T}_{M}$. Hence there are at most $2^{c(M)^{\aleph_{0}}}$ distinct N-type sets P, and consequently the number of possibilities for $G_{\text {fin }}$ as in Theorem 5.1(ii) has the same upper bound. In the situation of Theorems 5.2 and $5.5, G_{\mathrm{fin}}$ is generated by a normal s u bset $B \subseteq \operatorname{Inj}_{\mathrm{fin}}(M)$. Any such B is the union of conjugacy classes $f^{S(M)}$ with $f \in \operatorname{Inj}_{\text {fin }}(M)$. There are $c(M)^{\aleph_{0}}$ possible choices for \bar{f} and thus, by Lemma 3.6, the same number of choices for $f^{S(M)}$. Consequently, the number of possibilities for B and hence for $G_{\text {fin }}$ is bounded by $2^{c(M)^{N_{0}}}$.

References

[1] R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich, Stud. Math. 5 (1934), 15 - 17.
[2] A. H. Clifford, G. P. Preston, Algebraic Theory of Semigroups, Vol. II, Math. Surveys No. 7, Amer. Math. Soc., Providence, R.I. (1967).
[3] M. Droste, Cubes of conjugacy classes covering the infinite symmeric groups, Trans. Amer. Math. Soc. 288 (1985), 381 - 393.
[4] M. Droste, Squares of conjugacy classes in the infinite symmeric groups, Trans. Amer. Math. Soc. 303 (1987), $503-515$.
[5] M. Droste, R. Göbel, On a theorem of Baer, Schreier, and Ulam for permutations, Journal of Algebra 58 (1979), 282 - 290.
[6] M. Droste, R. Göbel, Products of conjugate permutations, Pacific Journal 94 (1981), $47-60$.
[7] E. Hotzel, Maximality properties of some subsemigroups of Baer-Levi semigroups, Semigroup Forum 51 (1995), 153 - 190.
[8] T. Jech, Set Theory, Springer Verlag, Berlin, Heidelberg, New York (2000).
[9] D. Lindsey, B. Madison, Conjugation of injections by permutations, Semigroup Forum 12 (1976), 63 - 70.
[10] V. Maltcev, J. D. Mitchell, N. Ruškuc, The Bergman property for semigroups, J. London Math. Soc. 80 (2009), 212 - 232.
[11] Z. Mesyan, Conjugation of injections by permutations, Semigroup Forum 81 (2010), 297-324.
[12] Z. Mesyan, Monoids of injective maps closed under conjugation by permutations, Israel J. Math. 189 (2012), 287-305.
[13] G. Moran, On planar eulerian graphs and permutations, Trans. Amer. Math. Soc. 287 (1985), 323 - 341.
[14] G. Moran, The products of conjugacy classes in some infinite groups, Israel Journ. Math. 50 (1985), $54-74$.
[15] G. Moran, Conjugacy classes whose squares are infinite symmetric groups, Trans. Amer. Math. Soc. 316 (1989), 493 - 521.
[16] W. Y. Sit, M-K. Sui, On the subsemigroups of \mathbb{N}, Mathematics Magazine 48 (1975), $225-227$.
[17] J. Schreier and S. Ulam, Über die Permutationsgruppe der natürlichen Zahlenfolge, Studia Math. 4 (1933), 134 - 141.

Address of the authors:
Manfred Droste,
Institut für Informatik,
Universität Leipzig,
04009 Leipzig, Germany
email: droste@informatik.uni-leipzig.de
Rüdiger Göbel,
Fakultät für Mathematik,
Universität Duisburg-Essen,
45117 Essen, Germany
e-mail: ruediger.goebel@uni-due.de

[^0]: *The work was supported by the project No. 693-98.6/2007 of the German-Israeli Foundation for Scientific Research and Development.

 2010 Mathematics Subject Classification: 20M10, 20B30
 Keywords and phrases: injective maps, normal subsemigroup, symmetric group, conjugacy classes

