The normal subsemigroups of the monoid of injective maps *

Manfred Droste and Rüdiger Göbel

Abstract

We consider the monoid Inj(M) of injective self-maps of a set M and want to determine its normal subsemigroups by numerical invariants. This was established by Mesyan in 2012 if M is countable. Here we obtain an explicit description of all normal subsemigroups of Inj(M) for any uncountable set M.

1 Introduction

In two recent papers, Mesyan [11, 12] investigated the monoid $\operatorname{Inj}(M)$ of all injective self-maps of an infinite set M. A subsemigroup U of $\operatorname{Inj}(M)$ is normal if it is closed under conjugations by elements from S(M), the symmetric group of all permutations of M. In a well-kown result, Schreier and Ulam [17] and Baer [1] showed that S(M) has only few normal subgroups. Surprisingly, Mesyan [12] completely described the normal subsemigroups of $\operatorname{Inj}(M)$ if M is countable; there are uncountably many - determined by numerical invariants and subsemigroups of the monoid $(\mathbb{N}, +)$.

In this paper we will describe the normal subsemigroups of Inj(M) for all uncountable sets M. Due to the uncountability of M new classes of normal subsemigroups arise stemming from injections behaving on an uncountable subset of M like a permutation. Thus a combination of Mesyan's methods for injective functions and their conjugacy classes as well as results on permutation groups is needed.

^{*}The work was supported by the project No. 693-98.6/2007 of the German-Israeli Foundation for Scientific Research and Development.

²⁰¹⁰ Mathematics Subject Classification: 20M10, 20B30

Keywords and phrases: injective maps, normal subsemigroup, symmetric group, conjugacy classes

For the permutation group methods we employ a deep analysis of products of conjugacy classes in symmetric groups obtained by Moran [13, 14, 15]. In particular, he characterized products of conjugacy classes of the maximal factor group of S(M). We extend his result to products of particular conjugacy classes of S(M). Any normal subsemigroup G of Inj(M) decomposes into three parts: the group part G_{grp} , the subsemigroup G_{fin} comprising all elements with finite, non-trivial co-image and G_{inf} , the infinitary analog version of G_{fin} . The critical part of the characterization concerns G_{fin} . Here we need the results on products of conjugacy classes in symmetric groups of uncountable sets to obtain the description of G_{fin} .

Our main results are contained in Theorems 3.10, 5.1, 5.2 and 5.5. As a consequence we derive the precise number of normal subsemigroups of Inj(M), which is $2^{c(M)^{\aleph_0}}$, where $c(M) = |\{\mu \mid \mu \leq |M| \text{ is a cardinal}\}|$. In contrast we show that Inj(M) has only |i| + 3 maximal normal subsemigroups if $|M| = \aleph_i$. (*i* an ordinal).

We just note that the semigroup $\operatorname{Inj}_{\operatorname{fin}}(M)$ is also known as Baer-Levi semigroup, see [2, 9] for its importance in semigroup theory. In [7] its maximal subsemigroups were investigated, and in [10] it was shown not to have the Bergman property. Related results on products of conjugacy classes in the symmetric groups are contained in [3, 4, 6].

2 Definitions

Let M be an infinite set, Inj(M) the monoid of all injective maps of M and S(M) the symmetric group of all permutations of M. If $f \in$ $\operatorname{Inj}(M),$ we put $f^{S(M)}$ $\{g^{-1}fg\}$ $g \in S(M)$, the set of conjugates of f. We let $[f] = \{x \in M \mid xf \neq x\}$ denote the support of f. Moreover, we will write |f| = |[f]|for the size of the support. Also $Fix(f) = M \setminus [f]$ denotes the set of fixed points of f. If $x \in M$, the set $\{y \in M \mid y^{f^i} = x \text{ or } x^{f^i} = y \text{ for some } i \geq 0\}$ is called the *f*-orbit of x, or an orbit of f. If $x \notin Mf$, we call this orbit also a forward orbit. Observe that then the set $\{x^{f^i} \mid i \geq 0\}$, the f-orbit of x, is infinite; in particular, [f] is infinite and $|M \setminus Mf| \leq |f|$. We call any orbit U of f with $U \subseteq Mf$ a closed orbit; then clearly $f \upharpoonright U \in S(U).$

We let \mathbb{N} denote the set of positive integers, and $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\aleph_0\}$. We let \overline{f} be the map from \mathbb{N}_{∞} to the cardinals, where $\overline{f}(n)$ is the number of closed orbits of size n of f for each $n \in \mathbb{N}_{\infty}$.

Recall that κ^+ denotes the successor cardinal of κ . If $\aleph_0 \leq \nu \leq |M|^+$, then let $S^{\nu}(M) = \{f \in S(M) \mid |f| < \nu\}$ which is a normal subgroup of S(M). We also write $\operatorname{Fin}(M) = S^{\aleph_0}(M)$, the group of finitary permutations of M, and we let $\operatorname{Alt}(M) = \{f \in \operatorname{Fin}(M) \mid f \upharpoonright [f] \text{ is even}\}$, the infinite alternating group on M. Now let us consider $\operatorname{Inj}(M)$. We say that a subset $U \subseteq \operatorname{Inj}(M)$ is *normal* in $\operatorname{Inj}(M)$ if $U^f = f^{-1}Uf \subseteq U$ for all $f \in S(M)$. We will write $U \triangleleft \operatorname{Inj}(M)$ for normal subsemigroups.

For the rest of this paper, M will denote an infinite set.

3 Products of conjugates

In this section, we recall results about S(M) and Inj(M) which will be needed later on. First we deal with the symmetric group. As is well-known, two permutations $f, g \in S(M)$ are conjugate if and only if $\overline{f} = \overline{g}$.

Lemma 3.1. ([5]) Let $f, h \in S(M)$ with $|h| \leq |f|$ and let f have infinite support. Then $h \in (f^{S(M)})^4$.

Next we turn to a sharpening of Lemma 3.1.

Definition 3.2. Following [13, p. 325] we say that $f \in S(M)$ is of type 0 if the following holds.

(i) $\overline{f}(1) = 0$ or $\overline{f}(1) = |M|$.

(ii)
$$\overline{f}(n) = 0 \text{ or } \overline{f}(n) \ge \aleph_0 \text{ for all } 2 \le n \in \mathbb{N}_{\infty}$$

Moreover, we say that $f \in S(M)$ is almost of type 0 if $\overline{f}(n) = 0$ or $\overline{f}(n) \ge \aleph_0$ for all $n \in \mathbb{N}_{\infty}$.

Lemma 3.3. (Moran [13, Theorem 2]) Let $f, h \in S(M)$ be two permutations of type 0 with $|h| \leq |f|$. Then $h \in (f^{S(M)})^2$.

Now we can derive the following strengthening of Lemmas 3.1 and 3.3 for uncountable sets M.

Proposition 3.4. Let M be uncountable and let $f, h \in S(M)$ be two permutations which are almost of type 0 with $|h| \leq |f|$. Then $h \in (f^{S(M)})^2$.

Proof. If h, f are of type 0, then the claim is straightforward by Lemma 3.3.

In the second case we assume that h is of type 0 but f is not. Hence $\aleph_0 \leq \overline{f}(1) < |M|$. Choose $m \in \mathbb{N}_{\infty}$ such that $\overline{f}(m) > \overline{f}(1)$. We can split $M = M_1 \dot{\cup} M_2$ such that M_1 consists of Fix(f) and $\overline{f}(1)$ -many m-orbits of f. Hence $f_i = f \upharpoonright M_i \in S(M_i)$ for i = 1, 2, and $|M_1| = |\operatorname{Fix}(f)| = |f_1|$, and f_1 and f_2 both are of type 0.

Choose $h_1 \in S(M_1)$, $h_2 \in S(M_2)$ of type 0 with $\overline{h}_1 + \overline{h}_2 = \overline{h}$, hence $\overline{h_1 \cup h_2} = \overline{h}$. Note that $|h_2| \leq |h| \leq |f| = |f_2|$. By the first case it follows that $h_1 \in (f_1^{S(M_1)})^2$ and similarly $h_2 \in (f_2^{S(M_2)})^2$. Thus $h \in (h_1 \cup h_2)^{S(M)} \subseteq (f^{S(M)})^2$ as required.

In the final case we assume that h is not of type 0, thus $\aleph_0 \leq \overline{h}(1) < |M|$. Choose $m \in \mathbb{N}_{\infty}$ such that $\overline{h}(m) > \overline{h}(1)$. We split $M = M_1 \dot{\cup} M_2$ such that M_1 consists of Fix(h) and $\overline{h}(1)$ -many m-orbits of h. Then $h_i = h \upharpoonright M_i \in S(M_i)$ for i = 1, 2 and $|M_1| = |\overline{h}(1)| = |h_1|$. Hence h_1 and h_2 are both of type 0. Now we choose $f_1 \in S(M_1)$, $f_2 \in S(M_2)$ both almost of type 0 with $\overline{f}_1 + \overline{f}_2 = \overline{f}$ and $|f_1| = |M_1|$; so $|f_2| = |f|$. By the first two cases it follows $h_1 \in (f_1^{S(M_1)})^2$ and similarly $h_2 \in (f_2^{S(M_2)})^2$, hence $h \in (f_1 \cup f_2^{S(M)})^2 = (f^{S(M)})^2$ as required.

Now we turn to Inj(M).

Observation 3.5. (Mesyan [11, Lemma 5]) If $f, g \in \text{Inj}(M)$, then

$$|M \setminus Mfg| = |M \setminus Mf| + |M \setminus Mg|.$$

Let $U \subseteq M$ be a subset and $f \in \text{Inj}(M)$. We say that U is $f^{\pm 1}$ -invariant, if whenever $x \in U, y \in M$, and $y = x^{f^i}$ or $y^{f^i} = x$ for some $i \in \mathbb{N}$, then $y \in U$. That is, U is a union of f-orbits. If $f_i \in \text{Inj}(M)$ $(i \in I)$, we say that U is $\{f_i^{\pm 1} \mid i \in I\}$ -invariant if U is $f_i^{\pm 1}$ -invariant for each $i \in I$. If $U' \subseteq M$ is a subset and U is the smallest $\{f_i^{\pm 1} \mid i \in I\}$ -invariant subset of M with $U' \subseteq U$, we call U the $\{f_i^{\pm 1} \mid i \in I\}$ -closure of U'. Note that then $|U| \leq \max\{|U'|, |I|, \aleph_0\}$. Trivially, $M \setminus U$ is also $\{f_i^{\pm 1} \mid i \in I\}$ -invariant, and such splittings of M into invariant subsets will be very important for the rest of this paper. It can be used for the following basic result which describes conjugacy of elements of Inj(M).

Lemma 3.6. (Mesyan [11, Proposition 3]) Let $f, g \in \text{Inj}(M)$. Then

$$g \in f^{S(M)} \iff (|M \setminus Mf| = |M \setminus Mg| \text{ and } \overline{f} = \overline{g}).$$

Proof. The claim " \Rightarrow " is trivial, and we only must show " \Leftarrow " :

We indicate the proof for illustration. Let M_1 be the $f^{\pm 1}$ -closure of $M \setminus Mf$, which is the union of all forward orbits of f, and $M_2 = M \setminus M_1$. Hence $|M_2| = \sum_{k \in \mathbb{N}_{\infty}} k\overline{f}(k)$. Similarly, we define $M = M'_1 \cup M'_2$ for g.

From $|M_1| = |M'_1|$ we have a bijection $h_1 : M_1 \longrightarrow M'_1$ such that $x^{h_1^{-1}fh_1} = x^g$ for all $x \in M'_1$. We can also choose $h_2 : M_2 \longrightarrow M'_2$ such that $h_2^{-1}fh_2 = g$ on M_2 , thus $h = h_1 \cup h_2 \in S(M)$ satisfies $f^h = g$.

Next we consider products of conjugacy classes in Inj(M).

Lemma 3.7. (Mesyan [11, Corollary 10]) Let M be countable and $f, g, h \in \text{Inj}(M) \setminus S(M)$. Then $h \in f^{S(M)} \cdot g^{S(M)}$ if and only if $|M \setminus Mh| = |M \setminus Mf| + |M \setminus Mg|$.

Lemma 3.8. (Mesyan [11, Corollary 13]). If $f, h \in \text{Inj}(M)$ and

$$|M \setminus Mf| = |M \setminus Mh| = |f| = |h| \ge \aleph_0,$$

then $h \in (f^{S(M)})^2$.

Now we can show:

Lemma 3.9. If $f, h \in \text{Inj}(M)$, $|M \setminus Mf| = |M \setminus Mh| \ge \aleph_0$ and $|h| \le |f|$, then $h \in (f^{S(M)})^2$.

Proof. If $|M \setminus Mf| = |f|$, then Lemma 3.8 applies. Thus we may assume that $|M \setminus Mf| < |f|$. Let M'_1 contain $(M \setminus Mf) \cup (M \setminus Mh)$ and all closed f-orbits and h-orbits of size $n \in \mathbb{N}_{\infty}$ for which $\overline{f}(n) \in \mathbb{N}$ or $\overline{h}(n) \in \mathbb{N}$. Let M_1 be the $\{f^{\pm 1}, h^{\pm 1}\}$ closure of M'_1 , and put $M_2 = M \setminus M_1$. Then $|M_1| = |M \setminus Mf|$. Let $f_i = f \upharpoonright M_i$ and $h_i = h \upharpoonright M_i$ for i = 1, 2. Then $f_2, h_2 \in S(M_2)$. Also $\overline{h_2}(n) = 0$ or $\overline{h_2}(n) \ge \mathbb{N}_0$ and $\overline{f_2}(n) = 0$ or $\overline{f_2}(n) \ge \mathbb{N}_0$ for all $n \in \mathbb{N}_{\infty}$. Now we can apply Lemma 3.8 on M_1 and obtain $h_1 \in (f_1^{S(M_1)})^2$. On M_2 we apply Proposition 3.4 to get that $h_2 \in (f_2^{S(M_2)})^2$.

There are obvious normal subsemigroups of $\operatorname{Inj}(M)$: Let $\aleph_0 \leq \mu, \nu \leq |M|^+$, then $\operatorname{Inj}^{\nu}(M) = \{f \in \operatorname{Inj}(M) \mid |f| < \nu\}$ and $\operatorname{Inj}_{\mu}(M) = \{f \in \operatorname{Inj}(M) \mid |M \setminus Mf| = \mu\}$ are normal in $\operatorname{Inj}(M)$. If $\mu < \nu$, also $\operatorname{Inj}_{\mu}^{\nu}(M) = \operatorname{Inj}_{\mu}(M) \cap \operatorname{Inj}^{\nu}(M)$ is normal in $\operatorname{Inj}(M)$. We also let

$$\operatorname{Inj}_{\operatorname{fin}}(M) = \{ f \in \operatorname{Inj}(M) \mid M \neq Mf, | M \setminus Mf \mid \text{ is finite} \}.$$
(3.1)

If $G \subseteq \operatorname{Inj}(M)$, then let $G_{\operatorname{grp}} = G \cap S(M)$, $G_{\operatorname{fin}} = G \cap \operatorname{Inj}_{\operatorname{fin}}(M)$ and $G_{\mu} = G \cap \operatorname{Inj}_{\mu}(M)$ for any $\mu \leq |M|$. If $G \triangleleft \operatorname{Inj}(M)$, then also $G_{\operatorname{grp}}, G_{\operatorname{fin}}$ and G_{μ} are normal in $\operatorname{Inj}(M)$ because $S(M), \operatorname{Inj}_{\operatorname{fin}}(M), \operatorname{Inj}_{\mu}(M) \triangleleft \operatorname{Inj}(M)$. As noted in [12], G_{grp} is a group, since if $g \in G_{\operatorname{grp}}$, then $\overline{g} = \overline{g^{-1}}$, so $g^{-1} \in G$ by $G \triangleleft \operatorname{Inj}(M)$.

Now we can describe the structure of $G_{\rm grp}$ and G_{μ} for all $\mu \leq \kappa$.

Theorem 3.10. Let $|M| = \kappa \ge \aleph_0$ and $G \triangleleft \operatorname{Inj}(M)$. Then

$$G = G_{\rm grp} \mathrel{\dot{\cup}} G_{\rm fin} \mathrel{\dot{\cup}} \bigcup_{\aleph_0 \le \mu \le \kappa} G_{\mu}.$$

(i) $G_{\rm grp}$ is either $S^{\nu}(M)$ for some $\nu \leq \kappa^+$ or Alt(M) or $\{1\}$ or \emptyset .

(ii) For all $\mu \leq \kappa$ either $G_{\mu} = \emptyset$ or $G_{\mu} = \operatorname{Inj}_{\mu}^{\nu}(M)$ for some $\mu < \nu \leq \kappa^{+}$.

(iii) For all $\mu < \mu' < \nu$ if $G_{\mu} = \operatorname{Inj}_{\mu}^{\nu}(M)$ and $G_{\mu'} \neq \emptyset$, then $\operatorname{Inj}_{\mu'}^{\nu}(M) \subseteq G_{\mu'}$.

(iv) For all $\mu' \leq \nu$ if $G_{\text{fin}} \not\subseteq \text{Inj}^{\nu}(M)$ and $G_{\mu'} \neq \emptyset$, then $\text{Inj}_{\mu'}^{\nu^+}(M) \subseteq G_{\mu'}$.

All these combinations with a normal subsemigroup $G_{\text{fin}} \subseteq \text{Inj}_{\text{fin}}(M)$ give rise to normal subsemigroups $G \triangleleft \text{Inj}(M)$.

Proof. (i) Since G_{grp} is a normal subgroup of S(M), this is the main result of [1]. It also follows from Lemma 3.1.

(ii) Let $\aleph_0 \leq \mu \leq \kappa$ and assume there is $f \in G_{\mu}$. Let $\nu = |f|$. Clearly $\mu \leq \nu$ and we claim that then $\operatorname{Inj}_{\mu}^{\nu^+}(M) \subseteq G_{\mu}$. For this, choose $h \in \operatorname{Inj}_{\mu}^{\nu^+}(M)$. Then $|M \setminus Mf| = \mu = |M \setminus Mh|$ and $|h| \leq \nu = |f|$. By Lemma 3.9, we obtain $h \in (f^{S(M)})^2 \in G$ and our claim. This implies the assertion of (ii) with $\nu = \sup\{|f|^+ | f \in G_{\mu}\}$.

(iii) Let $h \in \operatorname{Inj}_{\mu'}^{\nu}(M)$. Then $\alpha := |h| < \nu$. Choose any $f \in G_{\mu'}$. In case $|f| \ge \alpha$, by Lemma 3.9 we obtain $h \in (f^{S(M)})^2 \in G_{\mu'}$. Now assume that $|f| < \alpha < \nu$. By assumption, there is $g \in G_{\mu}$ with $|g| = \alpha$. Then $fg \in G_{\mu'}$ and $|fg| = \alpha$. Hence, by Lemma 3.9, we have $h \in ((fg)^{S(M)})^2 \subseteq G_{\mu'}$.

(iv) We proceed similarly to the argument for (iii). Let $h \in \operatorname{Inj}_{\mu'}^{\nu^+}(M)$. Choose any $f \in G_{\mu'}$. If $|h| \leq |f|$, again by Lemma 3.9 we have $h \in (f^{S(M)})^2 \in G_{\mu'}$. Therefore now assume that |f| < |h|. By assumption, there is $g \in G_{\text{fin}}$ with $|g| \geq \nu$. Then $fg \in G_{\mu'}$ and $|h| \leq \nu \leq |g| = |fg|$. So by Lemma 3.9 we obtain $h \in ((fg)^{S(M)})^2 \subseteq G_{\mu'}$ and the result.

Hence it remains to describe the structure of G_{fin} . As in Mesyan [12], this depends on the value of G_{grp} . Therefore we proceed by the case distinction given by Theorem 3.10(i).

4 Products of conjugacy classes for uncountable sets

Throughout this section we assume that $G \triangleleft \operatorname{Inj}(M)$. Let

$$N(G) = \{ | M \setminus Mf | | f \in G_{\text{fin}} \}.$$

$$(4.1)$$

It is clear by Observation 3.5 that $N(G) \subseteq \mathbb{N}$ is a subsemigroup.

Conversely, if N is a subsemigroup of $(\mathbb{N}, +)$, then following [12], we let

$$\operatorname{Inj}_{N}(M) = \{g \in \operatorname{Inj}(M) \mid |M \setminus Mg| \in N\} \lhd \operatorname{Inj}(M)$$

$$(4.2)$$

and

$$\operatorname{Inj}_{N}^{\alpha}(M) = \{g \in \operatorname{Inj}_{N}(M) \mid |g| < \alpha\} = \operatorname{Inj}_{N}(M) \cap \operatorname{Inj}^{\alpha}(M)$$

$$(4.3)$$

for any $\alpha \leq |M|^+$. Clearly $\operatorname{Inj}_N(M) \subseteq \operatorname{Inj}_{\operatorname{fin}}(M)$. By Observation 3.5 it is easy to see that $\operatorname{Inj}_N(M) \triangleleft \operatorname{Inj}(M)$, cf. [12, p. 292].

Lemma 4.1. Let $G \triangleleft \operatorname{Inj}(M)$ and $\alpha > \aleph_0$ with $G_{\operatorname{fin}} \subseteq \operatorname{Inj}^{\alpha}(M)$ and $S^{\alpha}(M) \subseteq G$. Then $G_{\operatorname{fin}} = \operatorname{Inj}_N^{\alpha}(M)$ for N = N(G).

Proof. If $h \in \operatorname{Inj}_N^{\alpha}(M)$, then by (4.2) and (4.1) there is some $f \in G_{\operatorname{fin}}$ such that $|M \setminus Mf| = |M \setminus Mh|$, so $|f| < \alpha$. Choose any bijection $k_1 : M \setminus Mf \to M \setminus Mh$, and define $k_2 : Mf \to Mh$ by $xf \mapsto xh$, which is also bijective. Then $k = k_1 \cup k_2 \in S(M)$. Since $[k] \setminus [f] \subseteq \operatorname{Fix}(f) \cap [h]$, we have $[k] \subseteq [f] \cup [h]$ and by $|f|, |h| < \alpha$ it also follows $k \in S^{\alpha}(M) \subseteq G$. So $h = fk \in G$ and $|M \setminus Mh| = |M \setminus Mf|$, hence also $h \in G_{\operatorname{fin}}$, so $\operatorname{Inj}_N^{\alpha}(M) \subseteq G_{\operatorname{fin}}$.

In this context, we note that each subsemigroup of \mathbb{N} is finitely generated, cf. [16]. Consequently, \mathbb{N} contains precisely \aleph_0 subsemigroups.

For the remaining part of this section we consider the case that $G_{\text{fin}} \not\subseteq \text{Inj}^{\aleph_1}(M)$, i.e. there is $f \in G_{\text{fin}}$ with $|f| \geq \aleph_1$.

4.1 Moran's characterization \mathcal{P} and products of types

Our goal is to extend the crucial Lemma 3.7 to the uncountable case. For this, we will use Moran's property \mathcal{P} which describes products of conjugacy classes.

Definition 4.2. Let M be an uncountable set.

- (i) We call each function $T : \mathbb{N}_{\infty} \longrightarrow \{0\} \cup \{\mu \mid \aleph_1 \leq \mu \leq |M|\}$ such that $\sum_{n \in \mathbb{N}_{\infty}} T(n) = |M|$ a type (of S(M)). We let \mathfrak{T}_M be the collection of all types of S(M).
- (ii) For a type T of S(M) let $C_T = \{f \in S(M) \mid \overline{f} = T\}$, a conjugacy class in S(M). We put $\mathcal{P}(T, T_1, T_2)$ if and only if $C_T \subseteq C_{T_1} \cdot C_{T_2}$ in S(M).

Our aim is to characterize the relation \mathcal{P} . Moran [14] completely described all conjugacy classes C_1, C_2, C_3 with $\mathcal{P}(C_1, C_2, C_3)$ in the factor groups $H_{\nu} = S(M)/S^{\nu}(M)$ for $\nu = |M| \geq \aleph_1$. He reduced this to a description of the relation \mathcal{P} for simple types; a type T of S(M) is simple, if $T(n) \in \{0, |M|\}$ for each $n \in \mathbb{N}_{\infty}$. In our setting, if $|M| \geq \aleph_1$, we have to consider all possible values of T in $\{0\} \cup \{\mu \mid \aleph_1 \leq \mu \leq |M|\}$.

We recall Moran's results. For this we define a few particular types. If $F \subseteq \mathbb{N}_{\infty}$ is a subset, then let \widehat{F} be the simple type satisfying $\widehat{F}(n) = |M|$ if and only if $n \in F$ (for $n \in \mathbb{N}_{\infty}$). If $k \in \mathbb{N}_{\infty}$, we put $\widehat{k} = \{\widehat{k}\}$. We let OD(M) be the set of all simple types T satisfying T(n) = 0 for any even $n \in \mathbb{N}$ and for $n = \aleph_0$. Clearly $\mathcal{P}(\widehat{1}, T_1, T_2)$ holds if and only if $T_1 = T_2$. Since the relation \mathcal{P} is symmetric, it remains to characterize it for *non-unit* types T, T_1, T_2 , i.e. for T, T_1, T_2 different from $\widehat{1}$. Following [14], we call a set $\{T, T_1, T_2\}$ of types a *non-P-set* if $\mathcal{P}(T, T_1, T_2)$ does not hold. The following gives an explicit description of non- \mathcal{P} -sets.

Theorem 4.3. (Moran [14, Theorem 1]) Let M be uncountable and T, T_1, T_2 non-unit simple types of S(M). Then $\{T, T_1, T_2\}$ is a non- \mathcal{P} -set if and only if one of the following two mutually exclusive conditions holds:

(i) $\{T, T_1, T_2\} = \{\widehat{2}, \widehat{\{1, 2\}}, U\}$ for some $U \in OD(M)$.

(*ii*) $\{T, T_1, T_2\}$ is one of the sets $\{\widehat{3}, \widehat{\{1,3\}}, \widehat{2}\}$ or $\{\widehat{3}, \widehat{\{1,3\}}, \widehat{\{1,2\}}\}$ or $\{\widehat{2}, \widehat{3}, \widehat{\{1,2,3\}}\}$.

Let α be a cardinal with $\aleph_1 \leq \alpha \leq |M|$. We let $cf(\alpha)$ denote the cofinality of α . Now let T be a type of S(M). We define a function $T^{\alpha} : \mathbb{N}_{\infty} \to \{0, \alpha\}$ by letting (for $n \in \mathbb{N}_{\infty}$)

$$T^{\alpha}(n) = \begin{cases} \alpha & \text{if } T(n) \ge \alpha \\ 0 & \text{otherwise.} \end{cases}$$

If $\alpha < |M|$ or $cf(\alpha) \neq \omega$, the condition $\sum_{n \in \mathbb{N}_{\infty}} T(n) = |M|$ implies that $T(n) \geq \alpha$ for some $n \in \mathbb{N}_{\infty}$, hence T^{α} is a simple type of $S(M_{\alpha})$ where $|M_{\alpha}| = \alpha$. Now we show:

Theorem 4.4. Let M be uncountable and T, T_1, T_2 types of S(M). Then $\mathcal{P}(T, T_1, T_2)$ if and only if

 $\mathcal{P}(T^{\alpha}, T_1^{\alpha}, T_2^{\alpha})$ for each cardinal α with $\aleph_1 \le \alpha \le |M|$ and $\mathrm{cf}(\alpha) \ne \omega$ (4.4)

Proof. " \Rightarrow " Let $\mathcal{P}(T, T_1, T_2)$ and α a cardinal with $\aleph_1 \leq \alpha \leq |M|$ and $\mathrm{cf}(\alpha) \neq \omega$. We choose $h, f, g \in S(M)$ with $\overline{h} = T, \overline{f} = T_1, \overline{g} = T_2$ and h = fg. Let M'_1 be the union of all orbits of h, f and g of length $n \in \mathbb{N}_{\infty}$ for which $\overline{h}(n) < \alpha$ resp. $\overline{f}(n) < \alpha$ or $\overline{g}(n) < \alpha$, and let M_1 be the $\{h^{\pm 1}, f^{\pm 1}, g^{\pm 1}\}$ -closure of M'_1 . Since $\mathrm{cf}(\alpha) \neq \omega, \alpha$ is not the sum of countably many smaller cardinals. Hence $|M_1| < \alpha$. Put $M_2 = M \setminus M_1$, so $|M_2| = |M|$.

Choose $M' \subseteq M_2$ such that M' is $\{h^{\pm 1}, f^{\pm 1}, g^{\pm 1}\}$ -invariant and $|M'| = \alpha$. Let $h' = h \upharpoonright M', f' = f \upharpoonright M'$ and $g' = g \upharpoonright M'$. Then h' = f'g' and $\overline{h'}(n) = 0$ or $\overline{h'}(n) = \alpha$ for each $n \in \mathbb{N}_{\infty}$, and similarly for f' and g'. Hence $\overline{h'}, \overline{f'}$, and $\overline{g'}$ are simple types of S(M') and $\overline{h'} = T^{\alpha}, \overline{f'} = T_1^{\alpha}, \overline{g'} = T_2^{\alpha}$, proving $\mathcal{P}(T^{\alpha}, T_1^{\alpha}, T_2^{\alpha})$.

" \Leftarrow " Assume (4.4). We wish to construct $h, f, g \in S(M)$ such that h = fgand $\overline{h} = T, \overline{f} = T_1, \overline{g} = T_2$; then $\mathcal{P}(T, T_1, T_2)$. We decompose $M = \bigcup_{\alpha \in D} M_\alpha$ (with $D = \{\alpha \mid \aleph_1 \leq \alpha \leq \mid M \mid \text{ and } \operatorname{cf}(\alpha) \neq \omega\}$ into pairwise disjoint sets M_α of cardinality $\mid M_\alpha \mid = \alpha$. By assumption, for each $\alpha \in D$ we have $\mathcal{P}(T^\alpha, T_1^\alpha, T_2^\alpha)$, hence there are $h_\alpha, f_\alpha, g_\alpha \in S(M_\alpha)$ such that $h_\alpha = f_\alpha g_\alpha$ and $\overline{h_\alpha} = T^\alpha, \overline{f_\alpha} = T_1^\alpha, \overline{g_\alpha} = T_2^\alpha$. Put $h = \bigcup_{\alpha \in D} h_\alpha, f = \bigcup_{\alpha \in D} f_\alpha$ and $g = \bigcup_{\alpha \in D} g_\alpha$. Clearly h = fg, and for each $n \in \mathbb{N}_\infty$ we have $\overline{h}(n) = \sum_{\alpha \in D} \overline{h_\alpha}(n) = \sum_{\alpha \in D} T^\alpha(n) = \sup_{\alpha \in D} T^\alpha(n)$. Note that $T^\alpha(n) = 0$ if $\alpha > T(n)$. If $\operatorname{cf}(T(n)) \neq \omega$ and $\alpha = T(n)$, we have $T^\alpha(n) = \alpha = T(n)$. If $\operatorname{cf}(T(n)) = \omega$, we have $T^\alpha(n) = \alpha$ for each $\alpha \in D$ with $\alpha < T(n)$, and the supremum of all these α equals T(n). Hence in any case $\overline{h}(n) = T(n)$, showing $\overline{h} = T$. Similarly, $\overline{f} = T_1$ and $\overline{g} = T_2$.

Observe that condition (4.4) for each α is characterized by Theorem 4.3. Hence Theorem 4.3 and Theorem 4.4 together give a complete description of the relation \mathcal{P} on \mathfrak{T}_M .

Now we turn $\operatorname{Inj}(M)$ for uncountable sets M. If $f \in \operatorname{Inj}(M)$ with $M \setminus Mf$ countable, we define $T_f : \mathbb{N}_{\infty} \longrightarrow \{0\} \cup \{\mu \mid \aleph_1 \leq \mu \leq |M|\}$ by letting

$$T_f(n) = \begin{cases} \overline{f}(n) & \text{if } \overline{f}(n) \ge \aleph_1 \\ 0 & \text{otherwise.} \end{cases}$$

Then T_f is a type of S(M), the type of f. Observe that if $f \in \text{Inj}(M)$ satisfies $|f| \leq \aleph_0$, then $T_f(1) = |M|$ and $T_f(n) = 0$ for all $n \geq 2$. Also, for $f \in \text{Inj}(M)$, we let

 $\operatorname{orb}(f,\omega) = \bigcup \{ \text{ closed orbits of } f \text{ of size } n \mid n \in \mathbb{N}_{\infty} \text{ with } \overline{f}(n) \leq \aleph_0 \}.$

Now we state our extension of Lemma 3.7 to the uncountable case.

Proposition 4.5. Let M be uncountable. For $f, g, h \in \text{Inj}(M) \setminus S(M)$ with $M \setminus Mf, M \setminus Mg, M \setminus Mh$ countable, the following conditions are equivalent.

- (i) $h \in f^{S(M)} \cdot g^{S(M)}$
- (ii) $|M \setminus Mh| = |M \setminus Mf| + |M \setminus Mg|$ and $\mathcal{P}(T_h, T_f, T_g)$ holds.

Proof. Let

 $M'_1 = (M \setminus Mf) \cup (M \setminus Mg) \cup (M \setminus Mh) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega) \cup \operatorname{orb}(h, \omega).$

"(*ii*) \Rightarrow (*i*)": Let M_1 be the $\{f^{\pm 1}, g^{\pm 1}, h^{\pm 1}\}$ -closure of M'_1 and $M_2 = M \setminus M_1$. Then $|M_1| = \aleph_0$ and $|M_2| = |M|$. Put $f_i = f \upharpoonright M_i, g_i = g \upharpoonright M_i, h_i = h \upharpoonright M_i$ for i = 1, 2. Clearly $f_2, g_2, h_2 \in S(M_2)$, and (by definition of types T), we have $T_{f_2} = T_f, T_{g_2} = T_g$ and $T_{h_2} = T_h$.

By Lemma 3.7 it follows that $h_1 \in f_1^{S(M_1)} \cdot g_1^{S(M_1)}$ and the property $\mathcal{P}(T_h, T_f, T_g)$ implies that $h_2 \in f_2^{S(M_2)} \cdot g_2^{S(M_2)}$. Patching the components together we get $h \in f_1^{S(M)} \cdot g^{S(M)}$.

"(i) \Rightarrow (ii)": Let $h = f^k \cdot g^{k'}$ with $k, k' \in S(M)$ be chosen by (i). Then by Observation 3.5 the first claim in (ii) follows immediately. Now let M_1 be the $\{f^{\pm 1}, g^{\pm 1}, h^{\pm 1}, k^{\pm 1}, (k')^{\pm 1}\}$ -closure of M'_1 , which is countable, and put $M_2 = M \setminus M_1$. Thus $|M_2| = |M|$. Again, let $f_2 = f \upharpoonright M_2, g_2 = g \upharpoonright M_2, h_2 = h \upharpoonright M_2, k_2 = k \upharpoonright M_2$ and $k'_2 = k' \upharpoonright M_2$. Then $h_2 = f_2^{k_2} g_2^{k'_2}$ on M_2 and $\overline{h}_2(n) = 0$ or $\overline{h}_2(n) = \overline{h}(n) \ge \aleph_1$ for all $n \in \mathbb{N}_{\infty}$, so $T_{h_2} = T_h$ and the same holds for f_2, g_2 . Thus we have $\mathcal{P}(T_{h_2}, T_{f_2}, T_{g_2}) =$ $\mathcal{P}(T_h, T_f, T_g)$, so \mathcal{P} holds in (ii).

4.2 Normal subsemigroups of Inj(M)

Throughout this section, let M be uncountable. Let $N \subseteq \mathbb{N}$ be a subsemigroup. Now we want to refine the correspondence between the subsemigroup N and the normal subsemigroup $\operatorname{Inj}_N(M)$ obtained in (4.1) and (4.2). We fix the family of pairs

$$\mathfrak{P} = \mathbb{N} \times \mathfrak{T}_M. \tag{4.5}$$

We call a subset P of \mathfrak{P} an N-type set if it satisfies the following conditions:

(i) If $(n,T) \in P$, then $n \in N$.

- (ii) For each $n \in N$ there is $T \in \mathfrak{T}_M$ such that $(n, T) \in P$.
- (iii) If $(n_1, T_1), (n_2, T_2) \in P$ and $T \in \mathfrak{T}_M$ satisfies $\mathcal{P}(T, T_1, T_2)$, then $(n_1 + n_2, T) \in P$.

As an illustration we just note:

Corollary 4.6. Let N be a subsemigroup of N and P an N-type set. If $(n,T) \in P$ with $\sum_{n\geq 2} T(n) = |M|$, then $(2n,T') \in P$ for any $T' \in \mathfrak{T}_M$.

Proof. Let $T' \in \mathfrak{T}_M$. We claim that P(T', T, T) holds. This follows from Theorem 4.4, since condition (4.4) is satisfied by Theorem 4.3. Now condition (iii) implies $(2n, T') \in P$.

We observe that for a normal subsemigroup $G \triangleleft \operatorname{Inj}(M)$ the family

$$P(G) = \{ (|M \setminus Mf|, T_f) \mid f \in G_{\text{fin}} \}$$

$$(4.6)$$

satisfies the

Remark 4.7. P(G) is an N(G)-type set.

Proof. Conditions (i) and (ii) are obvious. Now let $f, g \in G_{\text{fin}}$ and $m = |M \setminus Mf|, n = |M \setminus Mg|$ and let $T \in \mathfrak{T}_M$ with $\mathcal{P}(T, T_f, T_g)$. Choose $h \in \text{Inj}(M)$ with $|M \setminus Mh| = m + n$ and $T_h = T$. By Proposition 4.5, we obtain $h \in f^{S(M)}g^{S(M)} \subseteq G$. So, $(m + n, T) \in P(G)$, proving condition (iii).

Now let N be a subsemigroup of \mathbb{N} and let P be an N-type set. We put

$$\operatorname{Inj}_{P}(M) = \{ f \in \operatorname{Inj}(M) \mid (|M \setminus Mf|, T_{f}) \in P \}.$$

We have an easy

Observation 4.8. $\operatorname{Inj}_{P}(M)$ is a normal subsemigroup of $\operatorname{Inj}(M)$, and $\operatorname{Inj}_{P}(M) \subseteq \operatorname{Inj}_{N}(M)$.

Proof. Let $f,g \in \operatorname{Inj}_{P}(M), h = fg$, and $m = |M \setminus Mf|, n = |M \setminus Mg|$. So $(m, T_f), (n, T_g) \in P$. By Proposition 4.5 we have $\mathcal{P}(T_h, T_f, T_g)$ and so $(m + n, T_h) \in P$ by condition (iii) for P. Since $|M \setminus Mh| = m + n$, we obtain $h \in \text{Inj}_P(M)$. Clearly, $\operatorname{Inj}_P(M)$ is normal and $\operatorname{Inj}_P(M) \subseteq \operatorname{Inj}_N(M)$.

We give two examples of extreme cases. Let N = N(G) and P = P(G).

First assume that $G_{\text{fin}} \subseteq \text{Inj}^{\aleph_1}(M)$. Then $T_f = \widehat{1}$ for each $f \in G_{\text{fin}}$, so $P = N \times \{\widehat{1}\}$ and $\operatorname{Inj}_P(M) = \operatorname{Inj}_N^{\aleph_1}(M)$.

Secondly, assume that $G_{grp} = S(M)$. We claim that then $P = N \times \mathfrak{T}_M$. Indeed, choose any $n \in N$ and $T \in \mathfrak{T}_M$. There is $f \in G_{\text{fin}}$ with $|M \setminus Mf| = n$. Let M_1 be the $f^{\pm 1}$ -closure of $M \setminus Mf$, which is countable. Put $M_2 = M \setminus M_1$ and let $f_i = f \upharpoonright M_i$ (i = 1, 2). Then $f_2 \in S(M_2)$. We put $f' = id_{M_1} \cup f_2^{-1} \in S(M)$. Also, there is $g \in S(M)$ with $T_g = T$. Then $f'g \in S(M) = G_{grp}$, so $ff'g \in G$, $|M \setminus Mff'g| = |M \setminus Mf| = n$, and $T_{ff'g} = T_g = T$, showing $(n,T) \in P$ and our claim. Hence $\operatorname{Inj}_{P}(M) = \operatorname{Inj}_{N}(M)$.

Lemma 4.9. If $f, g \in \text{Inj}_{fin}(M) \cup \text{Inj}_{\aleph_0}(M)$, then

$$f \in g^{S(M)}S^{\aleph_1}(M) \iff (|M \setminus Mf| = |M \setminus Mg| \text{ and } T_f = T_g).$$

Proof. " \Rightarrow ": The first condition $|M \setminus Mf| = |M \setminus Mg|$ is clear. If $f = g^h \cdot k$ for $h \in S(M)$ and $k \in S^{\aleph_1}(M)$, then let

$$M'_1 = [k] \cup (M \setminus Mf) \cup (M \setminus Mg) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega),$$

and let M_1 be the $\{f^{\pm 1}, g^{\pm 1}, h^{\pm 1}, k^{\pm 1}\}$ -closure of M'_1 , which is countable. Set $M_2 = M \setminus M_1$ and consider the restrictions f_2, g_2, k_2, h_2 of f, g, k, h to M_2 , respectively. It follows that $k_2 = \operatorname{id}_{M_2}, f_2 = g_2^{h_2}$, and $T_f = T_{f_2} = T_{g_2} = T_g$, as required. " \Leftarrow ": We let M_1 be the $\{f^{\pm 1}, g^{\pm 1}\}$ -closure of

$$M'_1 = (M \setminus Mf) \cup (M \setminus Mg) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega),$$

which is countable, and let $M_2 = M \setminus M_1$. Let f_i, g_i be the restrictions of f, g on M_i (i = 1, 2). Then $M_1 \setminus M_1 f_1 = M \setminus M f$ and $M_1 \setminus M_1 g_1 = M \setminus M g$. We define $h_1 \in S(M_1)$ such that

$$h_1 \upharpoonright (M_1 \setminus M_1 g_1) : M_1 \setminus M_1 g_1 \longrightarrow M_1 \setminus M_1 f_1$$

is any bijection and

$$h_1 \upharpoonright M_1 g_1 : M_1 g_1 \longrightarrow M_1 f_1 \ (xg_1 \mapsto xf_1)$$

which is also bijective. Then $f_1 = g_1 h_1$. Also, $f_2, g_2 \in S(M_2)$ which are conjugates by $T_{f_2} = T_f = T_g = T_{g_2}$. We write $f_2 = (g_2)^{h_2}$, $h'_2 = \operatorname{id}_{M_1} \dot{\cup} h_2$ and $h'_1 = h_1 \dot{\cup} \operatorname{id}_{M_2}$. Thus $|h'_1| \leq \aleph_0$ and $f = g^{h'_2} h'_1$ is as required.

Lemma 4.10. Let $G_{grp} \supseteq S^{\aleph_1}(M)$ and $G_{fin} \nsubseteq Inj^{\aleph_1}(M)$. Then $G_{fin} = Inj_{P(G)}(M)$.

Proof. The inclusion $G_{\text{fin}} \subseteq \text{Inj}_{P(G)}(M)$ is trivial. For the converse, let $f \in \text{Inj}_{P(G)}(M)$. So there is $g \in G_{\text{fin}}$ with $|M \setminus Mf| = |M \setminus Mg|$ and $T_f = T_g$. By Lemma 4.9 and the assumption on G_{grp} , we obtain $f \in g^{S(M)}S^{\aleph_1}(M) \subseteq G$. Hence $f \in G_{\text{fin}}$.

5 Characterizing G_{fin} for uncountable sets M

5.1 The case: G contains a permutation with infinite support

We are ready to characterize the normal subsemigroups of Inj(M) under the restrictions of this section. By Theorem 3.10 we have $S^{\aleph_1}(M) \subseteq G_{\text{grp}}$.

Theorem 5.1. Let M be uncountable, $G \triangleleft \operatorname{Inj}(M)$ with $G_{\operatorname{fin}} \neq \emptyset$ and $S^{\aleph_1}(M) \subseteq G_{\operatorname{grp}}$. Then there is a subsemigroup $N \subseteq (\mathbb{N}, +)$ such that $G_{\operatorname{fin}} \subseteq \operatorname{Inj}_N(M)$. Moreover, we have:

(i) If $G_{\text{fin}} \subseteq \text{Inj}^{\aleph_1}(M)$, then $G_{\text{fin}} = \text{Inj}_N^{\aleph_1}(M)$.

(ii) If $G_{\text{fin}} \not\subseteq \text{Inj}^{\aleph_1}(M)$, there is an N-type set P such that $G_{\text{fin}} = \text{Inj}_P(M)$.

(iii) If $G_{grp} = S(M)$, then $G_{fin} = Inj_N(M)$.

All these combinations give rise to normal subsemigroups $G \triangleleft \operatorname{Inj}(M)$.

Proof. Let N = N(G). The descriptions of G_{fin} in (i) and (iii) follow from Lemma 4.1 (with $\alpha = \aleph_1$, respectively $\alpha = |M|^+$) and in (ii) from Lemma 4.10. The last statement is immediate by Observation 4.8.

5.2 The case $G \cap S(M) = 1$

In this section, we assume that $G \cap S(M) = 1$. Then it may be the case that there are $f \in G_{\text{fin}}$ and $g \in \text{Inj}(M)$ with $|M \setminus Mf| = |M \setminus Mg|$ and $T_f = T_g$, but $\overline{f} \neq \overline{g}$ and $g \notin G_{\text{fin}}$. (For instance, we may choose any $f \in \text{Inj}(M) \setminus S(M)$ with $\overline{f}(n) \leq \aleph_0$ for some $n \in \mathbb{N}$. Let G be the normal subsemigroup of Inj(M) generated by f. If $g \in \text{Inj}(M)$ with $|M \setminus Mf| = |M \setminus Mg|$ and $\overline{g}(n) \neq \overline{f}(n)$, then $g \notin G$ by Lemma 3.6 and Observation 3.5.) Then $G_{\text{fin}} \neq \text{Inj}_{P(G)}(M)$, so we do not have the characterization of Theorem 5.1.

For any subset $B \subseteq \operatorname{Inj}_{\operatorname{fin}}(M)$ let

$$P(B) = \{ (|M \setminus Mf|, T_f) \mid f \in B \} \subseteq \mathfrak{P}$$

$$(5.1)$$

We also say that $(k,T) \in P$ is *reducible* if and only if there are two types (n_1,T_1) , $(n_2,T_2) \in P$ such that $k = n_1 + n_2$ and $P(T,T_1,T_2)$ holds. Otherwise, (k,T) is called *irreducible*.

Theorem 5.2. If M is uncountable, $G \triangleleft \operatorname{Inj}(M)$, $G \cap S(M) = 1$ and P = P(G), then

$$G_{\text{fin}} = B \stackrel{.}{\cup} \{ f \in \text{Inj}(M) \mid (|M \setminus Mf|, T_f) \in P \text{ is reducible} \}$$
(5.2)

and $B \subseteq \text{Inj}_{\text{fin}}(M)$ is a normal subset which satisfies

$$P(B) = \{(n,T) \in P \mid (n,T) \text{ is irreducible}\}.$$
(5.3)

Conversely, each righthand side of the displayed equation (5.2) is a subsemigroup of $\operatorname{Inj}_{\operatorname{fin}}(M)$ normal in $\operatorname{Inj}(M)$. Moreover, in this case G_{fin} is the subsemigroup generated by B.

Proof. Put $B = \{f \in G_{\text{fin}} \mid (|M \setminus Mf|, T_f) \text{ irreducible in } P\}$. Then B is normal in Inj(M) and we claim that (5.2) holds.

If $h \in \text{Inj}(M)$ and $(|M \setminus Mh|, T_h) \in P(G)$ is reducible, then there are $f, g \in G_{\text{fin}}$ such that $|M \setminus Mh| = |M \setminus Mf| + |M \setminus Mg|$ and $\mathcal{P}(T_h, T_f, T_g)$ holds. By Proposition 4.5 it follows that $h \in f^{S(M)}g^{S(M)} \subseteq G_{\text{fin}}$. This is one inclusion of (5.2), and the converse inclusion holds trivially.

To verify (5.3), let $(n,T) \in P(G)$ be irreducible. So there is $f \in G_{\text{fin}}$ with $|M \setminus Mf| = n$ and $T_f = T$. By definition, then $f \in B$, proving (5.3).

Given a subsemigroup $N \subseteq \mathbb{N}$ and an N-type set P, then the corresponding righthand side of (5.2) is a normal subsemigroup of Inj(M) as seen by the proof of Observation 4.8. It remains to show that G_{fin} is generated by B. Let $h \in G_{\text{fin}} \setminus B$. First assume that there are two irreducible types $(n_1, T_1), (n_2, T_2) \in P$ such that $|M \setminus Mh| =$ $n_1 + n_2$ and $P(T_h, T_1, T_2)$. Then $(n_1, T_1), (n_2, T_2) \in P(B)$, so there are $f, g \in B$ with $n_1 = |M \setminus M_f|, T_1 = T_f, n_2 = |M \setminus M_g|, T_2 = T_g$. By Proposition 4.5, we obtain $h \in f^{S(M)}g^{S(M)} \subseteq B \cdot B$. In the general case, an induction shows that h is a finite product of elements from B.

5.3 The cases $G \cap S(M) = Fin(M)$ and $G \cap S(M) = Alt(M)$

In this case we adopt an equivalence relation \approx on Inj(M) from Mesyan [12, Definition 19] and say that $f \approx g$ for $f, g \in \text{Inj}(M)$ if the following conditions hold:

(i) $F = \{n \in \mathbb{N} \mid \overline{f}(n) \neq \overline{g}(n)\}$ is finite, and if $n \in F$, then $\overline{f}(n), \overline{g}(n) \in \mathbb{N}$.

(ii)
$$\overline{f}(\aleph_0) = \overline{g}(\aleph_0)$$

(iii) $|M \setminus Mf| = |M \setminus Mg|$

A set $B \subseteq \text{Inj}(M)$ is \approx -closed if for any $f \in B$, $f \approx g \in \text{Inj}(M)$ implies $g \in B$. Clearly, then B is normal in Inj(M). The following characterization of \approx can be shown just as in [12]. It rests on the effect of multiplying one or two infinite orbits by a transposition.

Proposition 5.3. (Mesyan [12, Proposition 24]) Let M be any infinite set and $f, g \in$ Inj $(M) \setminus S(M)$. Then $f \approx g$ if and only if $f \in Fin(M)(g^{S(M)})Fin(M)$.

For uncountable sets M, we can strengthen this result as follows.

Proposition 5.4. Let M be any uncountable set and $f, g \in \text{Inj}_{\text{fin}}(M) \setminus S(M)$. Then $f \approx g$ if and only if $f \in \text{Alt}(M)(g^{S(M)}) \text{Alt}(M)$.

Proof. The 'if'-direction is immediate by Proposition 5.3. Hence we may assume $f \approx g$. Choose $n \in \mathbb{N}_{\infty}$ such that $\overline{f}(n)$ is uncountable, hence $\overline{g}(n) = \overline{f}(n)$. Let A (resp. B) be the union of countably-infinitely many n-orbits of f (resp. g). Let M_1 be the $\{f^{\pm 1}, g^{\pm 1}\}$ -closure of the set

$$(M \setminus Mf) \cup (M \setminus Mg) \cup \operatorname{orb}(f, \omega) \cup \operatorname{orb}(g, \omega) \cup A \cup B,$$

which is countable, and $M_2 = M \setminus M_1$. Let $f_i = f \upharpoonright M_i$, $g_i = g \upharpoonright M_i$ for i = 1, 2. Then $f_1 \approx g_1$ in $\text{Inj}(M_1)$ and $\overline{f_1}(n) = \overline{g_1}(n) = \aleph_0$. Applying Proposition 5.3 we obtain $f_1 \in \operatorname{Fin}(M_1)(g_1^{S(M_1)})\operatorname{Fin}(M_1)$, and [12, Lemma 26] using that $\overline{f_1}(n) = \overline{g_1}(n) = \aleph_0$ implies $f_1 \in \operatorname{Alt}(M_1)(g_1^{S(M_1)})\operatorname{Alt}(M_1)$. Also $f_2, g_2 \in S(M_2)$ and $f_2 \approx g_2$, so $\overline{f_2} = \overline{g_2}$. Hence $f_2 \in g_2^{S(M_2)}$. Thus $f \in \operatorname{Alt}(M)(g^{S(M)})\operatorname{Alt}(M)$ as needed.

This result will enable us to use in Theorem 5.5 the same relation \approx for both cases $G_{\rm grp} = \operatorname{Fin}(M)$ and $G_{\rm grp} = \operatorname{Alt}(M)$, which provides a contrast to the result for countable sets M, cf. [12, Theorem 34].

Theorem 5.5. Let M be uncountable, $G \triangleleft \operatorname{Inj}(M)$, $G_{\operatorname{grp}} = \operatorname{Fin}(M)$ or $G_{\operatorname{grp}} = \operatorname{Alt}(M)$, $G_{\operatorname{fin}} \neq \emptyset$ and P = P(G). Then

$$G_{\text{fin}} = B \stackrel{.}{\cup} \{ f \in \text{Inj}(M) \mid (|M \setminus Mf|, T_f) \in P \text{ is reducible} \}$$
(5.4)

and $B \subseteq \operatorname{Inj}_{\operatorname{fin}}(M)$ is a \approx -closed subset which satisfies

$$P(B) = \{ (n,T) \in P \mid (n,T) \text{ is irreducible} \}.$$

$$(5.5)$$

Conversely, each righthand side of the displayed equation (5.5) is a normal subsemigroup of $\operatorname{Inj}_{fin}(M)$. Moreover, in this case G_{fin} is the subsemigroup generated by B.

Proof. Assume $G_{grp} = Fin(M)$. Put

$$B = \{ f \in G_{\text{fin}} \mid (|M \setminus Mf|, T_f) \text{ irreducible in } P \}.$$

Then B is \approx -closed by Proposition 5.3 and Fin $(M) \subseteq G$. The remaining arguments for the theorem are the same as in Theorem 5.2.

Now let $G_{grp} = Alt(M)$. We can follow the above argument, but we use Proposition 5.4 to get that B is \approx -closed to obtain the result.

6 Maximal normal subsemigroups of Inj(M)

We determine the maximal normal subsemigroups of Inj(M).

Theorem 6.1. The following constitute all the maximal normal subsemigroups of Inj(M) where $\kappa = |M|$:

- (i) $S^{\kappa}(M) \dot{\cup} \operatorname{Inj}_{\operatorname{fin}}(M) \dot{\cup} \dot{\bigcup}_{\aleph_0 \leq \mu \leq \kappa} \operatorname{Inj}_{\mu}^{\kappa^+}(M).$
- (*ii*) $S(M) \dot{\cup} \operatorname{Inj}_{\mathbb{N} \setminus \{1\}}(M) \dot{\cup} \dot{\bigcup}_{\aleph_0 < \mu < \kappa} \operatorname{Inj}_{\mu}^{\kappa^+}(M).$

(*iii*)
$$S(M) \dot{\cup} \operatorname{Inj}_{\operatorname{fin}}(M) \dot{\cup} \overset{\cdot}{\bigcup}_{\mu \in X} \operatorname{Inj}_{\mu}^{\kappa^{+}}(M)$$
, for some $\aleph_{0} \leq \mu' \leq \kappa$ and $X = \{\mu \mid \mu \neq \mu', \aleph_{0} \leq \mu \leq \kappa\}.$

Each proper normal subsemigroup of Inj(M) is contained in a maximal one.

Proof. By Theorems 3.10 and 5.1, the above sets in (i)-(iii) are normal subsemigroups of Inj(M). Clearly, $\mathbb{N} \setminus \{1\}$ is the greatest proper subsemigroup of \mathbb{N} . Hence, by Theorems 3.10 and 5.1, each proper, normal subsemigroup of Inj(M) is contained in one of the subsemigroups of (i)-(iii). Hence these are maximal.

Consequently, if $|M| = \aleph_i$ (*i* an ordinal), then $\operatorname{Inj}(M)$ has precisely |i|+3 maximal normal subsemigroups. In the contrast we note:

Corollary 6.2. Inj(M) contains precisely $2^{c(M)^{\aleph_0}}$ normal subsemigroups, where $c(M) = |\{\mu \mid \mu \text{ cardinal}, \mu \leq |M|\}|$.

For instance, if $|M| = \aleph_0$ or $|M| = \aleph_1$, we have $c(M) = \aleph_0$ and $2^{c(M)^{\aleph_0}} = 2^{2^{\aleph_0}}$.

Proof. We can obtain $2^{c(M)^{\aleph_0}}$ normal subsemigroups as follows. For any set X of functions $T : \mathbb{N}_{\infty} \longrightarrow c(M)$ put

$$B_X = \{ f \in \operatorname{Inj}(M) \mid | M \setminus Mf | = 1, \overline{f} \in X \},\$$

and let

$$G_X = B_X \dot{\cup} \{ f \in \operatorname{Inj}_{\operatorname{fin}}(M) \mid |M \setminus Mf| \ge 2 \}.$$

By Theorem 5.2, G_X is a normal subsemigroup, and $G_X \subseteq G_Y$ if and only if $X \subseteq Y$. Since the powerset of a set of size $c(M)^{\aleph_0}$ contains an antichain of subsets of size $2^{c(M)^{\aleph_0}}$, we even obtain such a large antichain in the lattice of normal subsemigroups of Inj(M).

It remains to show that $2^{c(M)^{\aleph_0}}$ is the maximal number of normal subsemigroups G of $\operatorname{Inj}(M)$. If M is countable, this is clear since $|\operatorname{Inj}(M)| = 2^{\aleph_0}$. Hence we may assume that M is uncountable. By Theorem 3.10, we have to show that there are no more than $2^{c(M)^{\aleph_0}}$ choices for G_{fn} . Recall that \mathbb{N} contains only countably many subsemigroups, cf. [16]. Hence it suffices to consider the possibilities for Theorems 5.1(ii), 5.2 and 5.5. For Theorem 5.1(ii), let N be any subsemigroup of \mathbb{N} . Any N-type set P contains for each $n \in \mathbb{N}$ at most $c(M)^{\aleph_0}$ pairs (n, T) with $T \in \mathfrak{T}_M$. Hence there are at most $2^{c(M)^{\aleph_0}}$ distinct N-type sets P, and consequently the number of possibilities for G_{fn} as in Theorem 5.1(ii) has the same upper bound. In the situation of Theorems 5.2 and 5.5, G_{fn} is generated by a normal s u bset $B \subseteq \operatorname{Inj}_{\text{fn}}(M)$. Any such B is the union of conjugacy classes $f^{S(M)}$ with $f \in \operatorname{Inj}_{\text{fn}}(M)$. There are $c(M)^{\aleph_0}$ possible choices for \overline{f} and thus, by Lemma 3.6, the same number of choices for $f^{S(M)}$. Consequently, the number of possibilities for B and hence for G_{fn} is bounded by $2^{c(M)^{\aleph_0}}$.

References

- R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich, Stud. Math. 5 (1934), 15 – 17.
- [2] A. H. Clifford, G. P. Preston, Algebraic Theory of Semigroups, Vol. II, Math. Surveys No. 7, Amer. Math. Soc., Providence, R.I. (1967).
- M. Droste, Cubes of conjugacy classes covering the infinite symmetric groups, Trans. Amer. Math. Soc. 288 (1985), 381 – 393.
- [4] M. Droste, Squares of conjugacy classes in the infinite symmetric groups, Trans. Amer. Math. Soc. 303 (1987), 503 - 515.
- [5] M. Droste, R. Göbel, On a theorem of Baer, Schreier, and Ulam for permutations, Journal of Algebra 58 (1979), 282 – 290.
- [6] M. Droste, R. Göbel, Products of conjugate permutations, Pacific Journal 94 (1981), 47 - 60.
- [7] E. Hotzel, Maximality properties of some subsemigroups of Baer-Levi semigroups, Semigroup Forum 51 (1995), 153 – 190.
- [8] T. Jech, Set Theory, Springer Verlag, Berlin, Heidelberg, New York (2000).
- [9] D. Lindsey, B. Madison, Conjugation of injections by permutations, Semigroup Forum 12 (1976), 63 – 70.
- [10] V. Maltcev, J. D. Mitchell, N. Ruškuc, The Bergman property for semigroups, J. London Math. Soc. 80 (2009), 212 – 232.
- [11] Z. Mesyan, Conjugation of injections by permutations, Semigroup Forum 81 (2010), 297–324.
- [12] Z. Mesyan, Monoids of injective maps closed under conjugation by permutations, Israel J. Math. 189 (2012), 287-305.
- [13] G. Moran, On planar eulerian graphs and permutations, Trans. Amer. Math. Soc. 287 (1985), 323 341.
- [14] G. Moran, The products of conjugacy classes in some infinite groups, Israel Journ. Math. 50 (1985), 54 - 74.

- [15] G. Moran, Conjugacy classes whose squares are infinite symmetric groups, Trans. Amer. Math. Soc. 316 (1989), 493 – 521.
- [16] W. Y. Sit, M-K. Sui, On the subsemigroups of N, Mathematics Magazine 48 (1975), 225 - 227.
- [17] J. Schreier and S. Ulam, Über die Permutationsgruppe der natürlichen Zahlenfolge, Studia Math. 4 (1933), 134 – 141.

Address of the authors:

Manfred Droste, Institut für Informatik, Universität Leipzig, 04009 Leipzig, Germany email: droste@informatik.uni-leipzig.de

Rüdiger Göbel, Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany e-mail: ruediger.goebel@uni-due.de