
The normal subsemigroups of the monoid
of injective maps ∗

Manfred Droste and Rüdiger Göbel

Abstract

We consider the monoid Inj(M) of injective self-maps of a set M and want
to determine its normal subsemigroups by numerical invariants. This was estab-
lished by Mesyan in 2012 if M is countable. Here we obtain an explicit description
of all normal subsemigroups of Inj(M) for any uncountable set M .

1 Introduction

In two recent papers, Mesyan [11, 12] investigated the monoid Inj(M) of all injective
self-maps of an infinite set M . A subsemigroup U of Inj(M) is normal if it is closed
under conjugations by elements from S(M), the symmetric group of all permutations
of M . In a well-kown result, Schreier and Ulam [17] and Baer [1] showed that S(M) has
only few normal subgroups. Surprisingly, Mesyan [12] completely described the normal
subsemigroups of Inj(M) if M is countable; there are uncountably many - determined
by numerical invariants and subsemigroups of the monoid (N,+).

In this paper we will describe the normal subsemigroups of Inj(M) for all uncount-
able sets M . Due to the uncountability of M new classes of normal subsemigroups arise
stemming from injections behaving on an uncountable subset of M like a permutation.
Thus a combination of Mesyan’s methods for injective functions and their conjugacy
classes as well as results on permutation groups is needed.
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For the permutation group methods we employ a deep analysis of products of
conjugacy classes in symmetric groups obtained by Moran [13, 14, 15]. In particular,
he characterized products of conjugacy classes of the maximal factor group of S(M).
We extend his result to products of particular conjugacy classes of S(M). Any normal
subsemigroup G of Inj(M) decomposes into three parts: the group part Ggrp, the
subsemigroup Gfin comprising all elements with finite, non-trivial co-image and Ginf ,
the infinitary analog version of Gfin. The critical part of the characterization concerns
Gfin. Here we need the results on products of conjugacy classes in symmetric groups
of uncountable sets to obtain the description of Gfin.

Our main results are contained in Theorems 3.10, 5.1, 5.2 and 5.5. As a consequence
we derive the precise number of normal subsemigroups of Inj(M), which is 2c(M)ℵ0 ,
where c(M) = | {µ | µ ≤ |M | is a cardinal} |. In contrast we show that Inj(M) has
only | i |+ 3 maximal normal subsemigroups if |M | = ℵi. (i an ordinal).

We just note that the semigroup Injfin(M) is also known as Baer-Levi semigroup,
see [2, 9] for its importance in semigroup theory. In [7] its maximal subsemigroups
were investigated, and in [10] it was shown not to have the Bergman property. Related
results on products of conjugacy classes in the symmetric groups are contained in
[3, 4, 6].

2 Definitions

Let M be an infinite set, Inj(M) the monoid of all injective maps of M and S(M) the
symmetric group of all permutations of M . If f ∈ Inj(M), we put
fS(M) = {g−1fg | g ∈ S(M)}, the set of conjugates of f . We let
[f ] = {x ∈ M | xf 6= x} denote the support of f . Moreover, we will write | f | = | [f ] |
for the size of the support. Also Fix(f) = M \ [f ] denotes the set of fixed points of f .
If x ∈ M , the set {y ∈ M | yf i = x or xf

i
= y for some i ≥ 0} is called the f -orbit of

x, or an orbit of f . If x /∈ Mf , we call this orbit also a forward orbit. Observe that
then the set {xf i | i ≥ 0}, the f -orbit of x, is infinite; in particular, [f ] is infinite and
|M \Mf | ≤ | f |. We call any orbit U of f with U ⊆ Mf a closed orbit; then clearly
f �U ∈ S(U).

We let N denote the set of positive integers, and N∞ = N ∪ {ℵ0}. We let f be the
map from N∞ to the cardinals, where f(n) is the number of closed orbits of size n of
f for each n ∈ N∞.

Recall that κ+ denotes the successor cardinal of κ. If ℵ0 ≤ ν ≤ |M |+, then
let Sν(M) = {f ∈ S(M) | | f | < ν} which is a normal subgroup of S(M). We
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also write Fin(M) = Sℵ0(M), the group of finitary permutations of M , and we let
Alt(M) = {f ∈ Fin(M) | f �[f ] is even}, the infinite alternating group on M . Now
let us consider Inj(M). We say that a subset U ⊆ Inj(M) is normal in Inj(M) if
U f = f−1Uf ⊆ U for all f ∈ S(M). We will write U � Inj(M) for normal subsemi-
groups.

For the rest of this paper, M will denote an infinite set.

3 Products of conjugates

In this section, we recall results about S(M) and Inj(M) which will be needed later
on. First we deal with the symmetric group. As is well-known, two permutations
f, g ∈ S(M) are conjugate if and only if f = g.

Lemma 3.1. ([5]) Let f, h ∈ S(M) with |h | ≤ | f | and let f have infinite support.
Then h ∈ (fS(M))4.

Next we turn to a sharpening of Lemma 3.1.

Definition 3.2. Following [13, p. 325] we say that f ∈ S(M) is of type 0 if the
following holds.

(i) f(1) = 0 or f(1) = |M |.

(ii) f(n) = 0 or f(n) ≥ ℵ0 for all 2 ≤ n ∈ N∞.

Moreover, we say that f ∈ S(M) is almost of type 0 if f(n) = 0 or f(n) ≥ ℵ0 for all
n ∈ N∞.

Lemma 3.3. (Moran [13, Theorem 2]) Let f, h ∈ S(M) be two permutations of type 0
with |h | ≤ | f |. Then h ∈ (fS(M))2.

Now we can derive the following strengthening of Lemmas 3.1 and 3.3 for uncount-
able sets M .

Proposition 3.4. Let M be uncountable and let f, h ∈ S(M) be two permutations
which are almost of type 0 with |h | ≤ | f |. Then h ∈ (fS(M))2.
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Proof. If h, f are of type 0, then the claim is straightforward by Lemma 3.3.
In the second case we assume that h is of type 0 but f is not. Hence ℵ0 ≤ f(1) <

|M |. Choose m ∈ N∞ such that f(m) > f(1). We can split M = M1∪̇M2 such that
M1 consists of Fix(f) and f(1)-many m-orbits of f . Hence fi = f �Mi ∈ S(Mi) for
i = 1, 2, and |M1 | = |Fix(f) | = | f1 |, and f1 and f2 both are of type 0.

Choose h1 ∈ S(M1), h2 ∈ S(M2) of type 0 with h1 + h2 = h, hence h1 ∪ h2 = h.

Note that |h2 | ≤ |h | ≤ | f | = | f2 |. By the first case it follows that h1 ∈ (f
S(M1)
1 )2

and similarly h2 ∈ (f
S(M2)
2 )2. Thus h ∈ (h1 ∪ h2)S(M) ⊆ (fS(M))2 as required.

In the final case we assume that h is not of type 0, thus ℵ0 ≤ h(1) < |M |. Choose
m ∈ N∞ such that h(m) > h(1). We split M = M1∪̇M2 such that M1 consists
of Fix(h) and h(1)-many m-orbits of h. Then hi = h �Mi ∈ S(Mi) for i = 1, 2 and
|M1 | =

∣∣h(1)
∣∣ = |h1 |. Hence h1 and h2 are both of type 0. Now we choose f1 ∈ S(M1),

f2 ∈ S(M2) both almost of type 0 with f 1 + f 2 = f and | f1 | = |M1 |; so | f2 | = | f |.
By the first two cases it follows h1 ∈ (f

S(M1)
1 )2 and similarly h2 ∈ (f

S(M2)
2 )2, hence

h ∈ (f1 ∪ fS(M)
2 )2 = (fS(M))2 as required.

Now we turn to Inj(M).

Observation 3.5. (Mesyan [11, Lemma 5]) If f, g ∈ Inj(M), then

|M \Mfg | = |M \Mf |+ |M \Mg | .

Let U ⊆M be a subset and f ∈ Inj(M). We say that U is f±1-invariant, if whenever
x ∈ U, y ∈ M , and y = xf

i
or yf

i
= x for some i ∈ N, then y ∈ U . That is, U is a

union of f -orbits. If fi ∈ Inj(M) (i ∈ I), we say that U is {f±1
i | i ∈ I}-invariant if U is

f±1
i -invariant for each i ∈ I. If U ′ ⊆M is a subset and U is the smallest {f±1

i | i ∈ I}-
invariant subset of M with U ′ ⊆ U , we call U the {f±1

i | i ∈ I}-closure of U ′. Note
that then |U | ≤ max{|U ′ | , | I | ,ℵ0}. Trivially, M \ U is also {f±1

i | i ∈ I}-invariant,
and such splittings of M into invariant subsets will be very important for the rest of
this paper. It can be used for the following basic result which describes conjugacy of
elements of Inj(M).

Lemma 3.6. (Mesyan [11, Proposition 3]) Let f, g ∈ Inj(M). Then

g ∈ fS(M) ⇐⇒ (|M \Mf | = |M \Mg | and f = g).
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Proof. The claim “⇒ ” is trivial, and we only must show “⇐ ” :
We indicate the proof for illustration. Let M1 be the f±1-closure of M \Mf , which

is the union of all forward orbits of f , and M2 = M \M1. Hence |M2| =
∑

k∈N∞ kf(k).
Similarly, we define M = M ′

1∪̇M ′
2 for g.

From |M1| = |M ′
1 | we have a bijection h1 : M1 −→ M ′

1 such that xh
−1
1 fh1 = xg for

all x ∈ M ′
1. We can also choose h2 : M2 −→ M ′

2 such that h−1
2 fh2 = g on M2, thus

h = h1 ∪ h2 ∈ S(M) satisfies fh = g.

Next we consider products of conjugacy classes in Inj(M).

Lemma 3.7. (Mesyan [11, Corollary 10]) Let M be countable and f, g, h ∈ Inj(M) \
S(M). Then h ∈ fS(M) · gS(M) if and only if |M \Mh | = |M \Mf |+ |M \Mg |.

Lemma 3.8. (Mesyan [11, Corollary 13]). If f, h ∈ Inj(M) and

|M \Mf | = |M \Mh | = | f | = |h | ≥ ℵ0,

then h ∈ (fS(M))2.

Now we can show:

Lemma 3.9. If f, h ∈ Inj(M), |M \Mf | = |M \Mh | ≥ ℵ0 and |h | ≤ | f |, then
h ∈ (fS(M))2.

Proof. If |M \Mf | = | f |, then Lemma 3.8 applies. Thus we may assume that
|M \Mf | < | f |. Let M ′

1 contain (M \Mf) ∪ (M \Mh) and all closed f -orbits and
h-orbits of size n ∈ N∞ for which f(n) ∈ N or h(n) ∈ N. Let M1 be the {f±1, h±1}-
closure of M ′

1, and put M2 = M \M1. Then |M1 | = |M \Mf |. Let fi = f �Mi and
hi = h �Mi for i = 1, 2. Then f2, h2 ∈ S(M2). Also h2(n) = 0 or h2(n) ≥ ℵ0 and
f2(n) = 0 or f2(n) ≥ ℵ0 for all n ∈ N∞. Now we can apply Lemma 3.8 on M1 and

obtain h1 ∈ (f
S(M1)
1 )2. On M2 we apply Proposition 3.4 to get that h2 ∈ (f

S(M2)
2 )2.

Thus h = h1 ∪ h2 ∈ (fS(M))2.

There are obvious normal subsemigroups of Inj(M): Let ℵ0 ≤ µ, ν ≤ |M |+, then
Injν(M) = {f ∈ Inj(M) | | f | < ν} and Injµ(M) = {f ∈ Inj(M) | |M \Mf | = µ} are
normal in Inj(M). If µ < ν, also Injνµ(M) = Injµ(M) ∩ Injν(M) is normal in Inj(M).

We also let

Injfin(M) = {f ∈ Inj(M) |M 6= Mf, |M \Mf | is finite}. (3.1)
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IfG ⊆ Inj(M), then letGgrp = G∩S(M), Gfin = G∩Injfin(M) andGµ = G∩Injµ(M)
for any µ ≤ |M |. If G � Inj(M), then also Ggrp, Gfin and Gµ are normal in Inj(M)
because S(M), Injfin(M), Injµ(M) � Inj(M). As noted in [12], Ggrp is a group, since if

g ∈ Ggrp, then g = g−1, so g−1 ∈ G by G� Inj(M).
Now we can describe the structure of Ggrp and Gµ for all µ ≤ κ.

Theorem 3.10. Let |M | = κ ≥ ℵ0 and G� Inj(M). Then

G = Ggrp ∪̇ Gfin ∪̇
⋃̇
ℵ0≤µ≤κ

Gµ.

(i) Ggrp is either Sν(M) for some ν ≤ κ+ or Alt(M) or {1} or ∅.

(ii) For all µ ≤ κ either Gµ = ∅ or Gµ = Injνµ(M) for some µ < ν ≤ κ+.

(iii) For all µ < µ′ < ν if Gµ = Injνµ(M) and Gµ′ 6= ∅, then Injνµ′(M) ⊆ Gµ′.

(iv) For all µ′ ≤ ν if Gfin * Injν(M) and Gµ′ 6= ∅, then Injν
+

µ′ (M) ⊆ Gµ′.

All these combinations with a normal subsemigroup Gfin ⊆ Injfin(M) give rise to normal
subsemigroups G� Inj(M).

Proof. (i) Since Ggrp is a normal subgroup of S(M), this is the main result of [1].
It also follows from Lemma 3.1.

(ii) Let ℵ0 ≤ µ ≤ κ and assume there is f ∈ Gµ. Let ν = | f |. Clearly µ ≤ ν and

we claim that then Injν
+

µ (M) ⊆ Gµ. For this, choose h ∈ Injν
+

µ (M). Then |M \Mf | =
µ = |M \Mh | and |h | ≤ ν = | f |. By Lemma 3.9, we obtain h ∈ (fS(M))2 ∈ G and
our claim. This implies the assertion of (ii) with ν = sup{| f |+ | f ∈ Gµ}.

(iii) Let h ∈ Injνµ′(M). Then α := |h | < ν. Choose any f ∈ Gµ′ . In case | f | ≥ α,

by Lemma 3.9 we obtain h ∈ (fS(M))2 ∈ Gµ′ . Now assume that | f | < α < ν. By
assumption, there is g ∈ Gµ with | g | = α. Then fg ∈ Gµ′ and | fg | = α. Hence, by
Lemma 3.9, we have h ∈ ((fg)S(M))2 ⊆ Gµ′ .

(iv) We proceed similarly to the argument for (iii). Let h ∈ Injν
+

µ′ (M). Choose any

f ∈ Gµ′ . If |h | ≤ | f |, again by Lemma 3.9 we have h ∈ (fS(M))2 ∈ Gµ′ . Therefore now
assume that | f | < |h |. By assumption, there is g ∈ Gfin with | g | ≥ ν. Then fg ∈ Gµ′

and |h | ≤ ν ≤ | g | = | fg |. So by Lemma 3.9 we obtain h ∈ ((fg)S(M))2 ⊆ Gµ′ and
the result.

Hence it remains to describe the structure of Gfin. As in Mesyan [12], this de-
pends on the value of Ggrp. Therefore we proceed by the case distinction given by
Theorem 3.10(i).
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4 Products of conjugacy classes for uncountable sets

Throughout this section we assume that G� Inj(M). Let

N(G) = {|M \Mf | | f ∈ Gfin}. (4.1)

It is clear by Observation 3.5 that N(G) ⊆ N is a subsemigroup.
Conversely, if N is a subsemigroup of (N,+), then following [12], we let

InjN(M) = {g ∈ Inj(M) | |M \Mg | ∈ N}� Inj(M) (4.2)

and

InjαN(M) = {g ∈ InjN(M) | | g | < α} = InjN(M) ∩ Injα(M) (4.3)

for any α ≤ |M |+. Clearly InjN(M) ⊆ Injfin(M). By Observation 3.5 it is easy to see
that InjN(M) � Inj(M), cf. [12, p. 292].

Lemma 4.1. Let G� Inj(M) and α > ℵ0 with Gfin ⊆ Injα(M) and Sα(M) ⊆ G. Then
Gfin = InjαN(M) for N = N(G).

Proof. If h ∈ InjαN(M), then by (4.2) and (4.1) there is some f ∈ Gfin such that
|M \Mf | = |M \Mh |, so | f | < α. Choose any bijection k1 : M\Mf →M\Mh, and
define k2 : Mf →Mh by xf 7→ xh, which is also bijective. Then k = k1 ∪ k2 ∈ S(M).
Since [k] \ [f ] ⊆ Fix(f)∩ [h], we have [k] ⊆ [f ]∪ [h] and by | f | , |h | < α it also follows
k ∈ Sα(M) ⊆ G. So h = fk ∈ G and |M \Mh | = |M \Mf |, hence also h ∈ Gfin, so
InjαN(M) ⊆ Gfin.

In this context, we note that each subsemigroup of N is finitely generated, cf. [16].
Consequently, N contains precisely ℵ0 subsemigroups.

For the remaining part of this section we consider the case that Gfin * Injℵ1(M),
i.e. there is f ∈ Gfin with | f | ≥ ℵ1.

4.1 Moran’s characterization P and products of types

Our goal is to extend the crucial Lemma 3.7 to the uncountable case. For this, we will
use Moran’s property P which describes products of conjugacy classes.

Definition 4.2. Let M be an uncountable set.
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(i) We call each function T : N∞ −→ {0} ∪ {µ | ℵ1 ≤ µ ≤ |M |} such that∑
n∈N∞ T (n) = |M | a type (of S(M)). We let TM be the collection of all types

of S(M).

(ii) For a type T of S(M) let CT = {f ∈ S(M) | f = T}, a conjugacy class in S(M).
We put P(T, T1, T2) if and only if CT ⊆ CT1 · CT2 in S(M).

Our aim is to characterize the relation P . Moran [14] completely described all
conjugacy classes C1, C2, C3 with P(C1, C2, C3) in the factor groupsHν = S(M)/Sν(M)
for ν = |M | ≥ ℵ1. He reduced this to a description of the relation P for simple types;
a type T of S(M) is simple, if T (n) ∈ {0, |M |} for each n ∈ N∞. In our setting, if
|M | ≥ ℵ1, we have to consider all possible values of T in {0} ∪ {µ | ℵ1 ≤ µ ≤ |M |}.

We recall Moran’s results. For this we define a few particular types. If F ⊆ N∞ is
a subset, then let F̂ be the simple type satisfying F̂ (n) = |M | if and only if n ∈ F
(for n ∈ N∞). If k ∈ N∞, we put k̂ = {̂k}. We let OD(M) be the set of all simple types
T satisfying T (n) = 0 for any even n ∈ N and for n = ℵ0. Clearly P(1̂, T1, T2) holds
if and only if T1 = T2. Since the relation P is symmetric, it remains to characterize it
for non-unit types T, T1, T2, i.e. for T, T1, T2 different from 1̂. Following [14], we call a
set {T, T1, T2} of types a non-P-set if P(T, T1, T2) does not hold. The following gives
an explicit description of non-P-sets.

Theorem 4.3. (Moran [14, Theorem 1]) Let M be uncountable and T, T1, T2 non-unit
simple types of S(M). Then {T, T1, T2} is a non-P-set if and only if one of the following
two mutually exclusive conditions holds:

(i) {T, T1, T2} = {2̂, {̂1, 2}, U} for some U ∈ OD(M).

(ii) {T, T1, T2} is one of the sets {3̂, {̂1, 3}, 2̂} or {3̂, {̂1, 3}, {̂1, 2}} or {2̂, 3̂, ̂{1, 2, 3}}.

Let α be a cardinal with ℵ1 ≤ α ≤ |M |. We let cf(α) denote the cofinality of α.
Now let T be a type of S(M). We define a function Tα : N∞ → {0, α} by letting (for
n ∈ N∞)

Tα(n) =

{
α if T (n) ≥ α

0 otherwise.

If α < |M | or cf(α) 6= ω, the condition
∑

n∈N∞ T (n) = |M | implies that T (n) ≥ α for
some n ∈ N∞, hence Tα is a simple type of S(Mα) where |Mα | = α. Now we show:
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Theorem 4.4. Let M be uncountable and T, T1, T2 types of S(M). Then P(T, T1, T2)
if and only if

P(Tα, Tα1 , T
α
2 ) for each cardinal α with ℵ1 ≤ α ≤ |M | and cf(α) 6= ω (4.4)

Proof. “⇒′′ Let P(T, T1, T2) and α a cardinal with ℵ1 ≤ α ≤ |M | and cf(α) 6= ω.
We choose h, f, g ∈ S(M) with h = T, f = T1, g = T2 and h = fg. Let M ′

1 be the
union of all orbits of h, f and g of length n ∈ N∞ for which h(n) < α resp. f(n) < α or
g(n) < α, and let M1 be the {h±1, f±1, g±1}-closure of M ′

1. Since cf(α) 6= ω, α is not
the sum of countably many smaller cardinals. Hence |M1 | < α. Put M2 = M \M1,
so |M2 | = |M |.

Choose M ′ ⊆ M2 such that M ′ is {h±1, f±1, g±1}-invariant and |M ′ | = α. Let
h′ = h �M ′, f ′ = f �M ′ and g′ = g �M ′. Then h′ = f ′g′ and h′(n) = 0 or h′(n) = α
for each n ∈ N∞, and similarly for f ′ and g′. Hence h′, f ′, and g′ are simple types of
S(M ′) and h′ = Tα, f ′ = Tα1 , g

′ = Tα2 , proving P(Tα, Tα1 , T
α
2 ).

“ ⇐′′ Assume (4.4). We wish to construct h, f, g ∈ S(M) such that h = fg

and h = T, f = T1, g = T2; then P(T, T1, T2). We decompose M =
⋃̇
α∈DMα (with

D = {α | ℵ1 ≤ α ≤ |M | and cf(α) 6= ω} into pairwise disjoint sets Mα of cardinality
|Mα | = α. By assumption, for each α ∈ D we have P(Tα, Tα1 , T

α
2 ), hence there

are hα, fα, gα ∈ S(Mα) such that hα = fαgα and hα = Tα, fα = Tα1 , gα = Tα2 . Put

h =
⋃̇
α∈Dhα, f =

⋃̇
α∈Dfα and g =

⋃̇
α∈Dgα. Clearly h = fg, and for each n ∈ N∞

we have h(n) =
∑

α∈D hα(n) =
∑

α∈D T
α(n) = supα∈D T

α(n). Note that Tα(n) = 0 if
α > T (n). If cf(T (n)) 6= ω and α = T (n), we have Tα(n) = α = T (n). If cf(T (n)) = ω,
we have Tα(n) = α for each α ∈ D with α < T (n), and the supremum of all these α
equals T (n). Hence in any case h(n) = T (n), showing h = T . Similarly, f = T1 and
g = T2.

Observe that condition (4.4) for each α is characterized by Theorem 4.3. Hence
Theorem 4.3 and Theorem 4.4 together give a complete description of the relation P
on TM .

Now we turn Inj(M) for uncountable sets M . If f ∈ Inj(M) with M \Mf countable,
we define Tf : N∞ −→ {0} ∪ {µ | ℵ1 ≤ µ ≤ |M |} by letting

Tf (n) =

{
f(n) if f(n) ≥ ℵ1

0 otherwise.

Then Tf is a type of S(M), the type of f . Observe that if f ∈ Inj(M) satisfies | f | ≤ ℵ0,
then Tf (1) = |M | and Tf (n) = 0 for all n ≥ 2. Also, for f ∈ Inj(M), we let

orb(f, ω) =
⋃
{ closed orbits of f of size n | n ∈ N∞ with f(n) ≤ ℵ0}.
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Now we state our extension of Lemma 3.7 to the uncountable case.

Proposition 4.5. Let M be uncountable. For f, g, h ∈ Inj(M) \ S(M) with M \
Mf,M \Mg,M \Mh countable, the following conditions are equivalent.

(i) h ∈ fS(M) · gS(M)

(ii) |M \Mh | = |M \Mf |+ |M \Mg | and P(Th, Tf , Tg) holds.

Proof. Let

M ′
1 = (M \Mf) ∪ (M \Mg) ∪ (M \Mh) ∪ orb(f, ω) ∪ orb(g, ω) ∪ orb(h, ω).

“(ii)⇒ (i)”: Let M1 be the {f±1, g±1, h±1}-closure of M ′
1 and M2 = M \M1. Then

|M1 | = ℵ0 and |M2 | = |M |. Put fi = f �Mi, gi = g �Mi, hi = h �Mi for i = 1, 2.
Clearly f2, g2, h2 ∈ S(M2), and (by definition of types T ), we have Tf2 = Tf , Tg2 = Tg
and Th2 = Th.

By Lemma 3.7 it follows that h1 ∈ fS(M1)
1 · gS(M1)

1 and the property P(Th, Tf , Tg)

implies that h2 ∈ f
S(M2)
2 · gS(M2)

2 . Patching the components together we get h ∈
fS(M) · gS(M).

“(i) ⇒ (ii)”: Let h = fk · gk′ with k, k′ ∈ S(M) be chosen by (i). Then
by Observation 3.5 the first claim in (ii) follows immediately. Now let M1 be the
{f±1, g±1, h±1, k±1, (k′)±1}-closure of M ′

1, which is countable, and put M2 = M \M1.
Thus |M2 | = |M |. Again, let f2 = f �M2, g2 = g �M2, h2 = h �M2, k2 = k �M2 and

k′2 = k′ �M2. Then h2 = fk22 g
k′2
2 on M2 and h2(n) = 0 or h2(n) = h(n) ≥ ℵ1 for all

n ∈ N∞, so Th2 = Th and the same holds for f2, g2. Thus we have P(Th2 , Tf2 , Tg2) =
P(Th, Tf , Tg), so P holds in (ii).

4.2 Normal subsemigroups of Inj(M)

Throughout this section, let M be uncountable. Let N ⊆ N be a subsemigroup. Now
we want to refine the correspondence between the subsemigroup N and the normal
subsemigroup InjN(M) obtained in (4.1) and (4.2). We fix the family of pairs

P = N× TM . (4.5)

We call a subset P of P an N-type set if it satisfies the following conditions:

(i) If (n, T ) ∈ P , then n ∈ N .
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(ii) For each n ∈ N there is T ∈ TM such that (n, T ) ∈ P .

(iii) If (n1, T1), (n2, T2) ∈ P and T ∈ TM satisfies P(T, T1, T2), then (n1 + n2, T ) ∈ P .

As an illustration we just note:

Corollary 4.6. Let N be a subsemigroup of N and P an N-type set. If (n, T ) ∈ P
with

∑
n≥2 T (n) = |M |, then (2n, T ′) ∈ P for any T ′ ∈ TM .

Proof. Let T ′ ∈ TM . We claim that P (T ′, T, T ) holds. This follows from Theo-
rem 4.4, since condition (4.4) is satisfied by Theorem 4.3. Now condition (iii) implies
(2n, T ′) ∈ P .

We observe that for a normal subsemigroup G� Inj(M) the family

P (G) = {(|M \Mf | , Tf ) | f ∈ Gfin} (4.6)

satisfies the

Remark 4.7. P (G) is an N(G)-type set.

Proof. Conditions (i) and (ii) are obvious. Now let f, g ∈ Gfin andm = |M \Mf | , n =
|M \Mg | and let T ∈ TM with P(T, Tf , Tg). Choose h ∈ Inj(M) with |M \Mh | =
m + n and Th = T . By Proposition 4.5, we obtain h ∈ fS(M)gS(M) ⊆ G. So,
(m+ n, T ) ∈ P (G), proving condition (iii).

Now let N be a subsemigroup of N and let P be an N -type set. We put

InjP (M) = {f ∈ Inj(M) | (|M \Mf | , Tf ) ∈ P}.

We have an easy

Observation 4.8. InjP (M) is a normal subsemigroup of Inj(M), and InjP (M) ⊆
InjN(M).

11



Proof. Let f, g ∈ InjP (M), h = fg, and m = |M \Mf | , n = |M \Mg |. So
(m,Tf ), (n, Tg) ∈ P . By Proposition 4.5 we have P(Th, Tf , Tg) and so (m+ n, Th) ∈ P
by condition (iii) for P . Since |M \Mh | = m + n, we obtain h ∈ InjP (M). Clearly,
InjP (M) is normal and InjP (M) ⊆ InjN(M).

We give two examples of extreme cases. Let N = N(G) and P = P (G).
First assume that Gfin ⊆ Injℵ1(M). Then Tf = 1̂ for each f ∈ Gfin, so P = N ×{1̂}

and InjP (M) = Injℵ1N (M).
Secondly, assume that Ggrp = S(M). We claim that then P = N × TM . Indeed,

choose any n ∈ N and T ∈ TM . There is f ∈ Gfin with |M \Mf | = n. Let
M1 be the f±1-closure of M \ Mf , which is countable. Put M2 = M \ M1 and
let fi = f �Mi (i = 1, 2). Then f2 ∈ S(M2). We put f ′ = idM1 ∪̇f−1

2 ∈ S(M).
Also, there is g ∈ S(M) with Tg = T . Then f ′g ∈ S(M) = Ggrp, so ff ′g ∈ G,
|M \Mff ′g | = |M \Mf | = n, and Tff ′g = Tg = T, showing (n, T ) ∈ P and our
claim. Hence InjP (M) = InjN(M).

Lemma 4.9. If f, g ∈ Injfin(M) ∪ Injℵ0(M), then

f ∈ gS(M)Sℵ1(M) ⇐⇒
(
|M \Mf | = |M \Mg | and Tf = Tg

)
.

Proof. “⇒ ” : The first condition |M \Mf | = |M \Mg | is clear.
If f = gh · k for h ∈ S(M) and k ∈ Sℵ1(M), then let

M ′
1 = [k] ∪ (M \Mf) ∪ (M \Mg) ∪ orb(f, ω) ∪ orb(g, ω),

and let M1 be the {f±1, g±1, h±1, k±1}-closure of M ′
1, which is countable. Set

M2 = M \ M1 and consider the restrictions f2, g2, k2, h2 of f, g, k, h to M2, respec-
tively. It follows that k2 = idM2 , f2 = gh22 , and Tf = Tf2 = Tg2 = Tg, as required.

“⇐ ” : We let M1 be the {f±1, g±1}-closure of

M ′
1 = (M \Mf) ∪ (M \Mg) ∪ orb(f, ω) ∪ orb(g, ω),

which is countable, and let M2 = M \M1. Let fi, gi be the restrictions of f, g on Mi

(i = 1, 2). Then M1\M1f1 = M \Mf and M1\M1g1 = M \Mg. We define h1 ∈ S(M1)
such that

h1 �(M1 \M1g1) : M1 \M1g1 −→M1 \M1f1

is any bijection and

h1 �M1g1 : M1g1 −→M1f1 (xg1 7→ xf1)

12



which is also bijective. Then f1 = g1h1. Also, f2, g2 ∈ S(M2) which are conjugates by
Tf2 = Tf = Tg = Tg2 . We write f2 = (g2)h2 , h′2 = idM1 ∪̇h2 and h′1 = h1∪̇ idM2 . Thus
|h′1 | ≤ ℵ0 and f = gh

′
2h′1 is as required.

Lemma 4.10. Let Ggrp ⊇ Sℵ1(M) and Gfin * Injℵ1(M). Then Gfin = InjP (G)(M).

Proof. The inclusion Gfin ⊆ InjP (G)(M) is trivial. For the converse, let f ∈
InjP (G)(M). So there is g ∈ Gfin with |M \Mf | = |M \Mg | and Tf = Tg. By

Lemma 4.9 and the assumption on Ggrp, we obtain f ∈ gS(M)Sℵ1(M) ⊆ G. Hence
f ∈ Gfin.

5 Characterizing Gfin for uncountable sets M

5.1 The case: G contains a permutation with infinite support

We are ready to characterize the normal subsemigroups of Inj(M) under the restrictions
of this section. By Theorem 3.10 we have Sℵ1(M) ⊆ Ggrp.

Theorem 5.1. Let M be uncountable, G� Inj(M) with Gfin 6= ∅ and Sℵ1(M) ⊆ Ggrp.
Then there is a subsemigroup N ⊆ (N,+) such that Gfin ⊆ InjN(M). Moreover, we

have:

(i) If Gfin ⊆ Injℵ1(M), then Gfin = Injℵ1N (M).

(ii) If Gfin * Injℵ1(M), there is an N-type set P such that Gfin = InjP (M).

(iii) If Ggrp = S(M), then Gfin = InjN(M).

All these combinations give rise to normal subsemigroups G� Inj(M).

Proof. Let N = N(G). The descriptions of Gfin in (i) and (iii) follow from
Lemma 4.1 (with α = ℵ1, respectively α = |M |+) and in (ii) from Lemma 4.10.
The last statement is immediate by Observation 4.8.
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5.2 The case G ∩ S(M) = 1

In this section, we assume that G ∩ S(M) = 1. Then it may be the case that there
are f ∈ Gfin and g ∈ Inj(M) with |M \Mf | = |M \Mg | and Tf = Tg, but f 6= g
and g /∈ Gfin. (For instance, we may choose any f ∈ Inj(M) \ S(M) with f(n) ≤ ℵ0

for some n ∈ N. Let G be the normal subsemigroup of Inj(M) generated by f . If
g ∈ Inj(M) with |M \Mf | = |M \Mg | and g(n) 6= f(n), then g /∈ G by Lemma 3.6
and Observation 3.5.) Then Gfin 6= InjP (G)(M), so we do not have the characterization
of Theorem 5.1.

For any subset B ⊆ Injfin(M) let

P (B) = {(|M \Mf | , Tf ) | f ∈ B} ⊆ P (5.1)

We also say that (k, T ) ∈ P is reducible if and only if there are two types (n1, T1),
(n2, T2) ∈ P such that k = n1 + n2 and P (T, T1, T2) holds. Otherwise, (k, T ) is called
irreducible.

Theorem 5.2. If M is uncountable, G� Inj(M), G∩ S(M) = 1 and P = P (G), then

Gfin = B ∪̇ {f ∈ Inj(M) | (|M \Mf | , Tf ) ∈ P is reducible} (5.2)

and B ⊆ Injfin(M) is a normal subset which satisfies

P (B) = {(n, T ) ∈ P | (n, T ) is irreducible}. (5.3)

Conversely, each righthand side of the displayed equation (5.2) is a subsemigroup of
Injfin(M) normal in Inj(M). Moreover, in this case Gfin is the subsemigroup generated
by B.

Proof. Put B = {f ∈ Gfin | (|M \Mf | , Tf ) irreducible in P}. Then B is normal
in Inj(M) and we claim that (5.2) holds.

If h ∈ Inj(M) and (|M \Mh | , Th) ∈ P (G) is reducible, then there are f, g ∈ Gfin

such that |M \Mh | = |M \Mf |+|M \Mg | and P(Th, Tf , Tg) holds. By Proposition
4.5 it follows that h ∈ fS(M)gS(M) ⊆ Gfin. This is one inclusion of (5.2), and the converse
inclusion holds trivially.

To verify (5.3), let (n, T ) ∈ P (G) be irreducible. So there is f ∈ Gfin with
|M \Mf | = n and Tf = T . By definition, then f ∈ B, proving (5.3).

Given a subsemigroup N ⊆ N and an N -type set P , then the corresponding right-
hand side of (5.2) is a normal subsemigroup of Inj(M) as seen by the proof of Obser-
vation 4.8.
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It remains to show that Gfin is generated by B. Let h ∈ Gfin \ B. First assume
that there are two irreducible types (n1, T1), (n2, T2) ∈ P such that |M \Mh | =
n1 + n2 and P (Th, T1, T2). Then (n1, T1), (n2, T2) ∈ P (B), so there are f, g ∈ B with
n1 = |M \Mf | , T1 = Tf , n2 = |M \Mg | , T2 = Tg. By Proposition 4.5, we obtain
h ∈ fS(M)gS(M) ⊆ B · B. In the general case, an induction shows that h is a finite
product of elements from B.

5.3 The cases G ∩ S(M) = Fin(M) and G ∩ S(M) = Alt(M)

In this case we adopt an equivalence relation ≈ on Inj(M) from Mesyan [12, Definition
19] and say that f ≈ g for f, g ∈ Inj(M) if the following conditions hold:

(i) F = {n ∈ N | f(n) 6= g(n)} is finite, and if n ∈ F , then f(n), g(n) ∈ N.

(ii) f(ℵ0) = g(ℵ0)

(iii) |M \Mf | = |M \Mg |

A set B ⊆ Inj(M) is ≈-closed if for any f ∈ B, f ≈ g ∈ Inj(M) implies g ∈ B. Clearly,
then B is normal in Inj(M). The following characterization of ≈ can be shown just as
in [12]. It rests on the effect of multiplying one or two infinite orbits by a transposition.

Proposition 5.3. (Mesyan [12, Proposition 24]) Let M be any infinite set and f, g ∈
Inj(M) \ S(M). Then f ≈ g if and only if f ∈ Fin(M)(gS(M)) Fin(M).

For uncountable sets M , we can strengthen this result as follows.

Proposition 5.4. Let M be any uncountable set and f, g ∈ Injfin(M) \ S(M). Then
f ≈ g if and only if f ∈ Alt(M)(gS(M)) Alt(M).

Proof. The ‘if’-direction is immediate by Proposition 5.3. Hence we may assume
f ≈ g. Choose n ∈ N∞ such that f(n) is uncountable, hence g(n) = f(n). Let A (resp.
B) be the union of countably-infinitely many n-orbits of f (resp. g). Let M1 be the
{f±1, g±1}-closure of the set

(M \Mf) ∪ (M \Mg) ∪ orb(f, ω) ∪ orb(g, ω) ∪ A ∪B,

which is countable, and M2 = M \ M1. Let fi = f �Mi, gi = g �Mi for i = 1, 2.
Then f1 ≈ g1 in Inj(M1) and f1(n) = g1(n) = ℵ0. Applying Proposition 5.3 we obtain
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f1 ∈ Fin(M1)(g
S(M1)
1 ) Fin(M1), and [12, Lemma 26] using that f1(n) = g1(n) = ℵ0

implies f1 ∈ Alt(M1)(g
S(M1)
1 ) Alt(M1). Also f2, g2 ∈ S(M2) and f2 ≈ g2, so f2 = g2.

Hence f2 ∈ gS(M2)
2 . Thus f ∈ Alt(M)(gS(M)) Alt(M) as needed.

This result will enable us to use in Theorem 5.5 the same relation ≈ for both
cases Ggrp = Fin(M) and Ggrp = Alt(M), which provides a contrast to the result for
countable sets M , cf. [12, Theorem 34].

Theorem 5.5. Let M be uncountable, G� Inj(M), Ggrp = Fin(M) or Ggrp = Alt(M),
Gfin 6= ∅ and P = P (G). Then

Gfin = B ∪̇ {f ∈ Inj(M) | (|M \Mf | , Tf ) ∈ P is reducible} (5.4)

and B ⊆ Injfin(M) is a ≈-closed subset which satisfies

P (B) = {(n, T ) ∈ P | (n, T ) is irreducible}. (5.5)

Conversely, each righthand side of the displayed equation (5.5) is a normal subsemi-
group of Injfin(M). Moreover, in this case Gfin is the subsemigroup generated by B.

Proof. Assume Ggrp = Fin(M). Put

B = {f ∈ Gfin | (|M \Mf | , Tf ) irreducible in P}.

Then B is ≈-closed by Proposition 5.3 and Fin(M) ⊆ G. The remaining arguments
for the theorem are the same as in Theorem 5.2.

Now let Ggrp = Alt(M). We can follow the above argument, but we use Proposi-
tion 5.4 to get that B is ≈-closed to obtain the result.

6 Maximal normal subsemigroups of Inj(M)

We determine the maximal normal subsemigroups of Inj(M).

Theorem 6.1. The following constitute all the maximal normal subsemigroups of
Inj(M) where κ = |M |:

(i) Sκ(M)∪̇ Injfin(M)∪̇
⋃̇
ℵ0≤µ≤κ Injκ

+

µ (M).

(ii) S(M)∪̇ InjN\{1}(M)∪̇
⋃̇
ℵ0≤µ≤κ Injκ

+

µ (M).
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(iii) S(M)∪̇ Injfin(M)∪̇
⋃̇
µ∈X Injκ

+

µ (M), for some ℵ0 ≤ µ′ ≤ κ and
X = {µ | µ 6= µ′,ℵ0 ≤ µ ≤ κ}.

Each proper normal subsemigroup of Inj(M) is contained in a maximal one.

Proof. By Theorems 3.10 and 5.1, the above sets in (i)-(iii) are normal subsemi-
groups of Inj(M). Clearly, N \ {1} is the greatest proper subsemigroup of N. Hence,
by Theorems 3.10 and 5.1, each proper, normal subsemigroup of Inj(M) is contained
in one of the subsemigroups of (i)-(iii). Hence these are maximal.

Consequently, if |M | = ℵi (i an ordinal), then Inj(M) has precisely | i |+3 maximal
normal subsemigroups. In the contrast we note:

Corollary 6.2. Inj(M) contains precisely 2c(M)ℵ0 normal subsemigroups, where c(M) =
| {µ | µ cardinal, µ ≤ |M |} |.

For instance, if |M | = ℵ0 or |M | = ℵ1, we have c(M) = ℵ0 and 2c(M)ℵ0 = 22ℵ0 .

Proof. We can obtain 2c(M)ℵ0 normal subsemigroups as follows. For any set X of
functions T : N∞ −→ c(M) put

BX = {f ∈ Inj(M) | |M \Mf | = 1, f ∈ X},

and let
GX = BX∪̇{f ∈ Injfin(M) | |M \Mf | ≥ 2}.

By Theorem 5.2, GX is a normal subsemigroup, and GX ⊆ GY if and only if X ⊆ Y .
Since the powerset of a set of size c(M)ℵ0 contains an antichain of subsets of size 2c(M)ℵ0 ,
we even obtain such a large antichain in the lattice of normal subsemigroups of Inj(M).

It remains to show that 2c(M)ℵ0 is the maximal number of normal subsemigroups G
of Inj(M). If M is countable, this is clear since | Inj(M)| = 2ℵ0 . Hence we may assume
that M is uncountable. By Theorem 3.10, we have to show that there are no more than
2c(M)ℵ0 choices for Gfin. Recall that N contains only countably many subsemigroups,
cf. [16]. Hence it suffices to consider the possibilities for Theorems 5.1(ii), 5.2 and
5.5. For Theorem 5.1(ii), let N be any subsemigroup of N. Any N -type set P contains
for each n ∈ N at most c(M)ℵ0 pairs (n, T ) with T ∈ TM . Hence there are at most
2c(M)ℵ0 distinct N -type sets P , and consequently the number of possibilities for Gfin as
in Theorem 5.1(ii) has the same upper bound. In the situation of Theorems 5.2 and
5.5, Gfin is generated by a normal s u bset B ⊆ Injfin(M). Any such B is the union
of conjugacy classes fS(M) with f ∈ Injfin(M). There are c(M)ℵ0 possible choices for
f and thus, by Lemma 3.6, the same number of choices for fS(M). Consequently, the
number of possibilities for B and hence for Gfin is bounded by 2c(M)ℵ0 .
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