On Ore's Theorem and Universal Words for Permutations and Injections of Infinite Sets

Dedicated to the memory of Rüdiger Göbel

Manfred Droste

Universität Leipzig, Institut für Informatik, 04109 Leipzig, Germany droste@informatik.uni-leipzig.de

Abstract. We give a simple proof that any injective self-mapping of an infinite set M can be written as a product of an injection and a permutation of M both having infinitely many infinite orbits (and no others). This implies Ore's influential theorem that each permutation of M is a commutator, a similar result due to Mesyan for the injections of M, and a result on which injections f of M can be written in the form $f = x^m \cdot y^n$.

1 Introduction

For words $w = w(x_1, \dots, x_n)$ in free variables x_1, \dots, x_n , it often leads to difficult problems to describe groups G for which each element $g \in G$ is expressible in the form $g = w(g_1, \dots, g_n)$ for some $g_1, \dots, g_n \in G$. In the case of commutators $w = x_1^{-1} \cdot x_2^{-1} \cdot x_1 \cdot x_2$, this is known to be true for all finite and infinite alternating groups [12], all semi-simple complex Lie groups [13], all semi-simple connected algebraic groups [14], and many others; recently, it was established for all finite non-abelian simple groups [6], thereby confirming Ore's conjecture.

Ore [12] showed that, in contrast to the finite symmetric groups S_n somewhat surprisingly, each element of the infinite symmetric groups S(M) of all permutations of an infinite set M is a commutator. His proof involved a non-trivial case analysis of cycle types. Here, we wish to provide a simple geometric proof of an extension of this result. We will consider the monoids Inj(M) of all injections of an infinite set M. An Ore-type result for these monoids Inj(M) was recently established in Mesyan [8]; see [9, 3] for consequences and descriptions of the normal subsemigroups of Inj(M). Our main result will be a simple proof showing that each injection $f \in \text{Inj}(M)$ can be written as a product $f = g \cdot h$ with an injection $g \in \text{Inj}(M)$ and a permutation $h \in S(M)$ each having infinitely many infinite orbits (and no others). This result itself also follows from a general result given in [8] which, however, involves a more complicated case analysis of possible orbits and previous results for S(M). Our idea is to take as underlying set $M = \mathbb{Z} \times \mathbb{Z}$ (for the crucial case that M is countable) and to represent f in a suitable form. This idea was also used for the symmetric group S(M) in [2] and in [4] with applications for extension results on coverings of surfaces. As an immediate consequence of the above result we obtain an Ore-type result for Inj(M), Ore's result for S(M), and a description of all elements f of Inj(M) which can be written in the form $f = x^m \cdot y^n$ with $x, y \in \text{Inj}(M)$.

2 Background

Here we summarize the notation and background results, as needed subsequently.

Let M be an infinite set, $\operatorname{Inj}(M)$ the monoid of all injective maps of M and S(M) the symmetric group of all permutations of M. Let $f \in \operatorname{Inj}(M)$. If $x \in M$, the set $\{y \in M \mid xf^i = y \text{ or } yf^i = x \text{ for some } i \geq 0\}$ is called the *f*-orbit of x, or an orbit of f. We call an orbit a *forward orbit*, if it is the *f*-orbit of some x such that $x \notin Mf$. Note that then this orbit equals $\{xf^i \mid i \geq 0\}$ and is infinite. This gives a bijection between $M \setminus Mf$ and the set of forward orbits of f. We have the following important observation.

Proposition 2.1. Let $f, g \in \text{Inj}(M)$. Then

$$|M \backslash Mfg| = |M \backslash Mf| + |M \backslash Mg|.$$

Proof. We have

$$M \backslash Mfg = (M \backslash Mf)g \mathrel{\dot{\cup}} (M \backslash Mg).$$

As usual, for $g \in \text{Inj}(M)$ and $h \in S(M)$, we let $g^h = h^{-1}gh$. We say that two injections $f, g \in \text{Inj}(M)$ are *conjugate* if $f = g^h$ for some $h \in S(M)$. We let $g^{S(M)} = \{g^h \mid h \in S(M)\}$, the set of conjugates of f. Next we wish to describe when two elements of Inj(M) are conjugate.

We let \mathbb{N} denote the set of positive integers, and $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\infty\}$. Given $f \in \text{Inj}(M)$, we call any orbit U of f with $U \subseteq Mf$, i.e., which is not a forward orbit, a *closed orbit*; then clearly $f|_U \in S(U)$. We define \overline{f} to be the map from \mathbb{N}_{∞} to the cardinals by letting $\overline{f}(n)$ be the number of closed orbits of size n of f, for each $n \in \mathbb{N}_{\infty}$. Recall that $|M \setminus Mf|$ is the number of forward orbits of f.

The following result, which is well-known for permutations, describes that two elements of S(M) resp. Inj(M) are conjugate if and only if they have the same "orbit structure".

Proposition 2.2. (a) Let $f, g \in S(M)$. Then f and g are conjugate if and only if $\overline{f} = \overline{g}$. (b) (Mesyan [8]) Let $f, g \in \text{Inj}(M)$. Then f and g are conjugate if and only if $\overline{f} = \overline{g}$ and $|M \setminus Mf| = |M \setminus Mg|$.

Proof. Note that (a) is a special case of (b). We indicate the proof of (b) for the convenience of the reader. If $f = g^h$ for some $h \in S(M)$, then h maps the orbits of g onto the orbits (of the same length) of f. Hence $\overline{f} = \overline{g}$ and $|M \setminus Mf| = |M \setminus Mg|$.

Conversely, given a length-preserving and forwardness-preserving bijection π from the orbits of g onto the orbits of f, for each orbit U of g, choose elements $x_U \in U$, $y_U \in U\pi$ (and such that $x_U \notin Mg$, $y_U \notin Mf$ in case U is a forward orbit), put $x_Uh = y_U$ and extend h uniquely to a permutation of M satisfying hf = gh.

3 The main result

In this section we will provide a simple proof for the following result.

Theorem 3.1. Let M be an infinite set. Then every injection $f \in \text{Inj}(M)$ is a product $f = g \cdot h$ of an injection $g \in \text{Inj}(M)$ and a permutation $h \in S(M)$ both having infinitely many infinite orbits (and no others). We also have $f = h \cdot g$ with $g \in \text{Inj}(M)$, $h \in S(M)$ as described before.

We note that Theorem 3.1 is a special case of the main result of Mesyan [8] whose proof, however, involves a detailed analysis of the orbit structure of elements of Inj(M) and uses previous results on S(M).

For our proof of Theorem 3.1, if M is countable, we take $M = \mathbb{Z} \times \mathbb{Z}$, the integer plane. We will show that for any $f \in \text{Inj}(M)$ there is a conjugate f' of f which moves each element of M at most one unit up or down. For this, we construct f' with the same "orbit structure" as f by employing a Cantor-like enumeration of $\mathbb{Z} \times \mathbb{Z}$ or of suitable subsets (like half-planes). For the case that $f \in S(M)$, this is also described in [2] and [4] (see sections 3-5).

Lemma 3.2. Let $M = \mathbb{Z} \times \mathbb{Z}$. Then for each $f \in \text{Inj}(M)$ there is $f' \in \text{Inj}(M)$ such that $\bar{f} = \bar{f}'$, $|M \setminus Mf| = |M \setminus Mf'|$ and $(i, j)f' \in \mathbb{Z} \times \{j - 1, j, j + 1\}$ for each $(i, j) \in M$.

Proof. If f has infinitely many orbits, it is easy to construct such an injection f' satisfying even $(i, j)f' \in \mathbb{Z} \times \{j\}$ for each $(i, j) \in M$, i.e., the orbits of f' are all contained in the horizontal lines of $M = \mathbb{Z} \times \mathbb{Z}$. Therefore now let f have only finitely many orbits. Consequently, f has at least one infinite orbit.

First, let f have only one forward orbit (and no others). Then consider the "infinite spiral"

$$(0,0) \to (1,0) \to (1,1) \to (0,1) \to (-1,1) \to (-1,0) \to (-1,-1) \to$$

 $(0,-1) \to (1,-1) \to (2,-1) \to (2,0) \to \cdots$

which gives f'.

This construction leaves a lot of freedom for changes enabling us to deal with the other cases. For instance, assume that $f \in S(M)$ has precisely one infinite closed orbit (and no others). Then let $f' \in S(M)$ act on the upper half plane $\mathbb{Z} \times \mathbb{N}_0$, where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, similarly as above, like

$$(0,0) \to (1,0) \to (1,1) \to (0,1) \to (-1,1) \to (-1,0) \to (-2,0) \to (-2,0$$

 $(-2,1) \to (-2,2) \to (-1,2) \to (0,2) \to \cdots$

By a similar enumeration of the lower half plane $\mathbb{Z} \times \{-n \mid n > 0\}$, we define the pre-images of (0,0) under f'.

Now if f has k + 1 infinite orbits (k > 0), we can define f' such that it has each halfline $\mathbb{N} \times \{i\}$ $(i = 1, \dots, k)$ as an infinite orbit and has the set $M \setminus \bigcup_{i=1}^{k} \mathbb{N} \times \{i\}$ as the remaining infinite orbit, in each case realizing forwardness or closedness as necessary.

Finally, for the finite orbits of f (note that by our assumption, f has only finitely many orbits), we can take a suitably large interval in $\mathbb{N} \times \{0\}$ to realize the corresponding orbits of f', and use the complement of this interval for the infinite orbits of f'. \Box

Now we can show Theorem 3.1.

Proof of Theorem 3.1. It suffices to consider the case that M is countable. Indeed, if M is uncountable and $f \in \text{Inj}(M)$, by a standard argument we can split $\bigcup_{i \in I} M_i$ into pairwise disjoint f-invariant countable sets M_i , so $f \upharpoonright_{M_i} \in \text{Inj}(M_i)$. Then by the result of the countable case, for each $i \in I$ write $f \upharpoonright_{M_i} = g_i \cdot h_i$ with an injection $g_i \in \text{Inj}(M_i)$ and a permutation $h_i \in S(M_i)$ both having infinitely many infinite orbits (and no others). Then $g = \bigcup_{i \in I} g_i \in \text{Inj}(M)$ and $h = \bigcup_{i \in I} h_i \in S(M)$ satisfy $f = g \cdot h$ as claimed.

So, let M be countable. We may assume that $M = \mathbb{Z} \times \mathbb{Z}$. Let $f \in \text{Inj}(M)$. By Lemma 3.2, there is $f' \in \text{Inj} M$ moving each point $x \in M$ at most one unit up or down such that $\overline{f} = \overline{f'}$ and $|M \setminus Mf| = |M \setminus Mf'|$. Then, $f \in f'^{S(M)}$ by Proposition 2.2.

Now define $h: M \to M$ by letting (i, j)h = (i, j + 2) for each $(i, j) \in M$. So $h \in S(M)$ has infinitely many infinite orbits (and no others). Now consider $g = f' \cdot h \in \text{Inj}(M)$. Since f' moves each point $x = (i, j) \in M$ at most one unit up or down and h moves each point two units up, we obtain $xg \in \mathbb{Z} \times \{j+1, j+2, j+3\}$, so g moves each point at least one unit up. Hence g has only infinite orbits, and all elements $(i, 0), i \in \mathbb{Z}$, lie in different orbits of g, thus g has infinitely many infinite orbits. So $f' = g \cdot h^{-1}$ as claimed, and the first statement of the result follows.

For the second statement, write $f = g \cdot h = h \cdot (h^{-1}gh)$; then $g^h \in \text{Inj}(M)$ as claimed. \Box

Let C_{∞} be the conjugacy class in S(M) comprising all permutations of M with infinitely many infinite orbits (and no others). Note that if in Theorem 3.1 $f \in S(M)$ is a permutation, by the proof of Theorem 3.1 (or by Proposition 2.1) we obtain $f = g \cdot h$ with permutations $g, h \in S(M)$. Hence, as an immediate consequence of Theorem 3.1 we have:

Corollary 3.3. (Gray [5]). Let M be an infinite set. Then $S(M) = C_{\infty}^2$.

By subsequent work of Bertram, Göbel and the author, the author, and Moran, culminating in Moran [10], all conjugacy classes C in S(M) were described satisfying $S(M) = C^2$.

4 Ores's theorem and universal words

Here we will derive Ore's theorem and results on universal words for S(M) and Inj(M) as immediate consequences of Theorem 3.1. First we have:

Corollary 4.1. (Ore [12]). Let M be an infinite set. Then each element $f \in S(M)$ is a commutator f = [g, h].

Proof. By Theorem 3.1 (or Corollary 3.3), write $f = g^{-1} \cdot k$ with $g, k \in C_{\infty}$. Then $k = h^{-1}gh$ for some $h \in S(M)$ and f = [g, h].

Mesyan [8] gave a general result describing when an arbitrary injection $f \in \text{Inj}(M)$ can be written as a product of two injections $g, h \in \text{Inj}(M)$ both having at least one infinite orbit. As an immediate consequence, he obtained the subsequent Ore-type result for Inj(M) which we wish here to deduce from Theorem 3.1.

Corollary 4.2. (Mesyan [8]). Let M be an infinite set and $f \in \text{Inj}(M)$. Then f can be written in the form $f = g^a \cdot g^b$ for some $g \in \text{Inj}(M)$ and $a, b \in S(M)$ if and only if $|M \setminus Mf|$ is either an even integer or infinite.

Proof. Clearly, if $f = g^a \cdot g^b$ is of the form described, by Proposition 2.1 we have $|M \setminus Mf| = 2 \cdot |M \setminus Mg|$ as claimed.

Now let $|M \setminus Mf|$ be even or infinite. If $f \in S(M)$, the result is immediate by Corollary 3.3. Hence assume $f \in \operatorname{Inj}(M) \setminus S(M)$, so f has at least two infinite forward orbits. Split $M = M_1 \cup M_2$ in such a way that $|M_1| = |M_2|$, both M_1 and M_2 are f-invariant, and M_1 and M_2 contain the same number of infinite forward orbits of f. By Theorem 3.1, write $f \upharpoonright_{M_1} = g_1 \cdot h_1$ and $f \upharpoonright_{M_2} = h_2 \cdot g_2$ with injections $g_i \in \operatorname{Inj}(M_i)$ and permutations $h_i \in S(M_i)$ such that $|M_i \setminus M_i f| = |M_i \setminus M_i g_i|$, and g_i, h_i have infinitely many infinite orbits (and no others), for i = 1, 2. Let $g = g_1 \cup h_2$ and $g' = h_1 \cup g_2$. Then $g, g' \in \operatorname{Inj}(M)$ satisfy

$$|M \setminus Mg| = |M_1 \setminus M_1g_1| = |M_1 \setminus M_1f| = |M_2 \setminus M_2f| = |M_2 \setminus M_2g_2| = |M \setminus Mg'|$$

and g, g' each have infinitely many infinite closed orbits (and no other closed orbits). Hence $f = g \cdot g' = g \cdot g^b$ for some $b \in S(M)$ as claimed.

Let G be a group and $w = w(x_1, \dots, x_n)$ a word in the free group over x_1, \dots, x_n . Then w is said to be G-universal, if for each $g \in G$ there are $g_1, \dots, g_n \in G$ such that $g = w(g_1, \dots, g_n)$. By Corollary 4.1, the commutator word w = [x, y] is S(M)-universal for infinite sets M. Clearly, no power $w = x^n$ $(n \ge 2)$ is S(M)-universal. As a further immediate consequence of Corollary 3.3, we have:

Corollary 4.3. (Silberger [15]). Let M be an infinite set and $w = x^m \cdot y^n$ with $m, n \neq 0$. Then w is S(M)-universal.

Proof. Let $f \in S(M)$. Write $f = g \cdot h$ with $g, h \in C_{\infty}$. Since $g^m, h^n \in C_{\infty}$, they are conjugate to g and h and the result follows.

We note that we could also obtain Corollary 4.3 as follows. First, write $f \in S(M)$ as a product $f = g \cdot h$ of two involutions $g, h \in S(M)$ each having infinitely many 2orbits. Note that the *m*-th power of a cycle of length 2m consists of *m* disjoint 2-cycles. Hence we can write $g = a^m$ with $a \in S(M)$ having only orbits of length 2m and, possibly, fixed points. Similarly, $h = b^n$ with $b \in S(M)$ having only orbits of length 2n, and, possibly, fixed points. In the above proof of Corollary 4.3, we have obtained that $f = a^m \cdot b^n$ with $a, b \in C_\infty$. Extensions of this result are contained in [2]. Mycielski [11] and Lyndon [7], cf. [1], showed that each word $w = w(x_1, \dots, x_n)$ which does not reduce to a power is S(M)-universal.

Now consider a semigroup S and a word $w = w(x_1, \dots, x_n)$ in the free semigroup over x_1, \dots, x_n . We say that $g \in S$ is a *w*-element, if there are $g_1, \dots, g_n \in S$ such that $g = w(g_1, \dots, g_n)$. Given a free semigroup word $w(x_1, \dots, x_n)$, let $e(x_i)$ be the sum of the exponents of x_i in w, for $i = 1, \dots, n$. Clearly, by Proposition 2.1, if $f \in \text{Inj}(M)$ is a *w*-element, then either $M \setminus Mf$ is infinite or $|M \setminus Mf| \in \langle e(x_1), \dots, e(x_n) \rangle$, the subsemigroup of $(\mathbb{N}, +)$ generated by $e(x_1), \dots, e(x_n)$. Now we show that for products of powers, we also have the converse.

Corollary 4.4. Let M be an infinite set, $m, n \ge 1$, and $f \in \text{Inj}(M)$. Then f is a $x^m \cdot y^n$ -element if and only if $M \setminus Mf$ is infinite or $|M \setminus Mf| \in \langle m, n \rangle$.

Proof. As noted before, if $f = g^m \cdot h^n$ with $g, h \in \text{Inj}(M)$, by Proposition 2.1 we have

$$|M \setminus Mf| = m \cdot |M \setminus Mg| + n \cdot |M \setminus Mh|$$

which is infinite or in $\langle m, n \rangle$. Conversely, assume that $|M \setminus Mf| = k \cdot m + \ell \cdot n$ for some $k, \ell \geq 0$. First assume that $k, \ell > 0$. We include the case that $M \setminus Mf$ is infinite here by letting $k = \ell = \infty$. We split $M = M_1 \cup M_2$ into two disjoint *f*-invariant subsets M_1 and M_2 such that M_1 (resp. M_2) contains $k \cdot m$ (resp. $\ell \cdot n$) infinite forward orbits of *f*. By Theorem 3.1, we can write $f \upharpoonright_{M_1} = g'_1 \cdot h'_1$ and $f \upharpoonright_{M_2} = h'_2 \cdot g'_2$ with injections $g'_i \in \text{Inj}(M_i)$ and permutations $h'_i \in S(M_i)$ each having infinitely many infinite orbits (and no others), for i = 1, 2. In particular,

$$|M_1 \backslash M_1 g_1'| = |M_1 \backslash M_1 f| = k \cdot m$$

and

$$|M_2 \backslash M_2 g_2'| = |M_2 \backslash M_2 f| = \ell \cdot n.$$

Consequently, $g'_1 \cup h'_2 \in \operatorname{Inj}(M)$ has $k \cdot m$ forward orbits, infinitely many infinite closed orbits and no others. Choose any $g' \in \operatorname{Inj}(M)$ which has k forward orbits if $M \setminus Mf$ is finite, infinitely many forward orbits if $M \setminus Mf$ is infinite, and in any case infinitely many infinite closed orbits and no others. Then $g'_1 \cup h'_2$ is conjugate to g'^m . Therefore, $g'_1 \cup h'_2 = g^m$ for some $g \in \operatorname{Inj}(M)$. Similarly, we have $h'_1 \cup g'_2 = h^n$ for some $h \in \operatorname{Inj}(M)$. Hence $f = g^m \cdot h^n$.

If k = 0 or $\ell = 0$ (but not both), we can apply a similar (but simpler) argument, using Theorem 3.1 directly for M. Finally, if $k = \ell = 0$, i.e., $f \in S(M)$, the result is immediate by Corollary 4.3.

In view of Corollary 4.4 and the results of Mycielski and Lyndon for S(M) the following question arises.

Let $w = w(x_1, \dots, x_n)$ be a free semigroup word, $n \ge 2$, and let $f \in \text{Inj}(M)$ satisfy $|M \setminus Mf| \in \langle e(x_1), \dots, e(x_n) \rangle$. Does it follow that f is a w-element?

References

- R. Dougherty, J. Mycielski: Representations of infinite permutations by words (II). Proc. Amer. Math. Soc. 127, No. 8 (1999), 2233-2243.
- M. Droste: Classes of universal words for the infinite symmetric groups, Algebra Universalis 20 (1985), 205 - 216.
- [3] M. Droste, R. Göbel: The normal subsemigroups of the monoid of injective maps. Semigroup Forum 87 (2013), 298-312.
- [4] M. Droste, I. Rivin: On extension of coverings. Bull. London Math. Soc. 42 (2010), 1044-1054.
- [5] A. B. Gray: Infinite symmetric and monomial groups. Ph.D. Thesis, New Mexico State University, Las Cruces, NM, 1960.
- [6] M. Liebeck, E. A. O'Brian: A. Shalev and P. H. Tiep; The Ore Conjecture. Journal of the Europ. Math. Soc. 12 (2010), 939-1008.
- [7] R. Lyndon: Words and infinite permutations. Mots, Lang. Raison Calc., Hermès, Paris (1990), 143-152.
- [8] Z. Mesyan: Conjugations of injections by permutations. Semigroup Forum 81 (2010), 297-324.
- [9] Z. Mesyan: Monoids of injective maps closed under conjugation by permutations. Israel. J. Math. 189 (2012), 287-305.
- [10] G. Moran: Conjugacy classes whose squares are infinite symmetric groups. Trans. Amer. Math. Soc. 316 (1989), 439-521.
- [11] J. Mycielski: Representations of infinite permutations by words. Proc. Amer. Math. Soc. 100 (1987), 237-241.
- [12] O. Ore: Some remarks on commutators. Proc. Amer. Math. Soc. 2 (1951), 307-314.
- [13] S. Pasiencier, H. C. Wang: Commutators in a semi-simple Lie group. Proc. Amer. Math. Soc. 13 (1962), 907-913.
- [14] R. Ree: Commutators in semi-simple algebraic groups. Proc. Amer. Math. Soc. 15 (1964), 457-460.
- [15] D. Silberger: Are primitive words universal for infinite symmetric groups? Trans. Amer. Math. Soc. 276, No. 2 (1983), 841-852.