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Abstract

We demonstrate the uncountable cofinality of the automorphism groups
of various linear and partial orders. We also relate this to the ‘Bergman’
property, and discuss cases where this may fail even though the cofinality
is uncountable.

1 Introduction

In [5, 6], three related properties which an infinite group G may have are dis-
cussed. These are the so-called Bergman property (after [2]), uncountable cofi-
nality and strong uncountable cofinality. These say the following:

Bergman property: for any generating set E for G which contains the identity
and is closed under inverses, there is n ∈ N such that G = En.

Uncountable cofinality: G cannot be expressed as
⋃

i∈ω Gi where G0 ⊂ G1 ⊂
G2 ⊂ . . . and each Gi is a proper subgroup.

Strong uncountable cofinality: G cannot be expressed as
⋃

i∈ω Ui where
U0 ⊂ U1 ⊂ U2 ⊂ . . . and each Ui is closed under inverses, and ∀i∃j(UiUi ⊆ Uj).

In fact these are related, and it is shown in [6] that G has strong uncountable
cofinality if and only if it has both the Bergman property, and uncountable
cofinality.

Special cases of groups which are known to have uncountable cofinality are
the symmetric group on an infinite set [16], the automorphism group A(Q) of
the rational numbers [12], and an infinite direct power of a finite perfect group
[15]. The Bergman property has also been verified in a number of cases, starting
with the infinite symmetric group [2] and A(Q) [6], and going on to many more
general classes in [5, 9]. The equivalence mentioned above at once assures us
that these also all have strong uncountable cofinality.

In this paper we look at three further cases where we can find out when
uncountable cofinality and its variants do or do not hold. The first is that
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of the automorphism groups of linear orders (chains). Since we usually make
some transitivity assumption on a structure whose automorphism group we are
considering (to guarantee that it is sufficiently rich), the minimum here is 1-
transitivity. We focus particularly on the linear orders in Morel’s classification
of the countable 1-transitive linear orders [17], but prove a more general result
based on the ideas in [6]. Notice that most of the ones in Morel’s list are
discrete, but this does not prevent us proving strong uncountable cofinality for
those embedding Q. This contrasts with the results of [3], where it is shown that
the small index property fails for all of these structures except Zα and Q.Zα for
α ≤ 1. We also make remarks about those of the form Zα which in all cases fail
to have the Bergman property, and for limit α, even fail uncountable cofinality
(meaning that in this case the automorphism group is the union of a countable
chain of proper subgroups).

Next we look at ‘trees’ (or ‘semilinear orders’) and their automorphism
groups, as studied for instance in [1, 7, 8]. We demonstrate in section 3 that the
automorphism group of any weakly 2-transitive tree with countable coinitiality
has strong uncountable cofinality. This uses an adaptation of the methods of
[6], and some of the technical material from [7], which we recall below.

Finally we consider cycle-free partial orders (CFPOs). Viewing these as gen-
eralizations of trees, Warren classified a class of sufficiently transitive CFPOs
in [21], and this was extended to a classification of all the countable k-CS-
transitive CFPOs for k ≥ 2 in [4, 19, 13]. One point here is that these structures
were shown in [10] to fall into three distinct classes, those whose automorphism
groups are not simple, and those whose automorphism groups are simple, with
or without a bound on the number of conjugates required (where this means
that there is some fixed number m such that for any non-identity elements g and
h of G, h may be written as the product of at most m conjugates of g or g−1).
This last case at once provides us with natural examples where the cofinality
is uncountable, but Bergman’s property fails. Here however, even those struc-
tures whose automorphism groups are simple, but where a bounded number of
conjugates suffices, have uncountable cofinality but not strong uncountable co-
finality, and this is for a slightly different (if related) reason, namely that there
is a notion of ‘distance’ in any CFPO, and the distance between two vertices
can be arbitrarily large. In fact this observation enables us to conclude that a
much larger class of CFPOs, even including many 1-transitive ones, fail to have
the Bergman property.

We conclude this introduction by recalling some of the notation and defini-
tions we shall require.

For any partially ordered set P = (P,<) we write A(P ) for the automorphism
group of P . This is the notation adopted in [11] for instance, when P is linearly
ordered, and also for trees in [7, 8]. The only other types of partially ordered set
that we consider here are CFPOs, and for consistency we retain the notation
for them as well.

A structure is said to be 1-transitive if its automorphism group acts singly
transitively on points. Morel [17] classified all the countable 1-transitive linear
orders, and they are Zα and Q.Zα for countable ordinals α. Here Zα is the
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restricted lexicographic power of α copies of Z (which may be taken to be the
set of functions from α to Z of finite support ordered lexicographically), and
Q.Zα is the lexicographic product of Q with that, Q ‘copies’ of Zα. A chain is
said to be doubly homogeneous if its automorphism group acts transitively on its
2-element subsets. There is only one non-trivial countable doubly homogeneous
chain, namely Q, but there are many more uncountable ones.

A tree, or semilinear order, is a partially ordered set (T,<) in which any
two elements have a common lower bound, and for any element x, {y ∈ T :
y ≤ x} is a chain. A tree is said to be weakly 2-transitive if its automorphism
group acts transitively on its set of 2-element chains. The countable weakly
2-transitive trees were classified in [7], and properties of their automorphism
groups described. In particular, they have 22ℵ0 normal subgroups. In [8] more
information was given about these, even not assuming countability.

The precise definition of cycle-free partial order (CFPO) is given in [21]. The
main points are these. Any partially ordered set M has a so-called Dedekind–
MacNeille completion written MD, which may be characterized by saying that
in MD, any non-empty bounded above subset has a least upper bound, and it
is the minimal such containing M . We then say that M is a cycle-free partial
order if between any two of its points there is a unique path in MD (in a
natural analogue of the notion for graphs). This entails that any CFPO is
necessarily connected. Note that this gives rise to a notion of ‘distance’, since
we may say that points x and y of M are at distance n if there is a sequence
x = x0, x1, . . . , xn = y such that for each i < n, xi and xi+1 are comparable,
and the set Ii of points of MD lying between xi and xi+1 is a chain for each i,
such that if Ii ∩ Ij 6= ∅ and i < j, then j = i + 1 and the intersection is equal to
{xi+1}. In practice we more often work with M+ rather than MD, which is the
union of M and all the ramification points, which are the elements of MD which
may be expressed as either the least upper bound or greatest lower bound of two
members of M (these are called ‘downward’ and ‘upward ramification points’
respectively). This has the advantage that if M is countable, so is M+.

For trees the appropriate notions of transitivity are k-transitivity, weak k-
transitivity, or k-homogeneity for k ≤ 2. For cycle-free partial orders, the fact
that there is a notion of distance as described above means that in non-trivial
cases, k-transitivity can never hold for k ≥ 2 since there will be incomparable
points at different distances. So in this context the appropriate notions are k-
CS-transitivity (or homogeneity) for k ≤ 3 where this means that for any two
isomorphic connected k-element substructures, there is an isomorphism taking
the first to the second. A classification of all the countable 2− or 3-CS-transitive
CFPOs is given in the papers [21, 4, 19, 13].

We write Ω for the Dedekind-completion of a chain Ω and Ω for its ‘total
completion’, that is, also including endpoints. It is clear that the automorphism
group of Ω acts naturally on Ω (and Ω), and the same applies to the Dedekind–
MacNeille completion of a partially ordered set.
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2 Uncountable cofinality for some linear orders

The main result in this section arose as an attempt to determine whether or
not the automorphism groups of the linear orders in Morel’s classification of all
the countable 1-transitive linear orders have uncountable cofinality. In fact we
found that we were able to prove a considerably stronger result corresponding
to the structures in Morel’s list of the form Q.Zα, by adapting the methods of
[6] (which in turn were derived from [12]). The situation for the other structures
in her list, Zα for α ≥ 2, is as yet not completely resolved—see below. We say
that a chain Ω has countable coterminality if there are points an ∈ Ω for n ∈ Z
such that an < an+1 and (∀a ∈ Ω)(∃m,n(am ≤ a ≤ an)). Note that it makes
no difference whether these points are required to lie in Ω or its Dedekind-
completion (though the definition as it stands would refer just to Ω). A chain
is scattered if it does not embed Q.

Before stating and proving the main result of this section, we prove two
lemmas which are needed in the proof.

Lemma 2.1. Let (Y, <) and (Z,<) be linear orders such that Y is doubly homo-
geneous with countable coterminality and Z is scattered. Then any two positive
elements h1 and h2 of A(Y.Z) with coterminal orbits are conjugate (where by
hi ‘positive’ we mean that hi(x) > x for all x).

Proof: It is clear that as hi has a coterminal orbit, it follows that every orbit
is coterminal, so we may pick orbits {hi

1(y, z) : i ∈ Z} and {hi
2(y, z) : i ∈

Z}. Now [(y, z), h1(y, z)) ∼= [(y, z), h2(y, z)), since [(y, z), h1(y, z)) = {y} ×
[z,∞) ∪ (y, y1) × Z ∪ {y1} × (−∞, z1) where h1(y, z) = (y1, z1), and similarly
for [(y, z), h2(y, z)), and (y, y1) × Z ∼= (y, y2) × Z since (y, y1) ∼= (y, y2), and
{y1} × (−∞, z1) ∼= {y2} × (−∞, z2) by the isomorphism h2h

−1
1 . (Note that it

follows from the facts that Z is scattered and Y is doubly homogeneous that
h2h

−1
1 maps {y1} × (−∞, z1) onto {y2} × (−∞, z2).) Let θ be an isomorphism

from [(y, z), h1(y, z)) to [(y, z), h2(y, z)), and extend to the whole of Y.Z by
letting θ(hi

1(t)) = hi
2θ(t) for each t ∈ [(y, z), h1(y, z)) and i ∈ Z. Then we

deduce that θh1 = h2θ and so h1 and h2 are conjugate. �

Lemma 2.2. For Y and Z as in the previous lemma, any element h of A(Y.Z)
may be written in the form h1h

−1
2 where h1 and h2 are positive with coterminal

orbits.

Proof: Choose z ∈ Z and yi ∈ Y for i ∈ Z such that yi < yi+1 and yi → ±∞ as
i → ±∞. Let ti = (yi, z). Then ti < ti+1 and ti → ±∞ as i → ±∞. By passing
to a coterminal subset, we may assume that for each i, ti−1 < h(ti) < ti+1. Let
h1 ∈ A(Y.Z) satisfy h1(ti) = ti+2 for each i. Then h−1h1(ti) = h−1(ti+2) > ti+1,
from which it follows that h1 and h2 = h−1h1 are both positive with a coterminal
orbit. Hence h = h1h

−1
2 is expressed in the desired form. �

Theorem 2.3. Let Z be a scattered linear order, and Ω = X.Z be the lexico-
graphic product of X copies of Z for some infinite doubly homogeneous chain
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X. We assume further that X may be expressed as the disjoint union of open
intervals having countable coterminality. Then A(Ω) has strong uncountable
cofinality.

Proof: Note that G = A(Ω) preserves the copies of Z (as Z is scattered), and so
is equal to the wreath product of A(X) and A(Z). The same proof would work
without the assumption of Z scattered, but then we would have to work with
the subgroup of A(Ω) preserving the copies setwise, which could be a proper
subgroup, rather than A(Ω) itself. We may allow G to act on X if we wish,
since any automorphism will carry each copy of Z to a copy of Z (using again
the fact that it is scattered).

Suppose for a contradiction that G may be written as
⋃

i∈ω Ui where U0 ⊂
U1 ⊂ U2 ⊂ . . ., U−1

i = Ui, and ∀i∃j(UiUi ⊆ Uj). We shall follow the proof from
[6], indicating modifications where necessary.

A key point is to characterize the fixed point sets in the order-completion
Ω of Ω of members of G. In [6] these were called clans. Since Ω has a more
complicated structure than in [6], we just use the word for a special kind of fixed
point set. Recall that Ω is the total completion of Ω (with endpoints).

Now Ω consists of X copies of Z, and we note that its Dedekind completion
is equal to X.Z ∪ (X − X), where this is ordered by (x, z) < x′ ⇔ x < x′ for
x ∈ X, x′ ∈ X − X, z ∈ Z. This is because the Dedekind cuts of X.Z are of
two possible kinds, those that ‘intersect’ or ‘abut’ some copy of Z, in which
case they are determined by a member of Z, and those which do not, in which
case they are determined by a member of X −X. We then define a clan to be
a closed subset of Ω which is a subset of X − X and such that all intervals I
making up its complement are unbounded with countable coterminality.

In [6] a subset of Ω was defined to be a clan if and only if it is the fixed point
set of some automorphism. In our case, we can see analogously that a subset of
Ω is a clan if and only if it is the fixed point set of some automorphism g ∈ A(Ω)
that moves every point of X under the action of g on X mentioned above. A
key point is that if Y is the fixed point set of some automorphism of Ω, then Y
contains some clan, and this is a good enough substitute for the property which
applied in [6] to make the argument go through. The see the truth of this, let
Y be the fixed point set of g ∈ G. By the hypothesis of the theorem, there is a
family I of pairwise disjoint open intervals of countable coterminality in Ω such
that Ω ⊆

⋃
I. Then Y ∩ Y ′, where Y ′ is the complement of

⋃
I in Ω, is closed.

Now Y ′ is the fixed point set of some g′ ∈ G. We may assume that both g and
g′ are increasing, meaning that they map each element of Ω to itself or a larger
one. Then gg′ ∈ G has precisely Y ∩ Y ′ as its fixed point set, and gg′ moves
every point of X, since g′ does. Hence Y ∩ Y ′ is a clan contained in Y .

We now need to define what is meant by a moiety in this context. The word
is meant to suggest that it is a subset which is ‘half’ the set. For the rationals
for instance, it is taken to be a subset of the form

⋃
i∈Z(x2i, x2i+1) where xi are

irrationals such that xi < xi+1 and xi → ±∞ as i → ±∞, since the complement
of such a set is of exactly the same form. More generally, in a chain of countable
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coterminality it is taken to be a set of the same form where each xi lies in the
Dedekind-completion, the x2i lie in the same orbit, and so do the x2i+1, and
(x2i, x2i+1) has countable coterminality. Note that now the complement of such
a set no longer need have the same form, since the cofinalities of the intervals
may be uncountable; however the complement contains such a set of the correct
form, so this is good enough. In the case where the coterminality of Ω need not
be countable, we have to cut Ω into pieces of countable coterminality, which
is what is done in [6], and that is where clans come in. If κ is a clan, then a
κ-moiety is a subset of Ω which is the union of moieties MI of I for each open
interval in the complement of κ, where for I, ‘moiety’ has the above meaning.
Thus a κ-moiety is a whole collection of moieties. The proof works because
we can handle all of these simultaneously. For the time being we work inside
D(κ) = {g ∈ G : g fixes all members of κ} where κ is a fixed clan.

We shall say that Un is full on a subset Σ of Ω if each element of G(Σ) is
equal to the restriction to Σ of some member of Un where G(Σ) is the set of all
members of G whose support is contained in Σ. The next stage in the proof is
to show that some Un is full on some κ-moiety. For this, we choose countably
many pairwise disjoint κ-moieties Mn, and we show that for some n, Un is full
on Mn. If not, then for each n there is gn ∈ G(Mn) which does not agree on Mn

with any member of Un. Let g ∈ G be obtained by gluing all the gn together,
so that g agrees with gn on Mn for each n and fixes all other points. Since
G =

⋃
n∈ω Un, g ∈ Un for some n. But now g does agree with gn on Un after all,

which is a contradiction. This shows that there is some κ-moiety Mn on which
some Un is full. Let us write M in place of Mn.

Next we show that there is m such that G(M) ⊆ Um. Let g ∈ G(M).
Pick h ∈ G(M) which on each interval of M acts positively with a coterminal
orbit. Applying Lemmas 2.1 and 2.2 to each such interval, and patching the
conjugacies together, we see that g may be written in the form hk1(h−1)k2 where
ki ∈ G(M). Since Un is full on M , there is k′i ∈ Un agreeing with ki on M .
Then hk′1(h−1)k′2 = hk1(h−1)k2 as one sees by examining separately the action
of this map on M and its complement in Ω−κ. Now h is fixed (though g varies),
so there is i such that h ∈ Ui. Find m ≥ n such that (UnUiUn)2 ⊆ Um, and
g ∈ Um. Thus G(M) ⊆ Um.

We now make a fresh choice of yi in each open interval of Ω− κ having the
same properties as the xi did, so that, in addition, yi is from the same orbit
that xi is, and x2i < y2i−1 < y2i < x2i+1 for each i. The point of this choice is
that the union of the κ-moieties M and M ′ which are the unions over all the
intervals I of

⋃
i∈Z(x2i, x2i+1) and

⋃
i∈Z(y2i, y2i+1) respectively is the whole of

Ω − κ, and their intersection is also a κ-moiety. Let h ∈ G(Ω − κ) map xi to
yi for each i, and on each interval I. Then G(M ′) = G(hM) = hG(M)h−1, so
U = G(M).G(M ′) = G(M)hG(M)h−1 ⊆ UmUjUmUj where h ∈ Uj , and this is
contained in Um′ for some m′ ≥ m.

We observe that any member of D(κ) is conjugate to some member of U .
That is why it was important to ensure that the intervals making up M and M ′

overlapped. It follows that D(κ) =
⋃

i∈ω

⋃
g∈Ui

gUg−1.
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The remainder of the argument may now be read off from [6]. We suppose for
a contradiction that G =

⋃
i∈ω Ui as above. Then for each n there is gn ∈ A(Ω)−

Un. By the proof of [6] Lemma 2.17, and the remarks above, the intersection
of the fixed point sets of the gn contains a clan κ say. By the argument of [6],
there is k such that D(κ) ⊆ Uk, but this contradicts gk ∈ D(κ). �

We remark that the result we would really like would be as for Theorem 2.3
but without the extra hypothesis that X is expressible as the disjoint union of
open intervals of countable coterminality. The difficulty which arises in doing
this seems similar to the situation in investigating the uncountable cofinality of
A(Zα) for α ≥ 2. One appears to be forced to study the subgroup comprising
those elements which fix each block of imprimitivity setwise. Thus for α = 2,
the automorphism group is again a wreath product, this time just of Z with
itself, so is generated by the unrestricted direct product of ℵ0 copies of Z and a
single translation g on the copies.

The main initial example of a chain X to which the theorem may be applied
is given by taking Q for X, and Zα for Y for any countable ordinal α, giving
strong uncountable cofinality of A(Z) for ‘half’ the structures Z in Morel’s list,
namely those of the form Q.Zα. There are however many other examples, one
for instance being obtained by letting X be the smallest ‘long rational line’,
which is the lexicographic product ω1 × Q (with the same range of possible
choices for Y ).

Now we remark on the situation for chains of the form Zα for countable
ordinals α, the members of Morel’s classification not covered so far.

Theorem 2.4. (i) For any countable successor ordinal α, A(Zα) does not satisfy
the Bergman property.

(ii) For any countable limit ordinal λ, A(Zλ) is expressible as
⋃

i∈ω Gi where
G0 ⊂ G1 ⊂ G2 ⊂ . . . and each Gi is a proper subgroup.

Proof: (i) Let α = β + 1 say. Thus Zα = Z.Zβ , so it is the union of Z copies
of Zβ , Xn say for n ∈ Z. Let E be the set of elements of A(Zα) which map X0

into
⋃
|i|≤1 Xi. Then each g ∈ A(Zα) maps X0 into

⋃
|i|≤n Xi for some n, so

g ∈ En, showing that A(Zα) = 〈E〉. But here since n cannot be bounded, we
have A(Zα) 6= En for any n.

(ii) Let αn for n ∈ ω be an increasing sequence with limit λ. Then Zλ =⋃
n∈ω Zαn under the natural identification of Zαn as a subset of Zαn+1 for each

n. Let Gn be the group of members of A(Zλ) which fix Zαn setwise. Then this
provides a strictly increasing chain of subgroups, and any member g of A(Zλ)
lies in some Gn since 0 must be mapped to a member of some Zαn and it follows
that g fixes Zαn setwise so lies in Gn. �

This shows that strong uncountable cofinality fails for all Zα for α > 0,
but we remark that we do not know whether or not A(Zα) has the Bergman
property when α is a limit ordinal.

7



3 Uncountable cofinalities for weakly 2-transitive
trees

We begin this section by recalling more of the notation and results from [7, 8].
We need the language of lattice-ordered groups, or ‘`-groups’, which are groups
endowed with a lattice structure which is compatible with the group operation.
A subgroup which is also a sublattice is called an `-subgroup. It was shown
by Holland [14] that the automorphism group of any chain is a lattice-ordered
group under the pointwise operations, and conversely, any lattice-ordered group
can be (lattice- and group-) embedded in some such A(Ω). A subgroup H of
the group A(Ω) is said to be closed under piecewise patching if for any convex
subchain S of Ω and {ai; i ∈ Z} and {bi; i ∈ Z} in S which are coterminal in
S and with ai < ai+1 and bi < bi+1 for each i, if hi are members of H taking
[ai, ai+1] to [bi, bi+1] for each i, then there is h ∈ H which agrees with hi on
[ai, ai+1] and fixes all points outside S. Now viewing A(Ω) as a lattice-ordered
group, we say that the subgroup H is closed under disjoint suprema if whenever
{hi : i ∈ I} ⊆ H with hi ∧ hj = 1 for i 6= j, then the supremum h of the hi in
A(Ω) belongs to H. A 2-transitive `-subgroup H of A(Ω) closed under piecewise
patching and disjoint suprema is called large in A(Ω). By [6], if H is large in
A(Ω), then H has strong uncountable cofinality.

In the analysis of the normal subgroup structure of A(T ) given in [7] a
particular normal subgroup S(T ) is introduced, and it is shown that it is the
unique minimal normal subgroup. It is defined to be the group of all those
g ∈ A(T ) such that for some x ∈ T , x < supp(g). In other words, if gy 6= y
then x < y. The only result we need about this subgroup is Lemma 4.1 of [7]
I, which says that if C is a maximal chain, c ∈ T , and f is any automorphism,
then there is g ∈ S(T ) such that gf fixes C setwise, and also every point ≥ c.

We say that T has countable coinitiality, if T contains a countable descending
sequence with no lower bound in T .

Theorem 3.1. Let (T,≤) be a weakly 2-transitive tree with countable coinitial-
ity. Then A(T ) has strong uncountable cofinality.

Proof: Let (Ui)i∈ω be an ascending sequence of subsets of A(T ) with union
A(T ) such that for each i ∈ ω, Ui = U−1

i and ∀i∃j(UiUi ⊆ Uj). We shall show
that A(T ) = Um for some m ∈ ω, giving a contradiction.

Let C be a convex subchain of T which is unbounded below in T and has
countable coterminality. Such chains exist by the assumption that T has count-
able coinitiality. We let A(T )C be the group consisting of all g ∈ A(T ) which
fix C setwise and which fix every element of T which lies above all of C. (In
the case that C is maximal, there are no such elements, but we do not know
whether there are maximal subchains in T having countable coterminality.) We
let A(T )C

C be the group induced on C by A(T )C (that is, the family of restric-
tions to C of members of A(T )C). Then by the proof of [7] I, Proposition 4.2,
it follows that A(T )C

C is large in A(C). We break the argument into six steps.
(1) There is m1 ∈ ω such that for any g ∈ A(T )C there is h ∈ Um1 ∩A(T )C

agreeing with g on C.
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For intersecting with A(T )C
C we have A(T )C

C =
⋃

i∈ω(Ui ∩ A(T )C)C , so by
applying the main result of [6] mentioned above, there is m such that A(T )C

C =
(Um ∩A(T )C)C .

(2) There are a moiety M of T and m2 ∈ ω such that every f ∈ A(T )C

whose support is contained in M lies in Um2 .
For this we explain what a ‘moiety’ is this time. We use the notation 〈a, b〉 as

in [7] I, where a < b in T , to stand for the set of those x ∈ T such that a ≤ x ≤ b,
or a < x ‖ b. We modify this slightly here to give 〈a, b〉o = (a, b)∪{x : a < a′ < x
for some a′ < b and b 6≤ x}. Intuitively, these are the points of T which branch
off in T at a point (strictly) between a and b, together with the open interval
from a to b as well. We say that a subset M of T is a moiety if there is a
coterminal Z-sequence (ai) in C such that ai < ai+1 for each i, such that all
a2i lie in the same A(T )-orbit, and so do all the a2i+1, each (a2i, a2i+1) has
countable coterminality, and M =

⋃
i∈ω〈a2i, a2i+1〉o. (Compare [7] page 464

section 3.)
Now we remark that there is an infinite set {Mj : j ∈ ω} of pairwise disjoint

moieties, and we use a similar ‘diagonalization’ argument as given in section 2
to show that for some j, every member of A(T )C fixing Mj agrees on Mj with
a member of Uj (and we once again say that Mj is full for Uj). Let us write
M = Mj for this j. This now gives us a choice of ai for i ∈ Z.

Choose h ∈ A(T )C having each (a2i, a2i+1) as a single positive orbital and
with support contained in M . Then h ∈ Um for some m. By [7] I Lemma
3.5, for every f in A(T )C whose support is contained in M , there are k1 and
k2 in A(T )C with support contained in M such that f = hk1 · (h−1)k2 . Then
there are u1, u2 ∈ Uj whose restrictions to M are k1, k2, and this implies that
f = hu1 · (h−1)u2 ∈ (Uj · Um · Uj)2, which provides m2 as desired.

(3) There is m3 ∈ ω such that for every f ∈ A(T )C which fixes each ai,
f ∈ Um3 .

For this we first choose k ∈ A(T )C such that a2i−2 < ka2i−1 < ka2i < a2i−1

for each i ∈ Z. Now any f ∈ A(T )C fixing each ai may be written in the form
f1f2f3 where f1, f2, f3 ∈ A(T )C , supp(f1) ⊆ M , supp(f2) ⊆

⋃
i∈Z〈a2i−1, a2i〉o,

and f3 is the restriction of f to the set of all points branching off at ai not lying
in C. It follows from this that supp(fk

2 ) ⊆ M . Furthermore, k also maps each
ai into M , and hence fk

3 has support contained in M . By (2), it follows that f1,
fk
2 , and fk

3 all lie in Um2 . If m′ is such that k ∈ Um′ , we deduce that f ∈ Um3 ,
where m3 is independent of f .

(4) There is m4 ∈ ω such that A(T )C ⊆ Um4 .
Let g ∈ A(T )C . By (1), there is h ∈ Um1 ∩A(T )C which coincides with g on

C. Hence h−1g ∈ A(T )C fixes C pointwise. By (3), we have h−1g ∈ Um3 giving
the desired statement.

(5) If Sx stands for the set of those elements g of A(T ) for which x < supp(g),
where x is any element of T , then there is m5 ∈ ω such that Sa0 ⊆ Um5 .

For this we choose a convex subchain C ′ of T with countable coterminality
which is unbounded below in T and contains an element incomparable with a0.
By (4) we may choose r ∈ ω such that A(T )C′ ⊆ Ur, and this implies that
Sa0 ⊆ Ur.
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(6) There is m6 ∈ ω such that, in the notation of (5), every Sai
is contained

in Um6 .
For any i ∈ Z there is k ∈ A(T )C such that a0 < kai. Hence Sk

ai
⊆ Sa0 ⊆

Um5 by (5). But by (4), k ∈ Um4 for some m4 independent of k, and hence
Sai ⊆ Um4Um5Um4 .

Now we can conclude the proof. Choose any f ∈ A(T ). By [7] I, Lemma 4.1
there is g ∈ S(T ) such that gf ∈ A(T )C . Find i such that g ∈ Sai

. Then from
the above it follows that f lies in Um6Um4 ⊆ Um for some m. �

4 Cycle-free partial orders

In [10] the automorphism groups G of the countable 3-CS-transitive cycle-free
partial orders (‘CFPOs’) were studied, and it was determined precisely which
of them are simple groups. Moreover, those simple groups for which a ‘bounded
number of conjugates’ sufficed for the simplicity proof were characterized. By
this is meant that there is some fixed number m such that for any non-identity
elements g and h of G, it is possible to write h as the product of at most m
conjugates of g or g−1. It is immediate that the ones in the list for which G is
simple, but there is no bound on the number of conjugates, fail the Bergman
property. For we may fix g 6= 1, and let E be the union of {1} and the set of
conjugates of g or g−1. As G is simple, E generates G, but as there is no bound
on the number of conjugates required, there is no m such that G = Em. This
means that such G cannot have the Bergman property. It turns out however
that all the ones which have a simple group fail to have the Bergman property,
for a related reason (to do with the fact that there is a notion of ‘distance’ in
the structure which can take arbitrarily large values), and indeed a much wider
class, in fact all the 1-transitive CFPOs which embed ALT . In this section
we establish however that all the simple groups in our list have uncountable
cofinality (except possibly one sporadic).

The classification that we refer to is summarized in [10], and we recall the
main points here. A particular CFPO which is needed to describe the classifi-
cation is the ‘infinite alternating chain’ ALT , which has vertices xi for i ∈ Z, or-
dered by x2i < x2i±1 (with no other relations). As shown in [21], any countable
3-CS-transitive CFPO M which embeds ALT either has all maximal chains
finite (and then they have length 2), or all maximal chains infinite. The former
fall into two types, the so-called ‘skeletal’ ones, in which the maximal chains of
the completion are infinite, and the ‘sporadics’, in which the maximal chains
are finite (of length at most 4 in fact). Each of these gives rise to a number of
cases, which are parametrized by cardinals κ and λ between 2 and ℵ0 (which are
upward and downward ramification orders) and in some cases, also a countable
1-transitive linear order Z (which either is, or easily describes, the order-type of
a maximal chain in M+). The finite chain ones are written using script letters
from AZ

κλ to K for skeletals, and Mκλ, Nκλ, Pκλ, P ′
κλ for sporadics, and the in-

finite chain ones are written using Gothic letters from Aκλ to V. An important
feature of the classification is that it is shown that any of the CFPOs under
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consideration can be constructed from (any) one of the maximal chains of M+,
given information about how the points ramify, and indeed the classification is
found by analyzing which possible maximal chains can arise. If C is a maximal
chain in M+, then we may colour the orbits of the points of C under its setwise
stabilizer in A(M) by distinct ‘colours’, and so view C as a coloured chain.

Using this notation as in [10], the ones which have simple automorphism
groups are AQ

κλ, Bκλ, Cκλ, Dλ, D′
κ, Eλ, E ′κ, FQ

λ , F ′
κ

Q, GQ, HQ, H′Q, I, J , J ′,
K, all those in the infinite chain case classification, and the sporadic Mκλ for
κ, λ ≥ 3.

A key property which arose in the analysis of which of them have simple
automorphism groups in [10] was whether a maximal chain of M+ has a doubly
transitive orbit, and the way in which this condition enters into the picture here
is shown in the following lemma. In the proof the notion of ‘extended cone’
from [21] needs to be referred to, so we briefly describe what this is. In a tree,
an (upper) cone at a ramification point x is a set C of points of the tree lying
strictly above x maximal subject to the property that any two points have a
common lower bound in C. In a CFPO M the structure may branch downwards
as well as upwards, so we immediately also get a notion of a ‘lower cone’ at a
downward ramification point. For each such upper or lower cone C, we also
get a corresponding larger subset called the corresponding extended cone, which
consists of all points y of M such that the path from y to x intersects C.

Lemma 4.1. Let M be any (finite chain) skeletal or infinite chain countable
3-CS-transitive cycle-free partial order for which any maximal chain of M+ has
a doubly transitive orbit, and let C1 and C2 be disjoint maximal chains of M+

such that for some points x of C1 and y of C2, x < y and (x, y) contains a dense
set of points of a doubly transitive orbit of its setwise stabilizer. Then A(M) is
generated by the union of the setwise stabilizers of C1 and C2.

Proof: Let H be the group generated by A(M)C1 and A(M)C2 , and let C be
any other maximal chain of M+. We shall show that A(M)C ≤ H.

Since M is connected, there is a path from a member of C to a member of
C1, and also to a member of C2. We shall use induction of the least length of a
path from a member of C to a member of C1 ∪ C2 ∪ [x, y].

In the first case, the length is 0, which means that C shares a point with
C1∪C2∪[x, y]. One possibility is that [x, y] ⊆ C. Then any order-automorphism
of C may be written as a product of two elements fixing either C ∩ (−∞, x] or
C ∩ [y,∞) pointwise. Extending suitably to the extended cones at ramification
points, it follows that any member of A(M)C may be written as the product of
two elements of A(M)C1 ∪A(M)C2 (even the pointwise stabilizers in this case),
and hence A(M)C ≤ 〈A(M)C1 ∪A(M)C2〉 = H. If [x, y] 6⊆ C then there is some
z ∈ (x, y) such that C ∩ (C1 ∪ C2 ∪ [x, y]) is a subset of either C1 ∪ [x, z] or
C2 ∪ [z, y]. In the first case, taking the conjugate by an automorphism fixing
C2 (pointwise) we may assume that C ∩ (C1 ∪ C2 ∪ [x, y]) ⊆ C1, and similarly
in the second case for C2.

To give more detail in the first case for instance, if already C ∩ (C1 ∪ C2 ∪
[x, y]) ⊆ C1 we do not need to conjugate at all, so suppose that C ∩ (x, y) 6=
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∅. Then as C is a chain, C ∩ (C1 ∪ C2 ∪ [x, y]) ⊆ (C1 ∩ (−∞, x]) ∪ [x, z].
Let g ∈ A(M)C2 fix (C1 ∩ (−∞, x]) ∪ [x, y] setwise and map z to a point of
(−∞, x]. Then g(C∩(C1∪C2∪[x, y])) ⊆ C1∩(−∞, x] from which it follows that
g(C)∩(C1∪C2∪[x, y]) ⊆ C1∩(−∞, x] and we note that A(M)C ⊆ g−1A(M)gCg.

Let us now therefore concentrate on the case where C∩(C1∪C2∪[x, y]) ⊆ C1.
If C = C1 then the result is immediate. Otherwise, C∩C1 is bounded either

above or below in C1, and so by multiplying by a member of A(M)C1 we may
suppose that C ∩ C1 is a subset of either (−∞, x) ∩ C1 or (x,∞) ∩ C1.

First suppose that C ∩ C1 ⊆ (−∞, x) ∩ C1. By multiplying by a member
of A(M)C2 we may suppose that for some z < x, C ∩ C1 ⊇ (−∞, z). Pick
u < z and v > x in C1. Then any order-automorphism of C may be written as
a product of two automorphisms which fix either (−∞, u) or (z,∞) pointwise.
Hence by extending suitably on the extended cones, any member of A(M)C may
be written as a product of members of A(M) which fix either all members of
extended cones from points of (−∞, u) or all members of extended cones from
points of (z,∞) pointwise. The latter all lie in A(M)C2 . Let g ∈ A(M) fix all
members of the extended cones from points of (−∞, u), and let h ∈ A(M)C1

take u to v. Then hgh−1 fixes all members of extended cones from points of
C1∩(−∞, v) so lies in A(M)C2 . Hence g ∈ h−1A(M)C2h ≤ 〈A(M)C1∪A(M)C2〉.

Next if C ∩ C1 ⊆ (x,∞) ∩ C1 we may similarly suppose first that C ∩
C1 ⊇ (z,∞) for some z > x, and then choosing u < x and v > z in C1 write
any member of A(M)C as a product of members of A(M) which fix either
all members of extended cones from points of (−∞, z) ∩ C or all members of
extended cones from points of (v,∞) pointwise. The former all lie in A(M)C2 ,
and using the same trick of conjugating by a member of A(M)C1 the action of
automorphisms of the latter kind below u, these also lie in A(M)C2 .

If the length n is greater than zero, by cycle-freeness we may identify the
following possible ways in which a path from a member of C can meet C1∪C2∪
[x, y]: (i) there is a path from a point of C to a point z of C1 which is disjoint
from C2 ∪ (x, y], (ii) there is a path from a point of C to a point of C2 which is
disjoint from C1∪ [x, y), (iii) there is a path from a point of C to some z ∈ (x, y)
which is disjoint from C1∪C2∪ (x, z)∪ (z, y). The first two cases are essentially
the same, so we just do (i) and (iii). In each case let t be the point on the path
next to z (which exists since n > 0).

For (i), by multiplying by a member of A(M)C1 we may suppose that z < x.
Let C3 be a maximal chain containing t and z, and if t < z let C3 ⊇ C1 ∩ [x,∞)
and if t > z let C3 ⊇ C1 ∩ (−∞, z). Then C3, C2, [x, y] if t < z or C3, C2,
[z, y] if t > z is a configuration of the same type as given in the statement
of the lemma, and the least distance from a member of C to a member of
C3 ∪ C2 ∪ [x, y] is n− 1, since the same path, but with (t, z] deleted will serve.
Hence by induction hypothesis, A(M)C ≤ 〈A(M)C3 ∪ A(M)C2〉. By the basis
case, A(M)C3 ≤ 〈A(M)C1 ∪ A(M)C2〉, so A(M)C ≤ 〈A(M)C1 ∪ A(M)C2〉 as
desired.

For (iii), once more let C3 be a maximal chain containing z and t. Then
either (x, z) or (z, y) contains a dense set of points of a doubly homogeneous
orbit of the setwise stabilizer of (x, y), suppose the former for example. We apply
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the induction hypothesis to C1 ∪ C3 ∪ [x, z] and obtain the same conclusion as
before.

Since we have shown that A(M)C ≤ H for every maximal chain, and the
family of maximal chains is preserved by the action of A(M), it follows that H
is a normal subgroup of A(M). But by the results of [10], A(M) is simple, and
it follows that H = A(M) as required. �

Theorem 4.2. The automorphism groups of the following cycle-free partial
orders have uncountable cofinality but not the Bergman property: AQ

κλ, Bκλ,
Cκλ, Dλ, D′

κ, Eλ, E ′κ, FQ
λ , F ′Q

κ , GQ, HQ, H′Q, I, J , J ′, K; and all those in the
infinite chain case classification.

Proof: As remarked in [10], for all the CFPOs listed, any maximal chain C
of M+ has a doubly transitive orbit. Let M be one of these CFPOs, and let
(Ui)i∈ω be an ascending sequence of subgroups of A(M). We begin by following
the first few steps in the proof of Theorem 3.1. Let C be a maximal chain of
M . Then in M+ there is a doubly transitive orbit of A(M) (and that was how
the list was compiled), so as before, using [7] I, Proposition 4.2, extended to
CFPOs, the group induced on C by its setwise stabilizer in A(M) is large, here
meaning that it acts doubly transitively on some orbit (as well as the other
conditions).

(1) As before, the fact that A(M)C
C is large implies that there is m1 such

that any automorphism of M fixing C setwise agrees on C with a member of
Um1 .

(2) This step carries straight over provided we define ‘moiety’ suitably. Con-
sider coterminal points ai for i ∈ Z so that ai < ai+1 lying in a doubly transitive
orbit. We say that a subset X of M is a moiety if there is a choice of such points
for which a point x lies in X if and only if the path from x to C first meets
C between a2i and a2i+1 for some i. This requires a little explanation. The
definition of cycle-free partial order is that between any two points x and y of
M , there is in MD a unique path from x to y. So if x ∈ M is given, and we
choose any point y of C, this notion makes sense for x and y. We may say that
the path from x to C first meets C between a2i and a2i+1 if there is some y
between these points such that the path from x to y contains no points of C
other than y. The diagonalization is exactly as before. Hence there is m2 ∈ ω
such that every f ∈ A(M)C whose support is contained in M lies in Um2 .

(3) There is m3 such that for every f ∈ A(M)C which fixes each ai, f ∈ Um3 .
(4) There is m4 ∈ ω such that A(M)C ⊆ Um4 .
These two steps are proved just as in 3.1.
We conclude the proof as follows. Choose any maximal chain C1, and upward

ramification point x ∈ C1, and downward ramification point y > x such that
(x, y) contains a dense set of points of a 2-transitive orbit and such that for
some a ∈ C1, x is the infimum of a and y. Now choose b ∈ M such that b < y
and y is the supremum of x and b, and let C2 be a maximal chain containing b
such that y ∈ C2.

By (4), there is some q ∈ ω such that A(M)C1 , A(M)C2 ⊆ Uq. By Lemma 4.1,
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A(M) = 〈A(M)C1∪A(M)C2〉, so as Uq is a subgroup it follows that A(M) = Uq,
giving the desired conclusion.

Now we observe that none of the automorphism groups has strong uncount-
able cofinality. Pick a maximal chain C, and let Un be the set of all elements of
A(M) which move no member of C to a point at distance greater than n from
a member of C (where ‘distance’ was defined towards the end of section 1).
Then for any automorphism g of M , there is n such that all points of gC are at
distance at most n from all points of C, and so g ∈ Un. Thus A(M) =

⋃
n∈ω Un.

But the distance that C can be moved is clearly unbounded, and so Un ⊂ A(M)
for every n. �

We conclude by remarking that the last part of the preceding proof actually
applies in much greater generality; namely to all the CFPOs classified in [21, 4,
13] and many others (for instance, the hypothesis of countability is not required).

Theorem 4.3. Let M be a 1-transitive CFPO embedding ALT . Then A(M)
does not satisfy the Bergman property.

Proof: The proof is read off from what we have just given. The fact that ALT
embeds ensures that the distances from C are unbounded, and 1-transitivity is
sufficient to ensure that C can be moved to arbitrarily great distances. �
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