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Abstract: We investigate weighted finite automata over strings and
strong bimonoids. Such algebraic structures satisfy the same laws as
semirings except that no distributivity laws need to hold. We define
two different behaviors and prove precise characterizations for them
if the underlying strong bimonoid satisfies local finiteness conditions.
Moreover, we show that in this case the given weighted automata
can be determinized.

1 Introduction

In the seminal paper [31], Schützenberger extended Kleene’s classical result
on the coincidence between recognizable and rational languages to the realm of
weighted automata, their behaviors, and rational formal power series. Weighted
finite automata are classical nondeterministic automata in which the transitions
carry weights. These weights may model, e.g., the amount of recources needed
for the execution of a transition, or the probability of its successful execution.
The weights can be taken from any semiring, therefore weighted automata have
both a rich structure theory [5,11,21,29,30,34] as well as practical applications
in digital image compression [1, 8, 12, 15, 17], natural language processing [7, 19,
26, 28], and probabilistic model checking [2]. In semirings, by definition, the
multiplication operation is distributive over addition and this was crucial for
almost all of the theory developed so far.

It is the goal of this paper to investigate automata with weights in strong
bimonoids; these can be viewed as semirings where the distributivity assumption
is dropped. Trivially, all semirings are bimonoids, but there are also many

∗The work of this author was partially supported by Deutsche Forschungsgemeinschaft,
project DFG VO 1011/4-1.
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natural examples of bimonoids which are not semirings like, e.g., the tropical
bimonoid and near-semirings (see Example 1), the interval [0, 1] with t-conorm
and t-norm from multi-valued logic [18], the “string semiring” of all words over
an alphabet arising in natural language processing [27], or the algebraic cost
structure from algebraic path problems [22]. In fact, every bounded lattice is a
strong bimonoid.

The main results of this paper are as follows. First, we define for every
weighted finite automaton M over some bimonoid A two different kinds of be-
haviors, called the run semantics and the initial algebra semantics. Both of
them are functions assigning to each word w an element of A as value, the
weight obtained when executing M on w. We show that these two semantics
coincide if and only if A is right distributive (cf. Lemma 4).

Secondly, if the addition and multiplication operation of A are each locally
finite (meaning that finitely generated submonoids are finite), every weighted
finite automaton over A assumes only finitely many weights as values; moreover,
each value is assumed on a recognizable language of words (cf. Theorem 11).

A fundamental result in classical automata theory states that each nonde-
terministic finite automaton can be transformed into an equivalent determin-
istic one. Here we investigate weighted versions of this result. We show that,
for each weighted finite automaton, its run semantics can be recognized by a
crisp-deterministic weighted automaton if and only if A is additively and mul-
tiplicatively locally finite (cf. Theorem 14). A corresponding result holds also
with respect to the initial algebra semantics provided that A is right distributive
(cf. Theorem 21).

These results generalize several theorems from the literature [3, 16, 24, 25]
derived for automata over lattice-ordered monoids or semiring-reducts of resid-
uated lattices which are particular semirings (cf. Corollaries 13, 20, and 24).
They also apply, for instance, to all bounded lattices, even without distributiv-
ity assumption, since these lattices are additively and multiplicatively locally
finite.

2 Algebraic notions

Here we collect standard definitions concerning semirings, formal power series,
and matrices. For a more detailed introduction to these concepts we refer the
reader to [10, 11, 21, 30].

2.1 Strong bimonoids and semirings

A bimonoid is a structure (A,+, ·, 0, 1) consisting of a set A, two binary opera-
tions + and · on A and two constants 0, 1 ∈ A such that (A,+, 0) and (A, ·, 1)
are monoids. As usual, we identify the structure (A,+, ·, 0, 1) with its carrier
set A. We call A a strong bimonoid if the operation + is commutative and 0
acts as multiplicative zero, i.e., a · 0 = 0 = 0 · a for every a ∈ A. We say that
a strong bimonoid A is right distributive, if it satisfies (a + b) · c = a · c + b · c
for every a, b, c ∈ A; we call A left distributive, if a · (b + c) = a · b + a · c for
every a, b, c ∈ A. Then a semiring is a strong bimonoid which is left and right
distributive.

Example 1.
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1. The tropical bimonoid is the strong bimonoid (N∞,+,min, 0,∞) with
N∞ = N ∪ {∞} and the usual extensions of + and min from N to N∞.
We note that it is not a semiring, because there are a, b, c ∈ N∞ with
min{a, b+ c} 6= min{a, b} + min{a, c} (e.g., take a = b = c 6= 0).

2. The tropical semiring is the semiring (N∞,min,+,∞, 0).

3. The algebra ([0, 1],⊕, · , 0, 1) with the usual multiplication · of real num-
bers is a strong bimonoid for, e.g., each of the following two definitions of
⊕ for every a, b ∈ [0, 1]:

• a⊕ b = a+ b− a · b (called algebraic sum in [18]) and

• a⊕ b = min{a+ b, 1} (called bounded sum in [18]).

In neither of the two cases ([0, 1],⊕, · , 0, 1) is a semiring.

4. Let (C,+, 0) be a commutative monoid and let A be the set of all map-
pings from C into itself with pointwise addition, composition of mappings,
constant mapping zero, and the identity mapping. Then A constitutes a
strong bimonoid satisfying only one distributivity law (which depends on
the order used for defining the composition). Such structures are also
called near-semirings [20, 33].

5. Let Σ be an alphabet. Consider the strong bimonoid (Σ∗∪{∞},∧, ·,∞, ε)
where ∧ is the longest common prefix operation, · is the usual concatena-
tion of words, and ∞ is a new element such that w ∧ ∞ = ∞ ∧ w = w
and w · ∞ = ∞ · w = ∞ for every w ∈ Σ∗ ∪ {∞}. This bimonoid occurs
in investigations for natural language processing, see [27]. It is clear that
(Σ∗ ∪ {∞},∧, ·,∞, ε) is left distributive but not right distributive.

6. The Boolean semiring is the semiring (B,∨,∧, 0, 1) with B consisting of
the truth values 0 and 1, and ∨ and ∧ are disjunction and conjunction,
respectively.

7. We note that there are only two strong bimonoids with exactly two ele-
ments: the field with two elements and the Boolean semiring (since addi-
tion is determined by whether 1 + 1 = 0 or 1 + 1 = 1). However, there
are strong bimonoids with 3 elements which are not semirings, take, e.g.,
({0, 1, 2},max, ·̂, 0, 1) where a ·̂ b = (a · b) mod 3 for every a, b ∈ {0, 1, 2}.

8. Bounded lattices (lattices containing a greatest element 1 and a smallest
element 0) are strong bimonoids. As is well known, there are large classes
of lattices that are not distributive [14].

9. Moreover, bounded distributive lattices, semiring-reducts of semi-lattice
ordered monoids and of complete residuated lattices, and Brouwerian lat-
tices are semirings.

From now on and in the rest of the paper, we assume that Σ is
an arbitrary alphabet, i.e., a finite non-empty set, and (A,+, · , 0, 1)
denotes an arbitrary strong bimonoid unless specified otherwise.
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2.2 Formal power series

A formal power series, for short, series, (over Σ and A) is a mapping ϕ : Σ∗ →
A. Instead of ϕ(w) we write (ϕ,w) for every w ∈ Σ∗. The set of all series over
Σ and A is denoted by A〈〈Σ∗〉〉. The image of ϕ is the set im(ϕ) = {(ϕ,w) ∈ A |
w ∈ Σ∗}. For every a ∈ A, we define ϕ=a = ϕ−1(a) = {w ∈ Σ∗ | (ϕ,w) = a}.

Let a ∈ A and ϕ ∈ A〈〈Σ∗〉〉. The scalar multiplication of a and ϕ is the series
a · ϕ ∈ A〈〈Σ∗〉〉 defined by (a · ϕ,w) = a · (ϕ,w) for every w ∈ Σ∗.

Let ϕ1, ϕ2 ∈ A〈〈Σ∗〉〉. The sum of ϕ1 and ϕ2 is the series ϕ1 + ϕ2 ∈ A〈〈Σ∗〉〉
defined by (ϕ1+ϕ2, w) = (ϕ1, w)+(ϕ2, w) for every w ∈ Σ∗. The commutativity
and associativity of the addition of A carry over to the sum of series.

Let L ⊆ Σ∗. The characteristic function 1L ∈ A〈〈Σ∗〉〉 of L is for every
w ∈ Σ∗ defined as (1L, w) = 1 if w ∈ L and (1L, w) = 0 otherwise.

2.3 Matrices

Let P , Q, and R be sets. If f : P → Q and g : Q→ R are functions, we denote
their composition by f ; g (i.e., apply first f , then g). We let QP denote the set
of all functions from P to Q.

Let Q be a finite non-empty set. A mapping M : Q × Q → A is called a
Q×Q-matrix over A, and a mapping v : Q→ A is called a Q-vector over A. For
every M ∈ AQ×Q, v ∈ AQ, and q1, q2 ∈ Q we write Mq1,q2

instead of M(q1, q2),
and vq1

instead of v(q1). If A is a particular ordered set (e.g., the interval [0, 1]),
then matrices are called fuzzy relations, and vectors are called fuzzy subsets in
the literature.

Now letM1,M2 ∈ AQ×Q and v1, v2 ∈ AQ. Then we define the matrix product
M1 ·M2 ∈ AQ×Q, the matrix-vector products v1 ·M1 ∈ AQ and M1 · v1 ∈ AQ,
and the scalar product v1 · v2 ∈ A as follows for every q1, q2 ∈ Q:

(M1 ·M2)q1,q2
=

∑

q∈Q
(M1)q1,q · (M2)q,q2

,

(v1 ·M1)q1
=

∑

q∈Q
(v1)q · (M1)q,q1

,

(M1 · v1)q1
=

∑

q∈Q
(M1)q1,q · (v1)q ,

v1 · v2 =
∑

q∈Q
(v1)q · (v2)q .

Recall that the addition of A is commutative and that Q is non-empty; thus,
the sums on the right-hand sides are well defined. We define the Q-unit matrix
IQ ∈ AQ×Q as follows for every q1, q2 ∈ Q:

(IQ)q1,q2
=

{

1 , if q1 = q2 ;

0 , otherwise.

The following result is of fundamental importance in the theory of weighted
automata over semirings; it is straightforward by elementary calculations.

Lemma 2. If A is a semiring, then the matrix product and matrix-vector
products (whenever defined) are associative, and (AQ×Q, ·, IQ) is a monoid.

Note that Lemma 2 fails in general, if A is not left or not right distributive.
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3 Weighted finite automata

In this section, we introduce weighted finite automata over bimonoids and dif-
ferent definitions of their behaviors (semantics). Then we investigate conditions
under which these behaviors coincide. Recall that (A,+, · , 0, 1) is an arbitrary
strong bimonoid.

A weighted finite automaton (for short: wfa) over Σ and A is a quadruple
M = (Q, I, τ, F ) such that Q is a finite non-empty set (of states), I ∈ AQ (initial
weight vector), τ : Σ → AQ×Q (transition mapping), and F ∈ AQ (final weight
vector).

We define three different semantics for a wfa M , called run semantics, initial
algebra semantics, and free monoid semantics.

The run semantics is the standard semantics of wfa (cf. Section VI.6 of [11]).
Given a wordw of length n, we consider all possible paths (= sequences of states)
of length n + 1, determine their individual weights, then form the sum. Note
that for various concrete strong bimonoids or semirings A, this run behavior
has natural interpretations as counting the successful paths for w, determining
their cost or reliability, etc., cf. e.g. [10].

Formally, the r-behavior of M , denoted by [[M ]]r, is the series in A〈〈Σ∗〉〉
defined for every w = σ1 · · ·σn ∈ Σ∗ by letting

([[M ]]r, w) =
∑

P∈Qn+1

weightM (P,w) ,

where for every P = (q0, . . . , qn) ∈ Qn+1 the weight of P in M for w is defined
as

weightM (P,w) = Iq0
· τ(σ1)q0,q1

· . . . · τ(σn)qn−1,qn
· Fqn

.

For the initial algebra semantics, we need to introduce a preliminary notion.
A pointed Σ-algebra is a triple (B, θ, q) such that B is a set, θ : Σ → BB is a
mapping, and q ∈ B. We define a mapping hθ : Σ∗ → B, called the successive
evaluation of θ, by letting hθ(ε) = q and hθ(wσ) = θ(σ)(hθ(w)) for every w ∈ Σ∗

and σ ∈ Σ. In other words, if w = σ1 · · ·σn, then hθ(w) = (θ(σ1); . . . ; θ(σn))(q).
We call (B, θ, q) finite if B is finite.

In a pointed Σ-algebra, the elements θ(σ) (σ ∈ Σ) can be viewed as unary
operations on B. In the initial algebra semantics, the letters σ ∈ Σ operate
on Q-vectors by multiplication with a Q × Q-matrix θ(σ) from the right; this
operation is extended to words by performing it successively letter after letter.
To determine the initial algebra behavior of M for w ∈ Σ∗, we start with the
initial vector I, execute w, at the end apply the final vector F .

Formally, we define the pointed Σ-algebra (AQ, θτ , I) by letting θτ (σ)(v) =
v · τ(σ) for every σ ∈ Σ and v ∈ AQ. The i-behavior of M , denoted by [[M ]]i, is
the series in A〈〈Σ∗〉〉 defined as follows for every w ∈ Σ∗:

([[M ]]i, w) = hθτ
(w) · F .

So, if w = σ1 · · ·σn, then hθτ
(w) = (θτ (σ1); . . . ; θτ (σn))(I) = (. . . ((I · τ(σ1)) ·

τ(σ2)) · . . . · τ(σn−1)) · τ(σn).
Finally, we define the free monoid semantics. Let A be a semiring and let hΣ

be the unique monoid-morphism from the free monoid (Σ∗, ·, ε) to the monoid
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Figure 1: A wfa over the tropical bimonoid.

(AQ×Q, ·, IQ) extending τ (cf. Lemma 2). Then the f-behavior of M , denoted
by [[M ]]f , is the series in A〈〈Σ∗〉〉 defined as follows for every w ∈ Σ∗:

([[M ]]f , w) = I · hΣ(w) · F .

The initial algebra semantics may be considered as more ‘abstract’ than the
(combinatorial) run semantics, but has the advantage of permitting algebraic
proofs. All kinds of semantics have been employed in the literature for semiring-
weighted automata for different purposes, cf. [11, 13].

Let x ∈ {i, r, f}. A series ϕ ∈ A〈〈Σ∗〉〉 is x-recognizable if there is a wfa M
over Σ and A such that [[M ]]x = ϕ. We say that two wfa M and M ′ over Σ and
A are x-equivalent, if [[M ]]x = [[M ′]]x.

We note that we will use the free monoid semantics only in Lemma 5 and
Corollary 20.

Example 3. Let Σ = {σ}. We consider the wfa M = (Q, I, τ, F ) over Σ and
the tropical bimonoid (N∞,+,min, 0,∞) with Q = {q, p}, τ(σ)p,p = τ(σ)p,q =
τ(σ)q,p = ∞ and τ(σ)q,q = 0. Moreover, we define Ip = 1, Fp = ∞ and
Iq = Fq = 0. If we neglect those transitions that have weight 0, then we can
illustrateM as in Figure 1. Then, ([[M ]]i, σ

n) = ([[M ]]r, σ
n) is the nth Fibonacci-

number, for every n ≥ 0. We note that in [11] a similar automaton over the
semiring of natural numbers has been used to define the Fibonacci-numbers.

We will see later that, in general, the initial algebra semantics and the run
semantics differ (cf. Examples 25 and 26).

Next we obtain a simple characterization when for every wfa M , its initial
algebra semantics and its run semantics coincide.

Lemma 4. The following two statements are equivalent:

1. A is right distributive.

2. [[M ]]i = [[M ]]r for every wfa M over Σ and A.

Proof. (1) ⇒ (2): Let A be right distributive and let M = (Q, I, τ, F ) and
w = σ1 · · ·σn ∈ Σ∗. We show that ([[M ]]i, w) = ([[M ]]r, w). To this end we show
by induction on the length n of w that for every qn ∈ Q we have

hθτ
(w)qn

=
∑

(q0,...,qn−1)∈Qn

Iq0
· τ(σ1)q0,q1

· . . . · τ(σn)qn−1,qn
. (1)
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Indeed, if n = 0, then w = ε and hθτ
(ε)q0

= Iq0
=

∑

()∈Q0 Iq0
. Now let n > 0

and w = w′σn for some w′ ∈ Σ∗ with |w′| = n− 1. Then

hθτ
(w′σn)qn

= θτ (σn)(hθτ
(w′))qn

= (hθτ
(w′) · τ(σn))qn

=
∑

qn−1∈Q

hθτ
(w′)qn−1

· τ(σn)qn−1,qn

=
∑

qn−1∈Q

∑

(q0,...,qn−2)∈Qn−1

Iq0
· τ(σ1)q0,q1

· . . . · τ(σn−1)qn−2,qn−1
· τ(σn)qn−1,qn

(by induction hypothesis and right distributivity)

=
∑

(q0,...,qn−1)∈Qn

Iq0
· τ(σ1)q0,q1

· . . . · τ(σn)qn−1,qn
.

Now we have

([[M ]]i, w) = hθτ
(w) · F =

∑

qn∈Q

hθτ
(w)qn

· Fqn

=
∑

qn∈Q

∑

(q0,...,qn−1)∈Qn

Iq0
· τ(σ1)q0,q1

· . . . · τ(σn)qn−1,qn
· Fqn

(by Equation (1) and right distributivity)

= ([[M ]]r, w) .

(2) ⇒ (1): Let a, b, c ∈ A. Let σ ∈ Σ. We construct the wfa M = (Q, I, τ, F )
over Σ and A by Q = {p, q}, Ip = a, Iq = b, Fp = c, and Fq can be chosen
arbitrarily. Moreover, τ(σ)p,p = τ(σ)q,p = 1 and τ(σ)p,q = τ(σ)q,q = 0. Then
([[M ]]i, σ) = (a+ b) · c and ([[M ]]r, σ) = ac+ bc. Hence (a+ b) · c = ac+ bc. �

For semirings A, we obtain as consequence the following well-known fact.

Lemma 5. If A is a semiring, then [[M ]]i = [[M ]]r = [[M ]]f for every wfa M
over Σ and A.

Proof. Lemma 4 yields [[M ]]i = [[M ]]r. Moreover, [[M ]]f = [[M ]]i follows from
([[M ]]f , w) = I · hΣ(σ1 · · ·σn) · F = I · τ(σ1) · . . . · τ(σn) · F and Lemma 2. �

Next we introduce deterministic and crisp automata.

Definition 6. Let M = (Q, I, τ, F ) be a wfa over Σ and A.

• We call M deterministic if there is at most one q ∈ Q with Iq 6= 0, and
for every σ ∈ Σ and q ∈ Q there is at most one q′ ∈ Q with τ(σ)q,q′ 6= 0.

• We call M crisp if Iq ∈ {0, 1} and τ(σ)p,q ∈ {0, 1} for every σ ∈ Σ and
p, q ∈ Q.

• M is crisp-deterministic, if M is crisp and deterministic.

If M is deterministic, then in every row of every matrix τ(σ) there is at most
one entry different from 0. Therefore it is easy to see by induction that for every
string w = σ1 · · ·σn there is a sequence of states q0, . . . , qn ∈ Q such that for
every j ∈ {0, . . . , n} the vector hθτ

(σ1 . . . σj) might only have a non-zero entry
at qj . Moreover, (q0, . . . , qn) is the only run of M on w with possibly non-zero
weight, which implies that its weight is equal to hθτ

(w)·F . Therefore, the initial
algebra semantics for M coincides with the run semantics for M . This shows
the following result.
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Remark 7. For every deterministic wfa M we have [[M ]]i = [[M ]]r, and if M
is even crisp-deterministic, then im([[M ]]r) ⊆ im(F ) ∪ {0}, a finite set.

Finally, we note that we obtain the classical concept of an automaton in our
context as follows. A finite automaton (for short: fsa) over Σ is a wfa M
over Σ and the Boolean semiring B. Clearly, then [[M ]]i = [[M ]]r = [[M ]]f by
Lemma 5. The language recognized by M is the set L(M) ⊆ Σ∗ defined by
L(M) = {w ∈ Σ∗ | ([[M ]]r, w) = 1}. A language L ⊆ Σ∗ is recognizable if
there is an fsa M over Σ such that L = L(M). As is well-known, for every
recognizable language there is a crisp-deterministic fsa M such that L = L(M).
Moreover, M = (Q, I, τ, F ) can be chosen to be total, i.e. there is a state q ∈ Q
with Iq = 1, and for every σ ∈ Σ and q ∈ Q there exists (a unique) q′ ∈ Q with
τ(σ)q,q′ = 1.

Next we characterize series that are i-recognizable and r-recognizable by
crisp-deterministic wfa, in terms of recognizable step functions. A series ϕ ∈
A〈〈Σ∗〉〉 over Σ and A is a recognizable step function if there are n ∈ N, recogniz-
able languages L1, . . . , Ln ⊆ Σ∗, and a1, . . . , an ∈ A such that ϕ =

∑n

i=1 ai ·1Li
.

Lemma 8. Let ϕ ∈ A〈〈Σ∗〉〉. Then ϕ is a recognizable step function iff there
exists a crisp-deterministic wfa M over Σ and A such that ϕ = [[M ]]i = [[M ]]r.
In particular, if ϕ is a recognizable step function, then ϕ is i-recognizable and
r-recognizable.

Proof. “⇒”: Let n ∈ N, L1, . . . , Ln ⊆ Σ∗, and a1, . . . , an ∈ A such that
L1, . . . , Ln are recognizable and ϕ =

∑n
i=1 ai · 1Li

. For every i ∈ {1, . . . , n}, let
Mi = (Qi, Ii, τi, Fi) be a deterministic and total fsa over Σ such that L(Mi) =
Li. We define the wfa M = (Q, I, τ, F ) as follows: Q = Q1 × · · · ×Qn and for
every σ ∈ Σ and (q1, . . . , qn), (q′1 . . . , q

′
n) ∈ Q:

I(q1,...,qn) =

{

1 , if (Ii)qi
= 1 for every i ∈ {1, . . . , n} ;

0 , otherwise,

τ(σ)(q1 ,...,qn),(q′

1
,...,q′

n) =

{

1 , if τi(σ)qi,q′

i
= 1 for every i ∈ {1, . . . , n} ;

0 , otherwise,

F(q1,...,qn) =
∑

i∈{1,...,n}
(Fi)qi

=1

ai .

Clearly, M is crisp-deterministic. Let w ∈ Σ∗ and (q1, . . . , qn) be the unique
state in Q with hθτ

(w)(q1,...,qn) = 1. Then w ∈ Li iff (Fi)qi
= 1 for every i ∈

{1, . . . , n}. Let Iw = {i ∈ {1, . . . , n} | w ∈ Li}. We obtain (ϕ,w) =
∑

i∈Iw
ai =

F(q1,...,qn) = ([[M ]]i, w), proving ϕ = [[M ]]i. Remark 7 yields [[M ]]i = [[M ]]r.
“⇐”: Let M = (Q, I, τ, F ) be a crisp-deterministic wfa over Σ and A such

that [[M ]]i = [[M ]]r = ϕ. By Remark 7, im(ϕ) is finite. Let a ∈ im(ϕ). We
show that ϕ=a is recognizable. We define an fsa M ′

a = (Q, I ′, τ ′, F ′
a) over Σ

by letting for every p, q ∈ Q and σ ∈ Σ: I ′q = 1 (in B) iff Iq = 1 (in A);
τ ′(σ)p,q = 1 iff τ(σ)p,q = 1; and (F ′

a)q = 1 iff Fq = a. Then L(M ′
a) = ϕ=a.

Hence ϕ =
∑

a∈im(ϕ) a · 1ϕ=a
is a recognizable step function. �

We finish this section with an easy characterization of recognizable step
functions.
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Proposition 9. Let ϕ ∈ A〈〈Σ∗〉〉. Then ϕ is a recognizable step function iff
im(ϕ) is finite and ϕ=a is recognizable for every a ∈ A.

Proof. Let n ∈ N, L1, . . . , Ln ⊆ Σ∗ be recognizable, and a1, . . . , an ∈ A such
that ϕ =

∑n

i=1 ai · 1Li
. Clearly, im(ϕ) is finite. For every I ⊆ {1, . . . , n} we let

L′
I =

⋂

i∈I

Li ∩
⋂

i∈{1,...,n}\I

Σ∗ \ Li and aI =
∑

i∈I

ai .

It follows from the closure properties of the class of recognizable languages that
every L′

I is recognizable. Furthermore, the languages L′
I (I ⊆ {1, . . . , n}) form

a partitioning of Σ∗. Hence, ϕ =
∑

I⊆{1,...,n} aI · 1L′

I
. So ϕ=a =

⋃

{L′
I | I ⊆

{1, . . . , n}, aI = a}, which is recognizable.
For the converse, note that ϕ =

∑

a∈im(ϕ) a · 1ϕ=a
which is a recognizable

step function by assumption. �

4 Recognizable series and determinizability

In this section, we will investigate the relationships between i-recognizable se-
ries, r-recognizable series, and recognizable step functions. We also consider
conditions under which for every wfa an i-equivalent crisp-deterministic one
exists.

We let N = (N,+, · , 0, 1) be the semiring of natural numbers with the
usual addition and multiplication. We will use the following lemma in which
t+ cN = {t+ cn | n ∈ N}.

Lemma 10 ( [5], Cor. III.2.4,2.5). Let ρ : Σ∗ → N be an r-recognizable se-
ries over Σ and N . Then for all c, t ∈ N, the languages ρ−1(t) and ρ−1(t+ cN)
are recognizable.

We call A additively locally finite (multiplicatively locally finite, respectively)
if for every finite B ⊆ A, the smallest submonoid of (A,+, 0) (of (A, · , 1),
respectively) containing B is finite. Now we will show the following important
result.

Theorem 11. Let A be additively and multiplicatively locally finite, and let
ϕ ∈ A〈〈Σ∗〉〉 be r-recognizable. Then ϕ is a recognizable step function.

Proof. Let M = (Q, I, τ, F ) be a wfa with [[M ]]r = ϕ. We define B = {Iq |
q ∈ Q} ∪ {τ(σ)p,q | p, q ∈ Q, σ ∈ Σ} ∪ {Fq | q ∈ Q}. Let Y comprise all finite
products of elements from B. By assumption, Y is finite.

Note that weightM (P,w) ∈ Y for every w = σ1 · · ·σn ∈ Σ∗ and P ∈ Qn+1.
For each a ∈ Y we define a crisp wfa M ′

a = (Q′, I ′, τ ′, F ′
a) over Σ and N as

follows: Q′ = Q× Y and for every σ ∈ Σ and (q, y), (q′, y′) ∈ Q′, let

τ ′(σ)(q,y),(q′,y′) =

{

1 , if y′ = y · τ(σ)q,q′ ;

0 , otherwise,

I ′(q,y) =

{

1 , if y = Iq ;

0 , otherwise,
and (F ′

a)(q,y) =

{

1 , if y · Fq = a ;

0 , otherwise.

9



Let w = σ1 · · ·σn ∈ Σ∗ and a ∈ Y . We observe that for every path P =
(q0, . . . , qn) ∈ Qn+1 with weightM (P,w) = a there is a unique path P ′ =
((q0, y0), . . . , (qn, yn)) ∈ (Q′)n+1 with weightM ′

a
(P ′, w) = 1. Conversely, each

path P ′′ ∈ (Q′)n+1 with non-zero weight in M ′
a for w arises in this form. It

follows that ([[M ′
a]]r, w) ∈ N is precisely the number of all paths P in Qn+1 with

weightM (P,w) = a. Consequently, in A we have

(ϕ,w) = ([[M ]]r, w) =
∑

P∈Qn+1

weightM (P,w) =
∑

a∈Y

([[M ′
a]]r, w)a , (⋆)

where, for every m ∈ N, we write ma as a shorthand for a + a + · · · + a (m
summands). For every a ∈ Y we define ψa ∈ A〈〈Σ∗〉〉 by letting (ψa, w) =
([[M ′

a]]r, w)a. So ϕ =
∑

a∈Y ψa. It remains to show that each ψa (a ∈ Y ) is
a recognizable step function. For this we use an argument similar to one used
in [9], proof of Prop. 6.3. Choose a ∈ Y . The cyclic submonoid 〈a〉 of (A,+, 0)
is finite. Choose a minimal ma ∈ N such that maa = (ma + y)a for some y > 0,
and let ca be the smallest such y > 0. We put da = ma + ca − 1; note that then
d0 = 0. Then 〈a〉 = {0, a, 2a, . . . , daa}. So for each s ∈ N there is a uniquely
determined t ∈ {0, . . . , da} such that sa = ta. Note that if 0 ≤ t < ma, then
sa = ta iff s = t, and if ma ≤ t ≤ da, then sa = ta iff s ∈ t + caN. Now let
La,t = {w ∈ Σ∗ | ([[M ′

a]]r, w)a = ta}, for each t ∈ N with 0 ≤ t ≤ da; note that
L0,0 = Σ∗. We claim that La,t is recognizable. We have

• La,t = {w ∈ Σ∗ | ([[M ′
a]]r, w) = t} if 0 ≤ t < ma, and

• La,t = {w ∈ Σ∗ | ([[M ′
a]]r, w) ∈ t+ caN} if ma ≤ t ≤ da.

In each case, La,t is recognizable by Lemma 10.
Let w ∈ Σ∗. By the above, there is a unique number t ∈ {0, . . . , da} such

that (ψa, w) = ([[M ′
a]]r, w)a = ta, and so w ∈ La,t. Hence,

ψa =
∑

0≤t≤da

ta · 1La,t
. �

Conversely, assuming that the image of every recognizable series over A is
finite, we can deduce that A is additively and multiplicatively locally finite.
Note that here our alphabet Σ is fixed.

Lemma 12. Let |Σ| ≥ 2. If for every wfa M over Σ and A, im([[M ]]i) or
im([[M ]]r) is finite, then A is additively and multiplicatively locally finite.

Proof. We show that the additive monoid (A,+, 0) and the multiplicative
monoid (A, · , 1) are locally finite.

For the additive monoid it suffices to show that for every a ∈ A the cyclic
submonoid of (A,+, 0) generated by a is finite because + is commutative and
associative. Let a ∈ A and construct the wfa M = ({p, q}, I, τ, F ) with Ip = 1,
Iq = Fp = 0, and Fq = 1. Moreover, for every σ ∈ Σ we define τ(σ)p,p =
τ(σ)q,q = 1, τ(σ)p,q = a, and τ(σ)q,p = 0. Then for every σ ∈ Σ and n ∈ N

we have ([[M ]]i, σ
n) = ([[M ]]r, σ

n) = a + · · · + a (n times). Thus, the finite set
im([[M ]]i)∩ im([[M ]])r contains the cyclic submonoid of (A,+, 0) generated by a.

Next we show that the multiplicative monoid is locally finite. Let n ∈ N

and a1, . . . , an ∈ A. We show that the set A′ =
{

al1 · · · alk | k ∈ N, l1, . . . , lk ∈

10



q0 q1 q2 . . . qn

σ1/1
σ1/1 σ1/1 σ1/1

σ2/a1

σ2/a2

σ2/an

1

1

Figure 2: wfa M ′ from the proof of Lemma 12.

{1, . . . , n}
}

is finite. Let σ1, σ2 ∈ Σ be distinct symbols. We construct a wfa
M ′ = (Q′, I ′, τ ′, F ′) over Σ and A with Q′ = {q0, q1, . . . , qn}, I ′q0

= F ′
q0

= 1 and
I ′q = F ′

q = 0 for every q ∈ Q′ \ {q0}, and τ ′ is defined as follows (see Figure 2):

• τ ′(σ1)qi−1,qi
= 1 for every i ∈ {1, . . . , n},

• τ ′(σ2)qi,q0
= ai for every i ∈ {1, . . . , n}, and

• τ ′(σ)q,q′ = 0 for every other combination of σ ∈ Σ and q, q′ ∈ Q′.

Then ([[M ′]]i, σ
l1
1 σ2σ

l2
1 σ2 · · ·σ

lk
1 σ2) = ([[M ′]]r, σ

l1
1 σ2σ

l2
1 σ2 · · ·σ

lk
1 σ2) = al1 · · · alk

for every k ∈ N and l1, . . . , lk ∈ {1, . . . , n}. Thus, A′ ⊆ im([[M ′]]i) ∩ im([[M ′]]r),
and therefore A′ is finite. �

A bimonoid A is called locally finite, if for every finite B ⊆ A, the small-
est subbimonoid of A containing B is finite. Now, Lemma 12 generalizes the
following results of [16, 24].

Corollary 13. Assume that for every wfa over A there is an i-equivalent crisp-
deterministic wfa over A. Then A is locally finite provided that one of the
following conditions holds.

1. A is a lattice-ordered monoid (cf. only-if part of Theorem 3.4 of [24]).

2. A is the semiring-reduct of a residuated lattice (cf. only-if part of Theorem
4.2 of [16]).

Proof. Since both, lattice-ordered monoids and semiring-reducts of residuated
lattices are particular strong bimonoids, the two statements follow from Remark
7 and Lemma 12. �

The following summarizes our results.

Theorem 14. Let |Σ| ≥ 2. Then the following two statements are equivalent:

1. For every wfa M over Σ and A there is an r-equivalent crisp-deterministic
wfa M ′ over Σ and A.

2. A is additively and multiplicatively locally finite.

Proof. (1) ⇒ (2): This follows from Remark 7 and Lemma 12.
(2) ⇒ (1): Immediate by Theorem 11 and Lemma 8. �
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Next we will investigate properties of i-recognizable series. The idea of the
following lemma is similar to Lemma 3.10 of [13]. It will be a useful tool for
constructing weighted automata from finite pointed Σ-algebras.

Lemma 15. Let (P, θ, q) be a finite pointed Σ-algebra.

1. For every mapping f : P → A there is a crisp-deterministic wfa M over
Σ and A such that [[M ]]i = hθ; f .

2. For every F ⊆ P the language h−1
θ (F ) ⊆ Σ∗ is recognizable.

Proof. To Statement 1: We define M = (P, I, τ, F ) as follows for every σ ∈ Σ
and p, p′ ∈ P :

Ip =

{

1 , if p = q ;

0 , otherwise,
τ(σ)p,p′ =

{

1 , if p′ = θ(σ)(p) ;

0 , otherwise,

Fp = f(p) .

Observe that M is crisp-deterministic. It is easy to check that for every w ∈ Σ∗

and p ∈ P we have hθτ
(w)p = 1 if hθ(w) = p and hθτ

(w)p = 0 otherwise.
Thus, for every w ∈ Σ∗ we have ([[M ]]i, w) = hθτ

(w) ·F =
∑

p∈P hθτ
(w)p ·Fp =

Fhθ(w) = f(hθ(w)) = (hθ; f)(w).
To Statement 2: Let f : P → B be defined for every p ∈ P by f(p) = 1 iff

p ∈ F . By Statement 1 there is an fsa M over Σ with [[M ]]i = hθ; f . This yields
L(M) = {w ∈ Σ∗ | f(hθ(w)) = 1} = h−1

θ (F ). �

For our subsequent results, we will need a particular finiteness condition on
the strong bimonoid A (which may be infinite), which we introduce next.

Definition 16. For every B ⊆ A the weak closure of B, denoted by cl(B), is
the smallest subset C ⊆ A such that B ⊆ C and c+ c′ ∈ C and c · b ∈ C for all
b ∈ B and c, c′ ∈ C. We say that A is weakly locally finite if cl(B) is finite for
every finite subset B ⊆ A.

Trivially, if A is locally finite, then A is weakly locally finite, and if A is
weakly locally finite, then A is additively and multiplicatively locally finite.
For example, if A is a bounded lattice, then A is a strong bimonoid which is
additively and multiplicatively locally finite, but need not be locally finite. The
following is easy to check.

Remark 17. If A is right distributive, then A is additively and multiplicatively
locally finite iff A is weakly locally finite. If A is left distributive, then A is
weakly locally finite iff A is locally finite. In particular, if A is a semiring, then
A is additively and multiplicatively locally finite iff A is locally finite.

The idea of the following lemma is based on Lemma 3.14 of [13].

Lemma 18. Let ϕ ∈ A〈〈Σ∗〉〉 be i-recognizable. If A is weakly locally finite, then
there is a finite pointed Σ-algebra (P, θ, q) and a mapping f : P → A such that
ϕ = hθ; f .

Proof. Choose a wfa M = (Q, I, τ, F ) over Σ and A such that ϕ = [[M ]]i. Let
B = {Iq, τ(σ)p,q | p, q ∈ Q, σ ∈ Σ}. By assumption, the weak closure cl(B) is
finite. Then P = {hθτ

(w) | w ∈ Σ∗} ⊆ cl(B)Q is also finite, and (P, θτ , I) is a
pointed Σ-algebra. Moreover, we define the mapping f by f(v) = v ·F for every
v ∈ P . Then ([[M ]]i, w) = hθτ

(w) · F = f(hθτ
(w)) = (hθτ

; f)(w). �
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The following result summarizes three important properties of i-recognizable
series if A is weakly locally finite.

Theorem 19. Let A be weakly locally finite and ϕ ∈ A〈〈Σ∗〉〉 be i-recognizable.

1. For any E ⊆ A the language ϕ−1(E) is recognizable. In particular, ϕ is a
recognizable step function.

2. For any mapping g : A→ A, the series ϕ; g is again i-recognizable.

3. (Determinization) There exists a crisp-deterministic wfa M over Σ and
A such that ϕ = [[M ]]i.

Proof. By Lemma 18 there are a finite pointed Σ-algebra (P, θ, q) and a map-
ping f : P → A such that ϕ = hθ; f . First we show Statement 1. Since
ϕ−1(E) = h−1

θ (f−1(E)) and f−1(E) ⊆ P , it follows from Lemma 15(2) that
ϕ−1(E) is recognizable. In particular, for every a ∈ A, the language ϕ=a is
recognizable. Moreover, im(ϕ) ⊆ f(P ) is finite. Hence, ϕ =

∑

a∈im(ϕ) a · 1ϕ=a

is a recognizable step function.
Next we show Statements 2 and 3. Let g : A → A. We have ϕ; g =

(hθ; f); g = hθ; (f ; g). Then by Lemma 15(1) there is a crisp-deterministic
wfa M over Σ and A with ϕ; g = [[M ]]i. This proves Statement 2 and also
Statement 3 (let g be the identity mapping). �

We note that part 3 of Theorem 19 would also follow from part 1 and Lemma 8,
but the present argument is simpler and leads to automata with smaller state
sets. Theorem 19(3) generalizes the following results of [3, 25].

Corollary 20. For every x-recognizable series ϕ ∈ A〈〈Σ∗〉〉 there is a crisp-
deterministic wfa M such that [[M ]]x = ϕ assuming that one of the following
conditions holds.

1. A is a bounded, complete, distibutive lattice and x = f (cf. Theorem 2.1
of [3]).

2. A is a bounded, distributive lattice and x = r (cf. Theorem 2.1 of [25]).

Proof. 1. In [3] Bělohlávek defined recognizable series by means of wfa over
bounded, complete, locally finite lattices with the free monoid semantics; in fact,
he also needed that the lattices are distributive [4]; then local finiteness follows
from idempotence and distributivity. Now let ϕ ∈ A〈〈Σ∗〉〉 be recognizable in
this sense. Since every bounded, complete, distibutive lattice is a locally finite
semiring, it follows from Lemma 5 that ϕ is i-recognizable. Since every locally
finite semiring is a weakly locally finite strong bimonoid, Theorem 19(3) shows
Statement 1.

To 2: In [25] Li and Pedrycz defined recognizable series by means of wfa
over bounded, distributive lattices with the run semantics. We can use the
same arguments as for Statement 1. �

Now we can give an analogue of Theorem 14 for the i-behavior of wfa.

Theorem 21. Let |Σ| ≥ 2 and let A be right distributive. Then the following
two statements are equivalent:

13



1. For every wfa M over Σ and A there is an i-equivalent crisp-deterministic
wfa M ′ over Σ and A.

2. A is additively and multiplicatively locally finite.

Proof. This theorem is an immediate consequence of Remark 7, Lemma 12,
Remark 17, and Theorem 19(3). �

The following summarizes our results.

Theorem 22. Let A be additively and multiplicatively locally finite, and let
ϕ ∈ A〈〈Σ∗〉〉. Then the following are equivalent:

1. ϕ is r-recognizable.

2. ϕ is a recognizable step function.

Moreover, if A is weakly locally finite, these conditions are equivalent to

3. ϕ is i-recognizable.

Proof. This follows immediately from Lemma 8 and Theorems 11 and 19(1).�

Let ≤ be a partial order on A. Moreover, let ϕ ∈ A〈〈Σ∗〉〉 be a series and
a ∈ A. Then the a-cut of ϕ is the set ϕ≥a = {w ∈ Σ∗ | (ϕ,w) ≥ a}. Several
authors [6, 18, 23, 25, 32] have investigated these cuts of ϕ. The following is
straightforward, but together with Theorem 22 it provides the connection to
the work cited.

Lemma 23. Let ≤ be a partial order on A, and let ϕ ∈ A〈〈Σ∗〉〉. The following
statements are equivalent.

1. ϕ is a recognizable step function.

2. im(ϕ) is finite and ϕ≥a is recognizable for every a ∈ im(ϕ).

Proof. (1) ⇒ (2): Clearly, im(ϕ) is finite. By Proposition 9 we have that ϕ=b

is recognizable for every b ∈ im(ϕ). Let a ∈ im(ϕ). Then

ϕ≥a =
⋃

b∈im(ϕ)
b≥a

ϕ=b ,

which is a finite union of recognizable languages and, hence, recognizable.
(2) ⇒ (1): Since ϕ =

∑

a∈im(ϕ) a · 1ϕ=a
, it suffices to show that ϕ=a is

recognizable for every a ∈ im(ϕ). But

ϕ=a = ϕ≥a \
⋃

b∈im(ϕ)
b>a

ϕ≥b ,

which implies our claim. �

Now we can show that we have generalized a result of [23, 25].

Corollary 24. For every ϕ ∈ A〈〈Σ∗〉〉 the following conditions are equivalent

(i) ϕ is x-recognizable.
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(ii) im(ϕ) is finite and ϕ=a ∈ Σ∗ is recognizable for every a ∈ A.

(iii) im(ϕ) is finite and ϕ≥a ∈ Σ∗ is recognizable for every a ∈ A.

provided that one of the following properties holds.

1. A = ([0, 1],max, ∗, 0, 1), where ∗ is a locally finite t-norm, and x = i (cf.
Theorem 2.6 (2)-(4) of [23]).

2. A is a bounded, distributive lattice, and x = r (cf. Theorem 2.2 of [25]).

Proof. 1. It is easy to prove that a t-norm [18] distributes from left and right
over max. Since A = ([0, 1],max, ∗, 0, 1) is distributive, additively locally finite
and, by assumption, also multiplicatively locally finite, it follows from Remark
17, that A is a locally finite. Hence, in Theorem 2.6 of [23], Li considered
particular locally finite, commutative semirings. Then the stated equivalence
under Property 1 follows from Theorem 22 and Lemma 23.

2. Since every bounded, distributive lattice is a locally finite semiring, the
statement follows from Lemma 5, Theorem 22, and Lemma 23. �

Finally we show that for arbitrary strong bimonoids A, the concepts of i-
recognizability and r-recognizability differ. Clearly, by Lemma 4 and Theo-
rem 22, A should neither be right distributive nor weakly locally finite. We will
give two examples. In the first example we construct an i-recognizable series
that is not r-recognizable. In the second example we consider an r-recognizable
series that is not i-recognizable.

Example 25. We consider the set N of natural numbers and we define two new
commutative operations ⊕ and ⊙ on N as follows. First, let 0⊕a = a, 0⊙a = 0,
and 1 ⊙ a = a for every a ∈ N. If a, b ∈ N \ {0} with a ≤ b, we put (with +
being the usual addition on N)

a⊕ b =

{

b , if b is even;

b+ 1 , if b is odd.

If a, b ∈ N \ {0, 1} with a ≤ b, let

a⊙ b =

{

b+ 1 , if b is even;

b , if b is odd.

Then A = (N,⊕,⊙, 0, 1) is a strong bimonoid. Note that A is neither right
distributive (e.g., 5 = (3 ⊕ 3) ⊙ 2 6= (3 ⊙ 2) ⊕ (3 ⊙ 2) = 4) nor weakly locally
finite (e.g., a + 1 ∈ {a ⊕ a, a ⊙ 2}, and hence a ∈ cl(2) for every a ≥ 2). But
A is additively and multiplicatively locally finite. Hence, by Theorem 11 and
Lemma 8, each r-recognizable series over Σ and A is also i-recognizable.

Now consider the wfa M = (Q, I, τ, F ) with two states and Ip = τ(σ)p,q =
Fq = 2 for every σ ∈ Σ and p, q ∈ Q. Then ([[M ]]i, σ

n) = 2n+ 4 for every σ ∈ Σ
and n ∈ N, hence, im([[M ]]i) is infinite. Then, by Theorem 11, the series [[M ]]i
is not r-recognizable. Indeed, if M ′ = (Q′, I ′, τ ′, F ′) is any wfa over Σ and A,
let m = max{I ′p, τ

′(σ)p,q , F
′
q | p, q ∈ Q′, σ ∈ Σ} ∈ N. Then the definition of the

r-behavior of M ′ shows that ([[M ′]]r, w) ≤ m+ 2 for each w ∈ Σ∗.
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Example 26. We define two binary commutative operations ⊕ and ⊙ on the
set N

2 of pairs of natural numbers as follows. First, let (0, 0) ⊕ (a, b) = (a, b),
(0, 0) ⊙ (a, b) = (0, 0), and (1, 0) ⊙ (a, b) = (a, b) for every (a, b) ∈ N

2. If
(a, b), (a′, b′) ∈ N

2 \ {(0, 0)}, we put

(a, b) ⊕ (a′, b′) =

{

(a, b+ b′) , if a = a′;

(0, b+ b′) , otherwise.

If (a, b), (a′, b′) ∈ N
2 \ {(0, 0), (1, 0)}, let

(a, b) ⊙ (a′, b′) =

{

(a · a′, 1) , if b = b′ = 1;

(0, 0) , otherwise.

Then A = (N2,⊕,⊙, (0, 0), (1, 0)) is a strong bimonoid. Now consider the wfa
M = (Q, I, τ, F ) with two states and Ip = τ(σ)p,q = Fq = (2, 1) for every σ ∈ Σ
and p, q ∈ Q. Then ([[M ]]r, σ

n) = (2n+2, 2n+1) for every σ ∈ Σ and n ∈ N.
We claim that [[M ]]r is not i-recognizable. Suppose, contrary to our claim,

that M ′ = (Q′, I ′, τ ′, F ′) is a wfa over Σ and A such that [[M ]]r = [[M ′]]i. For
every (a, a′) ∈ N

2 we let π1(a, a
′) = a and π2(a, a

′) = a′.
Consider a finite nonempty index set I and two families (ai | i ∈ I) and (bi |

i ∈ I) with elements in N
2. Let c = max{1, π2(bi) | i ∈ I} and d =

∑

i∈I ai ⊙ bi.
We claim that if π1(d) > 0 and π2(d) > |I| · c, then there is a j ∈ I such that
π1(aj) = π1(d) and π2(d) ≤ |I| · c+ |I| · π2(aj). First we prove this claim:

π2(d) = π2

(

∑

i∈I
ai ⊙ bi

)

=
∑

i∈I
π2(ai ⊙ bi)

=
∑

i∈I
bi 6=(1,0)

π2(ai ⊙ bi) +
∑

i∈I
bi=(1,0)

π2(ai ⊙ bi)

≤ |I| · c+
∑

i∈I
bi=(1,0)

π2(ai) .

Since |I| · c < π2(d), we obtain
∑

i∈I:bi=(1,0) π2(ai) > 0 and therefore the set

{i ∈ I | bi = (1, 0)} is nonempty. Choose j ∈ I such that bj = (1, 0) and
π2(aj) = max{π2(ai) | i ∈ I, bi = (1, 0)}. We obtain π2(d) ≤ |I| · c+ |I| · π2(aj).
In particular, this implies aj 6= (0, 0) and therefore aj ⊙ bj 6= (0, 0). By the
assumption π1(d) > 0 we obtain π1(aj) = π1(d). This proves our claim.

Now let c = max{1, π2(F
′
q) | q ∈ Q′} and c′ = max{1, π2(τ

′(σ)q,p) | q, p ∈
Q′}. Choose N ≥ |Q′| such that

2N+1 > c · |Q′| + c′ ·
∑|Q′|+1

i=2
|Q′|i .

Let n ≥ N . We show by induction that for every j with 0 ≤ j ≤ |Q′|, there
is a qn,j ∈ Q′ such that π1(hθτ′

(σn−j)qn,j
) = 2n+2 and π2(hθτ′

(σn−j)qn,j
) >

c′ ·
∑|Q′|−j

i=1 |Q′|i. If j = 0, the above claim yields (by letting d = ([[M ′]]i, σ
n) =

(2n+2, 2n+1)) that there is a qn,0 ∈ Q′ such that π1(hθτ′
(σn)qn,0

) = 2n+2 and
2n+1 ≤ |Q′| · c + |Q′| · π2(hθτ′

(σn)qn,0
), which implies π2(hθτ′

(σn)qn,0
) > c′ ·

∑|Q′|
i=1 |Q′|i. The induction step can be shown similarly by considering d =

hθτ′
(σn−j)qn,j .
Thus, for every k with 0 ≤ k ≤ |Q′| we have π1(hθτ′

(σN )qN+k,k
) = 2N+k+2,

which implies that the |Q′|+1 states qN,0, . . . , qN+|Q′|,|Q′| are pairwise distinct,
a contradiction. Hence, [[M ]]r 6= [[M ′]]i.
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randomized systems. In M. Droste, W. Kuich, and H. Vogler, editors,
Handbook of Weighted Automata, chapter 13. Springer-Verlag, 2009. To
appear.
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[4] R. Bělohlávek. personal communication. 2008.

[5] J. Berstel and Ch. Reutenauer. Rational Series and Their Languages, vol-
ume 12 of EATCS Monograph on Theoretical Computer Science. Springer-
Verlag, 1988.
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[13] Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers.
In M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted
Automata, chapter 9. Springer-Verlag, 2009. To appear.

[14] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, 2nd edition, 1979.
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