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Abstract

Let R be a domain, V a left R-module, and L a composition series of direct summands

of V . Our main results show that if U is a stabilizer group of L containing the McLain-

group associated with L, then U determines the chain (L,⊆) uniquely up to isomorphism

or anti-isomorphism.

1 Introduction

In two of his very early papers [1, 2] Paul Conrad investigates the group A of o-automorphisms

of an abelian o-group G with the aim to provide examples of non-abelian o-groups A and

to understand how A and G are related. He wants to know: When can G be reconstructed

from A? As a consequence and with the aim to get useful examples (see Theorem 1 in [1]

and [2]) Conrad studies groups A of finitary triangular matrices over an infinite dimensional

vector space (over the field of rationals Q) which now fall under the generic name McLain

groups. While McLain groups for obvious reasons were mainly promoted by non-commutative

group theorists (see below), we will follow here Conrad’s road and investigate the relationship

between A and G, where A is the automorphism group of the abelian group G controlled by

an ordering on G which is expressed as a composition series of G. In our case G will be a

module over a domain R.

Our new results in this paper will also contribute to the following more recent investiga-

tions [4, 5, 12, 13, 15, 16]. In the introduction we want to state our main theorem, explain
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the techniques of its proof and indicate the connection with these references. As mentioned

above, this subject was motivated from group theory by the celebrated result due to McLain

establishing the existence of characteristically simple locally finite (thus locally nilpotent)

p-groups. These groups are subgroups of the group of finitary transformations of an infinite

dimensional vector space - in contrast to Paul Conrad - over the field Zp with p elements

taking care of a fixed linear ordering of a fixed basis of a vector space of countable dimension.

This setting can be seen as a fixed choice of a composition series of this vector space. Thus it

is natural to consider an extension of the McLain construction over a more general ordering

and an arbitrary (not necessarily commutative) ring R. A first investigation, using more

general rings can be found in Roseblade [17]. In order to avoid complications it is reasonable

to assume that R has no zero-divisors. Then it turns out that generalized McLain groups

can be defined in this generality with respect to a fixed composition series L; see Definition

2.1. The fact that over fields we have decomposition of immediate factors of the composition

series is reflected in our Definition 2.1 (2) of a direct composition series - by using projec-

tivity of R. It follows immediately from the restriction to such composition series, that the

R-modules V in question (replacing the vector spaces V ) are now submodules of cartesian

products Rκ, thus torsion-less, in the sense of Bass. Now McLain groups can be defined as in

Definition 3.5. One of the basic question for investigating (generalized) McLain groups is the

reconstruction of the composition series L from the knowledge of the McLain group M(L);

it is the analogue of Wedderburn’s theorem showing that from the matrix rings EndK(V )

of a finite dimensional vector space the dimension and the ground field K can be recovered.

This is also a crucial topic in [4, 5] and in Puglisi [15]. We will succeed here in showing the

following main theorem. We begin with a few easy remarks and obvious, known definitions.

Let R (for the moment) be a domain, i.e. a commutative ring without zero-divisors and

L = {Vλ | λ ∈ Λ} a direct composition series of a left R-module V . We let the index set Λ

carry the order inherited from the chain (L,⊆). For µ ∈ Λ, let µ+ denote the direct successor

µ in Λ (if it exists). Then let Λ+ = {λ ∈ Λ | ∃µ ∈ Λ : λ = µ+}. We say that h ∈ EndR V

stabilizes L if Vµ+h ⊆ Vµ for each µ ∈ Λ. Let

G(L) = {g = 1 + a ∈ AutR(V ) | a stabilizes L},

the stabilizer group of L. It follows from the definitions that the generalized McLain group

is a subgroup of the stabilizer group.

Theorem 1.1. Let R is any domain. Let L1,L2 be two direct composition series. Let
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M(Li) ⊆ Ui ⊆ G(Li) for i = 1, 2, and assume that U1
∼= U2. Then the chains (L1,⊆) and

(L2,⊆) are either isomorphic or anti-isomorphic.

This result comes in three parts. We must distinguish the cases when L∗, the direct

composition series without 0, V , the smallest and the largest element, has no smallest or

no largest element, when L∗ is bounded and char(R) 6= 2, and when L∗ is bounded and

char(R) = 2, see Theorems 4.11, 6.5 and 6.9. The proof is based on the fact that the maximal

normal abelian subgroups of U1 must be mapped bijectively onto the corresponding subgroups

of U2. This leads to the order-theoretic normal subgroups of U1 which allow us to recover the

betweenness relation on L1 when L∗
1 is not bounded. In case L∗

1 is bounded and char(R) 6= 2,

we need to employ the maximal intersection groups (groups maximal among the intersections

of pairs of distinct maximal abelian normal subgroups). We also consider those maximal

abelian normal subgroups which do not contain a maximal intersection group. The case of

characteristic two with bounded direct composition series L∗
1 requires even further algebraic

information transported from U1 to U2 by the group isomorphism. For this case, we also

consider maximal intersections of pairs of distinct maximal intersection groups. Investigation

of these classes of abelian normal subgroups leads to the above theorem. We do not know

if the case of anti-isomorphisms between L1 and L2 can occur. In the particular situation

of fields which are not of characteristic two, Puglisi [15] is able to exclude this case using

heavily dimension arguments and deep group theoretic results. Thus it seems very likely that

anti-isomorphisms cannot come up in general. Also for McLain groups defined directly on a

linear ordering as in [4] it can be shown that an isomorphism between those McLain groups

induces an order-isomorphism or anti-isomorphism of the ordering.

2 Basic Constructions

Let R be any (not necessarily commutative) ring with 0 6= 1 and without zero-divisors.

Moreover, let V be a left R-module and AutR V its group of R-automorphisms with 1 ∈

AutR V the identity on V . Then we consider

FGL(V,R) = {g ∈ AutR V | rk(V (g − 1)) <∞}.

This is a normal subgroup of AutR V and obviously

FGL(V,R) = (1 + Fin V ) ∩ AutR V,
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where FinV = {σ ∈ EndR V | rkV σ <∞} is a useful ideal of the endomorphism ring EndR V

in connection with realization theorems of algebras, see [9]. If R is commutative, then EndR V

is an R-algebra and FinV is a two sided ideal of this algebra. An element g ∈ AutR V is

called unipotent if there is an n ∈ N such that (g − 1)n = 0 in EndR V . If H ⊆ AutR V

consists of unipotent elements only, then H is said to be unipotent. It is natural to relate

unipotent subgroups of AutV to stabilizers of composition series of V .

Definition 2.1. Let R be a ring without zero-divisors and V a left R-module. A family

L = {Vλ | λ ∈ Λ} of submodules of V is a composition series if the following conditions are

satisfied.

(1) L is linearly ordered under inclusion and contains 0 and V .

(2) L is closed under arbitrary unions and intersections.

(3) If Vλ is a direct successor of Vµ in L then Vλ/Vµ ∼= R.

(4) L is maximal with respect to (1), (2), and (3).

Note that any composition series is closed under unions and intersections. Also observe

that if λ, µ ∈ Λ and Vλ is a direct successor of Vµ, then Vµ < Vλ (a direct summand), since

R is projective. This implies that if L is an ascending (i.e., well–ordered) composition series,

then L is a direct composition series. Hence initial segments of L are also composition series.

We call L a direct composition series if the elements of L are direct summands of V .

Next we show that for composition series over domains the converse of (3) holds.

Proposition 2.2. Let R be a domain, V a left R-module and L a composition series. If

Vµ ⊂ Vλ in L with Vλ/Vµ ∼= R, then Vλ is a direct successor of Vµ in L.

Proof. Let Vµ ⊆ W ⊂ Vλ in L with Vλ/Vµ ∼= R. Since L is a composition series, we can

find W ⊆ U ′ ⊂ U ⊆ Vλ in L such that U is a direct successor of U ′ in L. Thus U/U ′ ∼= R

and so U = U ′ ⊕R. Consider (U ′/Vµ) ⊕R ∼= (U ′ ⊕R)/Vµ ⊆ Vλ/Vµ ∼= R, which represents a

direct sum of ideals of the commutative ring R. But R has no zero-divisors. It follows that

U ′ = Vµ. Hence W = Vµ.

We let Λ carry the natural induced ordering defined by µ ≤ λ iff Vµ ⊆ Vλ for λ, µ ∈ Λ.

We write λ = µ+ (or µ ≻ λ) if λ is the direct successor of µ in Λ, that is, µ < λ and there is
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no ρ ∈ Λ with µ < ρ < λ. Put

Λ+ = {λ ∈ Λ | ∃µ ∈ Λ : λ = µ+}.

Moreover, let

V ∗
λ = Vλ \ V

−
λ for λ ∈ Λ+, and V −

λ =
⋃

µ<λ

Vµ for λ ∈ Λ.

Note that Vλ = V −
λ if λ = sup{µ | µ < λ}, and if λ ∈ Λ+, then Vλ/V

−
λ

∼= R. We will often

use that whenever 0 6= v ∈ V , then v ∈ V ∗
λ for some λ ∈ Λ+. A left R-module V is called

torsionless if V embeds into some product Rκ.

Proposition 2.3. Let R be a ring without zero-divisors and V a left R-module.

(a) If V has a direct composition series, then V is torsionless.

(b) If R is principal ideal domain and V is torsionless, then V has a direct composition

series. Moreover this series can be chosen to be descending, i.e. anti-isomorphic to an

ordinal.

Proof. (a) Let L = {Vλ | λ ∈ Λ} be a direct composition series of V . For each λ ∈ Λ+

choose a decomposition V = Vλ
⊕

Cλ and let πλ : V → Vλ be the projection modulo Cλ and

ρλ : Vλ → Vλ/V
−
λ be the canonical projection. Put σλ = πλρλ. Then

σ =
∏

λ∈Λ+

σλ : V →
∏

λ∈Λ+

Vλ/V
−
λ

is an embedding, because if 0 6= v ∈ V , then v ∈ V ∗
λ for some λ ∈ Λ+, hence v /∈ kerσλ, thus

ker σ = 0. Since
∏

λ∈Λ+

Vλ/V
−
λ

∼= RΛ+

, the claim follows.

(b) Since V is torsionless, we can assume that V ⊆ Rκ for some cardinal κ. Write Rκ =
∏

i∈κ

eiR and put Nλ =
∏

λ≤i∈κ

eiR and Vλ = V ∩Nλ (λ ∈ κ). It follows that L = {Vλ | λ ∈ κ} is

descending and each Vλ is a direct summand of V . We show that L satisfies condition (2).

Assume λ, µ ∈ κ such that Vλ is a direct successor of Vµ in L. Choose a minimal λ′ ∈ κ such

that Vλ = Vλ′ . By definition of the Vν (ν ∈ κ), L is closed under intersections. Thus there is

a maximal µ′ ∈ κ with Vµ = Vµ′ . Then µ′ is a direct successor of λ′ in κ. Hence

0 6= Vλ/Vµ = Vλ′/Vµ′ = (V ∩Nλ′)/(V ∩Nµ′) ⊂∼ Nλ′/Nµ′
∼= R.
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Since R is a principal ideal domain, we obtain Vλ/Vµ ∼= R. Hence (1) and (2) hold.

Now choose a composition series L′ such that L ⊆ L′. Consider any λ, µ ∈ κ such that

Vλ is a direct successor of Vµ in L. Then Vλ/Vµ ∼= R by (2). Hence, by Proposition 2.3, Vλ

is a direct successor of Vµ in L′. Since L is descending, it follows that L = L′.

In view of Proposition 2.3(b), we note that V in general does not have an ascending (i.e.

well-ordered) composition series as the following result shows.

Theorem 2.4. Let κ be an infinite cardinal and R a countable principal ideal domain. Then

the following are equivalent:

(1) R is a field.

(2) Rκ has an ascending direct composition series.

Proof. (1) −→ (2): If R is a field, then Rκ is a vector space over R of dimension 2κ. A

well-ordering of a basis induces an ascending direct composition series.

(2) −→ (1): If R is not a field, then R is slender, see Eklof and Mekler [6, p. 64, Corollary

2.4] or Göbel and Trlifaj [9]. Suppose V = Rκ has an ascending direct composition series

Vλ (λ ∈ Λ), where Λ is an ordinal. Since |R| < |V | = 2κ and |Vλ| ≤ ℵ0 for all λ < ω1 we

have ω1 ∈ Λ and |Vω1
| = ℵ1. Also Vω1

< Rκ, so by Nunke [14, p. 69, Theorem 5a] and

a slight extension (replacing Z by R) we obtain Vω1
∼= Rρ for some cardinal ρ. If follows

that ℵ1 = 2ρ, hence ρ = ω and CH holds. Express Vω1
=

∏

i∈ω

Rei. Also, {Vλ | λ ∈ ω1} is a

composition series of Vω1
. Since cf(ω1) = ω1 we can find λ ∈ ω1 such that {ei | i ∈ ω} ⊆ Vλ.

Write Vω1
= Vλ

⊕

Cλ and let π : Vω1
→ Cλ be the canonical projection. From eiπ = 0 for

all i ∈ ω it follows that π induces π : (
∏

i∈ω

Rei)/(
⊕

i∈ω

Rei) → Cλ with Im(π) = Im(π). However
∏

i∈ω

Rei/
⊕

i∈ω

Rei
is cotorsion by Hulanicki, see Fuchs [7, vol.1, p. 176, Corollary 42.2]. On the

other hand Cλ ⊂ Rω and therefore cotorsion-free, see Eklof and Mekler [6, p.138, Theorem

2.9]. Hence

0 = Im(π) = Im(π) = Cλ and Vω1
= Vλ.

But λ ∈ ω1 and Vλ is countable, a contradiction.

Next we consider endomorphisms stabilizing L.
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Definition 2.5. Let R be a ring without zero-divisors and L = {Vλ | λ ∈ Λ} a direct

composition series of a left R-module V .

(a) If g ∈ AutR(V ), then a = g − 1 ∈ EndR V ; we often write g = 1 + a.

(b) We say that h ∈ EndR V stabilizes L if Vλh ⊆ V −
λ for each λ ∈ Λ+.

(c) Let G(L) = {g = 1 + a ∈ AutR(V ) | ∀λ ∈ Λ+ : Vλa ⊆ V −
λ }, the stabilizer group of L.

Proposition 2.6. G(L) is a group.

Proof. Let g = 1 + a ∈ G(L). We first show that Vλg = Vλ for each λ ∈ Λ. The inclusion

Vλg ⊆ Vλ is clear. Now let v ∈ V ∗
λ for some λ ∈ Λ+. Since g ∈ AutR V , there is u ∈ V with

v = ug = u + ua. Then u ∈ V ∗
µ for some µ ∈ Λ+, and ua ∈ V −

µ . So v ∈ V ∗
µ , showing µ = λ

and v = ug ∈ Vλg.

Now g−1 = 1 + b with b = g−1 − 1, and by the above, Vλb ⊆ Vλ for each λ. We claim

that Vλb ⊆ V −
λ for each λ ∈ Λ+. Since 1 = gg−1 = (1 + a)(1 + b) = 1 + a+ b + ab, we have

0 = a + b + ab. Now if v ∈ Vλ, then vb = −va − vab. We get va ∈ V −
λ by assumption, so

vab ∈ V −
λ by the above, thus vb ∈ V −

λ as needed.

We will write FG(L) = G(L) ∩ FGL(V,R) for the finitary stabilizer of L.

Example 2.7. We give an example of a maximal series L of submodules of V with FG(L)

not unipotent. Choose Jp = R = V , the ring of p-adic integers, and Vn = pnJp (n ∈ ω).

Then L = {Vn | n ∈ ω} is a maximal descending series of Jp-submodules with Vn/Vn+1
∼= Zp,

and FG(L) = 1 + p Jp.

Proof. Note that Jp = EndJp by scalar multiplication. If g = 1 + pa ∈ 1 + pJp then

g is invertible because p Jp is the Jacobson radical of Jp. Hence g represents an element

in AutR V . Moreover Vnpa ⊆ Vn+1 for all n ∈ ω and all Jp-submodules have rank 1, thus

g = 1 + pa ∈ FG(L).

Conversely, let g = 1 + a ∈ FG(L). Then Jp a ⊆ pJp and a ∈ pJp is immediate.

Note that Jp is a domain, hence 1 + p Jp has no non-trivial unipotent elements.
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3 Relating G(L) and McLain-groups

In all of this section let R be a ring without zero-divisors and L = {Vλ | λ ∈ Λ} a direct

composition series of a left R-module V . Here we will investigate the relationship between

the stabilizer group G(L) and related McLain-groups.

Given g = 1 + a ∈ AutR V , we put

[g] = [a] = {(α, β) ∈ Λ+ × Λ+ | ∃v ∈ V ∗
α : va ∈ V ∗

β },

the support of g respectively a. We also put

[g]1 = [a]1 = {α ∈ Λ+ | ∃β ∈ Λ+ : (α, β) ∈ [g]},

[g]2 = [a]2 = {β ∈ Λ+ | ∃α ∈ Λ+ : (α, β) ∈ [g]},

the 1–support resp. 2–support of g resp. a.

We often write g−1 = 1 + a∗. Then a + a∗ + aa∗ = a + a∗ + a∗a = 0. Subsequently, the

symbols α, β, γ, λ, µ, ν, ω will always denote elements from Λ+.

Lemma 3.1. Let g = 1 + a ∈ G(L), (α, β) ∈ [a] and α′ > α. Then (α′, β′) ∈ [a] for some

β′ ≥ β.

Proof. Choose any u′ ∈ V ∗
α′ . If u′a ∈ V ∗

β , we are done. Now let u′a = 0 or u′a ∈ V ∗
γ for

some γ 6= β. Choose u ∈ V ∗
α with ua ∈ V ∗

β . Then u′ + u ∈ V ∗
α′ and (u′ + u)a = u′a + ua ∈

V ∗
γ ∪ V ∗

β , showing (α′, γ) ∈ [a] if γ > β, and (α′, β) ∈ [a] otherwise.

Lemma 3.2. Let g = 1 + a ∈ G(L) and g−1 = 1 + a∗. Then [a] = [a∗]. Moreover, if β ≻ γ

and v ∈ Vβ, then va ≡ −va∗ mod V −
γ .

Proof. We have a+ a∗ + aa∗ = 0. Let (α, β) ∈ [a]. Choose u ∈ V ∗
α with ua ∈ V ∗

β . Then

ua∗ = −ua − uaa∗. Since (ua)a∗ ∈ V −
β , we have ua∗ ∈ V ∗

β and so (α, β) ∈ [a∗]. Now let

β ≻ γ and v ∈ Vβ. Then Vβaa
∗ ⊆ V −

γ . Hence va+ va∗ ≡ 0 mod V −
γ .

Lemma 3.3. Let g = 1+a ∈ AutR(V ). Then g ∈ G(L) iff for all (α, β) ∈ [g] we have α > β.
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Proof. The ‘only-if-part’ is obvious. For the converse, let 0 6= v ∈ V with va 6= 0. Then

there are α, β ∈ Λ+ such that v ∈ V ∗
α and va ∈ V ∗

β . Thus (α, β) ∈ [a], showing α > β and

va ∈ V −
α .

Lemma 3.4. Given a homomorphism h : V → V with Vλh ⊆ V −
λ for all λ ∈ Λ+. Let

g = 1 + h. Then:

(a) g is a monomorphism.

(b) Assume ∀v ∈ V ∃n ∈ N : vhn+1 = 0. Then g ∈ AutR(V ) and

g−1 = 1 − h+ h2 − · · · ± hn ∓ . . . .

(c) If Λ is well-ordered, then g ∈ AutR(V ).

Proof. (a) We have ug = u+ uh and vg = v + vh. If ug = vg, then u− v = (v − u)h. If

u 6= v, there is α ∈ Λ+ with u− v ∈ V ∗
α and so (u− v)h ∈ V −

α , a contradiction.

(b) Immediate by (1 + h)g−1 = 1.

(c) By assumption on h and Λ, there is no v ∈ V with vhn 6= 0 for each n ∈ N. Now apply

(b).

Next we define particular group elements stabilizing L.

Definition 3.5. Let α, β ∈ Λ+ with α > β. Choose any elements u ∈ V ∗
α and v ∈ V ∗

β

with Vα = Ru ⊕ V −
α . Write V = (Ru ⊕ V −

α ) ⊕ C. Define hαβ : V → V by uhαβ = v and

(V −
α ⊕C)hαβ = 0. Then h2

αβ = 0, so gαβ = 1+hαβ ∈ AutR(V ) by Lemma 3.4, so gαβ ∈ G(L)

by choice of hαβ , and g−1
αβ = 1 − hαβ .

All elements gαβ = 1 + hαβ arising this way (i.e., by suitably chosen u, v,C) will be called

McLain-elements of type (α, β). We put

M(L) =
〈

gαβ | gαβ a McLain-element of type (α, β), α > β in Λ+
〉

,

the McLain-group of L. Thus M(L) ⊆ G(L).

Lemma 3.6. Let α > β. Then [hαβ ] = {(α′, β) | α′ ≥ α}. However, for each α′ > α, there

exists u′ ∈ V ∗
α′ with u′hαβ = 0. We have V hαβ = Rv ⊆ Vβ.
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Proof. Let hαβ arise from the decomposition V = (Ru ⊕ V −
α ) ⊕ C with u ∈ V ∗

α and

v ∈ V ∗
β . Let (α′, β) ∈ [hαβ ]. Choose any w ∈ V ∗

α′ with whαβ 6= 0. Then w 6∈ V −
α , so α′ ≥ α

and w = xu + w′ for some x ∈ R \ {0} and w′ ∈ V −
α ⊕ C. Thus whαβ = xv ∈ V ∗

β by

x 6= 0. Hence [hαβ ] ⊆ {(α′, β);α′ ≥ α}. Conversely, let α′ > α. By Lemma 3.1, we have

(α′, β′) ∈ [hαβ ] for some β′. By what we have already shown, then β′ = β. Moreover let

u′ = w′ = w − xu. Then u′ ∈ V ∗
α′ and u′ ∈ V −

α ⊕ C, so u′hαβ = 0. The final statement is

clear.

The following example, an immediate consequence of the main result in Göbel, Wald [10,

Theorem, p. 271], illustrates the assumptions of the next Proposition 3.7. There is an abelian

group V of cardinality 2ℵ0 with the following properties.

(i)
⊕

n∈ω Zen ⊆ V ⊆
∏

n∈ω Zen

(ii) EndV = Z ⊕ FinV with FinV = {ϕ ∈ EndV | rkϕ <∞}

(iii) V is slender.

(A similar result, but replacing ω in (i) by arbitrary uncountable, regular cardinals follows

from [3], see also [9].)

Since P =
∏

n∈ω Zen is ℵ1-free it is clear that the rank-condition in (ii) can be replaced

by the requirement that Imϕ is finitely generated (and free). It also follows that FinV is the

collection of endomorphisms ϕ that extend (uniquely) to ϕ : P −→ V with eiϕ = 0 for almost

all i ∈ ω. (This is related to condition (iii).) Thus any element of FinV can be expressed as

a finite sum of endomorphisms ψn with eiψn = 0 (for i 6= n) and acting non-trivially only on

Zen. The units of EndV are the automorphisms of V , i.e. AutV = {± idV +f | f ∈ Fin V }.

If Pn =
∏

i≥n Zei, then Vn = V ∩ Pn (n < ω) represents a descending composition series

L = {Vn | n < ω} of V of order type ω∗ with
⋂

n∈ω Vn = 0 such that Vn = Zen ⊕ Vn+1.

The family F = {ϕ ∈ EndV | Vnϕ ⊆ Vn+1} of all endomorphisms of V which stabilize L

is a subring (without a 1) of the two-sided ideal Fin V of EndV = Z ⊕ Fin V . Thus F is

generated (as a ring) by all ϕ ∈ Fin V shifting elements non-trivially only on Zen for some

n ∈ ω, this means eiϕ = 0 if i 6= n and enϕ ∈ Vn+1. In particular G(L) = {± idV +a | a ∈ F}.

Applying Definition 3.5, and the remarks above it follows by simple arguments from linear

algebra (similar to the proof of the finite case in Proposition 3.7) that M(L) = G(L).
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This example shows that we cannot expect that the next proposition (in case of descending

chains) can hold for domains R (even if R = Z). To characterize finite composition series we

must restrict to fields R or must avoid descending chains as above.

Proposition 3.7. If R is a domain and L is ascending with M(L) = G(L), then L is finite,

and conversely, if L is finite, then M(L) = G(L). In particular, if R is a field, then we have

M(L) = G(L) if and only if L is finite.

Proof. First let R be a domain, and assume that L is finite. We may also assume that

Vj =
⊕j

i=1Rei for 1 ≤ j ≤ n, V = Vn and V0 = {0}. Choose any 1 6= g = 1 + a ∈ G(L). We

claim that g ∈M(L).

Choose i ≤ n minimal with eia 6= 0, say eia ∈ V ∗
j with 1 ≤ j < i. Define hij : V −→ V

by eihij = −eia and (
⊕

k 6=i Vk)hij = 0. Then 1 + hij ∈M(L) and

(1 + a)(1 + hij) = 1 + a+ hij + ahij = 1 + a′ = g′ ∈ G(L)

satisfies eka
′ = 0 for each 1 ≤ k ≤ i. By induction, we have g′ ∈M(L) and hence g ∈M(L).

Now assume that L is ascending, but infinite. Note that by Lemma 3.6, for each g ∈M(L),

the 2-support [g]2 is finite.

Let L contain a copy of the ordinal ω, i.e. there is an ascending sequence (λi)i∈ω ⊆ Λ+. We

can successively write Vλ0
= Ru0⊕C0 and Vλi+1

= Vλi
⊕Rui⊕Ci. Also, let V = (

⋃

i∈ω

Vλi
)⊕C.

Choose h ∈ End(V ) with ui+1h = ui and Cih = 0 for each i ∈ w, and Ch = 0. Then

g = 1 + h ∈ G(L) by Proposition 3.4 and λi ∈ [g]2 for each i ∈ ω. So g /∈M(L).

Now assume that R is a field and suppose that L is infinite but contains no copy of ω.

There is a descending sequence (λi)i∈ω ⊆ Λ+. We may write Vλn−1
= Vλn

⊕ Run ⊕ Cn and

let U =
⊕

n∈ω Run, C =
⊕

n∈ω Cn. Since R is a field, it follows U ⊕ C ⊕ D = V and

we can define h ∈ End(V ) such that uih = ui+1 for all i ∈ ω and (C ⊕ D)h = 0. Then

g = 1 + h ∈ G(L), λi+1 ∈ [g]2 for each i ∈ ω, and g /∈M(L).

Next we show a connection between the present groups and the generalized McLain-groups

as investigated in [4, 5]. We introduce some notation. Let R be a domain and (S,≤) a linearly

ordered set. An S × S-matrix (rαβ)α,β∈S
with rαβ ∈ R is called row-finite, if for each α ∈ S

the set {β ∈ S | rαβ 6= 0} is finite, and lower-triangular, if rαβ = 0 for all α, β ∈ S with α < β.

Let Ω(R,S) be the collection of all row-finite lower-triangular S×S-matrices (rαβ)α,β∈S over

R and diagonal ≡ 1, i.e., rαα = 1 for all α ∈ S. With the usual matrix multiplication, Ω(R,S)
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is a monoid. For α, β ∈ S with α > β, let eαβ ∈ Ω(R,S) be the matrix with entry 1 at (α, β)

and 0 elsewhere. Now let G(R,S) comprise all matrices A = (rαβ) ∈ Ω(R,S) for which the

set {(α, β) | rαβ 6= 0, α > β)} is finite. Then G(R,S) is a group and generated by the set of

all elements 1 + aeαβ (a ∈ R,α, β ∈ S with α > β}, cf. [4, Lemma 2.1]. This group G(R,S)

is called the (generalized) McLain-group over R and S.

Now let V be a left R-module and L = {Vλ | λ ∈ Λ} a direct composition series. For

each α ∈ Λ+ we choose and fix eα ∈ V ∗
α . The set {eα | α ∈ Λ+} generates a free R-

module which may be a proper submodule of V . We call L a generating composition series,

if V = 〈eα | α ∈ Λ+〉. Now assume that L is generating. To each endomorphism h ∈ EndV

stabilizing L we associate a (Λ+ × Λ+)-matrix Ah = (rαβ) over R with respect to the basis

{eα | α ∈ Λ+} as usual, i.e. eαh =
∑m

i=1 rαβi
eβi

with α, β1, . . . , βm ∈ Λ+ and α > β1 > · · · >

βm without loss of generality; we put rαα = 1 for each α ∈ Λ+. Since h is stabilizing, we

obtain Ah ∈ Ω(R,Λ+). Conversely if A ∈ Ω(R,Λ+) , we obtain a homomorphism h ∈ EndV

stabilizing L with A = Ah. Since this procedure preserves products, we can identify the

monoid {g = 1 + h | h ∈ EndV stabilies L} with Ω(R,Λ+).

Proposition 3.8. Under the above assumptions, we have G(R,Λ+) ⊆ M(L) ⊆ G(L) ⊆

Ω(R,Λ+), and G(L) is the maximal subgroup of the monoid Ω(R,Λ+).

Proof. For each g = 1 + h ∈ G(L), the associated matrix Ah is invertible in Ω(R,Λ+).

Furthermore, if A ∈ Ω(R,Λ+) is invertible and A = Ah for a stabilizing h ∈ EndV as above,

then g = 1 + h ∈ AutRV , so g ∈ G(L). It remains to show that G(R,Λ+) ⊆M(L).

Let a ∈ R and α, β ∈ Λ+ with α > β. We put Cα = 〈eλ | λ > α〉. Since V = 〈eλ | λ ∈ Λ+〉,

we have V −
α = 〈eλ | λ < α〉, hence Vα = Reα⊕V

−
α and V = Vα⊕Cα. Now define the McLain-

element gαβ = 1 + hαβ such that eαhαβ = aeβ and (V −
α ⊕ Cα)hαβ = 0. The choice of Cα

implies 1 + aeαβ = gαβ ∈ M(L). Since G(R,Λ+) is generated by the elements 1 + aeαβ (a ∈

R,α, β ∈ Λ+ with α > β), our claim follows.

Proposition 3.9. Under the above assumptions, we have G(R,Λ+) = M(L) if and only if L

is finite or of order-type 1 + ω∗ or 2 + ω∗.
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Proof. We may assume that L is infinite. Then L is not of order-type 1 +ω∗ or 2 +ω∗ iff

there are α, β ∈ Λ+ such that α > β and {λ ∈ Λ | λ > α} is infinite. First assume the latter.

Let g = 1 + hαβ be a McLain-element of type (α, β). Then by Lemma 3.1, λ ∈ [hαβ ]1 for

each λ > α, so Ahαβ
contains 1 in each λ-row besides at the main diagonal, so Ahαβ

is not

finite. Hence g 6∈ G(R,Λ+).

Now let L be of order-type 1 + ω∗ or 2 + ω∗. In order to show G(R,Λ+) = M(L), let

g = 1+hαβ ∈M(L) be an arbitrary McLain-element obtained from V = Rvα⊕V
−
α ⊕Cα with

α, β ∈ Λ+. Hence Vα ⊃ Vβ ⊃ {0} = min(L). We claim that g ∈ G(R,Λ+). Indeed V hαβ ⊆

V −
α , V −

α hαβ = {0}, and V/V −
α and therefore V hαβ has finite rank. Since {λ ∈ Λ+ | λ ≥ α}

is finite, the matrix Ahαβ
has only finitely many non-zero entries outside the diagonal, hence

g ∈ G(R,Λ+).

4 Relating L and M(L).

In all of this section let R be a ring without zero-divisors and L = {Vλ | λ ∈ Λ} a direct

composition series of a left R-module V . Here we will investigate the relationship between

the structure of L and M(L). First we derive basic properties of McLain-elements.

Lemma 4.1. Let α > β and α > γ. Let u ∈ V ∗
α , v ∈ V ∗

β , w ∈ V ∗
γ , and let 1+hαβ be a McLain-

element of type (α, β) with uhαβ = v, arising from a decomposition V = (Ru ⊕ V −
α ) ⊕ C as

above in Definition 3.5. Let h : V → V be a homomorphism with vh = w. Then 1 + hαβh

is a McLain-element of type (α, γ) arising from the same decomposition of V as hαβ , and

uhαβh = w.

Proof. Trivial.

Lemma 4.2. Let α > β > γ, and let 1+hαβ , 1+hβγ be McLain-elements of type (α, β) resp.

(β, γ). Then 1 + hαβhβγ is a McLain-element of type (α, γ), arising from any decomposition

of V as for hαβ .

Proof. Let u ∈ V ∗
α with V = (Ru ⊕ V −

α ) ⊕ C and v = uhαβ ∈ V ∗
β . Let v′ ∈ V ∗

β with

Vβ = Rv′ ⊕ V −
β and v′hβγ = w ∈ V ∗

γ . Then v = rv′ + w′ for some 0 6= r ∈ R,w′ ∈ V −
β . So

vhβγ = rv′hβγ = rw ∈ V ∗
γ . Lemma 4.1 implies the claim.
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Lemma 4.3. Let α > β, γ > δ and either

(a) γ > β or

(b) β > γ, V = (Ru ⊕ V −
α ) ⊕ C a decomposition for hαβ with uhαβ = v ∈ V ∗

β and V =

(Rw ⊕ V −
γ ) ⊕ C ′ a decomposition for hγδ with v ∈ C ′.

Then hαβhγδ = 0.

Proof. By Vβ ⊆ V −
γ resp. v ∈ C ′ and C ′hγδ = 0.

In all of this section let U be a group such that M(L) ⊆ U ⊆ G(L). The following

‘commutator lemma’ will be very important for us.

Lemma 4.4. Let g = 1 + a ∈ U with g−1 = 1 + a∗. Let ζ > δ in Λ+ and e = 1 + hζδ.

Then the commutator c = [g, e] = 1 − a∗hζδ − (1 + a∗)hζδa, hence

[e, g] = [g, e]−1 = 1 + a∗hζδ + (1 + a∗)hζδa. If also γ > ξ ≥ ζ in Λ+ and f = 1 + hγξ, then

[c, f ] = 1 + hγξa
∗hζδg + hγξhζδa.

Proof. First we recall that a+ a∗ + aa∗ = a∗ + a+ a∗a = 0. Hence

c = [g, e] = g−1e−1ge = (1 + a∗)(1 − hζδ)(1 + a)(1 + hζδ)

= 1 − hζδa+ ahζδ − a∗hζδa+ a∗ahζδ

= 1 − hζδa− a∗hζδa− a∗hζδ = 1 + k.

Using k2 = 0, so k∗ = −k, the formula for [e, g] is clear. Now let γ > ξ ≥ ζ and f = 1 + hγξ.

The formula for [g, e] implies

[c, f ] = 1 + khγξ − (1 − k)hγξk

= 1 − hγξk

= 1 + hγξhζδa+ hγξa
∗hζδa+ hγξa

∗hζδ,

as claimed.

If A ⊆ Λ+ we let A↑= {λ ∈ Λ+ | λ > µ for some µ ∈ A} and we define A↓ dually. Next

we consider particular pairs of subsets of Λ+ which resemble Dedekind cuts in linear orderings

and which will be used to define particular normal subgroups of U .

Definition 4.5. Let A,B ⊆ Λ+. The pair (A,B) is a couple if the following conditions hold:
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(1) A 6= ∅ 6= B,

(2) A > B,

(3) A is closed upwards, i.e. A = A↑, and B is closed downwards, i.e. B = B↓.

We write (A,B) ⊆ (A′, B′) if A ⊆ A′ and B ⊆ B′. Let NA,B = {g ∈ U | [g] ⊆ A×B}, which

we call an order-theoretic normal subgroup of U .

Lemma 4.6. (a) NA,B is an abelian normal subgroup of U .

(b) (A,B) ⊆ (A′, B′) iff NA,B ⊆ NA′,B′

Proof. (a) Let g = 1 + a and h = 1 + b be elements in NA,B . Then gh = 1 + a+ b+ ab

and hg = 1+ a+ b+ ba. We will show that ab = ba = 0. If ab 6= 0, then there is (α, γ) ∈ [ab].

Hence there is β with (α, β) ∈ [a] and (β, γ) ∈ [b], so β ∈ A∩B, a contradiction. Thus g and

h commute. Moreover, gh ∈ NA,B and a2 = 0, so g−1 = 1 − a ∈ NA,B.

Now let k = 1 + u ∈ U with k−1 = 1 + u∗. Then

gk = (1 + u∗)(1 + a)(1 + u) = 1 + a+ u+ u∗ + u∗a+ au+ u∗u+ u∗au

= 1 + a+ u∗a+ au+ u∗au.

Then [u∗a], [au], [u∗au] ⊆ A×B, so gk ∈ NA,B. Hence NA,B is normal in U .

(b) Let (A,B) ⊆ (A′, B′) and let g = 1 + a ∈ NA,B. Then [g] ⊆ A × B ⊆ A′ × B′, so

g ∈ NA′,B′ . Conversely, supposeNA,B ⊆ NA′,B′ . Choose (α, β) ∈ A×B. The McLain-element

g = 1 + hαβ belongs to U , so it satisfies g ∈ NA,B ⊆ NA′,B′ . Hence (α, β) ∈ [g] ⊆ A′ × B′,

showing (A,B) ⊆ (A′, B′).

Subsequently we denote by ⊤ the greatest element of Λ+ and by ⊥ the smallest element

of Λ+, provided they exist.

Lemma 4.7. Let N be an abelian subgroup of U with normalizer containing M(L). Suppose

g = 1 + a, h = 1 + b ∈ N and α > β ≥ γ > δ in Λ+ with (α, β) ∈ [g] and (γ, δ) ∈ [h]. Then

α = ⊤, δ =⊥, and β = γ or β ≻ γ. Consequently, if k ∈ N , then [k] can only contain the

pairs (µ, ν) if µ > β ≥ γ > ν and possibly (⊤, β) or (γ,⊥), possibly (⊤, γ) or (β,⊥) if β ≻ γ,

and possibly either (⊤, ν) if ν ≻ β = γ, or (µ,⊥) if β = γ ≻ µ (but not both).
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Proof. Let g−1 = 1 + a∗ and h−1 = 1 + b∗.

Case 1. Let β > γ. Suppose there is δ′ ∈ Λ+ with δ > δ′. We can choose u ∈ V ∗
α such that

ua ∈ V ∗
β . Since [b] = [b∗] by Lemma 3.2, there is v ∈ V ∗

γ such that vb∗ ∈ V ∗
δ . Choose u′ ∈ V ∗

β ,

v′ ∈ V ∗
δ and w ∈ V ∗

δ′ with Vβ = Ru′⊕V −
β and Vδ = Rv′⊕V −

δ , and write V = Vβ⊕C = Vδ⊕C
′.

Next let f = 1+hβγ and e = 1+hδδ′ be the McLain-elements arising from u′, v, C respectively

v′, w,C ′. By β > γ > δ > δ′ and Lemma 4.4, we have

N ∋ h′ = [[h, e], f ] = 1 + hβγb
∗hδδ′h+ hβγhδδ′b = 1 + b′.

We have ua = ruu
′+u′′ and vb∗ = rvv

′+v′′ with 0 6= ru, rv ∈ R and u′′ ∈ V −
β , v

′′ ∈ V −
δ . Then

uab′ = ruu
′b′ = rurv(w + wb) + ruvhδδ′b ∈ rurvw + V −

δ′ ⊆ V ∗
δ′ . But ub′ ∈ Vδ′ and ub′a ∈ V −

δ′ .

Hence a and b′ do not commute, a contradiction. Hence δ =⊥.

Case 2. Let β = γ. Suppose there is δ′ ∈ Λ+ with δ > δ′. Again [b] = [b∗].

First we show that whenever w ∈ V −
β then wb∗ ∈ Vδ′ . Indeed, otherwise there are

β > β′ > γ′ > δ′ and w ∈ V ∗
β′ with wb∗ ∈ V ∗

γ′ . Then (β′, γ′) ∈ [b∗] = [h] and we get a

contradiction by Case 1.

Now we choose u′ ∈ V ∗
β with Vβ = Ru′ ⊕ V −

β . We claim that u′b∗ ∈ V ∗
δ . Indeed, by

(β, δ) ∈ [b] = [b∗] there is v ∈ V ∗
β with vb∗ ∈ V ∗

δ . Write v = yu′ + v′′ with 0 6= y ∈ R and

v′′ ∈ V −
β . Then vb∗ = yu′b∗ + v′′b∗ ∈ V ∗

δ and v′′b∗ ∈ Vδ′ as shown above. Hence yu′b∗ ∈ V ∗
δ

and our claim follows.

We choose v′ ∈ V ∗
δ and w′ ∈ V ∗

δ′ with Vδ = Rv′ ⊕ V −
δ , and write V = Vδ ⊕ C. Let

e = 1 + hδδ′ be the McLain-element arising from v′, w′, C. By Lemma 4.4 we have

N ∋ h′ = [h, e] = 1 − b∗hδδ′ − (1 + b∗)hδδ′b = 1 + b′.

Now choose u ∈ V ∗
α with ua ∈ V ∗

β . Then ua = xu′ +u′′ for some 0 6= x ∈ R and u′′ ∈ V −
β . By

our first claim, we have u′′b∗ ∈ Vδ′ , and hence u′′b′ ∈ V −
δ′ . By our second claim, u′b∗ = zv′+w′′

for some 0 6= z ∈ R and w′′ ∈ V −
δ . So u′b∗hδδ′ = zw′, hence u′b′ ∈ −zw + V −

δ′ . Thus

uab′ = xu′b′ + u′′b′ ∈ −xzw′ + V −
δ′ ⊆ V ∗

δ′ . But ub′ ∈ Vδ′ and ub′a ∈ V −
δ′ , so a and b′ do not

commute, a contradiction. Hence δ =⊥.

Case 3. Let β > γ. Suppose there is α′ ∈ Λ+ with α′ > α. Since [a] = [a∗], we can

choose u ∈ V ∗
α with ua∗ ∈ V ∗

β and v ∈ V ∗
γ with v′ = vb ∈ V ∗

δ . Write Vβ = Ru′ ⊕ V −
β . Then

ua∗ = ruu
′ + u′′ with 0 6= ru ∈ R and u′′ ∈ V −

β . Since V is torsionless, we can choose a

decomposition V = (Ru′⊕V −
β )⊕C ′ with u ∈ C ′. Next, choose McLain-elements e = 1+hβγ
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arising from u′, v, C ′ and f = 1+hα′α with whα′α = u for some w ∈ V ∗
α′ . Then α′ > α > β > γ

and hα′αhβγ = 0 by Lemma 4.3(b). By Lemma 4.4 we get

N ∋ g′ = [[g, e], f ] = 1 + hα′αa
∗hβγg + hα′αhβγa = 1 + hα′αa

∗hβγ(1 + a) = 1 + a′.

Note that ab = ba, so wa′b = ru(v+ va)b = ru(v
′ + vba) = ru(v

′ + v′a) ∈ V ∗
δ as v′a ∈ V −

δ .

But wb ∈ V −
α′ , so wba′ = 0 and ba′ 6= a′b, a contradiction. So α = ⊤.

Case 4. Let β = γ. Suppose there is α′ ∈ Λ+ with α′ > α. We first show that vb = 0 for

each v ∈ V −
β . Indeed, otherwise there is (β′, δ′) ∈ [b] with α > β > β′ > δ′, so Case 3 yields

α = ⊤.

Choose u ∈ V ∗
α with ua ∈ V ∗

β , and v ∈ V ∗
β with Vβ = Rv ⊕ V −

β . Choose w ∈ V ∗
β with

wb ∈ V ∗
δ . Then w = yv+w′ for some 0 6= y ∈ R and w′ ∈ V −

β . But w′b = 0, so yvb = wb ∈ V ∗
δ

showing vb ∈ V ∗
δ .

Now ua = xv + v′ for some 0 6= x ∈ R and v′ ∈ V −
β . Again v′b = 0, so uab = xvb ∈ V ∗

δ .

Now choose u′ ∈ V ∗
α′ and a McLain-element e = 1 +hα′α with u′hα′α = u. By Lemma 4.4

we obtain

N ∋ g′ = [g, e] = 1 − a∗hα′α − (1 + a∗)hα′αa = 1 + a′.

Then u′ba′ = 0, but u′a′b = −u′hα′αa b = −uab ∈ V ∗
δ , so ba′ 6= a′b, a contradiction. Hence

α = ⊤.

Case 5. There is η ∈ Λ+ with β > η > γ. Again, since [a] = [a∗], we can choose u ∈ V ∗
α

with ua∗ ∈ V ∗
β and v ∈ V ∗

γ with vb ∈ V ∗
δ . Decompose Vβ = Ru′ ⊕ V −

β and Vη = Rw ⊕ V −
η .

Write ua∗ = ruu
′ + u′′ with 0 6= ru ∈ R and u′′ ∈ V −

β . Let e = 1 + hβη and e′ = 1 + hηγ be

McLain-elements such that u′hβη = w and whηγ = v. By Lemma 4.4 then

N ∋ [g, e] = 1 − a∗hβη − (1 + a∗)hβηa = 1 + c and

N ∋ [h, e′] = 1 − b∗hηγ − (1 + b∗)hηγb = 1 + d.

Then ucd = ua∗hβηhηγb = ruvb ∈ V ∗
δ but udc = 0, contradicting that N is abelian. Hence

β > γ implies β ≻ γ.

Finally, the last statement of the lemma is immediate by the preceding one.

Trivially we have 0, V ∈ L. We put L∗ = L \ {0, V }.
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Theorem 4.8. Let L∗ contain no maximal or no minimal element. Then each abelian normal

subgroup N of U is contained in an order-theoretic normal subgroup NA,B.

Proof. If N 6= 1, let A =
⋃

g∈N [g]1 and B =
⋃

h∈N [h]2. By Lemma 3.1, A is closed

upwards. Next we show that B = B↓. Let (α, β) ∈ [g] for some g = 1 + a ∈ N , and

let β > γ. Choose u ∈ V ∗
α and v ∈ V ∗

β with ua∗ = v. Decompose Vβ = Rv′ ⊕ V −
β . Then

v = rv′+v′′ for some 0 6= r ∈ R and v′′ ∈ V −
β . Next choose a McLain-element e = 1+hβγ with

v′hβγ = w ∈ V ∗
γ . Then N ∋ c = [g, e] = 1 + d, and Lemma 4.4 shows that ud ∈ −rw + V −

γ ,

so (α, γ) ∈ [c] and γ ∈ B.

By Lemma 4.7 there are no g, h ∈ N with (α, β) ∈ [g], and (γ, δ) ∈ [h] such that

α > β ≥ γ > δ. It follows that A > B. Hence (A,B) is a couple, since N 6= 1, and N ⊆ NA,B

by construction.

A chain (C,≤) is called Dedekind-complete, if for any non–empty subset A ⊆ C which

has an upper bound in C there exists the supremum (= least upper bound) supA in (C,≤);

equivalently, any non-empty lower bounded subset has an infimum in C. Clearly, since L

is closed under unions and intersections, the chain (L,⊆) and thus also (Λ,≤) is Dedekind-

complete.

For any λ ∈ Λ, let (∞, λ) = {γ ∈ Λ | γ > λ} and (∞, λ] = {γ ∈ Λ | γ ≥ λ}. Similarly, the

intervals (λ,−∞) and [λ,−∞) are defined.

For λ ∈ Λ let Nλ = {g ∈ U | [g]1 > λ ≥ [g]2}. Hence Nλ is an order-theoretic normal

subgroup of U by Lemma 4.6(a).

Let (A,B) be a maximal couple. Since Λ is Dedekind-complete, either A = (∞, λ) ∩ Λ+

and B = [λ,−∞) ∩ Λ+, or A = (∞, λ] ∩ Λ+ and B = (λ,−∞) ∩ Λ+ where λ ∈ Λ. If λ has

a predecessor η, clearly (∞, λ] ∩ Λ+ = (∞, η) ∩ Λ+ and (λ,−∞) ∩ Λ+ = [η,−∞) ∩ Λ+. If λ

has no predecessor, we have λ 6∈ Λ+, hence (∞, λ] ∩ Λ+ = (∞, λ) ∩ Λ+ and (λ,−∞) ∩ Λ+ =

[λ,−∞) ∩ Λ+. Hence we can always write A = (∞, λ) ∩ Λ+ and B = [λ,−∞) ∩ Λ+ for some

λ ∈ Λ, so NA,B = Nλ.

As an immediate consequence of Theorem 4.8 we obtain a group-theoretic characterization

of the order-theoretically defined normal subgroups Nλ.

Corollary 4.9. Let L∗ contain no maximal or no minimal element. Then the maximal

abelian normal subgroups of U are precisely the groups Nλ (λ ∈ Λ).
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Proof. By Theorem 4.8, all maximal abelian normal subgroups of U are of this form.

Conversely, to show that each Nλ is a maximal abelian normal subgroup, apply again Theorem

4.8 and observe that if Nλ ⊆ Nµ, then λ = µ by Lemma 4.6.

The following tool will enable us to recover the order structure of (Λ,≤) via the groups

Nλ.

Lemma 4.10. Let µ, ν, λ ∈ Λ. Then Nµ ∩ Nν ⊆ Nλ if and only if λ lies between µ and ν,

i.e., either µ ≥ λ ≥ ν or ν ≥ λ ≥ µ.

Proof. We may assume that µ ≥ ν. Hence Nµ ∩Nν = N(∞,µ),[ν,−∞). By Lemma 4.6(b),

we have N(∞,µ),[ν,−∞) ⊆ Nλ iff µ ≥ λ ≥ ν.

Now we obtain:

Theorem 4.11. Let L1,L2 be two direct composition series such that L∗
1,L

∗
2 each have either

no maximal or no minimal element. Let M(Li) ⊆ Ui ⊆ G(Li) for i = 1, 2, and assume that

U1
∼= U2. Then the chains (L1,⊆) and (L2,⊆) are either isomorphic or anti-isomorphic.

Proof. Let ϕ : U1 → U2 be the given isomorphism. Then ϕ maps the maximal abelian

normal subgroups of U1 bijectively onto those of U2. Hence, by Corollary 4.9, ϕ induces a

bijection ψ : Λ1 → Λ2 satisfying Nϕ
λ = Nλψ for each λ ∈ Λ1. By Lemma 4.10, ψ and ψ−1

preserve the induced betweenness relations of the chains (Λ1,≤), (Λ2,≤). Thus, ψ : (Λ1,≤

) → (Λ2,≤) is either an order-isomorphism or anti-isomorphism.

5 Bounded composition series

We call a chain (C,≤) bounded, if (C,≤) contains both a greatest and a smallest element,

denoted by maxC respectively minC. Now we investigate the case that Λ+ is bounded. We

write ⊤ = maxΛ+, ⊥= minΛ+. Recall that V −
⊥ = 0 and V⊤ = V . For each λ ∈ Λ+ we fix

decompositions Vλ = Rvλ ⊕ V −
λ with vλ ∈ V ∗

λ . Hence for each µ > ν in Λ+ any McLain-

element h = 1 + hµν determines a unique ring element rµν ∈ R defined by vµhµν ≡ rµνvν

mod V −
ν . We call rµν the ring element associated with hµν . Conversely, for each r ∈ R we

have an associated McLain-element of type (µ, ν) given by hr = 1 + hrµν where vµh
r
µν = rvν
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and (V −
µ ⊕ Cµ)h

r
µν = 0. Furthermore, for each β, γ ∈ Λ+ with β ≻ γ, we have V = Vγ ⊕ Cγ

and vβ = rβvγ + c for some uniquely determined rβ ∈ R and c ∈ V −
γ ⊕ Cγ . Formally we put

rβ = 1 if β = γ.

Lemma 5.1. Observe that V hrµν = Rrvν. Whenever β ≻ γ and t ∈ R, then vβh
t
γ⊥ =

rβvγh
t
γ⊥ = rβtv⊥ = vβh

rβt

β⊥, so vβ(h
t
γ⊥ − h

rβt

β⊥) = 0.

Next show that elements of the type described in Lemma 4.7 can be written in a particular

standard form.

Lemma 5.2. Let ⊤ > β ≥ γ >⊥ in Λ+ such that either β ≻ γ or β = γ, and g ∈ G(L).

Assume that [g] contains at most the pairs (⊤, β), (⊤, γ), (β,⊥), (γ,⊥) and (µ, ν) with µ >

β ≥ γ > ν. Then g can be written in the form

g = 1 + hp⊤β + hq⊤γ + hsβ⊥ + htγ⊥ − h
rβt

β⊥ + a′

with p, q, s, t ∈ R, q = t = 0 if β = γ, and [a′] ⊆ [⊤, β) × (γ,⊥]. Moreover, p, q, s, t and a′ as

above are unique. We have p 6= 0 iff (⊤, β) ∈ [g], and if β ≻ γ, then t 6= 0 iff (γ,⊥) ∈ [g].

Proof. Write g = 1 + a. We have v⊤a = pvβ + v′ for some p ∈ R and v′ ∈ V −
β ⊆ Vγ .

Then v′ = qvγ + v′′ with q ∈ R and v′′ ∈ V −
γ . If β = γ, here clearly q = 0. Then

v⊤a = v⊤(hp⊤β + hq⊤γ) + v′′. Furthermore, since vβa, vγa ∈ V⊥ and V −
⊥ = {0}, we get

vβa = vβh
s
β⊥ and vγa = vγh

t
γ⊥ for some s, t ∈ R. In case β = γ, here we put t = 0. Put

a′ = a− (hp⊤β + hq⊤γ + hsβ⊥ + htγ⊥ − h
rβt

β⊥). We have to show that [a′] ⊆ [⊤, β) × (γ,⊥]. First

let v ∈ V⊤. Then v = zv⊤ + w for some z ∈ R and w ∈ V −
⊤ . By definition of a′, we have

v⊤a
′ = v′′ − v⊤(hsβ⊥ + htγ⊥ − h

rβt

β⊥) ∈ V −
γ and similarly wa′ ∈ wa + V⊥ ⊆ V −

γ by assumption

on [g], so va′ ∈ V −
γ .

If w ∈ Vβ, then w = xvβ + yvγ + w′ for some x, y ∈ R and w′ ∈ V −
γ , letting y = 0 if

β = γ. Then w′a′ = w′a = 0 by assumption on [a]. Furthermore, vγa
′ = vγa − vγh

t
γ⊥ = 0

and vβa
′ = vβa − vβ(h

s
β⊥ + htγ⊥ − h

rβt

β⊥) = 0 by Lemma 5.1. Hence wa′ = 0 and our claim

about [a′] follows. Finally, the uniqueness of p, q, s, t and a′ and the properties of p and t are

easy by considering the action of a on v⊤, vβ and vγ .

Now we consider the commutation behavior of elements having the standard form just

described.

20



Lemma 5.3. Let ⊤ > β ≥ γ >⊥ such that either β ≻ γ or β = γ, and let g, h ∈ G(L).

Assume that [g], [h] contain at most the pairs (⊤, β), (⊤, γ), (β,⊥), (γ,⊥) and (µ, ν) with

µ > β ≥ γ > ν. Choose p, q, s, t ∈ R as in Lemma 5.2 for g and p′, q′, s′, t′ ∈ R for h. Then

(a) g and h commute iff ps′ + qt′ = p′s+ q′t.

(b) h commutes with all M(L)-conjugates gm of g (m ∈M(L)) iff

ps′ + qt′ = p′s+ q′t and pxt′ = −p′xt for each x ∈ R.

(c) Assume (⊤, β), (γ,⊥) ∈ [g] and β ≻ γ. Then g commutes with all its M(L)-conjugates

iff char(R) = 2.

Proof. (a),(b) By Lemma 5.2, write g = 1 + a+ a′ and h = 1 + b+ b′ with

(i) a = hp⊤β + hq⊤γ + hsβ⊥ + htγ⊥ − h
rβt

β⊥,

(ii) b = hp
′

⊤β + hq
′

⊤γ + hs
′

β⊥ + ht
′

γ⊥ − h
rβt

′

β⊥ ,

(iii) [a′], [b′] ⊆ [⊤, β) × (γ,⊥],

(iv) p, q, s, t, p′, q′, s′, t′ ∈ R and q = q′ = t = t′ = 0 if β = γ.

Then aa′ = 0, so g = 1 + a + a′ = (1 + a)(1 + a′) and similarly h = (1 + b)(1 + b′). Let

m = 1 + c ∈ M(L) and m−1 = 1 + c∗. Also, a′b = ba′ = a′b′ = b′a′ = 0, so (1 + a′)m and h

commute and (1 + a)m and 1 + b′ commute. Thus gm and h commute iff (1 + a)m and 1 + b

commute iff m−1amb = bm−1am. We note that hp⊤β(h
t′

γ⊥−h
rβt

′

β⊥ ) = 0 = hp
′

⊤β(h
t
γ⊥−h

rβt

β⊥) both

if β = γ (since t′ = t = 0) and if β ≻ γ (by Lemma 5.1).

We calculate

m−1amb = (1 + c∗)a(1 + c)b = (hp⊤β + hq⊤γ)(1 + c)b

= hp⊤βh
s′

β⊥ + hq⊤γh
t′

γ⊥ + hp⊤βch
t′

γ⊥ = hc

and

bm−1am = b(1 + c∗)a(1 + c) = b(1 + c∗)(hsβ⊥ + htγ⊥ − h
rβt

β⊥)

= hp
′

⊤βh
s
β⊥ + hq

′

⊤γh
t
γ⊥ + hp

′

⊤βc
∗htγ⊥ = kc.

Hence gm and h commute iff hc = kc. Letting c = 0 and applying hc, kc to v⊤, the result of

(a) follows. This also implies (b) in case of β = γ.
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Now let β ≻ γ. To show (b), let x ∈ R and assume g, h commute and gm, h commute,

wherem = 1+hxβγ ,m
−1 = 1−hxβγ . Then ps′+qt′ = p′s+q′t and ps′+qt′+pxt′ = p′s+q′t−p′xt,

hence pxt′ = −p′xt.

Conversely, assume these equalities. To show that h commutes with all conjugates

gm (m ∈M) of g, it suffices to prove that

hp⊤βch
t′

γ⊥ = hp
′

⊤βc
∗htγ⊥ (+)

for all m = 1 + c ∈ M . Let m = 1 + c ∈ M . By Lemma 3.2 we have vβc = −vβc
∗ mod V −

γ

and vβc
∗ = xvγ + v′ for some x ∈ R, v′ ∈ V −

γ . So

v⊤h
p
⊤βch

t′

γ⊥ = pvβch
t′

γ⊥ = −pvβc
∗ht

′

γ⊥ = −pxt′v⊥

= p′xtv⊥ = p′vβc
∗htγ⊥ = v⊤h

p′

⊤βc
∗htγ⊥.

This implies (+).

(c) By Lemma 5.2, we have p 6= 0 6= t, so pt 6= 0 since R has no zero-divisors. Hence, by (b),

g commutes with all its conjugates iff pxt = −pxt for each x ∈ R iff char(R) = 2.

From now on, let R be commutative. Let p, q, s, t, p′, q′, s′, t′ ∈ R with p 6= 0 6= t, and

ps′ + qt′ = p′s + q′t and pt′ = p′t. The latter equation holds trivially if t = t′ = 0, and

also in case pt′ = −p′t (cf. Lemma 5.3(b)) and char(R) = 2. Now we solve these two linear

equations in Q(R). Let r = p′

p
= t′

t
∈ Q(R), so p′ = rp, t′ = rt. Hence ps′ + qrt = rps+ q′t,

so p(s′ − rs) = t(q′ − qr), thus s′−rs
t

= q′−qr
p

= z ∈ Q(R) showing s′ = zt+ rs, q′ = zp + rq.

This motivates part (b) of Definition 5.4.

Definition 5.4. (a) Let ξ ∈ Λ+ with ⊤ > ξ >⊥ and p, s ∈ R \ {0}.

Then Dps
ξ =

〈

(1 + a)U | a = hrp⊤ξ + hrsξ⊥, r ∈ Q(R), rp, rs ∈ R
〉

and Nps
ξ = Dps

ξ N[⊤,ξ),(ξ,⊥].

(b) Let ⊤ > β ≻ γ >⊥ in Λ+ and p, q, s, t ∈ R. Then put

Dpqst
βγ = 〈 (1 + a)U | a = hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ + hrtγ⊥ − h

rβrt

β⊥ ,

r, z ∈ Q(R), rp, rt, zp+ rq, zt+ rs ∈ R 〉

and Npqst
βγ = Dpqst

βγ N[⊤,β)(γ,⊥].

Note that Nλ is defined for each λ ∈ Λ, whereas Nps
ξ is only defined for ξ ∈ Λ+ and Npqst

βγ

only if β, γ ∈ Λ+ and β ≻ γ.
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Observe, for instance 1+hp⊤β +hq⊤γ +hsβ⊥ +htγ⊥−h
rβt

β⊥ ∈ Dpqst
βγ and 1+hzp⊤γ +hztβ⊥ ∈ Dpqst

βγ

for any z ∈ R.

Proposition 5.5. Let ⊤ > ξ >⊥ and p, s ∈ R. Then Nps
ξ is an abelian normal subgroup of

U .

Proof. First we claim that Dps
ξ is abelian. Let g = 1 + hrp⊤ξ + hrsξ⊥, h = 1 + hr

′p
⊤ξ + hr

′s
ξ⊥ and

r, r′ ∈ Q(R) with rp, rs, r′p, r′s ∈ R. Then rpr′s = r′prs, so by Lemma 5.3(b), h commutes

with all conjugates of g. Our claim follows. Since g commutes with all elements of N[⊤,ξ),(ξ,⊥],

it follows that Nps
ξ is abelian.

We note that ifEpsξ =
〈

1 + a; a = hrp⊤ξ + hrsξ⊥, r ∈ Q(R), rp, rs ∈ R
〉

, thenNps
ξ = Epsξ N[⊤,ξ)(ξ,⊥].

Indeed, if g = 1 + a with a = hrp⊤ξ + hrsξ⊥ and u = 1 + c ∈ U with u−1 = 1 + c∗, then gu =

(1+a)u = 1+a+ b with b = hrp⊤ξc+ c∗hrsξ⊥, so ab = 0 and gu = (1+a)(1+ b) ∈ Epsξ N[⊤,ξ)(ξ,⊥].

Since the elements of Epsξ commute with those of N[⊤,ξ)(ξ,⊥], we obtain Dps
ξ ⊆ Epsξ N[⊤,ξ)(ξ,⊥]

and our claim. However, this product decomposition is not direct, since Epsξ ∩ N[⊤,ξ)(ξ,⊥]

contains the element (1 + hp⊤ξ + hsξ⊥)(1 + h−p⊤ξ + h−sξ⊥) = 1 + h−ps⊤⊥ 6= 1.

Proposition 5.6. Npqst
βγ is a normal subgroups of U . Moreover, Npqst

βγ is abelian if and only

if char(R) = 2 or p = 0 or t = 0.

Proof. The first statement is clear. Now let char(R) = 2 or p = 0 or t = 0. We show that

Dpqst
βγ is abelian. Let g = 1 + a with a = hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ + hrtγ⊥ − h

rβrt

β⊥ and h = 1 + b

with b = hr
′p

⊤β + hz
′p+r′q

⊤γ + hz
′t+r′s
β⊥ + hr

′t
γ⊥ − h

rβr
′t′

β⊥ and r′, z′ ∈ Q(R). Then rpr′t = r′prt

and rp(z′t + r′s) + (zp + rq)r′t = r′p(zt + rs) + (z′p + r′q)rt. So by Lemma 5.3(b), h

commutes with all conjugates of g. Since g also commutes with all elements of N[⊤,β),(γ,⊥],

it follows that Npqst
βγ is abelian. Conversely, assume Npqst

βγ is abelian and p 6= 0 6= t. Then

g = 1 + hp⊤β + hq⊤γ + hsβ⊥ + htγ⊥ − h
rβt

β⊥ ∈ Npqst
βγ with (⊤, β), (γ,⊥) ∈ [g] by p 6= 0 6= t. Now

Lemma 5.3(c) shows that char(R) = 2.

Similarly as before, we note that if char (R) = 2 and

Epqstβγ = 〈 1 + a; a = hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ + hrtγ⊥ − h
rβrt

β⊥ ,

r, z ∈ Q(R), rp, rt, zp + rq, zt+ rs ∈ R 〉 ,
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then Npqst
βγ = Epqstβγ N[⊤,β)(γ,⊥], and again this product decomposition is not direct, e.g. if

p 6= 0 6= t.

Indeed, consider g = 1 + a ∈ Epqstβγ with a = hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ + hrtγ⊥ − h
rβrt

β⊥ and

u = 1 + c ∈ U with u−1 = 1 + c∗. Then gu = (1 + a)u = 1 + a + b with b = hrp⊤βc +

hzp+rq⊤γ c + c∗(hzt+rsβ⊥ + hrtγ⊥ − h
rβrt

β⊥ ). Then vβc = xvγ + v′ for some x ∈ R and v′ ∈ V −
γ , so

v⊤h
rp
⊤βc = rpvβc = rpxvγ +rpv′ = v⊤h

rpx
⊤γ +rpv′. Since char(R) = 2, we have c∗ = c+ cc∗. So

vβb = vβch
rt
γ⊥ = xvγh

rt
γ⊥ = xrtv⊥ = vβh

xrt
β⊥. Hence b = hrxp⊤γ +hrxtβ⊥+d with [d] ⊆ [⊤, β)×(γ,⊥],

so gu = (1 + hrp⊤β + h
(z+rx)p+rq
⊤γ + h

(z+rx)t+rs
β⊥ + hrtγ⊥ − h

rβrt

β⊥ )(1 + d) ∈ Epqstβγ N[⊤,β),(γ,⊥]. Since

all elements of Epqstβγ commute with those of N[⊤,β),(γ,⊥], we obtain Dpqst
βγ ⊆ Epqstβγ N[⊤,β),(γ,⊥]

and our claim.

Again this decomposition is not direct. If ps + qt 6= 0, let a be as above, with r = 1

and z = 0. Then, using Lemma 5.1, Epqstβγ ∩ N[⊤,β)(γ,⊥] contains (1 + a)2 = 1 + a2 =

1 + hp⊤βh
s
β⊥ + hq⊤γh

t
γ⊥ = 1 + hps+qt⊤⊥ 6= 1.

Now let ps+qt = 0 and consider g =
∏3
i=1(1+ai) with ai = hrip⊤β+hzip+riq

⊤γ +hzit+ris
β⊥ +hritγ⊥−

h
rβrit

β⊥ and r1 = r2 = z2 = z3 = 1, r3 = z1 = 0. Then g ∈ Epqstβγ and
∑

ri =
∑

zi = 0, so
∑

ai =

0. Hence g = 1+
∑

i<j aiaj and, again by Lemma 5.1, aiaj = hrip⊤βh
zjt+rjs
β⊥ +hzip+riq

⊤γ h
rjt

γ⊥ = h
xij

⊤⊥

with xij = (rizj + zirj)pt using ps+ qt = 0. But
∑

i<j xij = 3pt = pt 6= 0, so g = 1+hpt⊤⊥ 6= 1

belongs to Epqstβγ ∩N[⊤,β)(γ,⊥].

The following result is the analogue of Theorem 4.8 for the case that L∗is bounded.

Theorem 5.7. Let L∗ be a bounded series. Let N be an abelian subgroup of U with normalizer

containing M(L). Then N is contained either in some order theoretic normal subgroup Nλ

where λ ∈ Λ, or in some normal subgroup Nps
ξ where ξ ∈ Λ+,⊤ > ξ >⊥ and p, s ∈ R \ {0},

or, provided that char(R) = 2, in some Npqst
βγ where β, γ ∈ Λ+,⊤ > β ≻ γ >⊥ and p, q, s, t ∈

R, p 6= 0 6= t.

Proof. Case 1. First assume that for all g, h ∈ N and α ∈ [g]1, β ∈ [h]2 we have α > β.

Following the proof of Theorem 4.8, we obtain a couple (A,B) such that N ⊆ NA,B. Then

NA,B ⊆ Nξ for some ξ ∈ Λ.

Case 2. Assume that there are g, h ∈ N with (⊤, ξ) ∈ [g] and (ξ,⊥) ∈ [h], but for each

k ∈ N , if ξ ≻ γ then (γ,⊥) 6∈ [k] and if ν ≻ ξ then (⊤, ν) 6∈ [k]. We will eventually show

that N ⊆ Nps
ξ for some p, s ∈ R \ {0}.

Let k = 1 + c ∈ N . By Lemma 4.7, [k], [g], [h] can only contain the pairs (⊤, ξ), (ξ,⊥)

and (µ, ν) with µ > ξ > ν. Let g = 1 + a and h = 1 + b. We may assume that g was chosen
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such that also (ξ,⊥) ∈ [g]. Indeed, suppose (ξ,⊥) 6∈ [g]. If (⊤, ξ) ∈ [h], replace g by h. Now

let (⊤, ξ) /∈ [h]. Since (⊤, ξ) ∈ [a], there is v ∈ V ∗
⊤ with va ∈ V ∗

ξ . Then vh = v + vb and

vb ∈ V −
ξ , vba = 0 by the assumption on [h] and [g]. Hence vha = va ∈ V ∗

ξ and (⊤, ξ) ∈ [ha].

Similarly (ξ,⊥) ∈ [bg] and we replace g by hg.

Hence, by Lemma 5.2 we have

• a = hp⊤ξ + hsξ⊥ + a′,

• c = hp
′

⊤ξ + hs
′

ξ⊥ + c′,

• [a′], [c′] ⊆ [⊤, ξ) × (ξ,⊥],

• p, s, p′, s′ ∈ R and p 6= 0 6= s by (⊤, ξ), (ξ,⊥) ∈ [g]

Now Lemma 5.3(a) implies ps′ = p′s, so p′

p
= s′

s
in Q(R). Then k′ = 1 + hp

′

⊤ξ + hs
′

ξ⊥ ∈ Dps
ξ ,

showing k = 1 + c = k′(1 + c′) ∈ Nps
ξ and so N ⊆ Nps

ξ .

Case 3. Finally, by Lemma 4.7, it remains to consider the case that there are g, h ∈ N

with (⊤, β) ∈ [g], (γ,⊥) ∈ [h] and ⊤ > β ≻ γ >⊥. We will show that N ⊆ Npqst
βγ for some

p, q, s, t ∈ R.

Let k ∈ N . Lemma 4.7 implies that [k], [g], [h] each can only contain the pairs (⊤, β), (⊤, γ), (β,⊥

), (γ,⊥) and (µ, ν) with µ > β ≻ γ > ν. We may assume that g was chosen such that

also (γ,⊥) ∈ [g]. Indeed, suppose that (γ,⊥) 6∈ [g]. If (⊤, β) ∈ [h], replace g by h. If

(⊤, β) /∈ [h], clearly, as before, (⊤, β), (γ,⊥) ∈ [hg] and we replace g by hg. Now, by Lemma

5.2 write g = 1 + hp⊤β + hq⊤γ + hsβ⊥ + htγ⊥ − h
rβt

β⊥ + a′ where p, q, s, t ∈ R, p 6= 0 6= t and

[a′] ⊆ [⊤, β) × (γ,⊥]. Since g commutes with all its conjugates, by Lemma 5.3(c) we have

char(R) = 2. We claim that k ∈ Npqst
βγ . By Lemma 5.2 we can write k in the form k = 1+c+c′

with c = hp
′

⊤β +hq
′

⊤γ +hs
′

β⊥ +ht
′

γ⊥ −h
rβt

′

β⊥ where p′, q′, s′, t′ ∈ R and [c′] ⊆ [⊤, β)× (γ,⊥]. Then

k = (1+c)(1+c′) and 1+c′ ∈ N[⊤,β)(γ,⊥], so it remains to show that 1+c ∈ Dpqst
βγ . By Lemma

5.3(b) we have pt′ = p′t and ps′ + qt′ = p′s + q′t, and the calculations before Definition 5.4

show that p′ = rp, t′ = rt, s′ = zt+rs, q′ = zp+rq for some r, z ∈ Q(R). Hence 1+c ∈ Dpqst
βγ ,

showing N ⊆ Npqst
βγ .

Next we show that any two of the normal subgroups Nλ, N
ps
ξ , N

pqst
βγ cannot be contained

in each other.
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Lemma 5.8. Let ⊤ > {ξ, ξ′} >⊥ and p, s, p′, s′ ∈ R \ {0}.

(a) If Nps
ξ ⊆ Np′s′

ξ′ , then ξ = ξ′ and Nps
ξ = Np′s′

ξ . Furthermore Nps
ξ = Np′s′

ξ iff p′

p
= s′

s
.

(b) If λ ∈ Λ, then Nps
ξ 6⊆ Nλ and Nλ 6⊆ Nps

ξ .

Proof. Let g = 1 + hp⊤ξ + hsξ⊥. Then (⊤, ξ), (ξ,⊥) ∈ [g].

(a) Clearly g ∈ Nps
ξ ⊆ Np′s′

ξ′ , so [g] ⊆ [⊤, ξ′] × [ξ′,⊥] and ξ = ξ′. Also, g ∈ N = Np′s′

ξ , an

abelian normal subgroup, and for this situation it was shown in the proof of Theorem 5.7, case

2, that N ⊆ Nps
ξ and ps′ = p′s. Conversely, if ps′ = p′s we have Epsξ = Ep

′s′

ξ and therefore

Nps
ξ = Np′s′

ξ . (This could also be proved by elementary calculations using the definition of

Nps
ξ .)

(b) Again g ∈ Nps
ξ \ Nλ. If λ ≥ ξ, then h = 1 + hp⊤λ ∈ Nλ and suppose h ∈ Nps

ξ . Then

λ = ξ and h = 1 + hrp⊤ξ + hrsξ⊥ + a′ for some r ∈ Q(R) and [a′] ⊆ [⊤, ξ) × (ξ,⊥]. Then a′ = 0

and r = 1, but hsξ⊥ 6= 0 by s 6= 0, a contradiction. If ξ > λ, then h = 1 + hsξ⊥ ∈ Nλ, and if

h ∈ Nps
ξ , we obtain a contradiction as before.

Lemma 5.9. Assume char(R) = 2. Let ⊤ > β ≻ γ >⊥,⊤ > β′ ≻ γ′ >⊥ and

p, q, s, t, p′, q′, s′, t′ ∈ R with p 6= 0 6= t, p′ 6= 0 6= t′.

(a) If Npqst
βγ ⊆ Np′q′s′t′

β′γ′ , then β = β′, γ = γ′ and Npqst
βγ = Np′q′s′t′

βγ . Furthermore, Npqst
βγ =

Np′q′s′t′

βγ iff there are some uniquely determined r, z ∈ Q(R) with p′ = rp, t′ = rt, s′ =

zt+ rs, q′ = zp + rq.

(b) If λ ∈ Λ, then Npqst
βγ 6⊆ Nλ and Nλ 6⊆ Npqst

βγ .

(c) If ξ ∈ Λ+ and p′ 6= 0 6= s′, then Npqst
βγ 6⊆ Np′s′

ξ and Np′s′

ξ 6⊆ Npqst
βγ .

Proof. Let g = 1 + hp⊤β + hq⊤γ + hsβ⊥ + htγ⊥ − h
rβt

β⊥.

(a) Clearly g ∈ Npqst
βγ ⊆ Np′q′s′t′

β′γ′ , so [g] ⊆ [⊤, γ′] × [β′,⊥]. Since (⊤, β), (γ,⊥) ∈ [g], we

obtain β′ ≥ β and γ ≥ γ′. Since β ≻ γ and β′ ≻ γ′, we get β = β′ and γ = γ′. Also,

g ∈ N = Np′q′s′t′

βγ , an abelian normal subgroup, and for this situation it was shown in the

proof of Theorem 5.7, case 3, that N ⊆ Npqst
βγ and p′ = rp, t′ = rt, s′ = zt+rs, q′ = zp+rq for

some r, z ∈ Q(R). Hence r = p′

p
and z = s′−rs

t
. Conversely, if r, z ∈ Q(R) and p′ = rp, t′ =

rt, s′ = zt+ rs, q′ = zp+ rq, we have Epqstβγ = Ep
′q′s′t′

βγ and therefore Npqst
βγ = Np′q′s′t′

βγ .

(b) Since (⊤, β), (γ,⊥) ∈ [g], we have g ∈ Npqst
βγ \Nλ. First let λ ≥ γ. Then h = 1+hp⊤γ ∈ Nλ,

and we claim h 6∈ Npqst
βγ . Indeed, otherwise we would obtain h = 1 + hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ +

hrtγ⊥−h
rβrt

β⊥ +a′ for some r, z ∈ Q(R) and [a′] ⊆ [⊤, β)× (γ,⊥]. Then a′ = 0 and r = 0, z = 1,

but htβ⊥ 6= 0 by t 6= 0, a contradiction. Now let γ > λ. Then h = 1 + htβ⊥ ∈ Nλ, and if
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h ∈ Npqst
βγ , we obtain a contradiction as before.

(c) Again, g ∈ Npqst
βγ \ Np′s′

ξ . If ξ ≥ β, then 1 + hp
′

⊤γ ∈ Np′s′

ξ \ Npqst
βγ as in (b). If γ ≥ ξ,

consider h = 1 + hp
′

⊤ξ + hs
′

ξ⊥ ∈ Np′s′

ξ . If γ > ξ, clearly h /∈ Npqst
βγ . Now let ξ = γ, and suppose

h ∈ Npqst
βγ . Then h = 1 + hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ + hrtγ⊥ − h

rβrt

β⊥ + a′ for some r, z ∈ Q(R)

and [a′] ⊆ [⊤, β) × (γ,⊥]. Then r = 0, but hs
′

ξ⊥ = hrtγ⊥ implies 0 6= s′ = rt and r 6= 0, a

contradiction.

Now we can prove the analogue of Corollary 4.9.

Corollary 5.10. Let L∗ be bounded. Then the maximal abelian normal subgroups of U are

precisely the groups Nλ (λ ∈ Λ), Nps
ξ (ξ ∈ Λ+, p, s ∈ R \ {0}) and, provided that char(R) = 2,

Npqst
βγ (β, γ ∈ Λ+, β ≻ γ, p, q, s, t ∈ R, p 6= 0 6= t).

Proof. Straightforward by Theorem 5.7 and Lemmas 4.6(b), 5.8, 5.9.

Hence, in comparison with the situation of Corollary 4.9 here we have obtained ‘new’

maximal abelian normal subgroups. Next we consider intersections of these groups in order

to ultimately obtain normal subgroups which determine the elements of Λ+ and thereby the

order relation of the chain (Λ+,≤).

Lemma 5.11. Let ⊤ > ξ ≥ ξ′ >⊥ and p, s, p′, s′ ∈ R \ {0} with Nps
ξ 6= Np′s′

ξ′ . Then:

(a) Nps
ξ ∩Np′s′

ξ′ = N[⊤,ξ),(ξ′,⊥].

(b) For any λ ∈ Λ, we have Nps
ξ ∩Nλ =







N[⊤,ξ),[λ,⊥] if ξ > λ,

N[⊤,λ),(ξ,⊥] if λ ≥ ξ.

Proof. (a) Each element g ∈ Nps
ξ ∩Np′s′

ξ′ can be written in the form

g = 1 + hrp⊤ξ + hrsξ⊥ + a = 1 + hr
′p′

⊤ξ′ + hr
′s′

ξ′⊥ + a′

with r, r′ ∈ Q(R) and [a] ⊆ [⊤, ξ)× (ξ,⊥], [a′] ⊆ [⊤, ξ′)× (ξ′,⊥]. If ξ > ξ′, r 6= 0 would imply

(⊤, ξ) ∈ [g], and r′ 6= 0 would imply (ξ′,⊥) ∈ [g], giving in both cases a contradiction. Hence

r = r′ = 0 and a = a′, so g ∈ N[⊤,ξ),(ξ′,⊥]. Now let ξ = ξ′. Then rp = r′p′ and rs = r′s′. Now

if, say, r 6= 0, then r′ 6= 0 and p = r−1r′p′, p′ = (r′)−1rp and similarly for s, s′, showing that

Dps
ξ = Dp′s′

ξ , a contradiction. So r = r′ = 0 and g = 1 + a ∈ N[⊤,ξ),(ξ,⊥] as required. The

converse inclusion is immediate by Lemma 4.6(b).
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(b) Again, if g = 1 + hrp⊤ξ + hrsξ⊥ + a ∈ Nps
ξ ∩Nλ, we obtain r = 0. Then [a] ⊆ ([⊤, ξ) × (ξ,⊥

]) ∩ ([⊤, λ) × [λ,⊥]), which implies the inclusions from left to right. The converse is again

immediate.

If β, γ ∈ Λ+ with β ≻ γ and p, t ∈ R \ {0}, let

Npt
βγ =

〈

1 + hzp⊤γ + hztβ⊥ : z ∈ Q(R), zp, zt ∈ R
〉

N[⊤,β)(γ,⊥].

Lemma 5.12. Let char(R) = 2. Let ⊤ > β ≻ γ >⊥,⊤ > β′ ≻ γ′ >⊥, β ≥ β′, and

p, q, s, t, p′, q′, s′, t′ ∈ R with p 6= 0 6= t, p′ 6= 0 6= t′ and Npqst
βγ 6= Np′q′s′t′

β′γ′ .

(a)

Npqst
βγ ∩Np′q′s′t′

β′γ′ =







N[⊤,β)(γ′,⊥] if β > β′ or if β = β′ and pt′ 6= p′t

Npt
βγ if β = β′ and pt′ = p′t

(b) For any λ ∈ Λ, we have

Npqst
βγ ∩Nλ =



















N[⊤,β)[λ,⊥] if γ > λ

Npt
βγ if γ = λ

N[⊤,λ)(γ,⊥] if λ ≥ β

(c) For any ξ ∈ Λ+ and p′, s′ ∈ R \ {0}, we have

Npqst
βγ ∩Np′s′

ξ =







N[⊤,β)(ξ,⊥] if γ ≥ ξ

N[⊤,ξ)(γ,⊥] if ξ ≥ β

Proof. (a) Clearly, N[⊤,β)(γ′,⊥] is contained in the left hand side of (a). For the second

case, let β = β′ and pt′ = p′t, then γ = γ′ and

〈

1 + hzp⊤γ + hztβ⊥ | z ∈ Q(R), zp, zt ∈ R
〉

=
〈

1 + hz
′p′

⊤γ′ + hz
′t′

β′⊥ | z′ ∈ Q(R), z′p′, z′t′ ∈ R
〉

⊆ Epqstβγ ∩ Ep
′q′s′t′

βγ .

Now let g ∈ Npqst
βγ ∩ Np′q′s′t′

β′γ′ . So g = 1 + hrp⊤β + hzp+rq⊤γ + hzt+rsβ⊥ + hrtγ⊥ − h
rβrt

β⊥ + a =

1+hr
′p′

⊤β′ +hz
′p′+r′q′

⊤γ′ +hz
′t′+r′s′

β′⊥ +hr
′t′

γ′⊥−h
rβ′r′t′

β′⊥ +a′ with r, z, r′, z′ ∈ Q(R), [a] ⊆ [⊤, β)× (γ,⊥]
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and [a′] ⊆ [⊤, β′) × (γ′,⊥]. First assume β > β′. Clearly r = r′ = 0 by considering the

action of g on v⊤ and vγ′ . Again by the action of g on v⊤ and vβ′ , we get z = z′ = 0. So

g = 1 + a = 1 + a′ ∈ N[⊤,β)(γ′,⊥]. Secondly, let β = β′. Then r 6= 0 iff r′ 6= 0, and in this

case, (⊤, β), (γ,⊥) ∈ [g], and by the proof of Theorem 5.7, case 3, we get Npqst
βγ = Np′q′s′t′

βγ ,

a contradiction. Hence r = r′ = 0. Thus zp = z′p′ and zt = z′t′. So z′(pt′ − p′t) = 0. Now

if pt′ 6= p′t, then z = z′ = 0 and again g = 1 + a = 1 + a′ ∈ N[⊤,β)(γ,⊥]. If pt′ = p′t, then

g = (1 + hzp⊤γ + hztβ⊥)(1 + a) ∈ Npt
βγ is as required.

(b) Again, the right-to-left inclusions are clear. Let g ∈ Npqst
βγ ∩ Nλ. Then g = 1 + hrp⊤β +

hzp+rq⊤γ +hzt+rsβ⊥ +hrtγ⊥−h
rβrt

β⊥ +a with r, z ∈ Q(R), [a] ⊆ [⊤, β)×(γ,⊥] and [g] ⊆ [⊤, λ)× [λ,⊥].

By the latter property of [g], we get r = 0. If z 6= 0 then β ∈ [g]1, γ ∈ [g]2, so γ = λ, and

g ∈ Npt
βγ is as required. If z = 0, then we have g = 1 + a, and the result follows.

(c) Let g belong to the normal subgroups on the left hand side, so g = 1 + hrp⊤β + hzp+rq⊤γ +

hzt+rsβ⊥ + hrtγ⊥ − h
rβrt

β⊥ + a = 1 + hr
′p′

⊤ξ + hr
′s′

ξ⊥ + a′ with r, z, r′ ∈ Q(R), [a] ⊆ [⊤, β) × (γ,⊥]

and [a′] ⊆ [⊤, ξ) × (ξ,⊥]. Then the second equation for g prohibits (⊤, β), (γ,⊥) ∈ [g], so

r = 0. If r′ 6= 0, then (⊤, ξ), (ξ,⊥) ∈ [g] by the second equation for g. If (⊤, ξ) ∈ [a], then

γ > ξ contradicting (ξ,⊥) ∈ [g]. Thus (⊤, ξ) 6∈ [a] and ξ = γ which implies (γ,⊥) ∈ [g], a

contradiction. Hence r′ = 0. Then [g] = [a′], so z 6= 0 would imply β > ξ > γ, a contradiction.

Hence g = 1+a = 1+a′ belongs to the normal subgroup on the right hand side. The converse

is clear again.

These results will be utilized in the following section.

6 Arbitrary composition series

Let R be a domain, L be any direct composition series of the left R-module V, and let

M(L) ⊆ U ⊆ G(L). Here we will prove that U determines the chain (L,⊆) up to isomorphism

or anti-isomorphism also it L is bounded. For this, we further investigate the abelian normal

subgroups of U .

Definition 6.1. (a) We call a normal subgroup N of U an intersection group, if N =

N1 ∩N2 for two maximal abelian normal subgroups N1, N2 of U with N1 6= N2.

(b) An intersection group N is maximal, if there is no intersection group N ′ with N ( N ′.

(c) If λ ∈ Λ+, let N−
λ = N(∞,λ)(λ,−∞).
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Note that, if λ ∈ Λ+, then N−
λ ( Nλ.

Proposition 6.2. Let L∗ have either no maximal or no minimal element. Then the maximal

intersection groups of U are precisely the groups N−
λ (λ ∈ Λ+). For each λ ∈ Λ+, N−

λ =

Nλ∩Nρ, where ρ ∈ Λ satisfies λ ≻ ρ, and this is the unique way to write N−
λ as intersection

of two maximal abelian normal subgroups.

Proof. If λ > ν > ρ in Λ, then Nλ ∩ Nρ = N(−∞,λ)∩[ρ,∞) ( Nλ ∩ Nν , hence Nλ ∩ Nρ is

not maximal. If λ ≻ ρ in Λ, then λ ∈ Λ+ and Nλ ∩ Nρ = N−
λ . Clearly N−

λ is a maximal

intersection group by Lemma 4.6, and the uniqueness part is clear.

Note that each interval (∞, β] in Λ contains µ, ν ∈ Λ with ∞ > µ ≻ ν ≥ β; hence µ ∈ Λ+

but either of ν ∈ Λ+ and ν /∈ Λ+ could be possible. So, U has ‘many’ maximal intersection

groups.

Corollary 6.3. The maximal intersection groups are precisely the groups of the form N−
λ (λ ∈

Λ+) or, provided that L∗ is bounded and char(R) = 2, Npt
βγ (β ≻ γ, p, t ∈ R \ {0}).

Proof. If L∗ is not bounded, the result follows from Proposition 6.2. Now let L∗ be

bounded and λ ∈ Λ+. By Lemma 5.11(b) we have N−
λ = N1,1

λ ∩ Nλ. Also, if char(R) = 2,

β ≻ γ and p, t ∈ R\{0}, then Npt
βγ = Np,0,0,t

βγ ∩Nγ by Lemma 5.12(b). Hence, the description

of the maximal abelian normal subgroups of U given by Corollary 5.10 and by Lemma 5.8(b)

respectively 5.9(b), N−
λ and Npt

βγ are intersection groups.

Now let N be an intersection group, so N = N1 ∩ N2 for two different maximal abelian

normal subgroupsN1, N2 of U . We distinguish between several cases. First letN1 = Nµ, N2 =

Nν for some µ, ν ∈ Λ with, say, µ > ν. Choose λ ∈ Λ+ with µ ≥ λ > ν. Then N = Nµ∩Nν ⊆

N−
λ .

Next assume that N1 = Nps
ξ and N2 = Np′s′

ξ′ for some ξ, ξ′ ∈ Λ+ and p, s, p′, s′ ∈ R \ {0}.

By Lemma 5.11(a), we have N = Nps
ξ ∩ Np′s′

ξ′ ⊆ N−
ξ and N ⊆ N−

ξ′ . Now let N2 = Nλ for

some λ ∈ Λ. Then by Lemma 5.11(b) we obtain again N = Nps
ξ ∩Nλ ⊆ N−

ξ .

Finally, let char(R) = 2 and suppose that N1 = Npqst
βγ for some β ≻ γ and p, q, s, t ∈ R

with p 6= 0 6= t. Then by Lemma 5.12 we obtain that N = Npqst
βγ ∩ N2 is either contained

in N[⊤,β)(γ,⊥] ⊆ N−
β or equals Npt

βγ . Hence in any case N is either contained in some N−
λ or

equals some Npt
βγ .
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Now note that clearly N−
λ ⊆ N−

u implies λ = µ. Also, never N−
λ ⊆ Npt

βγ . Indeed, if λ ≥ β,

then 1+hp⊤γ ∈ N−
λ \Npt

βγ , and if γ ≥ λ, then 1+htβ⊥ ∈ N−
λ \Npt

βγ . Also, never Npt
βγ ⊆ N−

λ since

1 + hp⊤γ + htβ⊥ ∈ Npt
βγ \N

−
λ . Finally, if Npt

βγ ⊆ Np′t′

β′γ′ , we obtain β = β′, γ = γ′ and pt′ = p′t

as before by Lemma 5.3(b), so Npt
βγ = Np′t′

βγ . Consequently, by the above, it is clear that the

groups N−
λ (λ ∈ Λ+) and Npt

βγ (β ≻ γ, p, t ∈ R \ {0}) constitute all maximal intersection

groups.

Lemma 6.4. Let µi ∈ Λ+ (i = 1, 2, 3) be pairwise different and let Ni = N−
µi

(i = 1, 2, 3).

Then N1 ∩N2 ⊆ N3 iff µ3 lies between µ1 and µ2

Proof. As for Lemma 4.10.

Now we obtain:

Theorem 6.5. Let L1,L2 be two composition series such that L∗
1 is bounded, and let char(R) 6=

2. Let M(Li) ⊆ Ui ⊆ G(Li) for i = 1, 2, and assume that U1
∼= U2. Then the chains (L1,⊆)

and (L2,⊆) are either isomorphic or anti-isomorphic.

Proof. Let ϕ : U1 → U2 be the given isomorphism. Then ϕ maps the maximal intersection

groups of U1 bijectively onto those of U2. By Corollary 6.3, U1 has maximal intersection

groups N−
λ (λ ∈ Λ+) which can be expressed by Lemma 5.11 (b) in (at least) two ways,

N−
λ = Nλ ∩Nρ where λ ≻ ρ and N−

λ = N1,1
λ ∩ Nλ, as intersection of two maximal abelian

normal subgroups. By Proposition 6.2, this is impossible for U2 if L∗
2 has either no maximal

or no minimal element. Thus L∗
2 is also bounded. Since char(R) 6= 2, by Corollary 6.3, ϕ

induces a bijection ψ : Λ+
1 → Λ+

2 satisfying (N−
λ )ϕ = N−

λψ for each λ ∈ Λ+
1 . By Lemma 6.4,

ψ and ψ−1 preserve the induced betweenness relations of the chains (Λ+
1 ,≤) and (Λ+

2 ,≤).

Thus ψ : (Λ+
1 ,≤) → (Λ+

2 ,≤) is either an order-isomorphism or anti-isomorphism.

In the first case, ψ clearly extends to an order-isomorphism from (Λ1,≤) onto (Λ2,≤).

Now assume that ψ is an anti-isomorphism. Let λ ∈ Λ+
1 . We define the component

Cλ of λ to be the set of all µ ∈ Λ1 such that the interval between λ and µ is finite. This

component is either finite or isomorphic to ω or ω∗ or Z. On each such component C we

proceed as follows. If C ∼= Z, we let π be the mapping ψ on C. Now assume C contains a

smallest element γ. Then γ /∈ Λ+
1 . Choose β ∈ Λ+

1 with β ≻ γ. Note that C = Cβ . Then

β′ = βψ ∈ Λ+
2 . The goal is to use ψ to construct an anti-isomorphism π : Cβ → Cβ′ . First,
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there is no α′ ∈ Λ+
2 with α′ ≻ β′. For, otherwise α = α′ψ−1 ∈ Λ+

1 would satisfy β ≻ α,

hence γ = α ∈ Λ+
1 , a contradiction. So, β′ is the largest element of its component in Λ2.

Choose γ′ ∈ Λ2 with β′ ≻ γ′. Now define π : Cβ → Cβ′ by putting γπ = β′ and βπ = γ′.

If γ′ /∈ Λ+
2 , we have Cβ′ = {β′, γ′} and Cβ = {β, γ}. For if there was α ∈ Λ+

1 with α ≻ β,

then α′ = αψ ∈ Λ+
2 would satisfy β′ ≻ α′, so α′ = β′, a contradiction. Similarly, if γ′ ∈ Λ+

2

then α = γ′ψ−1 ∈ Λ+
1 and α ≻ β, and we put απ = γ′. Continuing in this way, we obtain an

anti-isomorphism π : Cβ → Cβ′ . If C contains a largest element, we argue dually.

Now the only elements of Λ1 which do not belong to some component are those λ ∈ Λ1 for

which no µ ∈ Λ1 satisfies µ ≻ λ or λ ≻ µ. But then Aλ = [⊤, λ) ∩ Λ+
1 and Bλ = (λ,⊥] ∩ Λ+

1

satisfy inf Aλ = λ = supBλ, so we can put λπ = sup(Aλπ) = inf(Bλπ) using that Λ2 is

Dedekind-complete. In total, π : Λ1 → Λ2 provides the required anti-isomorphism.

Assume ψ : Λ1 −→ Λ2 is an anti-isomorphism satisfying Λ+
1 ψ = Λ+

2 . We claim that then

for any µ, ν ∈ Λ1 with µ ≻ ν there are α, β ∈ Λ1 with α ≻ µ ≻ ν ≻ β. Indeed, we have

ν ′ = νψ ≻ µψ = µ′ in Λ2. Hence ν ′ ∈ Λ+
2 which implies ν ∈ Λ+

1 and the existence of β.

Also, µ ∈ Λ+
1 , so µ′ ∈ Λ+

2 and µ′ ≻ α′ for some α′ ∈ Λ2. Then α = α′ψ−1 ∈ Λ1 with α ≻ µ.

By Theorems 4.11 and 6.5, the case remains where L∗
1 is bounded and char(R) = 2. For

this, we will investigate intersections of intersection groups.

Definition 6.6. (a) We call a normal subgroup N of U an intersection group of order 2, if

N = N1 ∩N2 for two maximal intersection groups N1, N2 of U with N1 6= N2.

(b) An intersection group N of order 2 is maximal if there is no intersection group N ′ of

order 2 with N ( N ′.

Let Λ++ = {β ∈ Λ+ | β ≻ γ for some γ ∈ Λ+}. Note that possibly Λ++ is empty. If

β ∈ Λ++ and β ≻ γ, we let N−−
β = N(∞,β)(γ,−∞).

Proposition 6.7. Let L be any chain. The maximal intersection groups of order 2 are

precisely the groups N−−
β (β ∈ Λ++).

Proof. Let β, γ ∈ Λ+ with β ≻ γ. Then N−−
β = N−

β ∩ N−
γ is an intersection group of

order 2.

Now let N be a maximal intersection group of order 2, so N = N1 ∩N2 for two different

maximal intersection groups N1, N2. First let N1 = N−
β and N2 = N−

γ with β, γ ∈ Λ+
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and β > γ. If there is δ ∈ Λ with β > δ > γ, there is λ ∈ Λ+ with δ ≥ λ > γ. So

N = N−
β ∩N−

γ ( N−
β ∩N−

λ , contradicting the maximality of N . Hence β ≻ γ and N = N−−
β

as required.

Now, by Corollary 6.3, we may assume that L∗ is bounded, char(R) = 2 and N1 = Npt
βγ

with β, γ ∈ Λ+, β ≻ γ and p, t ∈ R \ {0}. Assume that N2 = N−
λ for some λ ∈ Λ+ with

λ ≻ ρ, say. By Lemma 5.12(b), we obtain

N = Npt
βγ ∩N

−
λ = Np,0,0,t

βγ ∩Nγ ∩Nλ ∩Nρ =







N[⊤,β)(λ,⊥] if γ ≥ λ

N[⊤,λ)(γ,⊥] if λ ≥ β

Hence the maximality of N implies either λ = γ or λ = β, so N = N−−
β .

Finally, let N2 = Np′t′

β′γ′ with β′, γ′ ∈ Λ+, β′ ≻ γ′ and p′, t′ ∈ R \ {0}. We may assume

β ≥ β′. If γ ≥ β′, Lemma 5.12(b) implies

N = Npt
βγ ∩N

p′t′

β′γ′ = Np,0,0,t
βγ ∩Nγ ∩N

p′,0,0,t′

β′γ′ ∩Nγ′

= N[⊤,β)(γ′,⊥] ∩N[⊤,γ)(γ′,⊥] = N[⊤,β)(γ′,⊥] ( N−−
β ,

a contradiction. Hence β = β′. Now, pt′ = p′t would imply

〈

1 + hzp⊤γ + hztβ⊥ | z ∈ Q(R), zp, zt ∈ R
〉

=
〈

1 + hzp
′

⊤γ + hzt
′

β⊥ | z ∈ Q(R), zp′, zt′ ∈ R
〉

,

contradicting the assumption N1 6= N2. Hence pt′ 6= p′t. If p 6= t, we have Np,0,0,t
βγ 6= Np,1,1,t

βγ

by Lemma 5.9 (a) and so Npt
βγ = Np,0,0,t

βγ ∩ Np,1,1,t
βγ by Lemma 5.12 (a). If p = t, we have

Np,0,0,t
βγ 6= Np,1,0,t

βγ by Lemma 5.9 (a) and so Npt
βγ = Np,0,0,t

βγ ∩Np,1,0,t
βγ by Lemma 5.12 (a). The

same argument applies to Np′t′

βγ . Putting these intersections together, by Lemma 5.12 (a) we

obtain N = N[⊤,β)(γ,⊥] = N−−
β , as required.

Hence all maximal intersection groups of order 2 are of the form N−−
β with β ∈ Λ++. By

Lemma 4.6, it is clear that these groups N−−
β are maximal of order 2.

We have obtained in the course of the proof that each maximal intersection group N−−
β

can be obtained only in one of the following ways:

• N−−
β = N−

β ∩N−
γ ,

• N−−
β = Npt

βγ ∩N
−
β or N−−

β = Npt
βγ ∩N

−
γ , or
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• N−−
β = Npt

βγ ∩N
p′t′

βγ with pt′ 6= p′t and p, t, p′, t′ ∈ R \ {0},

in each case with β, γ ∈ Λ+ such that β ≻ γ. Hence, if ν ∈ Λ+, and N−
ν contains a maximal

intersection group of order 2, this group can only be N−−
ν if ν ∈ Λ++, or N−−

µ where µ ≻ ν.

Similarly, Npt
βγ can only contain N−−

β .

In other words: Let Λ0 = {β ∈ Λ+ \ Λ++: there is no λ ∈ Λ with λ ≻ β}. Observe that

possibly Λ0 is empty. If β, γ ∈ Λ+ with β ≻ γ (then γ /∈ Λ0, and possibly γ ∈ Λ+ \Λ++, i.e.

γ ≻ δ with δ ∈ Λ \ Λ+), then both N−
β and N−

γ contain N−−
β . If β ∈ Λ0, then there is N−

β ,

but no N−−
λ with N−−

λ ⊆ N−
β .

Hence the groups N−
β (β ∈ Λ0) are precisely the maximal intersection groups which do

not contain a maximal intersection group of order 2.

Recall that possibly Λ++ = ∅ or Λ0 = ∅. However, Λ++∪Λ0 is dense in Λ. Indeed, since L

is a composition series, for any α, δ ∈ Λ with α > δ, there are β, γ ∈ Λ with α ≥ β ≻ γ ≥ δ.

So β ∈ Λ+. If β /∈ Λ0, either β ∈ Λ++ or there is µ ∈ Λ with α ≥ µ ≻ β. Then µ ∈ Λ++. In

any case, there is µ ∈ Λ++ ∪ Λ0 with α ≥ µ > δ.

Lemma 6.8. Let µi ∈ Λ++∪Λ0 (i = 1, 2, 3) be pairwise different. Let Ni = N−−
µi

if µi ∈ Λ++,

and Ni = N−
µi

if µi ∈ Λ0 (i = 1, 2, 3). Then N1 ∩N2 ⊆ N3 iff µ3 lies between µ1 and µ2.

Proof. Observe that if α, β, γ ∈ Λ+, µ ∈ Λ0 with α > β ≻ γ and N(∞,α)(γ,−∞) ⊆ N−
µ ,

then β 6= µ 6= γ and hence α ≥ µ > β. Now proceed as for Lemma 4.10, with case distinctions

for the different possibilities for each µi.

Now we obtain our final result:

Theorem 6.9. Let L1,L2 be two composition series such that L∗
1 is bounded, and let char(R) =

2. Let M(Li) ⊆ Ui ⊆ G(Li) for i = 1, 2, and assume that U1
∼= U2. Then the chains L1 and

L2 are either isomorphic or anti-isomorphic.

Proof. Let ϕ : U1 −→ U2 be an isomorphism. As shown in the proof of Theorem 6.5, L∗
2

is also bounded. For i = 1, 2, the map ϕ is a bijection from the maximal intersection groups

of order i of U1 onto those of U2, preserving inclusion. By Corollary 6.3, Proposition 6.7

and the above remarks, ϕ induces two bijections ψ1 : Λ0
1 → Λ0

2 and ψ2 : Λ++
1 → Λ++

2 with

N−
λ ϕ = N−

λψ1
for λ ∈ Λ0

1 and N−−
λ ϕ = N−−

λψ2
for λ ∈ Λ++

1 . By Lemma 6.8,

ψ = ψ1 ∪ ψ2 : (Λ++
1 ∪ Λ0

1,≤) → (Λ++
2 ∪ Λ0

2,≤)
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is either an isomorphism or anti-isomorphism. Observe that each element of Λ+
1 \Λ++

1 is the

infimum of a subset of Λ++
1 ∪ Λ0

1. The structure of (Λ1,≤) is hence completely determined

by (Λ++
1 ∪ Λ0

1,≤).

Hence, if ψ is an isomorphism, it extends (uniquely) to an isomorphism of (Λ1,≤) to

(Λ2,≤).

If ψ is an anti-isomorphism, we can argue similarly as in the proof of Theorem 6.5 and

we obtain an anti-isomorphism π from Λ1 onto Λ2.

We note that if in the above proof π : Λ1 −→ Λ2 is an anti-isomorphism, then Λ+
1 π = Λ+

2 .

So the remark after Theorem 6.5 shows that whenever µ ≻ ν in Λ1, there are α, β ∈ Λ1 with

α ≻ µ ≻ ν ≻ β.
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Fachbereich 6, Mathematik und Informatik

Universität Duisburg Essen,

45117 Essen, Germany

e-mail: ruediger.goebel@uni-due.de

36


