
Learning Queries
under

Description Logic Ontologies

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)
im Fachgebiet

Informatik

Vorgelegt

von M. Sc. Maurice Funk

geboren am 10.12.1995 in Bremen

Die Annahme der Dissertation wurde empfohlen von:

 1. Prof. Dr. Carsten Lutz, Universität Leipzig
 2. Prof. Dr. Diego Calvanese, FU Bozen, Italien

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 04.02.2025 mit dem Gesamtprädikat summa cum laude.

Contact address: mfunk@posteo.de

mailto: Maurice Funk <mfunk@posteo.de>

Abstract

This thesis investigates the learnability of conjunctive queries (CQs) under descrip
tion logic (DL) ontologies. We focus on learning in the sense of Angluin’s exact
learning and of probably approximately correct (PAC) learning. In both models,
the learner tries to learn a target query, of which only limited information is made
available. In exact learning, this information is made available by a teacher who
answers certain types of questions truthfully, whereas in PAC learning it is made
available through randomly drawn labeled data examples.

We are then interested in algorithms that the learner can execute to always learn
the target query in polynomial time, even when the information about the target
query is provided with regard to a DL ontology. Our aim is to determine for which
classes of conjunctive queries and for which ontology languages such polynomial
time learning algorithms exist, and which kinds of questions (membership queries
and equivalence queries) are necessary for polynomial time learning in the exact
learning model. For this, we build upon existing results on the exact learnability of
queries without ontologies.

We show that membership queries alone suffice to learn unary acyclic connected
CQs (that correspond to ℰℒℐ concepts) in polynomial time under DL-Liteℋℱ

core
ontologies, if the interaction of functionality constraints and existential restrictions
in the ontology is limited. In contrast, it turns out that an exponential number
of membership queries is required to learn the target query reliably under many
extensions of DL-Liteℋℱ

core, including those that permit conjunctions in concepts
like ℰℒ𝑟.

Furthermore, we consider teachers that answer both membership queries and
equivalence queries, and show that chordal and symmetry-free CQs (and relevant
subclasses thereof) are polynomial time learnable under ℰℒ𝑟 ontologies in this
setting. This result does not extend to ℰℒℐ ontologies, under which it turns out
that already simple query classes are not polynomial time learnable.

Finally, we review results that equivalence queries alone are not sufficient to learn
simple path-shaped queries in polynomial time, unless NP = RP. Instead, we show
that sample-efficient PAC learning of queries under ontologies is possible using
a bounded fitting approach. We implement such an algorithm for tree-shaped
CQs (that correspond to ℰℒ concepts) under ℰℒℋ𝑟 ontologies and show that the
implementation compares favorably to an existing ℰℒ concept learning algorithm.

iii

Acknowledgments

This dissertation is the result of years of work and would not have been possible
without the support and encouragement of many great people, both during my
time as a PhD student and before. I would like to express my heartfelt gratitude for
this here.

First, I would like to thank those who have guided my academic journey these
last years: My PhD advisor, Carsten Lutz, who has consistently directed me to
interesting questions and who has shown me only encouragement, patience and
support. Jean Jung, who advised my master’s thesis (which continues to serve as a
foundation for my work) and introduced me to research in the area of description
logics. Thomas Schneider, whose classes were the highlight of my undergraduate
years and who introduced me to various areas of theoretical computer science,
including description logic.

A big thanks goes to my colleagues in Bremen and Leipzig for making the office
at the university a nice and fruitful place to work in. Thank you, Gustav, Jean, Leif,
Lukas, Marcin, Moritz, Quentin, Simon, Thomas, for many interesting questions
and answers, discussions, shared coffees, and fun board games. I especially want to
thank Simon for reading large parts of my dissertation and many helpful remarks.

My family I thank for always supporting me throughout my studies, and deal
ing with my unfortunate inability to explain my research and the content of this
dissertation.

I am also very grateful to my friends, not limited to, but especially those in
Nerdkram and CDD, for many fun adventures and memories. A special thanks goes
to Yale for reading a draft of Chapter 1.

I would also like to thank Diego Calvanese for agreeing to review my dissertation.
Lastly, I would like to thank Alina, without whom no step of this journey would

have been possible.

v

Contents

1 Introduction 1

2 Related Work 13
2.1 Fitting Examples with Queries . 13
2.2 Exact Learning of Queries . 15
2.3 Learning Description Logic Ontologies 18

3 Preliminaries 21
3.1 Description Logic and Conjunctive Queries 21
3.2 The Fitting Problem . 33
3.3 Exact Learning . 36
3.4 Probably Approximately Correct Learning 40

4 Learning with Membership Queries 45
4.1 Limits of Membership Queries . 49
4.2 Reducing to Ontologies in Normal Form 53
4.3 Frontiers of Queries . 59
4.4 Generalization Sequences of Queries 82
4.5 Obtaining an Initial Hypothesis . 86
4.6 The Learning Algorithm for ELIQs 92
4.7 Discussion . 94

5 Learning with Membership and Equivalence Queries 99
5.1 Updating Hypotheses with Counterexamples 101
5.2 Learning ELIQs under DL-Litehorn Ontologies 106
5.3 Learning under ℰℒ𝑟 Ontologies . 115
5.4 Handling Queries of Unbounded Arity 140
5.5 Learning under ℰℒℐ ontologies . 153
5.6 Queries with Disjunctions . 161
5.7 Discussion . 164

6 Learning from Examples 169
6.1 PAC Learning of Queries in Polynomial Time 170
6.2 Sample-Efficient PAC Learning of Queries 176

vii

Contents

6.3 Not Sample-Efficient Fitting Algorithms 181
6.4 SAT-based PAC ℰℒ Concept Learner 197
6.5 Performance of SPELL . 203
6.6 Discussion . 209

7 Conclusion 213

Bibliography 217

Index of Notation and Symbols 239

List of Figures 241

List of Tables 243

viii

Chapter 1

Introduction

Relational databases are one of the major success stories of computer science, allow
ing data to be represented in a structured and processable way through relations.
We might represent the data “john and jane are dogs” and “john is cute” in a database
as the facts

Dog(john), Dog(jane), Cute(john)

where we use Dog and Cute as unary relation symbols. We can then query such
a database using logical expressions. If we want to retrieve all dogs that are cute
from the data, we might pose the query

𝑞(𝑥) ← Dog(𝑥) ∧ Cute(𝑥)

to our database and would receive as answer only john but not jane. Many pop
ular languages for writing queries to databases, like SQL, correspond to logical
expressions in some way. The above query could be written equivalently in SQL as:

SELECT id FROM Dog JOIN Cute USING (id);.

How can these expressions used to query databases be obtained? The obvious
answer is that they are written manually by people who understand both the
logical semantics of the query language and the domain of the data. However,
not all users of databases are familiar with the data and not all users have the
required logical expertise to formulate correct queries on their own. This situation
was recognized already early in the history of relational databases, and means of
providing automated support for query writing were developed [Zlo75a; Zlo75b].

Automated support becomes even more important when queries are not posed
to databases alone, but to knowledge bases, as querying knowledge bases requires
more logical expertise. In a knowledge base, data is combined with a so-called
ontology that contains background knowledge in the form of logical statements.
For example, if we know that in our domain every dog is cute, we could state this
formally as

Dog ⊑ Cute

1

1 Introduction

and add this logical statement to our knowledge base.
This can serve multiple purposes. Commonly, background knowledge is used

to obtain more complete answers to a query from incomplete data. If we retrieve
answers from our knowledge base with the same query 𝑞(𝑥) ← Dog(𝑥) ∧ Cute(𝑥) as
before, we now receive both john and jane as answers, although direct information
about the cuteness of jane is missing from the data. Furthermore, ontologies are
used for data integration, where they provide a uniform vocabulary to query data
from multiple, heterogeneous data sources [Pog+08; Xia+18]. They also form a
central component of the Semantic Web [HKR10].

The knowledge in ontologies is usually more complicated than stating that every
dog is cute. Large knowledge bases like YAGO 4.5 contain many thousand such
statements in their ontology, involving more complicated expressions [Suc+23].
This means that effort and logical expertise are required when working with ontolo
gies or when formulating queries, which makes these tasks cost and time intensive.
Hence, automated methods that support users in writing queries under ontologies
are desirable. One way to provide this support is by learning queries.

Learning is, of course, an ever relevant topic in AI research, with many theoretical
and practical results within the last decades. Query learning, as considered in this
thesis, is a supervised task, as it builds upon input-output examples provided by
a user. As learned classifiers, logical expressions such as queries have certain
advantages over other forms of classifiers not based on logical formalisms: logical
expressions are easier to inspect, to explain and to verify. These advantages also
allow us to show strong formal guarantees for learning algorithms, using formal
models of learning from computational learning theory.

In this thesis, we investigate the existence of efficient algorithms that learn queries
under ontologies written in description logics.

Description Logic Ontologies

Description logics (DLs) are a family of knowledge representation languages origi
nating in the 1980s from systems such as KL-ONE [BS85]. Most DLs can be viewed
as decidable fragments of first order logic and are closely related to modal logics.

DL ontologies contain knowledge about concepts and roles. Concepts describe
properties of things and are built from atomic symbols like Dog and Cute and
constructors like ⊓, which describes and. For example, Dog ⊓ Cute is a concept
that describes all things that are both a dog and cute. Roles describe relations
between things. A role like isFriendOf could express that one thing is the friend of
another thing. We can use roles to construct more complicated concepts like the
concept ∃isFriendOf.Dog which describes all things that are a friend of something
that is a dog. We can write this concept equivalently as the first order formula

2

𝜑(𝑥) = ∃𝑦.isFriendOf(𝑥, 𝑦) ∧ Dog(𝑦) using Dog as a unary predicate and isFriendOf
as a binary predicate.

DL ontologies are then sets of statements about these concepts and roles. The
most common form of statement is concept inclusion, which allows us to express
“ every A is a B” knowledge. The concept inclusion Dog ⊑ Cute indicates that
every dog is cute. Using the connection to first order logic, this inclusion can be
equivalently written as the sentence

∀𝑥.�Dog(𝑥) → Cute(𝑥)�.

The various DLs differ in the ways complex concepts can be constructed from
simpler ones and in the kinds of statements about concepts that can be made, and
thus in the kinds of knowledge they can express. For example, some DLs, like
DL-Litecore, do not allow concepts to be combined with ⊓, while ℰℒ does. Each
DL gives rise to a separate ontology language, with its own expressiveness and
computational properties.

One defining feature of knowledge bases that contain ontologies is the open world
assumption, meaning that in contrast to traditional databases (which employ the
closed world assumption), the absence of a fact in the data does not necessarily mean
that its negation is true. For example, say that our data contains the fact Dog(jane),
meaning that jane is a dog, but does not contain the fact Cute(jane), meaning that
jane is cute. We then cannot conclude that Cute(jane) is false, but must consider that
we do not know whether jane is cute. In fact, concluding that Cute(jane) is false in
this case would contradict the background knowledge in our ontology that all dogs
are cute. To enunciate this difference to the closed world assumption, we refer to
our data as ABoxes (assertional boxes), that contain assertions about the world, as
is usual in the area of DL.

As DL concepts are themselves logical expressions, we can use them as queries for
knowledge bases, as so-called instance queries. If we query data for instances of the
concept Dog⊓Cute, we get the same answers as for the query 𝑞(𝑥) ← Dog(𝑥)∧Cute(𝑥).
Hence, algorithms that are able to learn certain kinds of queries efficiently can also
be used to learn concepts. Concept learning is itself an active field of research, for
much the same reasons as query learning: creating and extending ontologies are
difficult and costly tasks that require both logical expertise and domain knowledge.
Systems like DL-Learner [BLW16] and Ontolearn [DN23] aim to construct concepts
from examples.

In this thesis, we focus on query learning under ontologies written in DLs from
the ℰℒ and DL-Lite families. Both are limited in their expressivity, but are popular
due to their favorable computational properties, making them suitable for reasoning
about large ontologies and for use with large amounts of data.

3

1 Introduction

DL ontologies of the ℰℒ and DL-Lite families are used for various purposes. For
example, they form the logical basis of certain profiles of the OWL 2 web ontology
language1. ℰℒ is the core of the OWL 2 EL profile and allows efficient reasoning
over the knowledge in an ontology. Large biomedical ontologies like SNOMED
CT2 and GALEN are formulated in (dialects of) ℰℒ [RH97; Sch+09; SCC97].

DL-Lite forms the core of the OWL 2 QL profile and is designed to allow for
efficient querying of data under ontologies [Cal+07]. DLs of the DL-Lite family are
used in data intensive scenarios like data integration [Pog+08; Xia+18].

A formal definition of the description logics we use in this thesis and their
semantics is given later in Chapter 3. For a thorough introduction to description
logics, we refer to the textbooks [Baa+17] and [Baa+03].

Learning Queries

Learning a query can have various meanings. When we say that an algorithm learns
queries, we must specify a learning model that defines what inputs the algorithm
receives and what requirements we have for its outputs.

First, we have to specify a desired class of queries that the algorithm should pro
duce. Depending on the use-case of query learning, some query classes can have
more advantages than others, regarding understandability, interpretability, and
learnability. The query 𝑞(𝑥) ← Dog(𝑥) ∧ Cute(𝑥) we have considered earlier belongs
to the class of conjunctive queries (CQs). CQs are an extensively studied query
class in the context of querying data under ontologies [BO15; Cal+13; CGL98;
Eit+08; Gli+08]. They are a fragment of function-free first order logic with only
conjunction and existential quantification. Equivalently, CQs correspond to the
SELECT-FROM-WHERE fragment of SQL, and are the central element of the basic graph
patterns of SPARQL. As such, many queries posed to relational databases are CQs,
which makes CQs learning relevant for many scenarios [BO15; Cal+13]. We are
also interested in subclasses of CQs, like the class of ℰℒ instance queries.

Then, in all learning models that we will introduce, information about the be
havior of the query to be learned will be communicated through data examples. A
data example like

��Dog(john), Cat(josie)�, john�

includes some data {Dog(john), Cat(josie)} and a potential answer john. For the query
𝑞(𝑥) ← Dog(𝑥), this is a positive example, since Dog(john) is included in the data.
Otherwise, it would be a negative example for this query. Note that the examples do
not refer to some fixed background database, but each comes with their own data.

1https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct

4

https://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct

This allows us to specify the behavior of queries in all databases, and thus also to
learn queries that yield the desired answers in all databases.

Specifically relevant for this thesis are the learning models of fitting, Angluin’s
exact learning, which will be our main focus, and Valiant’s probably approximately
correct (PAC) learning. Although these models seem quite different at first glance,
we will see that they are closely connected.

To illustrate these learning models, and the effect of ontologies on learning,
assume that we work under an ontology which includes the following statements:

Dog ⊑ Mammal, Cat ⊑ Mammal,
Mammal ⊑ Animal, Fish ⊑ Animal.

These concept inclusions express that both dogs and cats are mammals, mammals
are animals, and fish are animals.

Fitting In the fitting model, a learning algorithm receives data examples as input,
which are labeled either positively or negatively. A fitting algorithm then needs
to find a query such that all positively labeled data examples are positive
examples for this query, and all negatively labeled data examples are negative
examples for this query.

If a fitting algorithm receives the example �{Dog(john)}, john� with a positive
label, and the example �{Fish(julia)}, julia�, with a negative label, then it could
return the query 𝑞𝐻(𝑥) ← Mammal(𝑥)3. It could not return the query 𝑞𝐻(𝑥) ←
Animal(𝑥), since this query yields the answer julia in the second example,
which is labeled negatively.

This is a simple model of learning, that does not have strong requirements
on the output query. Indeed, usually there are many queries that fit given
data examples, and if the input data examples are labeled according to some
query, the resulting fitting query need not be similar to that query. Especially,
the fitting query could give answers that differ from the labeling query on all
data that did not occur in data examples. The computation of fitting queries
and concepts under ontologies is already well explored. In many cases, it
has high computational complexity [Jun+22]. One way to deal with the high
complexity is to give a learning algorithm access to more information, as in
exact learning.

Exact Learning The exact learning model was first introduced by Angluin for learn
ing regular languages from words [Ang87]. It is a model of active learning, in

3The 𝐻 in 𝑞𝐻 stands for hypothesis.

5

1 Introduction

which two parties, the learner and the teacher, interact in a game-like fashion.
The teacher has some target query in mind, and the learner aims to identify
this target query by asking certain kinds of questions, which the teacher must
answer truthfully. In our case, both parties are aware of the ontology. The
hope is that a smart learner can ask the right questions and thus identify the
target query quickly, more quickly than in a passive learning setting.

Assume that the teacher has the query 𝑞𝑇(𝑥) ← Animal(𝑥)4 in mind. The
learner tries to identify this query by first asking

“ Is julia an answer to 𝑞𝑇 in the data {Fish(julia)}?”.

In this case, the teacher responds with “ Yes”. Then, the learner could continue
by asking

“ Is 𝑞𝑇 the query 𝑞𝐻(𝑥) ← Fish(𝑥)?”.

The teacher responds with “ No” and gives an example where the two queries
differ:

“𝑞𝑇 and 𝑞𝐻 give different answers on the data {Dog(john)}”

The learner then concludes that john and jane must both be answers to 𝑞𝑇 and
tries again:

“ Is 𝑞𝑇 the query 𝑞𝐻(𝑥) ← Animal(𝑥)?”,

to which the teacher replies “ Yes” — the learner has identified 𝑞𝑇.

Exact learning naturally models the situation where logical expertise and
domain knowledge are not in the same hand, and a logic expert (the learner)
constructs a query by interviewing a domain expert (the teacher). In the
above example, two kinds of questions are used: the first question is a so-
called membership query, and the second and third questions are so-called
equivalence queries5. These two are the most common kinds of questions that
are considered in exact learning. We formally define them later.

Of course, the learner and the teacher do not need to be human in the exact
learning model. In fact, we are looking for learning algorithms that play
the role of the learner and always identify the target query in little time.
Furthermore, exact learning has been successfully applied in settings where,
for example, the teacher is not a human, but a trained neural network [Blu+23].
Exact learning of queries has already been investigated for multiple query
classes [tCDK13; tCD22], but not yet under ontologies.

4The 𝑇 in 𝑞𝑇 stands for target.
5Some literature on learning queries calls these membership oracle and equivalence oracle to avoid

confusion with the queries that are learned.

6

PAC Learning The PAC model was introduced by Valiant [Val84] in the context of
learning Boolean functions. In this model, the learner receives data examples
that are drawn independently from some probability distribution and labeled
according to a target query. Then, the learner needs to, with high probability,
find a query that gives approximately the same answers as the target query
on new examples drawn from the same distribution.
Assume that the target query is 𝑞𝑇(𝑥) ← Mammal(𝑥) and that we observe the
dog john with probability 0.9 and the cat joan with probability 0.1. Equiva
lently, the positive data example �{Dog(john)}, john� is drawn with probability
0.9 from the example distribution and the positive example �{Cat(joan)}, joan�
is drawn with probability 0.1. Then, if we draw a small sample from the
distribution, it is likely that the sample exclusively contains dogs. Since the
learner only receives dogs as examples and all dogs are labeled positively, it
might output the query 𝑞𝐻(𝑥) ← Dog(𝑥), which is not equivalent to 𝑞𝑇, but
differs from 𝑞𝑇 on only 10 % of the examples drawn from the distribution.
In contrast to exact learning, a PAC learning algorithm does not require a
teacher who is able to answer questions, but also does not exactly identify the
target query, only a query that is with high probability close enough. Different
from fitting algorithms, a PAC learning algorithm is required to generalize
from the input examples, to other examples from the same distribution. In
general, how close the result of a PAC learning algorithm is to the target query
depends on the size of the sample it receives.

For all these learning models, there are often naive learning algorithms that
try all possibilities until they succeed. These kinds of learning algorithms are not
useful in practice, and hence we demand a notion of efficiency from our learning
algorithms. As usual in computer science, we consider algorithms with running
times that grow polynomially with the size of the input to be efficient or tractable,
and algorithms with running times that grow exponentially with the size of the
input to be inefficient or intractable. Later, we define the introduced models of
learning formally and discuss how they are related.

Overview

The results of this thesis mainly focus on the exact learning model. Due to the
established connections between the models, we can draw from existing results
concerning fitting of queries under ontologies, and our results have implications
on the PAC learnability of queries under ontologies. Since the query classes we
consider contain concept instance queries, our results also have implications on the
learnability of concepts under ontologies.

7

1 Introduction

Each choice of query class and ontology language gives rise to a different exact
learning setting that poses different requirements to learning algorithms. One
query class might be efficiently learnable under one ontology language, but that
must not also be the case under another ontology language. And for a second query
class, the situation might be reversed. Hence, to understand the possible choices in
learning queries under ontologies, we aim to answer:

Which query classes are efficiently learnable under which ontology languages?

Additionally, it is important to understand which kinds of questions the teacher
needs to be able to answer for a query class to be efficiently learnable under an
ontology language. We have seen both equivalence queries and membership queries.
In practical scenarios, a teacher might only be able to answer certain kinds of
questions, or a teacher who can answer all question could be too expensive to
obtain. Hence, we also aim to answer:

Which questions needs the teacher to be able to answer for efficient learning of
a query class under an ontology language?

The remainder of this thesis is structured as follows:

Chapter 2 We begin with an overview of related approaches and results in the areas
of query, concept, and ontology learning.

Chapter 3 Then, we formally define the relevant query classes and ontology lan
guages, and precisely state the learning models and relevant known results,
as well as define what we mean by efficient learning.

Chapter 4 We begin the investigation into exact learning by considering only mem
bership queries. We give efficient learning algorithms for several combinations
of query class and ontology language in this setting, and show that certain
other combinations are not efficiently learnable.

Chapter 5 Then, we investigate exact learning with both membership queries and
equivalence queries. This allows us to formulate efficient learning algorithms
for query classes and ontology languages that were not efficiently learnable
using only membership queries.

Chapter 6 Finally, we consider PAC learning of queries, which has a strong con
nection to exact learning with only equivalence queries. We show that many
query classes are not efficiently PAC learnable using the usual notion of effi
ciency based on running time, but still PAC learnable from a small number
of data examples. We also describe SPELL, our implementation of a PAC
learning algorithm.

8

Chapter 7 We conclude with a summary of the results and comment on future
directions.

We obtain the following results, concerning description logics of the DL-Lite and
ℰℒ families as ontology languages and subclasses of CQs.

In Chapter 4 we show that ELIQs (unary, acyclic, and rooted CQs) are polynomial
time exact learnable under DL-Liteℋℱ−

core ontologies using only membership queries
(Theorem 4.42), where the ℱ− indicates a restriction in the interaction between
functionality constraints and existential restrictions. Furthermore, we show that
ELIQs are not polynomial query learnable if this restriction is lifted (Theorem 4.29),
or if the ontology language can use conjunctions (Theorem 4.28). As an interme
diate step, we also show the independently interesting results that ELIQs permit
construction of frontiers under DL-Liteℋℱ−

core ontologies in polynomial time (Theo
rem 4.23), and that certain generalizing sequences of CQs are bounded in length
under ontologies (Theorem 4.35).

In Chapter 5 we show that conjunctions in the ontology language can be handled
with equivalence queries. We first show that ELIQs are polynomial time exact
learnable under DL-Liteℱ−horn ontologies (Theorem 5.17), and then that the large
class of chordal, symmetry-free CQs (that contains non-unary CQs, cyclic CQs
and CQs that are not rooted) is polynomial time exact learnable under ℰℒ𝑟 on
tologies (Theorem 5.48). We complement this by showing that no subclass of CQs
that contains all ELQs is polynomial query learnable under ℰℒℐ ontologies (Theo
rem 5.50), and that learning ℰℒ𝒰 instance queries is as hard as learning Boolean
formulas (Theorem 5.52).

In Chapter 6 we review the result that no class of CQs that contains all path queries
is polynomial time PAC learnable, unless RP = NP (Theorem 6.7). In contrast,
we show that all combinations of ontology language and query class are PAC
learnable with polynomial sample complexity (Lemma 6.9), using a bounded fitting
approach. Certain other fitting algorithms, that aim for different properties than
the smallest size, are not sample-efficient PAC learning algorithms (Theorems 6.18,
6.19 and 6.23). We describe an implementation of a bounded fitting based sample-
efficient PAC learning algorithm (Theorem 6.10) for learning ELQs under ℰℒℋ𝑟

ontologies based on a SAT solver and present benchmark results that show that this
implementation compares favorably with an existing approach for ELQ learning.

Related Publications

Parts of this thesis have already been published in the following workshop and
conference papers. In the introductions of the respective chapters, we describe in
more detail the relationship of the presented material to these publications.

9

1 Introduction

[tCat+23a] Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten
Lutz. Extremal Fitting CQs Do Not Generalize. Version 1. 2023. doi: 10.
48550/arXiv.2312.03407. arXiv: 2312.03407 [cs]. Pre-published.

[tCat+23b] Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten
Lutz. “ SAT-based PAC Learning of Description Logic Concepts.” In:
Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence. IJCAI 2023. Edited by Edith Elkind. International Joint
Conferences on Artificial Intelligence, 2023, pages 3347–3355. doi:
10.24963/ijcai.2023/373.

[tCat+24] Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten Lutz.
“ On the Non-Efficient PAC Learnability of Conjunctive Queries.” In:
Information Processing Letters 183.106431 (2024). doi: 10.1016/J.IPL.
2023.106431.

[FJL21a] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Actively
Learning Concepts and Conjunctive Queries under ELr-ontologies.”
In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence. IJCAI 2021. Edited by Zhi-Hua Zhou. International Joint
Conferences on Artificial Intelligence, 2021, pages 1887–1893. doi:
10.24963/ijcai.2021/260.

[FJL21b] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Actively
Learning ELI Queries under DL-Lite Ontologies.” In: Proceedings of
the 34th International Workshop on Description Logics. DL 2021. Edited
by Martin Homola, Vladislav Ryzhikov, and Renate A. Schmidt. Vol
ume 2954. CEUR Workshop Proceedings. CEUR-WS.org, 2021. url:
http : / / ceur - ws . org / Vol - 2954 / paper - 14 . pdf (visited on
05/14/2024).

[FJL22a] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Exact Learn
ing of ELI Queries in the Presence of DL-Lite-Horn Ontologies.” In:
Proceedings of the 35th International Workshop on Description Logics. DL
2022. Edited by Ofer Arieli, Martin Homola, Jean Christoph Jung, and
Marie-Laure Mugnier. Volume 3263. CEUR Workshop Proceedings.
CEUR-WS.org, 2022. url: https://ceur-ws.org/Vol-3263/paper-
9.pdf (visited on 05/14/2024).

[FJL22b] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Frontiers
and Exact Learning of ELI Queries under DL-Lite Ontologies.” In:
Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence. IJCAI-ECAI-2022. Edited by Luc De Raedt. International

10

https://doi.org/10.48550/arXiv.2312.03407
https://doi.org/10.48550/arXiv.2312.03407
https://arxiv.org/abs/2312.03407
https://doi.org/10.24963/ijcai.2023/373
https://doi.org/10.1016/J.IPL.2023.106431
https://doi.org/10.1016/J.IPL.2023.106431
https://doi.org/10.24963/ijcai.2021/260
http://ceur-ws.org/Vol-2954/paper-14.pdf
https://ceur-ws.org/Vol-3263/paper-9.pdf
https://ceur-ws.org/Vol-3263/paper-9.pdf

Joint Conferences on Artificial Intelligence, 2022, pages 2627–2633.
doi: 10.24963/ijcai.2022/364.

11

https://doi.org/10.24963/ijcai.2022/364

Chapter 2

Related Work

The learning of logical expressions such as queries and concepts has received
attention in various settings. In this chapter, we review the approaches that are
most relevant to this thesis and remark on connections. We begin in Section 2.1
with looking at approaches to fit concepts and queries to data, some of which take
ontologies into account. Then, in Section 2.2 we review existing results on the exact
learnability and PAC learnability of concepts and queries. Finally, we consider the
connection to learning ontologies in Section 2.3.

2.1 Fitting Examples with Queries

The construction of queries that fit given data examples, such as in the query-by-
example paradigm or in query reverse engineering, is an active topic of database
research, both from a practical and a theoretical perspective [Mar19]. The prob
lem has been investigated, for example, for CQs [BR17; tCD15], SPARQL queries
over RDF data [ADK16], path queries over graph databases [BCL15], and tree-
patterns [CW16]. As these investigations focus on databases, they do not take
ontologies into account.

In the field of description logic, the construction of concepts that fit examples is
also often desired for ontology engineering. One of the first and most developed
approaches to this task is based on computing most specific concepts (MSCs) of
the examples and computing the least common subsumer (LCS) of the obtained
concepts [BKM99; CBH92]. However, under the usual semantics, MSCs of examples
only exist for acyclic examples, and can otherwise only be approximated [KM02].
Additionally, the LCS of ℰℒ concepts under ℰℒ ontologies does not always exist
when the ontology is cyclic [Baa03; BST07]. Zarrieß and Turhan characterize when
ℰℒ the MSCs and LCSs exist under ℰℒ ontologies [ZT13]. Jung, Lutz, and Wolter
determine the complexity of deciding whether the MSC or the LCS exists, and of
verifying if a given concept is the MSC or the LCS, for both ℰℒ and ℰℒℐ concepts,
and under ontologies [JLW20].

Closest to the learning problems considered in this thesis among the exist

13

2 Related Work

ing research are the investigations into the fitting problem for queries under on
tologies. This has been investigated for various query classes and ontology lan
guages [Fun+19; GJS18; Jun+20; Jun+22; Ort19], See also the PhD thesis of Pul
cini [Pul22] for an overview of the results on fitting queries under ontologies. We
will review the relevant results later in Section 3.2.

In many cases, no query exists that fits data examples exactly, and therefore
approximations of the notion of fitting have also been considered by Cima, Croce,
and Lenzerini [CCL21].

Refinement-based Search and Inductive Logic Programming

In practice, systems like DL-Learner or DLFoil, that computing fitting description
logic concepts or similar queries from labeled data examples, with or without an
ontology, are often based on ideas from inductive logic programming (ILP), like
refinement operators and the FOIL algorithm.

In general, ILP is concerned with learning logic programs that entail a given set
of positive example facts but none of the given negative example facts under a set of
background facts1 [ND97]. In the context of learning queries as used in this thesis,
we can think of the background facts as an ABox, and of the logic program as the
query that is to be learned. Then, the resulting query should return all the positive
facts as answers and none of the negative facts.

In this sense, the ILP literature has obtained fitting algorithms as well as positive
and negative PAC learnability results for various classes of CQs that are defined, for
example, by limitations on the use of existential variables, determinacy conditions
and restricted variable depth. An overview can be found in [ND97, Chapter 18].
These query classes are orthogonal to the classes of ELQs and ELIQs relevant in
our setting.

ILP algorithms are often based on specific refinement operators. A (downward)
refinement operator 𝜌 takes as input a query 𝑞 and returns a set of specializations
of 𝑞. Symmetrically, an upward refinement operator returns generalizations of 𝑞.
Refinement operators are then the basis of a search procedure that, starting from
some initial query, aims to find a query that fits all examples, by specializing to
exclude all negative examples, or by generalizing to include all positive examples.
In order for this search procedure to eventually arrive at a fitting query, it is often
required that the used refinement operator is finite, proper, and complete.

Badea and Nienhuys-Cheng first proposed to use refinement operators to find
fitting description logic concepts. They show that there is a complete but not finite
refinement operator for concepts of the description logic 𝒜ℒℰℛ and argue that no

1At least in the so-called normal problem setting

14

2.2 Exact Learning of Queries

complete and finite refinement operator for 𝒜ℒℰℛ can exist [BN00]. This is also
the case for concepts of other expressive description logics like 𝒜ℒ𝒞 where finite,
proper, and complete refinement operators also do not exist, already in the case
without ontologies [LH10].

For ℰℒ concepts, there exist refinement operators that are finite, proper, and
complete [LH09], but it is known that no such operator exists for ℰℒ concepts under
ℰℒ ontologies [Kri19]. Only if the considered ℰℒ ontologies are of a restricted form,
ℰℒ concept refinement operators can be finite, proper, and complete [LH09].

Important in this area is also the work of Kriegel [Kri18a; Kri18b; Kri21] that
deals with the structure of the ℰℒ subsumption lattice that is implicitly traversed
by search procedures to find a fitting ℰℒ concept. In this structure, concepts have
direct upwards (downwards) neighbor concepts that are minimally more general
(more specific). Even under the empty ontology, there are ℰℒ concepts of size 𝑛 that
have a number of downward neighbors that is exponential in 𝑛, and there are ℰℒ
concepts of size linear in 𝑛 such that they can only be reached from ⊤ by a number
of neighborhood-steps that is 𝑛-fold exponential in 𝑛. Hence, a complete search
procedure for fitting ℰℒ concepts with refinement operators can be infeasible in
certain situations.

Nonetheless, implementations of search procedures using refinement operators
together with heuristics are in many cases able to quickly find fitting concepts
or approximately fitting concepts. These algorithms aim for various degrees of
completeness, depending on their use case. Such systems and algorithms are for
example DL-Learner [BLW16], DL-FOIL [FdAE08; Fan+18], YINYANG [IPF07],
DL-FOCL [RFdA20], and DRILL [DN23].

Other approaches for learning DL concepts not based on refinement operators are
using answer set programming [Lis12; Lis16], learning 𝒜ℒ𝒞 concepts using bisim
ulations [Tra+14], and trade off accuracy of the fitting concept for efficiency [SH19].
Except for the basic setting of fitting concepts, these do not have a strong relation to
the results in this thesis.

2.2 Exact Learning of Queries

Closest to the subject of this thesis are existing results on exact learnability and PAC
learnability of queries or concepts in the setting without ontologies. We introduce
the most important ones briefly.

Ten Cate, Dalmau, and Kolaitis show that Global-As-View schema mappings (GAV
schema mappings) are polynomial time exact learnable using membership queries
and equivalence queries. A GAV schema mapping is a set of logical expressions of

15

2 Related Work

the form
∀𝑥(𝜑(𝑥) → 𝜓(𝑥)),

where 𝜑 is a conjunction of atoms and 𝜓 is a single 𝑘-ary atom. If in all expressions
of a GAV schema mapping the atom 𝜓 is identical, we can view it as a union of CQs
(UCQ). Hence, UCQs are also polynomial time exact learnable using membership
queries and equivalence queries [tCDK13]. Additionally, the learning algorithm of
ten Cate, Dalmau, and Kolaitis can be modified to obtain the same result for CQs.
The UCQ learning algorithm bears resemblance to the foundational exact learning
algorithm for propositional Horn formulas by Angluin, Frazier, and Pitt [AFP92],
which also inspired, for example, exact learning algorithms for first-order Horn
formulas [AK02].

Furthermore, ten Cate, Dalmau, and Kolaitis show that CQs and UCQs are only
polynomial time exact learnable using both membership queries and equivalence
queries, only one type of query does not suffice [tCDK13; tCat+18]. Indeed, only
subclasses of CQs, like the class of all ELIQs, fulfill the important precondition of
being uniquely characterizable by data examples and are therefore polynomial time
learnable using only membership queries [tCD22]. In Chapters 4 and 5, we build
on these results and extend them to cases with ontologies. We review them there
in more detail.

Fortin et al. investigate the unique characterizability of linear temporal logic (LTL)
formulas. While many LTL formulas are not uniquely characterizable, they show
that several fragments are. They also identify combinations of LTL and ELIQs that
are uniquely characterizable, and show that these combinations are polynomial
time learnable with only membership queries [For+22]. Jung et al. extend these
results and consider the unique characterizability and learnability of queries that
are combinations of LTL and ELIQs under DL ontologies [Jun+23a; Jun+23b].
Thereby, they also generalize the techniques and results presented in Chapter 4.

Ten Cate and Koudijs investigate the unique characterizability of fragments of
modal logic with data examples. They show that the fragment of positive modal
formulas that only use ◇, that are similar to ELQs, and the fragment of positive
modal formulas that only use □ are uniquely characterizable, while their union or
the full modal language are not finitely characterizable [tCK23; Kou22].

Haussler [Hau89] and Kietz [Kie93] show that acyclic CQs are not polynomial
time PAC learnable from data examples unless RP = NP, and therefore also not
exact learnable using only equivalence queries. We revisit their proofs in Chapter 6.
Hirata shows that acyclic CQs that use ternary atoms are not polynomial time PAC
predictable from data examples2 under certain cryptographic assumptions [Hir00;
Hir05]. PAC prediction is a related learning model to PAC learning, where the

2Data examples are called extended instances in the work of Hirata.

16

2.2 Exact Learning of Queries

learning algorithm need not output a hypothesis from a specific query class, but can
output any algorithm that classifies examples in polynomial time. PAC learnability
implies PAC predictability for classes of queries that can be answered in polynomial
time. PAC prediction is also an interesting learning model in itself with many
interesting results, but not further considered in this thesis.

Learning CLASSIC Concepts

In the area of description logics, PAC learnability (with and without membership
queries) of concepts was investigated for the early description logic CLASSIC, with
out considering any form of ontologies. CLASSIC concepts are built from many
constructors not contained in ℰℒ or DL-Lite like universal restriction ∀𝑟.𝐶 and the
same-as constructor that demands that two role paths end at the same individ
ual [Bor+89]. However, CLASSIC has no way to express existential restrictions,
which is the core feature of ℰℒ, and hence the expressive power of CLASSIC is
incomparable to the one of ℰℒ.

Cohen and Hirsh consider PAC learnability of CLASSIC concepts from con
cept examples that are labeled according to subsumption of the target concept.
Specifically, a concept 𝐷 is a positive example of a target concept 𝐶𝑇 if 𝐷 ⊑ 𝐶𝑇
and a negative example if 𝐷 ⋢ 𝐶𝑇. Assuming RP ≠ NP, they show that already
CoreCLASSIC concepts, which are CLASSIC concepts that use only conjunction,
universal quantification and same-as, are not polynomial time PAC learnable from
concept examples [CH92; CH94b; CH95]. Consequently, CoreCLASSIC concepts
are also not polynomial time learnable with only equivalence queries, where the
counterexamples returned from equivalence queries are concepts. It is interesting
to note that this lower bound uses a definition of PAC learning in which the running
time and the sample size may depend on the size of the target concept and the size
of the examples, similar to the definition we will use.

Cohen and Hirsh also show that the fragment of CLASSIC without same-as and
role inclusions, called C-CLASSIC, is polynomial time PAC learnable from concept
examples [CH94a]. The key element of their learning algorithm is the ability to
compute the least common subsumer of C-CLASSIC concepts in polynomial time.

Frazier and Pitt consider exact learnability of CLASSIC concepts in Angluin’s
learning framework with membership queries and equivalence queries that both
use concept examples. The fragment of CLASSIC they consider includes both the
aforementioned CoreCLASSIC and C-CLASSIC. They show that CLASSIC concepts
are not exact learnable in polynomial time with concept membership queries alone,
but can be learned in polynomial time using both concept membership queries
and equivalence queries [FP96]. Their learning algorithm works similarly to the
ones we discuss in Chapter 5, constructing products to compute commonalities

17

2 Related Work

with counterexamples and then minimizing the result using membership queries.
However, it does not need to take ontologies into account. Since the expressive
powers of ℰℒ and CLASSIC are incomparable, and the permitted membership
queries and equivalence queries differ, results on learning CLASSIC cannot be
transferred to learning ℰℒ concepts or CQs.

2.3 Learning Description Logic Ontologies

Related to the learning of concepts or queries under ontologies, is the learning of
entire ontologies. This has been investigated in multiple settings that differ in the
choice of examples. The aim of exact learning of ontologies is to identify unknown
target ontologies in polynomial time through interaction with a teacher. To achieve
polynomial time, lightweight ontology languages of the ℰℒ and DL-Lite families
are considered as targets, since they allow for polynomial time reasoning.

In the first setting, the examples are concept inclusions. A concept inclusion 𝐶 ⊑ 𝐷
is a positive example for a target ontology 𝒪𝑇 if 𝒪𝑇 ⊧ 𝐶 ⊑ 𝐷 and a negative
example if 𝒪𝑇 ⊧̸ 𝐶 ⊑ 𝐷. Konev et al. investigate the exact learnability of ontologies
using concept inclusion membership and equivalence queries. They show that
ℰℒ ontologies are not learnable with a polynomial number of queries, but two
fragments of ℰℒ, ℰℒrhs and ℰℒlhs, are learnable in polynomial time [Kon+18]. In
ℰℒlhs ontologies, the right-hand side of concept inclusions must be a concept name,
and in ℰℒrhs ontologies, the same restriction holds for the left-hand side.

In the next setting, the examples are data retrieval examples. A data retrieval
example is a tuple (𝒜, 𝑞, 𝑎) with 𝒜 an ABox, 𝑞 a query, and 𝑎 an individual from
𝒜. It is a positive example for a target ontology 𝒪𝑇 if 𝒜, 𝒪𝑇 ⊧ 𝑞(𝑎) and a negative
example if 𝒜, 𝒪𝑇 ⊧̸ 𝑞(𝑎). Konev, Ozaki, and Wolter show that in many cases,
exact learning with data retrieval example membership queries and equivalence
queries reduces to the case with concept inclusion examples, and thus obtain similar
positive results: ℰℒlhs and ℰℒrhs ontologies are polynomial time learnable using
ELQs or ELIQs in data retrieval examples, but ℰℒ ontologies are not learnable with a
polynomial number of membership and equivalence queries using ELQs [KOW16].

Finally, another option is to learn ontologies with data retrieval examples, but
where equivalence queries are limited to checking equivalence over a single fixed
ABox. This does not necessarily result in an ontology that is equivalent to the
target ontology, but to one that is query inseparable over this fixed ABox. In this
setting, ℰℒ ontologies are polynomial time learnable using ELQs in the data retrieval
examples [OPM20].

At first glance, learning ontologies seems to be closely related to learning concepts
under ontologies, since an ℰℒ ontology may contain many ℰℒ concepts, and hence

18

2.3 Learning Description Logic Ontologies

any ontology learning algorithm has to construct concepts. However, there is no
apparent natural reduction from any of these settings to the setting used in this
thesis, and therefore no easy way to use the aforementioned positive and negative
results. The challenge of such a reduction lies in the fact that ontology learning
algorithms can produce arbitrarily structured ontologies as hypotheses, but the
concept learning teacher requires a single concept as a hypothesis.

There are also approaches to learning ontologies that are not based on exact
learning, and hence further removed from the learning setting considered in this
thesis. Most prominent is the mining of concept inclusions from finite interpreta
tions, inspired by formal concept analysis. There, a finite interpretation is taken as
input and the aim is to compute an ontology that is a finite axiomatization of all
concept inclusions that hold in this interpretation [BD08]. This procedure allows
the extraction of ontological knowledge from existing data and, in contrast to exact
learning, does not inherently require interaction with a teacher. Existing work
mostly focuses on ℰℒ ontologies, and as ℰℒ axiomatizations may be of exponential
size, many techniques have been developed to compute axiomatizations efficiently,
or to approximate them [BD09; BDK16; Gui+21; Kri24].

The survey [Oza20] lists and compares these and other approaches to ontology
learning.

19

Chapter 3

Preliminaries

Before we begin to look into the learnability of queries under description logic
ontologies, we first need to review relevant concepts and define what we mean
when we say that something is learnable. In Section 3.1 we define the syntax and
semantics of the description logic ontology languages and query classes we use,
and review some of their properties. Then, in Section 3.2 we formally define the
fitting problem and review known results about its computational complexity. We
continue in Section 3.3 with the definition of the exact learning model for our setting
and discuss some of its properties. Finally, in Section 3.4 we define the PAC model
of learning and formally connect it to the exact learning model.

3.1 Description Logic and Conjunctive Queries

To present results for ontologies written in DLs of the ℰℒ and DL-Lite families in a
unified way, we define all relevant DLs as sublanguages of the DL ℰℒℐℋℱ⊥.

Description Logic

Let NC, NR, and NI be countably infinite sets of concept names, role names, and indi
vidual names, respectively. We use 𝐴, 𝐵 for concept names, 𝑟, 𝑠, 𝑡 for role names and
𝑎, 𝑏 for individual names, with additional subscripts when necessary. A role 𝑅 takes
the form 𝑟 or 𝑟− where 𝑟 is a role name and 𝑟− is called an inverse role. If 𝑅 = 𝑠− is an
inverse role, then 𝑅− denotes the role name 𝑠.

An ℰℒℐ concept is formed according to the syntax rule

𝐶, 𝐷 ∶∶= ⊤ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐷 ∣ ∃𝑅.𝐶

where 𝐴 ranges over NC and 𝑅 over roles. An ℰℒ concept is an ℰℒℐ concept that
does not use inverse roles. We refer to ⊓ as conjunction, and ∃ as existential restriction.
We call an existential restriction ∃𝑅.𝐶 unqualified if 𝐶 = ⊤ and qualified if 𝐶 ≠ ⊤.

An ℰℒℐℋℱ⊥ ontology 𝒪 is a finite set of concept inclusions 𝐶 ⊑ 𝐷, role inclusions
𝑅 ⊑ 𝑆, (global) functionality constraints func(𝑅), role disjointness constraints 𝑅 ⊓ 𝑆 ⊑ ⊥,

21

3 Preliminaries

and concept disjointness constraints 𝐶 ⊓ 𝐷 ⊑ ⊥, where 𝐶 and 𝐷 are ℰℒℐ concepts and
𝑅 and 𝑆 are roles. We use 𝐶 ≡ 𝐷 as a shorthand for 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶, and do the
same for roles.

The semantics of ℰℒℐℋℱ⊥ concepts and ontologies is defined in terms of in
terpretations. An interpretation ℐ is a tuple (Δℐ, ⋅ℐ), where Δℐ is the domain, a
non-empty set that may be finite or infinite, and ⋅ℐ is the interpretation function.
The interpretation function assigns to each concept name 𝐴 ∈ NC a subset of Δℐ, to
each role name 𝑟 ∈ NR a binary relation over Δℐ and to each individual name 𝑎 ∈ NI
an element 𝑎ℐ ∈ Δℐ. The interpretation function can be extended to assign each
ℰℒℐ concept a subset of Δℐ by setting

𝑟−ℐ = {(𝑒, 𝑑) ∣ (𝑑, 𝑒) ∈ 𝑟ℐ},
⊤ℐ = Δℐ,

(𝐶 ⊓ 𝐷)ℐ = 𝐶ℐ ∩ 𝐷ℐ, and

(∃𝑅.𝐶)ℐ = {𝑑 ∣ (𝑑, 𝑒) ∈ 𝑅ℐ and 𝑒 ∈ 𝐶ℐ}.

An interpretation ℐ satisfies a concept inclusion 𝐶 ⊑ 𝐷 if 𝐶ℐ ⊆ 𝐷ℐ, a role inclusion
𝑅 ⊑ 𝑆 if 𝑅ℐ ⊆ 𝑆ℐ, a functionality constraint func(𝑅) if 𝑅ℐ is a partial function, a
role disjointness constraint 𝑅 ⊓ 𝑆 ⊑ ⊥ if 𝑅ℐ ∩ 𝑆ℐ = ∅, and a concept disjointness
constraint 𝐶 ⊓ 𝐷 ⊑ ⊥ if 𝐶ℐ ∩ 𝐷ℐ ⊑ ⊥.

An interpretation ℐ is a model of an ℰℒℐℋℱ⊥ ontology 𝒪, if it satisfies all inclu
sions and constraints in 𝒪. For any concept inclusion, role inclusion, functionality
constraint or role disjointness constraint 𝛼 we write 𝒪 ⊧ 𝛼 if every model of 𝒪
satisfies 𝛼. For two concepts 𝐶, 𝐷 we write 𝒪 ⊧ 𝐶 ≡ 𝐷 if 𝒪 ⊧ 𝐶 ⊑ 𝐷 and 𝒪 ⊧ 𝐷 ⊑ 𝐶.

We additionally restrict the interaction between role inclusions and functionality
constraints in ℰℒℐℋℱ⊥ ontologies. If 𝒪 ⊧ 𝑅 ⊑ 𝑆 for roles 𝑅 ≠ 𝑆, then func(𝑆) ∉ 𝒪.
This restriction of the interaction of role inclusions and functionality constraints
implies that 𝒪 ⊧ func(𝑅) if and only if func(𝑅) ∈ 𝒪 for all roles 𝑅. Moreover, it
corresponds to the restriction (𝐴3) used in [Art+09] for the DL DL-Lite(ℋℱ)

core in order
to make satisfiability checking and the data-complexity of query answering tractable.
The restriction is also adopted for DL-Lite in [Kon+10]. We adopt it for similar
reasons, and note that this makes our version of ℰℒℐℋℱ⊥ non-standard. We point
out when results do not hold in absence of this restriction.

The inclusion of role disjointness constraints and concept disjointness constraints
(instead of allowing ⊥ as a concept constructor), as well as the above restriction of
role inclusions and functionality constraints, allows us to present several sublan
guages of ℰℒℐℋℱ⊥ uniformly. We define these languages next.

• An ℰℒℐ ontology is an ℰℒℐℋℱ⊥ ontology that contains only concept inclusions.

22

3.1 Description Logic and Conjunctive Queries

• An ℰℒ𝑟 ontology is an ℰℒℐ ontology where inverse roles may only occur in
concept inclusions of the form ∃𝑟−.⊤ ⊑ 𝐴 where 𝑟 is a role name and 𝐴 is
a concept name. The 𝑟 stands for range restrictions, as concept inclusions of
the form ∃𝑟−.⊤ ⊑ 𝐴 restrict the range of roles. The corresponding domain
restrictions can be achieved without use of an inverse role as ∃𝑟.⊤ ⊑ 𝐴. We
will also mention ℰℒ ontologies, which do not permit range restrictions, and
ℰℒℋ𝑟 ontologies, that are ℰℒ𝑟 ontologies that may also use role inclusions.

• A DL-Liteℱhorn ontology is an ℰℒℐℋℱ⊥ ontology where all occurring existential
restrictions are unqualified and that does not contain any role inclusions. For
ontology languages of the DL-Lite-family, unqualified existential restrictions
∃𝑅.⊤ are usually written as ∃𝑅, omitting the ⊤, and disjointness constraints
𝐴 ⊓ 𝐵 ⊑ ⊥ are written as 𝐴 ⊑ ¬𝐵. We use the former notation for uniformity
with DLs of the ℰℒ-family.

• A DL-Litehorn ontology is a DL-Liteℱhorn ontology that does not contain func
tionality constraints.

• A DL-Liteℋℱ
core ontology is an ℰℒℐℋℱ⊥ ontology where all occurring existential

restrictions are unqualified, and that does not contain any conjunctions. Note
that due to the restriction of the interaction of role inclusions and functionality
constraints, this language corresponds to DL-Lite(ℋℱ)

core of [Art+09]. The same
restriction is employed in DL-Lite𝒜 [Pog+08].
Note that role inclusions allow DL-Liteℋℱ

core ontologies to express a limited form
of qualified existential restrictions. The concept inclusion 𝐴 ⊑ ∃𝑟.𝐵 can be
expressed in DL-Liteℋℱ

core through an additional role name 𝑟𝐵 with 𝐴 ⊑ ∃𝑟𝐵.⊤,
𝑟𝐵 ⊑ 𝑟, and ∃𝑟−𝐵.⊤ ⊑ 𝐵.

• A DL-Litecore ontology is a DL-Liteℋℱ
core ontology that does not contain any role

inclusions and functionality constraints.

• A conjunctive ontology (conj) is an ℰℒℐ ontology without existential restrictions,
that is, all concept inclusions have the form

𝐴1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊑ 𝐵1 ⊓ ⋯ ⊓ 𝐵𝑛

with 𝐴1, … , 𝐴𝑛, 𝐵1, … 𝐵𝑛 concept names.

We refer to these languages as ontology languages. Their definitions are summa
rized in Table 3.1. Figure 3.1 shows an overview of the relationships of all these
languages, where an arrow indicates that one language is syntactically contained
in another.

23

3 Preliminaries

Table 3.1: Overview of the features of the relevant ontology languages.

ℒ 𝑟− 𝐶 ⊓ 𝐷 ∃𝑅.𝐶 ∃𝑅.⊤ func(𝑅) 𝑅 ⊑ 𝑆 ⊑ ⊥

ℰℒℐℋℱ⊥ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ℰℒℐ ✓ ✓ ✓ ✓
ℰℒ𝑟 ✓ ✓ ✓
DL-Liteℱhorn ✓ ✓ ✓ ✓ ✓
DL-Litehorn ✓ ✓ ✓ ✓
DL-Liteℋℱ

core ✓ ✓ ✓ ✓ ✓
DL-Litecore ✓ ✓ ✓
 conj ✓

ℰℒℐℋℱ⊥

ℰℒℐ

ℰℒ𝑟

conj

DL-Liteℱhorn

DL-Litehorn

DL-Liteℋℱ
core

DL-Litecore

Figure 3.1: Relationship of the sublanguages of ℰℒℐℋℱ⊥.

ABoxes

An ABox 𝒜 is a finite set of concept assertions 𝐴(𝑎) and role assertions 𝑟(𝑎, 𝑏) with
𝐴 a concept name, 𝑟 a role name, and 𝑎, 𝑏 individual names We write ind(𝒜) for the
set of all individual names that occur in an ABox 𝒜. A pointed ABox is a tuple (𝒜, 𝑎)
of an ABox 𝒜 and a tuple of individual names 𝑎 ∈ ind(𝒜)∗. In general, we always
use the notation ∘ to refer to a tuple. In the context of learning, we refer to a pointed
ABox as a (data) example.

An interpretation ℐ is a model of an ABox 𝒜 if it satisfies all assertions in 𝒜,
that is 𝑎ℐ ∈ 𝐴ℐ if 𝐴(𝑎) ∈ 𝒜 and (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ if 𝑟(𝑎, 𝑏) ∈ 𝒜. An ABox 𝒜 is satisfiable
under an ontology 𝒪 if 𝒜 and 𝒪 have a common model. We make the unique
name assumption, that is 𝑎ℐ ≠ 𝑏ℐ for all 𝑎, 𝑏 ∈ ind(𝒜) with 𝑎 ≠ 𝑏. This is relevant
for satisfiability under functionality constraints: the ABox {𝑟(𝑎, 𝑏1), 𝑟(𝑎, 𝑏2)} is not

24

3.1 Description Logic and Conjunctive Queries

satisfiable under an ontology that contains the functionality constraint func(𝑟), but
can be if the unique name assumption is not adopted.

For a concept 𝐶, we write 𝒜, 𝒪 ⊧ 𝐶(𝑎) if for all models ℐ of 𝒜 and 𝒪, 𝑎ℐ ∈ 𝐶ℐ.
We can view a concept as a (concept) instance query, and say that 𝑎 is an answer to
the instance query 𝐶 posed to the ABox 𝒜 under the ontology 𝒪 if 𝒜, 𝒪 ⊧ 𝐶(𝑎).

We can view an ABox 𝒜 as a finite interpretation ℐ𝒜 with Δℐ𝒜 = ind(𝒜), 𝑎 ∈ 𝐴ℐ𝒜

if 𝐴(𝑎) ∈ 𝒜, and (𝑎, 𝑏) ∈ 𝑟ℐ𝒜 if 𝑟(𝑎, 𝑏) ∈ 𝒜, for all 𝑟 ∈ NR and 𝐴 ∈ NC. Analogously,
every finite interpretation ℐ can be viewed as the ABox obtained by including the
assertion 𝐴(𝑎) if 𝑎 ∈ 𝐴ℐ and the assertion 𝑟(𝑎, 𝑏) if (𝑎, 𝑏) ∈ 𝑟ℐ.

The underlying directed graph 𝐺𝒜 of an ABox 𝒜 has the vertices ind(𝒜) and the
edges {(𝑎, 𝑏) ∣ 𝑟(𝑎, 𝑏) ∈ 𝒜}. We say that an ABox 𝒜 is acyclic if 𝐺𝒜 is acyclic and there
are no multi-edges: 𝑟(𝑎, 𝑏) ∈ 𝒜 implies that 𝑠(𝑎, 𝑏) ∉ 𝒜 for all role names 𝑠 with 𝑠 ≠ 𝑟.
We say that an ABox 𝒜 is connected if 𝐺𝒜 is connected. We say that a pointed ABox
(𝒜, 𝑎) is rooted if each connected component of 𝐺𝒜 contains an element of 𝑎. We
say that 𝒜 is tree-shaped if 𝐺𝒜 is a directed tree and 𝒜 has no multi-edges. A unary
data example (𝒜, 𝑎) is tree-shaped, if 𝒜 is tree-shaped and 𝑎 is the root of the tree.

Conjunctive Queries

A conjunctive query (CQ) 𝑞 of arity 𝑘 is an expression of the form

𝑞(𝑥) ← 𝜑(𝑥, 𝑦)

where 𝑥 is a tuple 𝑥1 ⋯ 𝑥𝑘 of variables, called answer variables, 𝑦 is a sequence 𝑦1, … , 𝑦𝑚
of variables, called existential variables, and 𝜑 is a conjunction of concept atoms 𝐴(𝑥)
and role atoms 𝑟(𝑥, 𝑥′) with 𝑥, 𝑥′ ∈ 𝑥 ∪ 𝑦, 𝐴 ∈ NC and 𝑟 ∈ NR. Note that the same
variable can occur multiple times in 𝑥. A CQ is Boolean, if its tuple of answer
variables is empty. We use var(𝑞) to refer to the set of all variables that occur in
a CQ 𝑞. In a slight abuse of notation, we consider a CQ 𝑞 to be a set of its atoms
when convenient and write 𝑟(𝑥, 𝑥′) ∈ 𝑞, to mean that the role atom 𝑟(𝑥, 𝑥′) occurs
in the conjunction 𝜑 of 𝑞. Additionally, we use 𝑅(𝑥, 𝑥′) for a role 𝑟 to refer to the
atom 𝑟(𝑥, 𝑥′) if 𝑅 is the role name 𝑟, and to the atom 𝑟(𝑥′, 𝑥) if 𝑅 is the inverse role
𝑟−. The name existential variables becomes more meaningful, when we view CQs as
first order logic formula. A CQ 𝑞(𝑥) ← 𝜑(𝑥, 𝑦) can be viewed as the first order logic
formula 𝜓(𝑥) = ∃𝑦 𝜑(𝑥, 𝑦).

Motivated by the classic Chandra-Merlin theorem [CM77], we define the seman
tics of CQs in terms of homomorphisms. A homomorphism from an interpretation
ℐ to an interpretation 𝒥 is a function ℎ from Δℐ to Δ𝒥 such that for all 𝐴 ∈ NC and
𝑑 ∈ 𝐴ℐ, ℎ(𝑑) ∈ 𝐴𝒥, and for all 𝑟 ∈ NR and (𝑑, 𝑒) ∈ 𝑟ℐ, (ℎ(𝑑), ℎ(𝑒)) ∈ 𝑟𝒥. For a function ℎ
from Δℐ to Δ𝒥 we denote with img(ℎ) the image {ℎ(𝑑) ∣ 𝑑 ∈ Δℐ} ⊆ Δ𝒥 of ℎ. For tuples
𝑑 = 𝑑1 ⋯ 𝑑𝑛 and 𝑒 = 𝑒1 ⋯ 𝑒𝑛 we write ℎ(𝑑) = 𝑒 if ℎ(𝑑𝑖) = 𝑒𝑖 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.

25

3 Preliminaries

An essential fact about homomorphisms that we will use freely is that if ℎ is
a homomorphism from an interpretation ℐ1 to an interpretation ℐ2, and 𝑔 is a
homomorphism from ℐ2 to an interpretation ℐ3, then the composition of ℎ and
𝑔, that is, the function ℎ′ with ℎ′(𝑑) = 𝑔(ℎ(𝑑)) is a homomorphism from ℐ1 to ℐ3.
For interpretations ℐ, 𝒥, and all tuples 𝑑 over Δℐ and all tuples 𝑒 over Δ𝒥 we write
ℐ, 𝑑 → 𝒥, 𝑒 if there is a homomorphism ℎ from ℐ to 𝒥 with ℎ(𝑑) = 𝑒. Since we can
view ABoxes as finite interpretations, we extend this definition to ABoxes, and, for
example, write 𝒜, 𝑎 → ℬ, 𝑏 to mean ℐ𝒜, 𝑎 → ℐℬ, 𝑏 where 𝒜 and ℬ are ABoxes and
𝑎 ∈ ind(𝒜) and 𝑏 ∈ ind(ℬ).

With each CQ 𝑞(𝑥), we associate its canonical data example (𝒜𝑞, 𝑥). The ABox 𝒜𝑞
uses as individual names the variables of 𝑞, contains the concept assertion 𝐴(𝑥)
for each concept atom 𝐴(𝑥) ∈ 𝑞 and contains the role assertion 𝑟(𝑥, 𝑦) for each role
atom 𝑟(𝑥, 𝑦) ∈ 𝑞. The answer variables 𝑥 of 𝑞 are then used as the tuple of individual
names in the data example (𝒜𝑞, 𝑥). Similarly, we associate with each pointed ABox
(𝒜, 𝑎) a its canonical CQ 𝑞𝒜(𝑎), that uses as variables the individual names in 𝒜 and
contains a corresponding atom for every assertion in 𝒜. Since these two concepts
are so similar, we will often view ABoxes as CQs and vice versa, via their canonical
counterparts.

With a homomorphism from a CQ 𝑞 to an interpretation ℐ, we mean a homo
morphism from 𝒜𝑞 to ℐ. Let 𝑞(𝑥) be a CQ of arity 𝑘, ℐ an interpretation, and let 𝑒
be an 𝑘-tuple over Δℐ. If there is a homomorphism ℎ from 𝒜𝑞 to ℐ with ℎ(𝑥) = 𝑒, we
write 𝑞(𝑥) → ℐ, 𝑒. If such a homomorphism exists, we say that 𝑒 is an answer of 𝑞 in
ℐ, written as ℐ ⊧ 𝑞(𝑒).

Let 𝒪 be an ontology, 𝒜 an ABox and 𝑞 a CQ of arity 𝑘. We say that 𝑎 ∈ ind(𝒜)𝑘 is
an answer of 𝑞 in 𝒜 under 𝒪 and write 𝒜, 𝒪 ⊧ 𝑞(𝑎) if ℐ ⊧ 𝑞(𝑎) for every model ℐ
of 𝒜 and 𝒪. This is known as the certain answers of 𝑞. From these definitions, it is
clear that 𝒜𝑞, 𝒪 ⊧ 𝑞(𝑥) for every CQ 𝑞(𝑥) and ontology 𝒪. Similarly to ABoxes, we
say that a CQ 𝑞 is satisfiable under 𝒪 if there is a common model of 𝒜𝑞 and 𝒪. Note
that, using these definitions, a CQ being unsatisfiable does not mean that it does
not have any answers.

Let 𝑞 and 𝑝 be CQs of the same arity 𝑘. We write 𝑞 ⊆𝒪 𝑝 and say that 𝑞 implies 𝑝
under 𝒪 if, for all ABoxes 𝒜 and tuples 𝑎 ∈ ind(𝒜)𝑘,

𝒜, 𝒪 ⊧ 𝑞(𝑎) implies 𝒜, 𝒪 ⊧ 𝑝(𝑎).

This relationship is also referred to as query implication or query containment. We
write 𝑞 ≡𝒪 𝑝 and say that 𝑞 and 𝑝 are equivalent under 𝒪 if both 𝑞 ⊆𝒪 𝑝 and 𝑝 ⊆𝒪 𝑞.
From these definitions, it is easy to see that, for every 𝒪, ⊆𝒪 is a pre-order and ≡𝒪
is an equivalence relation. If 𝑞 ⊆𝒪 𝑞′ and 𝑞 ≢𝒪 𝑞′ we say that 𝑞′ is a generalization of
𝑞 and that 𝑞 is more specific than 𝑞′.

26

3.1 Description Logic and Conjunctive Queries

𝑞1

𝑟

𝑠 𝑡

𝑞2

𝑟 𝑠

𝑡

𝑞3

𝑟

𝑠𝑡

Figure 3.2: Examples of the different query classes. The queries 𝑞1, 𝑞2, 𝑞3 are all
CQs, only 𝑞2, 𝑞3 are ELIQs, and only 𝑞3 is an ELQ. Black vertices are
answer variables, white vertices are existential variables.

Example 3.1. Consider the ontology 𝒪 = {𝐴 ⊑ 𝐵} and the CQs

𝑞1(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) ∧ 𝐵(𝑥1),
𝑞2(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1),
𝑞3(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐵(𝑥1).

Then, 𝑞1 ⊆𝒪 𝑞2 and 𝑞1 ⊆𝒪 𝑞3. Due to the concept inclusion in 𝒪, it is also the case that
𝑞2 ⊆𝒪 𝑞1 and 𝑞2 ⊆𝒪 𝑞3. Hence, 𝑞1 ≡𝒪 𝑞2. However, 𝑞3 ⊈𝒪 𝑞2 and 𝑞3 ⊈𝒪 𝑞1. Therefore,
𝑞3 is a generalization of 𝑞1 and 𝑞2.

We are further interested in two subclasses of CQs that naturally correspond to
concept instance queries. A CQ 𝑞(𝑥) is acyclic, rooted, or tree-shaped if (𝒜𝑞, 𝑥) is
acyclic, rooted, or tree-shaped, respectively. We use these properties to define the
following query classes:

ELIQ The ℰℒℐ queries, or ELIQs, are the class of unary, acyclic and rooted CQs.
Each ℰℒℐ concept 𝐶 naturally corresponds to an ELIQ 𝑞 (and vice versa) such
that 𝒜, 𝒪 ⊧ 𝐶(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎). For example, the ℰℒℐ concept 𝐶 =
∃𝑟.⊤ ⊓ ∃𝑠−.∃𝑡.⊤ corresponds to the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑠(𝑥2, 𝑥0) ∧ 𝑡(𝑥2, 𝑥3),
which is displayed as 𝑞2 in Figure 3.2.

ELQ The ℰℒ queries, or ELQs, are the class of unary, tree-shaped, and rooted CQs.
Each ℰℒ concept 𝐶 naturally corresponds to an ELQ 𝑞 (and vice versa) such
that 𝒜, 𝒪 ⊧ 𝐶(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎). For example, the ℰℒ concept
∃𝑟.(∃𝑡.⊤⊓∃𝑠.⊤) corresponds to the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1)∧𝑠(𝑥1, 𝑥2)∧𝑡(𝑥1, 𝑥3),
which is displayed as 𝑞3 in Figure 3.2.

As a direct consequence of these definitions, every ELQ is an ELIQ, and every ELIQ
is a CQ. Figure 3.2 shows examples of queries in these classes. The CQ 𝑞1 is neither
an ELIQ nor an ELQ, since it is not unary and contains a cycle.

27

3 Preliminaries

For ELIQs, we adopt notation related to trees and speak about successor and
predecessor variables, subtrees and leafs. In particular, we can view an ELIQ 𝑞(𝑥0)
as a tree rooted at 𝑥0 where all edges are directed away from 𝑥0, and each edge is
labeled with a role name 𝑟 or an inverse role name 𝑟−. We then denote with 𝑞𝑥 the
ELIQ obtained from taking all atoms in the subtree below the variable 𝑥 and making
𝑥 the answer variable. With each variable in an ELIQ 𝑞, we associate a codepth, where
leaf variables have codepth 0, and non-leaf variables have the codepth that is the
minimum of their successors plus one.

Example 3.2. Consider the ELIQ

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑠(𝑥0, 𝑥3) ∧ 𝐴(𝑥1) ∧ 𝑠(𝑥2, 𝑥1).

The role atoms 𝑟(𝑥0, 𝑥1) and 𝑠(𝑥0, 𝑥3) are directed away from the answer variable 𝑥0
and the role atom 𝑠(𝑥2, 𝑥1) is directed towards 𝑥0. We can also view 𝑠(𝑥2, 𝑥1) as an 𝑠−
atom, that is directed away from 𝑥0. Furthermore, the ELIQ 𝑞𝑥1, that is the subtree
rooted at 𝑥1, is

𝑞𝑥1(𝑥1) ← 𝐴(𝑥1) ∧ 𝑠(𝑥2, 𝑥1).

The codepth of 𝑥2 in 𝑞 is 0, the codepth of 𝑥1 is 1, and the codepth of 𝑥0 is 2.

A signature Σ is a set of concept and role names. For a query class 𝒬, we denote
with 𝒬Σ the class of all queries from 𝒬 that only use symbols in Σ. Note that all
query classes 𝒬 we have defined are infinite, and, assuming that Σ contains a role
name, all 𝒬Σ are infinite as well. For any syntactic object 𝑜 (like concepts, ontologies,
ABoxes or queries), we use sig(𝑜) to denote the set of concept and role names used
in 𝑜, and ‖𝑜‖ to denote the size of 𝑜, that is, the number of symbols needed to write 𝑜
as a word encoded over a finite fixed alphabet, where each occurrence of concept
or role names contributes one symbol.

The Direct Product

Closely related to conjunctive queries and homomorphisms is the operation of
constructing a direct product of two interpretations. The direct product of two
interpretations ℐ1 and ℐ2 is the interpretation ℐ1 × ℐ2 defined by setting

Δℐ1×ℐ2 = Δℐ1 × Δℐ2,
𝐴ℐ1×ℐ2 = 𝐴ℐ1 × 𝐴ℐ2, for all 𝐴 ∈ NC,
𝑟ℐ1×ℐ2 = {((𝑑1, 𝑑2), (𝑒1, 𝑒2)) ∣ (𝑑𝑖, 𝑒𝑖) ∈ 𝑟ℐ𝑖 for 𝑖 ∈ {1, 2}}, for all 𝑟 ∈ NR.

Let 𝑎 = 𝑎1 … 𝑎𝑛 and 𝑏 = 𝑏1 … 𝑏𝑛 be tuples of the same arity. With 𝑎 ⊗ 𝑏 we denote
the tuple (𝑎1, 𝑏1) … (𝑎𝑛, 𝑏𝑛). From the definition of direct products, it is clear that

28

3.1 Description Logic and Conjunctive Queries

|Δℐ1×ℐ2 | = |Δℐ1 | ⋅ |Δℐ2 |. Hence, the product of finite interpretations can be computed
in polynomial time. The important standard properties of direct products are
summarized in the following lemma.

Lemma 3.3. Let ℐ1, ℐ2, and 𝒥 be interpretations and 𝑒1, 𝑒2 and 𝑒 tuples. Then, the
following are equivalent.

1. 𝒥, 𝑒 → ℐ1, 𝑒1 and 𝒥, 𝑒 → ℐ2, 𝑒2;

2. 𝒥, 𝑒 → ℐ1 × ℐ2, 𝑒1 ⊗ 𝑒2.

The same applies to ABoxes and CQs viewed as finite interpretations. A direct
consequence of Lemma 3.3 is that ℐ1 ⊧ 𝑞(𝑒1) and ℐ2 ⊧ 𝑞(𝑒2) if and only if ℐ1 × ℐ2 ⊧
𝑞(𝑒1 ⊗ 𝑒2).

Reasoning

Associated with ontologies and queries are certain decision problems, referred to
as reasoning tasks, that involve reasoning with the logical statements in the ontology.
Their computational complexity varies, depending on the query class and the
ontology language. Here, we briefly introduce the main reasoning tasks that are
relevant for learning queries under ontologies, and comment on their combined
complexity.

The first basic reasoning task is satisfiability: Given an ABox 𝒜 and an ontology
𝒪, decide whether 𝒜 is satisfiable under 𝒪. Conjunctive, ℰℒ𝑟 and ℰℒℐ ontologies
do not contain disjointness or functionality constraints and every ABox is therefore
satisfiable under those ontologies. Ontologies written in ℰℒℐℋℱ⊥ may constraints,
and deciding satisfiability of ABoxes is ExpTime-complete [KRH13]. For DL-Liteℱhorn,
DL-Litehorn, DL-Liteℋℱ

core, and DL-Litecore ontologies, satisfiability can be decided in
P [Art+09].

Another basic reasoning task is concept subsumption: Given as input an ontology 𝒪,
and concepts 𝐶, 𝐷, decide whether 𝒪 ⊧ 𝐶 ⊑ 𝐷. In ontology languages with concept
disjointness constraints, this can be decided by answering whether 𝐶 viewed as an
ABox is not satisfiable under 𝒪∪{𝐶⊓𝐷 ⊑ ⊥}. Therefore, deciding concept subsump
tion is in P for DL-Liteℱhorn, DL-Litehorn, DL-Liteℋℱ

core and DL-Litecore, and in ExpTime
for ℰℒℐℋℱ⊥. For ontology languages without concept disjointness constraints,
separate reasoning algorithms are necessary to decide concept subsumption. For
conjunctive or ℰℒ ontologies, concept subsumption can be decided in P [Bra04].
For ℰℒℐ ontologies, deciding concept subsumption is ExpTime-complete [BBL08],
and therefore the same is true for ℰℒℐℋℱ⊥ ontologies.

Since we are interested in querying under ontologies, the computational com
plexity of query answering under ontologies are also relevant: Given an ontology 𝒪,

29

3 Preliminaries

Table 3.2: Summary of the (combined) complexity of various reasoning tasks

ℒ Satisfiability 𝒪 ⊧ 𝐶 ⊑ 𝐷 𝒜, 𝒪 ⊧ 𝑞𝐸𝐿𝐼𝑄(𝑎) 𝒜, 𝒪 ⊧ 𝑞𝐶𝑄(𝑎)

ℰℒℐℋℱ⊥ ExpTime-c ExpTime-c ExpTime-c ExpTime-c
ℰℒℐ trivial ExpTime-c ExpTime-c ExpTime-c
ℰℒ trivial in P in P NP-c
DL-Liteℱhorn in P in P in NP NP-c
DL-Litehorn in P in P in NP NP-c
DL-Liteℋℱ

core in P in P NP-c NP-c
DL-Litecore in P in P in P NP-c
∅ trivial in P NP-c

a CQ 𝑞, and a data example (𝒜, 𝑎), decide whether 𝒜, 𝒪 ⊧ 𝑞(𝑎). Already in the
case without an ontology, answering CQs is NP-complete [CM77]. For ontolo
gies written in more expressive DLs such as ℰℒℐ and ℰℒℐℋℱ⊥, answering CQs
is ExpTime-complete [Eit+08]. However, for ontologies written in ℰℒ or DLs of
the DL-Lite family, where concept subsumption is in P, answering CQs remains
NP-complete [Cal+05; Ros07].

The complexity of query answering improves when we restrict 𝑞 to be an ELIQ.
In fact, acyclicity of 𝑞 suffices. Then, answering an ELIQ is in P in the case with
out ontologies [Yan81]. Moreover, it remains in P for ℰℒ and DL-Litecore ontolo
gies [Bie+13]. The role inclusions in DL-Liteℋℱ

core ontologies unfortunately make
answering ELIQs NP-complete [KKZ11]. For ontologies written ℰℒℐ and ℰℒℐℋℱ⊥
the ExpTime-complete concept subsumption dominates the complexity of query
answering, and ELIQ answering is not easier than CQ answering.

All mentioned complexity results are summarized in Table 3.2. When investi
gating query answering under ontologies, one is commonly also interested in data
complexity, that is, the computational complexity of query answering when the
ontology and the query are assumed to be fixed. Low data complexity for query
answering is one of the main motivations of the DL-Lite family of DLs. However,
data complexity is not so relevant for us, as we will not assume that ontologies or
specific queries are fixed when learning queries.

Universal Models

An important property of ℰℒℐℋℱ⊥ and all of its sublanguages is that they are
contained in the Horn fragment of first order logic. This gives ℰℒℐℋℱ⊥ ontologies
the universal model property, meaning that they possess a single model that is homo
morphically contained in all of their models. Next, we review the construction of

30

3.1 Description Logic and Conjunctive Queries

such models and their properties.
For this, it is useful to assume that ontologies are in normal form. An ℰℒℐℋℱ⊥

ontology is in normal form if all concept inclusions in it are of one of the following
forms

𝐴1 ⊑ ∃𝑅.𝐴2 ∃𝑅.𝐴1 ⊑ 𝐴2 𝐴1 ⊓ 𝐴2 ⊑ 𝐴3

where 𝐴1, 𝐴2, 𝐴3 are concept names or ⊤ and 𝑅 is a role. It is well known that
every ℰℒℐℋℱ⊥ ontology can be converted into normal form in polynomial time,
by introducing additional concept names [Baa+17].

For a set 𝑀 of concept names, we write ⨅ 𝑀 as a shorthand for ⨅𝐴∈𝑀 𝐴. Let 𝒜 be
an ABox and 𝒪 an ℰℒℐℋℱ⊥ ontology. We define the interpretation 𝒰𝒜,𝒪 as follows.
For 𝑎 ∈ ind(𝒜), sets of concept names 𝑀, 𝑀′, and a role 𝑅, we write 𝑎 ⇝𝑅

𝒜,𝒪 𝑀 if

1. 𝒜, 𝒪 ⊧ ∃𝑅. ⨅ 𝑀(𝑎) and 𝑀 is maximal with this condition, and

2. there is no 𝑏 ∈ ind(𝒜) with 𝒜, 𝒪 ⊧ 𝑅(𝑎, 𝑏) and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏).

We write 𝑀 ⇝𝑅
𝒪 𝑀′ if 𝒪 ⊧ ⨅ 𝑀 ⊑ ∃𝑅. ⨅ 𝑀′ and 𝑀′ is maximal with this condition.

A trace for 𝒜 and 𝒪 is a sequence 𝑎𝑅1𝑀1 ⋯ 𝑅𝑛𝑀𝑛 for 𝑛 ≥ 0, where 𝑎 ∈ ind(𝒜),
𝑅1, … , 𝑅𝑛 are roles that occur in 𝒪, and 𝑀1, … , 𝑀𝑛 are sets of concept names that
occur in 𝒪 such that

1. 𝑎 ⇝𝑅1
𝒜,𝒪 𝑀1, and

2. 𝑀𝑖 ⇝𝑅𝑖+1
𝒪 𝑀𝑖+1 and func(𝑅−

𝑖) ∈ 𝒪 implies 𝑅𝑖+1 ≠ 𝑅−
𝑖 , for 1 ≤ 𝑖 < 𝑛.

We say that a trace 𝑎𝑅1𝑀1 ⋯ 𝑅𝑛𝑀𝑛 starts with 𝑎 ∈ ind(𝒜) and has length 𝑛. We call
a trace proper if it has length at least one, that is, it is not an element of ind(𝒜).

The set T of all traces for 𝒜 and 𝒪 forms Δ𝒰𝒜,𝒪. We define ⋅𝒰𝒜,𝒪 for all 𝐴 ∈ NC
and all 𝑟 ∈ NR as follows.

𝐴𝒰𝒜,𝒪 ={𝑎 ∈ ind(𝒜) ∣ 𝒜, 𝒪 ⊧ 𝐴(𝑎)} ∪
{𝑡𝑅𝑀 ∈ T ∣ 𝐴 ∈ 𝑀},

𝑟𝒰𝒜,𝒪 ={(𝑎, 𝑏) ∈ ind(𝒜)2 ∣ 𝒜, 𝒪 ⊧ 𝑟(𝑎, 𝑏)} ∪
{(𝑡, 𝑡𝑠𝑀) ∣ 𝑡𝑠𝑀 ∈ T, 𝒪 ⊧ 𝑠 ⊑ 𝑟} ∪
{(𝑡𝑠−𝑀, 𝑡) ∣ 𝑡𝑠−𝑀 ∈ T, 𝒪 ⊧ 𝑠 ⊑ 𝑟}.

Example 3.4. Consider the ABox 𝒜 = {𝑟(𝑎, 𝑏)} and the ontology

𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ 𝑠.𝐵, 𝑟 ⊑ 𝑠, func(𝑟)}.

31

3 Preliminaries

𝑎
𝐴, 𝐵

𝒜

𝑎
𝐴, 𝐵

𝑏𝑟 𝑎
𝐴, 𝐵

𝒰𝒜,𝒪

𝑏
𝐴

𝑎𝑠{𝐵}𝐵

𝑎𝑠{𝐵}𝑠{𝐵}𝐵

⋮

𝑏𝑟{𝐴} 𝐴

⋮⋮

𝑏𝑠{𝐴} 𝐴

⋮⋮

𝑟, 𝑠

𝑠

𝑠

𝑠

𝑟, 𝑠

𝑟, 𝑠
𝑠

𝑠

𝑠
𝑟, 𝑠

Figure 3.3: The ABox 𝒜 and the infinite interpretation 𝒰𝒜,𝒪 for 𝒜 = {𝑟(𝑎, 𝑏)} and
𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ ∃𝑠.𝐵, 𝑟 ⊑ 𝑠, func(𝑟)}.

An initial segment of the interpretation 𝒰𝒜,𝒪 is displayed in Figure 3.3. In 𝒰𝒜,𝒪, the
trace 𝑎𝑠{𝐵} is an 𝑠-successor of 𝑎, as 𝑎 ⇝𝑠

𝒜,𝒪 {𝐵}. Note that 𝑎⇝̸𝑠
𝒜,𝒪{𝐴} and 𝑎⇝̸𝑟

𝒜,𝒪{𝐴}
due to the 𝑟(𝑎, 𝑏) assertion in 𝒜. Since 𝒜, 𝒪 ⊧ 𝐴(𝑏), 𝑏 ⇝𝑠

𝒜,𝒪 {𝐴} and 𝑏 ⇝𝑟
𝒜,𝒪 {𝐴}.

Therefore, the traces 𝑏𝑠{𝐴} and 𝑏𝑟{𝐴} are attached to 𝑏.

Note that 𝒰𝒜,𝒪 is usually infinite. To each element 𝑎 ∈ ind(𝒜), the traces starting
with 𝑎 are attached in a tree-like structure. The traces do not necessarily form
an acyclic interpretation, as role inclusions can introduce multi-edges, but their
underlying graph is acyclic. Therefore, we also use tree terminology when talking
about traces. Commonly, we use the subtree below 𝑎 or the subtree attached to 𝑎 to mean
the restriction of 𝒰𝒜,𝒪 to the traces starting with 𝑎.

The interpretation 𝒰𝒜,𝒪 is then a universal model of 𝒜 and 𝒪, the properties of
which are made precise by the following lemma. Its proof is standard, see, for
example, [Bot+16].

Lemma 3.5. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝒜 an ABox that is
satisfiable under 𝒪. Then

1. 𝒰𝒜,𝒪 is a model of 𝒜 and 𝒪;

2. for every model ℐ of 𝒜 and 𝒪, there is a homomorphism ℎ from 𝒰𝒜,𝒪 to ℐ with
ℎ(𝑎) = 𝑎ℐ for all 𝑎 ∈ ind(𝒜).

3. for all 𝑘-ary CQs 𝑞(𝑥) and all 𝑎 ∈ ind(𝒜)𝑘, 𝒜, 𝒪 ⊧ 𝑞(𝑎) if and only if 𝒰𝒜,𝒪 ⊧ 𝑞(𝑎).

We call a model that fulfills Point 3 of Lemma 3.5 CQ-universal. Occasionally, we
will also use models that are 𝒬-universal for some query class 𝒬 that are not CQs
and mean that they fulfill Point 3 not for all CQs, but for all queries in 𝒬.

32

3.2 The Fitting Problem

The definition of 𝒰𝒜,𝒪 is very close to standard definitions of universal models for
ℰℒℐℋ⊥ [BO15], that is, ℰℒℐℋℱ⊥ without functionality constraints, with additional
considerations to accommodate these functionality constraints. Compare it also
to definitions of universal models for ℰℒℐℋℱ⊥ without the restriction on the
interaction of role inclusions and functionality constraints, such as in [LP22]. Due
to the restriction, we can use single roles instead of sets of roles in our definition
of traces. Note that this means that 𝒰𝒜,𝒪 is not a model of ℰℒℐℋℱ⊥ ontologies in
which the interaction of functionality constraints and role inclusions is not restricted.

Example 3.6. Consider the ABox 𝒜 = {𝐴(𝑎)} and the ontology

𝒪 = {𝐴 ⊑ ∃𝑟1.⊤, 𝐴 ⊑ ∃𝑟2.⊤, 𝑟1 ⊑ 𝑠, 𝑟2 ⊑ 𝑠, func(𝑠)},

which is not an ℰℒℐℋℱ⊥ ontology according to the definition in Section 3.1, as
func(𝑠) ∈ 𝒪, but there is a role 𝑟1 with 𝑟1 ⊑ 𝑠 ∈ 𝒪. Then, 𝒰𝒜,𝒪 contains the traces 𝑎𝑟1∅
and 𝑎𝑟2∅ with (𝑎, 𝑎𝑟1∅), (𝑎, 𝑎𝑟2∅) ∈ 𝑠𝒰𝒜,𝒪, which violates the functionality constraint
func(𝑠) ∈ 𝒪.

We will often consider models 𝒰𝒜,𝒪 where 𝒜 is a CQ 𝑞 viewed as an ABox 𝒜𝑞.
In these cases, we will write 𝒰𝑞,𝒪 instead of 𝒰𝒜𝑞,𝒪. The following lemma is a direct
consequence of Point 3 of Lemma 3.5 and the homomorphism-based semantics of
CQs.

Lemma 3.7. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑝(𝑦), 𝑞(𝑥) CQs such that
𝑝 is satisfiable under 𝒪. Then, 𝑝 ⊆𝒪 𝑞 if and only if 𝒜𝑝, 𝒪 ⊧ 𝑞(𝑦) if and only if 𝒰𝑝,𝒪 ⊧ 𝑞(𝑦).

Occasionally, when composing homomorphisms, we will need to extend the
domain of homomorphisms from queries to their universal model.

Lemma 3.8. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form, 𝒜 an ABox, 𝑞(𝑥) a CQ,
and 𝑎 a tuple over ind(𝒜). Every homomorphism ℎ from 𝑞 to 𝒰𝒜,𝒪 with ℎ(𝑥) = 𝑎 can be
extended to a homomorphism ℎ′ from 𝒰𝑞,𝒪 to 𝒰𝒜,𝒪 with ℎ′(𝑥) = 𝑎.

The proofs of these lemmas are standard and omitted.

3.2 The Fitting Problem

In the fitting model of learning, the learning algorithm receives labeled data exam
ples as input and must compute a query that fits the labeled examples. Formally, a
labeled data example is an example (𝒜, 𝑎) together with the label + (positive example)
or − (negative example). A CQ 𝑞 fits a collection of labeled examples 𝐸 under an ontology
𝒪 if

33

3 Preliminaries

• 𝒜, 𝒪 ⊧ 𝑞(𝑎) for all (𝒜, 𝑎, +) ∈ 𝐸, and

• 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) for all (𝒜, 𝑎, −) ∈ 𝐸.

Observe that 𝐸 is not a set, that is, 𝐸 is allowed to contain duplicate data examples.
This is not essential here, but makes the definition of fitting closer to PAC learning.
The decision problem at the core of computing a fitting query given examples is as
follows.

Definition 3.9 (Fitting problem). Let 𝒬 be a query class and ℒ an ontology language.
The fitting problem for 𝒬 and ℒ is the problem to decide, given an ℒ ontology 𝒪, a
signature Σ, and a set of labeled examples 𝐸, whether there is a query 𝑞 ∈ 𝒬Σ that
fits 𝐸 under 𝒪.

The fitting problem is also referred to as the separability problem, the weak sep
arability problem, or query-by-example [Fun+19; GJS18; Jun+20]. The name weak
separability refers to the contrast to strong separability. In the strong separability
problem, it is required that ℬ, 𝒪 ⊧ ¬𝑞(𝑏) for all negative examples (𝒜, 𝑎, −) ∈ 𝐸. In
our setting, this does not make sense since ℬ, 𝒪 ⊧ ¬𝑞(𝑏) is never true due to the
open world assumption and choice of ontology language. However, for stronger
ontology languages that can express negation, like 𝒜ℒ𝒞, strong separability may be
desired. See for example [BN00; Fan+18; Leh+14] for works on strong separability.
Since we only consider lightweight description logics where reasoning is possible
in polynomial time, only fitting in the above sense of weak separability is useful to
us.

As it lies at the core of many query engineering problems, the complexity of
the fitting problem has been investigated both in the setting of databases without
ontologies and in the setting of knowledge bases.

Willard showed that computing a fitting CQ, even under the empty ontology,
is coNExpTime-complete [tCD15; Wil10]. Part of this high complexity lies in the
fact that the size of a fitting CQ may be exponential in the size of the examples.
In the case of ELQs, the size of a fitting query may even be double-exponential.
Fortunately, the existence of a fitting ELQ (or ELIQ) under the empty ontology can
be decided in ExpTime based on a simulation-based characterization, and is indeed
only ExpTime-complete [BR17]. The same is true for deciding the existence of fitting
ELQs under ℰℒℐ ontologies [Fun+19], as finite models, although of exponential
size, of ℰℒℐ ontologies that are ELQ-universal exist. Since all relevant features
of DL-Litehorn are available in ℰℒℐ, this also applies to ELQs under DL-Litehorn
ontologies.

Finite ELIQ- or CQ-universal models of ℰℒ or ℰℒℐ ontologies do not exist. Never
theless, under Horn-𝒜ℒ𝒞 ontologies (which includes all ℰℒ ontologies), the fitting

34

3.2 The Fitting Problem

Table 3.3: Known complexity results of the fitting problem for 𝒬 and ℒ

ℒ ELQ ELIQ CQ

ℰℒℐ ExpTime-c undecidable undecidable
ℰℒ ExpTime-c ExpTime-h coNExpTime-c

DL-Litecore / DL-Litehorn ExpTime-c ExpTime-h coNExpTime-h
∅ ExpTime-c ExpTime-c coNExpTime-c

problem for CQs is not harder than in the case without ontologies and can be de
cided in coNExpTime [GJS18]. For ELIQs under ℰℒ ontologies, the exact complexity
is not known, but the ExpTime-hardness from the case under the empty ontology
transfers. Unfortunately, under ℰℒℐ ontologies, the fitting problem for ELIQs and
CQs even becomes undecidable [Fun+19]. This is slightly worrying, as therefore
no algorithm that searches for fitting ELIQs under ℰℒℐ ontologies can be complete
and terminating. However, exact learning and PAC learning algorithms work under
the assumption that a fitting query exists and therefore do not necessarily need to
solve an undecidable problem.

For DLs of the DL-Lite family, only few bounds on the complexity of the fit
ting problem for CQs or ELIQs are known, as existing results mostly focus on
UCQs [CCL21; Ort19]. In general, deciding the existence of a fitting UCQ is com
putationally simpler than the existence of a fitting CQ, as a fitting query for each
positive example can be determined separately, and then joined in a disjunction.
This makes the fitting problem for UCQs under the empty ontology only coNP-
complete.

Table 3.3 summarizes the mentioned results. It is interesting to note that the
size of a fitting query is not the only source of the high complexities of the fitting
problems. These problems remain at least NP-hard, even if algorithms take a bound
on the size of the fitting query as input [tCat+24]. We revisit this in Chapter 6.

For learning queries, we are not only interested in deciding if a fitting query
exist, but also wish to obtain a fitting query. For this, we use the notion of fitting
algorithms.

Definition 3.10 (Fitting algorithm). Let 𝒬 be a query class and ℒ an ontology
language. A fitting algorithm for 𝒬 and ℒ is an algorithm that takes as input a
signature Σ, an ℒ ontology 𝒪 with sig(𝒪) ⊆ Σ, and a set of labeled examples 𝐸, and
returns a query 𝑞 ∈ 𝒬Σ that fits 𝐸 under 𝒪 if such a query exists.

Of course, fitting algorithms according to Definition 3.10 are not algorithms in
the usual sense, as it is not required to terminate if no fitting query exists in 𝒬Σ.
Additionally, fitting algorithms may return any query if no fitting query exists. We

35

3 Preliminaries

chose this definition for uniformity with the other learning models, where a fitting
query is guaranteed to exist. These issues do not occur in practice, as for many
combinations of 𝒬 and ℒ there are upper bounds on the size of a fitting query, like
the aforementioned bounds on ELQs and CQs, which can be used to ensure that a
fitting algorithm in the sense of Definition 3.10 always terminates. Furthermore,
as query answering is usually computationally easier than the fitting problem, it
can in a second step be verified that the result of a fitting algorithm in the sense of
Definition 3.10 really fits the input examples.

3.3 Exact Learning

Angluin’s exact learning framework [Ang88b] models learning as an interactive
process involving two parties, a learner and a teacher. It was conceived in the context
of learning finite automata from word examples in polynomial time [Ang87]. We
informally described this framework in Chapter 1. In this section, we define it
formally, specialized to our setting of learning queries under ontologies.

Both the learner and the teacher agree on a query class 𝒬 and know an ontology
𝒪, as well as a signature Σ, but only the teacher knows a target query 𝑞𝑇 ∈ 𝒬Σ. The
learner then attempts to identify 𝑞𝑇 by posing two different kinds of questions to
the teacher that we already saw in Chapter 1:

Membership query Given an example (𝒜, 𝑎), the teacher responds with yes if 𝒜, 𝒪 ⊧
𝑞𝑇(𝑎) and no otherwise.

Equivalence query Given a hypothesis query 𝑞𝐻 ∈ 𝒬Σ, the teacher responds yes if
𝑞𝐻 ≡𝒪 𝑞𝑇. If this is not the case, the teacher produces a counterexample, that
is, an example (𝒜, 𝑎) such that 𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝐻(𝑎) or vice versa.

Note that in membership queries, sig(𝒜) is unrestricted.
It may be confusing that membership queries and equivalence queries are called

queries when we already aim to learn conjunctive queries. These two sorts of queries
are not related. Sometimes membership queries are renamed to membership oracle
calls to avoid this confusion [tCD22], but we choose to keep the name membership
query, since it is established in the exact learning literature. Similarly, exact learning
is often concerned with learning concepts, which are defined to be sets of examples,
and not syntactic objects, like the description logic concepts defined in Section 3.1.
We mostly avoid this clash of terms by defining our learning models for query
classes and not for abstract classes of concept.

In both membership queries and equivalence queries, the teacher must respond
correctly and truthfully, but the counterexamples provided by the teacher do not

36

3.3 Exact Learning

have to be helpful. In fact, the learner must be able to identify the target query even
if the teacher acts as an adversary.

In the exact learning framework, we desire a learning algorithm for the learner to
execute that identifies 𝑞𝑇 in all cases.

Definition 3.11 (Exact learning algorithm). Let 𝒬 be a query class and ℒ an ontology
language. An exact learning algorithm for 𝒬 under ℒ ontologies is an algorithm 𝐀
that, for all signatures Σ, all ℒ ontologies 𝒪 with sig(𝒪) ⊆ Σ, and all 𝑞𝑇 ∈ 𝒬Σ, when
started with input 𝒪 and Σ, and allowed to ask membership and equivalence queries
that are answered with regard to 𝑞𝑇, 𝐀 returns a hypothesis 𝑞𝐻 ∈ 𝒬Σ with 𝑞𝐻 ≡𝒪 𝑞𝑇.

If there exists an exact learning algorithm for 𝒬 under ℒ ontologies, then 𝒬 is
exactly learnable under ℒ ontologies.

Using this definition, every enumerable query class is exactly learnable under
every ontology language. This is because there always is a learning algorithm that
enumerates all queries in 𝒬Σ ordered by size and returns the first query for which
the teacher responds positively to an equivalence query. For the query classes we
are interested in, this means that the algorithm makes a number of equivalence
queries that is exponential in ‖𝑞𝑇‖, as there is an exponential number of queries that
are smaller than 𝑞𝑇. This is often not practical, especially when equivalence queries
need to be answered by a human teacher. Hence, we are interested in notions of
efficient exact learnability, where the learner is not permitted to make this exponential
number of equivalence queries.

Polynomial time learnability The first notion of efficiency restricts the algorithm to
run in polynomial time.

The query class 𝒬 is polynomial time learnable under ℒ ontologies, if there
is an exact learning algorithm 𝐀 for 𝒬 under ℒ ontologies, and there is a
polynomial 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇, 𝑛𝒜) such that at each point during the run of 𝐀, the
time used by 𝐀 is bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜), where 𝑛𝒜 is the size of the
largest counterexample returned by an equivalence query so far.

Note that this notion is slightly more restrictive than demanding the total
running time of 𝐀 to be bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜). This is because we
want to allow 𝑝 to depend on 𝑛𝒜, in order to give 𝐀 enough time to read large
counterexamples whose size is not bounded by the other parameters. But in
certain scenarios bounding the total running time this way could be abused
by learning algorithms: 𝐀 could first perform an exponential search for 𝑞𝑇 as
described above, and then, with knowledge of 𝑞𝑇, ask an equivalence query
that forces the teacher to produce an exponentially sized counterexample,
thereby sufficiently raising the running time bound [Ang90].

37

3 Preliminaries

Polynomial query learnability For some choices of 𝒬 and ℒ, polynomial time learn
ability seems implausible due to reasons not directly linked to the learning
itself. For example, when learning under ℰℒℐ ontologies, ExpTime-complete
reasoning problems may need to be solved by the learner. In these cases, we
might relax the bound on the running time of the learning algorithm, but still
demand that the number of membership queries and equivalence queries is
bounded to forbid exhaustive search strategies.

A query class 𝒬 is polynomial query learnable under ℒ ontologies, if there is an
exact learning algorithm 𝐀 for 𝒬 under ℒ ontologies, and there is a polynomial
𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇, 𝑛𝒜) such that at each point during the run of 𝐀, the sum of the
sizes of the inputs to membership and equivalence queries up to that point
is bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜) and every query returned by 𝐀 has size at
most 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜).

The bound on the size of the output of 𝐀 is non-standard in this definition.
Without it, a learning algorithm could identify 𝑞𝑇 using membership queries
and equivalence queries of size bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜), and then
return a query equivalent to 𝑞𝑇, but exponentially larger. This is not desirable,
since it breaks a connection to PAC learning, which we describe in Section 3.4.

It follows directly from these definitions that every query class 𝒬 that is polyno
mial time learnable under ℒ ontologies is also polynomial query learnable. Ad
ditionally, polynomial time learnability and polynomial query learnability are
anti-monotone in ℒ: If every ℒ′ ontology is also a ℒ ontology and 𝒬 is polynomial
time learnable under ℒ ontologies, then 𝒬 is also polynomial time learnable under
ℒ′ ontologies using the same learning algorithm. This makes the case of learning
without ontologies a special case of learning under ontologies. The same is not
true for the query class 𝒬: If 𝒬′ ⊆ 𝒬 and 𝒬 is polynomial time learnable under ℒ
ontologies, then 𝒬′ is not necessarily polynomial time learnable under ℒ ontologies.
This is because the hypotheses used in equivalence queries must then be from 𝒬′,
but the original learning algorithm produces hypotheses from 𝒬.

In Definition 3.11 we assume that sig(𝒪) ⊆ Σ. This assumption gives more
freedom to learning algorithms, as they can freely use all symbols in the ontology
as part of equivalence queries.

In some formulations of the exact learning model, the learner has access to more
kinds of questions than membership queries and equivalence queries [Ang88b].
One kind that is interesting in our setting are subset queries.

Subset query Given query 𝑞𝐻 ∈ 𝒬Σ, the teacher answers with yes if 𝑞𝐻 ⊆𝒪 𝑞𝑇 and
with no otherwise.

38

3.3 Exact Learning

For all query classes that are subclasses of CQs, subset queries do not make learning
algorithms more powerful. The reason for this is Lemma 3.7. Consider a CQ 𝑞(𝑥)
and the corresponding example (𝒜𝑞, 𝑥). Then, the response to a subset query with
𝑞 is positive if and only if 𝑞 ⊆𝒪 𝑞𝑇. This in turn is true if and only if 𝒜𝑞, 𝒪 ⊧ 𝑞𝑇(𝑥),
which is precisely what is answered by a membership query. Hence, one can replace
uses of subset queries with uses of membership queries.

However, the other direction, replacing membership queries with subset queries,
is not always possible. One can replace a membership query with example (𝒜, 𝑎)
with a subset query, only if 𝑞𝒜 ∈ 𝒬. That is, if 𝒬 = ELQ, then a membership query
with the example ({𝑟(𝑎, 𝑎)}, 𝑎) cannot be replaced with a subset query, as 𝑞𝒜 is not
an ELQ.

It is, of course, also of interest to show that some combinations of query class
and ontology language are not efficiently learnable. Angluin introduced several
techniques to show lower bounds for the number of membership queries and
equivalence queries that every (correct) learning algorithm has to use in the worst
case. A basic technique for showing lower bounds for membership queries is the
following.

Lemma 3.12 ([Ang88b]). Let ℒ be an ontology language and 𝒬 a query class. If there is
a set 𝑆 of 𝒬 queries and an ℒ ontology such that for all examples (𝒜, 𝑎) and for all 𝑝, 𝑞 ∈ 𝑆
with 𝑝 ≠ 𝑞,

𝒜, 𝒪 ⊧ 𝑞(𝑎) and 𝒜, 𝒪 ⊧ 𝑝(𝑎) implies 𝒜, 𝒪 ⊧ 𝑞′(𝑎) for all 𝑞′ ∈ 𝑆,

then every learning algorithm that uses only membership queries to learn 𝒬 queries under
ℒ ontologies must make at least |𝑆| − 1 membership queries in the worst case.

 Proof. To show this, we view the teacher as an adversary, who tries to avoid iden
tification of a target query 𝑞𝑇 ∈ 𝑆 as long as possible. For this, we will describe a
strategy for the teacher to maintain the set 𝑆 as a set of possible target queries that
is consistent with all answers given to membership queries so far. The properties
of 𝑆 make sure that the teacher needs to only remove at most one query from 𝑆
for each membership query that the learner asks, meaning that for every learning
algorithm that asks fewer than |𝑆| − 1 membership queries, two candidates remain
in 𝑆 that the learner cannot distinguish.

Assume to the contrary, that there is a learning algorithm that can identify every
single choice of target query from 𝑆 with fewer than |𝑆| − 1 membership queries. If
the learner asks a membership query with example (𝒜, 𝑎), the adversarial teacher
responds as follows:

1. if there is no 𝑞 ∈ 𝑆 such that 𝒜, 𝒪 ⊧ 𝑞(𝑎), answer no;

2. if 𝒜, 𝒪 ⊧ 𝑞(𝑎) for a single 𝑞 ∈ 𝑆, answer no and remove 𝑞 from 𝑆;

39

3 Preliminaries

3. if 𝒜, 𝒪 ⊧ 𝑞(𝑎) for more than one 𝑞 ∈ 𝑆, answer yes.

Note that in every case, the queries that remain in 𝑆 are consistent with the answers
given so far. In the third case, this is due to the property of 𝑆 that if 𝒜, 𝒪 ⊧ 𝑞(𝑎) and
𝒜, 𝒪 ⊧ 𝑝(𝑎) for 𝑝, 𝑞 ∈ 𝑆 with 𝑝 ≠ 𝑞, then 𝒜, 𝒪 ⊧ 𝑞′(𝑎) for all 𝑞′ ∈ 𝑆. Thus, the learner
cannot distinguish the remaining candidate queries in 𝑆 based on the answers so
far, and we have arrived at a contradiction.

We will use several extensions of this technique to show that certain query classes
cannot be learned using only a polynomial number of membership queries.

Beyond Lemma 3.12, many more sophisticated combinatorial approaches have
been developed to show lower bounds on the required number of membership
queries and equivalence queries, like certificates [Hel+96], the generalized teaching
dimension [Heg95], or the Littlestone dimension [CF20] See [Ang04] for a summary
of these techniques. Unfortunately, no lower bounds in the area of learning queries
under ontologies have been established using these techniques so far.

3.4 Probably Approximately Correct Learning

The model of probably approximately correct (PAC) learning was introduced by Valiant
in the context of learning Boolean functions [Val84], although not under this name.
The name was later coined by Angluin [Ang88a]. In this section, we define the PAC
model for learning queries under ontologies.

At the core of the PAC model lies the assumption that data examples are inde
pendently drawn from an unknown probability distribution and labeled according
to an unknown target query 𝑞𝑇 that we aim to learn. In the functional version of this
model, a learning algorithm is provided with a sample of examples drawn from
the distribution and labeled according to 𝑞𝑇, and must produce a query that agrees
with high likelihood with 𝑞𝑇 on a random example drawn from the distribution.

More precisely, let 𝑃 be a probability distribution over data examples and let 𝑞𝑇
and 𝑞𝐻 be CQs, the target and the hypothesis. The error of 𝑞𝐻 relative to 𝑞𝑇 and 𝑃 is

error𝑃,𝑞𝑇,𝒪(𝑞𝐻) = Pr
(𝒜,𝑎)∈𝑃

�𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝐻(𝑎), or

𝒜, 𝒪 ⊧̸ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧ 𝑞𝐻(𝑎)�

where Pr(𝒜,𝑎)∈𝑃 𝑋 is the probability of 𝑋 when drawing (𝒜, 𝑎) randomly according
to 𝑃. In other words, error𝑃,𝑞𝑇,𝒪(𝑞𝐻) is the probability that 𝑞𝐻 disagrees with 𝑞𝑇 on
an example drawn at random from 𝑃.

40

3.4 Probably Approximately Correct Learning

Definition 3.13 (PAC learning algorithm). Let 𝒬 be a query class, ℒ an ontol
ogy language. A PAC learning algorithm for 𝒬 under ℒ ontologies is a potentially
randomized algorithm 𝐀 associated with a function 𝑚∶ ℝ2 × ℕ4 → ℕ such that

• 𝐀 takes as input a signature Σ, an ℒ ontology 𝒪 with sig(𝒪) ⊆ Σ, and a
collection of labeled data examples 𝐸;

• for all 𝜖, 𝛿 with 0 < 𝜖, 𝛿 < 1, all signatures Σ, all ℒ ontologies 𝒪 with sig(𝒪) ⊆
Σ, all 𝑛𝑞𝑇, 𝑛𝒜 ≥ 0, all probability distributions 𝑃 over examples (𝒜, 𝑎) with
sig(𝒜) ⊆ Σ and ‖𝒜‖ ≤ 𝑛𝒜, and all 𝑞𝑇 ∈ 𝒬Σ with ‖𝑞𝑇‖ ≤ 𝑛𝑞𝑇, the following
holds:

When running 𝐀 on Σ, 𝒪, and a collection 𝐸 of at least 𝑚(1𝛿 , 1𝜖 , |Σ|, ‖𝒪‖, 𝑛𝑞𝑇, 𝑛𝒜)
labeled data examples drawn from 𝑃 that are labeled according to 𝑞𝑇 under 𝒪,
𝐀 returns a hypothesis 𝑞𝐻 such that with probability at least 1 − 𝛿 (over the
choice of 𝐸), we have error𝑃,𝑞𝑇,𝒪(𝑞𝐻) ≤ 𝜖.

We say that 𝐀 has sample size 𝑚 and call 𝐀 sample-efficient if 𝑚 is a polynomial.

Note that matching Definition 3.10, a PAC learning algorithm is not required to
terminate if no fitting query exists.

If there is a (sample-efficient) PAC learning algorithm for 𝒬 under ℒ ontologies,
then we say that 𝒬 is (sample-efficiently) PAC learnable under ℒ ontologies. Further
more, we say that 𝒬 is polynomial time PAC learnable under ℒ ontologies if there is
a sample-efficient PAC learning algorithm for 𝒬 under ℒ ontologies that runs in
polynomial time in the size of its inputs.

The PAC model according to Definition 3.13 is called non-uniform PAC model, in
contrast to the uniform PAC model, where the sample size may not depend on ‖𝑞𝑇‖.
It is also known as the functional model, in contrast to the oracle model. In the oracle
model, the algorithm does not receive a collection of labeled examples as input, but
has access to an oracle that provides labeled examples upon request. In order for
the algorithm to know how many examples it needs to request, it instead receives 𝛿
and 𝜖 as input. Haussler et al. showed that the functional and the oracle model are
equivalent, meaning that polynomial time (or sample-efficient) PAC learnability in
one model implies polynomial time (or sample-efficient) PAC learnability in the
other [Hau+91]. Furthermore, many other small variations of PAC learning also
turn out to be equivalent [Hau+91].

For many kinds of logical expressions, polynomial time PAC learnability was
found to be impossible, unless some NP-hard problem can be decided in polyno
mial time. For example, learning 2-term-DNF in polynomial time, would allow
solving certain NP-hard graph coloring problems in polynomial time [PV88]. To
enable polynomial running time in such cases where PAC learning is hard, PAC

41

3 Preliminaries

learning is sometimes extended with membership queries [AK95], which are defined
as in exact learning. Allowing PAC algorithms to make membership queries enables
PAC learning 2-term-DNF in polynomial time [Ang88b]. Polynomial PAC learn
ability also often implies that the corresponding fitting problem can be decided in
polynomial time. We discuss this connection further in Chapter 6.

Moreover, there is also a direct connection between exact learning and PAC learn
ing. Angluin showed that polynomial time exact learnability with only equivalence
queries implies polynomial time PAC learnability [Ang87; Ang88b]. We show this
using our Definitions 3.11 and 3.13 and make the tacit assumption of polynomial
time evaluation explicit.

Theorem 3.14 ([Ang88b]). Let 𝒬 be a query class and ℒ an ontology language, such that
𝒬 is polynomial time learnable under ℒ ontologies using only equivalence queries. Then 𝒬
is also polynomial time PAC learnable under ℒ ontologies, given a way to answer 𝒬 queries
in polynomial time under ℒ ontologies.

 Proof. Let 𝐀 be an exact learning algorithm for 𝒬 queries under ℒ ontologies that
uses only equivalence queries with running time bound 𝑝. Note that 𝑝 also bounds
the number of equivalence queries asked by 𝐀. Assume without loss of generality
that as soon as the response to an equivalence query is yes, 𝐀 terminates and returns
the hypothesis (and 𝐀 does not terminate without receiving a positive response to
an equivalence query).

We will use 𝐀 to construct a polynomial time PAC learning algorithm 𝐀′ for 𝒬
queries under ℒ ontologies. On input 𝒪, Σ and 𝐸, 𝐀′ first splits 𝐸 into 𝑛 = ⌊√|𝐸|⌋
segments each of length at least 𝑛. It then starts running 𝐀 with inputs 𝒪 and Σ.

Whenever 𝐀 asks an equivalence query with hypothesis 𝑞, 𝐀′ evaluates 𝑞 on
the labeled examples of the first remaining segment of 𝐸, and then discards this
segment. If 𝑞 agrees with all labels in this segment, 𝐀′ responds with yes to this
equivalence query. Otherwise, if there is an example (𝒜, 𝑎) where 𝑞 disagrees with
the label, 𝐀′ returns (𝒜, 𝑎) to 𝐀 as a counterexample and continues running 𝐀. If 𝐀
terminates with hypothesis 𝑞𝐻, 𝐀′ also terminates and returns 𝑞𝐻. If at some point
there are no remaining segments, 𝐀′ terminates and returns an arbitrary element
of 𝒬.

It remains to show that 𝐀′ is a polynomial time PAC learning algorithm. Let 𝒪
be an ℒ ontology, Σ a signature, 𝑞𝑇 a 𝒬 query and 𝑃 a probability distribution over
examples (𝒜, 𝑎) with ‖𝒜‖ ≤ 𝑛𝒜. Furthermore, let 𝑝𝐀 = 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜) be the
running time bound of 𝐀 for these inputs, let

𝑛 =
1
𝜖 �ln

1
𝛿

+ 𝑝𝐀�

42

3.4 Probably Approximately Correct Learning

and let 𝐸 be a collection of at least 𝑛2 data examples that are labeled according to 𝑞𝑇
under 𝒪. We have to show that when running 𝐀′ on inputs 𝒪, Σ and 𝐸, it returns a
hypothesis 𝑞𝐻 such that with at most probability 𝛿, we have error𝑃,𝑞𝑇,𝒪(𝑞𝐻) > 𝜖.

Since 𝐀 is guaranteed to identify 𝑞𝑇 after at most 𝑝𝐀 equivalence queries, 𝐀′ must
always terminate and return a hypothesis 𝑞𝐻 after polynomial time. The probability
that error𝑃,𝑞𝑇,𝒪(𝑞𝐻) > 𝜖 is then the probability that 𝐀′ responds yes to an equivalence
query with hypothesis 𝑞, although error𝑃,𝑞𝑇,𝒪(𝑞) > 𝜖.

The algorithm 𝐀′ splits 𝐸 into at least 𝑛 segments, each of length at least 𝑛. Since
𝑛 ≥ 𝑝𝐀, 𝐀′ checks each equivalence query of 𝐀 against 𝑛 examples randomly
drawn from 𝑃. The probability that 𝐀′ responds yes to an equivalence query with
hypothesis 𝑞, although error𝑃,𝑞𝑇,𝒪(𝑞) > 𝜖, is therefore at most

(1 − 𝜖)𝑛 ≤ 𝑒−𝜖𝑛 = 𝛿 ⋅ 𝑒−𝑝𝐀 ≤
𝛿

𝑝𝐀

by choice of 𝑛. Therefore, the probability that error𝑃,𝑞𝑇,𝒪(𝑞𝐻) > 𝜖 is at most 𝑝𝐀 ⋅ 𝛿
𝑝𝐀

= 𝛿,
as required.

Note that the PAC algorithm constructed in this proof makes no use of random
ization. Additionally, we can extend this proof to show more expected connections
between the two learning models. First, if we extend the PAC learning with member
ship queries, we can show that polynomial time exact learnability with equivalence
and membership queries implies polynomial time PAC learnability with member
ship queries. Second, if we drop the running time requirement, we can also show
that polynomial query learnability with equivalence queries implies sample-effi
cient PAC learnability (which again can be extended to learning algorithms that
additionally have access to membership queries).

Unfortunately, the converse of Theorem 3.14 does not hold. There are concept
classes that are polynomial time PAC learnable, but not polynomial time exact
learnable with equivalence queries assuming that certain cryptographic problems
are hard [Blu94]. Ozaki, Persia, and Mazzullo provide an example of such a concept
class in the area of learning description logic ontologies [OPM20].

43

Chapter 4

Learning with Membership Queries

We begin our investigation into the learnability of queries under ontologies with
exact learning algorithms that use only membership queries. Leaving out equiva
lence queries makes exact learning less powerful, as many query classes that can
be learned in polynomial time require both membership and equivalence queries.
However, this relatively simpler setting allows us to use a first version of tech
niques that we in Chapter 5 extend to learning algorithms that also have access to
equivalence queries.

From a practical perspective, it is easier to obtain a teacher who answers only
membership queries, than a teacher who answers both membership and equiva
lence queries, as judging whether two queries are equivalent requires more logical
expertise. For example, a black-box classifier in place of a query 𝑞𝑇, perhaps a
sufficiently large neural network that classifies examples (𝒜, 𝑎) either positively or
negatively, could be used to automatically answer membership queries. Then, a
learning algorithm could query this classifier to construct a symbolic representa
tion of 𝑞𝑇. It is, however, unclear how such a classifier could be used to answer
equivalence queries.

In this chapter, a learning algorithm receives as input a signature Σ, and an
ontology 𝒪, and aims to identify a target query 𝑞𝑇 by using membership queries.

Example 4.1. Consider the signature Σ = {𝐴, 𝑟}, the ontology 𝒪 = {𝐴 ⊑ ∃𝑟.⊤} and
that we aim to learn ELQs. If the target ELQ is

𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1),

then a learner can identify 𝑞𝑇 (up to ≡𝒪-equivalence) using membership queries
as follows. First, by asking whether {𝑟(𝑎1, 𝑎2), 𝐴(𝑎2)}, 𝒪 ⊧ 𝑞𝑇(𝑎1) and receiving yes
as a response, the learner can eliminate ELQs such as 𝑞1(𝑥0) ← 𝐴(𝑥0) and 𝑞2(𝑥0) ←
𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) ∧ 𝑟(𝑥1, 𝑥2) as well as anything of greater size as possibilities for
𝑞𝑇. Then, by asking whether {𝑟(𝑏1, 𝑏2), 𝑟(𝑏2, 𝑏3)}, 𝒪 ⊧ 𝑞𝑇(𝑏1) and receiving no as a
response, the learner can eliminate ELQs such as 𝑞3(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) and
𝑞4(𝑥0) ← 𝑟(𝑥0, 𝑥1) as candidates. The only ELQ that agrees with these answers is 𝑞𝑇.

45

4 Learning with Membership Queries

The first observation we make about this setting of only membership queries is
that the property of being (polynomial time) learnable using only membership
queries is anti-monotone in both the query class 𝒬 and the ontology language ℒ.
This is not automatically the case when equivalence queries are used. Assume that
𝒬 is (polynomial time) learnable under ℒ ontologies. Further, let 𝒬′ be a query
class and ℒ′ be an ontology language such that 𝒬′ ⊆ 𝒬 and ℒ′ ⊆ ℒ. Then 𝒬′ is also
(polynomial time) learnable under ℒ′ ontologies1.

The second observation is that there is an interesting necessary precondition for
a query class to be learnable with only membership queries, namely the existence
of finite unique characterizations.

Definition 4.2 (Unique characterization). Let 𝒬 be a query class, 𝒪 an ontology
and 𝑞 ∈ 𝒬. A set of labeled examples 𝐸 is a unique characterization of 𝑞 under 𝒪, if 𝑞
fits 𝐸 under 𝒪 and 𝑞 ≡𝒪 𝑝 for all 𝑝 ∈ 𝒬 that fit 𝐸 under 𝒪.

A query 𝑞 ∈ 𝒬 is uniquely characterizable (with regard to 𝒬) if there exists a unique
characterization of 𝑞.

Example 4.3. Consider 𝒪 as in Example 4.1. The ELQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) is
uniquely characterized (with regard to all ELQs over the signature {𝑟, 𝐴}) under 𝒪
by the positive data example ({𝑟(𝑎1, 𝑎2), 𝐴(𝑎2)}, 𝑎2) and the negative data example
({𝑟(𝑏1, 𝑏2), 𝑟(𝑏2, 𝑏3)}, 𝑏1).

Unique characterizations are closely connected to learning with only membership
queries. Let us assume that there is a learning algorithm 𝐀 for a query class 𝒬
under ℒ ontologies that uses only membership queries. When 𝐀 is started on a
signature Σ as well as an ontology 𝒪 and then identifies a target query 𝑞𝑇, it must
have done so based on the answers to its membership queries. Since 𝐀 must be
able to identify all queries in 𝒬 under all ℒ ontologies, the data examples used in
the membership queries combined with the answers provided by the teacher must
form a finite unique characterization of 𝑞𝑇 under 𝒪. If 𝐀 is a polynomial query
learning algorithm, then the resulting unique characterization must even be of
polynomial size in ‖𝑞𝑇‖, ‖𝒪‖ and |Σ|.

Moreover, an algorithm that computes finite unique characterizations of 𝒬 queries
allows us to construct a learning algorithm for 𝒬 queries that uses only membership
queries. The learning algorithm enumerates all 𝑞 ∈ 𝒬 ordered by size, and for
each query 𝑞 in the enumeration it computes a unique characterization 𝐸. It then
uses membership queries to check whether the target query 𝑞𝑇 fits 𝐸. If this is the
case, then 𝑞 ≡𝒪 𝑞𝑇 and the learning algorithm returns 𝑞. Otherwise, it continues
with the next query. Unfortunately, this algorithm always requires at least an

1With the additional requirement that every 𝑞 ∈ 𝒬 that is equivalent to a query in 𝒬′ can be
transformed into a 𝒬′ query in polynomial time.

46

𝑞1

𝑟

𝑟

𝑞2

𝑟 𝑟
𝑟
𝑟

𝑞3

𝑟
𝑟𝑟

𝑞4

𝑟
𝑟

𝑟

𝑟

Figure 4.1: CQs that are not uniquely characterizable.

exponential number of membership queries for our query classes even if all unique
characterizations are of polynomial size, so polynomial time learnability cannot be
obtained this way. Our learning algorithm will use a smarter strategy.

Ten Cate, Dalmau, and Kolaitis show that the class of all CQs is not polynomial
query learnable using only membership queries, even under the empty ontol
ogy [tCDK13]. They use an argument in the style of Lemma 3.12 to show that even
if the size of a target CQ is known to the learning algorithm in advance, at least an
exponential number of membership queries is necessary to identify it. To under
stand why learning CQs is not possible with a polynomial number of membership
queries, consider for every 𝑘 ≥ 1 the CQ

𝑞𝑘(𝑥0) ← �
1≤𝑖≤𝑘

𝑟(𝑥0, 𝑥𝑖) ∧ �
1≤𝑖,𝑗≤𝑘
𝑖≠𝑗

𝑟(𝑥𝑖, 𝑥𝑗).

The queries 𝑞1, 𝑞2, 𝑞3 and 𝑞4 are displayed in Figure 4.1, where the unlabeled edges
are also 𝑟-atoms. We can see that every unique characterization of 𝑞1 must be infinite.
If there were a finite unique characterization 𝐸 of 𝑞, then there must be a number
𝑛 that is larger than the length of the longest cycle in every negative example in
𝐸. Consider then the query 𝑞𝑛. Either, 𝑞𝑛 correctly labels all negative examples
in 𝐸, or there is a negative example (ℬ, 𝑏) that is labeled positively by 𝑞𝑛. In the
first case, since 𝑞1 ⊆∅ 𝑞𝑛, 𝑞𝑛 fits all examples in 𝐸, contradicting that 𝐸 is a unique
characterization. In the second case, since 𝑛 > ind(ℬ), it must also be the case that
𝑞1 labels (ℬ, 𝑏) positively, contradicting that 𝑞1 fits 𝐸.

The cycles in every 𝑞𝑘 are crucial for this argument. Indeed, the class of 𝑐-acyclic
CQs, that heavily restricts the occurrence of cycles, is uniquely characterizable.
Most importantly, it can also be shown that 𝑐-acyclic CQs are polynomial time
learnable using only membership queries [tCD22]. This class of CQs contains all
ELIQs, which implies the following.

Proposition 4.4 ([tCD22]). ELIQs are polynomial time learnable under the empty ontol
ogy using only membership queries.

47

4 Learning with Membership Queries

𝑞1 𝑞2 𝑞3 … 𝑞𝑇
⊊∅ ⊊∅ ⊊∅ ⊊∅

Figure 4.2: The sequence 𝑞1, 𝑞2, … approximates 𝑞𝑇 from above. Initially, all queries
are candidates for 𝑞𝑇, as 𝑞1 ⊆∅ 𝑝 holds for all 𝑝. Each move from 𝑞𝑖 to
𝑞𝑖+1 eliminates some candidates for 𝑞𝑇.

In our investigation into the learnability of queries under ontologies using only
membership queries, we therefore focus on ELIQs a large class of queries that is
potentially learnable in polynomial time.

We also base our approach on the learning algorithm behind Proposition 4.4,
whose strategy is visualized in Figure 4.2. This algorithm identifies 𝑞𝑇 in polynomial
time by starting with a very specific query 𝑞1 such that it is guaranteed that 𝑞1 ⊆∅
𝑞𝑇, and then constructing with the help of membership queries a sequence of
increasingly more general hypotheses 𝑞1, 𝑞2, …, where in each step the number of
queries 𝑝 such that 𝑞𝑖 ⊆∅ 𝑝 is reduced, but the property that 𝑞𝑖 ⊆∅ 𝑞𝑇 is maintained.
This sequence must then arrive at 𝑞𝑇 after polynomially many steps.

This approach heavily relies on the fact that for classes of CQs, membership
queries can be used to imitate subset queries due to Lemma 3.7. A learning algo
rithm can check whether 𝑞𝑖 ⊆∅ 𝑞𝑇 by asking the teacher whether 𝒜𝑞𝑖, ∅ ⊧ 𝑞𝑇(𝑥𝑖)
using a membership query.

In this chapter, we generalize the central notions of this algorithm to the case
with ontologies in order to establish learnability results for the class of all ELIQs.

Structure of this Chapter

First, in Section 4.1, we look into the limits of learning ELIQs under ontologies
and identify several ontology languages under which polynomial query learning is
impossible. This motivates a restriction of functionality constraints in DL-Liteℋℱ

core
ontologies, resulting in the ontology language DL-Liteℋℱ−

core .
Then, we extend the techniques used to show Proposition 4.4 to DL-Liteℋℱ−

core . In
Section 4.2, we show that we can restrict our attention to ontologies in normal form:
if a class of queries is polynomial time learnable under ontologies in normal form,
then it is also polynomial time learnable under unrestricted ontologies.

In Section 4.3, we look at the core operation of the learning algorithm: moving
from 𝑞𝑖 to 𝑞𝑖+1 while maintaining 𝑞𝑖 ⊆𝒪 𝑞𝑇. For this, the algorithm needs to construct

48

4.1 Limits of Membership Queries

the set of all most specific generalizations of 𝑞𝑖, called a frontier of 𝑞𝑖. We show that
ELIQs always possess frontiers of polynomial size under DL-Liteℋℱ−

core ontologies,
and we can search them in polynomial time to find a suitable candidate for 𝑞𝑖+1.
Additionally, we show that many extensions of DL-Liteℋℱ−

core do not permit frontiers
of polynomial size.

Then, in Section 4.4, we show that even under ontologies, the sequence 𝑞1, 𝑞2, …
must reach 𝑞𝑇 after at most a polynomial number of steps.

What remains is to find a suitable 𝑞1 for the start of this sequence, which is
no longer trivial under ontologies. In Section 4.5 we determine how a learning
algorithm can obtain it. In the worst case, if the ontology contains unrestricted
concept disjointness constraints, then we show that a single equivalence query
cannot be avoided to obtain 𝑞1.

We put the results of the previous sections together in Section 4.6 to present the
complete learning algorithm for ELIQs under DL-Liteℋℱ−

core and show that it runs in
polynomial time. This is the main result of this chapter.

Finally, we end this chapter with a discussion about these results in Section 4.7

Related Publications

Much of the material in this chapter is based on the publications [FJL21b; FJL22a;
FJL22b]. However, many of the results have been generalized. The main results,
Theorem 4.23 about the existence of frontiers and Theorem 4.42 about the polyno
mial time learnability of ELIQs, were previously only shown to hold for DL-Liteℋcore
and DL-Liteℱ−core, but are shown here to hold for DL-Liteℋℱ−

core .

4.1 Limits of Membership Queries

We know that ELIQs are polynomial time learnable under the empty ontology using
only membership queries, but CQs are not. Under which ontology sublanguages of
ℰℒℐℋℱ⊥ can we hope to learn queries in polynomial time using only membership
queries? Unfortunately, already for ℰℒ or DL-Litehorn ontologies, an exponential
number of membership queries can be necessary to identify the target query. The
perhaps surprising reason for this is that these ontology languages can express con
junctions like 𝐴1 ⊓ 𝐴2 ⊑ 𝐵. We follow a strategy similar to the proof of Lemma 3.12
in order to show that using simple inclusions of conjunctions of concept names
suffices to make polynomial query learning impossible, even for queries that only
consist of conjunctions of concept name atoms.

A conjunction of atomic queries is a unary CQ of the form 𝑞(𝑥0) ← 𝐴1(𝑥0)∧⋯∧𝐴𝑛(𝑥0)
where 𝐴1, … , 𝐴𝑛 are concept names. Every query that is a conjunction of atomic

49

4 Learning with Membership Queries

queries is also an ELIQ and an ELQ.

Theorem 4.5. Conjunctions of atomic queries are not polynomially query learnable under
conjunctive ontologies using only membership queries

 Proof. For each 𝑛 ≥ 1, we use the set

𝑆𝑛 = {𝑞(𝑥) ← 𝛼1(𝑥) ∧ … ∧ 𝛼𝑛(𝑥) ∣ 𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛},

of 2𝑛 conjunctions of atomic queries that use the signature Σ = {𝐴𝑖, 𝐵𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛},
and we use the conjunctive ontology

𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1 ⊓ 𝐵1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊓ 𝐵′
𝑛 ∣ 1 ≤ 𝑖 ≤ 𝑛}.

Assume to the contrary of what is to be shown that conjunctions of atomic queries
are polynomial query learnable under conjunctive ontologies. Then there exists a
learning algorithm and polynomial 𝑝 such that the number of membership queries
is bounded by 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇), where 𝑛Σ is the size of the signature Σ, 𝑛𝒪 the size of
the ontology and 𝑛𝑞𝑇 the size of the target query2. We choose 𝑛 such that

2𝑛 > 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)),

where 𝑟 is a polynomial such that every query 𝑞 ∈ 𝑆𝑚 satisfies ‖𝑞‖ = 𝑟(𝑚) for every
𝑚 ≥ 1.

Now, consider a membership query posed by the learning algorithm with the
data example (𝒜, 𝑎). The teacher responds as follows:

1. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for no 𝑞 ∈ 𝑆𝑛, then answer no

2. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for a single 𝑞 ∈ 𝑆𝑛, then answer no and remove 𝑞 from 𝑆𝑛

3. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for more than one 𝑞 ∈ 𝑆𝑛, then answer yes.

Note that the third response is consistent since 𝒜 must then contain 𝐴𝑖(𝑎) and 𝐵𝑖(𝑎)
for some 𝑖 and thus 𝒪𝑛 implies that 𝑎 is an answer to every query in 𝑆𝑛. Moreover,
the answers are always correct with respect to the updated set 𝑆𝑛. Thus, the learner
cannot distinguish the remaining candidate queries by answers to queries posed so
far.

It follows that the learning algorithm removes at most 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)) queries
from 𝑆𝑛. By the choice of 𝑛, at least two candidates remain in 𝑆𝑛 after the algorithm
asks the last membership query. Thus, the learner cannot distinguish between
them, and we have derived a contradiction.

2As no equivalence queries are allowed, the size 𝑛𝒜 of the largest counterexample is fixed.

50

4.1 Limits of Membership Queries

Recall that the long concept inclusions of the form 𝐴𝑖⊓𝐵𝑖 ⊑ 𝐴1⊓𝐵1⊓⋯⊓𝐴𝑛⊓𝐵′
𝑛 can

be expressed through several simpler concept inclusions 𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1, 𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐵1,
…, 𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐵′

𝑛. Hence, only conjunctions on the left side of concept inclusions are
necessary for the ontology used in the proof of Theorem 4.5.

Therefore, only DLs of the DL-Litecore family are candidates for polynomial time
learning of queries, since they restrict the use of conjunctions on the left side of
concept inclusions. Next, we show that ELIQs are not learnable at all using only
membership queries, if functionality constraints and existential restrictions interact
in an ontology.

Theorem 4.6. ELIQs are not learnable under DL-Liteℱcore ontologies using only membership
queries

 Proof. The proof follows a structure similar to the proof of Theorem 4.5, but as we
aim to show non-learnability instead of non-polynomial query learnability, we will
use an infinite set 𝑆 of candidate target queries.

We use the fixed DL-Liteℱcore ontology

𝒪 = { 𝐴 ⊑ ∃𝑟.⊤, ∃𝑟−.⊤ ⊑ ∃𝑟.⊤, ∃𝑟.⊤ ⊑ ∃𝑠.⊤, func(𝑟−) }.

and the set
𝑆 = {𝑞∗} ∪ {𝑞𝑛 ∣ 𝑛 is prime},

where 𝑞∗(𝑥1) ← 𝐴(𝑥0) ∧ 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) and each 𝑞𝑛 is defined as follows:

𝑞𝑛(𝑥1) ←𝐴(𝑥0) ∧ 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧
𝑠(𝑥𝑛, 𝑦) ∧ 𝑠(𝑥′𝑛, 𝑦) ∧
𝑟(𝑥′1, 𝑥′2) ∧ ⋯ ∧ 𝑟(𝑥′𝑛−1, 𝑥′𝑛) ∧ 𝐴(𝑥′1).

The queries 𝑞∗ and 𝑞𝑛 are displayed in Figure 4.3. It is important to note that 𝑞∗ ⊆𝒪 𝑞𝑛
for all 𝑛 ≥ 1 and 𝑞𝑖 ⊈𝒪 𝑞𝑗 for all 𝑖 ≠ 𝑗. Intuitively, this makes it impossible for the
learner to distinguish between 𝑞∗ being the target query and one of the 𝑞𝑛 being the
target query. If, for example, the learner asks a membership query with the data
example (𝒜𝑞∗, 𝑥1) then the teacher will answer yes, and the learner has not gained
any additional information. The following claim describes the main property of
the chosen queries.

Claim. Let 𝒜 be an ABox and 𝑎 ∈ ind(𝒜). If 𝒜, 𝒪 ⊧̸ 𝑞∗(𝑎), then 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎) for only
finitely many primes 𝑛.

 Proof of the claim. Let 𝒜 be an ABox and 𝑎 ∈ ind(𝒜) such that 𝒜, 𝒪 ⊧̸ 𝑞∗(𝑎). Then 𝒜
must satisfy func(𝑟−). Suppose to the contrary of what we have to show that there

51

4 Learning with Membership Queries

𝐴

𝑞∗

𝐴
𝑟

𝑞𝑛

𝐴
𝑟

⋮

𝐴

⋮
𝑟

𝑟

𝑠

𝑟

𝑟

𝑠

Figure 4.3: The queries 𝑞∗ and 𝑞𝑛.

are infinitely many primes 𝑛 such that 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎) and let ℎ𝑛 be the witnessing
homomorphisms from 𝑞𝑛 to 𝒰𝒜,𝒪 with ℎ𝑛(𝑥1) = 𝑎. We distinguish cases.

If ℎ𝑛(𝑥𝑛) ∉ ind(𝒜) for some prime 𝑛 with 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎), then ℎ𝑛(𝑥′𝑛) = ℎ𝑛(𝑥𝑛) due
to the tree structure of the traces in 𝒰𝒜,𝒪. Since 𝑟− is functional in 𝒰𝒜,𝒪, it follows
that ℎ𝑛(𝑥𝑗) = ℎ𝑛(𝑥′𝑗) for all 𝑗 with 1 ≤ 𝑗 ≤ 𝑛. Since 𝐴(𝑥′1) ∈ 𝑞𝑛, also 𝐴(ℎ𝑛(𝑥′1)) =
𝐴(ℎ𝑛(𝑥1)) = 𝐴(𝑎) ∈ 𝒜. Since also 𝐴(𝑥0), 𝑟(𝑥0, 𝑥1) ∈ 𝑞𝑛, we have ℎ𝑛(𝑥0) ∈ 𝐴𝒰𝒜,𝒪,
(ℎ𝑛(𝑥0), ℎ𝑛(𝑥1)) ∈ 𝑟𝒰𝒜,𝒪, and thus ℎ𝑛 is a homomorphism from 𝑞∗ to 𝒰𝒜,𝒪 with
ℎ𝑛(𝑥1) = 𝑎. Hence, 𝒜, 𝒪 ⊧ 𝑞∗(𝑎), a contradiction.

Otherwise, ℎ𝑛(𝑥𝑛) ∈ ind(𝒜) for all primes 𝑛 with 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎). Since 𝒜 is finite,
there is an element 𝑏 ∈ ind(𝒜) such that ℎ𝑚(𝑥𝑚) = 𝑏 for infinitely many primes 𝑚.
Thus, there is an 𝑟-path of length 𝑚 from 𝑎 to 𝑏 in 𝒜 for infinitely many primes 𝑚.
Since 𝒜 is finite and satisfies func(𝑟−), this is only possible if 𝑎 = 𝑏, 𝑟(𝑎, 𝑎) ∈ 𝒜, and
ℎ𝑚(𝑥𝑗) = 𝑎 for all considered 𝑚 and all 𝑗 with 1 ≤ 𝑗 ≤ 𝑚. Since also 𝐴(𝑥0), 𝑟(𝑥0, 𝑥1) ∈ 𝑞𝑛
and 𝒜 satisfies func(𝑟−), we further have ℎ𝑛(𝑥0) = 𝑎 for all primes 𝑛 with 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎)
and 𝐴(𝑎) ∈ 𝒜. But then 𝒜, 𝒪 ⊧ 𝑞∗(𝑎), a contradiction.

Now, assume there is a learning algorithm for ELIQs under DL-Liteℱcore ontologies
that uses only membership queries, and consider a membership query posed by
this algorithm with the data example (𝒜, 𝑎). An adversarial teacher can respond as
follows:

1. if 𝒜, 𝒪 ⊧ 𝑞∗(𝑎), then reply yes;

2. otherwise, reply no and remove from 𝑆 every 𝑞𝑛 that satisfies 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎).

An important aspect of this strategy is that, as proved in the claim, only finitely
many hypotheses 𝑞 are removed whenever Case 2 above applies. Consequently,
after any number of membership queries, the set of remaining hypotheses 𝑆 is
infinite and contains 𝑞∗. The learning algorithm then can, however, not distinguish
between 𝑞∗ and the remaining hypotheses and thus not identify the target query. In

52

4.2 Reducing to Ontologies in Normal Form

particular, the presence of 𝑞∗ ∈ 𝑆 prevents the learning from simply going through
all 𝑞𝑖 ∈ 𝑆, asking membership queries with ABoxes that take the form of these
queries, and identifying 𝑞𝑖 as the target query when the membership query for 𝑞𝑖
succeeds.

Note that this is a strong result: no amount of membership queries suffices to
identify 𝑞∗, which also means that no finite unique characterization of 𝑞∗ under 𝒪
exists. Hence, in order to learn ELIQs under ontologies that feature functionality
constraints, we have to restrict the interaction between existential restrictions and
functionality constraints.

A DL-Liteℋℱ−
core ontology 𝒪 is a DL-Liteℋℱ

core ontology where for all func(𝑟) ∈ 𝒪, the
existential restriction ∃𝑟−.⊤ does not occur on the right side of a concept inclusion
in 𝒪. This excluded the ontology used in the proof of Figure 4.3. We focus on
learning ELIQs under DL-Liteℋℱ−

core ontologies in the following sections of this chapter.
DL-Liteℋℱ−

core is, according to the results in this section, in some sense a maximal
ontology language, for which polynomial time learning with only membership
queries is possible.

4.2 Reducing to Ontologies in Normal Form

When working with DL ontologies, it is often useful to assume that they are in
normal form. This allows a simpler presentation of algorithms and proofs. In
particular, we assume in the following sections and chapters that the ontology that
a learning algorithm receives as input is in normal form. In this section, we show
that this assumption is not essential. Any learning algorithm that learns queries
under ontologies in normal form can be converted into a learning algorithm for
queries under unrestricted ontologies, without changing the number of membership
or equivalence queries the algorithm performs and only requiring a polynomial
amount of additional time. The idea behind this is that we can rewrite ontologies
into normal form in a way that enables us to translate membership queries and
equivalence queries for the teacher, who still answers questions under the original
ontology. Although we only need to consider DL-Liteℋℱ−

core ontologies in this chapter,
we show this result for all ℰℒℐℋℱ⊥ ontologies, which we will need in the next
chapter.

An ℰℒℐℋℱ⊥ ontology 𝒪′ is a conservative extension of an ℰℒℐℋℱ⊥ ontology 𝒪 if

• sig(𝒪) ⊆ sig(𝒪′),

• every model of 𝒪′ is a model of 𝒪, and

53

4 Learning with Membership Queries

• for every model ℐ of 𝒪 there exists a model ℐ′ of 𝒪′ such that 𝑆ℐ = 𝑆ℐ′ for all
concept or role names 𝑆 ∉ sig(𝒪′) ⧵ sig(𝒪).

It is well known that every ℰℒℐℋℱ⊥ ontology 𝒪 can be transformed in polynomial
time into an ℰℒℐℋℱ⊥ ontology 𝒪′ in normal form by introducing new concept
names such that 𝒪′ is a conservative extension of 𝒪 [Baa+17].

For the purpose of learning algorithms, the properties of conservative extensions
are not sufficient. We require a specific method to translate queries and examples
from a signature that contains newly introduced concept names to a signature that
uses only symbols from Σ. Hence, we require a specific rewriting of ontologies into
normal form.

Let 𝒪 be an ℰℒℐℋℱ⊥ ontology and Σ a signature with sig(𝒪) ⊆ Σ. We construct
an ℰℒℐℋℱ⊥ ontology 𝒪′ in normal form as follows. Let sub(𝒪) denote the set of all
concepts that occur in concept inclusions in 𝒪, that is,

sub(𝒪) = �
𝐶⊑𝐷∈𝒪

sub(𝐶) ∪ sub(𝐷)

where

sub(⊤) = {⊤}
sub(𝐴) = {𝐴}

sub(𝐶 ⊓ 𝐷) = {𝐶 ⊓ 𝐷} ∪ sub(𝐶) ∪ sub(𝐷)
sub(∃𝑅.𝐶) = {∃𝑅.𝐶} ∪ sub(𝐶).

With each concept 𝐶 ∈ sub(𝒪), we associate a concept name 𝑋𝐶. If 𝐶 = ⊤, set 𝑋𝐶 = ⊤,
if 𝐶 is a concept name 𝐴, set 𝑋𝐴 = 𝐴. Otherwise, let 𝑋𝐶 be a fresh concept name
not contained in Σ. We use 𝐗 to refer to the set of all of these fresh concept names.

The new ontology 𝒪′ consists of all role inclusions, functionality constraints, role
disjointness constraints, and concept disjointness constraints in 𝒪 as well as the
following concept inclusions:

• 𝑋𝐶 ⊑ 𝑋𝐷 for every 𝐶 ⊑ 𝐷 ∈ 𝒪,

• 𝑋𝐷1⊓𝐷2 ⊑ 𝑋𝐷𝑖 and 𝑋𝐷1⊓𝑋𝐷2 ⊑ 𝑋𝐷1⊓𝐷2, for every 𝐷1⊓𝐷2 ∈ sub(𝒪) and 𝑖 ∈ {1, 2},

• 𝑋∃𝑅.𝐶 ⊑ ∃𝑅.𝑋𝐶 and ∃𝑅.𝑋𝐶 ⊑ 𝑋∃𝑅.𝐶, for every ∃𝑅.𝐶 ∈ sub(𝒪).

Since |sub(𝒪)| is polynomial in ‖𝒪‖, 𝒪′ can be computed in polynomial time.

54

4.2 Reducing to Ontologies in Normal Form

Example 4.7. For 𝒪 = {∃𝑟.(𝐴 ⊓ 𝐵) ⊑ 𝐴 ⊓ 𝐵}, the set sub(𝒪) is {𝐴, 𝐵, 𝐴 ⊓ 𝐵, ∃𝑟.(𝐴 ⊓ 𝐵)}.
Hence, the above construction produces

𝒪′ = {𝑋∃𝑟.(𝐴⊓𝐵) ⊑ 𝑋𝐴⊓𝐵,
𝑋𝐴⊓𝐵 ⊑ 𝐴, 𝑋𝐴⊓𝐵 ⊑ 𝐵, 𝐴 ⊓ 𝐵 ⊑ 𝑋𝐴⊓𝐵,
𝑋∃𝑟.(𝐴⊓𝐵) ⊑ ∃𝑟.𝑋𝐴⊓𝐵, ∃𝑟.𝑋𝐴⊓𝐵 ⊑ 𝑋∃𝑟.(𝐴⊓𝐵)},

which is in normal form.

We observe the following consequences of the construction of 𝒪′ regarding the
relationship between 𝒪 and 𝒪′.

Lemma 4.8. Let ℒ be a ontology language contained in ℰℒℐℋℱ⊥ and 𝒪 an ℒ ontology.
Then,

1. 𝒪′ is an ℒ ontology in normal form;

2. 𝒪′ is a conservative extension of 𝒪;

3. sig(𝒪′) = sig(𝒪) ∪ 𝐗;

4. 𝒪′ ⊧ 𝑋𝐶 ≡ 𝐶 for all 𝐶 ∈ sub(𝒪).

Lemma 4.8 tells us that 𝒪′ is not only a conservative extension of 𝒪, but 𝒪′ also
specifies how precisely a model of 𝒪 can be extended to a model of 𝒪′. This specific
rewriting into normal form allows us to translate data examples and queries from
the signature Σ ∪ 𝐗 to the signature Σ. We describe this translation next.

Let 𝒜 be an ABox with sig(𝒜) ⊆ Σ ∪ 𝐗. Then, 𝒜Σ with sig(𝒜Σ) ⊆ Σ is obtained
by starting with 𝒜 and exhaustively applying the following operation.

Replace concept name Choose an assertion 𝑋𝐶(𝑎) ∈ 𝒜Σ with 𝑋𝐶 ∈ 𝐗 and remove it.
• If 𝐶 = 𝐷1 ⊓ 𝐷2 for some concepts 𝐷1 and 𝐷2, add the assertions 𝑋𝐷1(𝑎)

and 𝑋𝐷2(𝑎).
• If 𝐶 = ∃𝑅.𝐷 for some concept 𝐷 and role 𝑅, then if func(𝑅) ∈ 𝒪 and there

is an assertion 𝑅(𝑎, 𝑏) ∈ 𝒜Σ, add the assertion 𝑋𝐷(𝑏), otherwise introduce
a fresh individual name 𝑎′ and add the assertion 𝑅(𝑎, 𝑎′) and 𝑋𝐷(𝑎′).

When Replace concept name is no longer applicable, then 𝒜Σ uses no symbols from 𝐗.
This is the case after a polynomial number of applications of Replace concept name,
as

�
𝑋𝐶(𝑎)∈𝒜Σ
𝑋𝐶∈𝐗

‖𝐶‖

decreases with each application.

55

4 Learning with Membership Queries

𝑋∃𝑟.∃𝑠.𝐴

𝐴
𝑟

𝐴, 𝑋∃𝑠.𝐴

𝑟
𝐴

𝐴

𝑟

𝑠

Replace concept name Replace concept name

Figure 4.4: An application of Replace concept name to create 𝒜Σ with func(𝑟) ∈ 𝒪.

Example 4.9. Consider the ontology 𝒪 = {𝐵 ⊑ ∃𝑟.∃𝑠.𝐴, func(𝑟)}. Figure 4.4 shows
an example of two applications of Replace concept name to remove the introduced
concept name 𝑋∃𝑟.∃𝑠.𝐴.

As CQs can be viewed as ABoxes, we extend this construction to CQs and write
𝑞Σ for 𝒜𝑞Σ

 viewed as a query. Using the definition of Replace concept name, it then
can be verified, that this construction preserves the query class of 𝑞 in the following
sense.

Lemma 4.10. If 𝒬 ∈ {CQ,ELIQ} and 𝑞 ∈ 𝒬, then 𝑞Σ ∈ 𝒬. If 𝑞 is an ELQ and 𝒪 is an ℰℒ𝑟

ontology, then 𝑞Σ is also an ELQ.

Next, we show that this translation has the properties we need to preserve the
answers to membership and equivalence queries. Let ℬ be an ABox. With ℬ|Σ we
denote the restriction of ℬ to symbols in Σ, that is,

ℬ|Σ = {𝐴(𝑎) ∈ ℬ ∣ 𝐴 ∈ Σ} ∪ {𝑟(𝑎, 𝑏) ∈ ℬ ∣ 𝑟 ∈ Σ}.

The following lemma captures the properties of the construction of 𝒜Σ and 𝑞Σ.

Lemma 4.11. The following holds:

1. For all 𝑘-ary CQs 𝑞 that only use symbols from Σ, all ABoxes 𝒜 and all 𝑎 ∈ ind(𝒜)𝑘,
𝒜, 𝒪′ ⊧ 𝑞(𝑎) if and only if 𝒜Σ, 𝒪 ⊧ 𝑞(𝑎).

2. For all 𝑘-ary CQs 𝑞 that use only symbols from Σ∪𝐗, all ABoxes ℬ and all 𝑎 ∈ ind(ℬ)𝑘,
ℬ|Σ, 𝒪′ ⊧ 𝑞(𝑎) if and only if ℬ, 𝒪 ⊧ 𝑞Σ(𝑎).

 Proof. We begin by showing Point 1. For the if direction, suppose that 𝒜Σ, 𝒪 ⊧ 𝑞(𝑎)
and let ℐ be a model of 𝒜 and 𝒪′. We can assume that ℐ does not mention any
of the individuals that were introduced in the construction of 𝒜Σ by the Replace
concept name operation. We will extend ℐ to a model ℐΣ of 𝒜Σ and 𝒪, such that
ℐΣ, 𝑎 → ℐ, 𝑎. This suffices since ℐΣ ⊧ 𝑞(𝑎). We cannot use ℐ directly as a model of
𝒜Σ as it may not interpret the fresh individual names in 𝒜Σ.

56

4.2 Reducing to Ontologies in Normal Form

We construct ℐΣ by processing every assertion introduced by the Replace concept
name operation. Let 𝑅(𝑏, 𝑏′) be such an assertion. Then, 𝑋∃𝑅.𝐶(𝑏) ∈ 𝒜 and, by
Lemma 4.8, 𝒪′ ⊧ 𝑋∃𝑅.𝐶 ⊑ ∃𝑅.𝑋𝐶. Since ℐ is a model of 𝒜 and 𝒪′, there is an
element 𝑐 with 𝑅(𝑏, 𝑐) ∈ ℐ. Informally, let 𝒥𝑐 be the unraveling of ℐ at 𝑐 which takes
into account the functionality constraints in 𝒪, and in which the 𝑅−-successor of 𝑐
is omitted in case func(𝑅−) ∈ 𝒪. Then, add a copy of 𝒥𝑐 to ℐ, rename the root of 𝒥𝑐
to 𝑏′, and add (𝑏, 𝑏′) to 𝑅ℐ.

We now give a formal definition of 𝒥𝑐. Its domain Δ𝒥𝑐 consists of all sequences
𝑎0𝑅1𝑎1 ⋯ 𝑅𝑛𝑎𝑛 such that

• 𝑎0 = 𝑐;

• 𝑎𝑖 ∈ Δℐ, for all 𝑖 with 0 ≤ 𝑖 ≤ 𝑛;

• (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅ℐ
𝑖+1, for all 𝑖 with 0 ≤ 𝑖 < 𝑛;

• if func(𝑅−
𝑖) ∈ 𝒪, then 𝑅𝑖+1 ≠ 𝑅−

𝑖 , for all 𝑖 with 0 ≤ 𝑖 < 𝑛;

• if 𝑅1 = 𝑅− then func(𝑅−) ∉ 𝒪.

The interpretation of concept and role names is then as expected:

𝐴𝒥𝑐 = {𝑎0𝑅1𝑎1 ⋯ 𝑅𝑛𝑎𝑛 ∈ Δ𝒥𝑐 ∣ 𝑎𝑛 ∈ 𝐴ℐ} for all 𝐴 ∈ NC;
𝑟𝒥𝑐 = {(𝑝, 𝑝𝑟𝑎) ∣ 𝑝𝑟𝑎 ∈ Δ𝒥𝑐} ∪

{(𝑝𝑟−𝑎, 𝑝) ∣ 𝑝𝑟−𝑎 ∈ Δ𝒥𝑐} for all 𝑟 ∈ NR.

Note that the function that maps every sequence 𝑎0𝑅1 … 𝑎𝑛 to 𝑎𝑛 is a homomorphism
from 𝒥𝑐 to ℐ.

Let ℐΣ be the result of doing the above for every atom in 𝒜Σ ⧵ 𝒜. By construction
of ℐΣ, we know that ℐΣ is a model of 𝒜Σ. It is routine to verify that ℐΣ is also a
model of 𝒪 and that there is a homomorphism ℎ from ℐΣ to ℐ with ℎ(𝑎) = 𝑎.

For the only if direction of Point 1, suppose that 𝒜, 𝒪′ ⊧ 𝑞(𝑎) and let ℐ be a model
of 𝒜Σ and 𝒪. Since 𝒪′ is a conservative extension of 𝒪, there is a model ℐ′ of 𝒪′ that
coincides with ℐ on sig(𝒪). Moreover, by Point 4 of Lemma 4.8, it is also a model of
𝒜. It follows that ℐ ⊧ 𝑞(𝑎) as required.

For the if direction of Point 2, suppose that ℬ, 𝒪 ⊧ 𝑞Σ(𝑎) and let ℐ be a model of
ℬ|Σ and 𝒪′. Since 𝑞Σ contains only symbols from Σ, ℬ|Σ, 𝒪 ⊧ 𝑞Σ(𝑎). Since 𝒪′ is a
conservative extension of 𝒪, ℐ is also a model of 𝒪. Thus, ℐ ⊧ 𝑞Σ(𝑎) and by Point 4
of Lemma 4.8, ℐ ⊧ 𝑞(𝑎) follows as required.

For the only if direction of Point 2, suppose ℬ|Σ, 𝒪′ ⊧ 𝑞(𝑎) and let ℐ be a model of
𝒜 and 𝒪. Then the restriction ℐ|Σ of ℐ to symbols in Σ is a model of ℬ|Σ and by 𝒪′

being a conservative extension of 𝒪, there is a model ℐ′ of 𝒪′ that coincides with

57

4 Learning with Membership Queries

ℐ|Σ on all symbols from Σ. Thus, ℐ′ ⊧ 𝑞(𝑎) and since ℐ′ is a model of 𝒪′, ℐ′ ⊧ 𝑞Σ(𝑎).
It follows that ℐ|Σ ⊧ 𝑞Σ(𝑎). As 𝑞Σ uses only symbols from Σ, ℐ ⊧ 𝑞Σ(𝑎) follows, as
required.

With these properties of 𝒜Σ and 𝑞Σ in hand, we show the main result of this
section: polynomial time learnability under ontologies in normal form implies
polynomial time learnability under unrestricted ontologies. As we will use this
not only in Chapter 4 but also in Chapter 5, we state the implication not only for
membership queries, but also for equivalence queries, and for all query classes and
ontology languages we will encounter.

Lemma 4.12. The following holds:

1. Let 𝒬 ∈ {CQ,ELIQ} and ℒ be an ontology language contained in ℰℒℐℋℱ⊥. If
𝒬 queries are polynomial time learnable under ℒ ontologies in normal form using
membership queries and equivalence queries, the same is true for unrestricted ℒ
ontologies.

2. If ELQs are polynomial time learnable under ℰℒ𝑟 ontologies in normal form using
membership queries and equivalence queries, then the same is true for unrestricted
ℰℒ𝑟 ontologies.

 Proof. Assume that 𝒬 queries are polynomial time learnable under ℒ ontologies
in normal form. Then, there is a learning algorithm 𝐀 that takes as input an ℒ
ontology on normal form and a signature Σ. We will use 𝐀 to formulate a learning
algorithm 𝐀′ for 𝒬 queries under unrestricted ℒ ontologies.

The algorithm 𝐀′ takes as input an ℒ ontology 𝒪 and a signature Σ. It first
computes the ontology 𝒪′ in normal form as per Lemma 4.8 introducing the fresh
concept names 𝐗 such that Σ ∩ 𝐗 = ∅. It then starts running 𝐀 on input 𝒪′ and
Σ ∪ 𝐗. The membership queries and equivalence queries that 𝐀 makes, cannot be
directly passed on to the teacher of 𝐀′, as 𝐀 expects the teacher to work with the
ontology 𝒪′, but the teacher answers questions under 𝒪. Therefore, 𝐀′ modifies
the membership queries and equivalence queries done by 𝐀 as follows.

Whenever 𝐀 asks a membership query with the example (𝒜, 𝑎), 𝐀′ constructs the
example (𝒜Σ, 𝑎) and returns the result of a membership query with the example
(𝒜Σ, 𝑎) to 𝐀. Since 𝑞𝑇 is guaranteed to only use symbols from Σ, it follows from
Point 1 of Lemma 4.11 that 𝒜, 𝒪′ ⊧ 𝑞𝑇(𝑎) if and only if 𝒜Σ, 𝒪 ⊧ 𝑞𝑇(𝑎). Hence, 𝐀
receives the correct response to its membership query.

Whenever 𝐀 asks an equivalence query with hypothesis 𝑞𝐻, the algorithm 𝐀′

constructs the query 𝑞𝐻Σ and instead asks an equivalence query with 𝑞𝐻Σ to its
teacher. Lemma 4.10 ensures that 𝑞𝐻Σ belongs to the query class that can be used in

58

4.3 Frontiers of Queries

equivalence queries. If the response is a counterexample (𝒜, 𝑎), 𝐀 instead forwards
(𝒜|Σ, 𝑎) to 𝐀′.

Since 𝑞𝑇 uses only symbols from Σ, 𝑞𝑇Σ = 𝑞𝑇 and therefore 𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) if and
only if 𝒜|Σ, 𝒪′ ⊧ 𝑞𝑇(𝑎) by Lemma 4.11 Point 2. Likewise, 𝒜, 𝒪 ⊧ 𝑞𝐻Σ(𝑎) if and only if
𝒜|Σ, 𝒪′ ⊧ 𝑞𝐻(𝑎) by Lemma 4.11 Point 2. Hence, (𝒜|Σ, 𝑎) is a correct counterexample
to the equivalence query asked by 𝐀.

If the response to the equivalence query is yes, then 𝐀′ forwards this to 𝐀. This is
a correct response to the equivalence query asked by 𝐀 for the same reasons.

Inspection of the proof of Lemma 4.12 reveals that this reduction preserves the
number of membership and equivalence queries done by the learning algorithm.
Hence, a version of Lemma 4.12 with polynomial time learnability replaced with
polynomial query learnability also holds.

Lemma 4.12 is an example of a reduction from one learning problem to an
other. For the PAC learning model, these reductions are called prediction preserving
reductions and were formalized by Pitt and Warmuth [PW90]. Since we will not
encounter them often, we avoid defining these reductions in general for our learning
settings.

4.3 Frontiers of Queries

In order to approach a target ELIQ 𝑞𝑇 from an ELIQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇, we need a way
to efficiently search all generalizations of 𝑞 for a query 𝑞′ such that 𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇.
In general, a query can have an infinite number of generalizations, but to find a
suitable 𝑞′, we only need to consider the most-specific generalizations of 𝑞′. This
notion is formalized by frontiers of queries.

Definition 4.13 (Frontier). Let 𝒪 be an ontology and 𝑞 an ELIQ. A frontier of 𝑞 under
𝒪 is a set 𝐹 of ELIQs, such that

1. for all 𝑝 ∈ 𝐹, 𝑞 ⊆𝒪 𝑝 and 𝑝 ⊈𝒪 𝑞;

2. for all ELIQs 𝑞′ with 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊈𝒪 𝑞 there is a 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞′.

Frontiers are very close to downward refinement operators. Definition 4.13
implies that if we have a query 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇 and 𝑞𝑇 ⊈𝒪 𝑞 and 𝐹 is a frontier of 𝑞
under 𝒪, then there must be a query 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞𝑇.

Example 4.14. Consider the ELIQs 𝑞 and 𝑝1, 𝑝2, 𝑝3 in Figure 4.5 and 𝒪 = ∅. It holds
that 𝑞 ⊆∅ 𝑝𝑖 and 𝑝𝑖 ⊈∅ 𝑞 for 1 ≤ 𝑖 ≤ 3. The set {𝑝1, 𝑝2} is a frontier of 𝑞 under 𝒪. The
set {𝑝1, 𝑝2, 𝑝3} is also a frontier of 𝑞 under 𝒪, but this frontier is not ⊆-minimal, as
𝑝3 can be removed. The set {𝑝1, 𝑝3} is not a frontier of 𝑞, as there is no ELIQ 𝑝′ in

59

4 Learning with Membership Queries

𝑞
𝐴

𝐵
𝑟

𝑝1

𝐵

𝐴

𝑟

𝑟

𝑝2
𝐴

𝐴

𝐵

𝑟

𝑟

𝑟

𝑝3

𝑟

Figure 4.5: The queries {𝑝1, 𝑝2} and {𝑝1, 𝑝2, 𝑝3} are frontiers of the ELIQ 𝑞 under the
empty ontology.

{𝑝1, 𝑝3} such that 𝑝′ ⊆∅ 𝑝2. It is interesting to observe that the two ELIQs in {𝑝1, 𝑝2}
intuitively correspond to the two ways we can generalize 𝑞 at the root. First, 𝑝1
captures all queries 𝑝′ with 𝑞 ⊆∅ 𝑝′ that do not have the 𝐴 atom. Second, 𝑝2 captures
all queries 𝑝′ with 𝑞 ⊆∅ 𝑝′ that generalize the 𝑟-successor in 𝑞, and thereby remove
the 𝐵-atom.

Definition 4.13 only applies to ELIQs, but it is of course also possible to define
the notion of frontier for other query classes. In fact, there are many choices as the
query class of 𝑞, of the queries in 𝐹, and of the queries considered in Point 2 need
not be the same. In some contexts, it makes sense to consider stronger notions of
frontiers, where Point 2 should hold for all CQs. Occasionally, we will mention
frontiers of ELIQs that consist of CQs, or frontiers of CQs.

We can use frontiers to construct unique characterizations of queries.

Proposition 4.15. Let 𝒪 be an ontology, 𝑞 an ELIQ and 𝐹 a frontier of 𝑞 under 𝒪. Then,
the positively labeled example (𝒜𝑞, 𝑎𝑞) together with the set of all negatively labeled examples
(𝒜𝑝, 𝑎𝑝) for 𝑝 ∈ 𝐹 form a unique characterization of 𝑞 under 𝒪.

 Proof. Let 𝑞′ be an ELIQ that fits the examples under 𝒪. Since 𝒜𝑞, 𝒪 ⊧ 𝑞′(𝑎𝑞), it
follows that 𝑞 ⊆𝒪 𝑞′. From 𝐹 being a frontier of 𝑞 under 𝒪, 𝑞 ⊆𝒪 𝑞′ and 𝒜𝑝, 𝒪 ⊧̸ 𝑞′(𝑎𝑝)
for all 𝑝 ∈ 𝐹, it then follows that 𝑞′ ⊆𝒪 𝑞. Therefore, 𝑞′ ≡𝒪 𝑞.

Proposition 4.15 is why it is unsurprising that CQs also do not possess finite
frontiers with regard to all CQs, even under the empty ontology [tCD22]. Fortu
nately, the situation for ELIQs is better. Finite frontiers of ELIQs in the sense of
Definition 4.13 are known to always exist.

Proposition 4.16 ([tCD22]). Let 𝑞 be an ELIQ. Then, a frontier of 𝑞 under the empty
ontology can be computed in polynomial time.

60

4.3 Frontiers of Queries

𝑞
𝐴

𝐵
𝑟

𝑝′1

𝐵

𝐴 𝐴

𝐵

𝑟

𝑟

𝑡

𝑡

𝑟

𝑝′2
𝐴

𝐴

𝐵

𝐵

𝐴

𝐵

𝐴

𝐵

𝑟

𝑟

𝑟

𝑠

𝑟

𝑟

𝑡

𝑡

𝑟

Figure 4.6: The set {𝑝′1, 𝑝′2} is a frontier of 𝑞 under 𝒪 = {𝑟 ⊑ 𝑠, 𝐴 ⊑ ∃𝑡.⊤}. The marked
atoms of 𝑝′1 and 𝑝′2 are not in 𝑝1 or 𝑝2 from Figure 4.5 respectively.

The construction of a frontier of an ELIQ 𝑞 under the empty ontology consists of
two steps. First, a set of ELIQs is inductively computed that represents all possible
ways to generalize 𝑞. Then, the ELIQs in this set are made most-specific by attaching
copies of 𝑞. We will use the same strategy to generalize Proposition 4.16 to the case
with DL-Liteℋℱ−

core ontologies.

Example 4.17. To see the impact ontologies can have on frontiers, consider the
ELIQs displayed in Figure 4.5 under the DL-Liteℋℱ−

core ontology

𝒪 = {𝑟 ⊑ 𝑠, 𝐴 ⊑ ∃𝑡.⊤}.

Under 𝒪, the set {𝑝1, 𝑝2, 𝑝3} is no longer a frontier of 𝑞: For the ELIQ 𝑝4(𝑥0) ←
𝐴(𝑥0)∧𝑠(𝑥0, 𝑥1)∧𝐵(𝑥1), it holds that 𝑞 ⊆𝒪 𝑝4 and 𝑝4 ⊈𝒪 𝑞, but there is no 𝑝𝑖 ∈ {𝑝1, 𝑝2, 𝑝3}
with 𝑝𝑖 ⊆𝒪 𝑝4. Even the set {𝑝1, 𝑝2, 𝑝3, 𝑝4} does not suffice as a frontier of 𝑞 under 𝒪,
as ELIQs that use the role name 𝑡 have also to be taken into consideration.

However, it is possible to construct a frontier under 𝒪 by taking concept inclusions
and role inclusions in 𝒪 into account during the construction of a frontier. Figure 4.6
shows the same query 𝑞 as Figure 4.5 and extended versions of 𝑝1 and 𝑝2, where
red color denotes atoms that were added. Intuitively, the set of all ELIQs 𝑝 such
that 𝑞 ⊆𝒪 𝑝 is a superset of the set of all ELIQs 𝑝′ such that 𝑞 ⊆∅ 𝑝′, and 𝑝1, 𝑝2 have
to contain additional atoms to capture these additional ELIQs. The intuition from
Example 4.14 still applies though: 𝑝′1 captures all generalizations of 𝑞 that remove
the 𝐴-atom at the root, and 𝑝′2 captures all generalizations of 𝑞 that generalize the
𝑟-successor. These extensions make {𝑝′1, 𝑝′2} a frontier of 𝑞 under 𝒪.

Unfortunately, it does not always suffice to extend the queries in a frontier under
the empty ontology, as DL-Liteℋℱ−

core ontologies can also reduce the number of ways
an ELIQ can be generalized. Consider 𝒪′ = {∃𝑟.⊤ ⊑ 𝐴}. The set {𝑝1, 𝑝2} is not a
frontier of 𝑞 under 𝒪′, as 𝑝1 ≡𝒪′ 𝑞. Indeed, under 𝒪′ the set {𝑝2} is already a frontier
of 𝑞.

61

4 Learning with Membership Queries

Minimality

In order to simplify the construction of a frontier of an ELIQ 𝑞, we will assume that 𝑞
does not use superfluous existential variables. The ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥0, 𝑥2)
is equivalent to the ELIQ 𝑝(𝑥0) ← 𝑟(𝑥0, 𝑥1), but uses the additional variable 𝑥2. The
additional variable (and the atoms it occurs in) can be removed without affecting
the answers to 𝑞.

In the case without ontologies, this is formalized by 𝑞 being a core, meaning
that every homomorphism from 𝑞 to itself is surjective. This does not suffice here,
as ontologies may introduce additional redundancies through concept inclusions.
Instead, we will formalize this as follows.

For an ABox 𝒜 and a set 𝑆 ⊆ ind(𝒜) we use 𝒜|𝑆 to denote the restriction of 𝒜
to only individual names in 𝑆. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology, 𝑞 a CQ and 𝑥 an
existential variable of 𝑞. The CQ 𝑞−𝒪𝑥 is then obtained by removing all atoms that
mention 𝑥 from 𝑞, and then adding, for all variables 𝑦 ∈ var(𝑞) ⧵ {𝑥} and concept
names 𝐴 with 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑦) but 𝒜𝑞|var(𝑞)⧵{𝑥}, 𝒪 ⊧̸ 𝐴(𝑦), the atom 𝐴(𝑦).

Definition 4.18 (Minimal CQ). Let 𝒪 be an ℰℒℐℋℱ⊥ ontology and 𝑝, 𝑞 CQs. The
CQ 𝑞 is (𝑝, 𝒪)-minimal if there is no existential variable 𝑥 ∈ var(𝑞) such that 𝑞−𝒪𝑥 ⊆𝒪 𝑝.

Definition 4.18 allows us to formulate a suitable notion of 𝑞 being minimal under
an ontology, namely that 𝑞 is (𝑞, 𝒪)-minimal. Note that if a CQ 𝑞 is (𝑝, 𝒪)-minimal
for some 𝑝 with 𝑞 ⊆𝒪 𝑝, then 𝑞 is also (𝑞, 𝒪)-minimal. In this section, we only need
this notion of minimality for ELIQs and DL-Liteℋℱ−

core ontologies, but we will also
use it in later sections, which is why Definition 4.18 is formulated for all CQs and
ℰℒℐℋℱ⊥ ontologies. Note that the negative condition 𝒜𝑞|var(𝑞)⧵{𝑥}, 𝒪 ⊧̸ 𝐴(𝑦) in the
construction of 𝑞−𝒪𝑥 is not required for the following results, is and only included
as a practical concern to avoid unnecessary work by adding concept name atoms
that are later removed.

The central technical properties of (𝑝, 𝒪)-minimal queries, that we heavily rely
on in our frontier construction, are the following:

Lemma 4.19. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑝(𝑦0) and 𝑞(𝑥0) CQs
such that 𝑞 is satisfiable under 𝒪 and 𝑝 is rooted. If ℎ is a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with
ℎ(𝑦0) = 𝑥0 and there is a variable 𝑥 ∈ var(𝑞) with 𝑥 ∉ img(ℎ), then ℎ is also a homomorphism
from 𝑝 to 𝒰𝑞−𝒪𝑥,𝒪.

 Proof. Let ℎ be a homomorphism as required with 𝑥 ∉ img(ℎ). Set 𝑞′ = 𝑞−𝒪𝑥. Note
that since 𝑝 is rooted, there is no variable 𝑦 ∈ var(𝑝) that is mapped to a trace starting
with 𝑥 in 𝒰𝑞,𝒪. Now, let 𝑥′ be a variable in 𝑞 with 𝑥′ ≠ 𝑥 and 𝑥′𝑅𝑀 be a trace of
length one in 𝒰𝑞,𝒪. By construction of 𝒰𝑞,𝒪 and the normal form of 𝒪, 𝑥′𝑅𝑀 ∈ Δ𝒰𝑞,𝒪

implies that there is a set of concept names 𝑀′ such that 𝒜𝑞, 𝒪 ⊧ ⨅ 𝑀(𝑥′) and

62

4.3 Frontiers of Queries

𝒪 ⊧ ⨅ 𝑀′ ⊑ ∃𝑅. ⨅ 𝑀. By construction of 𝑞′ = 𝑞−𝒪𝑥 it follows that 𝒜𝑞′, 𝒪 ⊧ ⨅ 𝑀′(𝑥′)
and therefore, 𝑥′𝑅𝑀 is also a trace in 𝒰𝑞′,𝒪. Hence, all traces in 𝒰𝑞,𝒪 that do not
start with 𝑥 also occur in 𝒰𝑞′,𝒪 and ℎ is a well-defined function from var(𝑝) to Δ𝒰𝑞′,𝒪.

We verify that ℎ is a homomorphism. Let 𝐴(𝑦) be a concept atom in 𝑝. Since
ℎ(𝑦) ∈ 𝐴𝒰𝑞,𝒪 and ℎ(𝑦) cannot be a trace starting with 𝑥, the construction of 𝑞′ implies
that ℎ(𝑦) ∈ 𝐴𝒰𝑞′,𝒪. This is immediate if ℎ(𝑦) ∈ var(𝑞′) and follows inductively for
all traces. Let 𝑟(𝑦, 𝑦′) be a role atom in 𝑝. Since neither ℎ(𝑦) nor ℎ(𝑦′) can be a trace
starting with 𝑥, (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞,𝒪 implies that (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞′,𝒪.

Lemma 4.20. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form, 𝑝(𝑦0) and 𝑞(𝑥0) CQs such
that 𝑞 is (𝑝, 𝒪)-minimal, 𝑞 satisfiable under 𝒪 and 𝑝 is rooted.

For all homomorphisms ℎ from 𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑦0) = 𝑥0, var(𝑞) ⊆ img(ℎ).

 Proof. Let ℎ be a homomorphism as required and assume for showing a contradic
tion that there is an existential variable 𝑥 ∈ var(𝑞) such that there is no 𝑦 ∈ var(𝑝)
with ℎ(𝑦) = 𝑥. Lemma 4.19 implies that ℎ is also a homomorphism from 𝑝 to 𝒰𝑞−𝒪𝑥,𝒪
with ℎ(𝑦0) = 𝑥0. Therefore, 𝑞−𝒪𝑥 ⊆𝒪 𝑝, contradicting (𝑝, 𝒪)-minimality of 𝑞.

From Lemma 4.20, we can derive the following property of (𝑞, 𝒪)-minimal queries,
which is a suitable analogue of 𝑞 being a core.

Lemma 4.21. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑞(𝑥0) a rooted CQ that
is (𝑞, 𝒪)-minimal and satisfiable under 𝒪. For all homomorphisms ℎ from 𝑞 to 𝒰𝑞,𝒪 with
ℎ(𝑥0) = 𝑥0, var(𝑞) = img(ℎ).

Definition 4.18 directly suggests a procedure to compute a (𝑞, 𝒪)-minimal query
from an ELIQ 𝑞: repeatedly check if there is a 𝑥 ∈ var(𝑞) such that 𝑞−𝒪𝑥 ⊆𝒪 𝑞. The
complexity of this procedure depends on the ontology language. If 𝒜, 𝒪 ⊧ 𝑞(𝑎)
can be decided in polynomial time given 𝑞, 𝒪, 𝒜 and 𝑎, then this direct procedure
to compute a (𝑞, 𝒪)-minimal query runs in polynomial time. The ELIQ answering
techniques in [Bie+13] for DL-Litecore ontologies can be extended to DL-Liteℱ−core
ontologies, which then implies the following proposition.

Proposition 4.22. Let 𝒪 be a DL-Liteℱ−core ontology and 𝑞 an ELIQ that is satisfiable under
𝒪. Then, a (𝑞′, 𝒪)-minimal query 𝑞′ with 𝑞 ≡𝒪 𝑞′ can be computed in polynomial time.

Unfortunately, query answering with ELIQs is known to be NP-hard under
DL-Liteℋcore ontologies [KKZ11]. We conjecture that this results transfers to obtaining
(𝑞, 𝒪)-minimality, meaning that it is not possible to construct equivalent (𝑞, 𝒪)-
minimal ELIQs in polynomial time under DL-Liteℋcore ontologies, unless P = NP.
We will still be able to use the frontier construction as part of a polynomial time
learning algorithm under DL-Liteℋℱ−

core ontologies by obtaining (𝑞, 𝒪)-minimal queries
in polynomial time using membership queries.

63

4 Learning with Membership Queries

The Construction of Frontiers

In the remainder of this section, we show the following theorem.

Theorem 4.23. Let 𝒪 be an DL-Liteℋℱ−
core ontology in normal form and 𝑞 an ELIQ that is

(𝑞, 𝒪)-minimal and satisfiable under 𝒪. Then, a frontier of 𝑞 under 𝒪 can be computed in
time polynomial in ‖𝑞‖ and ‖𝒪‖.

We first describe an explicit construction of frontiers of ELIQs under DL-Liteℋℱ−
core

ontologies, then show its correctness, and finally establish that the construction can
be done in polynomial time.

Let 𝒪 be an DL-Liteℋℱ−
core ontology in normal form and 𝑞(𝑥0) an ELIQ that is (𝑞, 𝒪)-

minimal and satisfiable under 𝒪. To construct a frontier of 𝑞 under 𝒪, we consider
all possible ways to construct most specific generalizations of 𝑞. That is, queries 𝑞′
such that 𝑞 ⊆𝒪 𝑞′ as well as 𝑞′ ⊈𝒪 𝑞 and for every ELIQ �𝑞 with 𝑞 ⊆𝒪 �𝑞 and �𝑞 ⊆𝒪 𝑞′
either �𝑞 ≡𝒪 𝑞 or �𝑞 ≡𝒪 𝑞′. We do this in two steps: the actual generalization step, that
produces generalizations of 𝑞 and a compensation step, that carefully adds atoms
to make sure that the generalizations are most specific under 𝒪.

The construction that follows involves the introduction of fresh variables 𝑥, some
of which are copies of variables from var(𝑞). We then use 𝑥↓ to denote that original
variable. We will view ⋅↓ as a partial function from the copies to their originals.
Recall that 𝑞𝑥 denotes the subquery of 𝑞 that is the subtree below a variable 𝑥 ∈ var(𝑞).

Step 1 Generalize. For each variable 𝑥 ∈ var(𝑞), define a set 𝐹0(𝑥) that contains
all ELIQs which can be obtained by starting with 𝑞𝑥(𝑥) and then doing one of the
following:

Drop a concept atom
1. choose an atom 𝐴(𝑥) ∈ 𝑞 such that:

a) there is no 𝑅(𝑥′, 𝑥) ∈ 𝑞 such that 𝒪 ⊧ ∃𝑅−.⊤ ⊑ 𝐴,
b) there is no 𝐵(𝑥) ∈ 𝑞 such that 𝒪 ⊧ 𝐵 ⊑ 𝐴 and 𝒪 ⊧̸ 𝐴 ⊑ 𝐵.

2. remove all concept atoms 𝐵(𝑥) with 𝒪 ⊧ 𝐴 ≡ 𝐵, including 𝐴(𝑥).
3. for every concept name 𝐵 with 𝒪 ⊧ 𝐴 ⊑ 𝐵 and 𝒪 ⊧̸ 𝐵 ⊑ 𝐴, add 𝐵(𝑥).

Generalize a subquery
1. choose an atom 𝑅(𝑥, 𝑦) ∈ 𝑞 directed away from 𝑥0 and remove 𝑅(𝑥, 𝑦) as

well as all atoms of 𝑞𝑦.
2. for every concept name 𝐵 with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐵, add the atom 𝐵(𝑥).
3. if func(𝑅) ∉ 𝒪, then for each 𝑞′(𝑦) ∈ 𝐹0(𝑦), add a disjoint copy �𝑞′ of 𝑞′ and

the role atom 𝑅(𝑥, 𝑦′) with 𝑦′ the copy of 𝑦 in �𝑞′.

64

4.3 Frontiers of Queries

4. if func(𝑅) ∈ 𝒪 and 𝐹0(𝑦) ≠ ∅, then choose and add a 𝑞′ ∈ 𝐹0(𝑦) and the
role atom 𝑅(𝑥, 𝑦).

5. for every role 𝑆 with 𝒪 ⊧ 𝑅 ⊑ 𝑆 and 𝒪 ⊧̸ 𝑆 ⊑ 𝑅, add a disjoint copy �𝑞𝑦 of
𝑞𝑦 and the atoms 𝑆(𝑥, 𝑦′), 𝐴(𝑦′) for all 𝐴 with 𝒪 ⊧ ∃𝑅−.⊤ ⊑ 𝐴 with 𝑦′ the
copy of 𝑦 in �𝑞𝑦.

Note that this is an inductive construction, as Point 3 and 4 of Generalize a subquery
use the set 𝐹0(𝑦). This is well-defined, as the codepth of 𝑦 is always lower than the
codepth of 𝑥. The definition of the partial function ⋅↓ should be clear in all cases.
In Point 3 of Generalize a subquery, for example, for every variable 𝑧 in 𝑞′ that was
renamed to 𝑧′ in �𝑞′ set 𝑧′↓ = 𝑧↓.

Step 2 Compensate. We construct a frontier 𝐹𝑞 of 𝑞(𝑥0) by including, for each
𝑝 ∈ 𝐹0(𝑥0), the ELIQ obtained from 𝑝 by applying the following two steps.

Step 2 A Consider all variables 𝑥 ∈ var(𝑝), roles 𝑅, 𝑆 and sets of concept names
𝑀 = {𝐴1, … , 𝐴𝑘} such that 𝑥↓ ⇝𝑅

𝑞,𝒪 𝑀, 𝒪 ⊧ 𝑅 ⊑ 𝑆, and3 for all 𝐵(𝑥) ∈ 𝑞 such
that 𝒪 ⊧ ∃𝑆.⊤ ⊑ 𝐵, 𝐵(𝑥) ∈ 𝑝. Add the atoms 𝑆(𝑥, 𝑧), 𝐴1(𝑧), … , 𝐴𝑘(𝑧), 𝑅(𝑥′, 𝑧)
where 𝑧 and 𝑥′ are fresh variables. Set 𝑥′↓ = 𝑥↓ and leave 𝑧↓ undefined. Add a
disjoint copy �𝑞 of 𝑞 and glue the copy of 𝑥↓ to 𝑥′.

Step 2 B This step is iterative. For bookkeeping, we mark atoms 𝑅(𝑥, 𝑦) ∈ 𝑝 to be
processed in the next round of iteration.
To start, consider every 𝑅(𝑥, 𝑦) ∈ 𝑝 directed towards 𝑥0 such that 𝑥↓ and 𝑦↓ are
defined and such that 𝑅(𝑥, 𝑦) was not added in Step 2 A. For every role 𝑆 such
that 𝒜𝑞, 𝒪 ⊧ 𝑆(𝑥↓, 𝑦↓) and if 𝑆 = 𝑅, func(𝑅) ∉ 𝒪, add the atom 𝑆(𝑥, 𝑦′) where 𝑦′
is a fresh variable with 𝑦′↓ = 𝑦↓ and mark it. Note that all added atoms 𝑆(𝑥, 𝑦′)
are directed away from 𝑥0.
Then repeatedly choose a marked atom 𝑅(𝑥, 𝑦) ∈ 𝑝 and remove its mark. If
func(𝑅−) ∉ 𝒪 or 𝑞 contains no atom of the form 𝑅(𝑦↓, 𝑧), then add a disjoint
copy �𝑞 of 𝑞 and glue a copy of 𝑦↓ in �𝑞 to 𝑦. Otherwise, do the following:

1. add 𝐴(𝑦) whenever 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑦↓).
2. for all atoms 𝑆(𝑦↓, 𝑧) ∈ 𝑞 and roles 𝑆′ with 𝒪 ⊧ 𝑆 ⊑ 𝑆′ such that 𝑆′ ≠ 𝑅−,

add an atom 𝑆′(𝑦, 𝑧′) where 𝑧′ is a fresh variable. Set 𝑧′↓ = 𝑧 and mark
the atom 𝑆′(𝑦, 𝑧′).

3. for all roles 𝑆 and sets 𝑀 = {𝐴1, … , 𝐴𝑘} such that 𝑦↓ ⇝𝑆
𝑞,𝒪 𝑀, add the

atoms 𝑆(𝑦, 𝑢), 𝐴1(𝑢), … , 𝐴𝑘(𝑢), 𝑆−(𝑢, 𝑦′) where 𝑢 and 𝑦′ are fresh variables.
Set 𝑦′↓ = 𝑦↓ and mark the atom 𝑆−(𝑢, 𝑦′).

3This last condition avoids re-adding a concept name that may have been dropped in Step 1.

65

4 Learning with Membership Queries

This finishes the construction of 𝐹𝑞.

Example 4.24. Consider the ELIQ 𝑞(𝑥0) ← 𝐴(𝑥0)∧𝑟(𝑥0, 𝑥1)∧𝐵(𝑥1) and the DL-Liteℋℱ−
core

ontology
𝒪 = {𝑟 ⊑ 𝑠, 𝑡 ⊑ 𝑢, 𝐴 ⊑ ∃𝑡.⊤, ∃𝑡.⊤ ⊑ 𝐴, func(𝑟)}.

Figure 4.7 shows the steps of the construction of a frontier of 𝑞 under 𝒪. The
construction introduces many new variables. To understand the origin of the new
variables, Figure 4.7 shows a name that refers to the original variable they are a
copy of. The set 𝐹0(𝑥1) contains only the empty query. Hence, the result of Step 1
𝐹0(𝑥0) is {𝑝1, 𝑝2}. Note that because 𝑟 ⊑ 𝑠 ∈ 𝒪 the variable 𝑥0 has an extra 𝑠-successor
in 𝑝1.

The application of Step 2 A to 𝐹0(𝑥0) results in the set {𝑝′1, 𝑝′2}, the added atoms
are marked in blue. We slightly simplify 𝑝′1 and 𝑝′2 by leaving out superfluous
𝑢-successors that are attached by Step 2 A, but already homomorphically contained
in the marked atoms. Note that in the construction of 𝑝′1, no 𝑡-successor is attached
to 𝑥0 as 𝒪 ⊧ ∃𝑡.⊤ ⊑ 𝐴. Instead, a 𝑢-successor is added, since 𝑡 ⊑ 𝑢 ∈ 𝒪 and
𝒪 ⊧̸ ∃𝑢.⊤ ⊑ 𝐴.

The set 𝐹𝑞 = {𝑝″1 , 𝑝″2 } is then the result of Step 2 B. Again, additions are marked with
colors. The start of Step 2 B produces new 𝑠-predecessors and new 𝑟-predecessors
(blue), that are then marked. As func(𝑠) ∉ 𝒪, copies of 𝑞 are then attached to
the 𝑠-predecessors when they are processed (blue). The 𝑟-predecessors cannot be
handled in this way, as func(𝑟) ∈ 𝒪. Instead, an 𝑠-successor is added and marked
in Point 2 of Step 2 B (yellow) and a 𝑡-successor as well as a copy of 𝑞 is added in
Point 3 of Step 2 B (purple). When the marked 𝑠-successor is processed, a copy of 𝑞
is attached (yellow). This completes this example, {𝑝″1 , 𝑝″2 } is a frontier of 𝑞 under 𝒪.

Note that 𝑝″1 is not (𝑝″1 , 𝒪)-minimal, as most of the atoms introduced in Step 2 B
can be removed. The query 𝑝″2 is also not (𝑝″2 , 𝒪)-minimal, for similar reasons. The
construction could be modified to avoid these superfluous additions in Step 2, but
we would rather avoid the additional complexity, as Step 2 is complicated enough.

We continue with showing that 𝐹𝑞 is indeed a frontier of 𝑞 under 𝒪. We begin
with showing that every query in 𝐹𝑞 is satisfiable under 𝒪.

Lemma 4.25. Every 𝑝 ∈ 𝐹𝑞 is satisfiable under 𝒪.

 Proof. Let 𝑝 be a query from 𝐹𝑞. It can easily be shown that if 𝑞 is satisfiable under 𝒪,
then there is a model of 𝒜𝑝 that satisfies all concept inclusions and role disjointness
constraints in 𝒪, for example, by noting that ⋅↓ can be extended to a homomorphism
from 𝑝 to 𝒰𝑞,𝒪. It remains to show that 𝒜𝑝 also satisfies all functionality constraints
in 𝒪. For this, we will consider all steps of the construction of 𝑝 that add role atoms.

66

4.3 Frontiers of Queries

𝑞

𝑥0 𝐴

𝑥1 𝐵
𝑟

Step 1

𝑝1

𝑥0

𝑥1 𝐵
𝑟

𝑝2

𝑥0 𝐴

𝑥1𝐵 𝑥′1
𝑠

𝑟

Step 2 A

𝑝′1

𝑥0

𝑥1 𝐵𝑧

𝑥′0𝐴

𝑥′1𝐵

𝑟
𝑢

𝑡

𝑟

𝑝′2

𝑥0 𝐴

𝑥1𝐵 𝑥′1
𝑠

𝑟

𝑧

𝑥′0 𝐴

𝑥′1 𝐵

𝑡

𝑡

𝑟

Step 2 B

𝑝″1

𝑥0

𝑥1 𝐵𝑧

𝑥′0𝐴

𝑥′1𝐵

𝑥′0𝐴

𝑥′1𝐵

𝑥′0 𝐴

𝑧

𝑥′0𝐴

𝑥′1𝐵

𝑥′1𝐵

𝑥′0𝐴

𝑟
𝑢

𝑡

𝑟

𝑠

𝑟

𝑟

𝑡

𝑡

𝑟

𝑠

𝑟

𝑝″2

𝑥0 𝐴

𝑥1𝐵 𝑥′1𝑧

𝑥′0 𝐴

𝑥′1 𝐵

𝑠
𝑟𝑡

𝑡

𝑟
𝑥′0𝐴

𝑥′1𝐵

𝑥′0 𝐴

𝑧

𝑥′0𝐴

𝑥′1𝐵

𝑥′1𝐵

𝑥′0𝐴

𝑠

𝑟

𝑟

𝑡

𝑡

𝑟

𝑠

𝑟

𝑥′0𝐴

𝑥′1𝐵

𝑠

𝑟
𝑥′0 𝐴

𝑧

𝑥′0𝐴

𝑥′1𝐵

𝑥′1𝐵

𝑥′0𝐴

𝑟

𝑡

𝑡

𝑟

𝑠

𝑟

Figure 4.7: The steps of the construction of a frontier of the ELIQ 𝑞(𝑥0) ← 𝐴(𝑥0) ∧
𝑟(𝑥0, 𝑥1) ∧ 𝐵(𝑥1) under the ontology 𝒪 = {𝑟 ⊑ 𝑠, 𝑡 ⊑ 𝑢, 𝐴 ≡ ∃𝑡.⊤, func(𝑟)}.

67

4 Learning with Membership Queries

In Step 1, Points 3 and 4 of generalizing a subquery add role atoms and attach
subqueries. Point 3 only applies if func(𝑅) ∉ 𝒪, Point 4 adds a single 𝑅 atom, so
every functionality constraint is satisfied, as Point 1 removed an 𝑅 atom. Point 5
adds only role atoms 𝑆(𝑥, 𝑦′) if 𝒪 ⊧ 𝑅 ⊑ 𝑆 and 𝒪 ⊧̸ 𝑆 ⊑ 𝑅, it follows that func(𝑆) ∉ 𝒪.

In Step 2 A, note that since 𝑥↓ ⇝𝑅
𝑞,𝒪 𝑀, either func(𝑅) ∉ 𝒪 or there is no variable

𝑦 ∈ var(𝑞) such that 𝒜𝑞, 𝒪 ⊧̸ 𝑅(𝑥↓, 𝑦). Furthermore, it follows that func(𝑆−) ∉ 𝒪.
Thus, if 𝒪 ⊧ 𝑅 ≡ 𝑆, then the new atoms 𝑆(𝑥, 𝑧), 𝑅(𝑥′, 𝑧), as well as the attached
copy of 𝑞 satisfy all functionality constraints. If 𝒪 ⊧̸ 𝑆 ⊑ 𝑅, it then follows that
func(𝑆) ∉ 𝒪, and therefore all functionality constraints are satisfied.

At the start of Step 2 B, the atom 𝑆(𝑥, 𝑦′) is only added if it satisfies all functionality
constraints. The same applies to the iterative step of Step 2 B. The copy of 𝑞 is only
attached if it does not violate a functionality constraint. Point 2 only attaches atoms
from 𝑞 that do not violate the functionality constraint func(𝑅−), and the condition
𝑦↓ ⇝𝑆

𝑞,𝒪 𝑀 of Point 3 ensures that no functionality constraint is violated.

We now move on to show that 𝐹𝑞 is indeed a frontier of 𝑞 under 𝒪.

Lemma 4.26. 𝐹𝑞 is a frontier of 𝑞(𝑥0) under 𝒪.

 Proof. We show that 𝐹𝑞 fulfills the two conditions of frontiers. For the first condition,
let 𝑝(𝑥0) be a query from 𝐹𝑞. We begin by showing 𝑞 ⊆𝒪 𝑝. From Lemma 4.25 and
satisfiability of 𝑞, it follows that 𝑝 is also satisfiable under 𝒪. Hence, by Lemma 3.7
it suffices to show 𝑝(𝑥0) → 𝒰𝑞,𝒪, 𝑥0.

The mapping ⋅↓ is already almost the required homomorphism. We extend the
mapping ⋅↓ to be defined on all variables of 𝑝 by considering the yet unmapped
variables added in Step 2 A and Step 2 B of the construction. Let 𝑧 be such a fresh
variable added in Step 2 A for 𝑥 ∈ var(𝑝), roles 𝑅, 𝑆 and sets concept names 𝑀.
Then 𝑥↓ ⇝𝑅

𝑞,𝒪 𝑀 and by construction of 𝒰𝑞,𝒪, there is a trace 𝑥↓𝑅𝑀 ∈ Δ𝒰𝑞,𝒪. Set
𝑧↓ = 𝑥↓𝑅𝑀. Similarly for variables added in Step 2 B. Let 𝑢 be a fresh variable
added in Point 3 of Step 2 B for the variable 𝑦, role 𝑆 and set of concept names 𝑀.
Set 𝑢↓ = 𝑦↓𝑆𝑀. Now ⋅↓ is defined on all variables of 𝑝 and, by construction of 𝑝, it is
a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with 𝑥↓0 = 𝑥0 as required.

For 𝑝 ⊈𝒪 𝑞, we first show the following claim.

Claim 1. For all 𝑥 ∈ var(𝑞) and 𝑝(𝑥) ∈ 𝐹0(𝑥), 𝑝 ⊈𝒪 𝑞𝑥.

 Proof of Claim 1. We show the claim by induction on the codepth of 𝑥 in 𝑞, matching
the inductive construction of 𝐹0.

In the induction start, 𝑥 has codepth 0. Then, by definition of codepth, there is
no role atom 𝑅(𝑥, 𝑦) ∈ 𝑞 that is directed away from 𝑥0 and all 𝑝 ∈ 𝐹0(𝑥) must be
obtained by dropping a concept atom. Let 𝑝(𝑥) be a query in 𝐹0(𝑥) that is obtained

68

4.3 Frontiers of Queries

by dropping the concept atom 𝐴(𝑥) ∈ 𝑞𝑥. Then, by choice of 𝐴(𝑥), there is no 𝐵(𝑥) ∈ 𝑝
with 𝒪 ⊧ 𝐵 ⊑ 𝐴 and no 𝑅(𝑥, 𝑥′) ∈ 𝑝 with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐴. Hence, 𝐴(𝑥) ∈ 𝑞𝑥 and
𝐴(𝑥) ∉ 𝒰𝑝,𝒪, therefore 𝑞𝑥(𝑥) ↛ 𝒰𝑝,𝒪, 𝑥 and thus 𝑝 ⊈𝒪 𝑞𝑥.

In the induction step, let 𝑥 have codepth > 0, let 𝑝(𝑥) be a query in 𝐹0(𝑥) and
assume that the claim holds for all variables of 𝑞 with smaller codepth. Let ⋅↓ be
the extension of the original ⋅↓ for 𝑝 to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞𝑥,𝒪 that
exists by Lemma 3.8. If 𝑝 is obtained by dropping a concept atom, then the same
argument as in the induction start yields 𝑝 ⊈𝒪 𝑞𝑥. If 𝑝 is obtained by generalizing
a subquery attached to a role atom 𝑅(𝑥, 𝑦) ∈ 𝑞𝑥, assume for contradiction that
there is a homomorphism ℎ from 𝑞𝑥 to 𝒰𝑝,𝒪 with ℎ(𝑥) = 𝑥. From ℎ we construct
a homomorphism ℎ′ from 𝑞 to 𝒰𝑞,𝒪 with ℎ′(𝑥0) = 𝑥0 by setting ℎ′(𝑧) = ℎ(𝑧)↓ for all
𝑧 ∈ var(𝑞𝑦) and ℎ′(𝑧) = 𝑧 for all 𝑧 ∉ var(𝑞𝑦). We will use ℎ′ to show that 𝑞 cannot be
(𝑞, 𝒪)-minimal using Lemma 4.21, leading to a contradiction

The homomorphism ℎ must map 𝑦 to an 𝑅-successor of 𝑥 in 𝒰𝑝,𝒪, we distinguish
the following cases.

• ℎ(𝑦) is a 𝑧 ∈ var(𝑝) with 𝑧↓ ≠ 𝑦.

Since 𝑧↓ = 𝑧 by definition of ⋅↓, and since ℎ′(𝑧) = 𝑧 by definition of ℎ′, ℎ′(𝑦) =
ℎ′(𝑧) = 𝑧 and ℎ′ is a non-injective homomorphism. This contradicts (𝑞, 𝒪)-
minimality of 𝑞 using Lemma 4.21.

• ℎ(𝑦) is a trace ℎ(𝑥)𝑆𝑀 ∈ Δ𝒰𝑝,𝒪 for some role 𝑆 with 𝒪 ⊧ 𝑆 ⊑ 𝑅 and set of
concept names 𝑀.

Then, if ℎ′(𝑦) is also a trace, there must be a 𝑦′ ∈ var(𝑞) with 𝑦′ ∉ img(ℎ′), and
ℎ′ cannot be a surjective homomorphism. This contradicts (𝑞, 𝒪)-minimality
of 𝑞 using Lemma 4.21.

If ℎ′(𝑦) is not a trace, but a successor 𝑦′ of 𝑥 with 𝑦′ ≠ 𝑦, then by definition of
ℎ′, ℎ′(𝑦′) = ℎ′(𝑦) = 𝑦′ and ℎ′ is not an injective homomorphism. Again, this
contradicts (𝑞, 𝒪)-minimality of 𝑞 using Lemma 4.21.

If ℎ′(𝑦) = 𝑦 and there is a 𝑦′ ∈ var(𝑞𝑦) with ℎ′(𝑦′) = 𝑥, then ℎ′(𝑦′) = ℎ′(𝑥) = 𝑥,
and again ℎ′ is not an injective homomorphism. Again, this contradicts (𝑞, 𝒪)-
minimality of 𝑞 using Lemma 4.21.

If ℎ′(𝑦) = 𝑦 and there is no 𝑦′ ∈ var(𝑞𝑦) with ℎ′(𝑦′) = 𝑥, then we show a
contradiction to (𝑞, 𝒪)-minimality of 𝑞 by constructing a homomorphism ℎ″
from 𝑞 to 𝒰𝑞−𝒪𝑦,𝒪 with ℎ″(𝑥0) = 𝑥0 Note that by construction of ℎ′, ℎ′(𝑧) = 𝑦
implies 𝑧 = 𝑦.

Since (ℎ(𝑥)𝑆𝑀)↓ = 𝑦, there is no trace 𝑥𝑆𝑀 ∈ Δ𝒰𝑞,𝒪 and 𝒪 ⊧ 𝑅 ≡ 𝑆. But, since
ℎ(𝑥)𝑆𝑀 ∈ Δ𝒰𝑝,𝒪 it must be that ℎ(𝑥) ⇝𝑆

𝑝,𝒪 𝑀 and thus 𝒜𝑝, 𝒪 ⊧ ∃𝑅. ⨅ 𝑀(ℎ(𝑥))

69

4 Learning with Membership Queries

and 𝒜𝑞, 𝒪 ⊧ ∃𝑅. ⨅ 𝑀(𝑥). However, 𝑥⇝̸𝑆
𝑞,𝒪𝑀 because 𝒪 ⊧ 𝑅 ≡ 𝑆, 𝑅(𝑥, 𝑦) ∈ 𝑞

and 𝒜𝑞, 𝒪 ⊧ ⨅ 𝑀(𝑦). Since 𝑅(𝑥, 𝑦) ∉ 𝑞−𝒪𝑦 it follows by construction of 𝑞−𝒪𝑦

and the normal form of 𝒪 that 𝑥 ⇝𝑆
𝑞−𝒪𝑦 𝑀. Therefore, there is a trace 𝑥𝑆𝑀 ∈

Δ𝒰𝑞−𝒪𝑦,𝒪.
We construct the new homomorphism ℎ″ by setting ℎ″(𝑧) = ℎ′(𝑧) for all 𝑧 ∈
var(𝑞) ⧵ var(𝑞𝑦) and ℎ″(𝑧) = 𝑥𝑆𝑀𝑅2𝑀2 … 𝑅𝑛𝑀𝑛 for all 𝑧 ∈ var(𝑞𝑦) with ℎ(𝑧) =
ℎ(𝑥)𝑆𝑀𝑅2𝑀2 … 𝑅𝑛𝑀𝑛.

• ℎ(𝑦) is the root 𝑦′ of a query 𝑝′ ∈ 𝐹0(𝑦) that was added in Point 3 or Point 4 of
generalizing a subquery.
Then, by the induction hypothesis, 𝑞𝑦(𝑦) ↛ 𝒰𝑝′,𝒪, 𝑦′ for all 𝑝′ ∈ 𝐹0(𝑦). By the
normal form of 𝒪 and definition of 𝒰𝑝,𝒪, the subtree below 𝑦′ in 𝒰𝑝,𝒪 contains
𝒰𝑝′,𝒪, but may not be identical to 𝒰𝑝,𝒪 since (𝑥, 𝑦′) ∈ 𝑅𝒰𝑝,𝒪 but (𝑥, 𝑦′) ∉ 𝑅𝒰𝑝′,𝒪.
In particular, there may be concept names 𝐴 with 𝑦′ ∈ 𝐴𝒰𝑝,𝒪, 𝑦′ ∉ 𝐴𝒰𝑝′,𝒪 and
𝒪 ⊧ ∃𝑅−.⊤ ⊑ 𝐴, or traces of the form 𝑦′𝑆𝑀 ⋯ ∈ Δ𝒰𝑝,𝒪 with 𝑦′𝑆𝑀 ⋯ ∉ Δ𝒰𝑝′,𝒪

and 𝒪 ⊧ ∃𝑅−.⊤ ⊑ ∃𝑆.⊤.
Consequently, one of the following must be true:

– there is a 𝑦″ ∈ var(𝑞𝑦) with ℎ(𝑦″) = 𝑥. Then, by definition of ℎ′, ℎ′(𝑦″) =
ℎ′(𝑥) = 𝑥 and ℎ′ is not an injective homomorphism. This contradicts
(𝑞, 𝒪)-minimality of 𝑞 using Lemma 4.21.

– there is a 𝑦″ ∈ var(𝑞𝑦) with ℎ(𝑦″) = 𝑦′ and 𝐴(𝑦″) ∈ 𝑞𝑦 for some concept
name 𝐴 with 𝑦′ ∉ 𝐴𝒰𝑝′,𝒪. Then 𝑦″ ≠ 𝑦, by choice of the concept atom
during the dropping of a concept atom. Hence, ℎ′(𝑦″) = ℎ′(𝑦) = 𝑦 implies
that ℎ′ is not an injective homomorphism. Again, this contradicts (𝑞, 𝒪)-
minimality of 𝑞 using Lemma 4.21.

– there is a 𝑦″ ∈ var(𝑞𝑦) with ℎ(𝑦″) = 𝑦′𝑆𝑀 for a trace 𝑦′𝑆𝑀 ∉ Δ𝒰𝑝′,𝒪.
First, observe that 𝑦″ must be a successor of 𝑦, and the entire tree below
𝑦″ must be mapped by ℎ into traces below 𝑦′𝑆𝑀. Otherwise, there is a
𝑦″ ′ ∈ 𝑞𝑦 with 𝑦″ ′ ≠ 𝑦 and ℎ(𝑦″ ′) = ℎ(𝑦) = 𝑦′, which implies that ℎ′ is not
injective, contradicting (𝑞, 𝒪)-minimality of 𝑞.
Then, if 𝑦′𝑆𝑀↓ is a trace, then so is ℎ′(𝑦″), contradicting (𝑞, 𝒪)-minimality
of 𝑞 by Lemma 4.21. If 𝑦′𝑆𝑀↓ is not a trace, but a successor 𝑧 of 𝑦 in 𝑞,
then there is no variable in 𝑞𝑦 that is mapped by ℎ to a variable 𝑧′ ∈ var(𝑝)
with 𝑧′↓ = 𝑧, since otherwise ℎ′ is not injective. Then, we can construct
a homomorphism ℎ″ from 𝑞 to 𝒰𝑞−𝒪𝑧,𝒪 with ℎ″(𝑥0) = 𝑥0, contradicting
(𝑞, 𝒪)-minimality of 𝑞. Set ℎ″(𝑥) = ℎ′(𝑥) for all 𝑥 ∉ var(𝑞𝑦″) and set ℎ″(𝑥) =
𝑦𝑆𝑀𝑡 for all 𝑥 ∈ var(𝑞𝑦″) with ℎ(𝑥) = 𝑦′𝑆𝑀𝑡.

70

4.3 Frontiers of Queries

Note that ℎ(𝑦) cannot be a variable introduced in Point 5 of generalizing a subquery,
as at that point only 𝑆-successors of 𝑥 that satisfy 𝒪 ⊧̸ 𝑆 ⊑ 𝑅 are introduced. This
completes the proof of Claim 1.

Now, assume for contradiction that 𝑝 ⊆𝒪 𝑞. Then, there is a homomorphism ℎ
from 𝑞 to 𝒰𝑝,𝒪 with ℎ(𝑥0) = 𝑥0. Let ⋅↓ be the extension of the original ⋅↓ for 𝑝 to a
homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪 which exists by Lemma 3.8. We compose ℎ and
⋅↓ to construct a homomorphism ℎ′ from 𝑞 to 𝒰𝑞,𝒪 with ℎ′(𝑥0) = 𝑥0. By Claim 1, there
is no homomorphism that maps 𝑞 entirely into 𝒰𝑝′,𝒪 for any 𝑝′ ∈ 𝐹0(𝑥0). Hence,
there must be an 𝑥 ∈ var(𝑞) such that ℎ(𝑥) is a fresh variable added in Step 2. By
definition of that step and since 𝑞 is connected, we may distinguish the following
two cases:

• ℎ(𝑥) is a fresh variable 𝑧 added in Step 2 A. Then, since 𝑥↓ ⇝𝑅
𝑞,𝒪 𝑀, 𝑧↓ and

this ℎ′(𝑥) is a trace in 𝒰𝑞,𝒪. Hence, ℎ′ contradicts (𝑞, 𝒪)-minimality of 𝑞 by
Lemma 4.21.

• ℎ(𝑥) is a fresh variable 𝑦′ added at the start of Step 2 B for the role atom 𝑅(𝑥, 𝑦) ∈
𝑝 with 𝑦↓ = 𝑦′↓. Then, since 𝑞 is connected, there must be a predecessor 𝑥′ of
𝑥 with ℎ(𝑥′) = 𝑦. Hence, ℎ′(𝑥) = ℎ′(𝑥′) = 𝑦↓, contradicting (𝑞, 𝒪)-minimality of
𝑞 by Lemma 4.21.

This completes the proof that the first condition of frontiers holds.

For the second condition of frontiers, let 𝑞′(𝑥0) be an ELIQ that is satisfiable under
𝒪 such that 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊈𝒪 𝑞. Then, there is a homomorphism 𝑔 from 𝑞′ to
𝒰𝑞,𝒪 with 𝑔(𝑥0) = 𝑥0. We have to show that there is a 𝑝 ∈ 𝐹𝑞 such that 𝑝 ⊆𝒪 𝑞′. To
accomplish this, we construct in five steps a homomorphism ℎ from 𝑞′ to 𝒰𝑝,𝒪 with
ℎ(𝑥0) = 𝑥0 for some 𝑝 ∈ 𝐹𝑞. During the construction, we maintain the invariant

ℎ(𝑧)↓ = 𝑔(𝑧) (∗)

for all variables 𝑧 ∈ var(𝑞′) with ℎ(𝑧) defined and ⋅↓ the extension of the original ⋅↓
for 𝑝 to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪. In the first step of the construction,
we define ℎ for an initial segment of 𝑞′.

Let 𝑈 ⊆ var(𝑞′) be the smallest set of variables (with regard to ⊆) of 𝑞′ such that

• 𝑥0 ∈ 𝑈, and

• if there is an atom 𝑅(𝑥, 𝑦) ∈ 𝑞′ with 𝑥 ∈ 𝑈 and 𝑆(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑞 with 𝒪 ⊧ 𝑅 ≡ 𝑆,
then 𝑦 ∈ 𝑈.

Let 𝑞𝑈 be the restriction of 𝑞′ to the variables in 𝑈. Note that 𝑞𝑈 is connected.

71

4 Learning with Membership Queries

Claim 2. For all 𝑥 ∈ 𝑈 with 𝑞′𝑥 ⊈𝒪 𝑞𝑔(𝑥), there is a 𝑝 ∈ 𝐹0(𝑔(𝑥)) and a homomorphism
ℎ𝑥 from 𝑞𝑈𝑥 to 𝒰𝑝,𝒪 that satisfies the invariant (∗).

 Proof of Claim 2. For readability, set 𝑦 = 𝑔(𝑥). We show Claim 2 by induction on
the codepth of 𝑥 in 𝑞𝑈. In the induction start, 𝑥 has codepth 0. We distinguish the
following cases:

• There is a role atom 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦.

Then, let 𝑝 be the element of 𝐹0(𝑦) that is constructed by generalizing the
subquery attached to 𝑅(𝑦, 𝑦′) and define ℎ𝑥 by setting ℎ𝑥(𝑥) = 𝑦. Point 2 of
generalizing a subquery assures that 𝑦 ∈ 𝐴𝒰𝑞,𝒪 implies 𝑦 ∈ 𝐴𝒰𝑝,𝒪 for all
concept names 𝐴. Therefore, ℎ𝑥 is a homomorphism.

• There is no role atom 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦.

Then, 𝑞′𝑥 ⊈𝒪 𝑞𝑦 implies that there is a concept atom 𝐴(𝑦) ∈ 𝑞𝑦 with 𝑥 ∉ 𝐴𝒰𝑞′𝑥,𝒪,
and there must even be a concept name 𝐴 with these properties and such
that there is no 𝐵(𝑦) ∈ 𝑞𝑦 with 𝒪 ⊧ 𝐵 ⊑ 𝐴 and 𝒪 ⊧̸ 𝐴 ⊑ 𝐵. This implies
that Property (a) of dropping concept atoms is satisfied. If Property (b) is
not satisfied, then there is a 𝑅(𝑦, 𝑦′) ∈ 𝑞 with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐴. Then, 𝑦′ must
be the predecessor of 𝑦, and 𝑥 cannot be the root of 𝑞′. It follows from the
definition of 𝑈, that there is an 𝑆(𝑥, 𝑥′) ∈ 𝑞′ with 𝒪 ⊧ 𝑆 ≡ 𝑅. Hence, 𝑥 ∈ 𝐴𝒰𝑞′𝑥,𝒪,
contradicting that 𝑞′𝑥 ⊈𝒪 𝑞𝑦.

Thus, there is a 𝑝 ∈ 𝐹0(𝑦) constructed by dropping the concept atom 𝐴(𝑦).
Define ℎ𝑥 by setting ℎ𝑥(𝑥) = 𝑦.

In the induction step, let 𝑥 ∈ 𝑈 be a variable with codepth > 0 in 𝑞𝑈 and assume
that the claim holds for all variables of smaller codepth. From 𝑞′𝑥 ⊈𝒪 𝑞𝑦 it follows
that 𝑞𝑦(𝑦) ↛ 𝒰𝑞′𝑥,𝒪, 𝑥. We distinguish the following cases:

• There is an 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦 such that 𝑞𝑦′(𝑦′) ↛ 𝒰𝑞′𝑥′ ,𝒪
, 𝑥′ for all 𝑆(𝑥, 𝑥′) ∈ 𝑞′𝑥 with

𝒪 ⊧ 𝑆 ⊑ 𝑅.

If func(𝑅) ∈ 𝒪, then 𝑆 = 𝑅. If there is an 𝑅(𝑥, 𝑥′) ∈ 𝑞′𝑥, then, by the induction
hypothesis, there is a 𝑝′ ∈ 𝐹0(𝑦′) such that 𝑞′𝑥′(𝑥′) → 𝒰𝑝′,𝒪, 𝑥′. Let 𝑝 ∈ 𝐹0(𝑦) be
the query constructed by generalizing the subquery attached to 𝑅(𝑦, 𝑦′) and
choosing 𝑝′ in Point 4.

If func(𝑅) ∉ 𝒪, then let 𝑝 ∈ 𝐹0(𝑦) be constructed by generalizing the subquery
attached to the role atom 𝑅(𝑦, 𝑦′).

We construct the homomorphism ℎ𝑥 from 𝑞𝑈𝑥 to 𝒰𝑝,𝒪 by starting with ℎ𝑥(𝑥) = 𝑦
and continuing to map all successors of 𝑥. Let 𝑆(𝑥, 𝑥′) ∈ 𝑞𝑈𝑥 .

72

4.3 Frontiers of Queries

If 𝑔(𝑥′) ≠ 𝑦′, then define ℎ𝑥 for the subtree below 𝑥′ by setting ℎ𝑥(𝑧) = 𝑔(𝑧) for
all 𝑧 ∈ var(𝑞𝑥′).
If 𝑔(𝑥′) = 𝑦′, then the definition of 𝑈 implies that 𝒪 ⊧ 𝑆 ≡ 𝑅. By the induction
hypothesis, there is a 𝑝′ ∈ 𝐹0(𝑦′) and a homomorphism ℎ𝑥′ from 𝑞′𝑥′ to 𝒰𝑝′,𝒪
with ℎ𝑥′(𝑥′) = 𝑦′. Extend ℎ𝑥 to the variables in 𝑞′𝑥′ by setting ℎ𝑥(𝑧) = ℎ𝑥′(𝑧) for
all 𝑧 ∈ var(𝑞𝑥′) where ℎ𝑥′ is considered to map into the copy of 𝑝′ that was
attached to 𝑦 in Point 3 or Point 4 of generalizing a subquery.

• For every 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦 there is a 𝑆(𝑥, 𝑥′) ∈ 𝑞′𝑥 with 𝑞𝑦′(𝑦′) → 𝒰𝑞′𝑥′,𝒪
, 𝑥′ and

𝒪 ⊧ 𝑆 ⊑ 𝑅.

Then there is an 𝐴(𝑦) ∈ 𝑞𝑦 with 𝑥 ∉ 𝐴𝒰𝑞′𝑥,𝒪 and there must even be an 𝐴
with these properties such that there is no 𝐵(𝑦) ∈ 𝑞𝑦 with 𝒪 ⊧ 𝐵 ⊑ 𝐴 and
𝒪 ⊧̸ 𝐴 ⊑ 𝐵. Thus, Property (a) of dropping concept atoms is satisfied. To show
that Property (b) is also satisfied, we have to argue that there is no 𝑅(𝑦, 𝑦′) ∈ 𝑞
with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐴. If 𝑦′ is a successor of 𝑦, then 𝑞𝑦′(𝑦′) → 𝒰𝑞′𝑥′ ,𝒪

, 𝑥′ for
some 𝑆(𝑥, 𝑥′) ∈ 𝑞′𝑥 with 𝒪 ⊧ 𝑆 ⊑ 𝑅. This implies 𝐴(𝑥) ∈ 𝒰𝑞′𝑥,𝒪, a contradiction.
Hence, 𝑦′ must be a predecessor of 𝑦. Then 𝑥 is not the root of 𝑞′ and by
definition of 𝑈, there is a predecessor 𝑥″ of 𝑥 with 𝑆(𝑥, 𝑥″) ∈ 𝑞′ and 𝒪 ⊧ 𝑅 ≡ 𝑆.
This implies 𝐴(𝑥) ∈ 𝒰𝑞′𝑥,𝒪, a contradiction.

We may thus construct 𝑝 ∈ 𝐹0(𝑦) by dropping the concept atom 𝐴(𝑦). Set
ℎ𝑥(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ var(𝑞𝑈𝑥).

This completes the proof of Claim 2.

By Claim 2, there is a 𝑝′ ∈ 𝐹0(𝑥0) such that 𝑞𝑈(𝑥0) → 𝒰𝑝′,𝒪, 𝑥0. Let 𝑝 ∈ 𝐹 be the
query that was obtained by applying Step 2 to 𝑝′. Then clearly also 𝑞𝑈(𝑥0) → 𝒰𝑝,𝒪, 𝑥0.
Define ℎ for all variables in 𝑈 according to the homomorphism ℎ𝑥0.

In the second step of the construction of ℎ, we consider atoms 𝑅(𝑥, 𝑥′) ∈ 𝑞′ with
ℎ(𝑥) defined, ℎ(𝑥′) undefined and 𝑆(𝑔(𝑥), 𝑔(𝑥′)) ∈ 𝑞 for some role 𝑆 with 𝒪 ⊧̸ 𝑆 ≡ 𝑅.
Then 𝒪 ⊧ 𝑆 ⊑ 𝑅. If ℎ(𝑥) is the root of a 𝑝 ∈ 𝐹0(𝑔(𝑥)) that was created by generalizing
the subquery below 𝑆(𝑔(𝑥), 𝑔(𝑥′)), then Step 5 of generalizing a subquery added a
disjoint copy of 𝑞𝑔(𝑥′) and an atom 𝑅(ℎ(𝑥), 𝑔(𝑥′)). Set ℎ(𝑥′) = 𝑔(𝑥′) and continue to
map the subtree below 𝑥′ into the copy of 𝑞𝑔(𝑥′) according to 𝑔 until an atom 𝑅′(𝑧, 𝑧′)
is encountered with ℎ(𝑧) defined, ℎ(𝑧′) undefined and 𝑔(𝑧′) ∉ var(𝑞) or 𝑆′(𝑔(𝑧), 𝑔(𝑧′))
is directed towards 𝑥0. Otherwise, if ℎ(𝑥) is not the root of a 𝑝 ∈ 𝐹0(𝑔(𝑥)), 𝑝 contains
an atom 𝑆(ℎ(𝑥), 𝑔(𝑥′)) and the entire subtree 𝑞𝑔(𝑥′). Set ℎ(𝑥′) = 𝑔(𝑥′) and continue
mapping the subtree 𝑞′𝑥′ as in the previous case.

We continue with the third step of the construction of ℎ which covers subtrees of
𝑞′ that are connected to the initial segment 𝑞𝑈 and whose root is mapped by 𝑔 to
traces of 𝒰𝑞,𝒪 (rather than to a variable from var(𝑞)). Consider all atoms 𝑅(𝑥, 𝑥′) ∈ 𝑞′

73

4 Learning with Membership Queries

with ℎ(𝑥) defined, ℎ(𝑥′) undefined and 𝑔(𝑥′) ∉ var(𝑞). Before extending ℎ to 𝑞′𝑥′, we
first show that there is an atom 𝑆(ℎ(𝑥), 𝑧) ∈ 𝑝 with 𝒪 ⊧ 𝑆 ⊑ 𝑅, added in Step 2 A.

Since 𝑔(𝑥′) ∉ var(𝑞), 𝑔(𝑥′) must be a trace 𝑔(𝑥)𝑆𝑀 ∈ Δ𝒰𝑞,𝒪 for some set of concept
names 𝑀 = {𝐴1, … , 𝐴𝑘} and some role 𝑆 with 𝒪 ⊧ 𝑆 ⊑ 𝑅. Hence, 𝑔(𝑥) ⇝𝑆

𝑞,𝒪 𝑀. We
aim to show that Step 2 A of compensation is applicable. To this end, take any
concept name 𝐵 such that 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐵 and 𝐵(𝑔(𝑥)) ∈ 𝑞. We have to show that
𝐵(ℎ(𝑥)) ∈ 𝑝. Assume to the contrary that 𝐵(ℎ(𝑥)) ∉ 𝑝. Then, 𝑝 must be the result of
dropping the concept atom 𝐵(𝑔(𝑥)). Since 𝑥 ∈ 𝑈, the choice of 𝑝 and construction of
ℎ in the proof of Claim 2 imply that 𝑥 ∉ 𝐵𝒰𝑞′𝑥,𝒪. However, 𝑅(𝑥, 𝑥′) ∈ 𝑞′ implies that
𝑥 ∈ 𝐵𝒰𝑞′𝑥,𝒪, a contradiction.

Hence, Step 2 A adds the atoms 𝑅(ℎ(𝑥), 𝑧), 𝐴1(𝑧), … , 𝐴𝑘(𝑧), 𝑆(𝑧′, 𝑧) with 𝑧 and 𝑧′

fresh variables and adds a disjoint copy �𝑞 of 𝑞, gluing the copy of ℎ(𝑥)↓ in �𝑞 to
𝑧′. Extend ℎ to the variables in 𝑞′𝑥′ by setting ℎ(�𝑥) = 𝑧𝑅2𝑀2 … 𝑅𝑛𝑀𝑛 if 𝑔(�𝑥) =
𝑔(𝑥)𝑆𝑀𝑅2𝑀2 … 𝑅𝑛𝑀𝑛 for all �𝑥 in the subtree below 𝑥′. If there is an 𝑥″ ∈ var(𝑞′𝑥′)
with 𝑔(𝑥″) = 𝑔(𝑥), then instead set ℎ(𝑥″) = 𝑧′ and continue mapping the subtree
below 𝑥″ into the attached copy �𝑞 of 𝑞 according to 𝑔.

In the fourth step of the construction of ℎ, we consider the remaining subtrees of
𝑞′. Let 𝑅(𝑥, 𝑥′) ∈ 𝑞′ be directed away from 𝑥0 with ℎ(𝑥) defined and ℎ(𝑥′) undefined.

Then ℎ(𝑥) was defined in the first step of the construction of ℎ, and thus 𝑥 ∈ 𝑈. As
ℎ(𝑥′) was not defined in the first or second step, 𝑥′ ∉ 𝑈 and 𝑔(𝑥′) ∈ var(𝑞). Therefore,
𝑅(𝑔(𝑥), 𝑔(𝑥′)) ∈ 𝒰𝑞,𝒪 must be directed towards 𝑥0. This implies that 𝑥 is not the root
of 𝑞′ and that there is an atom 𝑇(𝑥, 𝑥″) ∈ 𝑞′ directed towards 𝑥0 with 𝑔(𝑥″) = 𝑔(𝑥′).
From 𝑥 ∈ 𝑈 follows that 𝑥″ ∈ 𝑈 and therefore ℎ(𝑥″) and ℎ(𝑥) were defined in the
first step of the construction of ℎ.

Since ℎ is a homomorphism where it is defined, there is an atom 𝑆(ℎ(𝑥), ℎ(𝑥″)) ∈ 𝑝
directed towards 𝑥0 with 𝒪 ⊧ 𝑆 ⊑ 𝑇 that was not added in Step 2 A. By the invari
ant (∗), ℎ(𝑥″)↓ = 𝑔(𝑥″) = 𝑔(𝑥′) and ℎ(𝑥)↓ = 𝑔(𝑥), therefore 𝒜𝑞, 𝒪 ⊧ 𝑅(ℎ(𝑥)↓, ℎ(𝑥″)↓)
and func(𝑅) ∉ 𝒪.

Therefore, the start of Step 2 B added an atom 𝑅(ℎ(𝑥), 𝑧) to 𝑝 where 𝑧 is a fresh
variable, and marked it. Set ℎ(𝑥′) = 𝑧. We continue to map the subtree 𝑞′𝑥′ in the
next step of the construction of ℎ.

In the fifth and final step of the construction of ℎ we define ℎ for all remaining
variables using the atoms that were introduced in the iteration of Step 2 B. We do
this by repeatedly choosing atoms 𝑅(𝑥, 𝑥′) ∈ 𝑞′ directed away from 𝑥0 such that

1. ℎ(𝑥) and ℎ(𝑥′) are defined, and

2. for all 𝑆(𝑥′, 𝑥″) ∈ 𝑞′ directed away from 𝑥0, ℎ(𝑥″) is undefined and there is at
least one such 𝑆(𝑥′, 𝑥″).

74

4.3 Frontiers of Queries

If we choose such an 𝑅(𝑥, 𝑥′) directly at the beginning of this step of the construction
of ℎ, then 𝑔(𝑥′) ∈ var(𝑞) and there is an atom 𝑅′(ℎ(𝑥), ℎ(𝑥′)) ∈ 𝑝 with 𝒪 ⊧ 𝑅′ ⊑ 𝑅 that
was marked and processed in Step 2 B of the construction of 𝑝. We will extend ℎ
such that these conditions are always satisfied when we choose an 𝑅(𝑥, 𝑥′) ∈ 𝑞′.

Let 𝑅(𝑥, 𝑥′) ∈ 𝑞′ be an atom that satisfied Properties 1 and 2 and consider the
atom 𝑅′(ℎ(𝑥), ℎ(𝑥′)) ∈ 𝑝. If func(𝑅′−) ∉ 𝒪, then Step 2 B attached a copy of 𝑞 to ℎ(𝑥′).
Extend ℎ to the entire subtree 𝑞′𝑥′ by setting ℎ(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ var(𝑞′𝑥′) where
𝑔 is considered to be a homomorphism into that copy of 𝑞. If func(𝑅′−) ∈ 𝒪, then
consider each 𝑆(𝑥′, 𝑥″) ∈ 𝑞′ directed away from 𝑥0. We distinguish cases

• 𝑔(𝑥″) ∈ var(𝑞). Since 𝑔(𝑥′) ∈ var(𝑞), there is an atom 𝑆′(𝑔(𝑥′), 𝑔(𝑥″)) ∈ 𝑞 for
some role name 𝑆′ with 𝒪 ⊧ 𝑆′ ⊑ 𝑆. If 𝑆 = 𝑅′−, then func(𝑆) ∈ 𝒪 and 𝑆 = 𝑆′.
Additionally, since func(𝑅′−) ∈ 𝒪, there must be the atom 𝑅′(𝑔(𝑥), 𝑔(𝑥′)) =
𝑆−(𝑔(𝑥), 𝑔(𝑥′)) ∈ 𝑞. This contradicts that 𝑞 satisfies all functionality constraints
in 𝒪, implying that 𝑆 ≠ 𝑅′−.
Therefore, Point 2 of Step 2 B adds the atom 𝑆(ℎ(𝑥′), 𝑧) where 𝑧 is a fresh
variable. Set ℎ(𝑥″) = 𝑧.

• 𝑔(𝑥″) ∉ var(𝑞). Since 𝑔(𝑥′) ∈ var(𝑞), 𝑔(𝑥″) must be of the shape 𝑔(𝑥′)𝑆′𝑀 for
some role 𝑆′ with 𝒪 ⊧ 𝑆′ ⊑ 𝑆 and some set 𝑀 = {𝐴1, … 𝐴𝑘} of concept names.
Hence, 𝑔(𝑥′) ⇝𝑆′

𝑞,𝒪 𝑀 and since ℎ(𝑥′)↓ = 𝑔(𝑥′), Point 3 of Step 2 B added the
atoms 𝑆′(ℎ(𝑥′), 𝑢), 𝐴1(𝑢), … 𝐴𝑘(𝑢), 𝑆′−(𝑢, 𝑦′) where 𝑢 and 𝑦′ are fresh variables.
Set ℎ(𝑥″) = 𝑢 and extend ℎ to the initial segment of 𝑞′𝑥″ that maps into the
traces below 𝑔(𝑥′)𝑆′𝑀 by setting ℎ(𝑧) = 𝑢𝑅2𝑀2𝑡 if 𝑔(𝑧) = 𝑔(𝑥′)𝑆′𝑀𝑅2𝑀2𝑡 for
all 𝑧 ∈ var(𝑞′𝑥″) until 𝑔(𝑧) = 𝑔(𝑥′). If an atom 𝑇(𝑧, 𝑧′) ∈ 𝑞𝑥″ with ℎ(𝑧) defined
and 𝑔(𝑧′) = 𝑔(𝑥′) is encountered, set ℎ(𝑧′) = 𝑦′. As 𝑇(𝑧, 𝑧′) fulfills Properties 1
and 2, we will extend ℎ to its subtree at some point in the future.

This completes the construction of ℎ and the proof that the second condition of
frontiers is satisfied.

We next show that the constructed frontier is of polynomial size and that its
computation takes only polynomial time.

Lemma 4.27. The construction of 𝐹𝑞 runs in time polynomial in ‖𝑞‖ + ‖𝒪‖ and ∑𝑝∈𝐹𝑞
‖𝑝‖

is polynomial in ‖𝑞‖ + ‖𝒪‖.

 Proof. In order to reduce notational clutter, we introduce some abbreviations used
throughout the proof.

• 𝑠 = |sig(𝑞)| denotes the number of concept and role names used in 𝑞;

• 𝑜 = ‖𝒪‖ denotes the size of 𝒪;

75

4 Learning with Membership Queries

• for an ELIQ 𝑝, 𝑛𝑝 = |var(𝑝)| denotes the number of variables in 𝑝;

• for a set 𝑄 of ELIQs, 𝑛𝑄 denotes ∑𝑝∈𝑄 𝑛𝑝.

We assume without loss of generality that 𝑠 and 𝑜 are at least one.
We start with analyzing the size of the queries in 𝐹0(𝑥) that are obtained as the

result of the generalization step.

Claim. For every 𝑥 ∈ var(𝑞),

1. |𝐹0(𝑥)| ≤ 𝑠 ⋅ 𝑛𝑞𝑥, and

2. 𝑛𝐹0(𝑥) ≤ 𝑠 ⋅ 𝑜 ⋅ 𝑛3
𝑞𝑥.

 Proof of the claim. The proof of both points is by induction on the codepth of 𝑥 in 𝑞.
We start with Point 1. For the base case, consider a variable 𝑥 of codepth 0 in 𝑞, that
is, a leaf. In this case, only Drop a concept atom is applicable, and the construction
adds at most 𝑠 queries to 𝐹0(𝑥).

For the inductive step, consider a variable 𝑥 of codepth greater than 0. We parti
tion 𝐹0(𝑥) into 𝐹𝐴

0 (𝑥) and 𝐹𝐵
0 (𝑥), that is, the queries that are obtained by dropping a

concept atom and the queries that are obtained by generalizing a subquery, respec
tively, and analyze them separately, starting with 𝐹𝐴

0 (𝑥). Clearly there are at most 𝑠
queries in 𝐹𝐴

0 (𝑥), that is
|𝐹𝐴
0 (𝑥)| ≤ 𝑠.

Next, we analyze 𝐹𝐵
0 (𝑥). Each query in 𝐹𝐵

0 (𝑥) is obtained by picking, in Point 1, an
atom 𝑅(𝑥, 𝑦) ∈ 𝑞𝑥. If func(𝑅) ∉ 𝒪, then Point 3 adds one query to 𝐹𝐵

0 (𝑥). Otherwise,
Point 4 adds |𝐹0(𝑦)| queries. Thus,

|𝐹𝐵
0 (𝑥)| ≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∉𝒪

1 + �
𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∈𝒪

|𝐹0(𝑦)|.

Using the induction hypothesis and the fact that 𝑛𝑞𝑦 ≥ 1, we obtain

|𝐹𝐵
0 (𝑥)| ≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
𝑠 ⋅ 𝑛𝑞𝑦 = 𝑠 ⋅ �

𝑅(𝑥,𝑦)∈𝑞𝑥
𝑛𝑞𝑦 = 𝑠 ⋅ (𝑛𝑞𝑥 − 1).

Hence,
|𝐹0(𝑥)| = |𝐹𝐴

0 (𝑥)| + |𝐹𝐵
0 (𝑥)| ≤ 𝑠 + 𝑠 ⋅ (𝑛𝑞𝑥 − 1) = 𝑠 ⋅ 𝑛𝑞𝑥.

We now prove Point 2 by induction on the codepth of 𝑥 in 𝑞. For the base case,
consider a variable 𝑥 of codepth 0 in 𝑞, that is, a leaf. In this case, only Drop a concept
atom is applicable, and it adds at most 𝑠 queries to 𝐹0(𝑥), each with a single variable.

76

4.3 Frontiers of Queries

For the inductive step, consider a variable 𝑥 of codepth greater than 0 and the
same partition of 𝐹0(𝑥) into 𝐹𝐴

0 (𝑥) and 𝐹𝐵
0 (𝑥) as before. Every 𝑝 ∈ 𝐹𝐴

0 (𝑥) uses 𝑛𝑞𝑥
variables, and there are at most 𝑠 queries in 𝐹𝐴

0 (𝑥). Thus,

𝑛𝐹𝐴0 (𝑥)
≤ 𝑠 ⋅ 𝑛𝑞𝑥.

Next, we analyze 𝐹𝐵
0 (𝑥). Each query in 𝐹𝐵

0 (𝑥) is obtained by first picking, in Point 1,
an atom 𝑅(𝑥, 𝑦) in 𝑞𝑥. If func(𝑅) ∉ 𝒪, Point 3 adds 𝑛𝐹0(𝑦) variables. Otherwise, Point 4
replaces 𝑞𝑦 with some element of 𝐹0(𝑦). Then, Point 5 adds some copies of 𝑞𝑦,
depending on the number of role inclusions in 𝒪. Hence,

𝑛𝐹𝐵0 (𝑥)
≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∉𝒪

(𝑛𝑞𝑥 + 𝑛𝐹0(𝑦) + 𝑜 ⋅ 𝑛𝑞𝑦) + �
𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∈𝒪

(𝑛𝑞𝑥 ⋅ |𝐹0(𝑦)| + 𝑛𝐹0(𝑦) + 𝑜 ⋅ 𝑛𝑞𝑦 ⋅ |𝐹0(𝑦)|)

≤ �
𝑅(𝑥,𝑦)∈𝑞𝑥

(𝑛𝑞𝑥 ⋅ |𝐹0(𝑦)| + 𝑛𝐹0(𝑦) + 𝑜 ⋅ 𝑛𝑞𝑦 ⋅ |𝐹0(𝑦)|).

Plugging in the induction hypothesis and Point 1 of the claim, we obtain

𝑛𝐹𝐵0 (𝑥)
≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
(𝑛𝑞𝑥 ⋅ 𝑠 ⋅ 𝑛𝑞𝑦 + 𝑠 ⋅ 𝑜 ⋅ 𝑛3

𝑞𝑦 + 𝑜 ⋅ 𝑛𝑞𝑦 ⋅ 𝑠 ⋅ 𝑛𝑞𝑦)

= 𝑠 ⋅ 𝑛𝑞𝑥 ⋅ �
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑞𝑦 + 𝑠 ⋅ 𝑜 ⋅ �
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛3
𝑞𝑦 + 𝑠 ⋅ 𝑜 ⋅ �

𝑅(𝑥,𝑦)∈𝑞𝑥
𝑛2
𝑞𝑦.

We simplify the right-hand side by observing that

�
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑞𝑦 = 𝑛𝑞𝑥 − 1

and for 𝑘 ≥ 0

�
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑘
𝑞𝑦 ≤

⎛
⎜⎜⎜⎜⎝ �
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑞𝑦

⎞
⎟⎟⎟⎟⎠

𝑘

= (𝑛𝑞𝑥 − 1)𝑘.

Here, the inequality is an application of the general inequality ∑𝑖 𝑎𝑘𝑖 ≤ �∑
𝑖 𝑎𝑖�

𝑘
,

for every sequence of non-negative numbers 𝑎1, … , 𝑎𝑚 and 𝑘 ≥ 1. Using these
observations, the inequality can be simplified to:

𝑛𝐹𝐵0 (𝑥)
≤ 𝑠 ⋅ 𝑛𝑞𝑥 ⋅ (𝑛𝑞𝑥 − 1) + 𝑠 ⋅ 𝑜 ⋅ (𝑛𝑞𝑥 − 1)3 + 𝑠 ⋅ 𝑜 ⋅ (𝑛𝑞𝑥 − 1)2

≤ 𝑠 ⋅ 𝑜 ⋅ �𝑛𝑞𝑥 ⋅ (𝑛𝑞𝑥 − 1) + (𝑛𝑞𝑥 − 1)3 + (𝑛𝑞𝑥 − 1)2�

= 𝑠 ⋅ 𝑜 ⋅ �(𝑛𝑞𝑥 − 1)3 + 2𝑛2
𝑞𝑥 − 3𝑛𝑞𝑥 + 1� .

77

4 Learning with Membership Queries

Overall, we get

𝑛𝐹0(𝑥) = 𝑛𝐹𝐴0 (𝑥)
+ 𝑛𝐹𝐵0 (𝑥)

≤ 𝑠 ⋅ 𝑛𝑞𝑥 + 𝑠 ⋅ 𝑜 ⋅ �(𝑛𝑞𝑥 − 1)3 + 2𝑛2
𝑞𝑥 − 3𝑛𝑞𝑥 + 1�

≤ 𝑠 ⋅ 𝑜 ⋅ �(𝑛𝑞𝑥 − 1)3 + 2𝑛2
𝑞𝑥 − 2𝑛𝑞𝑥 + 1�

≤ 𝑠 ⋅ 𝑜 ⋅ 𝑛3
𝑞𝑥.

For the last inequality, we used that 𝑧3 ≥ (𝑧 − 1)3 + 2𝑧 + 1, for all real numbers 𝑧. This
finishes the proof of the claim.

We now analyze the Step 2, in which the queries in 𝐹0(𝑥0) are further extended.
We denote with 𝐹1 the result of applying Step 2 A to 𝐹0(𝑥0). In Step 2 A, we add at
most one variable and a copy of 𝑞 for every variable in 𝐹0(𝑥0) and concept ∃𝑅.𝐵 or
role inclusion 𝑅 ⊑ 𝑆 in 𝒪.

Therefore, the step adds at most (1 + 𝑛𝑞) ⋅ 𝑛𝐹0(𝑥0) ⋅ 𝑜 variables in total. Using the
bound on 𝑛𝐹0(𝑥0), we get

𝑛𝐹1 ≤ 𝑛𝐹0(𝑥0) + (1 + 𝑛𝑞) ⋅ 𝑛𝐹0(𝑥0) ⋅ 𝑜

≤ 𝑠 ⋅ 𝑜 ⋅ 𝑛3
𝑞 ⋅ �1 + (1 + 𝑛𝑞) ⋅ 𝑜� .

We now analyze Step 2 B, applied to some query 𝑝 ∈ 𝐹. We argue that the itera
tion terminates after a polynomial number of steps, thus resulting in a query of
polynomial size.

Consider an atom 𝑅(𝑥, 𝑦) that was marked. If func(𝑅−) ∉ 𝒪, then a copy of 𝑞 is
attached and no new atoms are marked. Otherwise, for all atoms 𝑆(𝑦↓, 𝑧) ∈ 𝑞 and
roles 𝑆′ with 𝒪 ⊧ 𝑆 ⊑ 𝑆′ such that 𝑆′ ≠ 𝑅−, new atoms are added and marked. For
all new atoms with 𝑆 ≠ 𝑆′ no new atoms are marked when they are processed, as
𝒪 ⊧ 𝑆− ⊑ 𝑆′− and hence func(𝑆′−) ∉ 𝒪. All new atoms with 𝑆 = 𝑆′ must be copies of
atoms in 𝑞, and, due to the 𝑆′ ≠ 𝑅− condition and the tree-shape of 𝑞, the marking
process never changes its direction and creates at most a single copy of each atom
in 𝑞. Overall, we obtain that, per role atom in 𝑝, the marking process adds at most
𝑛𝑞 ⋅ 𝑜 role atoms in Step 2, for each such atom and every ∃𝑅.𝐵 in 𝒪 one more role
atom in Step 3, and for each introduced variable at most one copy of 𝑞. All this is
polynomial in ‖𝑞‖ and ‖𝒪‖.

Moreover, the computation of 𝐹𝑞 can be carried out in polynomial time since all
involved queries are of polynomial size and consequences of 𝒪 can be decided in
polynomial time.

From Lemma 4.26 and Lemma 4.27 it now follows that the frontier construction
in this section actually yields frontiers of ELIQs under DL-Liteℋℱ−

core ontologies in
polynomial time. Thus, we have shown Theorem 4.23.

78

4.3 Frontiers of Queries

Lower Bounds on the Size of Frontiers

The construction of a frontier in polynomial time crucially relies on the choice of on
tology language. In the remainder of this section we show that any extension of the
ontology language DL-Liteℋℱ−

core by including conjunctions, unrestricted functionality
constraints, or qualified existential restrictions, leads to frontiers of exponential or
even infinite size. These results are interesting on their own, as they already hold
for simple query and ontology languages.

In a sense, the first two results mirror the learning lower bounds in Section 4.1.
Indeed, we can view the non-existence of frontiers of polynomial size as the reason
for the impossibility of polynomial query learning. Again, the first result concerns
conjunctions in the ontology language, and uses the same queries and ontologies
as the proof of Theorem 4.5.

Theorem 4.28. For every 𝑛 ≥ 1, there is a conjunction of atomic queries 𝑞𝑛 and a conjunctive
ontology 𝒪𝑛 of size polynomial in 𝑛, such that any frontier of 𝑞𝑛 under 𝒪𝑛 has size at least
2𝑛.

 Proof. For 𝑛 ≥ 1, let 𝐴1, … , 𝐴𝑛, 𝐵1, … , 𝐵𝑛 be concept names and let

𝑞𝑛(𝑥) ← 𝐴1(𝑥) ∧ 𝐵1(𝑥) ∧ ⋯ ∧ 𝐴𝑛(𝑥) ∧ 𝐵𝑛(𝑥),
𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1 ⊓ 𝐵1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊓ 𝐵𝑛 ∣ 1 ≤ 𝑖 ≤ 𝑛}.

Suppose a set of queries 𝐹 is a frontier of 𝑞𝑛 under 𝒪𝑛. Let 𝑝 be any query that for
each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 contains either 𝐴𝑖(𝑥) or 𝐵𝑖(𝑥). It suffices to show that 𝑝 ∈ 𝐹.

Clearly, 𝑞𝑛 ⊆𝒪𝑛 𝑝 and 𝑝 ⊈𝒪𝑛 𝑞𝑛. Hence, the second condition of Definition 4.13
implies that there is a 𝑝′ ∈ 𝐹 with 𝑝′ ⊆𝒪 𝑝. Since 𝑝′ ∈ 𝐹, it must be that 𝑝′ ⊈𝒪𝑛 𝑞𝑛,
and therefore 𝑝′ does not contain both atoms 𝐴𝑖(𝑥), 𝐵𝑖(𝑥) for any 𝑖.

But then the ontology does not have an effect on 𝑝′ ⊆𝒪𝑛 𝑝 and hence every atom
that occurs in 𝑝 must occur in 𝑝′. As 𝑝′ does not contain both atoms 𝐴𝑖(𝑥), 𝐵𝑖(𝑥) for
any 𝑖, it follows that 𝑝′ = 𝑝, which was to be shown.

If we lift the restriction on the interaction of functionality constraints and exis
tential restrictions, so consider proper DL-Liteℱcore ontologies, Theorem 4.23 also
fails, even if we permit frontiers that consist of CQs. A CQ-frontier of an ELIQ 𝑞
under an ontology 𝒪 is a finite set of unary CQs that satisfies Conditions 1 and 2 of
Definition 4.13. Note that every frontier is a CQ-frontier, but not vice versa.

Theorem 4.29. There is an ELIQ 𝑞 and a DL-Liteℱcore ontology 𝒪 such that every CQ-
frontier of 𝑞 under 𝒪 is infinite.

 Proof. Let 𝑞(𝑥) ← 𝐴(𝑥) and

𝒪 = { 𝐴 ⊑ ∃𝑟.⊤, ∃𝑟−.⊤ ⊑ ∃𝑟.⊤, ∃𝑟.⊤ ⊑ ∃𝑠.⊤, func(𝑟−) }.

79

4 Learning with Membership Queries

The universal model 𝒰𝑞,𝒪 of 𝒜𝑞 and 𝒪 is an infinite 𝑟-path in which every point has
a single 𝑠-successor.

Suppose, for the sake of showing a contradiction, that 𝐹 is a CQ-frontier of 𝑞 under
𝒪. We can assume without loss of generality that all queries in 𝐹 are satisfiable
under 𝒪, especially that they satisfy func(𝑟−). Since 𝐹 is finite, there is an 𝑛 ≥ 1 such
that |var(𝑝)| < 𝑛, for all 𝑝 ∈ 𝐹. Consider the following ELIQ 𝑞′:

𝑞′(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧
𝑠(𝑥𝑛, 𝑦) ∧ 𝑠(𝑥′𝑛, 𝑦) ∧
𝑟(𝑥′1, 𝑥′2) ∧ ⋯ ∧ 𝑟(𝑥′𝑛−1, 𝑥′𝑛) ∧ 𝐴(𝑥′1).

Note that 𝑞′ ⊈𝒪 𝑞 ⊆𝒪 𝑞′ and that 𝑞′ satisfies func(𝑟−).
By the second condition of frontiers, there is a query 𝑝(𝑧) ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞′.

By Lemma 3.5, there is a homomorphism ℎ from 𝑞′ to 𝒰𝑝,𝒪 with ℎ(𝑥1) = 𝑧. We
distinguish cases.

Suppose first that ℎ(𝑥𝑖) ∈ var(𝑝) for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, then by the choice of 𝑛
there must be 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that ℎ(𝑥𝑖) = ℎ(𝑥𝑗). Since 𝑞′ contains a directed 𝑟-path
from 𝑥𝑖 to 𝑥𝑗 and 𝒰𝑝,𝒪 does not contain edges between variables that are not part
of 𝑝, this implies that 𝑝 must contain an 𝑟-cycle. Thus, 𝑞 ⊈𝒪 𝑝, violating the first
condition of frontiers.

Suppose now that ℎ(𝑥𝑖) ∉ var(𝑝) for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, that is, ℎ(𝑥𝑖) is a trace
starting with some 𝑦 ∈ var(𝑝). Since 𝑞′ is an ELIQ, there is a 𝑗 < 𝑖 such that ℎ(𝑥𝑗) = 𝑦
and ℎ(𝑥𝑗+1), … , ℎ(𝑥𝑖) ∉ var(𝑝). The structure of 𝑞′ and the structure of the proper
traces in universal models of 𝒪 imply that ℎ(𝑥′𝑗) = ℎ(𝑥𝑗).

We now show that ℎ(𝑥1) = ℎ(𝑥′1). If 𝑗 = 1, we are done. If 𝑗 > 1, there are atoms
𝑟(𝑥𝑗−1, 𝑥𝑗) and 𝑟(𝑥′𝑗−1, 𝑥′𝑗) in 𝑞′. Since ℎ is a homomorphism, ℎ(𝑥𝑗) = ℎ(𝑥′𝑗), and 𝑝 satisfies
func(𝑟−), we obtain ℎ(𝑥𝑗−1) = ℎ(𝑥′𝑗−1). Repeating this argument yields ℎ(𝑥1) = ℎ(𝑥′1)
as required. Since ℎ(𝑥1) = 𝑧, we also have ℎ(𝑥′1) = 𝑧. Since ℎ is a homomorphism
and 𝐴(𝑥′1) ∈ 𝑞′, we have 𝐴(𝑧) ∈ 𝑝 and thus 𝑝 ⊆𝒪 𝑞, violating the first condition of
frontiers.

Theorem 4.28 already implies that there do not always exist frontiers of poly
nomial size under ℰℒ ontologies. Kriegel showed that there even are cases where
no finite frontiers4 exist under an ℰℒ ontology that does not use any conjunc
tion [Kri18a]. We give a self-contained proof of Theorem 4.30 using the terminology
of this section.

Theorem 4.30 ([Kri18a]). There is an ELQ 𝑞 and an ℰℒ ontology 𝒪 that does not contain
any conjunctions, such that every frontier of 𝑞 under 𝒪 is infinite.

4Upper neighborhoods of ℰℒ concepts correspond to minimal finite frontiers.

80

4.3 Frontiers of Queries

 Proof. Let 𝒪 = {𝐴 ≡ ∃𝑟.𝐴} and 𝑞(𝑥) ← 𝐴(𝑥). Suppose, for the sake of showing a
contradiction, that a finite set of ELIQs 𝐹 is a frontier of 𝑞 under 𝒪.

Consider, for each 𝑖 ≥ 1, the ELQ

𝑝𝑖(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥𝑖−1, 𝑥𝑖).

For all 𝑖 ≥ 1, 𝑞 ⊆𝒪 𝑝𝑖 and 𝑝𝑖 ⊈𝒪 𝑞. Hence, by definition of frontiers, for each 𝑖 there is
a 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑝𝑖. As 𝐹 is finite, there must be a 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑝𝑖 for
infinitely many 𝑖. We distinguish cases.

If the concept name 𝐴 occurs in 𝑝, then 𝑝 ≡𝒪 𝑞, contradicting that 𝐹 is a frontier.
If only the role name 𝑟 occurs in 𝑝, then Δ𝒰𝑝,𝒪 = var(𝑝). As 𝑝 itself is also finite,

𝒰𝑝,𝒪 cannot contain an 𝑟-path of infinite length. Hence, it cannot be true that 𝑝 ⊆𝒪 𝑝𝑖
for infinitely many 𝑖.

Recall that DL-Liteℋℱ−
core ontologies also restrict the interaction of functionality

constraints and role inclusions, that is, no functional role may have subroles. We
used this restriction heavily in our proof of Theorem 4.23. We show that this
restriction is indeed essential for (finite) frontiers to exist. We conjecture that this
restriction is also necessary for polynomial time learning of queries using only
membership queries.
Theorem 4.31. There is an ELQ 𝑞 and an ontology 𝒪 consisting only of role inclusions
and functionality constraints, such that every frontier of 𝑞 under 𝒪 is infinite.

 Proof. Let 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) and

𝒪 = {𝑟 ⊑ 𝑠, 𝑟 ⊑ 𝑡, func(𝑠), func(𝑡), func(𝑠−), func(𝑡−)},

and assume for contradiction that 𝐹 is a finite frontier of 𝑞 under 𝒪. For every 𝑖 ≥ 1,
consider the query

𝑞𝑖(𝑦0) ← 𝑠(𝑦0, 𝑦′0) ∧ 𝑡(𝑦1, 𝑦′0) ∧ ⋯ ∧ 𝑠(𝑦𝑖−1, 𝑦′𝑖−1) ∧ 𝑡(𝑦𝑖, 𝑦′𝑖−1).

Every 𝑞𝑖 is satisfiable under 𝒪, and it holds that 𝑞 ⊆𝒪 𝑞𝑖 and 𝑞𝑖 ⊈𝒪 𝑞.
Therefore, for each 𝑞𝑖 there must be an ELIQ 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞𝑖. Since 𝐹 is

finite, there must be a 𝑝(𝑧0) ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞𝑖 for infinitely many 𝑞𝑖. As 𝐹 is a
frontier, 𝑝 ⊈𝒪 𝑞. Hence, this 𝑝 may not contain an 𝑟 atom at the root. Due to the
functionality constraints in 𝒪, 𝑝 is only satisfiable under 𝒪 if it does not contain
an 𝑟 atom at all. Now consider a 𝑞𝑖 with 𝑝 ⊆𝒪 𝑞𝑖 and 𝑖 > |var(𝑞𝑓)|. Since 𝑝 contains
no 𝑟 atoms, also 𝑝 ⊆∅ 𝑞𝑖. Let ℎ be a homomorphism from 𝑞𝑖 to 𝑝 with ℎ(𝑦0) = 𝑧0.
It follows from |var(𝑞𝑖)| > |var(𝑝)| that ℎ is non-injective. This, together with the
construction of 𝑞𝑖 implies that 𝑝 is cyclic, contradicting that 𝑝 is an ELIQ.

Theorems 4.28 to 4.31 together indicate that DL-Liteℋℱ−
core is a maximal ontology

language for which polynomial size frontiers of ELIQs exist, in the sense that this
property does not hold for many of its common extensions.

81

4 Learning with Membership Queries

𝑞0

𝐴
𝑟

⊆∅

𝑞1

𝐴

𝑟
𝑟 𝑟

⊆∅

𝑞2

𝐴

𝑟
𝑟 𝑟

𝑟 𝑟

⊆∅ ⋯ ⊆∅

𝑞𝑇

𝑟

Figure 4.8: An infinite generalizing chain of ELIQs under the empty ontology.

4.4 Generalization Sequences of Queries

We intend to use the frontier construction from Section 4.3 as part of a learning
algorithm to approach the target query 𝑞𝑇 step-by-step under an DL-Liteℋℱ−

core ontol
ogy. In Example 4.24 we can observe that the queries in a frontier of 𝑞 are usually
much larger than 𝑞, and the proof of Lemma 4.27 indeed gives an upper bound
on their size that is cubic in ‖𝑞‖. Thus, if the algorithm naively applies the frontier
construction multiple times, it does approach the target query, but it produces
larger and larger queries, and the algorithm cannot possibly run in polynomial
time.

A related issue is the question of how often we need to apply the frontier
construction to reach 𝑞𝑇. Already in the case without ontologies, there are in
finite chains of generalizing queries. Consider the empty ontology and the ELIQs
𝑞0(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) and 𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1). Then, there is an infinite sequence
of ELIQs consisting of

𝑞𝑖(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥2, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥2𝑖, 𝑥2𝑖−1) ∧ 𝑟(𝑥2𝑖, 𝑥2𝑖+1) ∧ 𝐴(𝑥2𝑖+1)

for all 𝑖 ≥ 1, with 𝑞𝑖 ⊆∅ 𝑞𝑖+1, 𝑞𝑖+1 ⊈∅ 𝑞𝑖, and 𝑞𝑖 ⊆∅ 𝑞𝑇 for all 𝑖 ≥ 0. Additionally, it can
be verified that 𝑞𝑖+1 must occur in the frontier of 𝑞𝑖 for all 𝑖 ≥ 0. The first steps of
this sequence are displayed in Figure 4.8. This indicates that if we naively apply the
frontier construction, we might end up following an infinite chain of ELIQs that
increase in size, and never reach 𝑞𝑇.

A solution to this problem lies in the observation that while 𝑞1 is larger than 𝑞0,
not all atoms of 𝑞1 are necessary for 𝑞1 ⊆∅ 𝑞𝑇 to hold. Indeed, if we remove all atoms
that mention the variables 𝑥2 and 𝑥3 from 𝑞1, then 𝑞1 becomes (𝑞𝑇, 𝒪)-minimal and
𝑞1 ≡∅ 𝑞𝑇. When a learning algorithm selects a new query 𝑝 from the frontier of the
current hypothesis 𝑞, the algorithm, of course, cannot inspect 𝑞𝑇 to safely remove
parts of 𝑝 to obtain (𝑞𝑇, 𝒪)-minimality. However, a learning algorithm can check
if the removal of some atoms is safe by using membership queries to verify that
𝑝 ⊆𝒪 𝑞𝑇 holds still.

For this, we define a subroutine minimize𝒪 that we will use as part of our learning
algorithm. Again, we define the subroutine for all CQs, not just ELIQs and for

82

4.4 Generalization Sequences of Queries

𝑞1

𝑠

𝑞2

𝑠𝑠

𝑞3

𝐴, 𝐵
𝑠

𝑞4

𝐴, 𝐵
𝑟

𝑞5

𝐴 𝐵
𝑟

𝑟

𝑞6 ≡𝒪 𝑞𝑇

𝐴
𝑟

Figure 4.9: The unary rooted CQs 𝑞1, … , 𝑞6 form a generalization sequence towards
𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) under 𝒪 = {∃𝑠 ⊑ 𝐴 ⊓ 𝐵, 𝑠 ⊑ 𝑟}.

multiple ontology languages, since we will reuse minimize𝒪 in later sections. Let 𝒪
be an ℰℒ𝑟, DL-Liteℱhorn or DL-Liteℋℱ−

core ontology, and assume that membership queries
are answered with regard to 𝒪 and a target CQ 𝑞𝑇. The subroutine minimize𝒪 takes
as input a CQ 𝑞 that is satisfiable under 𝒪 such that 𝑞 ⊆𝒪 𝑞𝑇 and computes a (𝑞𝑇, 𝒪)-
minimal CQ 𝑞′ such that 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊆𝒪 𝑞𝑇. It does this by applying the following
operation exhaustively:

Drop variable. Select an existential variable 𝑥 ∈ var(𝑞). Use a membership query to
test whether 𝑞−𝒪𝑥 ⊆𝒪 𝑞𝑇. If yes, continue with 𝑞−𝒪𝑥 instead of 𝑞, otherwise
continue with 𝑞.

Using Definition 4.18, it is easy to see that minimize𝒪 achieves (𝑞𝑇, 𝒪)-minimality.

Lemma 4.32. Let 𝑞 be a CQ with 𝑞 ⊆𝒪 𝑞𝑇 that is satisfiable under 𝒪. Then, minimize𝒪(𝑞)
terminates in time polynomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖ and returns a (𝑞𝑇, 𝒪)-minimal CQ 𝑞′
such that 𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇.

Note that Lemma 4.32 does not hold if 𝒪 is an ℰℒℐ or ℰℒℐℋℱ⊥ ontology, as then
𝑞−𝒪𝑥 cannot be computed in polynomial time as deciding whether 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑦) for
some concept name 𝐴 is ExpTime-complete.

Next, we show that applying minimize𝒪 to obtain (𝑞𝑇, 𝒪)-minimality of hypotheses
is sufficient to guarantee that the learning algorithm reaches 𝑞𝑇 after a polynomial
number of applications of the frontier construction, and that the involved queries
stay bounded in size. First, we formalize the notion of approaching 𝑞𝑇 by general
izing hypotheses.

Definition 4.33 (Generalization Sequence). Let 𝑞𝑇 be a CQ and 𝒪 an ontology. A
sequence 𝑞1, 𝑞2, … of CQs is a generalization sequence towards 𝑞𝑇 under 𝒪 if for all 𝑖 ≥ 0,
𝑞𝑖 ⊆𝒪 𝑞𝑖+1, 𝑞𝑖+1 ⊈𝒪 𝑞𝑖, and 𝑞𝑖 ⊆𝒪 𝑞𝑇.

Example 4.34. Consider the queries 𝑞1, … , 𝑞6 displayed in Figure 4.9 and the ontol
ogy

𝒪 = {∃𝑠.⊤ ⊑ 𝐴 ⊓ 𝐵, 𝑠 ⊑ 𝑟}.
The queries 𝑞1, … , 𝑞6 form a generalization sequence towards 𝑞𝑇 under 𝒪. Note that
𝑞5 is not (𝑞𝑇, 𝒪)-minimal.

83

4 Learning with Membership Queries

Then, we are interested in generalization sequences that consist of (𝑞𝑇, 𝒪)-minimal
CQs. If 𝑞𝑇 is rooted, then the length of such a sequence must be bounded by a
polynomial. Again, we show this result in a very general way, for rooted CQs and
for ℰℒℐℋℱ⊥ ontologies, which include all DL-Liteℋℱ−

core ontologies, as we will also
apply it in Chapter 5. Moreover, it is also interesting on its own that such a bound
exists even for relatively expressive ℰℒℐℋℱ⊥ ontologies.

Theorem 4.35. Let 𝑞𝑇 be a rooted CQ and 𝒪 an ℰℒℐℋℱ⊥ ontology in normal form, and
let 𝑞1, 𝑞2, … be a generalization sequence towards 𝑞𝑇 under 𝒪. If all 𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal
and satisfiable under 𝒪, then the sequence has length at most |var(𝑞𝑇)|3 ⋅ (|sig(𝒪)| + |sig(𝑞1)|).

 Proof. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑞𝑇 a rooted CQ. Further,
let 𝑞1(𝑥1), 𝑞2(𝑥2) … be a generalization sequence towards 𝑞𝑇(𝑥) under 𝒪 such that all
𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal and satisfiable under 𝒪. We start by showing that all 𝑞𝑖 are
rooted and have at most as many variables as 𝑞𝑇.

Claim 1. For all 𝑖 with 𝑖 ≥ 1, |var(𝑞𝑖)| ≤ |var(𝑞𝑇)| and 𝑞𝑖 is rooted.

 Proof of Claim 1. Since 𝑞𝑖 ⊆𝒪 𝑞𝑇, there is a homomorphism ℎ from 𝑞𝑇 to 𝒰𝑞𝑖,𝒪 with
ℎ(𝑥) = 𝑥𝑖. Lemma 4.20 then implies that var(𝑞𝑖) ⊆ img(ℎ). Therefore, |var(𝑞𝑖)| ≤
|var(𝑞𝑇)|. Additionally, rootedness of 𝑞𝑖 follows from rootedness of 𝑞𝑇.

We show next that the queries 𝑞𝑖 have a non-decreasing number of role atoms.
Since 𝑞𝑖−1 ⊆𝒪 𝑞𝑖, for all 𝑖 ≥ 2, we fix homomorphisms ℎ𝑖−1 from 𝑞𝑖 to 𝒰𝑞𝑖−1,𝒪 with
ℎ𝑖−1(𝑥𝑖) = 𝑥𝑖−1.

Claim 2. For all 𝑖 ≥ 2, var(𝑞𝑖−1) ⊆ img(ℎ𝑖−1) and |var(𝑞𝑖−1)| ≤ |var(𝑞𝑖)|.

 Proof of Claim 2. Since var(𝑞𝑖−1) ⊆ img(ℎ𝑖−1) implies |var(𝑞𝑖−1)| ≤ |var(𝑞𝑖)|, it suffices
to show the former. Assume to the contrary that there is an 𝑥 ∈ var(𝑞𝑖−1) with
𝑥 ∉ img(ℎ𝑖−1).

Let 𝑞′𝑖−1 = 𝑞−𝒪𝑥𝑖−1 Then, by Lemma 4.19, ℎ𝑖−1 is also a homomorphism from 𝑞𝑖 to
𝒰𝑞′𝑖−1 with ℎ𝑖−1(𝑥𝑖) = 𝑥𝑖−1. By Lemma 3.8, there is also a homomorphism ℎ from
𝒰𝑞𝑖,𝒪 to 𝒰𝑞′𝑖−1 with 𝑔(𝑥𝑖) = 𝑥𝑖−1. Composing ℎ with a homomorphism 𝑔 from 𝑞𝑇 to
𝒰𝑞𝑖,𝒪 with 𝑔(𝑥) = 𝑥𝑖 yields a homomorphism 𝑔′ from 𝑞𝑇 to 𝒰𝑞′𝑖−1,𝒪 with 𝑔′(𝑥) = 𝑥𝑖−1.
Therefore, 𝑞′𝑖−1 = 𝑞−𝒪𝑥𝑖−1 ⊆𝒪 𝑞𝑇, contradicting (𝑞𝑇, 𝒪)-minimality of 𝑞𝑖−1.

This completes the proof of Claim 2.

Now, we use the two claims to show that the generalization sequence must
be finite and that its length is bounded by |var(𝑞𝑇)|3 ⋅ (|sig(𝒪)| + |sig(𝑞1)|). Claim 2
implies that |var(𝑞𝑖−1)| ≤ |var(𝑞𝑖)| for all 𝑖 ≥ 2. By Claim 1, it suffices to show that
the length of any subsequence 𝑞𝑗, … , 𝑞𝑘 with |var(𝑞𝑗)| = ⋯ = |var(𝑞𝑘)| is bounded by
|var(𝑞𝑇)|2 ⋅ (|sig(𝒪)| + |sig(𝑞1)|).

84

4.4 Generalization Sequences of Queries

Consider any 𝑖 ∈ {𝑗, … , 𝑘 − 1}. By Claim 2, var(𝑞𝑖) ⊆ img(ℎ𝑖), and since |var(𝑞𝑖+1)| =
|var(𝑞𝑖)|, the homomorphism ℎ𝑖 is a bijection between var(𝑞𝑖+1) and var(𝑞𝑖). Addition
ally, it follows from ℎ𝑖 being a homomorphism that

1. for every concept name 𝐴 and variable 𝑥1 ∈ var(𝑞𝑖+1), 𝑥1 ∈ 𝐴𝒰𝑞𝑖+1,𝒪 implies that
ℎ𝑖(𝑥1) ∈ 𝐴𝒰𝑞𝑖,𝒪, and

2. for every role name 𝑟 and variables 𝑥1, 𝑥2 ∈ var(𝑞𝑖+1), (𝑥1, 𝑥2) ∈ 𝑟𝒰𝑞𝑖+1,𝒪 implies
that (ℎ𝑖(𝑥1), ℎ𝑖(𝑥2)) ∈ 𝐴𝒰𝑞𝑖,𝒪.

Since 𝑞𝑖+1 ⊈𝒪 𝑞𝑖, the function ℎ−𝑖 cannot be a homomorphism from 𝑞𝑖 to 𝒰𝑞𝑖+1,𝒪.
Therefore, one of the following cases must apply:

1. there is a concept atom 𝐴(𝑥1) ∈ 𝑞𝑖 such that ℎ−𝑖 (𝑥1) ∉ 𝐴𝒰𝑞𝑖+1,𝒪;

2. there is a role atom 𝑟(𝑥1, 𝑥2) ∈ 𝑞𝑖 such that (ℎ−𝑖 (𝑥1), ℎ−𝑖 (𝑥2)) ∉ 𝑟𝒰𝑞𝑖+1,𝒪.

Thus, going from 𝒰𝑞𝑖,𝒪 to 𝒰𝑞𝑖+1,𝒪, there must be a concept name 𝐴 such that the
number of variables in the interpretation of 𝐴 strictly decreases, or a role name 𝑟
such that the number of pairs of variables in the interpretation of 𝑟 strictly decreases.

Let 𝑛𝑟 and 𝑛𝐴 be the numbers of role names and concept names in sig(𝒪) ∪
sig(𝑞1), respectively. Since 𝑞1 ⊆𝒪 𝑞𝑗, all concept and role names with non-empty
interpretations in 𝒰𝑞𝑗,𝒪 must be in sig(𝒪) ∪ sig(𝑞1). Therefore, the number of times
variables occur in interpretations of concept names or role names in 𝒰𝑞𝑗,𝒪 is bounded
by

𝑛𝑟 ⋅ |var(𝑞𝑗)|2 + 𝑛𝐴 ⋅ |var(𝑞𝑗)|.

Since |var(𝑞𝑗)| ≤ |var(𝑞𝑇)| by Claim 1, the length of the sequence 𝑞𝑗, … , 𝑞𝑘 is thus
bounded by

𝑛𝑟 ⋅ |var(𝑞𝑗)|2 + 𝑛𝐴 ⋅ |var(𝑞𝑗)| ≤ (𝑛𝑟 + 𝑛𝐴) ⋅ |var(𝑞𝑗)|2 ≤ (|sig(𝒪)| + |sig(𝑞1)|) ⋅ |var(𝑞𝑇)|2.

Theorem 4.35 is restricted to rooted CQs. This is not an issue in this chapter, as all
ELIQs are rooted, but it is still an interesting question if this restriction is necessary.
The following example shows that the theorem fails already for Boolean CQs that
do not use any role names under ℰℒℐ ontologies.

Example 4.36. Let 𝑛 ≥ 1, let 𝐴𝑖, 𝐵𝑖 be concept names for 1 ≤ 𝑖 ≤ 𝑛 and 𝑟 a role name.
Let 𝒪 be an ℰℒℐ ontology that contains the following concept inclusions, for all 𝑖
with 1 ≤ 𝑖 ≤ 𝑛 and for all 𝑗 with 1 ≤ 𝑗 < 𝑖:

𝐵𝑖 ⊑ ∃𝑟.⊤
∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐵𝑖) ⊑ 𝐴𝑖 ∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐴𝑖) ⊑ 𝐵𝑖

∃𝑟−.𝐵𝑖 ⊓ 𝐵𝑗 ⊑ 𝐵𝑖 ∃𝑟−.𝐴𝑖 ⊓ 𝐵𝑗 ⊑ 𝐴𝑖

85

4 Learning with Membership Queries

Each subset of {𝐴𝑖, 𝐵𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} that contains exactly one of 𝐴𝑖, 𝐵𝑖 for each 𝑖 repre
sents a binary number between 0 and 2𝑛−1, starting at {𝐵1, … , 𝐵𝑛} for 0, {𝐴1, 𝐵2, … , 𝐵𝑛}
for 1, and so on. Consider the ABox 𝒜 = {𝐵1(𝑎), … , 𝐵𝑛(𝑎)}. In 𝒰𝒜,𝒪, there is an 𝑟-path
starting at 𝑎 of length 2𝑛 − 1, where the elements are labeled from 0 to 2𝑛 − 1. For
any given set 𝑀𝑖 that represents the number 𝑖, we construct the Boolean CQ

𝑞𝑖() ← �
𝐴∈𝑀𝑖

𝐴(𝑥).

Then, the concept inclusions in 𝒪 ensure that 𝑞𝑗 ⊆𝒪 𝑞𝑖 if and only if 𝑗 ≥ 𝑖. Therefore,
the sequence 𝑞0, 𝑞1, … , 𝑞2𝑛−1 is a generalization sequence towards 𝑞2𝑛−1 under 𝒪 of
length 2𝑛. Furthermore, all 𝑞𝑖 are (𝑞2𝑛−1, 𝒪)-minimal and ‖𝒪‖ + ‖𝑞2𝑛−1‖ is polynomial
in 𝑛.

Note that the ontology used in Example 4.36 is an ℰℒℐ ontology. We will see in
Chapter 5 that Theorem 4.35 can be generalized to queries that are not rooted, if we
restrict the ontology to be formulated in ℰℒ𝑟.

4.5 Obtaining an Initial Hypothesis

We now know that a learning algorithm can construct a generalization sequence
towards the target query 𝑞𝑇 under a DL-Liteℋℱ−

core ontology by using the frontier
construction and minimize𝒪, and that this is possible in polynomial time. What is
missing, is a way to construct from the input signature Σ and ontology 𝒪 an initial
query 𝑞1 of the generalization sequence The requirements we have for 𝑞1 are that it
must imply the target query 𝑞𝑇 with sig(𝑞𝑇) ⊆ Σ under the ontology 𝒪, and that it is
satisfiable under 𝒪. Additionally, it should be of size polynomial in ‖𝑞𝑇‖, ‖𝒪‖ and
|Σ| for the learning algorithm to run in polynomial time.

If we approach this directly and construct an ELIQ 𝑞1 that guarantees that 𝑞1 ⊆𝒪 𝑞𝑇
for all 𝑞𝑇 with sig(𝑞𝑇) ⊆ Σ, we then require the full tree ELIQ of a certain depth,
where every variable is labeled with all concept names, and every variable has
a successor for every role in Σ. Unfortunately, such a full tree ELIQ must be of
exponential size in ‖𝑞𝑇‖. Thus, we have to rely on membership queries to obtain a
suitable ELIQ.

As a first step, we construct, given a DL-Liteℋℱ−
core ontology 𝒪 and signature Σ,

directly a unary rooted CQ 𝑞0𝐻 that is satisfiable under 𝒪 and implies any target
query 𝑞𝑇 with sig(𝑞𝑇) ⊆ Σ. Then, as a second step, we will see how we can use
membership queries to generalize this 𝑞0𝐻 into an ELIQ 𝑞1 such that 𝑞1 still implies
the target query.

86

4.5 Obtaining an Initial Hypothesis

Obtaining a Suitable Initial CQ

The construction of 𝑞0𝐻 is simple if the ontology 𝒪 contains no role disjointness
constraints and no concept disjointness constraints. Simply set

𝑞0𝐻(𝑥0) ← �
𝐴∈Σ∩NC

𝐴(𝑥) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥, 𝑥).

If, however, 𝒪 contains role disjointness constraints, then the above construction
yields a query that is not satisfiable under 𝒪. In that case (but still without concept
disjointness constraints in 𝒪), we can still construct such a CQ, although it requires
a bit more thought.

Let 𝐑 = {𝑟1, … , 𝑟𝑚} be the set of all role names 𝑟 ∈ Σ ∩ NR such that the concepts
∃𝑟.⊤ and ∃𝑟−.⊤ are satisfiable under 𝒪. If, for example, 𝒪 contains 𝑟 ⊑ 𝑠 and
𝑟 ⊓ 𝑠 ⊑ ⊥, then ∃𝑟.⊤ is not satisfiable under 𝒪 and the role name 𝑟 is not included
in 𝐑.

To construct 𝑞0𝐻, we use variables 𝑥0, … , 𝑥2𝑚 and let 𝐾2𝑚+1 be the undirected 2𝑚 + 1-
clique graph that uses these variables as its vertices. It is known that for all odd
𝑛 ≥ 1, the 𝑛-clique 𝐾𝑛 has at least 𝑛−12 Hamilton cycles that are pairwise edge-
disjoint [ABS90]. We thus find in 𝐾2𝑚+1 Hamilton cycles 𝑃1, … , 𝑃𝑚 that are pairwise
edge-disjoint. By directing the cycles, we may view each 𝑃𝑖 as a set of directed edges
(𝑥𝑖, 𝑥𝑗). We then construct

𝑞0𝐻(𝑥0) ← �
𝐴∈Σ∩NC
0≤𝑖≤2𝑚

𝐴(𝑥𝑖) ∧ �
(𝑥𝑖,𝑥𝑗)∈𝑃1

𝑟1(𝑥𝑖, 𝑥𝑗) ∧ ⋯ ∧ �
(𝑥𝑖,𝑥𝑗)∈𝑃𝑚

𝑟𝑚(𝑥𝑖, 𝑥𝑗).

By construction, 𝑞0𝐻 has no multi-edges and thus satisfies all role disjointness con
straints in 𝒪. Moreover, every variable has exactly one 𝑟-successor and exactly
one 𝑟-predecessor for every role name 𝑟 ∈ 𝐑 and hence satisfies all functionality
assertions in 𝒪. Additionally, 𝑞0𝐻 implies every possible target ELIQ 𝑞𝑇, as 𝑞𝑇 may
only use role names from 𝐑.

Example 4.37. For 𝒪 = {𝑟 ⊓ 𝑠 ⊑ ⊥} and Σ = {𝑟, 𝑠}, the set 𝐑 is {𝑟, 𝑠}. The initial
hypothesis that results from the construction is displayed in Figure 4.10, where
the 5-clique is decomposed into two Hamilton cycles. Note how all role atoms are
disjoint and functional.

If 𝒪 contains at least one concept disjointness constraint 𝐴 ⊓ 𝐵 ⊑ ⊥, then the
above construction of 𝑞0𝐻 yields a query that is not satisfiable under 𝒪. Indeed, then
there is no single satisfiable CQ that implies every possible 𝑞𝑇. We can, however,
obtain a suitable 𝑞0𝐻 by using a single equivalence query. If 𝐴 ⊓ 𝐵 ⊑ ⊥ ∈ 𝒪, then
the ELIQ 𝑞(𝑥0) ← 𝐴(𝑥0) ∧ 𝐵(𝑥0) is not satisfiable under 𝒪 and for every example

87

4 Learning with Membership Queries

𝑞0𝐻
𝑠

𝑠

𝑠

𝑠

𝑠

𝑟

𝑟

𝑟

𝑟

𝑟

Figure 4.10: The query 𝑞0𝐻 for 𝐑 = {𝑟, 𝑠}. The 𝑠 Hamilton cycle is marked in blue, the
𝑟 Hamilton cycle is marked in purple.

(𝒜, 𝑎), 𝒜, 𝒪 ⊧̸ 𝑞(𝑎). Hence, when the learning algorithm uses 𝑞 in an equivalence
query, the teacher is forced to return a counterexample (𝒜, 𝑎) such that 𝒜, 𝒪 ⊧
𝑞𝑇(𝑎). This counterexample can then be viewed as a CQ 𝑞0𝐻, and it holds that
𝑞0𝐻 ⊆𝒪 𝑞𝑇 by Lemma 3.7. Note that although the size of 𝑞0𝐻 is then not bounded
polynomially by ‖𝒪‖, ‖𝑞𝑇‖ and |Σ|, this way to obtain 𝑞0𝐻 also results in a polynomial
time learning algorithm since the running time of learning algorithms may also
depend polynomially on the size of the largest counterexample received.

We later show that this single equivalence query is necessary in this case, meaning
that ELIQs are not polynomial time learnable under ontologies that contain concept
disjointness constraints without using a single equivalence query.

Extracting an ELIQ

With a way to obtain a unary rooted CQ 𝑞0𝐻 that implies 𝑞𝑇 and is satisfiable under
𝒪, it remains to show that we can extract from it an ELIQ with the same properties.
For this, we need to make 𝑞0𝐻 acyclic, that is, remove all cycles in 𝑞0𝐻. A cycle in a CQ
𝑞 is a sequence 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥1) of distinct role atoms in 𝑞 such that 𝑥1, … 𝑥𝑛
are distinct. Using the definition of acyclicity, it is easy to verify that a CQ is acyclic
(defined through the underlying graph of 𝒜𝑞) if and only if it contains no cycles.

For removing all cycles from 𝑞0𝐻 while maintaining 𝑞0𝐻 ⊆𝒪 𝑞𝑇, we define a new
subroutine called extractELIQ that we use as part of our learning algorithm. It takes
as input the ontology 𝒪 and a unary CQ 𝑞(𝑥0) that is satisfiable under 𝒪, and
satisfies 𝑞 ⊆𝒪 𝑞𝑇. It then computes an ELIQ 𝑞′, such that 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊆𝒪 𝑞𝑇 by
repeatedly doubling the length of cycles in 𝑞 and then using minimize𝒪 to attain
(𝑞𝑇, 𝒪)-minimality. A procedure similar to extractELIQ is used in [tCD22] to obtain
acyclic queries in the case without ontologies. Here, role inclusions need to be taken
into account.

88

4.5 Obtaining an Initial Hypothesis

𝑝1

𝑟

𝑠
𝑡

𝑟𝑟

𝑝2

𝑟𝑡

𝑟𝑟

𝑟𝑡

𝑟𝑟

𝑠 𝑠

𝑞𝑇

𝑠

𝑟

𝑟

𝑟

Figure 4.11: The CQ 𝑝1 contains the cycle 𝑟(𝑥0, 𝑥1), 𝑠(𝑥1, 𝑥2), 𝑡(𝑥2, 𝑥0) which is re
moved by Double cycle (𝑝2), since the cycle is not necessary for 𝑞𝑇.

The subroutine extractELIQ starts by setting 𝑝 = minimize𝒪(𝑞) and then returns the
result of exhaustively applying the following operations:

Double cycle. Choose a role atom 𝑟(𝑥, 𝑦) ∈ 𝑝 that is part of a cycle and such that there
is no 𝑠(𝑥, 𝑦) ∈ 𝑝 with 𝒪 ⊧ 𝑠 ⊑ 𝑟 and 𝑟 ≠ 𝑠. Then, add a disjoint copy 𝑝′ of 𝑝 to 𝑝
and let 𝑥′, 𝑦′ be the copies of 𝑥, 𝑦 in 𝑝′. Remove the atoms 𝑟(𝑥, 𝑦), 𝑟(𝑥′, 𝑦′) and
add the atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦). Apply minimize𝒪 to the result.

Drop double edge. Choose a role atom 𝑟(𝑥, 𝑦) ∈ 𝑝 such that there is a role atom
𝑠(𝑥, 𝑦) ∈ 𝑝 with 𝒪 ⊧ 𝑟 ≡ 𝑠 and 𝑠 ≠ 𝑟 and remove 𝑟(𝑥, 𝑦).

Example 4.38. Consider the CQs 𝑝1, 𝑝2, 𝑞𝑇 displayed in Figure 4.11 and 𝒪 = ∅. It
holds that 𝑝1 ⊆𝒪 𝑞𝑇, but 𝑝1 is not acyclic. Applying Double cycle to 𝑝1 first results
in the CQ 𝑝2 with 𝑝2 ⊆𝒪 𝑞𝑇. Then, minimize𝒪 is applied to 𝑝2, which in this case,
removes the remaining cycles.

It remains to show that extractELIQ always results in an ELIQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇, and
that it only applies a polynomial number of operations before terminating. For
this, we will view the intermediate steps between applications of Double cycle as
a sequence of queries 𝑝0, 𝑝1, … and show that they form a generalization sequence
towards 𝑞𝑇 under 𝒪. Since all 𝑝𝑖 are the result of applying minimize𝒪, they are all
(𝑞𝑇, 𝒪)-minimal, and we can apply Theorem 4.35 to show that extractELIQ terminates
after a polynomial number of steps. We show that 𝑝0, 𝑝1, … is a generalization
sequence by relating 𝑝𝑖 to 𝑝𝑖+1 using ℰℒℐ simulations.

Definition 4.39 (ℰℒℐ simulation). An ℰℒℐ simulation from interpretation ℐ1 to
interpretation ℐ2 is a relation 𝑆 ⊆ Δℐ1 × Δℐ2 such that for all (𝑑1, 𝑑2) ∈ 𝑆:

1. for all 𝐴 ∈ NC: if 𝑑1 ∈ 𝐴ℐ1, then 𝑑2 ∈ 𝐴ℐ2;

2. for all 𝑟 ∈ NR and 𝑅 ∈ {𝑟, 𝑟−}: if there is some 𝑑′1 ∈ Δℐ1 with (𝑑1, 𝑑′1) ∈ 𝑅ℐ1, then
there is 𝑑′2 ∈ Δℐ2 such that (𝑑′1, 𝑑′2) ∈ 𝑆 and (𝑑2, 𝑑′2) ∈ 𝑅ℐ2.

89

4 Learning with Membership Queries

If there is an ℰℒℐ simulation 𝑆 from an interpretation ℐ1 to an interpretation
ℐ2 with (𝑑1, 𝑑2) ∈ 𝑆, we write ℐ1, 𝑑1 ⪯ℰℒℐ ℐ2, 𝑑2. As usual, as we can view ABoxes
as finite interpretations, we also define this notation for ABoxes. The important
property that connects ℰℒℐ simulations to ELIQs is given in the following lemma,
the proof is standard and omitted.

Lemma 4.40. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology, 𝒜1, 𝒜2 ABoxes such that 𝒜1 and 𝒜2 are
satisfiable under 𝒪. If 𝒜1, 𝑎1 ⪯ℰℒℐ 𝒜2, 𝑎2, then for all ELIQs 𝑞, 𝒜1, 𝒪 ⊧ 𝑞(𝑎1) implies
𝒜2, 𝒪 ⊧ 𝑞(𝑎2).

Note that Lemma 4.40 does not hold for all CQs in place of just ELIQs. Consider
the ABoxes 𝒜1 = {𝑟(𝑎, 𝑎)} and 𝒜2 = {𝑟(𝑏1, 𝑏2), 𝑟(𝑏2, 𝑏1)}, the CQ 𝑞(𝑥) ← 𝑟(𝑥, 𝑥) and
𝒪 = ∅. Then 𝒜1, 𝒪 ⊧ 𝑞(𝑎) and 𝒜2, 𝒪 ⊧̸ 𝑞(𝑏1), but 𝒜1, 𝑎 ⪯ℰℒℐ 𝒜2, 𝑏1 as witnessed by
the ℰℒℐ simulation 𝑆 = {(𝑎, 𝑏1), (𝑎, 𝑏2)}.

Lemma 4.41. Let 𝒪 be a DL-Liteℋℱ−
core or DL-Liteℱhorn ontology, 𝑞𝑇 an ELIQ and 𝑞 a unary

CQ with 𝑞 ⊆𝒪 𝑞𝑇 that is satisfiable under 𝒪. Then, extractELIQ(𝒪, 𝑞) runs in time poly
nomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖ and returns an ELIQ 𝑞′ that is (𝑞𝑇, 𝒪)-minimal and satisfies
𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇.

 Proof. We first proof that the sequence 𝑝0, 𝑝1, … is a generalization sequence towards
𝑞𝑇 under 𝒪, and then apply Theorem 4.35 to show that this sequence must terminate
after a polynomial number of steps. Additionally, if this sequence terminates, then
both Double cycle and Drop double edge are no longer applicable, and the result must
be an ELIQ.

First, note that Double cycle preserves satisfiability under 𝒪. Since the input
𝑞 to extractELIQ is assumed to be satisfiable under 𝒪, all 𝑝𝑖 are satisfiable under
𝒪 as well, and we can use the characterization of query containment in terms
of homomorphisms to the universal model provided in Lemma 3.7. We do this
without further notice below.

We start by showing 𝑝𝑖 ⊆𝒪 𝑝𝑖+1 for all 𝑖 ≥ 0. Let 𝑝′𝑖 be the result of applying
Double cycle to 𝑝𝑖 before using minimize𝒪. Then 𝑝𝑖+1 = minimize𝒪(𝑝′𝑖). It suffices to
show 𝑝𝑖 ⊆𝒪 𝑝′𝑖 . To achieve this, in turn, it is enough to point out that we obtain a
homomorphism ℎ𝑖 from 𝑝′𝑖 to 𝑝𝑖 with ℎ𝑖(𝑥0) = 𝑥0 by setting ℎ𝑖(𝑥) = 𝑥 for all 𝑥 ∈ var(𝑝𝑖)
and ℎ𝑖(𝑥′) = 𝑥 for all variables 𝑥′ in the disjoint copy of 𝑝𝑖 that is added in Double
Cycle. We shall reuse ℎ𝑖 below and call it the natural homomorphism from 𝑝′𝑖 to 𝑝𝑖.

Next, we show that 𝑝𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 0 by induction on 𝑖. In the induction
start, 𝑝0 = minimize𝒪(𝑝), where 𝑝 is the input to extractELIQ. Since 𝑝 ⊆𝒪 𝑞𝑇, applying
Lemma 4.32 yields 𝑝0 ⊆𝒪 𝑞𝑇. Now assume that 𝑝𝑖 ⊆𝒪 𝑞𝑇 and thus 𝒜𝑝𝑖, 𝒪 ⊧ 𝑞𝑇(𝑥0).
Let again 𝑝′𝑖 be the result of applying Double cycle to 𝑝𝑖 before using minimize𝒪. Again
it suffices to show 𝑝′𝑖 ⊆𝒪 𝑞𝑇. Define the relation

𝑆 = {(ℎ𝑖(𝑥), 𝑥) ∣ 𝑥 ∈ var(𝑝′𝑖)}

90

4.5 Obtaining an Initial Hypothesis

where ℎ𝑖 is the natural homomorphism from 𝑝′𝑖 to 𝑝𝑖. By construction of 𝑝′𝑖 , 𝑆 is
an ℰℒℐ simulation from 𝒜𝑝𝑖 to 𝒜𝑝′𝑖 with (𝑥0, 𝑥0) ∈ 𝑆. Thus, 𝒜𝑝′𝑖 , 𝒪 ⊧ 𝑞𝑇(𝑥0) by
Lemma 4.40, and 𝑝′𝑖 ⊆𝒪 𝑞𝑇 follows as required.

It remains to show that 𝑝𝑖+1 ⊈𝒪 𝑝𝑖 for all 𝑖 ≥ 0. Similarly to what was done above,
it suffices to show that 𝑝′𝑖 ⊈𝒪 𝑝𝑖 where 𝑝′𝑖 is the result of applying Double cycle to 𝑝𝑖.
Assume to the contrary that 𝑝′𝑖 ⊆𝒪 𝑝𝑖 for some 𝑖. Then, there is a homomorphism
𝑔 from 𝑝𝑖 to 𝒰𝑝′𝑖 ,𝒪 with 𝑔(𝑥0) = 𝑥0. Composing 𝑔 with the extension ℎ+𝑖 of the
natural homomorphism ℎ𝑖 to a homomorphism from 𝒰𝑝′𝑖 ,𝒪 to 𝒰𝑝𝑖,𝒪, which exists
by Lemma 3.8 yields a homomorphism �𝑔 from 𝑝𝑖 to 𝒰𝑝𝑖,𝒪 with �𝑔(𝑥0) = 𝑥0.

Let 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1) be the cycle that was expanded in the construction of
𝑝′𝑖 and consider the set Γ of all sets of variables that form a cycle of length 𝑛 in 𝒰𝑝𝑖,𝒪.
For example, {𝑦1, … , 𝑦𝑛} ∈ Γ.

Let {𝑥1, … , 𝑥𝑛} be any element of Γ. We show that {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)} ∈ Γ. If for some
𝑥𝑖, �𝑔(𝑥𝑖) is a proper trace, then Lemma 4.21 implies that 𝑝𝑖 is not (𝑞𝑇, 𝒪)-minimal, a
contradiction. Since �𝑔 is a homomorphism, it thus suffices to show that �𝑔(𝑥1), … , �𝑔(𝑥𝑛)
are all pairwise different. Assume the contrary. Then there are 𝑥𝑗 and 𝑥𝑘 with 𝑥𝑗 ≠ 𝑥𝑘
and �𝑔(𝑥𝑗) = �𝑔(𝑥𝑘), implying that �𝑔 is not injective. This, in turn, implies that there
is an 𝑥 ∈ var(𝑝𝑖) with 𝑥 ∉ img(�𝑔). It then follows from Lemma 4.21 that 𝑝𝑖 is not
(𝑞𝑇, 𝒪)-minimal, a contradiction.

Therefore, we can define a function 𝑓∶ Γ → Γ by setting for all {𝑥1, … , 𝑥𝑛} ∈ Γ

𝑓({𝑥1, … , 𝑥𝑛}) = {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)}.

Assume that there are sets 𝛾, 𝛾′ ∈ Γ with 𝛾 ≠ 𝛾′ and 𝑓(𝛾) = 𝑓(𝛾′). Since 𝛾 ≠ 𝛾′

and |𝛾| = |𝛾′|, there must be a variable 𝑥 ∈ 𝛾 with 𝑥 ∉ 𝛾′. Since 𝑓(𝛾) = 𝑓(𝛾′), there
is a variable 𝑥′ ∈ 𝛾′ with �𝑔(𝑥) = �𝑔(𝑥′), and clearly 𝑥′ ≠ 𝑥. This again contradicts
(𝑞𝑇, 𝒪)-minimality of 𝑝𝑖 via Lemma 4.21. Thus, 𝑓 is a bijection from Γ to Γ.

Since Γ is finite, it follows that there must be a 𝑗 ≥ 1 such that 𝑓𝑗({𝑦1, … , 𝑦𝑛}) =
{𝑦1, … , 𝑦𝑛}. By definition of 𝑓 this implies that {�𝑔𝑗(𝑦1), … , �𝑔𝑗(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. Recall
that �𝑔 is the composition of the homomorphism 𝑔 from 𝑝𝑖 to 𝒰𝑝′𝑖 ,𝒪 and the homo
morphism ℎ+𝑖 from 𝒰𝑝′𝑖 ,𝒪 to 𝒰𝑝𝑖,𝒪. Since (𝑞𝑇, 𝒪)-minimality of 𝑝𝑖 implies that �𝑔 is
injective by Lemma 4.21, 𝑔 must also be injective. Thus, composing �𝑔𝑗−1 and 𝑔 yields
an injective homomorphism 𝑔′ that maps the cycle {𝑦1, … , 𝑦𝑛} in 𝑝𝑖 to some subset
of the expanded cycle {𝑦1, 𝑦′1, … , 𝑦𝑛, 𝑦′𝑛} in 𝒰𝑝′𝑖 ,𝒪. We distinguish cases.

First, consider the case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. By the construction
of 𝑝′𝑖 from 𝑝𝑖, the restriction of 𝒰𝑝′𝑖 ,𝒪 to {𝑦1, … , 𝑦𝑛} contains one less role than the
restriction of 𝒰𝑝𝑖,𝒪 to {𝑦1, … , 𝑦𝑛}, implying that 𝑔′ cannot be an injective homomor
phism, leading to a contradiction. The case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦′1, … , 𝑦′𝑛} is
analogous.

The remaining case is that {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} contains both variables of the form 𝑦𝑗
and 𝑦′𝑗 . Then, there must be two different atoms in the cycle 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1)

91

4 Learning with Membership Queries

Algorithm 4.1: Learning algorithm for ELIQs under DL-Liteℋℱ−
core ontologies

Input A signature Σ and a DL-Liteℋℱ−
core ontology 𝒪 in normal form

Output An ELIQ 𝑞𝐻 such that 𝑞𝐻 ≡𝒪 𝑞𝑇
𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪)
𝑞𝐻 ≔ extractELIQ(𝒪, 𝑞0𝐻)
while there is a 𝑞𝐹 ∈ 𝐹𝑞𝐻 with 𝑞𝐹 ⊆𝒪 𝑞𝑇 do
 𝑞𝐻 ≔ minimize𝒪(𝑞𝐹)
end while
return 𝑞𝐻

that are mapped by 𝑔′ to the role atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦) that were added by Double
cycle to connect the disjoint copy of 𝑝𝑖. However, since ℎ𝑖(𝑥′) = ℎ𝑖(𝑥) and ℎ𝑖(𝑦′) = ℎ𝑖(𝑦),
this implies that the composition of 𝑔′ and ℎ+𝑖 is a non-injective homomorphism
from 𝑝𝑖 to 𝒰𝑝𝑖,𝒪, again contradicting (𝑞𝑇, 𝒪)-minimality of 𝑝𝑖.

The purpose of Drop double edge is to deal with cycles that cannot be handled
by Double cycle due to the “ such that there is no 𝑠(𝑥, 𝑦) ∈ 𝑝 with 𝒪 ⊧ 𝑠 ⊑ 𝑟 and
𝑟 ≠ 𝑠” condition, which, in turn, is necessary for Drop double edge to produce a
generalization sequence. It follows directly from the definition of the operation that
it can be applied at most ‖𝑝‖ times.

Note that the number of applications of Double cycle does not depend on the
ontology language. However, the running time of extractELIQ depends on the
ontology language, as it applies minimize𝒪. Per Lemma 4.32, minimize𝒪 runs in
polynomial time if 𝒪 is an DL-Liteℋℱ−

core or DL-Liteℱhorn ontology, but not if 𝒪 is an
ℰℒℐ or ℰℒℐℋℱ⊥ ontology.

Therefore, we can use extractELIQ(𝒪, 𝑞0𝐻) in a learning algorithm to produce an
initial hypothesis ELIQ to start the generalization sequence that approaches 𝑞𝑇.

4.6 The Learning Algorithm for ELIQs

In Sections 4.3 to 4.5 we obtained the necessary pieces for a learning algorithm of
ELIQs under DL-Liteℋℱ−

core ontologies. The resulting algorithm is Algorithm 4.1. It
takes as input a signature Σ and an ontology in normal form, produces an initial CQ
𝑞0𝐻 according to Section 4.5, and then uses extractELIQ, minimize𝒪 and the frontier
construction to produce an ELIQ that is equivalent to 𝑞𝑇 under 𝒪.

In order to show that Algorithm 4.1 is indeed a polynomial time learning al
gorithm, we use the facts that extractELIQ and minimize𝒪 run in polynomial time

92

4.6 The Learning Algorithm for ELIQs

(Lemma 4.32 and Lemma 4.41), and show that the assignments to 𝑞𝐻 form a gener
alization sequence towards 𝑞𝑇 under 𝒪, which allows us then to apply Theorem 4.35.

Theorem 4.42. ELIQs are polynomial time learnable under DL-Liteℋℱ−
core ontologies using

only membership queries. If the ontology contains concept disjointness constraints, then
this requires one additional equivalence query.

 Proof. We show that Algorithm 4.1 is a polynomial time learning algorithm for
ELIQs under DL-Liteℋℱ−

core ontologies in normal form.
Let Σ be a signature and 𝒪 a DL-Liteℋℱ−

core ontology in normal form. Then an initial
CQ 𝑞0𝐻 satisfiable under 𝒪 and such that 𝑞0𝐻 ⊆𝒪 𝑞𝑇 can be obtained from Σ and 𝒪 in
polynomial time, as described in Section 4.5. Further, let 𝑞1, 𝑞2, … be the sequence of
queries that is assigned to 𝑞𝐻 during a run of Algorithm 4.1. We aim to show that
𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪.

First, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 1 by induction on 𝑖. Since 𝑞0𝐻 ⊆𝒪 𝑞𝑇,
Lemma 4.41 implies that 𝑞1 ⊆𝒪 𝑞𝑇. Now, assume that 𝑞𝑖 ⊆𝒪 𝑞𝑇 and that there
is a query 𝑞𝑖+1 in the sequence. Then there is a 𝑞′𝑖 ∈ 𝐹𝑞𝑖 such that 𝑞′𝑖 ⊆𝒪 𝑞𝑇 and
𝑞𝑖+1 = minimize𝒪(𝑞′𝑖). Lemma 4.32 then implies 𝑞𝑖+1 ⊆𝒪 𝑞𝑇.

Then, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 for all 𝑖 ≥ 1. Consider any 𝑖. Again,
there is a 𝑞′𝑖 ∈ 𝐹𝑞𝑖 with 𝑞𝑖+1 = minimize𝒪(𝑞′𝑖). By Definition 4.13, 𝑞𝑖 ⊆𝒪 𝑞′𝑖 and 𝑞′𝑖 ⊈𝒪 𝑞𝑖.
Lemma 4.32 then implies that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖.

Hence, 𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪. Since all 𝑞𝑖
are (𝑞𝑇, 𝒪)-minimal, Theorem 4.35 implies that the sequence has length at most
|var(𝑞𝑇)|3⋅(|sig(𝒪)|+|sig(𝑞1)|). Thus, the sequence has a last element 𝑞𝑛, that is returned
by Algorithm 4.1. The while loop condition implies that there is no 𝑞′𝑛 ∈ 𝐹𝑞𝑛 with
𝑞′𝑛 ⊆𝒪 𝑞𝑇. Therefore, 𝑞𝑛 ≡𝒪 𝑞𝑇 by Definition 4.13.

As minimize𝒪 runs in polynomial time by Lemma 4.32, extractELIQ runs in poly
nomial time by Lemma 4.41, and 𝐹𝑞𝐻 can be computed in polynomial time by
Theorem 4.23, and the number of loop iterations is bounded by a polynomial,
Algorithm 4.1 runs in polynomial time in ‖𝒪‖, |Σ| and ‖𝑞𝑇‖.

As mentioned in Section 4.5, the single equivalence query in the case of dis
jointness constraints is really necessary. The following theorem shows that we
cannot learn the simple class of conjunctions of atomic queries using only a polyno
mial number of membership queries under disjointness constraints. A disjointness
ontology is an ontology that contains only concept disjointness constraints.

Theorem 4.43. Conjunctions of atomic queries are not polynomial query learnable under
disjointness ontologies using only membership queries.

 Proof. We follow the same strategy as the proof of Theorem 4.5. For every 𝑛 ≥ 1, let

𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ ⊥ ∣ 1 ≤ 𝑖 ≤ 𝑛}

93

4 Learning with Membership Queries

and

𝑆𝑛 = {𝑞(𝑥) ← 𝛼1(𝑥) ∧ … ∧ 𝛼𝑛(𝑥) ∣ 𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛}.

Note that 𝑆𝑛 is a frontier of ⊥ under 𝒪𝑛, if only conjunctions of atomic queries
using the concept names 𝐴𝑖 and 𝐵𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 are considered for Condition 25.
Clearly, 𝑆𝑛 contains 2𝑛 queries.

Assume to the contrary of what is to be shown that conjunctions of atomic
queries are polynomial query learnable under disjointness ontologies using only
membership queries. Then there exists a learning algorithm and polynomial 𝑝
such that the number of membership queries needed to identify a target query
𝑞𝑇 is bounded by 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇), where 𝑛Σ is the size of the signature Σ, 𝑛𝒪 is the
size of the ontology and 𝑛𝑞𝑇 is the size of the target query. We choose 𝑛 such that
2𝑛 > 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)), where 𝑟 is a polynomial such that every query 𝑞 ∈ 𝑆𝑚 satisfies
‖𝑞‖ = 𝑟(𝑚).

Now, consider a membership query posed by the learning algorithm with the
data example (𝒜, 𝑎). The teacher responds as follows:

1. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for no 𝑞 ∈ 𝑆𝑛, then answer no;

2. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for a single 𝑞 ∈ 𝑆𝑛, then answer no and remove 𝑞 from 𝑆𝑛;

3. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for more than one 𝑞 ∈ 𝑆𝑛, then answer yes.

Note that the third response is consistent since 𝒜 must then contain 𝐴𝑖(𝑎) and 𝐵𝑖(𝑎)
for some 𝑖 and thus 𝒜 is not satisfiable under 𝒪𝑛. Moreover, the answers are always
correct with respect to the updated set 𝑆𝑛. Thus, the learner cannot distinguish the
remaining candidate queries by answers to queries posed so far.

It follows that the learning algorithm removes at most 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)) queries
from 𝑆𝑛. By the choice of 𝑛, at least two candidate concepts remain in 𝑆𝑛 after the
algorithm is finished. Thus, the learner cannot distinguish between them, and we
have derived a contradiction.

4.7 Discussion

In this chapter, we investigated the learnability of ELIQs under ontologies using
only membership queries. The results can be summarized as follows. ELIQs are

• not learnable under ontology languages that contain DL-Liteℱcore (Theorem 4.6);
5In fact, it can be shown similarly as in the proof of Theorem 4.28 that 𝑆𝑛 is contained in any frontier

of ⊥ under 𝒪𝑛. Hence, ⊥ does not have polynomially sized frontiers under disjointness ontologies.

94

4.7 Discussion

• not polynomial query learnable under ontology languages that can express
conjunctions such as DL-Litehorn or ℰℒ (Theorem 4.5);

• polynomial time learnable under DL-Liteℋℱ−
core ontologies, using at most one ad

ditional equivalence query (Theorem 4.42).

Recall that these results also apply to learning ℰℒℐ concepts using membership
queries.

The learning algorithm for ELIQs under DL-Liteℋℱ−
core ontologies is based on fron

tiers of ELIQs. The existence of frontiers of ELIQs under DL-Liteℋℱ−
core ontologies that

can be computed in polynomial time is an interesting result on its own, and may
have applications in other query engineering tasks. For showing that the learning
algorithm runs in polynomial time, we used the notion of generalization sequences,
and proved that generalization sequences of (𝑞𝑇, 𝒪)-minimal rooted queries are of
at most polynomial length, even under ℰℒℐℋℱ⊥ ontologies. This too might be
interesting for other query engineering tasks.

Next, we discuss some properties of Algorithm 4.1 and point to possible future
directions.

What happens when 𝑞𝑇 is not an ELIQ? One of the basic assumptions of the
learning algorithm is that 𝑞𝑇 is an ELIQ or rather that the membership queries are
answered according to some ELIQ. This cannot always be guaranteed in practical
scenarios. If we consider the scenario where 𝑞𝑇 is not an ELIQ but a rooted CQ, then
there are two different behaviors of Algorithm 4.1. Recall that rooted CQs are not
polynomial query learnable. If there is no ELIQ 𝑞 such that 𝑞 ⊆𝒪 𝑞𝑇 because 𝑞𝑇 con
tains directed cycles, then Algorithm 4.1 gets stuck in extractELIQ. This can easily be
detected, and the algorithm can abort. If there is such an ELIQ, then Algorithm 4.1
produces the most general ELIQ 𝑞 such that 𝑞 ⊆𝒪 𝑞𝑇. This result can be useful,
as it provides information about 𝑞𝑇. However, in the scenario where membership
queries are not answered consistently with some CQ, it is not guaranteed that Algo
rithm 4.1 produces any useful result. More research is necessary to develop learning
algorithms that can cope with inconsistently answered membership queries.

The ℰℒ subsumption lattice. As we can view ELQs as ℰℒ concepts, we can view
Algorithm 4.1 applied to an ELQ target query as a way to traverse the ℰℒ sub
sumption lattice by using upwards neighbors (under the empty ontology). Kriegel
observed that concepts of size 𝑛 have up to 𝑛-fold exponential distances in this
lattice and identified this as an obstacle to ℰℒ learning algorithms [Kri21]. Algo
rithm 4.1 avoids this obstacle by minimizing the current hypothesis using member
ship queries. Indeed, Theorem 4.35 fails if the (𝑞𝑇, 𝒪)-minimality requirement is

95

4 Learning with Membership Queries

dropped. Intuitively, we can view Algorithm 4.1 as working on the structure of ℰℒ
concepts of size at most ‖𝑞𝑇‖.

Concept membership queries. In some scenarios, it might make sense to restrict
membership queries further. For example, one might be interested in learning
ℰℒℐ concepts using membership queries that use concept examples and not data
examples. In this setting, the target is an ℰℒℐ concept 𝐶𝑇 and a membership query
is asked with an ℰℒℐ concept 𝐶 to which the teacher responds yes if 𝒪 ⊧ 𝐶 ⊑ 𝐶𝑇
and no otherwise. The basic principle of Algorithm 4.1 still works in this case, as
the frontier construction and minimize𝒪 produce only ELIQs that we can view as
ℰℒℐ concepts. However, extractELIQ needs to ask membership queries with cyclic
data examples to obtain an initial hypothesis, and we conjecture that this cannot be
avoided. Consider 𝒪 = ∅ and the set

𝑆𝑛 = {∃𝑟1. ⋯ ∃𝑟𝑛.⊤ ∣ 𝑟𝑖 ∈ {𝑟, 𝑠} for 1 ≤ 𝑖 ≤ 𝑛}.

A similar proof to the proof of Theorem 4.5 could show that an adversarial teacher
can answer every membership query with concept 𝐶 with no, and only needs to
remove ‖𝐶‖ concepts from 𝑆𝑛. Since there are 2𝑛 concepts in 𝑆𝑛, a learning algorithm
cannot identify every concept in 𝑆𝑛 using membership queries of polynomial size.

Fixed ontologies. The lower bounds in Theorem 4.5 and Theorem 4.43 rely on
ontologies and signatures that are chosen based on the learning algorithm. Since
in practice ontologies are relatively small and seldom change, it may make sense
to consider a modified version of polynomial time learning in which the ontology
is fixed and the running time of a learning algorithm need not be polynomial in
the size of the ontology. As Theorem 4.5 and Theorem 4.43 do not apply in this
modified setting, determining the learnability of ELIQs in that setting is a possible
direction to extend the work of this chapter.

Known size of 𝑞𝑇. The lower bound in Theorem 4.6 uses a fixed ontology, but the
structure of the used queries is simple. If the size of the target query were known,
a learning algorithm could quickly determine it. A possible future direction is to
consider learnability of ELIQs under DL-Liteℱcore ontologies, where the size of the
target query is known to the learning algorithm. We conjecture that the proof of
Theorem 4.6 can be modified for this setting by using a binary-tree-like structure to
show that polynomial query learnability remains impossible in this case.

Conjunction-free ℰℒ ontologies. A different possible extension is to consider
restrictions of the DL ℰℒ that cannot use conjunctions, as this avoids the lower bound

96

4.7 Discussion

of Theorem 4.28. It is an interesting question whether ELIQs have frontiers under
these ontologies, and whether this enables polynomial time learning. However, it
is questionable if such an ℰℒ fragment is found in practice. Note that it does not
make sense to restrict ℰℒℐ to be conjunction-free, as a conjunction 𝐴1 ⊓ 𝐴2 ⊑ 𝐵 can
be expressed as

𝐴1 ⊑ ∃𝑟𝐴1.⊤, ∃𝑟−𝐴1
.𝐴2 ⊑ 𝐴2, ∃𝑟−𝐴1

.𝐴2 ⊑ 𝐵,

without the use of explicit conjunction.

𝑐-acyclic queries. Ten Cate and Dalmau show that frontiers of a larger class of
CQs, namely 𝑐-acyclic CQs, can be constructed in polynomial time under the empty
ontology. The frontiers themselves consist of CQs that are not 𝑐-acyclic, but can be
used as part of a learning algorithm by applying a procedure like extractELIQ. We
conjecture that this result can be extended to the case with DL-Liteℋℱ−

core ontologies,
generalizing Theorem 4.23. If frontiers of 𝑐-acyclic CQs under DL-Liteℋℱ−

core ontologies
can be computed in polynomial time, this could be the basis for polynomial time
learnability of 𝑐-acyclic CQs under DL-Liteℋℱ−

core ontologies using only membership
queries, which also includes queries with multiple answer variables.

In the next chapter, we consider learning algorithms that use both membership
queries and equivalence queries.

97

Chapter 5

Learning with Membership and
Equivalence Queries

In Chapter 4, we have observed that learning with only membership queries has
its limits. Under many extensions of DL-Liteℋℱ−

core that contain ℰℒ or DL-Litehorn,
every correct learning algorithm needs to ask at least an exponential number of
membership queries to identify a target query in the worst case. In this chapter, we
consider more powerful learning algorithms that are in addition to membership
queries able to ask equivalence queries. We show that equivalence queries allow
polynomial time learning of queries under ontologies in cases where membership
queries alone do not suffice.

Recall that a learning algorithm for a query class 𝒬 that attempts to identify a
target query 𝑞𝑇 ∈ 𝒬 under an ontology 𝒪 asks an equivalence query by handing
a hypothesis query 𝑞𝐻 ∈ 𝒬 to the teacher. The teacher responds with yes if 𝑞𝐻 is
equivalent to 𝑞𝑇 under 𝒪 and otherwise returns a counterexample, that is a data
example (𝒜, 𝑎) such that 𝒜, 𝒪 ⊧ 𝑞𝐻(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝑇(𝑎), or the other way around.
As soon as the learner receives a yes as an answer to an equivalence query, it can
terminate as it has identified the target query.

Example 5.1. Consider the ontology 𝒪 = {𝐴 ⊑ 𝐵} and the target query 𝑞𝑇(𝑥0) ←
𝑟(𝑥0, 𝑥1) ∧ 𝐵(𝑥1). If the learning algorithm asks an equivalence query with the
hypothesis 𝑞𝐻(𝑥0) ← 𝐵(𝑥0), then the teacher could respond with the counterex
ample (𝒜1, 𝑎) with 𝒜1 = {𝐴(𝑎)} since 𝒜1, 𝒪 ⊧ 𝑞𝐻(𝑎) and 𝒜1, 𝒪 ⊧̸ 𝑞𝑇(𝑎), or with
the counterexample (𝒜2, 𝑎) with 𝒜2 = {𝑟(𝑎, 𝑏), 𝑟(𝑏, 𝑏), 𝐴(𝑏)} since 𝒜2, 𝒪 ⊧ 𝑞𝑇(𝑎) and
𝒜2, 𝒪 ⊧̸ 𝑞𝐻(𝑎).

Equivalence queries allow learning algorithms to circumvent many of the obsta
cles identified in Chapter 4.

Example 5.2. Consider, for some 𝑛 ≥ 1, the set

𝑆𝑛 = {𝑞(𝑥) ← 𝛼1(𝑥) ∧ … ∧ 𝛼𝑛(𝑥) ∣ 𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛},

and the ontology

𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1 ⊓ 𝐵1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊓ 𝐵′
𝑛 ∣ 1 ≤ 𝑖 ≤ 𝑛}.

99

5 Learning with Membership and Equivalence Queries

from the proof of Theorem 4.5. We have shown that every learning algorithm
requires in the worst case 2𝑛 − 1 membership queries to identify a target query
from the set 𝑆𝑛. However, a single equivalence query with the hypothesis 𝑞𝐻(𝑥0) ←
𝐴1(𝑥0) ∧ 𝐵1(𝑥0), forces the teacher to return a counterexample (𝒜, 𝑎) such that
𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) for all 𝑞 ∈ 𝑆𝑛 with 𝑞 ≠ 𝑞𝑇. Hence, a target query
𝑞𝑇 ∈ 𝑆𝑛 can be identified with a single equivalence query.

In this chapter, we consider polynomial learnability of queries under ℰℒ𝑟, ℰℒℐ,
and DL-Liteℱ−horn ontologies, all of which extend DL-Litecore with conjunctions and
hence make polynomial time learning of queries with only membership queries
impossible.

To show learnability with both membership and equivalence queries, we use
learning algorithms that follow a similar structure as the ones in Chapter 4. Be
ginning at an initial hypothesis, they produce a sequence of queries that are more
specific than the target query 𝑞𝑇 and approach 𝑞𝑇 step-by-step. The main differ
ence lies in how this sequence is produced, as frontiers of polynomial size are not
available under the ontology languages we consider in this chapter. Instead, the
learning algorithms use the counterexamples provided by equivalence queries to
update hypotheses.

Structure of This Chapter

We begin in Section 5.1 by discussing how counterexamples can be used in learning
algorithms. While it is relatively easy to use counterexamples to update a hypoth
esis in learning algorithms under the empty ontology, ontologies complicate the
situation. This is because least general generalizations do not always exist under
ontologies.

Then, in Section 5.2 we turn to learning under DL-Liteℱ−horn ontologies that in
contrast to DL-Liteℱ−core ontologies allow the use of conjunctions in concept inclusions.
We show that ELIQs are polynomial time learnable under DL-Liteℱ−horn ontologies
using both membership queries and equivalence queries. For this, we introduce
guided generalizations and combine them with results from Chapter 4 concerning
minimization and generalization sequences.

In Section 5.3, we consider learning under ℰℒ𝑟, which extends DL-Litecore with
conjunction and qualified existential restrictions, but restricts the use of inverse
roles. We show that ELQs are polynomial time learnable under ℰℒ𝑟 ontologies using
membership queries and equivalence queries, and extend this result to so-called
symmetry-free ELIQs and chordal symmetry-free CQs of fixed arity. For this, we need
to generalize our results regarding minimization and generalization sequences to
CQs that are not rooted and have multiple answer variables, which brings some
technical challenges.

100

5.1 Updating Hypotheses with Counterexamples

Algorithm 5.1: Learning algorithm for CQs under the empty ontology [tCDK13]

Input A signature Σ
Output A 𝑘-ary CQ 𝑞𝐻 such that 𝑞𝐻 ≡∅ 𝑞𝑇
𝑞𝐻 ≔ initial-CQ(Σ, ∅)
while the equivalence query “𝑞𝐻 ≡∅ 𝑞𝑇?” returns a counterexample (𝒜, 𝑎) do
 𝑞𝐻(𝑥 ⊗ 𝑎) ≔ minimize∅(𝑞𝐻 × 𝒜)
end while
return 𝑞𝐻

We lift the restriction to queries of fixed arity in Section 5.4 by allowing learning
algorithms to make CQ-equivalence queries, that is, equivalence queries where the
hypothesis need not be a chordal symmetry-free CQ itself, but can be any CQ.

In Section 5.5, we look at ℰℒℐ ontologies, which extend both ℰℒ𝑟 and DL-Litehorn
by permitting qualified existential restrictions and unrestricted inverse roles. We
show that already the class of ELQs is not polynomial query learnable under ℰℒℐ
ontologies using membership queries and equivalence queries.

We briefly look at the learnability of query classes with disjunction and review
related results in Section 5.6.

Finally, we conclude in Section 5.7 with a discussion about these results and
possible future directions.

Related Publications

Sections 5.1 and 5.2 are based on [FJL22a]. Sections 5.3 to 5.5 are based on [FJL21a],
but resolve an issue in the definition of symmetry-free CQ.

5.1 Updating Hypotheses with Counterexamples

The main question regarding the use of equivalence queries in learning algorithms
is how counterexamples can be used to update the current hypothesis to be closer
to the target query. One possible way for this is shown in Algorithm 5.1, which
is a learning algorithm for CQs under the empty ontology. It is a special case
of the learning algorithm for GAV schema mappings by ten Cate, Dalmau, and
Kolaitis [tCDK13]. Like Algorithm 4.1 from Chapter 4, this algorithm starts with
an initial query 𝑞0𝐻 that implies 𝑞𝑇 and then generalizes it step-by-step until 𝑞𝐻 is
equivalent to 𝑞𝑇. Since CQs in general do not possess frontiers of polynomial size,
Algorithm 5.1 employs an equivalence query to obtain a counterexample from the
teacher, with which it then updates 𝑞𝐻.

101

5 Learning with Membership and Equivalence Queries

As the algorithm maintains 𝑞𝐻 ⊆∅ 𝑞𝑇 at all times, there never exists a counterex
ample (𝒜, 𝑎) such that 𝒜, ∅ ⊧̸ 𝑞𝑇(𝑎) and 𝒜, ∅ ⊧ 𝑞𝐻(𝑎). Instead, the teacher is always
forced to return a counterexample (𝒜, 𝑎) such that 𝒜, ∅ ⊧ 𝑞𝑇(𝑎) and 𝒜, ∅ ⊧̸ 𝑞𝐻(𝑎).
In each iteration of its loop, Algorithm 5.1 uses this counterexample to construct
the direct product 𝑞𝐻 × (𝒜, 𝑎). To understand why this constitutes a suitable up
date of the hypothesis, it is best to view (𝒜, 𝑎) as a CQ 𝑞𝒜(𝑎), and to consider the
properties of products stated in Lemma 3.3 together with the characterization of
query implication in Lemma 3.7.

The properties of the counterexample (𝒜, 𝑎) tell us that 𝑞𝒜 ⊆∅ 𝑞𝑇 and 𝑞𝒜 ⊈∅ 𝑞𝐻.
It follows, if we view the product 𝑞𝐻 × 𝑞𝒜 as a query with answer variables 𝑥 ⊗ 𝑎,
that 𝑞𝐻 × 𝑞𝒜 ⊆∅ 𝑞𝑇 and 𝑞𝐻 ⊆∅ 𝑞𝐻 × 𝑞𝒜. Additionally, it must be that 𝑞𝐻 × 𝑞𝒜 ⊈∅ 𝑞𝐻
since 𝑞𝒜 ⊆∅ 𝑞𝐻 × 𝑞𝒜. Hence, 𝑞𝐻 × 𝑞𝒜 is a generalization of 𝑞𝐻, and all assignments
to 𝑞𝐻 during a run of Algorithm 5.1 form a generalization sequence towards 𝑞𝑇
under ∅. As in Algorithm 4.1, the subroutine minimize∅ assures (𝑞𝑇, ∅)-minimality
of the queries in the sequence, which bounds the number of loop iterations. We
later show that such a bound also applies to CQs that are not rooted.

In the absence of an ontology, the initial CQ 𝑞0𝐻 can easily be obtained. Given the
signature Σ (and the required arity), the algorithm constructs

𝑞0𝐻(𝑥, … , 𝑥) ← �
𝐴∈Σ∩NC

𝐴(𝑥) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥, 𝑥).

By construction of 𝑞0𝐻, 𝑞0𝐻 ⊆∅ 𝑞 for all CQs 𝑞. Combining these arguments, one can
show that Algorithm 5.1 learns CQs in polynomial time.

Proposition 5.3 ([tCDK13]). Fix an arity 𝑘 ≥ 0. The class of all 𝑘-ary CQs is polynomial
time learnable under the empty ontology using membership queries and equivalence queries.

When we attempt to use Algorithm 5.1 for learning queries under non-empty
ontologies, we run into two problems. The first problem is that if we learn ELIQs or
ELQs, that the hypotheses used in equivalence queries must also be ELIQs or ELQs
by definition of exact learning. This is not guaranteed by Algorithm 5.1, which uses
CQs as hypotheses. Even when both 𝑞𝐻 and 𝑞𝒜 are ELIQs, their product need not
be an ELIQ.

Example 5.4. Consider the ELIQs 𝑞 and 𝑝 in Figure 5.1. Their product 𝑞 × 𝑝 is not
acyclic. This means that even if a counterexample is acyclic and hence corresponds
to an ELIQ, the product 𝑞𝐻 × 𝑞𝒜 need not be an ELIQ.

Fortunately, this problem can easily be addressed by using a subroutine like
extractELIQ defined in Section 4.5 to obtain a suitable ELIQ from 𝑞𝐻 × 𝑞𝒜 using
membership queries. The second problem concerns the effects of ontologies. If the
ontology 𝒪 is not empty, then it is not guaranteed that 𝑞𝐻 × 𝑞𝒜 ⊆𝒪 𝑞𝑇.

102

5.1 Updating Hypotheses with Counterexamples

𝑞

𝑥1𝐴1, 𝐴2

𝑥2𝐴3 𝑥3 𝐴4
𝑟

𝑟

𝑝

𝑦1𝐴1

𝑦2𝐴3, 𝐴4

𝑦3𝐴2

𝑟

𝑟

𝑞 × 𝑝

(𝑥1, 𝑦1)𝐴1

(𝑥2, 𝑦2)𝐴3

(𝑥1, 𝑦3)𝐴2

(𝑥3, 𝑦2) 𝐴4
𝑟

𝑟
𝑟

𝑟

Figure 5.1: The ELIQs 𝑞 and 𝑝, as well as their direct product 𝑞 × 𝑝.

Example 5.5. Consider the ontology 𝒪 = {𝐴1 ⊑ 𝐵, 𝐴2 ⊑ 𝐵} as well as the queries
𝑞𝐻(𝑥0) ← 𝐴1(𝑥0), 𝑞𝒜(𝑥0) ← 𝐴2(𝑥0), and 𝑞𝑇(𝑥0) ← 𝐵(𝑥0). Then, 𝑞𝐻 ⊆𝒪 𝑞𝑇 and 𝑞𝒜 ⊆𝒪 𝑞𝑇
but 𝑞𝐻 × 𝑞𝒜 does not contain any atoms and therefore 𝑞𝐻 × 𝑞𝒜 ⊈𝒪 𝑞𝑇.

Hence, using the direct product to update hypotheses under ontologies does not
result in a generalization sequence. We need an alternative way to update a hypoth
esis with a counterexample that takes the ontology into account. One approach to
formalize this is to view the product 𝑞𝐻 × 𝑞𝒜 as a least general generalization of both
𝑞𝐻 and 𝑞𝒜, and to consider this notion under ontologies.

Definition 5.6 (Least general generalization). Let 𝒬 be a query class, 𝒪 an ontology
and 𝑝, 𝑞 CQs of matching arity. A CQ �𝑞 is a 𝒬 least general generalization (𝒬-LGG) of
𝑝 and 𝑞 under 𝒪 if

1. 𝑞 ⊆𝒪 �𝑞;

2. 𝑝 ⊆𝒪 �𝑞;

3. �𝑞 ⊆𝒪 𝑞′, for every 𝑞′ ∈ 𝒬 with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′.

Note the similarity of Definition 5.6 to least common subsumers of concepts, if 𝒬 is
a class of queries that corresponds to DL concepts, like the class of all ELQs. The
existence and computation of LCSs of ELQs under ontologies is well investigated,
see for example [BST07; TZ13], and [JLW20]. The difference between Definition 5.6
and the LCS of two concepts is the requirement of the LCS to be from the same
query class 𝒬. The LCS of two ℰℒ concepts must be an ℰℒ concept, but this is not
the case for the ELQ-LGG. This means that LGGs may exist in situations where
LCSs do not.

Also note that if 𝒪 = ∅, then a way to obtain a CQ least general generalization of
two CQs is computing their direct product, as expected. If there is a way to compute
CQ-LGGs under non-empty ontologies in polynomial time, then we could plug
this into Algorithm 5.1 to obtain a learning algorithm for CQs under ontologies.
However, as we see next, often it is not clear how such LGGs can be obtained.

103

5 Learning with Membership and Equivalence Queries

𝑝

𝐴
𝑟 𝑟

𝑠 𝑠

𝑞

𝐴
𝑟

𝒰𝑞,𝒪 × 𝒰𝑝,𝒪

𝐴

⋮ ⋮

𝑟 𝑟

𝑠 𝑠𝑟 𝑟

𝑠 𝑠𝑟 𝑟

𝑞3,3

𝐴
𝑟 𝑟

𝑟 𝑟

𝑠 𝑠

Figure 5.2: The queries 𝑝 and 𝑞 from Example 5.8 as well as the product of their
universal models and the query 𝑞3,3.

Let 𝒪 be an ontology and 𝑞(𝑥1), 𝑝(𝑥2), 𝑞′(𝑥0) CQs that are satisfiable under 𝒪
Recall that, by Lemma 3.5 and Lemma 3.7, 𝑞 ⊆𝒪 𝑞′ if and only if 𝑞′(𝑥0) → 𝒰𝑞,𝒪, 𝑥1.
It follows then from Lemma 3.3 that 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′ if and only if 𝑞′(𝑥0) →
𝒰𝑞,𝒪 × 𝒰𝑝,𝒪, 𝑥1 ⊗ 𝑥2. A natural choice for a least general generalization of 𝑞 and 𝑝
under 𝒪 would therefore be 𝒰𝑞,𝒪×𝒰𝑝,𝒪 viewed as a query. Unfortunately, universal
models are infinite in many cases, and therefore we cannot represent 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪
as a finite CQ, let alone as a CQ of polynomial size.

Example 5.7. Consider the ℰℒ𝑟 ontology

𝒪 = {𝐴 ≡ ∃𝑟.𝐴, 𝐴 ≡ ∃𝑠.𝐴, 𝐵 ≡ ∃𝑟.𝐵, 𝐵 ≡ ∃𝑠.𝐵}

and the CQs 𝑞(𝑥) ← 𝐴(𝑥) and 𝑝(𝑥) ← 𝐵(𝑥). The universal models 𝒰𝑞,𝒪 and 𝒰𝑝,𝒪 are
both infinite binary trees, the former labeled with 𝐴, the latter with 𝐵. Their direct
product 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 is an infinite tree that is not labeled with any concept name

Now suppose that �̂� is a finite ELIQ-LGG of 𝑞 and 𝑝 under 𝒪. As 𝑞 ⊆𝒪 �̂� and 𝑝 ⊆𝒪 �̂�,
�̂� can only use the role names 𝑟 and 𝑠. Consider all ELIQs 𝑞′ that are 𝑟 − 𝑠-paths. It
holds that 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′, and therefore it must be the case that �̂� ⊆𝒪 𝑞′. Since
this holds for an infinite number of 𝑟 − 𝑠-paths and �̂� is finite, it follows that �̂� must
contain cycles, contradicting that 𝑞 ⊆𝒪 �̂�.

Hence, no finite ELIQ-LGG of 𝑞 and 𝑝 under 𝒪 exists, and therefore also no finite
CQ-LGG.

Even if we know the size of the target query and are only interested in LGGs for
queries of at most this size, then Example 5.7 suggests that any suitable LGG must
be of exponential size, as there are an exponential number of different 𝑟 − 𝑠-paths
that need to be considered. Similar issues can also occur if we avoid qualified
existential restrictions, and consider only DL-Litecore ontologies.

104

5.1 Updating Hypotheses with Counterexamples

Example 5.8. Let 𝒪 = {∃𝑟−.⊤ ⊑ ∃𝑟.⊤, ∃𝑟−.⊤ ⊑ ∃𝑠.⊤} and consider the unary CQs

𝑝(𝑥) ← 𝑟(𝑥, 𝑥) ∧ 𝑠(𝑥, 𝑦) ∧ 𝑠(𝑧, 𝑦) ∧ 𝑟(𝑧, 𝑧) ∧ 𝐴(𝑧) and 𝑞(𝑥) ← 𝐴(𝑥) ∧ 𝑟(𝑥, 𝑦).

We argue that no finite ELIQ-LGG of 𝑝 and 𝑞 under 𝒪 exists. Assume that there is a
CQ �𝑞(𝑥) that is an ELIQ-LGG of 𝑝 and 𝑞, and consider for all 𝑛, 𝑚 ≥ 1, the ELIQs

𝑞𝑛,𝑚(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑠(𝑥𝑛, 𝑧) ∧
𝐴(𝑦1) ∧ 𝑟(𝑦1, 𝑦2) ∧ ⋯ ∧ 𝑟(𝑦𝑚−1, 𝑦𝑚) ∧ 𝑠(𝑦𝑚, 𝑧).

The queries 𝑝, 𝑞 and 𝑞3,3 are depicted in Figure 5.2. Analyzing 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪, it can be
verified that 𝑝 ⊆𝒪 𝑞𝑛,𝑚 and 𝑞 ⊆𝒪 𝑞𝑛,𝑚 if and only if 𝑛 = 𝑚, thus �𝑞 ⊆𝒪 𝑞𝑛,𝑚 if and only
if 𝑛 = 𝑚. For all 𝑖 ≥ 1, let ℎ𝑖 be a homomorphism from 𝑞𝑖,𝑖 to 𝒰�𝑞,𝒪 that witnesses
this. We distinguish cases.

• If there is an 𝑖 ≥ 1, such that ℎ𝑖 maps two variables 𝑥𝑘, 𝑥𝑘′ ∈ var(𝑞𝑖,𝑖) with 𝑘 ≠ 𝑘′
to the same element of 𝒰�𝑞,𝒪, then a pumping argument shows that �𝑞 ⊆𝒪 𝑞𝑗,𝑖
for some 𝑗 > 𝑖, a contradiction.

• Otherwise, by finiteness of �𝑞, there must be an 𝑖 ≥ 1 such that ℎ𝑖(𝑧) is an
element of 𝒰�𝑞,𝒪 that was generated by an existential quantifier, a proper trace.
Since the concept name 𝐴 cannot occur on proper traces in 𝒰�𝑞,𝒪, and 𝑞𝑖,𝑖 is
connected, the ℎ𝑖-homomorphic image of 𝑞𝑖,𝑖 must leave the proper traces of
𝒰�𝑞,𝒪 again. Since the proper traces are tree-shaped, the image must enter
and leave the proper traces at the same element of 𝒰�𝑞,𝒪. Therefore, there are
𝑛′, 𝑚′ ≥ 0 such that �𝑞 ⊆𝒪 𝑞′ where

𝑞′(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛′−1, 𝑧) ∧
𝐴(𝑦1) ∧ 𝑟(𝑦1, 𝑦2) ∧ ⋯ ∧ 𝑟(𝑦𝑚′−1, 𝑧).

But 𝑝 ⊈𝒪 𝑞′, contradicting that �𝑞 is an ELIQ-LGG of 𝑞 and 𝑝 under 𝒪.

Example 5.7 and Example 5.8 leave little hope that we can use LGGs to update a
ELIQ or CQ hypothesis with a counterexample under ontologies in polynomial time.
In the following Section 5.2 and Section 5.3, we circumvent this in two different
ways. In Section 5.2 we notice that we still obtain a generalization sequence towards
𝑞𝑇 if we relax Point 3 of the definition of LGGs. For this, we define the notion of
guided generalization and show that guided ELIQ-generalizations of ELIQs under
DL-Liteℱ−horn ontologies exist and can be constructed in polynomial time. This enables
polynomial time learning of ELIQs under DL-Liteℱ−horn ontologies. In Section 5.3 we
instead focus on combinations of query class and ontology languages, for which
we can replace the infinite 𝒰𝑞𝐻,𝒪 × 𝒰𝑞𝒜,𝒪 with a product of polynomially sized

105

5 Learning with Membership and Equivalence Queries

compact models. The motivating example are ELQs under ℰℒ𝑟 ontologies, for which
the existence of such compact models is well known. We extend this to classes of
ELIQs and CQs that exclude the problematic ELIQs used in Example 5.8. We show
that these query classes are polynomial time learnable under ℰℒ𝑟 ontologies.

5.2 Learning ELIQs under DL-Litehorn Ontologies

In Section 5.1 we have observed that finite ELIQ-LGGs of two CQs under DL-Litecore
ontologies do not always exist. This means that in a learning algorithm for ELIQs
we cannot use a product-like LGG construction to update an ELIQ hypothesis 𝑞𝐻
with an equivalence query counterexample 𝑞𝒜. However, if we recall the proof
of Theorem 4.42, where we show that the hypotheses of Algorithm 4.1 form a
generalization sequence towards the target query 𝑞𝑇, we see that for the updated
hypothesis 𝑞′𝐻 with 𝑞𝐻 ⊆𝒪 𝑞′𝐻 ⊆𝒪 𝑞𝑇, it is actually not necessary to demand that
𝑞𝒜 ⊆𝒪 𝑞′𝐻, it suffices to ensure that 𝑞′𝐻 ⊈𝒪 𝑞𝐻. We capture this relaxed requirement
in the following definition.

Definition 5.9 (Guided generalization). Let 𝒪 be an ontology and 𝒬 a query class,
and 𝑝, 𝑞 be CQs with 𝑝 ⊈𝒪 𝑞. A CQ �𝑞 is a 𝑝-guided 𝒬-generalization of 𝑞 under 𝒪 if

1. 𝑞 ⊆𝒪 �𝑞;

2. �𝑞 ⊈𝒪 𝑞;

3. �𝑞 ⊆𝒪 𝑞′, for every 𝑞′ ∈ 𝒬 with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′.

Note that assuming 𝑝 ⊈𝒪 𝑞, every least general generalization of 𝑝 and 𝑞 under 𝒪
is also a 𝑝-guided 𝒬-generalization of 𝑞 under 𝒪. The opposite is not true. Guided
generalizations exist even when LGGs do not.

Example 5.10. Consider again the queries 𝑝 and 𝑞 and the ontology 𝒪 from Exam
ple 5.8 that are depicted in Figure 5.2, and recall that there is no CQ-LGG of 𝑝 and
𝑞 under 𝒪. In contrast, the ELIQ

�𝑞(𝑥) ← 𝑟(𝑥, 𝑦) ∧ 𝑟(𝑥′, 𝑦) ∧ 𝐴(𝑥′)

is a 𝑝-guided CQ-generalization of 𝑞 under 𝒪. This query also demonstrates that
guided generalizations are an asymmetric notion, as �𝑞 is not a 𝑞-guided CQ-gener
alization of 𝑝 under 𝒪, since it does not satisfy Condition 1 of Definition 5.9.

Another consequence of this relaxation is that guided generalizations are not
unique, while LGGs are.

106

5.2 Learning ELIQs under DL-Litehorn Ontologies

Example 5.11. Consider 𝑞(𝑥) ← 𝐴(𝑥) ∧ 𝐵(𝑥) ∧ 𝐶(𝑥) and 𝑝(𝑥) ← 𝐴(𝑥). Then both
𝑞1(𝑥) ← 𝐴(𝑥) and 𝑞2(𝑥) ← 𝐴(𝑥) ∧ 𝐵(𝑥) are 𝑝-guided CQ-generalizations of 𝑞 under
the empty ontology, and 𝑞1 ≢∅ 𝑞2.

It is also interesting to compare Definition 5.9, or more specifically guided ELIQ-
generalizations, to elements of frontiers as defined in Definition 4.13. Note that
Conditions 1 and 2 of Definition 5.9 correspond to Condition 1 of Definition 4.13,
and Condition 3 of Definition 5.9 corresponds to Condition 2 of Definition 4.13.
Intuitively, we can view the query 𝑝 as a guide that helps us select a suitable query
from a CQ-frontier of 𝑞, which is useful when 𝑞 has an exponentially large or
infinite CQ-frontier. Indeed, the query �𝑞 from Example 5.10 is an element of an
ELIQ-frontier of 𝑞 under 𝒪.

Constructing Guided ELIQ-generalizations

We now show that 𝑝-guided ELIQ-generalizations of an ELIQ 𝑞 always exist and can
be computed in polynomial time when 𝑞 if (𝑞, 𝒪)-minimal, even under DL-Litehorn
ontologies that use conjunctions. In fact, this is also the case under DL-Liteℱhorn
ontologies 𝒪 that are subject to the same restriction on functionality constraints
as DL-Liteℋℱ−

core ontologies in Chapter 4, that is, if a ∃𝑅.⊤ occurs on the right side
of a concept inclusion in 𝒪, then func(𝑅−) ∉ 𝒪. We call this ontology language
DL-Liteℱ−horn.

For this, we again assume that 𝒪 is in normal form, which is not a crucial as
sumption by Lemma 4.8. By inspecting the definition of the universal model of
DL-Liteℱ−horn ontologies, we find that we can safely adopt a restriction on the set of
all traces [Bot+16]. Specifically, we restrict the domain of 𝒰𝒜,𝒪 to only contain
traces 𝑎𝑅1𝑀1 ⋯ 𝑅𝑛𝑀𝑛 with 𝑅𝑖+1 ≠ 𝑅−

𝑖 for 1 ≤ 𝑖 < 𝑛. Then, Lemma 3.5 still holds for
DL-Liteℱ−horn ontologies (but not for DL-Liteℋcore or ℰℒℐ ontologies).

By adopting the above restriction, we can show the following property of 𝒰𝒜,𝒪,
which in turn allows us to show that the construction of guided generalizations
completes in polynomial time.

Lemma 5.12. Let 𝒪 be a DL-Liteℱ−horn ontology in normal form, 𝒜 an ABox that is satisfiable
under 𝒪, and 𝑈 = Δ𝒰𝒜,𝒪 ⧵ ind(𝒜). Then, for every role 𝑅, 𝑅𝒰𝒜,𝒪 ∩ 𝑈2 is a partial function.

Note that universal models of DL-Liteℋcore or ℰℒ ontologies inherently do not have
this property, as concept inclusions of the form 𝐴 ⊑ ∃𝑟.𝐵1, 𝐴 ⊑ ∃𝑟.𝐵2 require two
different 𝑟 successors for a model to be universal.

Let 𝑞(𝑥1), 𝑝(𝑥2) be ELIQs and 𝒪 a DL-Liteℱ−horn ontology in normal form such that
𝑞 and 𝑝 are satisfiable under 𝒪, 𝑞 is (𝑞, 𝒪)-minimal and 𝑝 ⊈𝒪 𝑞. We construct a
𝑝-guided ELIQ-generalization �𝑞 of 𝑞 under 𝒪 in three steps.

107

5 Learning with Membership and Equivalence Queries

1. Start with the query
�𝑞((𝑥1, 𝑥2)) ← �

(𝑥1,𝑥2)∈𝐴
𝒰𝑞,𝒪×𝒰𝑝,𝒪

𝐴((𝑥1, 𝑥2)),

that is, the restriction of 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to the element (𝑥1, 𝑥2) viewed as a query
with answer variable (𝑥1, 𝑥2).

2. Then, extend �𝑞 by exhaustively applying the rule (A1) below.

(A1) For every (𝑧, 𝑡) ∈ var(�𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ Δ𝒰𝑝,𝒪, every atom 𝑅(𝑧, 𝑧′)
in 𝑞, and every (𝑡, 𝑡′) ∈ 𝑅𝒰𝑝,𝒪, add the atom 𝑅((𝑧, 𝑡), (𝑧′, 𝑡′)), and all atoms
𝐴((𝑧′, 𝑡′)) such that 𝑧′ ∈ 𝐴𝒰𝑞,𝒪 and 𝑡′ ∈ 𝐴𝒰𝑝,𝒪.

3. Finally, complete �𝑞 by exhaustively applying the rule (A2) below.

(A2) For every (𝑧, 𝑡) ∈ var(�𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ Δ𝒰𝑝,𝒪 and every role 𝑅
such that 𝑧 ⇝𝑅

𝑞,𝒪 𝑀 for some 𝑀 add the atoms

𝑅((𝑧, 𝑡), �̂�), 𝑅(𝑧′, �̂�)

with �̂� a fresh variable, and add a copy 𝑞′ of 𝑞 in which the copy of 𝑧 is 𝑧′.

To understand this construction, recall that 𝒰𝑞,𝒪×𝒰𝑝,𝒪, when viewed as an infinitary
CQ, may serve as a CQ-LGG of 𝑝 and 𝑞. Intuitively, the above construction may be
viewed as producing an approximation of this product from below, in the sense
that �𝑞 ⊆𝒪 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 if we consider 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to be restricted to all traces that are
reachable from (𝑥1, 𝑥2). After applying Rule (A1) exhaustively, we have constructed
exactly the restriction of the product 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to the elements (𝑡1, 𝑡2) that are
reachable from the element (𝑥1, 𝑥2) and satisfy 𝑡1 ∈ var(𝑞). We show that this is a
finite structure and even of polynomial size, which is essentially due to Lemma 5.12.
What is missing is the infinite part of 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 determined by elements (𝑡1, 𝑡2)
where 𝑡1 is a proper trace. The application of Rule (A2) approximates this part by
adding atoms and copies of 𝑞 corresponding to traces of length one in 𝒰𝑞,𝒪.

Example 5.13. Consider the ELIQs 𝑞 and 𝑝 displayed in Figure 5.3 as well as the
DL-Litehorn ontology 𝒪 = {𝐴 ⊑ ∃𝑠.⊤}. The steps of computing a 𝑝-guided ELIQ-
generalization of 𝑞 under 𝒪 are the queries �𝑞1, �𝑞2, �𝑞3 displayed in Figure 5.3.

The query �𝑞1 is the result of Step 1. Exhaustive application of Rule (A1) then
yields �𝑞2. Applying Rule (A2) once at the root then yields �𝑞3. No other applications
of Rule (A2) are possible, and �𝑞3 indeed is a 𝑝-guided ELIQ-generalization of 𝑞.
Note that there is a homomorphism from 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to �𝑞3 and therefore also to
𝒰�𝑞3,𝒪, demonstrating that �𝑞3 ⊆𝒪 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪.

We show that this construction, especially Step 2, always terminates after poly
nomially many steps by using Lemma 5.12.

108

5.2 Learning ELIQs under DL-Litehorn Ontologies

𝑞

𝐴

𝐵

𝑟

𝑟

𝑝

𝐵
𝑟

𝑠

𝒰𝑞,𝒪 × 𝒰𝑝,𝒪

𝐵

𝑟

𝑟

𝑠

�𝑞1 �𝑞2

𝐵

𝑟

𝑟

�𝑞3

𝐵

𝐴

𝐵

𝑟

𝑟

𝑠 𝑠 𝑟

𝑟

Figure 5.3: The three steps �𝑞1, �𝑞2, �𝑞3 of the construction of a 𝑝-guided ELIQ-gener
alization of 𝑞 under 𝒪 = {𝐴 ⊑ ∃𝑠.⊤}.

Lemma 5.14. The computation of �𝑞 terminates after polynomially many steps.

 Proof. The initial �𝑞 created in Step 1 can be computed in polynomial time, since it
consists of a single variable and reasoning in DL-Liteℱ−horn is possible in polynomial
time. We consider Rule (A2) first. Let the result of Step 2 have domain size 𝑁. Then,
(A2) is applied at most 𝑁 ⋅ 𝑛𝑟 times, where 𝑛𝑟 denotes the number of roles in 𝒪.
Moreover, for each application, we only add two atoms and a copy of 𝑞. Thus, to
show that the overall construction finishes in polynomial time, it suffices to show
that Step 2 finishes in polynomial time.

For the analysis of the Rule (A1), observe that, by definition, Rule (A1) computes
an initial fragment of the product 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪. Thus, the rule creates at most
‖𝒪‖ ⋅ |var(𝑞)| ⋅ |var(𝑝)| atoms over variables (𝑥, 𝑦) with 𝑥 ∈ var(𝑞) and 𝑦 ∈ var(𝑝).
The remaining rule applications can be structured into labeled trees 𝑇𝑥𝑦, for each
(𝑥, 𝑦) ∈ var(𝑞) × var(𝑝), as follows:

• the root 𝜀 of 𝑇𝑥𝑦 is labeled with 𝜆(𝜀) = (𝑥, 𝑦);

• if some node 𝑛 is labeled with 𝜆(𝑛) = (𝑧, 𝑡) and Rule (A1) is applied to some
𝑅(𝑧, 𝑧′) ∈ 𝑞 and (𝑡, 𝑡′) ∈ 𝑅𝒰𝑝,𝒪, then 𝑛 has a successor 𝑛′ with 𝜆(𝑛′) = (𝑧′, 𝑡′); we
additionally associate with 𝑛′ another label 𝜌(𝑛′) = 𝑅(𝑧, 𝑧′).

It suffices to bound the sizes of each tree 𝑇𝑥𝑦 by a polynomial in the input. For this,
in turn, it suffices to show that there are no two nodes 𝑛1, 𝑛2 in 𝑇𝑥𝑦 such that 𝑛1 ≠ 𝑛2,

109

5 Learning with Membership and Equivalence Queries

𝜆(𝑛1) = (𝑧1, 𝑡1), 𝜆(𝑛2) = (𝑧2, 𝑡2), and 𝑧1 = 𝑧2. We show this by contradiction.
Suppose there are 𝑛1 ≠ 𝑛2 in 𝑇𝑥𝑦 such that 𝜆(𝑛1) = (𝑧1, 𝑡1), 𝜆(𝑛2) = (𝑧2, 𝑡2), and

𝑧1 = 𝑧2. Consider the unique shortest path from 𝑛1 to 𝑛2 in 𝑇𝑥𝑦 and let 𝑛 be the
unique node closest to the root on this path, that is, the path 𝑤0 … 𝑤𝑘 from 𝑛1 to
𝑛 goes up in the tree and the path 𝑣0 … 𝑣𝑚 from 𝑛 to 𝑛2 goes down. Consider the
following sequence 𝛼0, … , 𝛼𝑘+𝑚−1 of facts:

(a) for 0 ≤ 𝑖 < 𝑘, let 𝛼𝑖 be the atom 𝑅−(𝑧, 𝑧′) when 𝜌(𝑤𝑖) = 𝑅(𝑧′, 𝑧);

(b) for 0 < 𝑖 ≤ 𝑚, let 𝛼𝑘+𝑖−1 = 𝜌(𝑣𝑖).

By definition of the Rule (A1) and the resulting definition of 𝑇𝑥𝑦, the sequence
𝛼0, … , 𝛼𝑘+𝑚−1 is a path from 𝑧1 to 𝑧2 in 𝑞. Since 𝑧1 = 𝑧2 and 𝑞 is acyclic, there has to
be some 𝑖 such that 𝛼𝑖 = 𝑅(𝑧, 𝑧′) and 𝛼𝑖+1 = 𝑅−(𝑧′, 𝑧), for some role 𝑅. We distinguish
cases on where 𝛼𝑖 and 𝛼𝑖+1 were defined in (a) or in (b) above.

Suppose first that both were defined in (a) and consider the nodes 𝑤𝑖, 𝑤𝑖+1. By
definition of 𝛼𝑖, 𝛼𝑖+1:

• 𝜌(𝑤𝑖) = 𝑅−(𝑧, 𝑧′) and 𝜌(𝑤𝑖+1) = 𝑅(𝑧′, 𝑧),

• 𝜆(𝑤𝑖) = (𝑧′, 𝑡1), for some 𝑡1, and 𝜆(𝑤𝑖+1) = (𝑧, 𝑡2), for some 𝑡2.

Note that 𝜌(𝑤𝑖) and 𝜌(𝑤𝑖+1) refer to the same atom. Let (𝑡, 𝑡2) ∈ 𝑅𝒰𝑝,𝒪 be the pair such
that 𝑤𝑖+1 was added to 𝑇𝑥𝑦 via an application of Rule (A1) to (𝑧′, 𝑡) ∈ var(�𝑞), 𝑅(𝑧′, 𝑧) ∈
𝑞 and (𝑡, 𝑡2) ∈ 𝑅𝒰𝑝,𝒪. By Lemma 5.12, 𝑅− is a partial function when restricted to
the domain Δ𝒰𝑝,𝒪 ⧵ var(𝑝), and thus 𝑡2 has no other 𝑅−-neighbor than 𝑡 and thus
𝑡1 = 𝑡. But then Rule (A1) is not applicable to (𝑧, 𝑡2) ∈ var(�𝑞), 𝑅−(𝑧, 𝑧′) ∈ 𝑞, and
(𝑡2, 𝑡1) = (𝑡2, 𝑡) ∈ (𝑅−)𝒰𝑝,𝒪 since 𝑅((𝑧, 𝑡2), (𝑧′, 𝑡1)) = 𝑅((𝑧, 𝑡2), (𝑧′, 𝑡)) is already present
in �𝑞, a contradiction.

In the other two cases, where 𝛼𝑖, 𝛼𝑖+1 were both defined in (b) or 𝛼𝑖 was defined
in (a) and 𝛼𝑖+1 was defined in (b), a contradiction is derived analogously.

Next, we show that the construction indeed yields a guided ELIQ-generalization.
This relies heavily on the restriction on functionality constraints, as otherwise the
atoms introduced by Rule (A2) may violate a functionality constraint func(𝑅−).

Lemma 5.15. �𝑞 is satisfiable under 𝒪 and is a 𝑝-guided ELIQ-generalization of 𝑞 under 𝒪.

 Proof. We show that �𝑞 satisfies Conditions 1 to 3 of Definition 5.9 and that �𝑞 is
satisfiable under 𝒪. For the proof, it is convenient to define a mapping 𝑔 as follows:

• 𝑔(𝑧, 𝑡) = 𝑧 for every (𝑧, 𝑡) ∈ var(�𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ Δ𝒰𝑝,𝒪;

110

5.2 Learning ELIQs under DL-Litehorn Ontologies

• 𝑔(�̂�) = 𝑧𝑅𝑀, for every variable �̂� introduced by Rule (A2) applied to the
element (𝑧, 𝑡), the role 𝑅 and the set 𝑀;

• 𝑔(𝑥′) = 𝑥, for every copy 𝑥′ of some variable 𝑥 in 𝑞 introduced by Rule (A2).

Observe that 𝑔 is a homomorphism from �𝑞 to 𝒰𝑞,𝒪 with 𝑔(𝑥1, 𝑥2) = 𝑥1, and thus
𝑞 ⊆𝒪 �𝑞. Hence, Condition 1 holds.

Satisfiability of �𝑞 under 𝒪 follows from the facts that 𝑞 is satisfiable under 𝒪,
that the map 𝑔 defined above is a homomorphism from �𝑞 to 𝒰𝑞,𝒪, and that since 𝑞
satisfies all functionality assertions in 𝒪, by construction so does �𝑞. For the latter,
it is important that 𝒪 is formulated in DL-Liteℱ−horn rather than in DL-Liteℱhorn. In
particular, this ensures that when Rule (A2) is applied to a role 𝑅, it is not inverse
functional.

For Condition 2, suppose to the contrary of what we have to show that �𝑞 ⊆𝒪 𝑞.
Since �𝑞 is satisfiable, we can fix a homomorphism ℎ from 𝑞 to 𝒰�𝑞,𝒪 with ℎ(𝑥1) =
(𝑥1, 𝑥2). By Lemma 3.8, there is an extension of the homomorphism 𝑔 to a homomor
phism 𝑔′ from 𝒰�𝑞,𝒪 to 𝒰𝑞,𝒪 with 𝑔′(𝑥1, 𝑥2) = 𝑥1. Then, the composition of ℎ and 𝑔′
is a homomorphism from 𝑞 to 𝒰𝑞,𝒪. Lemma 4.21 implies that the variables �̂� intro
duced by Rule (A2) are not in the image of ℎ. Indeed, if ℎ(𝑥) = �̂� for some 𝑥 ∈ var(𝑞),
then 𝑔′(ℎ(𝑥)) ∉ var(𝑞) takes the shape 𝑧𝑅𝑀, in contradiction to Lemma 4.21. Since 𝑞
is rooted, all ℎ(𝑥) take the shape (𝑧, 𝑡) for some 𝑧 ∈ var(𝑞) and some trace 𝑡 in 𝒰𝑝,𝒪.
Consider the projection ℎ′ of ℎ to its second component, that is,

 for all 𝑥 ∈ var(𝑞) set ℎ′(𝑥) = 𝑡 where ℎ(𝑥) = (𝑧, 𝑡).

It is routine to show that ℎ′ is a homomorphism from 𝑞 to 𝒰𝑝,𝒪 with ℎ′(𝑥1) = 𝑥2,
and thus 𝑝 ⊆𝒪 𝑞, a contradiction.

For Condition 3, let 𝑞′(𝑥0) be any ELIQ with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′. We can fix
a homomorphism ℎ𝑝 from 𝑞′ to 𝒰𝑝,𝒪 with ℎ𝑝(𝑥0) = 𝑥2 and a homomorphism ℎ𝑞
from 𝑞′ to 𝒰𝑞,𝒪 with ℎ𝑞(𝑥0) = 𝑥1. Based on ℎ𝑞 and ℎ𝑝, we iteratively define a map ℎ
from 𝑞′ to 𝒰�𝑞,𝒪. We start by setting ℎ(𝑥0) = (ℎ𝑞(𝑥0), ℎ𝑝(𝑥0)) = (𝑥1, 𝑥2). Now extend
ℎ iteratively by selecting an atom 𝑅(𝑥, 𝑥′) ∈ 𝑞′ such that ℎ(𝑥) = (𝑧, 𝑡) is defined,
𝑧 ∈ var(𝑞), and ℎ(𝑥′) is undefined. Note that 𝑧′ = ℎ𝑞(𝑥′) satisfies (𝑧, 𝑧′) ∈ 𝑅𝒰𝑞,𝒪 since
ℎ𝑞 is a homomorphism. Similarly, 𝑡′ = ℎ𝑝(𝑥′) satisfies (𝑡, 𝑡′) ∈ 𝑅𝒰𝑝,𝒪. We distinguish
cases.

1. Suppose first that 𝑧′ ∈ var(𝑞). Then, Rule (A1) is applicable to 𝑅(𝑧, 𝑧′), (𝑡, 𝑡′),
and there is a 𝑅((𝑧, 𝑡), (𝑧′, 𝑡′)) ∈ �𝑞. Set ℎ(𝑥′) = (𝑧′, 𝑡′).

2. Otherwise, 𝑧′ ∉ var(𝑞). Since 𝑧 ∈ var(𝑞), 𝑧′ takes the form 𝑧𝑅𝑀 for some 𝑀
and thus 𝑧 ⇝𝑅

𝑞,𝒪 𝑀 for that 𝑀. Then Rule (A2) is applicable to (𝑧, 𝑡), 𝑅 and
𝑀. Let �̂� be the variable introduced in Rule (A2). Using the definition of the

111

5 Learning with Membership and Equivalence Queries

universal model, one can show that there is a homomorphism 𝑓 from 𝒰𝑞,𝒪 to
𝒰�𝑞,𝒪 which maps 𝑧𝑅𝑀 to �̂� and 𝑞 to the copy of 𝑞 that was added to �𝑞 in this
application of Rule (A2). We set

ℎ(𝑥″) = 𝑓(ℎ𝑞(𝑥″))

for every node 𝑥″ in the subtree rooted at 𝑥′.

It remains to argue that ℎ is a homomorphism from 𝑞′ to 𝒰�𝑞,𝒪 with ℎ(𝑥0) = (𝑥1, 𝑥2),
and thus �𝑞 ⊆𝒪 𝑞′. To see this, first, let 𝐴(𝑥) ∈ 𝑞′.

• If ℎ(𝑥) was defined in Case 1 above, then ℎ(𝑥) = (𝑧, 𝑡) for 𝑧 = ℎ𝑞(𝑥) ∈ var(𝑞) and
𝑡 = ℎ𝑝(𝑥) ∈ Δ𝒰𝑝,𝒪. Since both ℎ𝑞 and ℎ𝑝 are homomorphisms, both 𝑧 ∈ 𝐴𝒰𝑞,𝒪 and
𝑡 ∈ 𝐴𝒰𝑝,𝒪. Thus, since (𝑧, 𝑡) was created by Rule (A1), 𝐴((𝑧, 𝑡)) = 𝐴(ℎ(𝑥)) ∈ �𝑞.

• If ℎ(𝑥) was defined in Case 2 above, then ℎ(𝑥) = 𝑓(ℎ𝑞(𝑥)) where 𝑓 is a homomor
phism from 𝑞 to 𝒰�𝑞,𝒪. Since, additionally, ℎ𝑞 is a homomorphism, it follows
that 𝐴(ℎ(𝑥)) ∈ 𝒰�𝑞,𝒪.

Suppose now 𝑅(𝑥, 𝑦) ∈ 𝑞′ and 𝑅(𝑥, 𝑦) is directed away from the root 𝑥0 in 𝑞′.

• If both ℎ(𝑥) and ℎ(𝑦) were defined in Case 1, then Rule (A1) created the atom
𝑅((ℎ𝑞(𝑥), ℎ𝑝(𝑥)), (ℎ𝑞(𝑦), ℎ𝑝(𝑦))) ∈ �𝑞 and thus 𝑅(ℎ(𝑥), ℎ(𝑦)) ∈ �𝑞.

• If both ℎ(𝑥) and ℎ(𝑦) were defined in Case 2, then ℎ(𝑥) = 𝑓(ℎ𝑞(𝑥)) and ℎ(𝑦) =
𝑓(ℎ𝑞(𝑥)) for some homomorphism 𝑓 from 𝑞 to 𝒰�𝑞,𝒪. Since, additionally, ℎ𝑞 is a
homomorphism, it follows that (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑅𝒰�𝑞,𝒪.

• If ℎ(𝑥) was defined in Case 1 and ℎ(𝑦) was defined in Step 2, then ℎ(𝑥) =
(ℎ𝑞(𝑥), ℎ𝑝(𝑥)) = (𝑧, 𝑡) and ℎ(𝑦) = 𝑓(ℎ𝑞(𝑦)) = �̂� for the element �̂� that was intro
duced in the application of Rule (A2) to (𝑧, 𝑡) that defined ℎ(𝑦). Rule (A2)
additionally implies that 𝑅((𝑧, 𝑡), �̂�) ∈ �𝑞, and thus (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑅𝒰�𝑞,𝒪.

• The case that ℎ(𝑥) was defined in Case 2, but ℎ(𝑦) was defined in Case 1 is not
possible since 𝑥 is closer to the root than 𝑦, by assumption and the fact that ℎ
is defined from root to leaves in 𝑞′.

Combining Lemma 5.14 and Lemma 5.15 we thus obtain the following.

Lemma 5.16. Given a DL-Liteℱ−horn ontology 𝒪 in normal form and ELIQs 𝑝, 𝑞 such that 𝑝, 𝑞
are satisfiable under 𝒪, 𝑝 ⊈𝒪 𝑞, and 𝑞 is (𝑞, 𝒪)-minimal, a 𝑝-guided ELIQ-generalization of
𝑞 under 𝒪 that is satisfiable under 𝒪 can be computed in polynomial time.

112

5.2 Learning ELIQs under DL-Litehorn Ontologies

Algorithm 5.2: Learning algorithm for ELIQs under DL-Liteℱ−horn ontologies

Input A signature Σ and a DL-Liteℱ−horn ontology 𝒪 in normal form
Output An ELIQ 𝑞𝐻 such that 𝑞𝐻 ≡𝒪 𝑞𝑇
𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪)
𝑞𝐻 ≔ extractELIQ(𝒪, 𝑞0𝐻)
while the equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇?” returns a counterexample (𝒜, 𝑎) do
 𝑞𝐷 ≔ extractELIQ(𝒪, 𝑞𝒜(𝑎))
 𝑞′𝐻 ≔ a 𝑞𝐷-guided ELIQ-generalization of 𝑞𝐻 under 𝒪
 𝑞𝐻 ≔ extractELIQ(𝒪, 𝑞′𝐻)
end while
return 𝑞𝐻

We conjecture that (𝑞, 𝒪)-minimality of an ELIQ 𝑞 under an DL-Liteℱ−horn ontology
can also be achieved in polynomial time by extending techniques for answering
ELIQs over DL-Litecore ontologies in polynomial time in [Bie+13] to DL-Liteℱ−horn
ontologies. However, this is not needed to use Lemma 5.16 as part of a learn
ing algorithm, as (𝑞, 𝒪)-minimality can be achieved in polynomial time through
membership queries.

Learning ELIQs under DL-Liteℱ−horn ontologies

Lemma 5.16 enables us to use guided generalizations as part of a polynomial time
ELIQ learning algorithm to update the hypothesis with a counterexample. Such an
algorithm is displayed as Algorithm 5.2. Algorithm 5.2 replaces the direct product
used in Algorithm 5.1 with the construction of guided generalizations. As part of
this replacement, two further adjustments are necessary. First, Lemma 5.16 expects
both queries 𝑝 and 𝑞 to be ELIQs, however the counterexample (𝒜, 𝑎) viewed as
a query 𝑞𝒜 may not be acyclic. To work around this, Algorithm 5.2 applies the
subroutine extractELIQ from Section 4.5 to the counterexample and, since 𝑞𝒜 ⊈𝒪 𝑞𝐻
or equivalently 𝒜, 𝒪 ⊧̸ 𝑞𝐻(𝑎), obtains an ELIQ 𝑞𝐷 with 𝑞𝐷 ⊈𝒪 𝑞𝐻. As shown in
Section 4.5, extractELIQ works in polynomial time, using a polynomial number of
membership queries. Second, the same issue occurs after the construction of a
guided ELIQ-generalization. The hypothesis used in an equivalence query must also
be an ELIQ, but the guided ELIQ-generalization 𝑞′𝐻 constructed using Lemma 5.16
may not be acyclic. Again, Algorithm 5.2 applies extractELIQ to obtain a suitable
ELIQ 𝑞𝐻 with 𝑞′𝐻 ⊆𝒪 𝑞𝐻 ⊆𝒪 𝑞𝑇.

The initial CQ 𝑞0𝐻 can be obtained in the same way as described in Section 4.5, by

113

5 Learning with Membership and Equivalence Queries

using

𝑞0𝐻(𝑥0) ← �
𝐴∈Σ∩NC

𝐴(𝑥0) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥0, 𝑥0)

or a single equivalence query, depending on the disjointness constraints in 𝒪. To
show that Algorithm 5.2 is indeed a polynomial time learning algorithm, we show
that the sequence 𝑞1, 𝑞2, … of assignments to 𝑞𝐻 forms a generalization sequence
towards 𝑞𝑇 under 𝒪. Since every DL-Liteℱ−horn ontology is also an ℰℒℐℋℱ⊥ ontology,
Theorem 4.35 then implies termination of Algorithm 5.2 after polynomially many
steps. This is the main result of this section.

Theorem 5.17. ELIQs are polynomial time learnable under DL-Liteℱ−horn ontologies using
both equivalence and membership queries.

 Proof. We will show that Algorithm 5.2 is a polynomial time learning algorithm for
ELIQs under DL-Liteℱ−horn ontologies in normal form. It follows from Lemma 4.8 that
this also implies polynomial time learnability under general DL-Liteℱ−horn ontologies.
To show this, let 𝒪 be an DL-Liteℱ−horn ontology in normal form and let 𝑞1, 𝑞2, … be
the sequence of assignments to the variable 𝑞𝐻 during a run of Algorithm 5.2. We
show that this sequence is a generalization sequence towards 𝑞𝑇 under 𝒪. Since
extractELIQ maintains satisfiability by Lemma 4.41, counterexamples are satisfiable
under 𝒪 and the construction of guided generalizations maintains satisfiability by
Lemma 5.16, all 𝑞𝑖 are satisfiable under 𝒪.

We first show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 by induction on 𝑖. In the induction start, recall
that 𝑞1 = extractELIQ(𝑞0𝐻). Since 𝑞0𝐻 ⊆𝒪 𝑞𝑇, Lemma 4.41 implies that 𝑞1 ⊆𝒪 𝑞𝑇. Now
assume that 𝑞𝑖−1 ⊆𝒪 𝑞𝑇. If the sequence does not end at 𝑞𝑖−1, then the equivalence
query returned a counterexample (𝒜, 𝑎) with 𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝑖−1(𝑎).
Then, 𝑞𝐷 = extractELIQ(𝑞𝒜) ⊆𝒪 𝑞𝑇 and 𝑞𝐷 ⊈𝒪 𝑞𝑖−1, and 𝑞′𝐻 is a 𝑞𝐷-guided ELIQ
generalization of 𝑞𝐻 under 𝒪. Therefore, 𝑞′𝐻 ⊆𝒪 𝑞𝑇 and 𝑞𝑖 = extractELIQ(𝑞′𝐻) ⊆𝒪 𝑞𝑇
by Lemma 4.41, as required.

Next, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 for all 𝑖. Again, if the sequence did
not end at 𝑞𝑖, then the equivalence query for 𝑞𝑖 returned a counterexample (𝒜, 𝑎)
and 𝑞𝑖+1 = extractELIQ(𝑞′𝐻) for 𝑞′𝐻 a 𝑞𝐷-guided ELIQ-generalization of 𝑞𝐻 under 𝒪.
Then, 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 by Definition 5.9 and Lemma 4.41.

Additionally, all 𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal as they are the result of the extractELIQ
subroutine. Therefore, 𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪
and each 𝑞𝑖 is (𝑞𝑇, 𝒪)-minimal. As every DL-Liteℱ−horn ontology is also a ℰℒℐℋℱ⊥
ontology, Theorem 4.35 then implies that the length of the sequence is bound by a
polynomial. Therefore, Algorithm 5.2 must terminate with a hypothesis equivalent
to 𝑞𝑇 after a polynomial number of iterations.

114

5.3 Learning under ℰℒ𝑟 Ontologies

In Chapter 4 we have shown with Theorem 4.5 that membership queries alone
do not suffice to learn ELIQs under DL-Litehorn ontologies in polynomial time.
Here, we have shown that membership queries and equivalence queries suffice.
Later, in Section 5.5 we will see that extending DL-Litehorn by qualified existential
restrictions (obtaining ℰℒℐ) makes polynomial time learning with membership
and equivalence queries impossible.

It is unclear how far Theorem 5.17 can be extended beyond DL-Liteℱ−horn and ELIQs.
The known lower bound, that we discuss later, only applies to ℰℒℐ ontologies
(Theorem 5.50). It is especially not clear whether guided generalizations of ELIQs
under DL-Liteℱhorn or DL-Liteℋhorn exist, and whether they can be constructed in
polynomial time. At least, we can see that the construction described in this section
fails to produce guided generalizations of polynomial size for these two ontology
languages.

Note that since guided generalizations are not unique, the construction of guided
generalizations in this section is somewhat arbitrary, and that other constructions,
with perhaps additional desirable properties, are possible. Many questions remain
open in the area of generalizations. One of direct interest to learning queries is
whether guided CQ-generalizations of CQs exist under ontologies. Unfortunately,
the idea of the construction in this section cannot be extended to CQs.

For learning algorithms, it could also be useful to consider generalizations of
Definition 5.9. Perhaps constructions exist of sets of guided generalizations that behave
in a suitable way and can be used by learning algorithms like frontiers.

Next, we turn away from guided generalizations, and instead consider query
classes and ontology languages for which we can use products of compact models
in place of LGGs.

5.3 Learning under ℰℒ𝑟 Ontologies

As discussed in Section 5.1, an LGG of CQs can be computed in polynomial time
in the case without an ontology, but already simple queries fail to have finite CQ-
LGGs under ontologies that use qualified existential restrictions (Example 5.7). In
particular, the direct product of universal models has all the properties needed
for LGGs but is usually infinite. In this section, we aim to learn queries under
ℰℒ𝑟 ontologies that contain qualified existential restrictions, by focusing on query
classes 𝒬 that allow us to replace the direct product of universal models with a
direct product of finite models.

We observe two properties of ℰℒ𝑟 ontologies. First, ℰℒ𝑟 ontologies do not con
tain any concept or role disjointness constraints, and thus every ABox and CQ
is satisfiable under ℰℒ𝑟 ontologies. Second, ℰℒ𝑟 ontologies and ABoxes possess

115

5 Learning with Membership and Equivalence Queries

𝑎𝐴 𝑏 𝐵

𝑐𝑟,𝐴𝐴 𝑐𝑠,𝐴 𝐴

𝑟 𝑠

𝑟
𝑟

Figure 5.4: The compact model 𝒞𝒜,𝒪 of 𝒜 = {𝐴(𝑎), 𝐵(𝑏)} and 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑
∃𝑠.⊤, ∃𝑠−.⊤ ⊑ 𝐴}.

ELQ-universal models of polynomial size, meaning that these models fulfill Point 3
of Lemma 3.5 but only for all ELQs. The main reason for this is that the use of
inverse roles in ℰℒ𝑟 is restricted, such that, for example, concept inclusions like the
one in Example 4.36 cannot be expressed. ELQ-universal models of ℰℒ𝑟 ontologies
and ABoxes can be constructed as follows.

Let 𝒪 be an ℰℒ𝑟 ontology in normal form and 𝒜 an ABox. The compact universal
model 𝒞𝒜,𝒪 of 𝒜 and 𝒪 is obtained as follows. For every role name 𝑟, we use 𝐶𝑟 to
denote the conjunction over all 𝐴 such that ∃𝑟−.⊤ ⊑ 𝐴 ∈ 𝒪, and ⊤ if the conjunction
is empty. We define the interpretation 𝒞𝒜,𝒪 by

Δ𝒞𝒜,𝒪 = ind(𝒜) ∪ {𝑐𝑟,𝐴 ∣ 𝑟 ∈ NR ∩ sig(𝒪), 𝐴 ∈ (sig(𝒪) ∩ NC) ∪ {⊤}}
𝐴𝒞𝒜,𝒪 ={𝑎 ∈ ind(𝒜) ∣ 𝒜, 𝒪 ⊧ 𝐴(𝑎)} ∪ {𝑐𝑟,𝐵 ∣ 𝒪 ⊧ 𝐵 ⊓ 𝐶𝑟 ⊑ 𝐴}
𝑟𝒞𝒜,𝒪 ={(𝑎, 𝑏) ∣ 𝑟(𝑎, 𝑏) ∈ 𝒜} ∪

{(𝑎, 𝑐𝑟,𝐴) ∣ 𝒜, 𝒪 ⊧ ∃𝑟.𝐴(𝑎)} ∪
{(𝑐𝑠,𝐴, 𝑐𝑟,𝐵) ∣ 𝒪 ⊧ 𝐴 ⊓ 𝐶𝑠 ⊑ ∃𝑟.𝐵}

for all 𝐴 ∈ NC and 𝑟 ∈ NR.

Example 5.18. Consider the ℰℒ𝑟 ontology 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ ∃𝑠.⊤, ∃𝑠−.⊤ ⊑ 𝐴} and
the ABox 𝒜 = {𝐴(𝑎), 𝐵(𝑏)}. The interpretation 𝒞𝒜,𝒪 is displayed in Figure 5.4, where
the redundant elements 𝑐𝑠,⊤ and 𝑐𝑟,⊤ are left out. Note how infinite paths in 𝒰𝒜,𝒪 are
represented by cycles in 𝒞𝒜,𝒪, and how this makes 𝒞𝒜,𝒪 ELQ-universal but not ELIQ-
universal or CQ-universal: Consider the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥2, 𝑥1) ∧ 𝑟(𝑥3, 𝑥2).
It holds that 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎), but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) and 𝒰𝒜,𝒪 ⊧̸ 𝑞(𝑎). In general, if 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎)
and 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) for any CQ 𝑞, we refer to this as a spurious match of 𝑞 in 𝒞𝒜,𝒪.

Indeed, 𝒞𝒜,𝒪 is an ELQ-universal model of 𝒜 and 𝒪.

Lemma 5.19. Let 𝒜 be an ABox and 𝒪 an ℰℒ𝑟 ontology in normal form. Then,

1. 𝒞𝒜,𝒪 is a model of 𝒜 and 𝒪;

116

5.3 Learning under ℰℒ𝑟 Ontologies

2. for every ELQ 𝑞 and 𝑎 ∈ ind(𝒜), 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎).

The proof of this is standard [LTW09]. We later provide a proof of universality of
a different compact model construction (Lemma 5.28). For CQs 𝑞, we again write
𝒞𝑞,𝒪 instead of 𝒞𝒜𝑞,𝒪.

Now, let 𝑞(𝑥1) and 𝑝(𝑥2) be ELQs and 𝒪 an ℰℒ𝑟 ontology in normal form. We
are interested in the properties of 𝒞𝑞,𝒪 × 𝒞𝑝,𝒪 viewed as a CQ �𝑞 with the answer
variable (𝑥1, 𝑥2). First, note that �𝑞 is of size polynomial in ‖𝑝‖, ‖𝑞‖ and ‖𝒪‖. Further,
let 𝑞′ be an ELQ such that 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′. It then follows from Lemma 5.19 and
Lemma 3.7 that 𝒞𝑞,𝒪 ⊧ 𝑞′(𝑥1) and 𝒞𝑝,𝒪 ⊧ 𝑞′(𝑥2). By Lemma 3.3 it then follows that
𝒞𝑞,𝒪 × 𝒞𝑝,𝒪 ⊧ 𝑞′(𝑥1, 𝑥2). Since ℰℒ𝑟 is monotone, it also follows that 𝒞𝑞,𝒪 × 𝒞𝑝,𝒪, 𝒪 ⊧
𝑞′(𝑥1, 𝑥2) and therefore �𝑞 ⊆𝒪 𝑞′. This means that �𝑞 fulfills Point 3 of Definition 5.6
(LGGs). Note though that �𝑞 is not an LGG of 𝑞 and 𝑝 under 𝒪, as it does not satisfy
Point 1 and Point 2 of Definition 5.6. In fact, even 𝑞 ⊆𝒪 𝒞𝑞,𝒪 does not hold for all
ELQs 𝑞 and ℰℒ𝑟 ontologies 𝒪.

Example 5.20. Consider the ℰℒ𝑟 ontology 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴} and the ELQ 𝑞(𝑥) ← 𝐴(𝑥).
Then, there is no homomorphism from 𝒞𝑞,𝒪 to 𝒰𝑞,𝒪 since 𝒞𝑞,𝒪 contains an element
with a self-loop, and therefore 𝑞 ⊈𝒪 𝒞𝑞,𝒪.

However, 𝑞, 𝑝, and �𝑞 = 𝒞𝑞,𝒪 × 𝒞𝑝,𝒪 are of course not unrelated. In fact, for all ELQs
𝑞′ it holds that �𝑞 ⊆𝒪 𝑞′ implies 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′, which suffices for obtaining an
updated hypothesis. When receiving a counterexample (𝒜, 𝑎), a learning algorithm
can construct �𝑞 = 𝒞𝑞𝐻,𝒪 × 𝒞𝒜,𝒪 to obtain a CQ that is a generalization of both 𝑞𝐻 and
𝒜 under 𝒪. It is however not directly obvious that the algorithm makes progress
towards 𝑞𝑇, since 𝑞 ⊆𝒪 �𝑞 does not necessarily hold. However, if the algorithm
applies a subroutine like extractELIQ to �𝑞 to obtain an ELQ from �𝑞, then this ELQ is
a proper next element of a generalization sequence towards 𝑞𝑇. We show that this
not only holds for ELQs, but also for larger query classes later in this section.

Compact Models for Larger Query Classes

We extend the idea of using 𝒞𝑞𝐻,𝒪 × 𝒞𝒜,𝒪 to update hypotheses to larger query
classes. Unfortunately, this approach already fails for ELIQs. Consider the model
𝒞𝒜,𝒪 from Example 5.18 displayed in Figure 5.4 and the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧
𝑟(𝑥2, 𝑥1) ∧ 𝑠(𝑥3, 𝑥2) ∧ 𝐵(𝑥3). It holds that 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎) but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎), demonstrating
that Point 2 of Lemma 5.19 does not hold for ELIQs instead of ELQs. The spurious
match of 𝑞 into 𝒞𝒜,𝒪 relies on the multiple 𝑟-predecessors of 𝑐𝑟,𝐴 that are used to
compactly represent multiple traces of 𝒰𝒜,𝒪. Unfortunately, this issue cannot be
avoided by using a more carefully defined finite model.

117

5 Learning with Membership and Equivalence Queries

Example 5.21. Let 𝒪 = {⊤ ⊑ ∃𝑟.⊤} and 𝒜 = {𝐴(𝑎)}. The universal model 𝒰𝒜,𝒪 of
𝒜 and 𝒪 extends 𝒜 with an infinite 𝑟-path consisting of traces 𝑎𝑟∅, 𝑎𝑟∅𝑟∅, …. Any
ELIQ-universal model also needs to contain such an infinite 𝑟-path, and thus the
only chance to obtain a finite ELIQ-universal model ℐ is to reuse elements on this
path and create a cycle in ℐ. However, ℐ cannot be ELIQ-universal then. Let ℎ be a
homomorphism from 𝒰𝒜,𝒪 to ℐ. If ℎ maps the trace of length 𝑛 and the trace of
length 𝑚 with 𝑛 < 𝑚 to the same element in ℐ, then ℐ ⊧ 𝑞(𝑎) for the ELIQ

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥𝑚−1, 𝑥𝑚) ∧ 𝑟(𝑥𝑚+1, 𝑥𝑚) ∧ ⋯ ∧ 𝑟(𝑥𝑚+𝑛, 𝑥𝑚+𝑛−1) ∧ 𝐴(𝑥𝑚+𝑛),

but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎).

Example 5.21 and the previous Example 5.8 indicate that atoms of the shape
𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) for some role name 𝑟 cause difficulties, as these allow ELIQs to see
predecessors in the compact model 𝒞𝒜,𝒪 that do not exist in 𝒰𝒜,𝒪. We refer to
these predecessors as spurious. The same issue with spurious predecessors also
occurs with CQs that avoid inverse roles, but include cycles. Consider 𝒜 and 𝒪 as
in Example 5.21. For the CQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥1), it holds that 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎)
but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎). We therefore refer to the cycle in 𝒞𝒜,𝒪 as a spurious cycle.

Since every finite model must have spurious predecessors, we can only circumvent
these problems by restricting our attention to a subclass of ELIQs that does not
allow this shape of atoms to occur. Similarly, we also consider a class of CQs that
do not contain atoms of this shape and avoid large cycles, but still contains many
useful CQs.

Let 𝑞 be a CQ. A path of length 𝑛 in 𝑞 from 𝑥 ∈ var(𝑞) to 𝑦 ∈ var(𝑞) is a sequence
𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑞 such that 𝑥1 = 𝑥 and 𝑥𝑛+1 = 𝑦. We say that a path is
simple if 𝑥1, … , 𝑥𝑛+1 are distinct. We define the distance dist𝑞(𝑥, 𝑦) of 𝑥, 𝑦 ∈ var(𝑞) to
be the length of the shortest simple path from 𝑥 to 𝑦, or to be ∞ if there is no path
from 𝑥 to 𝑦. A path is a cycle of length 𝑛 if 𝑥1 = 𝑥𝑛+1 and 𝑥2, … , 𝑥𝑛+1 are distinct. Note
that this matches the definition of cycle in Section 4.5. A chord of a cycle is an atom
𝑅(𝑥𝑖, 𝑥𝑗) with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑗 ∉ {𝑖 − 1 mod 𝑛 + 1, 𝑖, 𝑖 + 1 mod 𝑛 + 1}.

A symmetry in 𝑞 consists of atoms 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) for some role name 𝑟 and 𝑦1 ≠ 𝑦2.
We say that a symmetry is safe, if at least one of the following is true:

1. 𝑥 is an answer variable,

2. at least one of the atoms occurs on a cycle in 𝑞,

3. 𝑞 contains an atom 𝑠(𝑧, 𝑧) for some 𝑧 ∈ {𝑥, 𝑦1, 𝑦2}, or

4. 𝑞 has only a single answer variable 𝑧, there is a path in 𝑞 from 𝑧 to 𝑥, and
dist𝑞(𝑧, 𝑥) + 1 = dist𝑞(𝑧, 𝑦1) = dist𝑞(𝑧, 𝑦2).

118

5.3 Learning under ℰℒ𝑟 Ontologies

𝑞1
𝑟

𝑠 𝑠

𝑞2

𝑟

𝑠 𝑟

𝑠

𝑞3

𝑠

𝑟 𝑟

𝑞4

𝑟

𝑠

𝑠

𝑟
𝑟

𝑟𝑠

𝑞5

𝑠

𝑠

𝑠

𝑠

Figure 5.5: Examples of CQcsf queries.

We denote with CQcsf the class of CQs 𝑞(𝑥) that are

1. chordal: every cycle 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛−1(𝑥𝑛−1, 𝑥1) in 𝑞 of length at least four that
contains at least one existential variable has a chord;

2. symmetry-free: every symmetry in 𝑞 is safe.

Example 5.22. Consider the CQs 𝑞1, 𝑞2, 𝑞3, 𝑞4 and 𝑞5 displayed in Figure 5.5. All of
these queries are chordal and symmetry-free. The symmetries in 𝑞1, 𝑞2, 𝑞4, 𝑞5 are
safe since they occur on a cycle. The symmetry in 𝑞3 is safe since it fulfills Point 4.
The queries 𝑞1, 𝑞2, 𝑞3 and 𝑞4 are chordal, since every cycle is of length smaller than
four. The cycle in 𝑞5 is chordal, since it does not contain any existential variable.

For ELIQs, we denote with ELIQsf the class of all ELIQs that are symmetry-free. If
we view ELIQs as ℰℒℐ concepts, then symmetry-free ℰℒℐ concepts may not contain
a subconcept of the shape ∃𝑟.(𝐶1 ⊓ ∃𝑟−.𝐶2). Due to the definition of symmetry
and Point 4 of safety, all other subconcept shapes that involve role names and
their inverses are allowed: ∃𝑟−.(𝐶1 ⊓ ∃𝑟.𝐶2), ∃𝑟−.𝐶1 ⊓ ∃𝑟.𝐶2, ∃𝑟.𝐶1 ⊓ ∃𝑟.𝐶2, and
∃𝑟−.𝐶1 ⊓ ∃𝑟−.𝐶2. This restricted class of ELIQs was previously introduced by Jung,
Lutz, and Wolter [JLW20] in the context of computing least common subsumers of
ℰℒℐ concepts under ontologies.

Note that every ELIQsf query is also a CQcsf query, and that queries in CQcsf

need not be connected. Every CQ whose underlying graph is a clique or a 𝑘-tree
(a maximal graph of treewidth 𝑘) is a CQcsf query. Particularly, this means that
many CQs that occur in practical applications are CQcsf. For example, the three
ontology-mediated querying benchmarks Fishmark [Bai+12], LUBM∃ [Lut+13],
and NPD [Lan+15] contain 65 queries. Of those, 85 % are CQcsf queries. Less than
5 % of the 65 queries are ELIQsf queries, mostly due to the existence of multiple
answer variables.

We define a compact model of ℰℒ𝑟 ontologies that is tailored towards the two
properties of CQcsf queries: chordality and being symmetry-free. The 3-compact

119

5 Learning with Membership and Equivalence Queries

𝑎𝐴 𝑏𝐵

𝑐𝑎,0,𝑟,𝐴𝐴

𝑐𝑎,1,𝑟,𝐴𝐴

𝑐𝑎,2,𝑟,𝐴𝐴

𝑐𝑎,3,𝑟,𝐴𝐴

𝑐𝑎,4,𝑟,𝐴𝐴

𝑐𝑏,0,𝑠,𝐴𝐴

𝑐𝑏,1,𝑟,𝐴𝐴

𝑐𝑏,2,𝑟,𝐴𝐴

𝑐𝑏,3,𝑟,𝐴𝐴

𝑐𝑏,4,𝑟,𝐴𝐴

𝑟

𝑟

𝑟

𝑟 𝑟

𝑟

𝑠

𝑟

𝑟

𝑟 𝑟

𝑟

Figure 5.6: The 3-compact model 𝒞3
𝒜,𝒪 for 𝒜 = {𝐴(𝑎), 𝐵(𝑏)} and 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑

∃𝑠.⊤, ∃𝑠−.⊤ ⊑ 𝐴}.

model 𝒞3
𝒜,𝒪 of an ABox 𝒜 and an ℰℒ𝑟 ontology 𝒪 in normal form is defined as follows.

The model uses the individual names from 𝒜 as well as individual names of the form
𝑐𝑎,𝑖,𝑟,𝐴 where 𝑎 ∈ ind(𝒜), 0 ≤ 𝑖 ≤ 4, 𝑟 is a role name from 𝒪, and 𝐴 ∈ (sig(𝒪)∩NC)∪{⊤}.
Let 𝑖 ⊕ 1 be short for (𝑖 mod 4) + 1. We define the interpretation 𝒞3

𝒜,𝒪 by

Δ𝒞3
𝒜,𝒪 = ind(𝒜) ∪

{𝑐𝑎,𝑖,𝑟,𝐴 ∣ 𝑎 ∈ ind(𝒜), 0 ≤ 𝑖 ≤ 4, 𝑟 ∈ NR ∩ sig(𝒪), 𝐴 ∈ (sig(𝒪) ∩ NC) ∪ {⊤}}

𝐴𝒞3
𝒜,𝒪 ={𝑎 ∈ ind(𝒜) ∣ 𝒜, 𝒪 ⊧ 𝐴(𝑎)} ∪

{𝑐𝑎,𝑖,𝑟,𝐵 ∣ 𝒪 ⊧ 𝐵 ⊓ 𝐶𝑟 ⊑ 𝐴}

𝑟𝒞
3
𝒜,𝒪 ={(𝑎, 𝑏) ∣ 𝑟(𝑎, 𝑏) ∈ 𝒜} ∪

{(𝑎, 𝑐𝑎,0,𝑟,𝐴) ∣ 𝒜, 𝒪 ⊧ ∃𝑟.𝐴(𝑎)} ∪
{(𝑐𝑎,𝑖,𝑠,𝐴, 𝑐𝑎,𝑖⊕1,𝑟,𝐵) ∣ 𝒪 ⊧ 𝐴 ⊓ 𝐶𝑠 ⊑ ∃𝑟.𝐵}

 for all 𝐴 ∈ NC and 𝑟 ∈ NR.

Example 5.23. Consider the same ABox 𝒜 = {𝐴(𝑎), 𝐵(𝑏)} and ontology 𝒪 = {𝐴 ⊑
∃𝑟.𝐴, 𝐵 ⊑ ∃𝑠.⊤, ∃𝑠−.⊤ ⊑ ∃𝑟.𝐴} as in Example 5.18. The interpretation 𝒞3

𝒜,𝒪 is
displayed in Figure 5.6, or more precisely, the part of 𝒞3

𝒜,𝒪 that is connected to 𝒜.
Again, redundant elements of the shape 𝑐𝑎,𝑖,𝑟,⊤ and 𝑐𝑏,𝑖,𝑟,⊤ are left out. Note that
compared to the interpretation 𝒞𝒜,𝒪 displayed in Figure 5.4, all cycles have length 4
and that the elements attached to 𝑎 are not connected to the elements attached to 𝑏.

We call 𝒞3
𝒜,𝒪 3-compact as it avoids all spurious cycles of length 3 or smaller, and

thereby does not allow spurious matches of CQs that are chordal. The model also
avoids spurious predecessors connected via different role names, or predecessors
coming from different individuals in the ABox-part. The spurious predecessors

120

5.3 Learning under ℰℒ𝑟 Ontologies

that remain are irrelevant for CQs that are symmetry-free. Note the existence of the
elements 𝑐𝑎,𝑖,𝑟,𝐴 with 𝑖 = 0, which are not part of cycles. They exist to handle sym
metries that are part of cycles, that could otherwise see the spurious predecessors
of the elements of shape 𝑐𝑎,1,𝑟,𝐴.

Lemma 5.24. Every cycle in 𝒞3
𝒜,𝒪 of length at most three consists only of individuals

from ind(𝒜).

 Proof. The statement is clear by construction of 𝒞3
𝒜,𝒪 for cycles of length 1. It is also

clear for cycles of length 2 since for any pair of individuals of which at least one is
of the form 𝑐𝑎,𝑖,𝑟,𝐴, the ABox 𝒞3

𝒜,𝒪 contains at most one assertion that involves both
of them.

Now for cycles of length 3. Assume to the contrary of what is to be shown that
𝒞3
𝒜,𝒪 contains a cycle of length 3 that contains an individual not from ind(𝒜). First,

assume that there is an individual 𝑎 ∈ ind(𝒜) on the cycle. Since all individuals of
the form 𝑐𝑏,𝑖,𝑟,𝐴 that are on the cycle are adjacent to 𝑎 on the cycle, 𝑏 = 𝑎 and 𝑖 = 0
for all such 𝑐𝑏,𝑖,𝑟,𝐴. This implies that 𝑎 is the only individual from 𝑎 ∈ ind(𝒜) on the
cycle. But then the cycle contains two distinct individuals of the form 𝑐𝑎,0,𝑟,𝐴 that
are connected by an edge, which is never the case in 𝒞3

𝒜,𝒪.
Now assume that the cycle contains only individuals of the form 𝑐𝑏,𝑖,𝑟,𝐴. Then all

these individuals are connected in 𝒞3
𝒜,𝒪 by an edge. This is impossible due to the

use of the index 𝑖 in the construction of 𝒞3
𝒜,𝒪.

There is a homomorphism from 𝒰𝒜,𝒪 to 𝒞3
𝒜,𝒪 that is the identity on ind(𝒜), but

in general, there is no homomorphism from 𝒞3
𝒜,𝒪 to 𝒰𝒜,𝒪. Nevertheless, 𝒞3

𝒜,𝒪 is
CQcsf-universal. Before showing this, we first describe how 𝒞3

𝒜,𝒪 relates to 𝒰𝒜,𝒪 in
terms of ℰℒ simulations.

Definition 5.25 (ℰℒ simulation). An ℰℒ simulation from interpretation ℐ1 to
interpretation ℐ2 is a relation 𝑆 ⊆ Δℐ1 × Δℐ2 such that for all (𝑑1, 𝑑2) ∈ 𝑆:

1. for all 𝐴 ∈ NC: if 𝑑1 ∈ 𝐴ℐ1, then 𝑑2 ∈ 𝐴ℐ2;

2. for all 𝑟 ∈ NR: if there is some 𝑑′1 ∈ Δℐ1 with (𝑑1, 𝑑′1) ∈ 𝑟ℐ1, then there is a
𝑑′2 ∈ Δℐ2 such that (𝑑′1, 𝑑′2) ∈ 𝑆 and (𝑑2, 𝑑′2) ∈ 𝑟ℐ2.

We write ℐ1, 𝑑1 ⪯ℰℒ ℐ2, 𝑑2 if there exists an ℰℒ simulation 𝑆 from ℐ1 to ℐ2 with
(𝑑1, 𝑑2) ∈ 𝑆.

ℰℒ simulations are similar to the ℰℒℐ simulations defined in Definition 4.39, but
they are not the same. For ℰℒ simulations, Point 2 only needs to be satisfied for role
names, not inverse roles. The ℰℒ in the name of ℰℒ simulations refers to the fact
that they are closely connected to ℰℒ concepts or ELQs.

121

5 Learning with Membership and Equivalence Queries

Lemma 5.26. Let ℐ1, ℐ2 be interpretations with 𝑑1 ∈ Δℐ1, 𝑑2 ∈ Δℐ2, and 𝑞 an ELQ. If
ℐ1, 𝑑1 ⪯ℰℒ ℐ2, 𝑑2, then ℐ1 ⊧ 𝑞(𝑑1) implies ℐ2 ⊧ 𝑞(𝑑2).

The proof of this lemma is standard, see for example [LW10] and [CS01]. Using
ℰℒ simulations, we can express the important relation of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪 as follows.

Lemma 5.27. Let 𝒜 be an ABox and 𝒪 an ℰℒ𝑟 ontology in normal form. Further, let
𝑐𝑎,𝑖,𝑟,𝐴 ∈ Δ𝒞3

𝒜,𝒪 and 𝑡𝑟𝑀 ∈ Δ𝒰𝒜,𝒪 with 𝐴 ∈ 𝑀 (using the same role name 𝑟). Then,
𝒞3
𝒜,𝒪, 𝑐𝑎,𝑖,𝑟,𝐴 ⪯ℰℒ 𝒰𝒜,𝒪, 𝑡𝑟𝑀.

 Proof. We define the relation

𝑆 = {(𝑐𝑎,𝑖,𝑟,𝐴, 𝑡𝑟𝑀) ∈ Δ𝒞3
𝒜,𝒪 × Δ𝒰𝒜,𝒪 ∣ 𝐴 ∈ 𝑀}.

It suffices to show that 𝑆 is an ℰℒ simulation from 𝒞3
𝒜,𝒪 to 𝒰𝒜,𝒪. Let (𝑐𝑎,𝑖,𝑟,𝐴, 𝑡𝑟𝑀) ∈ 𝑆.

If 𝑐𝑎,𝑖,𝑟,𝐴 ∈ 𝐵𝒞3
𝒜,𝒪 for some concept name 𝐵, then 𝒪 ⊧ 𝐴 ⊓ ∃𝑟−.⊤ ⊑ 𝐵. We aim to show

that 𝑡𝑟𝑀 ∈ 𝐵𝒰𝒜,𝒪. If 𝑡 = 𝑎 ∈ ind(𝒜), then 𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑎) and 𝑀 must be maximal
with this condition. Since 𝐴 ∈ 𝑀 and 𝒪 ⊧ 𝐴 ⊓ ∃𝑟−.⊤ ⊑ 𝐵, it follows that 𝐵 ∈ 𝑀 and
therefore, 𝑡𝑟𝑀 ∈ 𝐵𝒰𝒜,𝒪. If 𝑡 = 𝑡′𝑟′𝑀′ is a proper trace, then 𝒪 ⊧ ⨅ 𝑀′ ⊑ ∃𝑟. ⨅ 𝑀
and 𝑀 must be maximal with this condition. Since 𝐴 ∈ 𝑀 and 𝒪 ⊧ 𝐴 ⊓ ∃𝑟−.⊤ ⊑ 𝐵,
it follows that 𝐵 ∈ 𝑀.

If (𝑐𝑎,𝑖,𝑟,𝐴, 𝑐𝑏,𝑗,𝑟′,𝐵) ∈ 𝑠𝒞
3
𝒜,𝒪 for some role name 𝑠, then 𝑟′ = 𝑠 by definition of 𝒞3

𝒜,𝒪. We
aim to show that there is an 𝑡𝑟𝑀𝑟′𝑀′ ∈ Δ𝒰𝒜,𝒪 such that (𝑡𝑟𝑀, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑟′𝒰𝒜,𝒪 and
(𝑐𝑏,𝑗,𝑟′,𝐵, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑆. From the definition of 𝒞3

𝒜,𝒪 it follows that 𝒪 ⊧ 𝐴 ⊓ 𝐶𝑟 ⊑ ∃𝑟′.𝐵.
Since, as argued above, ∅ ⊧ ⨅ 𝑀 ⊑ 𝐴⊓𝐶𝑟, there is a set 𝑀′ such that 𝑀 ⇝𝑟′

𝒪 𝑀′ and
𝐵 ∈ 𝑀′. Therefore, there is a trace 𝑡𝑟𝑀𝑟′𝑀′ ∈ Δ𝒰𝒜,𝒪 with (𝑡𝑟𝑀, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑟′𝒰𝒜,𝒪

and (𝑐𝑏,𝑗,𝑟′,𝐵, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑆.

Most importantly, Lemma 5.27 can be used to show that 𝒞3
𝒜,𝒪, 𝑎 ⪯ℰℒ 𝒰𝒜,𝒪, 𝑎 for

all 𝑎 ∈ ind(𝒜). Using the properties of CQcsf queries, we now show that 𝒞3
𝒜,𝒪 is a

CQcsf-universal model of 𝒜 and 𝒪.

Lemma 5.28. Let 𝒜 be an ABox and 𝒪 an ℰℒ𝑟 ontology in normal form. Then,

1. 𝒞3
𝒜,𝒪 is a model of 𝒜 and 𝒪;

2. for every 𝑘-ary 𝑞(𝑥) ∈ CQcsf and 𝑎 ∈ ind(𝒜)𝑘, 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎).

 Proof. Point 1 follows from the definition of 𝒞3
𝒜,𝒪, details are omitted. For Point 2,

let 𝑞(𝑥) be a 𝑘-ary CQcsf query and 𝑎 ∈ ind(𝒜)𝑘. We have to show that 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎)

if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎). For the first direction, assume that 𝒜, 𝒪 ⊧ 𝑞(𝑎). By

122

5.3 Learning under ℰℒ𝑟 Ontologies

Lemma 3.5, it follows that 𝒰𝒜,𝒪 ⊧ 𝑞(𝑎). Since there is a homomorphism from 𝒰𝒜,𝒪
to 𝒞3

𝒜,𝒪 that is the identity on ind(𝒜), 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎). For the second direction, assume

that 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎). Then, there is a homomorphism ℎ from 𝑞 to 𝒞3

𝒜,𝒪 with ℎ(𝑥) = 𝑎. In
what follows, we construct a homomorphism 𝑔 from 𝑞 to 𝒰𝒜,𝒪 with 𝑔(𝑥) = 𝑎. Thus,
𝒜, 𝒪 ⊧ 𝑞(𝑎) as required.

To start the definition of 𝑔, set 𝑔(𝑥) = ℎ(𝑥) whenever ℎ(𝑥) ∈ ind(𝒜). It follows from
the construction of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪 that 𝑔 is a homomorphism from 𝑞 restricted to
the domain of 𝑔 to 𝒰𝒜,𝒪.

Because of Lemma 5.24, if a variable 𝑥 occurs on a cycle of length 1 or 2 in 𝑞,
then 𝑔(𝑥) is now defined. We next define 𝑔(𝑥) for all variables 𝑥0 that are on a
cycle 𝑅0(𝑥0, 𝑥1), 𝑅1(𝑥1, 𝑥2), 𝑅2(𝑥2, 𝑥0) of length 3 in 𝑞. Assume that 𝑔(𝑥0) was not yet
defined. It then follows from Lemma 5.24 that ℎ(𝑥1) = ℎ(𝑥2) ∈ ind(𝒜), and thus 𝒜
contains a reflexive 𝑅1-cycle on ℎ(𝑥1), 𝑅0 = 𝑅−

2 , and ℎ(𝑥0) ∉ ind(𝒜). Let ℎ(𝑥1) = 𝑎.
By construction of 𝒞3

𝒜,𝒪, ℎ(𝑥0) = 𝑐𝑎,0,𝑟,𝐴 for some 𝐴 and where 𝑟 = 𝑅0 if 𝑅0 is a role
name and 𝑟 = 𝑅2 otherwise. Then there must be a set 𝑀 with 𝐴 ∈ 𝑀 such that
𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑎). If there is a 𝑏 ∈ ind(𝒜) with 𝑟(𝑎, 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏), then
set 𝑔(𝑥0) = 𝑏. Otherwise, there is a trace 𝑎𝑟𝑀 ∈ Δ𝒰𝒜,𝒪. Set 𝑔(𝑥0) = 𝑎𝑟𝑀. After this
extension, 𝑔 is a homomorphism from the restriction of 𝑞 to the (now extended)
domain of 𝑔 to 𝒰𝒜,𝒪. This is easily seen to be a consequence of the definition of the
extension and of the construction of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪.
At this point, 𝑔(𝑥) is defined for all variables 𝑥 that occur on a cycle in 𝑞. Assume

that 𝑥 is such a variable. If 𝑥 is an answer variable, then 𝑔(𝑥) is clearly already
defined. Otherwise, chordality of 𝑞 implies that 𝑥 also occurs on a cycle of length at
most 3 and thus 𝑔(𝑥) has been defined above. It remains to define 𝑔(𝑥) for variables
𝑥 that do not occur on a cycle.

We begin by mapping certain symmetries in 𝑞. Let 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) be a symmetry
such that 𝑔(𝑥) is undefined and there is an atom 𝑠(𝑦𝑖, 𝑦𝑖) for some 𝑖 ∈ {1, 2}. Then
𝑔(𝑦𝑖) must be defined, ℎ(𝑦𝑖) ∈ ind(𝒜), and by definition of 𝒞3

𝒜,𝒪, ℎ(𝑦1) = ℎ(𝑦2). Hence,
𝑔(𝑦𝑗) must be defined for 𝑗 ∈ {1, 2} and ℎ(𝑥) = 𝑐ℎ(𝑦𝑖),0,𝑟,𝐴 for some concept name 𝐴.
Then, as above, there must be a set 𝑀 with 𝐴 ∈ 𝑀 such that 𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(ℎ(𝑦𝑖)).
If there is a 𝑏 ∈ ind(𝒜) with 𝑟(ℎ(𝑦𝑖), 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏), then set 𝑔(𝑥) = 𝑏.
Otherwise, there is a trace ℎ(𝑦𝑖)𝑟𝑀 ∈ Δ𝒰𝒜,𝒪. Set 𝑔(𝑥) = 𝑔(𝑦𝑖)𝑟𝑀.

We continue by mapping the rest of 𝑞. Let 𝑞′ be the subquery of 𝑞 consisting of
all atoms that contain at least one variable 𝑥 with 𝑔(𝑥) undefined at this point. We
make four observations about 𝑞′.

1. Observe that no atom in 𝑞′ is part of a cycle, as otherwise 𝑔 would already be
defined for both variables of this atom.

2. If 𝑔(𝑥) is defined for some variable 𝑥, then 𝑞′ contains no atom 𝑟(𝑦, 𝑥).

123

5 Learning with Membership and Equivalence Queries

To ascertain this, assume that there is such an atom. Then 𝑔(𝑦) must be
undefined by choice of 𝑞′, and ℎ(𝑦) ∉ ind(𝒜). Since 𝑔(𝑥) is defined, ℎ(𝑥) ∈
ind(𝒜) or ℎ(𝑥) is of the shape 𝑐𝑎,0,𝑠,𝐴. But by definition of 𝒞3

𝒜,𝒪, no 𝑎 ∈ ind(𝒜)
and no element of shape 𝑐𝑎,0,𝑠,𝐴 has a predecessor that is not in ind(𝒜), hence
ℎ cannot be a homomorphism, a contradiction.

3. If 𝑞′ contains atoms 𝑟1(𝑦1, 𝑥), 𝑟2(𝑦2, 𝑥), then 𝑟1 = 𝑟2.
By the previous observation, 𝑔(𝑥) must be undefined, hence ℎ(𝑥) ∉ ind(𝒜).
Therefore, ℎ(𝑥) = 𝑐𝑎,𝑖,𝑟,𝐴 for some 𝑎, 𝑖, 𝑟, 𝐴. But by construction of 𝒞3

𝒜,𝒪, 𝑐𝑎,𝑖,𝑟,𝐴
only has 𝑟-predecessors and since ℎ is a homomorphism, 𝑟1 = 𝑟2 = 𝑟.

4. 𝑞′ does not contain any symmetry.
Assume that there is a symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑞 with 𝑦1 ≠ 𝑦2. Since 𝑞 is
symmetry-free, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) must be a safe symmetry in 𝑞. By the previous
observation, 𝑔(𝑥) cannot yet be defined. Hence, 𝑥 is not an answer variable, no
atom of the symmetry is part of a cycle, and there is no atom 𝑠(𝑥, 𝑥) ∈ 𝑞. If there
is an atom 𝑠(𝑦1, 𝑦1) ∈ 𝑞 or 𝑠(𝑦2, 𝑦2) ∈ 𝑞, then 𝑔(𝑥) was already defined earlier.
Thus, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) must be a safe symmetry for the reason that 𝑥 consists of
a single answer variable 𝑧 with dist𝑞(𝑧, 𝑥) + 1 = dist𝑞(𝑧, 𝑦1) = dist𝑞(𝑧, 𝑦2).
This implies, that there is a simple path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) in 𝑞 with
𝑥1 = 𝑧, 𝑥𝑛+1 = 𝑥 and 𝑥𝑛 ∉ {𝑦1, 𝑦2}. By construction of 𝒞3

𝒜,𝒪, either 𝑅𝑛 = 𝑟 or
𝑅𝑛 = 𝑠− for some role name 𝑠. If 𝑅𝑛 = 𝑟, then the atoms 𝑅𝑛(𝑥𝑛, 𝑥), 𝑟(𝑦1, 𝑥) form
another symmetry. Since 𝑔(𝑥) is undefined, and dist𝑞(𝑧, 𝑥𝑛)+1 = dist𝑞(𝑧, 𝑥), this
is not a safe symmetry, which contradicts that 𝑞 is symmetry-free. Hence, 𝑅𝑛
must be an inverse role 𝑠− for some role name 𝑠. This means that if ℎ(𝑥𝑛+1) =
𝑐𝑎,𝑖,𝑟,𝐴 for some 𝑎, 𝑖, and 𝐴, then ℎ(𝑥𝑛) = 𝑐𝑎,𝑖⊕1,𝑠,𝐵.
Consider how ℎ maps the path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) into 𝒞3

𝒜,𝒪. There must
be an 𝑖 such that ℎ(𝑥𝑖) = 𝑎 and ℎ(𝑥𝑖+1) = 𝑐𝑎,0,𝑅𝑖,𝐴 for some 𝐴 and 𝑎 ∈ ind(𝒜) and
𝑔(𝑥𝑗) is undefined for every 𝑗 > 𝑖 + 1. By definition of 𝒞3

𝒜,𝒪 it thus must be the
case that there is some 𝑗 > 𝑖 such that 𝑅𝑗 is a role and 𝑅𝑗+1 = 𝑅−

𝑗 . This makes
𝑅𝑗(𝑥𝑗, 𝑥𝑗+1), 𝑅𝑗+1(𝑥𝑗+1, 𝑥𝑗+2) a symmetry in 𝑞. We argue that this symmetry is
not safe, leading to a contradiction. First, since 𝑔(𝑥𝑗+1) is undefined, 𝑥𝑗+1 is
not an answer variable, no atom occurs on a cycle and there is no atom 𝑠(�̂�, �̂�)
for some �̂� ∈ {𝑥, 𝑦1, 𝑦2}. Then, the path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑗(𝑥𝑗, 𝑥𝑗+1) witnesses that
dist𝑞(𝑧, 𝑥𝑗+1) ≠ ∞ and that dist𝑞(𝑧, 𝑥𝑗) < dist𝑞(𝑧, 𝑥𝑗+1). Therefore, there cannot
be a symmetry in 𝑞′.

Using these observations about 𝑞′, we conclude that 𝑞′ is a disjoint union of
directed trees such that if 𝑔(𝑥) is defined for a variable 𝑥 in 𝑞′, then 𝑥 is the root of a
directed tree. We next extend 𝑔 to the entirety of 𝑞 by traversing the directed trees

124

5.3 Learning under ℰℒ𝑟 Ontologies

in 𝑞′ in a top-down fashion. The initial piece of 𝑔 constructed so far is such that for
all variables 𝑥, ℎ(𝑥) = 𝑐𝑎,𝑖,𝑟,𝐴 implies that 𝑔(𝑥) is a proper trace of the form 𝑡𝑟𝑀 with
𝐴 ∈ 𝑀 or a 𝑏 ∈ ind(𝒜) with 𝒜, 𝒪 ⊧ 𝐴(𝑏). We shall maintain this invariant during
the extension of 𝑔. To extend 𝑔 to all variables of 𝑞, repeatedly and exhaustively
choose atoms 𝑟(𝑥, 𝑦) ∈ 𝑞′ with 𝑔(𝑥) defined and 𝑔(𝑦) undefined. By the construction
of 𝑔 so far, ℎ(𝑦) ∉ ind(𝒜) and thus ℎ(𝑦) has the form 𝑐𝑎,𝑖,𝑟,𝐴. If 𝑔(𝑥) ∈ ind(𝒜), then
𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑔(𝑥)) for some set 𝑀 with 𝐴 ∈ 𝑀. If then there is a 𝑏 ∈ ind(𝒜)
with 𝑟(𝑔(𝑥), 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏), set 𝑔(𝑦) = 𝑏. Otherwise, there is a trace
𝑔(𝑥)𝑟𝑀 ∈ Δ𝒰𝒜,𝒪. Set 𝑔(𝑦) = 𝑔(𝑥)𝑟𝑀. If 𝑔(𝑥) is a proper trace, map 𝑔(𝑦) to a trace
𝑔(𝑥)𝑟𝑀 that exists by Lemma 5.27.

It remains to verify that 𝑔 is a homomorphism. If ℎ(𝑥) ∈ ind(𝒜), then it follows
immediately from the definition of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪 that (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑟𝒞
3
𝒜,𝒪 implies

(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝒜,𝒪. If ℎ(𝑥) ∉ ind(𝒜), we need to additionally invoke Lemma 5.27,
applied to ℎ(𝑥) = 𝑐𝑎,𝑖,𝑟,𝐴 and to 𝑔(𝑥) = 𝑡𝑟𝑀. Therefore, 𝑔 satisfies all binary atoms
in 𝑞′ and thus in 𝑞. All unary atoms are satisfied, too, because of the invariant
mentioned above and by definition of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪.

Generalization Sequences of Unrestricted CQs

With 𝒞3
𝒜,𝒪 we have defined a suitable finite CQcsf-universal model to update a

hypothesis 𝑞𝐻 with a counterexample (𝒜, 𝑎) under an ℰℒ𝑟 ontology. Constructing the
direct product 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪 allows us to obtain a new hypothesis 𝑞′𝐻 that generalizes

𝑞𝐻 and further approaches the target query 𝑞𝑇. In Chapter 4, we used generalization
sequences to argue that a sequence of such hypotheses must arrive at 𝑞𝑇 after a
polynomial number of steps, even under ℰℒℐℋℱ⊥ ontologies. Unfortunately,
Theorem 4.35 does not hold for CQcsf queries that are not rooted, as Example 4.36
demonstrates. For the purposes of this chapter, however, it suffices for sequences of
hypotheses to be polynomially bounded under ℰℒ𝑟 ontologies. We show that this
is the case.

In Chapter 4 a central ingredient for achieving polynomial time learning was
Lemma 4.20 which connects (𝑞𝑇, 𝒪)-minimality to the image of homomorphisms. If
𝑞𝑇 is not rooted, then Lemma 4.20 no longer holds.

Example 5.29. Consider the Boolean CQs 𝑞𝑇() ← 𝐴(𝑥), and 𝑞() ← 𝐵(𝑦) as well as
the ontology 𝒪 = {𝐵 ⊑ ∃𝑟.𝐴}. Then 𝑞 ⊆𝒪 𝑞𝑇 and 𝑞 is (𝑞𝑇, 𝒪)-minimal, but 𝑦 ∈ var(𝑞)
is not in the image of any homomorphism from 𝑞𝑇 to 𝒰𝑞,𝒪.

Fortunately, under ℰℒ𝑟 ontologies, a weaker version of Lemma 4.20 holds even for
unrestricted CQs, that is, also for CQs that are not rooted. This version suffices to
bound the length of sequences of (𝑞𝑇, 𝒪)-minimal queries. Let 𝒪 be an ℰℒ𝑟 ontology

125

5 Learning with Membership and Equivalence Queries

in normal form, 𝑝, 𝑞 CQs and ℎ a homomorphism from 𝑝 to 𝒰𝑞,𝒪. We define a
function ℎ∗ from var(𝑝) to var(𝑞) by setting ℎ∗(𝑦) = 𝑥 for all 𝑦 ∈ var(𝑝) if ℎ(𝑦) is a trace
that starts with 𝑥 ∈ var(𝑞).

Lemma 5.30. Let 𝒪 be an ℰℒ𝑟 ontology in normal form, 𝑝(𝑦) and 𝑞(𝑥) CQs such that 𝑞
is (𝑝, 𝒪)-minimal. If ℎ is a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑦) = 𝑥, then var(𝑞) ⊆
img(ℎ∗).

 Proof. The proof is similar to the proof of Lemma 4.20.Let ℎ be a homomorphism
as required and assume for the sake of showing a contradiction that there is an
𝑥 ∈ var(𝑞) such that there is no 𝑦 ∈ var(𝑝) with ℎ∗(𝑦) = 𝑥. Let 𝑞′ = 𝑞−𝒪𝑥. We show that
ℎ is also a homomorphism from 𝑝 to 𝒰𝑞′,𝒪 with ℎ(𝑦) = 𝑥, witnessing 𝑞′ ⊆𝒪 𝑝 which
contradicts that 𝑞 is (𝑝, 𝒪)-minimality.

First, note that by definition of ℎ∗ and choice of 𝑥, there is no variable 𝑦 ∈ var(𝑝)
that is mapped by ℎ to a trace starting with 𝑥 in 𝒰𝑞,𝒪. Let 𝑥′𝑅𝑀 be a trace of
length one in 𝒰𝑞,𝒪 with 𝑥′ ≠ 𝑥. By construction of 𝒰𝑞,𝒪 and normal form of 𝒪, the
existence of 𝑥′𝑅𝑀 implies that there is a concept name 𝐴 such that 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑥′)
and 𝒪 ⊧ 𝐴 ⊑ ∃𝑅.⊤. By construction of 𝑞′ it follows that 𝒜𝑞′, 𝒪 ⊧ 𝐴(𝑥′) and hence,
𝑥′𝑅𝑀 is also a trace in 𝒰𝑞′,𝒪. Therefore, all traces in 𝒰𝑞,𝒪 that do not start with 𝑥′
also occur in 𝒰𝑞′,𝒪 and ℎ is a well-defined function from 𝑝 to 𝒰𝑞′,𝒪.

Let 𝐴(𝑦) be a concept atom in 𝑝. Since ℎ(𝑦) ∈ 𝐴𝒰𝑞,𝒪 and ℎ(𝑦) is not a trace starting
with 𝑥, the construction of 𝑞′ implies that ℎ(𝑦) ∈ 𝐴𝒰𝑞′,𝒪. Let 𝑟(𝑦, 𝑦′) be a role atom in
𝑝. Since ℎ(𝑦) and ℎ(𝑦′) both are not traces starting with 𝑥, (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞,𝒪 implies
that (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞′,𝒪. Therefore, ℎ is a homomorphism as required.

From Lemma 5.30, we also directly obtain an equivalent of Lemma 4.21 for
disconnected queries that will be useful later.

Lemma 5.31. Let 𝒪 be an ℰℒ𝑟 ontology in normal form and 𝑞(𝑥0) a CQ that is (𝑞, 𝒪)-
minimal. For all homomorphisms ℎ from 𝑞 to 𝒰𝑞,𝒪 with ℎ(𝑥0) = 𝑥0, var(𝑞) = img(ℎ∗).

Using Lemma 5.30 we can now show that under ℰℒ𝑟 ontologies, even the length
of generalization sequences of unrestricted CQs is bounded by a polynomial.

Theorem 5.32. Let 𝑞𝑇 be a CQ (that is possibly not rooted) and 𝒪 an ℰℒ𝑟 ontology in
normal form, and let 𝑞1, 𝑞2, … be a generalization sequence towards 𝑞𝑇 under 𝒪. If all 𝑞𝑖 are
(𝑞𝑇, 𝒪)-minimal, then the sequence has length at most 𝑝(|var(𝑞𝑇)| + |sig(𝒪)| + |sig(𝑞1)|) for
some fixed polynomial 𝑝.

 Proof. This proof is similar to the one of Theorem 4.35, but does additional steps to
handle queries that are not rooted.

126

5.3 Learning under ℰℒ𝑟 Ontologies

First, let 𝑞𝑖(𝑥𝑖) be any element of the sequence. Since 𝑞𝑖 ⊆𝒪 𝑞𝑇, there is a ho
momorphism ℎ from 𝑞𝑇 to 𝒰𝑞𝑖,𝒪 with ℎ(𝑥) = 𝑥𝑖. Lemma 5.30 then implies that
var(𝑞𝑖) ⊆ img(ℎ∗). As |img(ℎ∗)| ≤ |var(𝑞𝑇)|, it follows that |var(𝑞𝑖)| ≤ |var(𝑞𝑇)|.

Since for all 𝑖, 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 by definition of generalization sequences, we fix homo
morphisms ℎ𝑖 from 𝑞𝑖+1 to 𝒰𝑞𝑖,𝒪 with ℎ(𝑥𝑖+1) = 𝑥𝑖.

Assume that for some 𝑞𝑖, there is an 𝑥 ∈ var(𝑞𝑖) with 𝑥 ∉ img(ℎ∗𝑖) and let ℎ′𝑖 be the
extension of ℎ𝑖 to a homomorphism from 𝒰𝑞𝑖+1,𝒪 to 𝒰𝑞𝑖,𝒪 with ℎ′𝑖 (𝑥𝑖+1) = 𝑥𝑖 which
exists by Lemma 3.8. Analogously to the proof of Theorem 4.35, we construct a
homomorphism ℎ″𝑖 from 𝒰𝑞𝑖+1,𝒪 to 𝒰𝑞

−𝒪𝑥
𝑖 ,𝒪 with ℎ″𝑖 (𝑥𝑖+1) = 𝑥𝑖 and compose it with a

homomorphism from 𝑞𝑇 to 𝒰𝑞𝑖+1,𝒪 to obtain a contradiction to (𝑞𝑇, 𝒪)-minimality of
𝑞𝑖.

Therefore, var(𝑞𝑖) ⊆ img(ℎ∗𝑖) and |var(𝑞𝑖)| ≤ |var(𝑞𝑖+1)| for all 𝑖. We thus focus on
subsequences 𝑞ℓ, … , 𝑞𝑘 such that |var(𝑞ℓ)| = ⋯ = |var(𝑞𝑘)| in order to show that the
length of the entire generalization sequence is bounded. Note that for all 𝑖 with
ℓ ≤ 𝑖 < 𝑘, the mapping ℎ∗𝑖 is a bijection between var(𝑞𝑖+1) and var(𝑞𝑖). With 𝑉𝑖 we
denote the set of all existential variables 𝑥 ∈ var(𝑞𝑖) which do not occur in a role
atom in 𝑞𝑖, and define 𝑈𝑖 = var(𝑞𝑖) ⧵ 𝑉𝑖. Let us further denote with 𝑞𝑥 the restriction
𝑞|{𝑥} of a query 𝑞 to a single variable 𝑥 ∈ var(𝑞). Using these sets, 𝑞𝑖 can be written as

𝑞𝑖(𝑥𝑖) ← 𝑞𝑖|𝑈𝑖 ∧ �
𝑥∈𝑉𝑖

𝑞𝑥𝑖 .

By definition, each 𝑞𝑥𝑖 , 𝑥 ∈ 𝑉𝑖 is a query without answer variables, as all answer
variables are in 𝑈𝑖.

Claim 1. 𝑥 ∈ 𝑈𝑖+1 implies ℎ∗𝑖 (𝑥) ∈ 𝑈𝑖.

 Proof of Claim 1. Let 𝑥 ∈ 𝑈𝑖+1. If 𝑥 is an answer variable, then ℎ𝑖(𝑥) = ℎ∗𝑖 (𝑥) is an
answer variable and thus in 𝑈𝑖. Suppose now that there is a role atom 𝑅(𝑥, 𝑦) in 𝑞𝑖+1
and consider the pair (ℎ𝑖(𝑥), ℎ𝑖(𝑦)) ∈ 𝑅𝒰𝑞𝑖,𝒪 which exists since ℎ𝑖 is a homomorphism.
Since ℎ∗𝑖 is a bijection, either 𝑦 = 𝑥 or ℎ∗𝑖 (𝑦) ≠ ℎ∗𝑖 (𝑥).

• In the first case, we obtain 𝑅(𝑧, 𝑧) ∈ 𝒰𝑞𝑖,𝒪 for 𝑧 = ℎ𝑖(𝑥) = ℎ𝑖(𝑦). The definition
of 𝒰𝑞𝑖,𝒪 yields 𝑧 ∈ var(𝑞𝑖), 𝑅(𝑧, 𝑧) occurs in 𝑞𝑖, and ℎ∗𝑖 (𝑥) = ℎ𝑖(𝑥) ∈ 𝑈𝑖.

• In the second case, we obtain ℎ∗𝑖 (𝑥) = ℎ𝑖(𝑥) ∈ var(𝑞𝑖), ℎ∗𝑖 (𝑦) = ℎ𝑖(𝑦) ∈ var(𝑞𝑖) using
the definition of ℎ∗𝑖 , and 𝑅(ℎ𝑖(𝑥), ℎ𝑖(𝑦)) occurs in 𝑞𝑖. Hence, ℎ∗𝑖 (𝑥) ∈ 𝑈𝑖.

This completes the proof of Claim 1.

Claim 1 together with ℎ∗𝑖 being a bijection implies |𝑈𝑖+1| ≤ |𝑈𝑖| for every 𝑖 ∈ {ℓ, … , 𝑘}.
We now consider subsequences 𝑞𝑚, … , 𝑞𝑛 of 𝑞ℓ, … , 𝑞𝑘 with |𝑈𝑚| = ⋯ = |𝑈𝑛| and thus
|𝑉𝑚| = ⋯ = |𝑉𝑛|. Since |𝑈𝑖| ≤ |var(𝑞𝑇)|, for all 𝑖, it suffices to show that the length of
such a sequence is bounded by a polynomial in |var(𝑞𝑇)| and |sig(𝒪)|.

127

5 Learning with Membership and Equivalence Queries

Claim 2. For every 𝑖 ∈ {𝑚, … , 𝑛 − 1},

1. ℎ∗𝑖 is a bijection between 𝑉𝑖+1 and 𝑉𝑖, and

2. ℎ𝑖 is a bijection between 𝑈𝑖+1 and 𝑈𝑖.

 Proof of Claim 2. Point 1 is a consequence of Claim 1 as well as the facts that |𝑉𝑖| =
|𝑉𝑖+1| and ℎ∗𝑖 is a bijection between var(𝑞𝑖+1) and var(𝑞𝑖).

For showing Point 2, assume for contradiction that there is some 𝑥 ∈ 𝑈𝑖 such
that for every 𝑦 ∈ 𝑈𝑖+1, 𝑥 ≠ ℎ𝑖(𝑦). Then, since ℎ∗𝑖 is a bijection, there must be some
𝑦 ∈ var(𝑞𝑖+1) such that ℎ∗𝑖 (𝑦) = 𝑥 and ℎ𝑖(𝑦) is strictly within the subtree rooted at 𝑥 in
𝒰𝑞𝑖,𝒪, and this 𝑦 is unique. We consider the following cases.

If 𝑦 ∈ 𝑉𝑖+1, then 𝑥 ∈ 𝑉𝑖 by the first point, a contradiction. If 𝑦 is an answer variable,
then ℎ𝑖(𝑦) is an answer variable, not a proper trace within the subtree rooted at 𝑥, a
contradiction. If 𝑦 ∈ 𝑈𝑖+1 and 𝑦 is not an answer variable, there must be an atom
𝑅(𝑦, 𝑧) ∈ 𝑞𝑖+1. Since ℎ𝑖(𝑦) is strictly below 𝑥, this leads to a contradiction as follows.
If 𝑧 ≠ 𝑦, then ℎ∗𝑖 (𝑧) = ℎ∗𝑖 (𝑦) contradicts the fact that ℎ∗𝑖 is a bijection. If, on the other
hand, 𝑧 = 𝑦, then ℎ𝑖 is not a homomorphism since there is no self-loop 𝑅(ℎ𝑖(𝑦), ℎ𝑖(𝑦))
in 𝒰𝑞𝑖,𝒪, by definition of universal models. This completes the proof of Claim 2.

Sanctioned by the first point in Claim 2, in what follows we assume for the sake
of readability that ℎ∗𝑖 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑉𝑖+1 and 𝑖 ∈ {𝑚, … , 𝑛}. Hence, 𝑉𝑚 = ⋯ = 𝑉𝑛.
Now, observe that since 𝑞𝑖+1 ⊈𝒪 𝑞𝑖, for all 𝑖 ∈ {𝑚, … , 𝑛 − 1} one of the following must
be the case:

1. the inverse of ℎ𝑖 is not a homomorphism from 𝒰𝑞𝑖,𝒪|𝑈𝑖 to 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1;

2. there is some 𝑥 ∈ 𝑉𝑖+1 such that 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 .

Indeed, if neither Point 1 nor Point 2 is satisfied then 𝑞𝑖 ≡𝒪 𝑞𝑖+1, in contradiction to
the definition of generalization sequences. It thus remains to bound the number of
times each of these points can be satisfied along 𝑞𝑚, … , 𝑞𝑛. For a finite interpretation
ℐ we mean the number of occurrences of concept and role names to refer to

�
𝐴∈NC

|𝐴ℐ| + �
𝑟∈NR

|𝑟ℐ|.

The following two claims bound Point 1 and Point 2, respectively.

Claim 3. The number of 𝑖 ∈ {𝑚, … , 𝑛}, such that the inverse of ℎ𝑖 is not a homomor
phism from 𝒰𝑞𝑖,𝒪|𝑈𝑖 to 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1, is at most 2 ⋅ |var(𝑞𝑇)|2 ⋅ (|sig(𝒪)| + |sig(𝑞1)|).

 Proof of Claim 3. Let 𝑖 be as in the claim. By Point 2 of Claim 2, ℎ𝑖 is a bijective
homomorphism from 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1 to 𝒰𝑞𝑖,𝒪|𝑈𝑖. Hence, the number 𝑛𝑖+1 of occurrences

128

5.3 Learning under ℰℒ𝑟 Ontologies

of concept and role names in 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1 is at most the number 𝑛𝑖 of occurrences of
concept and role names in 𝒰𝑞𝑖,𝒪|𝑈𝑖. As the inverse of ℎ𝑖 is not a homomorphism, we
have 𝑛𝑖+1 < 𝑛𝑖. Since the number of occurrences of concept and role names in 𝒰𝑞𝑖,𝒪
is bounded by

(|sig(𝒪)| + |sig(𝑞1)|) ⋅ |var(𝑞𝑇)|2 + (|sig(𝒪)| + |sig(𝑞1)|) ⋅ |var(𝑞𝑇)|,

the claim follows. This completes the proof of Claim 3.

Claim 4. Let 𝑥 ∈ 𝑉𝑚. The number of 𝑖 ∈ {𝑚, … , 𝑛 − 1} such that 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 is at most
(|sig(𝒪)| + |sig(𝑞1)|)

2.

 Proof of Claim 4. Let 𝑖 ∈ {𝑚, … , 𝑛 − 1} with 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 . We distinguish two cases.

(A) ℎ𝑖(𝑥) = 𝑥.

Since ℎ𝑖 is a homomorphism, the number 𝑛𝑖+1 of occurrences of concept and
role names 𝒰𝑥

𝑞𝑖+1,𝒪 is at most the number 𝑛𝑖 of occurrences of concept and role
names in 𝒰𝑥

𝑞𝑖,𝒪. From 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 , it follows that 𝑛𝑖+1 < 𝑛𝑖.

(B) ℎ𝑖(𝑥) ≠ 𝑥, that is, ℎ𝑖(𝑥) is strictly within the subtree below 𝑥.

By definition of the universal model and since 𝒪 is an ℰℒ𝑟 ontology in normal
form, there is an atom 𝐴(𝑥) in 𝑞𝑥𝑖 such that there is a homomorphism from 𝑞𝑥𝑖+1
to 𝒰{𝐴(𝑎)},𝒪. We claim that 𝐴(𝑥) is not an atom in any query 𝑞𝑥𝑗 with 𝑖 < 𝑗 ≤ 𝑛−1.
Indeed, if 𝐴(𝑥) occurs in 𝑞𝑥𝑗 for such 𝑗, then 𝑞𝑥𝑗 ⊆𝒪 𝑞𝑥𝑖+1. The homomorphisms
ℎ𝑖, … , ℎ𝑗 witness that 𝑞𝑥𝑖 ⊆𝒪 𝑞𝑥𝑖+1 ⊆𝒪 ⋯ ⊆𝒪 𝑞𝑥𝑗 , and thus all these queries are
actually equivalent, in contradiction to the choice of 𝑖.

Observe that Point (A) can only happen |sig(𝒪)| + |sig(𝑞1)| times, without Point (B)
happening in between. Moreover, Point (B) can only happen |sig(𝒪)| times overall.
This completes the proof of Claim 4.

Since |𝑉𝑚| ≤ |var(𝑞𝑇)|, we obtain from Claims 3 and 4 that the length of the
sequence 𝑞𝑚, … , 𝑞𝑛 is bounded by a polynomial in |var(𝑞𝑇)|, |sig(𝒪)|, and |sig(𝑞1)|.

As seen in Example 4.36 and the proof of Theorem 5.32, Boolean components of
queries that are mapped into proper traces of the universal model have the potential
to cause long generalization sequences. Fortunately, the universal model of ℰℒ𝑟

ontologies is simple enough such that even sequences of CQs that are not rooted
must approach 𝑞𝑇 after a polynomial number of steps.

129

5 Learning with Membership and Equivalence Queries

Extracting Chordal and Symmetry-free CQs

It remains to describe how a new hypothesis can be extracted from 𝒞𝑞𝐻,𝒪 × 𝒞𝒜,𝒪,
that belongs to the desired query class. In Section 4.5, we defined the subroutine
extractELIQ to obtain a new ELIQ hypothesis from an arbitrary CQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇
using membership queries. For learning ELIQsf or CQcsf queries, extractELIQ does
not suffice, as the result of extractELIQ may contain non-safe symmetries, and chordal
cycles are removed. We thus need a new subroutine that obtains a hypothesis from
ELIQsf or CQcsf by properly handling symmetries, chordal cycles and queries of
higher arity.

As we will see, handling non-unary CQs is not trivial. The subroutine that we
define in this section will only handle CQs of fixed (but arbitrary) arity. We write
CQcsf

𝑤 with 𝑤 ≥ 0 to refer to the class of CQcsf queries with exactly 𝑤 answer variables.
For every class 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf

𝑤 ∣ 𝑤 ≥ 0}, we define a subroutine
extract𝒬. It takes as input the ontology 𝒪 and a CQ 𝑞(𝑥) of the right arity such that
𝑞 ⊆𝒪 𝑞𝑇 and produces a query 𝑝(𝑦) ∈ 𝒬 such that 𝑞 ⊆𝒪 𝑝 ⊆𝒪 𝑞𝑇 and 𝑝 is (𝑞𝑇, 𝒪)-
minimal. To describe the workings of extract𝒬, we define the notion of a forbidden
cycle, depending on the query class 𝒬. If 𝒬 ∈ {ELQ,ELIQsf}, then every cycle is
forbidden. If 𝒬 = CQcsf

𝑤 for some 𝑤 ≥ 0, then every chordless cycle of length at least
four that contains at least one existential variable is forbidden.

The subroutine extract𝒬 starts by setting 𝑝(𝑦) = minimize𝒪(𝑞) and then exhaus
tively applies the following operations.

Expand cycle. Choose a forbidden cycle 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥1) in 𝑝, and introduce
fresh variables 𝑥′1, … , 𝑥′𝑛. Then

1. remove all atoms of the form 𝑅(𝑥𝑛, 𝑥1),
2. add the atom 𝐴(𝑥′𝑖) for all 𝐴(𝑥𝑖) ∈ 𝑝 and 1 ≤ 𝑖 ≤ 𝑛,
3. add 𝑅(𝑥′𝑖 , 𝑦) for all 𝑅(𝑥𝑖, 𝑦) ∈ 𝑝 with 1 ≤ 𝑖 ≤ 𝑛 and 𝑦 ∈ var(𝑝) ⧵ {𝑥1, … , 𝑥𝑛},
4. add 𝑅(𝑥′𝑖 , 𝑥′𝑗) for all 𝑅(𝑥𝑖, 𝑥𝑗) ∈ 𝑝 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and {𝑖, 𝑗} ≠ {1, 𝑛},
5. add 𝑅(𝑥𝑛, 𝑥′1) and 𝑅(𝑥′𝑛, 𝑥1) for all 𝑅(𝑥𝑛, 𝑥1) ∈ 𝑝.

Let 𝑌 be the set of tuples obtained from 𝑦 = (𝑦1, … , 𝑦𝑤) by replacing any
number of components 𝑦𝑗 with 𝑦′𝑗 . Use membership queries to identify a
𝑦′ ∈ 𝑌 such that 𝒜𝑝, 𝒪 ⊧ 𝑞𝑇(𝑦′). Use this tuple 𝑦′ as the new answer variables
of 𝑝. Apply minimize𝒪 to the result.

Split symmetry. Choose a symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑝(𝑦) that is not safe. Introduce
a fresh variable 𝑥′, add atoms 𝐴(𝑥′) for all 𝐴(𝑥) ∈ 𝑝 and 𝑆(𝑦, 𝑥′) for all atoms
𝑆(𝑦, 𝑥) ∈ 𝑝 with 𝑆(𝑦, 𝑥) ≠ 𝑟(𝑦1, 𝑥). Remove the atom 𝑟(𝑦2, 𝑥). Apply minimize𝒪
to the result.

130

5.3 Learning under ℰℒ𝑟 Ontologies

𝑝1

𝑟

𝑠
𝑡

𝑟𝑟

𝑝2

𝑟

𝑟

𝑠

𝑠

𝑡

𝑡𝑟

𝑟

𝑟

𝑟

Figure 5.7: An application of Expand cycle. The chosen cycle is marked in green.

𝑝1

𝐴
𝑟 𝑟

𝑠

𝑡

𝑝2

𝐴 𝐴
𝑟 𝑟

𝑠
𝑠

𝑡
𝑡

Figure 5.8: An application of Split symmetry. The chosen symmetry is marked in
green.

Note that the running time of Expand cycle and the number of membership queries
it performs depend exponentially on the arity of 𝑞𝑇. Expand cycle is not the same
operation as Double cycle from Section 4.5, as Expand cycle needs to be more careful
to preserve matches from CQcsf queries and handle non-unary queries. We refer to
the fresh variables 𝑥′1, … , 𝑥′𝑛 introduced by Expand cycle as copies of 𝑥1, … , 𝑥𝑛.

Example 5.33. Consider the CQ 𝑝1 displayed in Figure 5.7 and assume 𝒬 = ELIQsf.
It contains the cycle 𝑠(𝑥1, 𝑥2), 𝑟(𝑥2, 𝑥3), 𝑡(𝑥3, 𝑥1), which is forbidden for ELIQsf queries.
Applying Expand cycle to this cycle results in the CQ 𝑝2 displayed in Figure 5.7,
to which minimize𝒪 is then applied. Compared to the operation Double cycle in
Example 4.38, variables that are not on the cycle are not duplicated. This makes
some roles that were functional in 𝑝1 no longer functional in 𝑝2.

The exhaustive application of the second operation Split symmetry eliminates all
non-safe symmetries, and thus produces a symmetry-free query.

Example 5.34. The Boolean CQ 𝑝1 displayed in Figure 5.8 contains a non-safe
symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥). To eliminate it, Split symmetry first produces the CQ
𝑝2 displayed in Figure 5.8 and then applies minimize𝒪. Note that 𝑝2 contains a
new non-safe symmetry, namely 𝑠(𝑥, 𝑦3), 𝑠(𝑥′, 𝑦3). We later show that although new
symmetries can be created, Split symmetry can only be applied a polynomial number
of times.

131

5 Learning with Membership and Equivalence Queries

Before we show that extract𝒬 runs in polynomial time and that it indeed produces
a query from 𝒬, we first analyze the two operations that extract𝒬 applies. We begin
with Expand cycle.

Lemma 5.35. Let 𝑝 be a CQ and 𝑝′ the result of applying Expand cycle to 𝑝, but before
minimization. Then,

1. 𝑝′, 𝑥 ⪯ℰℒ 𝑝, 𝑥 and 𝑝, 𝑥 ⪯ℰℒ 𝑝′, 𝑥 for all 𝑥 ∈ var(𝑝), and

2. 𝑝′, 𝑥′ ⪯ℰℒ 𝑝, 𝑥 and 𝑝, 𝑥 ⪯ℰℒ 𝑝′, 𝑥′ for all variables 𝑥′ that are copies of 𝑥.

 Proof. This can be shown using the simulation

𝑆 = {(𝑥, 𝑥) ∈ var(𝑝)2} ∪ {(𝑥, 𝑥′) ∈ var(𝑝) × var(𝑝′) ∣ 𝑥′ is a copy of 𝑥}

from 𝑝 to 𝑝′ and its inverse 𝑆− which is a simulation from 𝑝′ to 𝑝.

Lemma 5.36. Let 𝑞𝑇 ∈ 𝒬, 𝑞(𝑥) be a (𝑞𝑇, 𝒪)-minimal CQ and 𝑝(𝑦) the result of applying
Expand cycle to 𝑞, but before minimization. Then

1. 𝑞 ⊆𝒪 𝑝,

2. 𝑝 ⊈𝒪 𝑞, and

3. if 𝑞 ⊆𝒪 𝑞𝑇, then 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Proving the first two points is very similar to the proof of Lemma 4.41.
For showing Point 1, we define the natural mapping ℎ from var(𝑝) to var(𝑞) by

setting ℎ(𝑥) = 𝑥 for all original variables 𝑥 and ℎ(𝑥′) = 𝑥 for all newly introduced
copies 𝑥′ of variables 𝑥. By construction of 𝑝, ℎ is a homomorphism from 𝑝 to 𝑞 with
ℎ(𝑦) = 𝑥. It is also a homomorphism from 𝑝 to 𝒰𝑞,𝒪 and therefore 𝑞 ⊆𝒪 𝑝.

In order to show Point 2, assume to the contrary that 𝑝 ⊆𝒪 𝑞. Then, there is a
homomorphism 𝑔 from 𝑞 to 𝒰𝑝,𝒪 with 𝑔(𝑥) = 𝑦. Composing 𝑔 with the extension
ℎ+ of ℎ to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪, which exists by Lemma 3.8, yields
a homomorphism �𝑔 from 𝑞 to 𝒰𝑞,𝒪 with �𝑔(𝑥) = 𝑥. From Lemma 5.31 and (𝑞, 𝒪)-
minimality of 𝑞 it follows that �𝑔∗ must be injective, which implies that �𝑔 must be
injective.

Let 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1) be the cycle that was expanded in the construction of
𝑝 and consider the set Γ of all sets of variables that form a cycle of length 𝑛 in 𝒰𝑝𝑖,𝒪.
For example, {𝑦1, … , 𝑦𝑛} ∈ Γ.

Let {𝑥1, … , 𝑥𝑛} be any element of Γ. We show that {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)} ∈ Γ. If for some
𝑥𝑖, �𝑔(𝑥𝑖) is a proper trace in 𝒰𝑞,𝒪, then �𝑔∗ is not injective, a contradiction. Since
�𝑔 is a homomorphism, there is an atom 𝑅(�𝑔(𝑥𝑖), �𝑔(𝑥𝑖+1)) ∈ 𝑞 if there is an atom

132

5.3 Learning under ℰℒ𝑟 Ontologies

𝑅(𝑥𝑖, 𝑥𝑖+1) ∈ 𝑞. Thus, in order to show that {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)} ∈ Γ, it suffices to show
that �𝑔(𝑥1), … , �𝑔(𝑥𝑛) are all pairwise different. Assume the contrary. Then there are
𝑥𝑗 and 𝑥𝑘 with 𝑥𝑗 ≠ 𝑥𝑘 and �𝑔(𝑥𝑗) = �𝑔(𝑥𝑘), implying that �𝑔 is not injective. This in turn
implies that �𝑔∗ is not injective, a contradiction.

Hence, we can define a function 𝑓∶ Γ → Γ by setting

𝑓({𝑥1, … , 𝑥𝑛}) = {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)}

for all {𝑥1, … , 𝑥𝑛} ∈ Γ. Assume that there are sets 𝛾, 𝛾′ ∈ Γ with 𝛾 ≠ 𝛾′ and 𝑓(𝛾) =
𝑓(𝛾′). Since 𝛾 ≠ 𝛾′ and |𝛾| = |𝛾′|, there must be a variable 𝑥 ∈ 𝛾 with 𝑥 ∉ 𝛾′. Since
𝑓(𝛾) = 𝑓(𝛾′), there is a variable 𝑥′ ∈ 𝛾′ with �𝑔(𝑥) = �𝑔(𝑥′), and clearly 𝑥′ ≠ 𝑥, a
contradiction. Therefore, 𝑓 is a bijection from Γ to Γ.

Since Γ is finite, it follows that there must be a 𝑗 ≥ 1 such that 𝑓𝑗({𝑦1, … , 𝑦𝑛}) =
{𝑦1, … , 𝑦𝑛}. By definition of 𝑓, this implies that {�𝑔𝑗(𝑦1), … , �𝑔𝑗(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. Recall
that �𝑔 is the composition of the homomorphism 𝑔 from 𝑞 to 𝒰𝑝,𝒪 and the homomor
phism ℎ+ from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪. Since (𝑞𝑇, 𝒪)-minimality of 𝑞 implies that �𝑔 is injective
by Lemma 4.21, 𝑔 must also be injective. Thus, composing �𝑔𝑗−1 and 𝑔 yields an
injective homomorphism 𝑔′ that maps the cycle {𝑦1, … , 𝑦𝑛} in 𝑞 to some subset of
the expanded cycle {𝑦1, 𝑦′1, … , 𝑦𝑛, 𝑦′𝑛} in 𝒰𝑝,𝒪. We distinguish cases.

First, consider the case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. By the construction
of 𝑝 from 𝑞, the restriction of 𝒰𝑝′𝑖 ,𝒪 to {𝑦1, … , 𝑦𝑛} contains one less role than the
restriction of 𝒰𝑝𝑖,𝒪 to {𝑦1, … , 𝑦𝑛}, implying that 𝑔′ cannot be an injective homomor
phism, leading to a contradiction. The case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦′1, … , 𝑦′𝑛} is
analogous.

The remaining case is that {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} contains both variables of the form 𝑦𝑗
and 𝑦′𝑗 . Then, there must be two different atoms in the cycle 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1)
that are mapped by 𝑔′ to the role atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦) that were added by Expand
cycle to connect the disjoint copy of 𝑞. However, since ℎ(𝑥′) = ℎ(𝑥) and ℎ(𝑦′) = ℎ(𝑦),
this implies that the composition of 𝑔′ and ℎ+ is a non-injective homomorphism
from 𝑞 to 𝒰𝑞,𝒪, again contradicting (𝑞𝑇, 𝒪)-minimality of 𝑞.

To show Point 3, let 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥1) ∈ 𝑞 be the cycle that was expanded
during construction of 𝑝 from 𝑞(𝑥), and let ℎ be a homomorphism from 𝑞𝑇(𝑥0) to 𝒰𝑞,𝒪
with ℎ(𝑥0) = 𝑥. We construct a homomorphism 𝑔 from 𝑞𝑇 to 𝒰𝑝,𝒪 with 𝑔(𝑥0) = 𝑥′ for
some 𝑥′ ∈ 𝑌. For this, we partition var(𝑞𝑇) into sets 𝑀0, 𝑀1, 𝑀2 such that:

• 𝑥 ∈ 𝑀0 if ℎ(𝑥) ∈ {𝑥1, … , 𝑥𝑛}, that is, ℎ(𝑥) lies on the expanded cycle;

• 𝑥 ∈ 𝑀1 if ℎ(𝑥) ∉ var(𝑞), that is, ℎ(𝑥) is a proper trace in 𝒰𝑞,𝒪 generated by
existential quantification;

• all other variables are in 𝑀2.

133

5 Learning with Membership and Equivalence Queries

We start by setting
𝑔(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝑀2.

To define 𝑔(𝑥) for the variables in 𝑥 ∈ 𝑀0, we first construct an auxiliary query
𝑞′𝑇, that takes the form of a disjoint union of not necessarily directed trees with
multi-edges and self-loops1. If 𝒬 ∈ {ELQ,ELIQsf}, then 𝑞′𝑇 is simply 𝑞𝑇. If 𝒬 = CQcsf

𝑤 ,
then 𝑞′𝑇 is obtained by starting with the restriction of 𝑞𝑇 to the variables in 𝑀0 and
then exhaustively choosing and identifying variables 𝑥, 𝑥′ such that

1. there is a cycle 𝑅0(𝑦0, 𝑦1), 𝑅1(𝑦1, 𝑦2), 𝑅3(𝑦2, 𝑦0) with {𝑥, 𝑥′} ⊆ {𝑦0, 𝑦1, 𝑦2} ⊆ 𝑀0
and,

2. ℎ(𝑥) = ℎ(𝑥′).

Note that this process may also identify answer variables. The result of identifying
an answer variable and an existential variable is an answer variable.

Next, we observe that since 𝑞𝑇 is chordal, all CQs 𝑞𝑇 = 𝑝1, … , 𝑝𝑘 = 𝑞′𝑇 encountered
during the construction of 𝑞′𝑇 are chordal as well. We show this by induction on
the index 𝑖 of the CQ 𝑝𝑖. In the induction start, it follows directly that 𝑝1 is chordal,
since 𝑞𝑇 is chordal. In the induction step, assume that 𝑝𝑖 contains a forbidden cycle
𝐶 = 𝑆1(𝑧1, 𝑧2), … , 𝑆𝑛(𝑧𝑛, 𝑧1) of length at least four containing at least one existential
variable. Then 𝑝𝑖−1 contains 𝐶 or a cycle 𝐶′ that can be obtained from 𝐶 by replacing
some edge 𝑆𝑗(𝑧𝑗, 𝑧𝑗+1) with two edges 𝑆𝑗,1(𝑧𝑗, 𝑢), 𝑆𝑗,2(𝑢, 𝑧𝑗+1) because 𝑢 and 𝑧𝑗+1 were
identified when constructing 𝑝𝑖. In the first case, 𝐶 has a chord in 𝑝𝑖−1 and thus also
in 𝑝𝑖. In the second case, 𝐶′ contains at least one existential variable since 𝐶 does
and consequently has a chord in 𝑝𝑖−1. If this chord is not between 𝑧𝑗 and 𝑧𝑗+1, then
𝐶 contains a chord in 𝑝. If the chord is between 𝑧𝑗 and 𝑧𝑗+1, then we are in the first
case.

We now show that 𝑞′𝑇 takes the form of a disjoint union of not necessarily directed
trees with multi-edges and self loops. Assume to the contrary that 𝑞′𝑇 contains
a cycle 𝐶 of length exceeding 2. If there is an existential variable 𝑥 on 𝐶, then 𝑞′𝑇
being chordal implies that 𝑥 occurs on a cycle of length 3, in contradiction to the
construction of 𝑞′𝑇. Now assume that there is no existential variable on 𝐶. As the
image of 𝐶 under ℎ is a cycle in 𝒰𝑞,𝒪 and the cycle chosen by the Expand cycle step
is chordless, the image of 𝐶 under ℎ must contain all variables {𝑥1, … , 𝑥𝑛}. Since all
variables on 𝐶 are answer variables, this means that all variables in 𝑀0 are from 𝑥,
in contradiction to the fact that {𝑥1, … , 𝑥𝑛} contains at least one existential variable.

This finishes the construction of 𝑞′𝑇. For defining 𝑔(𝑥) for the variables 𝑥 ∈ var(𝑞′𝑇),
we start at some arbitrary variable in each tree in 𝑞′𝑇 and then follow the tree

1Or alternatively: has treewidth 1.

134

5.3 Learning under ℰℒ𝑟 Ontologies

structure, switching between the variables 𝑥1, … , 𝑥𝑛 and their copies 𝑥′1, … , 𝑥′𝑛 as
necessary. Next, we make this precise.

For each connected component of 𝑞′𝑇, choose an arbitrary variable 𝑧 from that
component and set 𝑔(𝑧) = ℎ(𝑧). Then, exhaustively apply the following rule: if 𝑞′𝑇
contains an atom 𝑅(𝑥, 𝑦) with 𝑔(𝑦) defined and 𝑔(𝑥) undefined, set

• 𝑔(𝑥) = ℎ(𝑥) if 𝑔(𝑦) = 𝑥𝑖 and either ℎ(𝑥) = 𝑥𝑖+1 and 𝑖 < 𝑛 or ℎ(𝑥) = 𝑥𝑖−1 and 𝑖 > 0;

• 𝑔(𝑥) = ℎ(𝑥)′ if 𝑔(𝑦) = 𝑥′𝑖 and either ℎ(𝑥) = 𝑥𝑖+1 and 𝑖 < 𝑛 or ℎ(𝑥) = 𝑥𝑖−1 and 𝑖 > 0;

• 𝑔(𝑥) = 𝑥′1 if 𝑔(𝑦) = 𝑥𝑛 and ℎ(𝑥) = 𝑥1;

• 𝑔(𝑥) = 𝑥1 if 𝑔(𝑦) = 𝑥′𝑛 and ℎ(𝑥) = 𝑥1;

• 𝑔(𝑥) = 𝑥′𝑛 if 𝑔(𝑦) = 𝑥1 and ℎ(𝑥) = 𝑥𝑛;

• 𝑔(𝑥) = 𝑥𝑛 if 𝑔(𝑦) = 𝑥′1 and ℎ(𝑥) = 𝑥𝑛.

It can be verified that by construction of 𝑝 in all cases 𝑅(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑝. Next,
we extend 𝑔 to all variables in 𝑀0 by setting 𝑔(𝑦) = 𝑔(𝑥) if 𝑦 was identified with
𝑥 ∈ var(𝑞′𝑇) during the construction of 𝑞′𝑇 (note that this implies ℎ(𝑦) = ℎ(𝑥)).

It remains to define 𝑔(𝑥) for the variables 𝑥 ∈ 𝑀1. By definition of 𝑀1, ℎ(𝑥) is a
trace 𝑦𝑤 with 𝑦 ∈ var(𝑞) and 𝑤 ≠ 𝜀, that is, 𝑥 is mapped in 𝒰𝑞,𝒪 to a proper trace
that starts with 𝑦. Now do the following:

• if there is a path in 𝑞𝑇 from some variable 𝑧 ∈ 𝑀0 to 𝑥, then choose a 𝑧 such
that the path is shortest (thus, ℎ(𝑧) = 𝑦 and 𝑔(𝑧) has already been defined)
and set 𝑔(𝑥) = 𝑔(𝑧)𝑤;

• otherwise, set 𝑔(𝑥) = ℎ(𝑥).

This is well-defined, since

1. for each 𝑦 ∈ var(𝑞), the subtrees below 𝑦 in 𝒰𝑞,𝒪 and in 𝒰𝑝,𝒪 are identical,

2. for 1 ≤ 𝑖 ≤ 𝑛, the subtree below 𝑥𝑖 in 𝒰𝑞,𝒪 and the subtree below 𝑥′𝑖 in 𝒰𝑝,𝒪
are identical,

due to Lemma 5.35.
This completes the definition of 𝑔. By definition of 𝑔, it follows that 𝑔(𝑥) ∈

{ℎ(𝑥), ℎ(𝑥)′} for all 𝑥 ∈ 𝑀0 and 𝑔(𝑥0) ∈ 𝑌 as announced. Set 𝑦 = 𝑔(𝑥0). To prove that
𝑝(𝑦) ⊆𝒪 𝑞𝑇(𝑥0) it remains to show that 𝑔 is a homomorphism from 𝑞𝑇 to 𝒰𝑝,𝒪.

First, let 𝐴(𝑥) be a concept atom in 𝑞𝑇. Then ℎ(𝑥) ∈ 𝐴𝒰𝑞,𝒪. By Lemma 5.35 and the
definition of 𝒰𝑝,𝒪, it then follows that 𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪.

Now let 𝑅(𝑧1, 𝑧2) be a role atom in 𝑞𝑇. We distinguish cases according to 𝑧1, 𝑧2
belonging to 𝑀0, 𝑀1, 𝑀2:

135

5 Learning with Membership and Equivalence Queries

• If 𝑧1, 𝑧2 ∈ 𝑀0, then 𝑞′𝑇 contains an atom 𝑅(𝑧′1, 𝑧′2) such that each 𝑧𝑖 was identified
with 𝑧′𝑖 during the construction of 𝑞′𝑇. If 𝑧′1 ≠ 𝑧′2, then 𝑅(𝑔(𝑧′1), 𝑔(𝑧′2)) ∈ 𝑝, as
argued in the definition of 𝑔 for variables from 𝑞′𝑇. If 𝑧′1 = 𝑧′2, the same is true
due to the construction of 𝑝. In both cases, 𝑔(𝑧𝑖) = 𝑔(𝑧′𝑖) for 𝑖 ∈ {1, 2}. Thus,
(𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪, as required.

• If 𝑧1, 𝑧2 ∈ 𝑀1, then ℎ(𝑧1) = 𝑦𝑣 and ℎ(𝑧2) = 𝑦𝑤 for some 𝑦 ∈ var(𝑞) and some
non-empty sequences 𝑣, 𝑤, and (ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪. By definition of 𝑔, we
have 𝑔(𝑧1) = �𝑦𝑣 and 𝑔(𝑧2) = �𝑦𝑤 for some �𝑦 ∈ {𝑦, 𝑦′}. By Lemma 5.35, the
subtree below �𝑦 in 𝒰𝑝,𝒪 is identical to the subtree below 𝑦 in 𝒰𝑞,𝒪. This
implies (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1, 𝑧2 ∈ 𝑀2, then 𝑔(𝑧1) = ℎ(𝑧1), 𝑔(𝑧2) = ℎ(𝑧2), and 𝑅(ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑞 because ℎ
is a homomorphism from 𝑞𝑇 to 𝒰𝑞,𝒪 and ℎ(𝑧1), ℎ(𝑧2) ∈ var(𝑞). Since, addition
ally, ℎ(𝑧1), ℎ(𝑧2) ∉ {𝑥1, … , 𝑥𝑛}, 𝑅(ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑝 and thus (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1 ∈ 𝑀0 and 𝑧2 ∈ 𝑀1, then ℎ(𝑧1) ∈ {𝑥1, … , 𝑥𝑛} and ℎ(𝑧2) takes the form
ℎ(𝑧1)𝑟𝑀. Moreover, 𝑔(𝑧1) ∈ {ℎ(𝑧1), ℎ(𝑧1)′} and 𝑔(𝑧2) = 𝑔(𝑧1)𝑟𝑀. It thus follows
from Lemma 5.35 that (ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑅𝒰𝑞,𝒪 and from the construction of
universal models that (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1 ∈ 𝑀0 and 𝑧2 ∈ 𝑀2, then ℎ(𝑧1) ∈ {𝑥1, … , 𝑥𝑛} and ℎ(𝑧2) ∈ var(𝑞) ⧵ {𝑥1, … , 𝑥𝑛}.
Moreover, 𝑔(𝑧1) ∈ {ℎ(𝑧1), ℎ(𝑧1)′} and 𝑔(𝑧2) = ℎ(𝑧2). It follows from (ℎ(𝑧1), ℎ(𝑧2)) ∈
𝑅𝒰𝑞,𝒪 that 𝑅(ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑞. By construction of 𝑝, we thus have 𝑅(𝑔(𝑧1), 𝑔(𝑧2)) ∈
𝑝 and (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1 ∈ 𝑀1, 𝑧2 ∈ 𝑀2, then ℎ(𝑧2) ∈ var(𝑞) ⧵ {𝑥1, … , 𝑥𝑛}, ℎ(𝑧1) takes the form
ℎ(𝑧2)𝑟𝑀 and 𝑅 = 𝑟−. Moreover, 𝑔(𝑧𝑖) = ℎ(𝑧𝑖) for 𝑖 ∈ {1, 2} and it remains to use
Lemma 5.35 as in previous cases.

We continue with the properties of Split symmetry.

Lemma 5.37. Let 𝑞(𝑥) be a (𝑞𝑇, 𝒪)-minimal CQ and 𝑝(𝑦) the result of applying Split
symmetry to 𝑞, but before minimization. Then

1. 𝑞 ⊆𝒪 𝑝,

2. 𝑝 ⊈𝒪 𝑞, and

3. if 𝑞 ⊆𝒪 𝑞𝑇, then 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Let 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) be the non-safe symmetry that is split during the applica
tion of Split symmetry. In order to show Point 1, we define a homomorphism ℎ from

136

5.3 Learning under ℰℒ𝑟 Ontologies

𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑦) = 𝑥. Set ℎ(𝑧) = 𝑧 for all 𝑧 ∈ var(𝑞) and ℎ(𝑥′) = 𝑥. By construction
of 𝑝, ℎ is a homomorphism, as required.

To show Point 2, assume for contradiction that 𝑝 ⊆𝒪 𝑞 and let 𝑔 be a homomor
phism from 𝑞 to 𝒰𝑝,𝒪 with 𝑔(𝑥) = 𝑦. Let ℎ+ be the extension of the homomorphism
ℎ to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪 with ℎ+(𝑦) = 𝑥, which exists by Lemma 3.8.
The composition �𝑔 of 𝑔 and ℎ+ is then a homomorphism from 𝑞 to 𝒰𝑞,𝒪 with �𝑔(𝑥) = 𝑥.
By Lemma 5.31, �𝑔∗ must be injective, which implies that �𝑔 is injective. Therefore,
every symmetry 𝑟′(𝑧1, 𝑧), 𝑟′(𝑧2, 𝑧) in 𝑞 must be mapped by �𝑔 to some symmetry in 𝑞,
such that no two different symmetries are mapped to the same symmetry. Finiteness
of 𝑞 then implies that there must be a symmetry 𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧) ∈ 𝑞 with �𝑔(𝑧) = 𝑥,
�𝑔(𝑧1) = 𝑦1 and �𝑔(𝑧2) = 𝑦2. But this implies 𝑔(𝑧) = 𝑥 ∈ var(𝑝) or 𝑔(𝑧) = 𝑥′ ∈ var(𝑝).
In the first case, (𝑔(𝑧2), 𝑔(𝑧)) ∉ 𝑟𝒰𝑝,𝒪 by construction of 𝑝, contradicting that 𝑔 is a
homomorphism. In the second case, (𝑔(𝑧1), 𝑔(𝑧)) ∉ 𝑟𝒰𝑝,𝒪 by construction of 𝑝, again
contradicting that 𝑔 is a homomorphism. Hence, 𝑝 ⊈𝒪 𝑞.

For Point 3, assume for contradiction that 𝑞 ⊆𝒪 𝑞𝑇 and 𝑝 ⊈𝒪 𝑞𝑇. Let ℎ be a
homomorphism from 𝑞𝑇 to 𝒰𝑞,𝒪 with ℎ(𝑥0) = 𝑥. Since 𝑝 ⊈𝒪 𝑞𝑇, there must be atoms
𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧) ∈ 𝑞𝑇 with ℎ(𝑧1) = 𝑦1, ℎ(𝑧2) = 𝑦2 and ℎ(𝑧) = 𝑥. These atoms must
form a safe symmetry, since 𝑞𝑇 is symmetry-free. The atoms 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑞,
however, must form a non-safe symmetry, as Split symmetry chose this symmetry.
Consider the reason for 𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧) ∈ 𝑞𝑇 being a safe symmetry. If 𝑧 is an answer
variable, then 𝑥 must also be an answer variable, meaning that 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is
safe, a contradiction. If 𝑟(𝑧1, 𝑧) or 𝑟(𝑧2, 𝑧) occur on a cycle, then, by chordality of 𝑞𝑇,
the same atom also occurs on a cycle of length 3. Since ℎ is a homomorphism, this
implies that either 𝑟(𝑦1, 𝑥) or 𝑟(𝑦2, 𝑥) also occur on a cycle, or that there is an atom
𝑠(𝑦1, 𝑦1), 𝑠(𝑥, 𝑥) or 𝑠(𝑦2, 𝑦2). In all cases, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is safe, again contradicting
non-safety. If there is an atom 𝑠(𝑧1, 𝑧1), 𝑠(𝑧, 𝑧), or 𝑠(𝑧2, 𝑧2), the same atom must exist
in 𝑞 since ℎ is a homomorphism, again contradicting that 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is not safe.

If no atom of the symmetry occurs on a cycle and 𝑥0 consists of a single answer
variable �𝑥, and additionally dist(�𝑥, 𝑧) ≠ ∞ and dist(�𝑥, 𝑧) + 1 = dist(�𝑥, 𝑧1) = dist(�𝑥, 𝑧2),
then there is a simple path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑞𝑇 with 𝑥1 = �𝑥 and 𝑥𝑛+1 =
𝑧 and 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) ∉ {𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧)}. Let the length of this path be 𝑛. Since ℎ
is a homomorphism, the image of this path in 𝑞 must also be a path (but not
necessarily a simple path) of length 𝑚 < 𝑛. If for 𝑖 ∈ {1, 2} there is a simple path
of length < 𝑚 from ℎ(�𝑥) to 𝑦𝑖 in 𝑞, then the atom 𝑟(𝑦𝑖, 𝑥) occurs on a cycle in 𝑞, and
the symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is safe, a contradiction. If there is no such simple
path, then 𝑟(𝑦1, 𝑧), 𝑟(𝑦2, 𝑧) is safe since dist(ℎ(�𝑥), 𝑥) + 1 = dist(ℎ(�𝑥), 𝑦1) = dist(ℎ(�𝑥), 𝑦2),
a contradiction.

Lemmas 5.36 and 5.37 tell us that the sequence of queries produced by extract𝒬
forms a generalization sequence towards 𝑞𝑇. It remains to apply Theorem 5.32 to

137

5 Learning with Membership and Equivalence Queries

Algorithm 5.3: Learning algorithm for ELQs / ELIQsf / CQcsf
𝑤 under ℰℒ𝑟 ontologies

For 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf
𝑤 ∣ 𝑤 ≥ 0} and 𝑞𝑇 ∈ 𝒬.

Input A signature Σ and an ℰℒ𝑟 ontology 𝒪 in normal form.
Output A 𝑞𝐻 ∈ 𝒬 such that 𝑞𝐻 ≡𝒪 𝑞𝑇.

𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪)
𝑞𝐻 ≔ extract𝒬(𝒪, 𝑞0𝐻)
while the equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇?” returns a counterexample (𝒜, 𝑎) do
 𝑞′𝐻(𝑥 ⊗ 𝑎) ≔ 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪

 𝑞𝐻 ≔ extract𝒬(𝒪, 𝑞′𝐻)
end while
return 𝑞𝐻

obtain a bound on the number of applications of Expand cycle and Split symmetry.

Lemma 5.38. Let 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf
𝑤 ∣ 𝑤 ≥ 0}, 𝒪 be an ℰℒ𝑟 ontology in normal

form and 𝑞 a CQ such that 𝑞 ⊆𝒪 𝑞𝑇. Then, the subroutine extract𝒬(𝒪, 𝑞) terminates in time
polynomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖ and returns a query 𝑝 ∈ 𝒬 that is (𝑞𝑇, 𝒪)-minimal and
satisfies 𝑞 ⊆𝒪 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Let 𝑝1, 𝑝2, … be the sequence of queries produced by applying the operations
Expand cycle and Split symmetry. By Lemma 5.36 and Lemma 5.37, 𝑝1, 𝑝2, … is a
generalization sequence towards 𝑞𝑇 under 𝒪. As the operations Expand cycle and
Split symmetry both ensure (𝑞𝑇, 𝒪)-minimality of their result, every 𝑝𝑖 is (𝑞𝑇, 𝒪)-
minimal. Hence, Theorem 5.32 implies a bound on the length of this sequence
that is polynomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖. Neither Expand cycle nor Split symmetry
are applicable to the last query 𝑝𝑛 of this sequence. Therefore, 𝑝𝑛 cannot contain
forbidden cycles and must be symmetry-free.

The Learning Algorithm

We now have all the necessary ingredients to formulate a learning algorithm for
CQcsf queries under ℰℒ𝑟 ontologies: a CQcsf-universal model that we can use in
products and a subroutine that extracts (𝑞𝑇, 𝒪)-minimal queries from the right query
class using membership queries. The full algorithm is displayed as Algorithm 5.3.
Since ℰℒ𝑟 ontologies do not contain disjointness or functionality constraints, the
initial CQ can simply be

𝑞0𝐻(𝑥0, … , 𝑥0) ← �
𝐴∈Σ∩NC

𝐴(𝑥0) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥0, 𝑥0).

138

5.3 Learning under ℰℒ𝑟 Ontologies

Note that the restriction to ontologies in normal form is not essential as Lemma 4.8
holds for ELQs under ℰℒ𝑟 ontologies, and can be extended to ELIQsf and CQcsf

queries.
We show that Algorithm 5.3 is a polynomial time learning algorithm. As in

the similar proofs before, we show that the sequence 𝑞1, 𝑞2, … of assignments to
𝑞𝐻 is a generalization sequence towards 𝑞𝑇 under 𝒪. Polynomial running time of
Algorithm 5.3 then follows from the (𝑞𝑇, 𝒪)-minimality of all 𝑞𝑖 and Theorem 5.32,
which yields the following main result of this section.

Theorem 5.39. Let 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf
𝑤 ∣ 𝑤 ≥ 0}. 𝒬 queries are polynomial time

learnable under ℰℒ𝑟 ontologies using both equivalence and membership queries.

 Proof. Let 𝑞1, 𝑞2, … be the sequence of assignments to 𝑞𝐻 during a run of Algo
rithm 5.3. We show that this sequence is a generalization sequence towards 𝑞𝑇
under 𝒪.

First, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖. We show this by induction on 𝑖. Since
𝑞0𝐻 ⊆𝒪 𝑞𝑇 and 𝑞1 = extract𝒬(𝑞0𝐻), this holds for 𝑖 = 1 by Lemma 5.38. In the induction
step, assume that 𝑞𝑖 ⊆𝒪 𝑞𝑇. Then, by Lemma 5.28, 𝑞𝑇(𝑥0) → 𝒞3

𝑞𝑖,𝒪, 𝑥𝑖. Additionally,
the counterexample (𝒜, 𝑎) returned from the equivalence query must be such that
𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎). Lemma 5.28 then implies that 𝑞𝑇(𝑥0) → 𝒞3

𝒜,𝒪, 𝑎. Hence, 𝑞𝑇(𝑥0) →
𝒞3
𝑞𝐻,𝒪 × 𝒞3

𝒜,𝒪, 𝑥 ⊗ 𝑎 by the properties of products. It follows that 𝑞′𝐻 ⊆𝒪 𝑞𝑇 and
therefore 𝑞𝑖+1 ⊆𝒪 𝑞𝑇 by Lemma 5.38.

Next, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 for all 𝑖. Recall that since 𝑞𝑖 ⊆𝒪 𝑞𝑇,
the counterexample (𝒜, 𝑎) returned from the equivalence query must be such that
𝒜, 𝒪 ⊧̸ 𝑞𝑖(𝑎). Since 𝑞′𝐻(𝑥′) = 𝒞3

𝑞𝑖,𝒪 × 𝒞3
𝒜,𝒪 with 𝑥′ = 𝑥 ⊗ 𝑎, it follows that 𝑞′𝐻(𝑥′) →

𝒞3
𝑞𝑖,𝒪, 𝑥𝑖 and 𝑞′𝐻(𝑥′) → 𝒞3

𝒜,𝒪, 𝑎 by properties of products. Using the homomorphism
from the universal model to the compact model, we also obtain that 𝒰𝑞′𝐻,𝒪, 𝑥′ →
𝒞3
𝑞𝑖,𝒪, 𝑥𝑖 and 𝒰𝑞′𝐻,𝒪, 𝑥′ → 𝒞3

𝒜,𝒪, 𝑎. Since 𝑞′𝐻 ⊆𝒪 𝑞𝑖+1 by Lemma 5.38, it follows that
𝑞𝑖+1(𝑥𝑖+1) → 𝒞3

𝑞𝑖,𝒪, 𝑥𝑖 and 𝑞𝑖+1(𝑥𝑖+1) → 𝒞3
𝒜,𝒪, 𝑎 by Lemma 3.5 and composition of

homomorphisms. As 𝑞𝑖+1 ∈ 𝒬, it follows by Lemma 5.28 that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and
𝑞𝒜 ⊆𝒪 𝑞𝑖+1. The second query implication then implies that 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 since 𝑞𝒜 ⊈𝒪 𝑞𝑖.

Hence, 𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪. Since all 𝑞𝑖 are
(𝑞𝑇, 𝒪)-minimal by Lemma 5.38, we can apply Theorem 5.32 to show that Algo
rithm 5.3 must terminate after a polynomial number of iterations with a query
𝑞𝑛 ∈ 𝒬 such that 𝑞𝑛 ≡𝒪 𝑞𝑇.

Note, though, that Algorithm 5.3, or more precisely, the subroutine extract𝒬, uses
a number of membership queries that is exponential in the arity of the target CQ,
and we only achieve polynomial time learnability by assuming that the arity is
fixed. In the next section, we will discuss how we can improve upon this result.

139

5 Learning with Membership and Equivalence Queries

5.4 Handling Queries of Unbounded Arity

In Section 5.3, we have seen that CQcsf queries of fixed arity are learnable in polyno
mial time using membership queries and equivalence queries. In this section, we
consider how Algorithm 5.3 can be modified to show polynomial time learnability
of CQcsf queries of unbounded arity. Our focus is the extract𝒬 subroutine that may
pose a number of membership queries to the teacher that is exponential in the arity
of the target query.

Recall that the purpose of extract𝒬 is to take as input a CQ 𝑞 such that 𝑞 ⊆𝒪 𝑞𝑇
and then use membership queries to produce a query 𝑞′ from the class 𝒬 such that
𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇 (see Lemma 5.38). The subroutine is a necessary part of Algorithm 5.3,
as hypotheses used in equivalence queries must be from the query class 𝒬. The
following example shows that some difficulties are unavoidable when attempting
to extract chordal CQs of unbounded arity.

Example 5.40. For the sake of simplicity, suppose we are learning acyclic CQs of
arity 𝑘 and have arrived at the cyclic CQ

𝑞(𝑥, … , 𝑥) ← 𝑟(𝑥, 𝑥)

such that 𝑞 ⊆∅ 𝑞𝑇 from which we wish to extract an acyclic CQ 𝑞′. If we apply an
operation like Expand cycle to 𝑞, then we arrive at the atoms 𝑟(𝑥, 𝑥′), 𝑟(𝑥′, 𝑥), but it
is unclear which occurrences of 𝑥 in the tuple (𝑥, … , 𝑥) of answer variables should
be replaced with 𝑥′ to ensure that 𝑞′ ⊆∅ 𝑞𝑇. In the worst case, all 2𝑘 possible
answer variable tuples may need to be considered to discover a specific pattern like
𝑞𝑇(𝑥1, … , 𝑥1, 𝑥2, … , 𝑥2) ← 𝑟(𝑥1, 𝑥2).

Therefore, we take a different approach. Instead of requiring that the hypothesis
used in equivalence queries must be from 𝒬, we allow equivalence queries with
any CQ. Then, we can remove the call to extract𝒬 from Algorithm 5.3 and directly
use 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪 as a new hypothesis. This, however, makes it difficult to show that

the new hypothesis is closer to 𝑞𝑇. Since 𝑞𝐻 is then no longer from the class 𝒬 we
cannot apply Lemma 5.28 to show that the sequence of assignments to 𝑞𝐻 forms
a generalization sequence towards 𝑞𝑇, as in general 𝑞𝐻 ⊈𝒪 𝒞3

𝑞𝐻,𝒪. This issue can
be avoided when learning ELQs, as there is an ℰℒ simulation from 𝒞3

𝑞𝐻,𝒪 to 𝒰𝑞𝐻,𝒪
which allows us to apply Lemma 5.26 to show that the new hypothesis is closer
to 𝑞𝑇. Unfortunately, while Jung, Lutz, and Wolter characterize ELIQsf queries in
terms of certain simulations [JLW20], no notion of simulation relation for which an
equivalent version of Lemma 5.26 holds is known for CQcsf queries.

Hence, in order to guarantee that the new learning algorithm terminates after a
polynomial number of steps, we introduce the new subroutine refine, which replaces

140

5.4 Handling Queries of Unbounded Arity

the construction of the direct product. Recall that in the loop of Algorithm 5.3,
the subroutine extract𝒬 takes as input the direct product 𝑞′𝐻 = 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪, and

then expands cycles in 𝑞′𝐻, not distinguishing the ABox part and the existentially
generated part of the 3-compact models involved. The subroutine refine instead
carefully unravels the existentially generated part of the two 3-compact models by
introducing copies of elements and attaching them in a tree-like manner. A full
such unraveling would eventually result in the infinite direct product 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪,
but refine interleaves unraveling with calls to the subroutine minimize𝒪 and thus
obtains a finite initial piece of 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪. Unlike extract𝒬, refine does not need
to determine new answer variables, as it only creates copies of existential variables.
Still, the new hypothesis may have different answer variables to the old one due to
the direct product construction.

This description of refine suffices for target queries from CQcsf that are rooted. In
the general case, disconnected Boolean components might be present or emerge
during minimization that are never unraveled by this procedure. To address this,
refine subsequently applies extract𝒬 to such components, leaving the already unrav
eled parts untouched. Note that when applied this way, extract𝒬 runs in polynomial
time, as it is only applied to Boolean subqueries. However, the output of refine is
not guaranteed to be a CQcsf query, as the initial pieces of 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪 need not
be chordal.

Now, we describe the refine subroutine in full detail. It takes as input the ontology
𝒪, the old hypothesis 𝑞𝐻(𝑥) as well as a counterexample (𝒜, 𝑎) and produces a CQ
𝑞(𝑥 ⊗ 𝑎) that is (𝑞𝑇, 𝒪)-minimal with 𝑞𝐻 ⊆𝒪 𝑞 ⊆𝒪 𝑞𝑇 and 𝒜, 𝒪 ⊧ 𝑞(𝑎). For notational
convenience, we will view the inputs to refine as two CQs 𝑞1(𝑥1) and 𝑞2(𝑥2), of which
we know that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for 𝑖 ∈ {1, 2}.

First, refine constructs the direct product 𝒞3
𝑞1,𝒪 × 𝒞3

𝑞2,𝒪, views this as a query 𝑝
with answer variables 𝑥1 ⊗ 𝑥2, and then applies minimize𝒪 to 𝑝. It then incrementally
unravels 𝑝. All variables of 𝑝 are pairs (𝑐1, 𝑐2). Informally, unraveling replaces
step-by-step components 𝑐𝑖 that are elements of Δ𝒞3

𝑞𝑖,𝒪 ⧵ var(𝑞𝑖) with corresponding
elements of Δ𝒰𝑞𝑖,𝒪 ⧵ var(𝑞𝑖). In order to make the formal definition and proofs easier
to digest, we slightly modify our definition of 𝒰𝒜,𝒪. We now say that 𝑎 ⇝𝑟

𝒜,𝒪 𝑀, if
𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑎) and ignore the condition that there should be no 𝑏 ∈ ind(𝒜) with
𝑟(𝑎, 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏). This means that 𝒰𝒜,𝒪 might contain more traces
under this new definition than under the one we used before. This difference in
definitions is inessential in the absence of functionality assertions, but makes the
following proofs easier.

To now make refine formal, we call (𝑐1, 𝑐2) ∈ var(𝑝) unraveled if 𝑐𝑖 ∈ Δ𝒰𝑞𝑖,𝒪 for each
𝑖 ∈ {1, 2}. Note that (𝑐1, 𝑐2) ∈ var(𝑝) and 𝑐𝑖 ∉ Δ𝒰𝑞𝑖,𝒪 imply that 𝑐𝑖 is of the form 𝑐𝑎,𝑘,𝑠,𝐴.
The subroutine refine exhaustively applies the following operation to 𝑝:

141

5 Learning with Membership and Equivalence Queries

(𝑥, 𝑦)
𝑝

(𝑥𝑟{𝐴}, 𝑦𝑟{𝐵})

(𝑐𝑥,1,𝑟,𝐴, 𝑐𝑦,1,𝑟,𝐵)

(𝑐𝑥,2,𝑟,𝐴, 𝑐𝑦,2,𝑟,𝐵)

(𝑐𝑥,3,𝑟,𝐴, 𝑐𝑦,3,𝑟,𝐵)

(𝑐𝑥,4,𝑟,𝐴, 𝑐𝑦,4,𝑟,𝐵)

𝑟

𝑟

𝑟

𝑟 𝑟

𝑟

(𝑥, 𝑦)
𝑝′

(𝑥𝑟{𝐴}, 𝑦𝑟{𝐵})

(𝑥𝑟{𝐴}𝑟{𝐴}, 𝑦𝑟{𝐵}𝑟{𝐵})

(𝑐𝑥,1,𝑟,𝐴, 𝑐𝑦,1,𝑟,𝐵)

(𝑐𝑥,2,𝑟,𝐴, 𝑐𝑦,2,𝑟,𝐵)

(𝑐𝑥,3,𝑟,𝐴, 𝑐𝑦,3,𝑟,𝐵)

(𝑐𝑥,4,𝑟,𝐴, 𝑐𝑦,4,𝑟,𝐵)

𝑟

𝑟

𝑟

𝑟

𝑟 𝑟

𝑟

Figure 5.9: An application of Unravel.

Unravel. For every atom 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) ∈ 𝑝 with (𝑐1, 𝑐2) unraveled and (𝑑1, 𝑑2) not
unraveled, do the following. Remove the atom 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)). For 𝑗 ∈ {1, 2},
set

𝑑′𝑗 =

⎧⎪⎪⎨
⎪⎪⎩

𝑑𝑗 if 𝑑𝑗 ∈ Δ
𝒰𝑞𝑗,𝒪,

𝑐𝑗𝑟𝑀 if 𝑑𝑗 = 𝑐𝑎,𝑘,𝑟,𝐴 for a set 𝑀 such that 𝐴 ∈ 𝑀 and 𝑐𝑗𝑟𝑀 ∈ Δ𝒰𝑞𝑗 ,𝒪.

Compensate the removal by adding the following atoms to 𝑝:
• 𝑟((𝑐1, 𝑐2), (𝑑′1, 𝑑′2));
• 𝐴(𝑑′1, 𝑑′2) for all 𝐴(𝑑1, 𝑑2) ∈ 𝑝;
• 𝑟((𝑑′1, 𝑑′2), (𝑒1, 𝑒2)) for all 𝑟((𝑑1, 𝑑2), (𝑒1, 𝑒2)) ∈ 𝑝.

Apply minimize𝒪 to the result.

Note that there may be multiple choices for the set 𝑀 in the definition of 𝑑′𝑗 . If
this is the case, Unravel makes an arbitrary choice.

We call (𝑑′1, 𝑑′2) a copy of (𝑑1, 𝑑2). Note that unraveling might introduce several
copies of the same original variable (𝑑1, 𝑑2) and that (𝑑1, 𝑑2) might or might not be
present after unraveling, the latter being the case when 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) is the only
atom that mentions (𝑑1, 𝑑2).

Example 5.41. Consider the query 𝑝 displayed in Figure 5.9 that uses as variables
elements of 𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪 and 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪 for 𝑞1(𝑥) ← 𝐴(𝑥), 𝑞2(𝑦) ← 𝐵(𝑦), and

142

5.4 Handling Queries of Unbounded Arity

𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ ∃𝑟.𝐵}. It contains the unraveled variable (𝑥𝑟{𝐴}, 𝑦𝑟{𝐵}) =
(𝑐1, 𝑐2) and the not unraveled variable (𝑐𝑥,1,𝑟,𝐴, 𝑐𝑦,1,𝑟,𝐵) = (𝑑1, 𝑑2), as well as the atom
𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)). Then, Unravel removes 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) and introduces the new
variable (𝑑′1, 𝑑′2) = (𝑥𝑟{𝐴}𝑟{𝐴}, 𝑦𝑟{𝐵}𝑟{𝐵}), resulting in the query 𝑝′.

Due to minimization, at some point all variables in 𝑝 that can be reached from
some element of 𝑥1 ⊗ 𝑥2 will be unraveled. However, 𝑝 might still contain non-
unraveled variables, ones that cannot be reached from 𝑥1 ⊗ 𝑥2.

Example 5.42. Consider again the ontology 𝒪 and query 𝑝′ from Example 5.41
displayed in Figure 5.9, together with the Boolean target query

𝑞𝑇() ← 𝑟(𝑥1, 𝑥2) ∧ 𝑟(𝑥2, 𝑥3) ∧ 𝑟(𝑥3, 𝑥4).

An application of the subroutine minimize𝒪 to 𝑝′ might then remove the variables
(𝑥, 𝑦), (𝑥𝑟{𝐴}, 𝑦𝑟{𝐵}), and (𝑥𝑟{𝐴}𝑎𝑟{𝐴}, 𝑦𝑟{𝐵}𝑟{𝐵}), leaving the cycle consisting of vari
ables (𝑐𝑥,𝑖,𝑟,𝐴, 𝑐𝑦,𝑖,𝑟,𝐵) for 𝑖 ∈ {1, … , 4} disconnected. This is because the cycle alone
suffices in 𝑝′ to maintain 𝑝′ ⊆𝒪 𝑞𝑇. Since only not unraveled variables remain then,
Unravel will no longer be applied.

To deal with this issue, refine applies extract𝒬 to the result of exhaustively applying
the Unravel operation, with the following modifications:

1. no cycle that involves a variable that is reachable from 𝑥1 ⊗ 𝑥2 is considered
in the Expand cycle operation. As a consequence, the Expand cycle opera
tion cannot involve variables in 𝑥1 ⊗ 𝑥2, and thus the exponential number of
membership queries is avoided;

2. no symmetry that involves a variable that is reachable from 𝑥1⊗𝑥2 is considered
in the Split symmetry operation.

We now analyze the refine subroutine to verify that it arrives at an initial segment
of 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪 after a polynomial number of steps. Let 𝑝1, 𝑝2, … be the sequence
of queries produced by applying Unravel with 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪).

Lemma 5.43. Let 𝑖 ≥ 1. Every cycle in 𝑝𝑖 of length at most three consists only of variables
from var(𝑞1) × var(𝑞2).

 Proof. We prove the lemma by induction on 𝑖. In the induction start, recall that
𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪). If 𝑝1 contains a cycle 𝑅((𝑥1, 𝑥2), (𝑥1, 𝑥2)) of length 1

with 𝑥𝑖 ∉ var(𝑞𝑖) for some 𝑖 ∈ {1, 2}, then 𝑅(𝑥𝑖, 𝑥𝑖) must be a cycle of length 1 in 𝒞3
𝑞1,𝒪

with 𝑥𝑖 ∉ var(𝑞𝑖) which cannot exist by Lemma 5.24.
Next, if 𝑝1 contains a cycle 𝑅1((𝑥1, 𝑥2), (𝑦1, 𝑦2)), 𝑅2((𝑦1, 𝑦2), (𝑥1, 𝑥2)) of length 2, then

assume without loss of generality that 𝑥1 ∉ var(𝑞1). We distinguish cases. If 𝑥1 = 𝑦1,

143

5 Learning with Membership and Equivalence Queries

then 𝑅1(𝑥1, 𝑥1) is a cycle of length 1 in 𝒞3
𝑞1,𝒪, but this is not the case by Lemma 5.24.

If 𝑥1 ≠ 𝑦1, then 𝑅1(𝑥1, 𝑦1), 𝑅2(𝑦1, 𝑥1) is a cycle of length 2 in 𝒞3
𝑞1,𝒪 which again con

tradicts Lemma 5.24.
If 𝑝1 contains a cycle 𝑅1((𝑥1, 𝑥2), (𝑦1, 𝑦2)), 𝑅2((𝑦1, 𝑦2), (𝑧1, 𝑧2)), 𝑅3((𝑧1, 𝑧2), (𝑥1, 𝑥2)) of

length 3, we can argue similarly that 𝒞3
𝑞1,𝒪 contains a cycle of length 1 or 3 that

involves a variable not in var(𝑝𝑖), again obtaining a contradiction.
For the induction step, we show that the Unravel operation does not create cycles

of length 1, 2 or 3. Assume that every cycle in 𝑝𝑖 of length at most three consists of
only individuals from var(𝑞1) × var(𝑞2), and that there is a cycle 𝑅1((𝑥1, 𝑥2), (𝑦1, 𝑦2)),
𝑅2((𝑦1, 𝑦2), (𝑧1, 𝑧2)), 𝑅3((𝑧1, 𝑧2), (𝑥1, 𝑥2)) of length 3 in 𝑝𝑖+1. Since minimize𝒪 only re
moves variables, one of (𝑥1, 𝑥2), (𝑦1, 𝑦2), (𝑧1, 𝑧2) must be a variable (𝑑′1, 𝑑′2) introduced
in the Unravel operation. Replacing (𝑑′1, 𝑑′2) with its original (𝑑1, 𝑑2) in the cycle
must result in a cycle in 𝑝𝑖 which contradicts the induction hypothesis. The same
argument can be applied to cycles of length 1 and 2.

Similar to the Expand cycle operation (Lemma 5.35), the Unravel operation pre
serves ℰℒ simulations.

Lemma 5.44. For all 𝑖 ≥ 0, let 𝑝′𝑖 be the result of applying Unravel to 𝑝𝑖, but before
minimization. Then,

1. 𝑝′𝑖 , 𝑥 ⪯ℰℒ 𝑝𝑖, 𝑥 and 𝑝𝑖, 𝑥 ⪯ℰℒ 𝑝′𝑖 , 𝑥 for all 𝑥 ∈ var(𝑝𝑖) ∩ var(𝑝′𝑖)

2. 𝑝′𝑖 , 𝑥′ ⪯ℰℒ 𝑝𝑖, 𝑥 and 𝑝𝑖, 𝑥 ⪯ℰℒ 𝑝′𝑖 , 𝑥′ for all copies 𝑥′ ∈ var(𝑝′𝑖) ⧵ var(𝑝𝑖) of some
𝑥 ∈ var(𝑝𝑖).

 Proof. Define a relation 𝑆 ⊆ var(𝑝𝑖) × var(𝑝′𝑖) by taking:

• (𝑥, 𝑥) ∈ 𝑆 for all 𝑥 ∈ var(𝑝𝑖) ∩ var(𝑝′𝑖), and

• (𝑥, 𝑥′) ∈ 𝑆 for all copies 𝑥′ ∈ var(𝑝′𝑖) of some element 𝑥 ∈ var(𝑝𝑖).

𝑆 is a simulation from 𝑝𝑖 to 𝑝′𝑖 , and its inverse 𝑆− is a simulation from 𝑝′𝑖 to 𝑝𝑖.

The next lemma is the most intricate to prove in the analysis of Unravel.

Lemma 5.45. For all 𝑖 ≥ 1, 𝑝𝑖 ⊆𝒪 𝑞𝑇.

 Proof. We prove the lemma by induction on 𝑖. The induction start is immediate since
𝑞𝑇(𝑥0) → 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪, 𝑥1 ⊗ 𝑥2, and there is a homomorphism from 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪
to 𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪 that is the identity on 𝑥1 ⊗ 𝑥2. Thus, for 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪),

𝑝1 ⊆𝒪 𝑞𝑇 by Lemma 4.20.
For the induction step, let 𝑝 be the result of applying Unravel to 𝑝𝑖 but before

minimization and assume that there is a homomorphism ℎ from 𝑞𝑇 to 𝒰𝑝𝑖,𝒪 with

144

5.4 Handling Queries of Unbounded Arity

ℎ(𝑥0) = 𝑥1 ⊗ 𝑥2. Let 𝑈 be the set of all variables (𝑑1, 𝑑2) ∈ var(𝑝𝑖) such that some
atom 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) was removed by Unravel. Note that if (𝑑1, 𝑑2) ∈ 𝑈, then
(𝑑1, 𝑑2) ∉ var(𝑞1) × var(𝑞2). In what follows, we construct a homomorphism 𝑔 from
𝑞𝑇 to 𝒰𝑝,𝒪 with 𝑔(𝑥0) = 𝑥1 ⊗ 𝑥2. Thus, 𝑝 ⊆𝒪 𝑞𝑇, which is preserved by minimize𝒪,
meaning that 𝑝𝑖+1 ⊆𝒪 𝑞𝑇, as desired.

For this, first observe that if 𝑅((𝑐1, 𝑐2), (𝑑1, 𝑑2)) is an atom in 𝑝𝑖 with (𝑐1, 𝑐2) unrav
eled and (𝑑1, 𝑑2) not unraveled, then 𝑅 is a role name, but not an inverse role. For
a variable 𝑥 in 𝑞𝑇, let us denote with 𝑉𝑥 the set of all atoms 𝑅(𝑥, 𝑦) ∈ 𝑞𝑇 such that
ℎ(𝑦) ∈ var(𝑝𝑖) and ℎ(𝑦) is unraveled. We observe the following about 𝑉𝑥.

Claim 1. Let 𝑥 ∈ var(𝑞𝑇) such that ℎ(𝑥) = (𝑑1, 𝑑2) ∈ 𝑈. Then, there is a role name 𝑟
such that all atoms in 𝑉𝑥 are of shape 𝑟(𝑦, 𝑥) and one of the following is the case:

i. 𝑉𝑥 is a singleton;

ii. 𝑑1 has the form 𝑐𝑧,0,𝑟,𝐴 and for every 𝑟(𝑦, 𝑥) ∈ 𝑉𝑥, 𝑞2 contains an atom 𝑟(𝑧′, 𝑑2)
with ℎ(𝑦) = (𝑧, 𝑧′);

iii. 𝑑2 has the form 𝑐𝑧,0,𝑟,𝐴 and for every 𝑟(𝑦, 𝑥) ∈ 𝑉𝑥, 𝑞1 contains an atom 𝑟(𝑧′, 𝑑1)
with ℎ(𝑦) = (𝑧′, 𝑧);

iv. 𝑑1 has the form 𝑐𝑧1,0,𝑟,𝐴1, 𝑑2 has the form 𝑐𝑧2,0,𝑟,𝐴2, and ℎ(𝑦) = (𝑧1, 𝑧2) for every
𝑟(𝑦, 𝑥) ∈ 𝑉𝑥.

 Proof of Claim 1. To show the first part, let 𝑅(𝑦1, 𝑥), 𝑆(𝑦2, 𝑥) ∈ 𝑉𝑥. Since ℎ(𝑥) = (𝑑1, 𝑑2)
is not unraveled, but ℎ(𝑦1) and ℎ(𝑦2) are unraveled, 𝑅 and 𝑆 are role names. Moreover,
(𝑑1, 𝑑2) not being unraveled means that at least one of the 𝑑𝑗 takes the shape 𝑐𝑧,𝑘,𝑟,𝐴
for some role name 𝑟. By definition of 𝒞3

𝑞𝑗,𝒪, for every 𝑠(𝑑, 𝑐𝑎,𝑘,𝑟,𝐴) ∈ 𝒞3
𝑞𝑗,𝒪, we have

𝑠 = 𝑟. Hence, for every 𝑠((𝑐1, 𝑐2), (𝑑1, 𝑑2)) ∈ 𝑝𝑖 we have 𝑠 = 𝑟 as well. Thus, 𝑅 = 𝑆 = 𝑟
and all atoms in 𝑉𝑥 are based on the same role name 𝑟.

Now for the second part. Assume that Case i does not apply. Then we find
𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑉𝑥 with 𝑦1 ≠ 𝑦2. Since 𝑞𝑇 is symmetry-free, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) must
be a safe symmetry. Since ℎ(𝑥) ∈ 𝑈, 𝑥 is not an answer variable. The fact that
ℎ(𝑦1) is unraveled, but ℎ(𝑥) is not, implies that dist(𝑧, 𝑥) + 1 ≠ dist(𝑧, 𝑦1) for any
answer variable 𝑧. Additionally, 𝑞𝑇 may contain no atom of the form 𝑠(𝑥, 𝑥), since no
atom 𝑠(ℎ(𝑥), ℎ(𝑥)) may exist in 𝑝 by Lemma 5.43 and ℎ(𝑥) not being unraveled. The
remaining possibilities for 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) to be a safe symmetry are: for 𝑗 ∈ {1, 2},
the atom 𝑟(𝑦𝑗, 𝑥) occurs on a cycle, or there is an atom 𝑠(𝑦𝑗, 𝑦𝑗) ∈ 𝑞𝑇. Without loss of
generality, assume 𝑗 = 1. If 𝑠(𝑦1, 𝑦1) ∈ 𝑞𝑇, then it follows that ℎ(𝑦1) = ℎ(𝑦2) = (𝑧1, 𝑧2) ∈
var(𝑞1)×var(𝑞2). If 𝑟(𝑦1, 𝑥) occurs on a cycle 𝐶 in 𝑞𝑇, then by chordality of 𝑞𝑇, it follows
that 𝐶 has at most length three. Since ℎ is a homomorphism from 𝑞𝑇 to 𝒰𝑝𝑖,𝒪, the
ℎ-image of 𝐶 in 𝑝𝑖 must contain a cycle of length at most three. By Lemma 5.43, this

145

5 Learning with Membership and Equivalence Queries

implies that ℎ(𝑥) is not part of a cycle in the ℎ-image of 𝐶. Consequently, the cycle 𝐶
has to be of the shape

𝑟(𝑦1, 𝑥), 𝑟−(𝑥, 𝑧), 𝑠(𝑦1, 𝑧)

with ℎ(𝑦1) = ℎ(𝑧) = (𝑧1, 𝑧2) ∈ var(𝑞1) × var(𝑞2).
It follows that 𝑖 = 1, since if 𝑖 > 1 all successors of elements of var(𝑞1) × var(𝑞2) are

unraveled. We distinguish the following cases:

• 𝑑1 ∈ var(𝑞1) and 𝑑2 ∈ var(𝑞2).
This is impossible because (𝑑1, 𝑑2) is not unraveled.

• 𝑑1 has shape 𝑐𝑧1,0,𝑟,𝐴 and 𝑑2 ∈ var(𝑞2).
Then 𝑧1 is the unique 𝑟-predecessor of 𝑑1 in 𝒞3

𝑞1,𝒪 that can appear in the first
component of an unraveled element. Let 𝑟(𝑦, 𝑥) ∈ 𝑉𝑥. Then ℎ(𝑦) ∈ var(𝑞1) ×
var(𝑞2) because ℎ(𝑦) is unraveled and 𝑖 = 1. Since 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪),

𝑟(𝑦, 𝑥) ∈ 𝑉𝑥 thus implies that there is an atom 𝑟(𝑧′, 𝑑2) ∈ 𝑞2 such that ℎ(𝑦) =
(𝑧1, 𝑧′). Thus, we are in Case ii.

• 𝑑2 has shape 𝑐𝑧2,0,𝑟,𝐴 and 𝑑1 ∈ var(𝑞1).
We argue as in the previous case, but end up in Case iii.

• 𝑑1 has shape 𝑐𝑧1,0,𝑟,𝐴1 and 𝑑2 has shape 𝑐𝑧2,0,𝑟,𝐴2. By definition of the models
𝒞3
𝑞𝑖,𝒪 and since in 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪), (𝑧1, 𝑧2) is the unique unraveled

𝑟-predecessor of (𝑑1, 𝑑2) in 𝑝𝑖 = 𝑝1. Thus, we are in Case iv.

This completes the proof of Claim 1.

Next, with every variable 𝑥 ∈ var(𝑞𝑇) such that ℎ(𝑥) ∈ var(𝑝𝑖), we associate a set
𝑍𝑥 that consists of all variables 𝑦 ∈ var(𝑞𝑇) such that 𝑞𝑇 contains a simple path
𝑅1(𝑧1, 𝑧2), … , 𝑅𝑚−1(𝑧𝑚−1, 𝑧𝑚) from 𝑥 to 𝑦 where ℎ(𝑧2), … , ℎ(𝑧𝑚) are all proper traces in
𝒰𝑝𝑖,𝒪 that start with ℎ(𝑥). We observe the following about the sets 𝑍𝑥.

Claim 2. For all 𝑦 ∈ var(𝑞𝑇) with ℎ(𝑦) ∉ var(𝑝𝑖), there is at most one 𝑥 ∈ var(𝑞𝑇) with
𝑦 ∈ 𝑍𝑥 and ℎ(𝑥) ∈ 𝑈.

 Proof of Claim 2. Suppose that 𝑦 ∈ var(𝑞𝑇) with ℎ(𝑦) ∉ var(𝑝𝑖) and that there are
distinct variables 𝑥1, 𝑥2 ∈ var(𝑞𝑇) with 𝑦 ∈ 𝑍𝑥𝑗 and ℎ(𝑥𝑗) ∈ 𝑈 for 𝑗 ∈ {1, 2}. Let

𝜋1 = 𝑅1(𝑧1, 𝑧2), … , 𝑅𝑛(𝑧𝑛−1, 𝑧𝑛) and
𝜋2 = 𝑆1(𝑧′1, 𝑧′2), … , 𝑆𝑚(𝑧′𝑚−1, 𝑧′𝑚)

be paths in 𝑞𝑇 from 𝑥1 to 𝑦 and from 𝑥2 to 𝑦, respectively, such that ℎ(𝑧𝑗) ≠ ℎ(𝑥1) for
all 𝑗 ∈ {1, … , 𝑛} and ℎ(𝑧′𝑗) ≠ ℎ(𝑥2) for all 𝑗 ∈ {1, … , 𝑚}. Note that ℎ is a homomorphism

146

5.4 Handling Queries of Unbounded Arity

from 𝜋𝑗 to the trace subtree of 𝒰𝑝𝑖,𝒪 rooted at ℎ(𝑥𝑗), for 𝑗 ∈ {1, 2}. Since ℎ(𝑦) is both
in the subtree below ℎ(𝑥1) and below ℎ(𝑥2), it follows that ℎ(𝑥1) = ℎ(𝑥2).

We analyze the structure of the paths 𝜋1 and 𝜋2. Let us first verify that all 𝑅𝑗
and all 𝑆𝑗 are role names. We do this explicitly only for the 𝑅𝑗. Let ℐ denote the
subtree of 𝒰𝑝𝑖,𝒪 rooted at ℎ(𝑥1), that is, the restriction of 𝒰𝑝𝑖,𝒪 to all traces that start
with ℎ(𝑥1), including ℎ(𝑥1) itself. By construction of 𝒰𝑝𝑖,𝒪, ℐ is a directed tree. Then
𝑅1 must be a role name since (ℎ(𝑥1), ℎ(𝑧1)) ∈ 𝑅ℐ

1 , ℎ(𝑥1) is the root of ℐ, and ℎ(𝑧1) in
Δℐ. Now, let ℓ be minimal such that 𝑅ℓ is an inverse role 𝑟− and consider the atoms
𝑅ℓ−1(𝑧ℓ−1, 𝑧ℓ), 𝑟−(𝑧ℓ, 𝑧ℓ+1) in 𝑞𝑇. Since ℎ is a homomorphism and ℐ is a directed tree,
we know that 𝑅ℓ−1 = 𝑟, and thus there are atoms 𝑟(𝑧ℓ−1, 𝑧ℓ), 𝑟(𝑧ℓ+1, 𝑧ℓ) in 𝑞𝑇.

If 𝑧ℓ−1 ≠ 𝑧ℓ+1, then 𝑞𝑇 contains a symmetry, which must be safe since 𝑞𝑇 is sym
metry-free. If there is a single answer variable �̂� of 𝑞𝑇 and dist(�̂�, 𝑧ℓ) + 1 = dist(�̂�, 𝑧ℓ−1),
then, since ℎ(𝑧ℓ) is a trace, there must be an atom 𝑟(𝑧ℓ′, 𝑧ℓ) as the last element of
the path from �̂� to 𝑧ℓ with 𝑧ℓ′ ≠ 𝑧ℓ−1. Then either ℎ(𝑧ℓ′) ∈ 𝑈 or ℎ(𝑧ℓ′) is a trace, and
we continue this argument with the symmetry 𝑟(𝑧ℓ′, 𝑧ℓ), 𝑟(𝑧ℓ−1, 𝑧ℓ). Since ℎ(𝑧ℓ) is a
trace, 𝑧ℓ is not an answer variable and there is no atom 𝑠(𝑧ℓ, 𝑧ℓ). Furthermore, since
ℎ(𝑧ℓ−1) and ℎ(𝑧ℓ+1) are either traces or elements of 𝑈 (if 𝑧ℓ−1 = 𝑥1), there is no atom
𝑠(𝑧ℓ−1, 𝑧ℓ+1) or 𝑠(𝑧ℓ−1, 𝑧ℓ+1). Hence, one of the two atoms 𝑟(𝑧ℓ−1, 𝑧ℓ), 𝑟(𝑧ℓ+1, 𝑧ℓ) occurs
on a cycle 𝐶 in 𝑞𝑇.

Let us assume that this is atom 𝑟(𝑧ℓ−1, 𝑧ℓ), the case of atom 𝑟(𝑧ℓ+1, 𝑧ℓ) is analogous.
Since 𝑞𝑇 is chordal, we can assume that 𝐶 has length at most three. Since ℎ is a
homomorphism from 𝑞𝑇 to 𝒰𝑝𝑖,𝒪, the image of 𝐶 contains a cycle 𝐶′ of length at
most three in 𝒰𝑝𝑖,𝒪. Even if ℎ is not injective, the cycle 𝐶′ must contain ℎ(𝑧ℓ) or
ℎ(𝑧ℓ−1). However, both possibilities lead to a contradiction. If 𝐶′ contains ℎ(𝑧ℓ), then
ℎ(𝑧ℓ) ∈ var(𝑞1) × var(𝑞2) by Lemma 5.43, but this is not the case since ℎ(𝑧ℓ) is in ℐ
and different from ℎ(𝑥1). If 𝐶′ contains ℎ(𝑧ℓ−1), then ℎ(𝑧ℓ−1) must be ℎ(𝑥1), and 𝐶′

witnesses that ℎ(𝑥1) ∈ var(𝑞1) × var(𝑞2), in contradiction to ℎ(𝑥1) ∈ 𝑈.
Therefore, 𝑧ℓ−1 = 𝑧ℓ+1 and we can drop the two atoms from the path. At this point,

we have established that all 𝑅𝑗 and 𝑆𝑗 are role names 𝑟𝑗, 𝑠𝑗. Since ℐ is a directed tree, it
follows that 𝑚 = 𝑛 and 𝑟𝑗 = 𝑠𝑗 for all 𝑗. Since 𝑧1 ≠ 𝑧′1 and 𝑧𝑛 = 𝑧′𝑚, there is some ℓ > 0
such that 𝑧ℓ = 𝑧′ℓ, 𝑧ℓ−1 ≠ 𝑧′ℓ−1. But then 𝑞𝑇 contains a symmetry 𝑟ℓ(𝑧ℓ−1, 𝑧ℓ), 𝑟ℓ(𝑧′ℓ−1, 𝑧ℓ).
This leads to a contradiction using the same argument as above. This completes the
proof of Claim 2.

Using the sets 𝑉𝑥 and 𝑍𝑥, we now define the desired homomorphism 𝑔 in four
stages.

1. Define 𝑔(𝑥) = ℎ(𝑥) for all 𝑥 ∈ var(𝑞𝑇) such that ℎ(𝑥) ∈ var(𝑝𝑖) ⧵ 𝑈 or ℎ(𝑥) is a
trace starting with some variable not in 𝑈.

147

5 Learning with Membership and Equivalence Queries

2. For every 𝑥 ∈ var(𝑞𝑇) with ℎ(𝑥) = (𝑑1, 𝑑2) ∈ 𝑈, we distinguish cases according
to Claim 1:

a) If 𝑉𝑥 = ∅, then define 𝑔(𝑥) = ℎ(𝑥). We argue that this is well-defined,
that is, ℎ(𝑥) ∈ var(𝑝). Suppose to the contrary that ℎ(𝑥) ∉ var(𝑝). By
definition of Unravel, this can only be the case if 𝑝𝑖 contains only a single
assertion that mentions ℎ(𝑥) and this assertion is of shape 𝑟((𝑐1, 𝑐2), ℎ(𝑥))
with (𝑐1, 𝑐2) unraveled. Since 𝑥 has to occur in some atom in 𝑞𝑇 and ℎ is a
homomorphism, 𝑥 occurs in an atom 𝑟(𝑧, 𝑥) ∈ 𝑞𝑇 such that ℎ(𝑧) = (𝑐1, 𝑐2).
Hence, 𝑟(𝑧, 𝑥) ∈ 𝑉𝑥 ≠ ∅, a contradiction.

b) If Case i applies and 𝑉𝑥 = {𝑟(𝑦, 𝑥)}, define 𝑔(𝑥) to be the copy (𝑑′1, 𝑑′2) of
(𝑑1, 𝑑2) introduced by the Unravel operation for 𝑟(ℎ(𝑦), ℎ(𝑥)) ∈ 𝑝𝑖.

c) If 𝑉𝑥 ≠ ∅ and Case ii applies (but Case i does not), then define 𝑔(𝑥) to
be the copy (𝑧𝑟𝑀, 𝑑2) of (𝑑1, 𝑑2) for a set 𝑀 with 𝐴 ∈ 𝑀 such that 𝑧𝑟𝑀 is a
trace, where 𝑧, 𝐴 are as in Case ii of Claim 1.

d) If 𝑉𝑥 ≠ ∅ and Case iii applies (but Case i does not), analogously define
𝑔(𝑥) to be the copy (𝑑1, 𝑧𝑟𝑀).

e) If 𝑉𝑥 ≠ ∅ and Case iv applies (but Case i does not), define 𝑔(𝑥) to be the
copy (𝑧1𝑟𝑀1, 𝑧2𝑟𝑀2) where 𝑀𝑖 are sets with 𝐴𝑖 ∈ 𝑀𝑖 such that 𝑧1𝑟𝑀1 and
𝑧2𝑟𝑀2 are traces with 𝑧1, 𝑧2, 𝐴1, 𝐴2 as in Case iv.

3. For every 𝑥 with ℎ(𝑥) ∈ 𝑈 and every 𝑦 ∈ 𝑍𝑥, ℎ(𝑦) is a trace that starts with ℎ(𝑥).
Define 𝑔(𝑦) to be the same trace, but with the first element ℎ(𝑥) replaced by
𝑔(𝑥). Using Lemma 5.44, it can be verified that 𝑔(𝑦) is indeed an element in
𝒰𝑝,𝒪 using the fact that the trace subtrees below 𝑔(𝑥) and ℎ(𝑥) in 𝒰𝑝,𝒪 and
𝒰𝑝𝑖,𝒪, respectively, are identical.

4. For every (𝑑1, 𝑑2) ∈ 𝑈 and 𝑦 ∈ var(𝑞𝑇) such that ℎ(𝑦) is a trace that starts with
(𝑑1, 𝑑2) and 𝑦 ∉ 𝑍𝑥 for all 𝑥 with ℎ(𝑥) ∈ 𝑈, choose some copy (𝑑′1, 𝑑′2) of (𝑑1, 𝑑2)
and define 𝑔(𝑦) to be the trace ℎ(𝑦) with the first element (𝑑1, 𝑑2) replaced by
(𝑑′1, 𝑑′2).

The four stages above define 𝑔(𝑥) for all 𝑥 ∈ var(𝑞𝑇). It remains to verify that 𝑔
is a homomorphism from 𝑞𝑇 to 𝒰𝑝,𝒪 with 𝑔(𝑥0) = 𝑥1 ⊗ 𝑥2. Observe that ℎ(𝑥) ∈
var(𝑞1) × var(𝑞2) for every 𝑥 ∈ 𝑥0 and that 𝑈 ∩ (var(𝑞1) × var(𝑞2)) = ∅. Thus, Stage 1
of the definition of 𝑔 implies 𝑔(𝑥0) = ℎ(𝑥0).

Now, let 𝐴(𝑥) ∈ 𝑞𝑇 and thus ℎ(𝑥) ∈ 𝐴𝒰𝑝𝑖,𝒪. We distinguish the following cases:

• If 𝑔(𝑥) was defined in Stage 1, then 𝑔(𝑥) = ℎ(𝑥). First, assume that ℎ(𝑥) ∈ var(𝑝𝑖).
Then 𝑝𝑖, ℎ(𝑥) ⪯ℰℒ 𝑝, 𝑔(𝑥) by Lemma 5.44 and thus 𝒰𝑝𝑖,𝒪, ℎ(𝑥) ⪯ℰℒ 𝒰𝑝,𝒪, 𝑔(𝑥).

148

5.4 Handling Queries of Unbounded Arity

Hence, 𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪 by Lemma 5.26. Now assume that ℎ(𝑥) ∉ var(𝑝𝑖). Then
ℎ(𝑥) = 𝑔(𝑥) is a trace, and traces in 𝒰𝑝𝑖,𝒪 and 𝒰𝑝,𝒪 that end with the same set
of concepts 𝑀 satisfy the same concept names.

• If 𝑔(𝑥) was defined in Stage 2, then 𝑔(𝑥) = (𝑑′1, 𝑑′2) is a copy of ℎ(𝑥) = (𝑑1, 𝑑2) or
𝑔(𝑥) = ℎ(𝑥). By Lemma 5.44, we have 𝑝𝑖, ℎ(𝑥) ⪯ℰℒ 𝑝, 𝑔(𝑥), and thus 𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪

by Lemma 5.26.

• If 𝑔(𝑥) was defined in Stage 3 or 4, then ℎ(𝑥) and 𝑔(𝑥) are both traces that end
with the same set of concepts 𝑀 and, by construction of universal models,
thus satisfy the same concept names. Consequently, ℎ(𝑥) ∈ 𝐴𝒰𝑝𝑖,𝒪 implies
𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪.

Finally, let 𝑟(𝑥, 𝑦) ∈ 𝑞𝑇 and thus (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑟𝒰𝑝𝑖,𝒪. We distinguish the following
cases:

• It cannot be that both ℎ(𝑥) and ℎ(𝑦) are elements of 𝑈, by definition of the
Unravel operation.

• If both ℎ(𝑥) and ℎ(𝑦) are not elements of 𝑈, then both 𝑔(𝑥) and 𝑔(𝑦) were defined
in the same stage, one of Stage 1, 3, and 4. We can then argue analogously to
the case of concept atoms that (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

• If ℎ(𝑥) = (𝑑1, 𝑑2) ∈ 𝑈 and ℎ(𝑦) ∉ 𝑈, then we distinguish cases:
– If ℎ(𝑦) ∉ var(𝑝𝑖), then ℎ(𝑦) is a trace of the form (𝑑1, 𝑑2)𝑟𝑀 in 𝒰𝑝𝑖,𝒪. Thus,

𝑔(𝑦) was defined in Stage 3 as a trace (𝑑′1, 𝑑′2)𝑟𝑀 for 𝑔(𝑥) = (𝑑′1, 𝑑′2). It
follows that (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

– If ℎ(𝑦) ∈ var(𝑝𝑖) is not unraveled, then by definition of Unravel, it is
the case that 𝑟((𝑑′1, 𝑑′2), ℎ(𝑦)) ∈ 𝑝 for all copies (𝑑′1, 𝑑′2) of (𝑑1, 𝑑2), and
𝑟((𝑑1, 𝑑2), ℎ(𝑦)) ∈ 𝑝. We know that 𝑔(𝑥) was defined in Stage 2 and is
either ℎ(𝑥) or some copy thereof, and ℎ(𝑦) was defined in Stage 1, thus
𝑔(𝑦) = ℎ(𝑦). Consequently, (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

– It cannot be the case that ℎ(𝑦) ∈ var(𝑝𝑖) is unraveled. By Claim 1, 𝑆 is a role
name for every atom 𝑆(𝑧, 𝑥) ∈ 𝑞𝑇 such that ℎ(𝑧) is unraveled. However,
this is not the case for the atom 𝑟−(𝑦, 𝑥) ∈ 𝑞𝑇 we started with.

• If ℎ(𝑥) ∉ 𝑈 and ℎ(𝑦) = (𝑑1, 𝑑2) ∈ 𝑈, then ℎ(𝑥) ∈ var(𝑝𝑖) since (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑟𝒰𝑝𝑖,𝒪

and by definition of universal models. We distinguish cases according to
Claim 1:

– If 𝑉𝑦 = ∅, then 𝑔(𝑦) = ℎ(𝑦), by Stage 2a. Moreover, as ℎ(𝑥) ∈ var(𝑝𝑖) ⧵ 𝑈,
we have 𝑔(𝑥) = ℎ(𝑥), by Stage 1. Hence, (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

149

5 Learning with Membership and Equivalence Queries

– If Case i applies and 𝑉𝑦 = {𝑟(𝑥, 𝑦)} with ℎ(𝑥) unraveled, then 𝑔(𝑦) was
defined in Stage 2b and (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪 by definition of the Unravel
operation.

– If Case ii applies to 𝑉𝑦, then 𝑑1 has the form 𝑐𝑧,0,𝑟,𝐴 and for every 𝑟(𝑦′, 𝑦) ∈
𝑉𝑦, 𝑞2 contains an atom 𝑟(𝑧′, 𝑑2) with ℎ(𝑦′) = (𝑧, 𝑧′). Moreover, 𝑔(𝑦) was
defined in Stage 2c and 𝑔(𝑦) = (𝑧𝑟𝑀, 𝑑2) for a set 𝑀 with 𝐴 ∈ 𝑀.

∗ If ℎ(𝑥) is unraveled, then ℎ(𝑥) = 𝑔(𝑥) = (𝑧, 𝑧′). By definition of Unravel,
𝑟((𝑧, 𝑧′), (𝑧𝑟𝑀, 𝑑2)) ∈ 𝑝. Hence, (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

∗ If ℎ(𝑥) is not unraveled, then it was defined in Stage 1 and ℎ(𝑥) = 𝑔(𝑥).
By definition of Unravel, 𝑟(ℎ(𝑥), (𝑧𝑟𝑀, 𝑑2)) ∈ 𝑝.

– If Case iii applies to 𝑉𝑦, the argument is symmetric.

– If Case iv applies to 𝑉𝑦, 𝑑1 has the form 𝑐𝑧1,0,𝑟,𝐴1, 𝑑2 has the form 𝑐𝑧2,0,𝑟,𝐴2,
ℎ(𝑥) = (𝑧1, 𝑧2), and 𝑔(𝑦) was defined in Stage 2e to be (𝑧1𝑟𝑀1, 𝑧2𝑟𝑀2) for
sets 𝑀𝑗 with 𝐴𝑗 ∈ 𝑀𝑗. Since ℎ(𝑥) is unraveled, 𝑔(𝑥) was set to ℎ(𝑥) in
Stage 1, and the definition of Unravel implies 𝑟(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑝.

We can now use the bound on generalization sequences to show that refine
terminates in polynomial time.

Lemma 5.46. Let 𝑞1(𝑥1) and 𝑞2(𝑥2) be CQs with 𝑞1 ⊆𝒪 𝑞𝑇 and 𝑞2 ⊆𝒪 𝑞𝑇. Then, the
subroutine refine(𝒪, 𝑞1, 𝑞2) runs in time polynomial in ‖𝑞𝑇‖+‖𝑞1‖+‖𝑞2‖+‖𝒪‖ and returns
a (𝑞𝑇, 𝒪)-minimal CQ 𝑝 such that 𝑞1 ⊆𝒪 𝑝, 𝑞2 ⊆𝒪 𝑝, and 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Consider again the sequence 𝑝1, 𝑝2, … produced by applying the Unravel
operation to 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪). We argue that the length of this sequence

is bounded by |var(𝑞𝑇)| + 1. Indeed, the following can be shown by induction on 𝑖.

Claim. Let 𝑖 ≥ 1. Then every variable 𝑦 in var(𝑝𝑖) with dist(𝑦, 𝑥) ≤ 𝑖 − 1 for some
𝑥 ∈ 𝑥1 ⊗ 𝑥2 is unraveled.

Since every 𝑝𝑖 is (𝑞𝑇, 𝒪)-minimal, and therefore |var(𝑝𝑖)| ≤ |var(𝑞𝑇)|, it follows that
the Unravel operation is no longer applicable to 𝑝|var(𝑞𝑇)|+2.

Next, we observe that the application of extract𝒬 to components of 𝑝 that are
not connected to any element of 𝑥1 ⊗ 𝑥2 is bounded by the same arguments as
in Section 5.3. Due to the properties of Expand cycle stated in Lemma 5.36 and
properties of Split symmetry stated in Lemma 5.37, the sequence of produced queries
forms a generalization sequence of (𝑞𝑇, 𝒪)-minimal CQs towards 𝑞𝑇. Theorem 5.32
then implies a polynomial bound on the length of the sequence. Therefore, refine
terminates after polynomially many steps and membership queries.

150

5.4 Handling Queries of Unbounded Arity

Algorithm 5.4: The modified learning algorithm for CQcsf under ℰℒ𝑟 ontologies

Input A signature Σ, an ℰℒ𝑟 ontology 𝒪 in normal form and an arity 𝑘.
Output A 𝑘-ary 𝑞𝐻 ∈ CQcsf such that 𝑞𝐻 ≡𝒪 𝑞𝑇
𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪, 𝑘)
𝑞𝐻 ≔ 𝑞0𝐻
while the CQ-equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇?” returns a counterexample (𝒜, 𝑎)
do
 𝑞𝐻 ≔ refine(𝒪, 𝑞𝐻, (𝒜, 𝑎))
end while
return 𝑞𝐻

It remains to show that for 𝑝(𝑥) = refine(𝒪, 𝑞1, 𝑞2), 𝑞1 ⊆𝒪 𝑝, 𝑞2 ⊆𝒪 𝑝 and 𝑝 ⊆𝒪 𝑞𝑇.
The last query implication follows from Lemma 5.45, Lemma 5.36, Lemma 5.37 and
the fact that minimize𝒪 preserves query implication of 𝑞𝑇.

To show the first query implication, let 𝑝′ be the restriction of 𝑝 to variables that are
reachable from an element of 𝑥1 ⊗ 𝑥2, and let 𝑝″ be the restriction of 𝑝 to all variables
that are not reachable. Hence, 𝑝 = 𝑝′∪𝑝″. Since Unravel was applied exhaustively, all
variables in 𝑝′ are unraveled. Therefore, var(𝑝′) ⊆ Δ𝒰𝑞1,𝒪×𝒰𝑞2,𝒪. Using the definition
of 𝒞3 and Unravel, it is easy to see that the identity is a homomorphism ℎ′ from
𝑝 to 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪 with ℎ′(𝑥) = 𝑥1 ⊗ 𝑥2. Projection to the left components yields a
homomorphism that witnesses 𝑞1 ⊆𝒪 𝑝′.

For the second part 𝑝″, note that no variable in 𝑝″ is unraveled. That is, every
variable is either an element of (Δ𝒞3

𝑞1,𝒪
×𝒞3

𝑞2,𝒪) ⧵ (var(𝑞1) × var(𝑞2)), or a copy of such an
element introduced by Expand cycle or Split symmetry. The natural mapping ℎ″ that
maps copies to their originals, is then a homomorphism from 𝑝″ to 𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪.

Projection to the left component yields a homomorphism 𝑔″ from 𝑝″ to 𝒞3
𝑞1,𝒪. Since

Expand cycle and Split symmetry were applied exhaustively to 𝑝″, 𝑝″ must be chordal
and symmetry free. It then follows from Lemma 5.28 that 𝑞1 ⊆𝒪 𝑝″.

The second implication can be shown in the same manner.

The modified version of Algorithm 5.3 that uses refine and CQ-equivalence
queries is displayed as Algorithm 5.4. It is important to note that although Al
gorithm 5.4 may during its run produce hypotheses 𝑞𝐻 that are not chordal and
symmetry free, only CQcsf queries will be returned.

Lemma 5.47. Let 𝑞(𝑥1), 𝑝(𝑥2) be CQs. If 𝑝 is chordal and symmetry-free, 𝑞 ≡𝒪 𝑝 and 𝑞 is
(𝑝, 𝒪)-minimal, then 𝑝 is also chordal and symmetry-free.

 Proof sketch. Let ℎ be a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑥2) = 𝑥1 and 𝑔 a

151

5 Learning with Membership and Equivalence Queries

homomorphism from 𝑞 to 𝒰𝑝,𝒪 with ℎ(𝑥1) = 𝑥2. Note that due to (𝑝, 𝒪)-minimality of
𝑞, 𝑔 must be injective, as we could otherwise obtain a non-injective homomorphism
from 𝑞 to 𝒰𝑞,𝒪 by composing 𝑔 with an extension of ℎ. Then, a variant of the proof
of Point 2 of Lemma 5.36 shows that the composition of 𝑔 and ℎ must map every
cycle in 𝑞 injectively onto a cycle in 𝑞. Since no chordless cycle of length at least 4
exists in 𝑝, it follows that no such cycle can exist in 𝑞.

A similar argument applies to non-safe symmetries. The composition of 𝑔 and ℎ
must map symmetries to symmetries. A variant of the proof of Lemma 5.37 shows
that a non-safe symmetry can be mapped to a safe symmetry by the composition of
𝑔 and ℎ. Since no non-safe symmetries exist in 𝑝, it follows that only safe symmetries
exist in 𝑞.

It remains to show that Algorithm 5.4 terminates after a polynomial number
of iterations. Similar to the previous proof for Algorithm 5.3, we argue that the
sequence of assignments to 𝑞𝐻 forms a generalization sequence of (𝑞𝑇, 𝒪)-minimal
CQs towards 𝑞𝑇 under 𝒪. The polynomial bound on the length of such sequences
in Theorem 5.32 then yields the desired bound on the number of iterations.

Theorem 5.48. CQcsf queries are polynomial time learnable under ℰℒ𝑟 ontologies using
membership queries and CQ-equivalence queries.

 Proof. Let 𝑞1, 𝑞2, … be the sequence of assignments to 𝑞𝐻 during a run of Algo
rithm 5.4. Lemma 5.46 implies that the refine subroutine runs in polynomial time in
its inputs and of 𝑞𝑇, and that each 𝑞𝑖 is (𝑞𝑇, 𝒪)-minimal. Therefore, |var(𝑞𝑖)| ≤ |var(𝑞𝑇)|
for all 𝑖 ≥ 0. Hence, it suffices to show that the sequence 𝑞1, 𝑞2, … forms a general
ization sequence towards 𝑞𝑇 under 𝒪.

First, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 1. We show this by induction on 𝑖. For 𝑖 = 1
this is immediate, since 𝑞1 = 𝑞0𝐻. Now assume that 𝑞𝑖−1 ⊆𝒪 𝑞𝑇. The counterexample
(𝒜, 𝑎) returned by the equivalence query “𝑞𝑖−1 ≡𝒪 𝑞𝑇” must then be such that
𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝑖−1(𝑎). If we view (𝒜, 𝑎) as a CQ 𝑞𝒜, this implies that
𝑞𝒜 ⊆𝒪 𝑞𝑇 and 𝑞𝒜 ⊈𝒪 𝑞𝑖−1. Hence, 𝑞𝑖 ⊆𝒪 𝑞𝑇 by Lemma 5.46, as required.

Next, we show that 𝑞𝑖−1 ⊆𝒪 𝑞𝑖 and 𝑞𝑖 ⊈𝒪 𝑞𝑖−1 for all 𝑖 ≥ 2. The first point follows
directly from Lemma 5.46 and the fact that 𝑞𝑖 = refine(𝑞𝑖−1, (𝒜, 𝑎)). The second point
follows from 𝑞𝒜 ⊈𝒪 𝑞𝑖−1 and 𝑞𝒜 ⊆𝒪 𝑞𝑖.

Therefore, the sequence 𝑞1, 𝑞2, … forms a generalization sequence towards 𝑞𝑇
under 𝒪. Since all 𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal, Theorem 5.32 implies a polynomial bound
on the length of the sequence. Algorithm 5.4 must terminate after a number of
iterations that is polynomial in |Σ|, ‖𝒪‖ and ‖𝑞𝑇‖.

Note that in contrast to Algorithm 5.3, Algorithm 5.4 uses CQ-equivalence queries
and thus requires a more capable teacher. This allows us to learn CQcsf queries of
any arity in polynomial time.

152

5.5 Learning under ℰℒℐ ontologies

𝑎
𝐵1, 𝐵2, 𝐵3 𝐴1, 𝐵2, 𝐵3 𝐵1, 𝐴2, 𝐵3 𝐴1, 𝐴2, 𝐵3 𝐵1, 𝐵2, 𝐴3 𝐴1, 𝐵2, 𝐴3

⋯𝑟 𝑟 𝑟 𝑟 𝑟 𝑟

Figure 5.10: The initial segment of the universal model 𝒰𝒜3,𝒪3 of the ℰℒℐ ontology
𝒪3 and the ABox 𝒜3, which contains a 3-bit binary counter.

5.5 Learning under ℰℒℐ ontologies

In the previous sections, we have looked at polynomial time learnability of queries
under ℰℒ𝑟 ontologies. ℰℒ𝑟 allows for polynomial time reasoning, but its expres
siveness is limited in several ways. One of these limitations is that inverse roles
can only be used as part of range restrictions, that is concept inclusions of the form
∃𝑟−.⊤ ⊑ 𝐴, where 𝑟 is a role name and 𝐴 is a concept name. In this section, we
consider learnability of queries under ontologies written in ℰℒℐ, that allows the
unrestricted use of inverse roles. For example, ∃𝑟−.𝐴 ⊑ ∃𝑠−.𝐵 is an ℰℒℐ concept
inclusion that cannot be expressed in ℰℒ𝑟.

The polynomial time learnability results in Section 5.3 and Section 5.4 rely on
two crucial properties of ℰℒ𝑟: First, that there exist polynomial size CQcsf-universal
models of ℰℒ𝑟 ontologies that can be computed in polynomial time, and second, that
whether 𝒜, 𝒪 ⊧ 𝐴(𝑎) can be decided in polynomial time. Both of these properties
no longer hold for ℰℒℐ ontologies. Indeed, it is known that the standard reasoning
problems for ℰℒℐ are ExpTime-complete [BBL08] and that there are ℰℒℐ ontologies
for which no polynomial size ELQ-universal models exist.

Example 5.49. For some 𝑛 ≥ 1, let 𝒪𝑛 be the ℰℒℐ ontology from Example 4.36 that
contains the following concept inclusions for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and for all 𝑗 with
1 ≤ 𝑗 < 𝑖:

𝐵𝑖 ⊑ ∃𝑟.⊤
∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐵𝑖) ⊑ 𝐴𝑖 ∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐴1) ⊑ 𝐵𝑖

∃𝑟−.𝐵𝑖 ⊓ 𝐵𝑗 ⊑ 𝐵𝑖 ∃𝑟−.𝐴𝑖 ⊓ 𝐵𝑗 ⊑ 𝐴𝑖

Together with the ABox 𝒜𝑛 = {𝐵1(𝑎), … , 𝐵𝑛(𝑎)}, these concept inclusion generate an
𝑟-path of length 2𝑛 in 𝒰𝒜𝑛,𝒪𝑛, which is displayed in Figure 5.10 for 𝑛 = 3. On this
path, the concept names 𝐴𝑖, 𝐵𝑖 act as a binary counter, with the first element after
𝑎 on this path being labeled with 𝐴1, 𝐵2, … , 𝐵𝑛 and the 2𝑛th element on this path
being labeled with 𝐴1, 𝐴2, … , 𝐴𝑛. The number of different concept name labels on
this path is 2𝑛, indicating that no model of polynomial size can be ELQ-universal.

As an additional obstacle, the fitting problem for ELIQs under ℰℒℐ ontologies is
known to be undecidable [Fun+19].

153

5 Learning with Membership and Equivalence Queries

These properties of ℰℒℐ indicate that we cannot expect the learning approach for
ℰℒ𝑟 ontologies to work for ℰℒℐ ontologies. Indeed, already the essential minimize𝒪
subroutine does not work in polynomial time under ℰℒℐ ontologies. Hence, we can
only hope to achieve polynomial query learning under ℰℒℐ ontologies. However,
we show that even permitting CQ-equivalence queries does not suffice to enable
polynomial query learning under ℰℒℐ ontologies. This already holds for the ELQs.
Like the lower bound proofs in Chapter 4, we show this using an Angluin-style
argument, arguing that the learner cannot obtain enough information to reliably
identify the target query.

Theorem 5.50. Every class of CQs that contains all ELQs is not polynomial query learnable
under ℰℒℐ ontologies with membership queries and CQ-equivalence queries.

 Proof. We use ℰℒℐ ontologies 𝒪𝑛 for 𝑛 ≥ 1, containing the following concept
inclusions:

⊤ ⊑ ∃𝑟.⊤ ⊓ ∃𝑠.⊤
𝐿𝑖 ⊑ ∃𝑟.𝐿𝑖+1 ⊓ ∃𝑠.𝐿𝑖+1 for 0 ≤ 𝑖 < 𝑛
𝐿𝑖 ⊑ ∃𝑟.𝐿𝑖+1 for 𝑛 ≤ 𝑖 < 2𝑛

𝐿2𝑛 ⊑ 𝐴
∃𝜎.𝐿𝑖+1 ⊑ 𝐿𝑖 for 𝜎 ∈ {𝑟, 𝑠} and 0 ≤ 𝑖 < 2𝑛

𝐾𝑖 ⊑ ∃𝜎.(𝐾𝑖+1 ⊓ 𝑉𝜎
𝑖+1) for 𝜎 ∈ {𝑟, 𝑠} and 0 ≤ 𝑖 < 𝑛

𝐾𝑖 ⊓ 𝑊𝜎
𝑖−𝑛+1 ⊑ ∃𝑟.𝐾𝑖+1 for 𝜎 ∈ {𝑟, 𝑠} and 𝑛 ≤ 𝑖 < 2𝑛

∃𝜎−.(𝐾𝑗 ⊓ 𝑉𝜎′
𝑖) ⊑ 𝑉𝜎′

𝑖 for 𝜎, 𝜎′ ∈ {𝑟, 𝑠}, 1 ≤ 𝑖 ≤ 𝑛,
and 𝑖 ≤ 𝑗 ≤ 2𝑛

𝐾2𝑛 ⊓ 𝑉𝜎
𝑖 ⊓ 𝑊𝜎

𝑖 ⊑ 𝐴 for 𝜎 ∈ {𝑟, 𝑠} and 1 ≤ 𝑖 ≤ 𝑛
∃𝜎.𝑊𝜎′

𝑖 ⊑ 𝑊𝜎′
𝑖 for 𝜎 ∈ {𝑟, 𝑠, 𝑟−, 𝑠−},

𝜎′ ∈ {𝑟, 𝑠}, and 1 ≤ 𝑖 ≤ 𝑛
𝑊𝑟

𝑖 ⊓ 𝑊𝑠
𝑖 ⊑ 𝐿0 for 1 ≤ 𝑖 ≤ 𝑛

∃𝜎.𝐾𝑖+1 ⊑ 𝐾𝑖 for 𝜎 ∈ {𝑟, 𝑠} and 0 ≤ 𝑖 < 2𝑛
∃𝜎−.⊤ ⊑ 𝑈𝜎

1 for 𝜎 ∈ {𝑟, 𝑠}
∃𝜎−.𝑈𝜎′

𝑖 ⊑ 𝑈𝜎′
𝑖+1 for 𝜎, 𝜎′ ∈ {𝑟, 𝑠} and 1 ≤ 𝑖 < 2𝑛

𝑈𝑟
𝑖 ⊓ 𝑈𝑠

𝑖 ⊑ 𝐷 for 1 ≤ 𝑖 ≤ 2𝑛
𝐾𝑖 ⊓ 𝐴 ⊑ 𝐷 for 0 ≤ 𝑖 < 2𝑛
𝐿𝑖 ⊓ 𝐴 ⊑ 𝐷 for 0 ≤ 𝑖 < 2𝑛
𝐿𝑖 ⊓ 𝐿𝑗 ⊑ 𝐷 for 𝑛 ≤ 𝑖 < 𝑗 ≤ 2𝑛

154

5.5 Learning under ℰℒℐ ontologies

𝐿0

𝐿1 𝐿1

𝐿2 𝐿2 𝐿2 𝐿2

𝐿3

𝐴, 𝐿4

𝐿3

𝐴, 𝐿4

𝐿3

𝐴, 𝐿4

𝐿3

𝐴, 𝐿4

𝑟
𝑠

𝑟
𝑠

𝑟
𝑠

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝐾0,𝑊𝑟
1,𝑊𝑠

2

𝐾1, 𝑉𝑟
1 𝐾1, 𝑉𝑠

1

𝐾2, 𝑉𝑟
1, 𝑉𝑟

2 𝐾2, 𝑉𝑟
1, 𝑉𝑠

2 𝐾2, 𝑉𝑠
1, 𝑉𝑟

2 𝐾2, 𝑉𝑠
1, 𝑉𝑟

2

𝐾3, 𝑉𝑟
1, 𝑉𝑟

2

𝐴,𝐾4, 𝑉𝑟
1, 𝑉𝑟

2

𝐾3, 𝑉𝑟
1, 𝑉𝑠

2

𝐾4, 𝑉𝑟
1, 𝑉𝑠

2

𝐾3, 𝑉𝑠
1, 𝑉𝑟

2

𝐴,𝐾4, 𝑉𝑠
1, 𝑉𝑟

2

𝐾3, 𝑉𝑠
1, 𝑉𝑠

2

𝐴,𝐾4, 𝑉𝑠
1, 𝑉𝑠

2

𝑟
𝑠

𝑟
𝑠

𝑟
𝑠

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

Figure 5.11: The interpretations 𝐿0-tree (left) and 𝐾0-tree (right) for 𝑛 = 2 and
𝒲 = {1, 2}.

𝐾𝑖 ⊓ 𝐾𝑗 ⊑ 𝐷 for 𝑛 ≤ 𝑖 < 𝑗 ≤ 2𝑛
𝐿𝑖 ⊓ 𝐾𝑗 ⊑ 𝐷 for 𝑛 ≤ 𝑖, 𝑗 ≤ 2𝑛

∃𝜎.𝐷 ⊑ 𝐷 for 𝜎 ∈ {𝑟, 𝑠, 𝑟−, 𝑠−}
𝐷 ⊑ 𝐿0

where 𝑟 = 𝑠 and 𝑠 = 𝑟. The size of the used signature Σ𝑛 is polynomial in 𝑛. Every
𝒪𝑛 is associated with a set 𝐻𝑛 of 2𝑛 potential target queries of the form

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ ⋯ ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

with 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠}.
Assume to the contrary of what is to be shown that ELQs are polynomial query

learnable under ℰℒℐ ontologies when unrestricted CQs can be used in equivalence
queries. Then, there exists a learning algorithm and a polynomial 𝑝 such that
at any time, the sum of the sizes of the inputs to membership and equivalence
queries made so far is bounded by 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇, 𝑛𝒜), where 𝑛Σ is the size of the used
signature, 𝑛𝒪 the size of the used ontology, 𝑛𝑞𝑇 the size of the target query and 𝑛𝒜
the size of the largest counterexample seen so far.

We choose 𝑛 such that 2𝑛 > 𝑝(𝑓1(𝑛), 𝑓2(𝑛), 𝑓3(𝑛), 𝑓3(𝑛)) + 1 where 𝑓1, 𝑓2, 𝑓3 are
polynomials such that for every 𝑛 ≥ 1, |Σ𝑛| ≤ 𝑓1(𝑛), ‖𝒪𝑛‖ ≤ 𝑓2(𝑛), ‖𝑞‖ ≤ 𝑓3(𝑛) for all
𝑞 ∈ 𝐻𝑛 and 𝑓4 bounds from above the size of all counterexamples returned by the
teacher that we craft below. Consider then 𝒪𝑛 and 𝐻𝑛 as defined above. We let the
teacher maintain a set of hypotheses 𝐻, starting with 𝐻 = 𝐻𝑛 and then proceeding
to subsets thereof, such that at no point the learner can distinguish between any of
the candidate targets in 𝐻.

155

5 Learning with Membership and Equivalence Queries

More precisely, consider a membership query with the data example (𝒜, 𝑎0). The
teacher responds as follows:

1. if 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0), then answer yes;

2. if 𝒜, 𝒪𝑛 ⊧ 𝐾0(𝑎0) and there are 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠} with 𝒜, 𝒪𝑛 ⊧ 𝑊𝜎𝑖
𝑖 (𝑎0) for

1 ≤ 𝑖 ≤ 𝑛, then answer yes and remove the ELQ

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ ⋯ ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

from 𝐻, if present;

3. otherwise, answer no and remove all 𝑞 with 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0) from 𝐻.

Higher up rules have higher priority, for example, Case 2 is applied only if Case 1
does not apply. To understand this strategy, consider the consequences of the
concept name 𝐿0 and the concept name 𝐾0 under 𝒪𝑛 displayed in Figure 5.11 for
𝑛 = 2. We formally describe them later. It is not difficult to verify that the answers
are correct regarding the hypothesis set 𝐻 that remains after the answer is given.

Now consider an equivalence query with CQ 𝑞𝐻(𝑥0). The teacher responds as
follows:

1. if {𝐿0(𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0), then return {𝐿0(𝑎0)} as positive counterexample;

2. if {⊤(𝑎0), 𝐿0(𝑎1)}, 𝒪𝑛 ⊧ 𝑞𝐻(𝑎0), then return {⊤(𝑎0), 𝐿0(𝑎1)} as a negative coun
terexample;

3. if there are 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠} such that

{𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0),

then choose such 𝜎1, … , 𝜎𝑛, return {𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)} as a positive

counterexample, and remove the ELQ

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ ⋯ ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

from 𝐻 (if present).

Again, higher up rules have higher priority and the answers are always correct
with respect to the updated set 𝐻. For Case 3, note that the counterexample 𝒜 =
{𝐾0(𝑎0), 𝑊𝜎1

1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)} is such that 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0) for all ELQs

𝑞(𝑥0) ← 𝜎′
1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎′

𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ … ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

with 𝜎′
1, … , 𝜎′

𝑛 ∈ {𝑟, 𝑠} except 𝜎′
1 ⋯ 𝜎′

𝑛 = 𝜎1 ⋯ 𝜎𝑛.

156

5.5 Learning under ℰℒℐ ontologies

We argue that Cases 1 to 3 are exhaustive. If 𝒜𝑞𝐻, 𝒪𝑛 ⊧ 𝐿0(𝑥0), then

{𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0)

for any 𝜎1, … , 𝜎𝑛, ∈ {𝑟, 𝑠} and thus Case 3 is applicable.
For the case 𝒜𝑞𝐻, 𝒪𝑛 ⊧̸ 𝐿0(𝑥0), assume that Cases 1 and 2 do not apply. Let 𝑞′𝐻

be the restriction of 𝑞𝐻 to variables that are reachable from 𝑥0 and let 𝑞″𝐻 be the
restriction of 𝑞𝐻 to the variables that are not reachable.

Non-applicability of Case 1 implies that there is a homomorphism ℎ from 𝑞𝐻 to
𝒰{𝐿0(𝑎0)},𝒪𝑛 with ℎ(𝑥0) = 𝑎0. Consequently, 𝑞𝐻 can only contain the symbols 𝑟, 𝑠, 𝐴 as
well as the concept names 𝐿𝑖 and 𝑈𝜎

𝑖 .
If there is no variable 𝑥 ∈ var(𝑞′𝐻) such that 𝐴(𝑥) ∈ 𝑞′𝐻, then ℎ is also a homomor

phism from 𝑞′𝐻 to 𝒰{⊤(𝑎0)},𝒪𝑛 due to the first concept inclusion in 𝒪𝑛. Taking the
union of ℎ with a homomorphism from 𝑞″𝐻 to 𝒰{𝐿0(𝑎1)},𝒪𝑛 yields a homomorphism
𝑔 from 𝑞𝐻 to 𝒰{⊤(𝑎0),𝐿0(𝑎1)},𝒪𝑛 with 𝑔(𝑥0) = 𝑎0. This contradicts that Case 2 does not
apply. Therefore, there must be a variable 𝑥 ∈ var(𝑞′𝐻) such that 𝐴(𝑥) ∈ 𝑞𝐻. Since
{𝐿0(𝑎0)}, 𝒪𝑛 ⊧ 𝑞𝐻(𝑥0), 𝑥 must be reachable from 𝑥0 on an 𝑟/𝑠-path of length exactly 2𝑛
whose last 𝑛 components are all 𝑟. Let the first 𝑛 components be 𝜎1, … , 𝜎𝑛. Then

{𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0)

and thus Case 3 applies.

We next show the following, which is the most important consequence of the
design of 𝒪𝑛.

Claim. If (𝒜, 𝑎0) is given as a membership query and Cases 1 and 2 of membership
queries do not apply, then

‖𝒜‖ ≥ |{𝑞 ∈ 𝐻𝑛 ∣ 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0)}|.

 Proof of the Claim. We may assume without loss of generality that 𝒜 is connected.
Since Cases 1 and 2 of membership queries do not apply, we observe the following
properties:

(a) 𝒜, 𝒪𝑛 ⊧̸ 𝐿0(𝑎0).

(b) there are no 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠} such that 𝒜, 𝒪𝑛 ⊧ 𝐾0(𝑎0) and 𝒜, 𝒪𝑛 ⊧ 𝑊𝜎𝑖
𝑖 (𝑎0) for

1 ≤ 𝑖 ≤ 𝑛.

By construction of 𝒪𝑛, these properties imply the following properties for all 𝑖 with
0 ≤ 𝑖 ≤ 2𝑛:

(c) 𝒜 contains no 𝑟/𝑠-path of length 𝑖 from 𝑎0 to some 𝑎 with 𝒜, 𝒪𝑛 ⊧ 𝐿𝑖(𝑎). In
fact, the existence of such a path implies 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0), contradicting (a).

157

5 Learning with Membership and Equivalence Queries

(d) 𝒜 contains no 𝑟/𝑠-path of length 𝑖 from 𝑎0 to some 𝑎 with 𝒜, 𝒪𝑛 ⊧ 𝐾𝑖(𝑎) and
assertions 𝑊𝜎1

1 (𝑎1), … , 𝑊𝜎𝑛𝑛 (𝑎𝑛) with 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠}. In fact, the existence of
such a path and such assertions implies 𝒜, 𝒪𝑛 ⊧ 𝐾0(𝑎0) and 𝒜, 𝒪𝑛 ⊧ 𝑊𝜎𝑖

𝑖 (𝑎0)
for 1 ≤ 𝑖 ≤ 𝑛, contradicting (b).

(e) 𝒜 contains no 𝑟/𝑠-paths 𝑝1, 𝑝2 of length 𝑖 that end at the same individual and
such that 𝑝1 starts with an 𝑟-edge while 𝑝2 starts with an 𝑠-edge. In fact, the
existence of such paths and the connectedness of 𝒜 implies 𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎0),
and thus 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0), contradicting (a).

We now sketch the construction of a model ℐ of 𝒜 and 𝒪𝑛. Let

𝒲 = {𝑖 ∈ {1, … , 𝑛} ∣ 𝑊𝜎
𝑖 (𝑎) ∈ 𝒜, 𝜎 ∈ {𝑟, 𝑠}, 𝑎 ∈ ind(𝒜)}.

The following interpretations are used as building blocks for ℐ:

• an 𝐿𝑖-path, for 𝑛 ≤ 𝑖 ≤ 2𝑛, is an 𝑟-path of length 2𝑛 − 𝑖 that makes 𝐿𝑖+𝑗 true at
the node at distance 𝑗 ∈ {0, … , 𝑛 − 𝑖} from the start of the path and that makes
true 𝐴 at the end of the path;

• a 𝐾𝑖-path, for 𝑛 ≤ 𝑖 ≤ 2𝑛, is defined as follows; let ℓ be maximal such that
{(𝑖 − 𝑛) + 0, … , (𝑖 − 𝑛) + ℓ} ⊆ 𝒲; then a 𝐾𝑖-path is an 𝑟-path of length ℓ that
makes 𝐾𝑖+𝑗 true at the node at distance 𝑗 ∈ {0, … , ℓ} from the start of the path
and that makes true 𝐴 at the node at distance 2𝑛 − 𝑖 (if it exists); in addition,
the start of the path might make true any of the concept names 𝑉𝜎

𝑗 , 𝜎 ∈ {𝑟, 𝑠}
and 1 ≤ 𝑗 ≤ 𝑛, which are then all also made true by all other nodes on the
path;

• an 𝐿𝑖-tree, for 0 ≤ 𝑖 < 𝑛, is a binary 𝑟/𝑠-tree of depth 𝑛 − 𝑖 that makes 𝐿𝑖+𝑗 true
at every node on level 𝑗 ∈ {0, … , 𝑛 − 𝑖}; in addition, every node on level 𝑛 − 𝑖 is
the start of an 𝐿𝑛-path;

• a 𝐾𝑖-tree, for 0 ≤ 𝑖 < 𝑛, is a binary 𝑟/𝑠-tree of depth 𝑛 − 𝑖 that makes true 𝐾𝑖+𝑗
at every node on level 𝑗 ∈ {0, … , 𝑛 − 1} and 𝑉𝜎

𝑖+𝑗 at every node on level at least
𝑗 that is a 𝜎-successor of its parent; in addition, every node on level 𝑛 − 𝑖 is
the start of a 𝐾𝑛-path; moreover, the root might make true any of the concept
names 𝑉𝜎

𝑗 , 𝜎 ∈ {𝑟, 𝑠} and 1 ≤ 𝑗 ≤ 𝑖, which are then all also made true by all
other nodes in the tree.

In all of the above, any node that has an incoming 𝑟/𝑠-path of length 𝑖 ∈ {1, … , 2𝑛} that
starts with 𝜎 ∈ {𝑟, 𝑠} is additionally labeled with the concept name 𝑈𝜎

𝑖 . Moreover,
the beginning of the path/root of the tree may be labeled with concept names of
the form 𝑈𝜎

𝑖 . Then, any node on depth 𝑖 + 𝑗 with 𝑖 + 𝑗 ≤ 2𝑛 is labeled with 𝑈𝜎
𝑖+𝑗.

158

5.5 Learning under ℰℒℐ ontologies

Figure 5.11 visualizes these building blocks The concept names 𝑈𝜎
𝑖 and 𝑊𝜎

𝑖 are
left out and mentioned just once, respectively. Note that the 𝐾0-tree is missing a
concept name 𝐴 at the 𝐾2-path specified by 𝑊𝑟

1, 𝑊𝑠
2.

Now, we construct ℐ by starting with 𝒜 and doing the following:

1. exhaustively apply all concept inclusions in 𝒪𝑛 that have a concept name on
the right-hand side;

2. if 𝑎 ∈ 𝐿ℐ
𝑖 , 0 ≤ 𝑖 < 𝑛, then attach at 𝑎 an 𝐿𝑖-tree;

3. if 𝑎 ∈ 𝐾ℐ
𝑖 , 0 ≤ 𝑖 < 𝑛, then attach at 𝑎 a 𝐾𝑖-tree;

4. if 𝑎 ∈ 𝐿ℐ
𝑖 , 𝑛 ≤ 𝑖 ≤ 2𝑛, then attach at 𝑎 an 𝐿𝑖-path;

5. if 𝑎 ∈ 𝐾ℐ
𝑖 , 𝑛 ≤ 𝑖 ≤ 2𝑛, then attach at 𝑎 a 𝐾𝑖-path;

6. at every 𝑎 ∈ Δℐ, attach an infinite tree in which every node has two successors,
one for each role name 𝑟, 𝑠, and in which no concept names are made true;

7. if 𝑊𝜎
𝑖 (𝑎) ∈ 𝒜 for some 𝑎, then make 𝑊𝜎

𝑖 true everywhere in ℐ.

By going over the concept inclusions in 𝒪𝑛 and using Properties (a) and (b), it can
be verified that ℐ is indeed a model of 𝒪𝑛. In particular, the inclusions 𝑊𝑟

𝑖 ⊓𝑊𝑠
𝑖 ⊑ 𝐿0

are satisfied since there is no 𝑑 ∈ Δℐ with 𝑑 ∈ (𝑊𝑟
𝑖 ⊓𝑊𝑠

𝑖); if there was such a 𝑑, then by
construction of ℐ there would be assertions 𝑊𝑟

𝑖 (𝑎) and 𝑊𝑠
𝑖 (𝑏) in 𝒜, in contradiction to

the connectedness of 𝒜 and 𝒜, 𝒪𝑛 ⊧̸ 𝐿0(𝑎0). For the concept inclusions 𝑈𝑟
𝑖 ⊓𝑈𝑠

𝑖 ⊑ 𝐿0,
we argue that there is no 𝑑 ∈ Δℐ with 𝑑 ∈ (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖)
ℐ. To see this, note that there are

no 𝑈𝑟
𝑖 (𝑎), 𝑈𝑠

𝑖 (𝑎) ∈ 𝒜 for any 𝑎 as otherwise 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0). Now consider Step 1 of
the construction of ℐ and assume that it adds some 𝑎 ∈ ind(𝒜) to (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖)
ℐ. But

this means that 𝒜, 𝒪𝑛 ⊧ 𝑈𝑟
𝑖 (𝑎) and 𝒜, 𝒪𝑛 ⊧ 𝑈𝑠

𝑖 (𝑎), in contradiction to 𝒜, 𝒪𝑛 ⊧̸ 𝐿0(𝑎0),
due to connectedness of 𝒜. Given that there is no 𝑑 ∈ (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖)
ℐ for any 𝑖 after

Step 1, it is readily checked that the elements 𝑑 added in Steps 2–6 also satisfy
𝑑 ∉ (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖)
ℐ.

We now use ℐ to prove the claim. Let 𝐻′ be the set of all 𝑞 ∈ 𝐻𝑛 with 𝒜, 𝒪𝑛 ⊧
𝑞(𝑎0). With each 𝑞 ∈ 𝐻′, we associate an 𝑎𝑞 ∈ ind(𝒜) as follows. Let 𝑞 be the CQ
𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎2𝑛(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛). Then ℐ contains a path from 𝑎0
to some element 𝑑𝑞 ∈ 𝐴ℐ that is labeled 𝜎1 ⋯ 𝜎2𝑛. If 𝑑𝑞 ∈ ind(𝒜), then 𝑎𝑞 = 𝑑𝑞.
Otherwise, 𝑑𝑞 is in a path or tree attached to some 𝑎 ∈ ind(𝒜). Set 𝑎𝑞 = 𝑎. To show
that ‖𝒜‖ ≥ |{𝑞 ∈ 𝐻𝑛 ∣ 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0)}| as required, it suffices to prove that 𝑎𝑞 ≠ 𝑎𝑞′
whenever 𝑞 ≠ 𝑞′. Thus, let 𝑞, 𝑞′ ∈ 𝐻′ with 𝑞 ≠ 𝑞′,

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎2𝑛(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛),
𝑞′(𝑥′0) ← 𝜎′

1(𝑥′0, 𝑥′1) ∧ ⋯ ∧ 𝜎′
2𝑛(𝑥′2𝑛−1, 𝑥′2𝑛) ∧ 𝐴(𝑥′2𝑛).

159

5 Learning with Membership and Equivalence Queries

Assume to the contrary of what is to be shown that 𝑎𝑞 = 𝑎𝑞′. We distinguish four
cases:

• 𝑑𝑞 = 𝑎𝑞, 𝑑𝑞′ = 𝑎𝑞′.

Then there is a path from 𝑎0 to 𝑎𝑞 in ℐ labeled 𝜎1 ⋯ 𝜎2𝑛 and a path from 𝑎0 to
𝑎𝑞′ labeled 𝜎′

1 ⋯ 𝜎′
2𝑛. By construction of ℐ, these paths must already exist in

𝒜. From 𝑞 ≠ 𝑞′, we thus obtain a contradiction to Property (e).

• 𝑑𝑞 = 𝑎𝑞, 𝑑𝑞′ ≠ 𝑎𝑞′.

By construction of ℐ, 𝑑𝑞′ ≠ 𝑎𝑞′ implies that 𝒜, 𝒪𝑛 ⊧ 𝐿𝑖(𝑎𝑞) or 𝒜, 𝒪𝑛 ⊧ 𝐾𝑖(𝑎𝑞)
for some 𝑖 with 0 ≤ 𝑖 ≤ 2𝑛. Moreover, 𝑑𝑞 = 𝑎𝑞 implies 𝒜, 𝒪𝑛 ⊧ 𝐴(𝑎𝑞). Thus,
𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎𝑞). By the connectedness of 𝒜, we obtain 𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎0), thus
𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0) in contradiction to Property (c).

• 𝑑𝑞 ≠ 𝑎𝑞, 𝑑𝑞′ = 𝑎𝑞′.

Symmetric to previous case.

• 𝑑𝑞 ≠ 𝑎𝑞, 𝑑𝑞′ ≠ 𝑎𝑞′.

We first show that 𝑑𝑞 and 𝑑𝑞′ are not in an 𝐿𝑖-tree, for 0 ≤ 𝑖 < 𝑛. Assume to
the contrary that 𝑑𝑞 is (the case of 𝑑𝑞′ is symmetric). Then it occurs on level
2𝑛 − 𝑖 in the tree, since 𝑑𝑞 ∈ 𝐴ℐ. Since an 𝐿𝑖-tree was attached to 𝑎𝑞, we must
have 𝒜, 𝒪𝑛 ⊧ 𝐿𝑖(𝑎𝑞). Moreover, there is an 𝑟/𝑠-path in ℐ from 𝑎0 to 𝑎𝑞 of length
𝑖, the prefix of 𝜎1 ⋯ 𝜎2𝑛 of this length. By construction of ℐ, this path must
already be in 𝒜. This is in contradiction to Property (c).

We next show that 𝑑𝑞 and 𝑑𝑞′ are not in a 𝐾𝑖-tree, 0 ≤ 𝑖 < 𝑛. Assume to the con
trary that 𝑑𝑞 is (the case of 𝑑𝑞′ is symmetric). Then it occurs on level 2𝑛−𝑖 in the
tree, since 𝑑𝑞 ∈ 𝐴ℐ. By definition of such trees (and the attached paths), this
implies that 𝒲 = {1, … , 𝑛} and thus 𝒜 contains assertions 𝑊𝜎″1

1 (𝑎1), … , 𝑊𝜎″𝑛𝑛 (𝑎𝑛).
We must further have 𝒜, 𝒪𝑛 ⊧ 𝐾𝑖(𝑎𝑞) and there is an 𝑟/𝑠-path in ℐ, thus in 𝒜
from 𝑎0 to 𝑎𝑞 of length 𝑖. This is in contradiction to Property (d).

Thus, 𝑑𝑞 and 𝑑′𝑞 are both in an 𝐿𝑖-path or in a 𝐾𝑖-path, 𝑛 ≤ 𝑖 ≤ 2𝑛. If they
are in different such paths, then 𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎𝑞), which is in contradiction to
Property (c) as 𝒜 is connected. Thus, they must be in the same 𝐿𝑖-path or
in the same 𝐾𝑖-path. Since each such path contains a single element 𝑑 with
𝑑 ∈ 𝐴ℐ, we obtain 𝑑𝑞 = 𝑑′𝑞. From 𝑞 ≠ 𝑞′, it thus follows that there are two
different paths of length 𝑖 in ℐ from 𝑎0 to 𝑎𝑞, the prefixes of this length of
𝜎1 ⋯ 𝜎2𝑛 and of 𝜎′

1 ⋯ 𝜎′
2𝑛. This is in contradiction to Property (e).

This finishes the proof of the claim.

160

5.6 Queries with Disjunctions

We can use the claim to show the following invariant:

(∗) at every point, the sum 𝑚 of the sizes of the inputs to membership and equiv
alence queries made so far is not smaller than the number of candidates that
were removed from 𝐻.

Note that the teacher removes candidate queries from 𝐻 only in Cases 2 and 3 of
membership queries (Page 156) and Cases 3 and 6 of equivalence queries (Page 156).
In all cases except Case 3 of membership queries, only one candidate is removed
from 𝐻. The claim implies that the number of removed candidates in Case 3 of
membership queries is bounded from above by the size of the query posed.

It then follows that there is a polynomial 𝑓4 such that the size of all counterexam
ples returned by the oracle is at most 𝑓4(𝑛). The overall sum of the sizes of posed
membership and equivalence queries is bounded by 𝑝(𝑓1(𝑛), 𝑓2(𝑛), 𝑓3(𝑛), 𝑓4(𝑛)).
Hence, we can conclude from (∗) that at most 𝑝(𝑓1(𝑛), 𝑓2(𝑛), 𝑓3(𝑛), 𝑓4(𝑛)) candidate
concepts have been removed from 𝐻𝑛. By the choice of 𝑛, at least two candidate con
cepts remain in 𝐻 after the algorithm finishes. Thus, the learner cannot distinguish
between them, and we have derived a contradiction.

Theorem 5.50 also precludes the possibility of polynomial time learning under
ℰℒℐ ontologies with an ℰℒℐ reasoning oracle.

5.6 Queries with Disjunctions

All query classes we have considered so far are subclasses of CQs and can therefore
only express conjunction of atoms. In many practical scenarios, it is also desirable
to write queries using disjunctions, for example when querying a database for all
things that are a dog or a cat. In this chapter, we briefly consider the learnability of
queries that use disjunctions. One way to use disjunctions in queries are unions of
conjunctive queries (UCQs). A UCQ is an expression of the form

𝑞(𝑥) ← 𝑞1(𝑥) ∨ ⋯ ∨ 𝑞𝑛(𝑥)

where 𝑞1, … , 𝑞𝑛 are CQs of the same arity. A tuple 𝑑 is an answer to a UCQ 𝑞 in an
interpretation ℐ, written ℐ ⊧ 𝑞(𝑑) if there is an 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 such that ℐ ⊧ 𝑞𝑖(𝑑).
This allows us to express disjunctions like

𝑞(𝑥) ← Dog(𝑥) ∨ Cat(𝑥).

Ten Cate, Dalmau, and Kolaitis show that UCQs are polynomial time learnable
using membership and equivalence queries [tCDK13] under the empty ontology,

161

5 Learning with Membership and Equivalence Queries

in fact, using a variant of Algorithm 5.1. Therefore, the question arises whether
our result concerning the polynomial time learnability of subclasses of CQs under
ontologies can be transferred to UCQs. We conjecture that this is the case and that
Algorithm 5.2 and Algorithm 5.3 can be extended analogously to learn unions of
ELIQs, or unions of CQcsf queries, respectively. This new algorithm would maintain
a union of CQcsf queries as a hypothesis, and would use counterexamples and
membership queries to update single CQcsf queries in this union, or to add new
elements to the union. We leave a proof of this for future work.

A known property of UCQs is that, since disjunctions appear nested below
conjunctions, some queries cannot be represented succinctly. For example, if we
want to query for all things that are (𝐴1 or 𝐴2) and (𝐴3 or 𝐴4), we can only formulate
this as the UCQ

𝑞(𝑥) ← (𝐴1(𝑥) ∧ 𝐴3(𝑥)) ∨ (𝐴1(𝑥) ∧ 𝐴4(𝑥)) ∨ (𝐴2(𝑥) ∧ 𝐴3(𝑥)) ∨ (𝐴2(𝑥) ∧ 𝐴4(𝑥)).

UCQs can therefore be exponentially larger than queries written in a query language
that can freely nest disjunctions and conjunctions.

One way to define such a query language is to use ℰℒ𝒰 concept queries, that is
ℰℒ concepts extended with disjunctions. An ℰℒ𝒰 concept is formed according to
the syntax rule

𝐶, 𝐷 ∶∶= ⊤ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐷 ∣ 𝐶 ⊔ 𝐷 ∣ ∃𝑟.𝐶

where 𝐴 ranges over NC and 𝑟 over NR. The semantics of ⊤, ⊥, ⊓ and ∃ is defined
exactly as in Section 3.1. We extend the interpretation function ⋅ℐ for ⊔ by setting

(𝐶 ⊔ 𝐷)ℐ = 𝐶ℐ ∪ 𝐷ℐ.

ℰℒ𝒰 queries allow us to express the above query more succinctly as the concept

(𝐴1 ⊔ 𝐴2) ⊓ (𝐴3 ⊔ 𝐴4).

Unfortunately, this succinct representation makes learning ℰℒ𝒰 queries with
membership queries and equivalence queries hard, which we show next. So far,
in Section 4.1 and Section 5.5, we have used the basic combinatorial technique
introduced by Angluin [Ang88b] to show lower bounds for exact learning. It is
unclear if or how this technique can be applied to ℰℒ𝒰 queries. Instead, we will
rely on the hardness of learning monotone Boolean (propositional) formulas, that is
Boolean formulas that do not use negation, only conjunction and disjunction.

Learning of Boolean formulas is one of the major fields where the exact learning
framework has been applied. Many fragments of Boolean formulas have been
shown to be polynomial time learnable, like 𝑘-term DNFs [Ang88b] or Horn for
mulas [AFP92]. However, the class of all Boolean formula has been shown to not

162

5.6 Queries with Disjunctions

be polynomial time learnable with equivalence and membership queries, as long as
certain cryptographic assumptions hold [AK95]. These assumptions are that one of
the following problems cannot be solved in polynomial time: (1) testing quadratic
residues modulo a composite, (2) inverting RSA encryption, (3) factoring Blum
integers. See [KV89] for more details and a description of these problems. These
assumptions all imply that P ≠ NP.

This lower bound already holds for monotone Boolean formulas.

Theorem 5.51 ([Dal99]). Monotone Boolean formulas are not polynomial time learnable
with membership queries and equivalence queries under cryptographic assumptions.

Since ℰℒ𝒰 queries, like monotone Boolean formulas, only use conjunction and
disjunction (but are unable to express Boolean negation), this directly allows us to
show that ℰℒ𝒰 queries are not polynomial time learnable even in the case without
an ontology via a trivial direct reduction.

Theorem 5.52. ℰℒ𝒰 queries are not polynomial time learnable under the cryptographic
assumptions.

 Proof. Assume to the contrary that there is a learning algorithm A that can learn
ℰℒ𝒰 queries under the empty ontology in polynomial time using equivalence and
membership queries.

We use A to formulate a polynomial time learning algorithm A′ for monotone
Boolean formulas. The new algorithm proceeds as follows.

• When started to learn a monotone Boolean formula over the propositional
variables 𝑥1, … , 𝑥𝑛, A′ in turn starts A with the signature {𝐴1, … , 𝐴𝑛}, where
𝐴1, … , 𝐴𝑛 are concept names.

• When A poses a membership query with the example (𝒜, 𝑎), A′ constructs
the variable assignment 𝑉𝒜 with 𝑉𝒜(𝑥𝑖) = 1 if and only if 𝒜, ∅ ⊧ 𝐴𝑖(𝑎) for
all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, and poses a membership query with 𝑉𝒜. A′ returns the
result of this membership query to A.

• When A poses an equivalence query with the ℰℒ𝒰 query 𝑞𝐻, A′ computes
the monotone Boolean formula 𝜑𝐻 using the following inductive translation
𝑓 of ℰℒ𝒰 concepts:

𝑓(𝐴𝑖) = 𝑥𝑖
𝑓(𝐶 ⊓ 𝐷) = 𝑓(𝐶) ∧ 𝑓(𝐷)
𝑓(𝐶 ⊔ 𝐷) = 𝑓(𝐶) ∨ 𝑓(𝐷)

and setting 𝜑𝐻 = 𝑓(𝑞𝐻). The algorithm A′ then poses an equivalence query
with 𝜑𝐻. If A′ receives a valuation 𝑉 as counterexample, it constructs an ABox
𝒜𝑉 = {𝐴𝑖(𝑎) ∣ 𝑉(𝑥𝑖) = 1} and returns (𝒜𝑉, 𝑎) as counterexample to A.

163

5 Learning with Membership and Equivalence Queries

• When A terminates and returns an ℰℒ𝒰 query 𝑞𝐻, it returns 𝑓(𝑞𝐻) using the
same translation as above.

Since 𝑉 ⊧ 𝜑 if and only if 𝒜𝑉, ∅ ⊧ 𝑓(𝜑), the answers given to membership queries
and equivalence queries are correct. Hence, A′ returns in polynomial time a mono
tone Boolean formula that is equivalent to the target formula, contradicting Theo
rem 5.51.

This observation justifies our focus on learning conjunctive queries. It is an inter
esting question, whether other results on the polynomial time learnability of classes
of Boolean formulas can give rise to larger polynomial time learnable query classes.

5.7 Discussion

In this chapter, we have investigated the learnability of queries under ontologies
using both membership queries and equivalence queries. Unsurprisingly, the addi
tion of equivalence queries makes learning algorithms more powerful compared
to the algorithms we considered in Chapter 4. The result can be summarized as
follows.

• ELIQs are polynomial time learnable under ontologies written in DL-Liteℱ−horn
(Theorem 5.17);

• ELQ, ELIQsf, and CQcsf queries are polynomial time learnable under ℰℒ𝑟

ontologies if their arity is fixed (Theorem 5.39) and polynomial time learnable
for unbounded arity if CQ-equivalence queries are permitted (Theorem 5.48);

• ELQ, ELIQ, and CQ queries are not polynomial query learnable under ℰℒℐ
ontologies, even if CQ-equivalence queries are permitted (Theorem 5.50);

• ℰℒ𝒰 queries are not polynomial time learnable under cryptographic assump
tion (Theorem 5.52).

Recall that the results about ELQs, ELIQs and ELIQsf queries also apply to ℰℒ
concepts, ℰℒℐ concepts and symmetry-free ℰℒℐ concepts, respectively.

The main issue we discussed in this chapter is how learning algorithms can
update hypotheses with counterexamples obtained from equivalence queries to
approach the target query. In Section 5.2 we used guided generalizations for this
and products of compact models in Section 5.3. Combined with subroutines to
minimize queries and to extract queries from the desired query class, this allows
the learning algorithms to approach the target query in polynomially many steps.
Next, we discuss how the results in this chapter might be generalized.

164

5.7 Discussion

Using Counterexamples. Upon inspection of the conditions of generalization
sequences (Definition 4.33) and the proof that the hypotheses of the learning
algorithm form a generalization sequence, we can note that the only requirement
for the new hypothesis 𝑞′𝐻 is that 𝑞𝐻 ⊆𝒪 𝑞′𝐻 ⊆𝒪 𝑞𝑇 and 𝑞′𝐻 ⊈𝒪 𝑞𝐻. In other words,
it suffices that 𝑞′𝐻 is an element of the frontier of 𝑞𝐻. In some sense, the LGGs
(Definition 5.6), guided generalizations (Definition 5.9), and the product of compact
models used in Section 5.3 enforce more properties than are necessary for the
learning algorithm to make progress towards 𝑞𝑇. Of course, as noted in Chapter 4,
the frontier of a hypothesis 𝑞𝐻 under ontologies is often infinite or of exponential
size and thus cannot be enumerated to search for 𝑞′𝐻. However, the counterexample
returned by an equivalence query can provide us with more information, and may
allow us to restrict the search to a small portion of the frontier. A more principled
way to obtain learning algorithms could thus be based on counterexample-guided
frontiers, that may be of polynomial size, in cases where the general frontier is
prohibitively large.

Learning under ℰℒlhs. As discussed in Section 5.1, ideally one would want to use
the product 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪 to update a hypothesis with a counterexample. This is
of course not possible, if the universal models are infinite or of exponential size.
For ℰℒlhs ontologies, that is ontologies where all concept inclusions have the shape
𝐶 ⊑ 𝐴 where 𝐶 is an ℰℒ concept and 𝐴 a concept name, it is always the case that
𝒰𝑞,𝒪 is of polynomial size. By slightly modifying Algorithm 5.1, we can therefore
easily show that CQs are polynomial time learnable under ℰℒlhs ontologies.

Functionality Constraints. Reasoning in ℰℒℱ, that is ℰℒ extended with function
ality constraints, is ExpTime-complete [BBL05]. Hence, polynomial time learning
of, for example, ELQs under ℰℒℱ ontologies seems out of reach. Additionally, there
are no ELQ-universal models of ℰℒℱ ontologies that are of polynomial size, as
demonstrated by Example 5.49, which can be expressed using ℰℒℱ ontologies. We
conjecture that the ℰℒℐ ontologies used in the proof of Theorem 5.50 can be formu
lated in ℰℒℱ, and be used to show that ELQs are not polynomial query learnable
under ℰℒℱ ontologies. To show this, note that the roles 𝑠 and 𝑟 are functional in all
used interpretations, and therefore each concept inclusion of the form ∃𝜎−.𝐴 ⊑ 𝐵,
can be expressed in ℰℒℱ as

𝐴 ⊑ ∃𝜎.𝐵, func(𝜎).

Role Inclusions. ℰℒℋ ontologies, that is ℰℒ ontologies that additionally contain
role inclusions, also possess ELQ-universal models of polynomial size. We can
therefore use the same techniques as in Section 5.3 to show that ELQs are polynomial

165

5 Learning with Membership and Equivalence Queries

time learnable under ℰℒℋ ontologies. The situation becomes more difficult if we
consider (symmetry-free) ELIQs, as the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑠(𝑥2, 𝑥1) does not
contain a symmetry, but still has spurious matches in compact models under the
ontology 𝒪 = {𝑠 ⊑ 𝑟}. Hence, a new definition of being symmetry-free is needed that
takes into account the role inclusions in the ontology. We conjecture that sufficiently
symmetry-free ELIQs and chordal CQs can also be learned in polynomial time
under ℰℒℋ ontologies.

CQs with Longer Cycles. The query class CQcsf allows only cycles of length at
most 3 in a query before requiring a chord. It is an interesting question whether this
can be generalized to longer cycles. The main issue is the construction of 𝒞3

𝒜,𝒪 and
Lemma 5.24, which states that the anonymous part of 𝒞3

𝒜,𝒪 only contains cycles of
length four or longer. It seems possible to construct compact models where every
cycle has length at least 𝑘, and thus to allow cycles of length < 𝑘 in the query. One
way to approach this is using graphs of high girth in the construction of a compact
model, which are of polynomial size if 𝑘 is fixed [Ott06], but their size in general
depends exponentially on 𝑘.

Restricting Examples to Concepts. If we are interested in learning ℰℒ concepts, it
might make sense to use concept examples instead of data examples, or equivalently
to restrict data examples to be rooted and tree-shaped. In this setting, the learner
aims to identify a target concept 𝐶𝑇. For an equivalence, query the learner produces
a hypothesis concept 𝐶𝐻, and the teacher responds with a counterexample 𝐷 such
that 𝒪 ⊧ 𝐷 ⊑ 𝐶𝐻 and 𝒪 ⊧̸ 𝐷 ⊑ 𝐶𝑇 or 𝒪 ⊧̸ 𝐷 ⊑ 𝐶𝐻 and 𝒪 ⊧ 𝐷 ⊑ 𝐶𝑇. This restriction
gives the teacher fewer options to choose counterexamples, and therefore the same
ideas as in Section 5.1 to update a hypothesis with a counterexample still apply. For
a membership query, the learner produces a concept 𝐷, and the teacher responds
with yes if 𝒪 ⊧ 𝐷 ⊑ 𝐶𝐻. As discussed in Section 4.7, this makes it impossible to use
minimization as part of a subroutine like extract𝒬. Thus, it seems unlikely that a
similar approach as the one in Algorithm 5.3 could be used to learn concepts under
ontologies from concept examples.

What happens when 𝑞𝑇 is not from 𝒬? For practical scenarios, it is a natural
question to consider how Algorithm 5.3 behaves if 𝑞𝑇 ∉ 𝒬. It is easy to see that in
this case the subroutine extract𝒬 must get stuck at some point, since the application
of Expand cycle or Split symmetry will result in a query 𝑝 with 𝑝 ⊈𝒪 𝑞𝑇. This situation
can easily be detected using membership queries. However, the point at which it
gets stuck reveals only limited information about 𝑞𝑇. Algorithm 5.3 is therefore not
useful to apply in this scenario.

166

5.7 Discussion

Open Questions. Many interesting questions concerning learning with mem
bership queries and equivalence queries remain open. The central ones are the
following.

• Are (non-symmetry-free) ELIQs or CQs polynomial time learnable under ℰℒ𝑟

ontologies? Are there other ways to update hypotheses with counterexamples
than using compact models?

• Are CQs polynomial time learnable under DL-Litehorn or DL-Litecore ontolo
gies?

Due to the difficulties discussed in this chapter, answering these questions positively
or negatively will require new techniques and new constructions. If the answer to
these questions are negative, then it is unclear how to approach it. The techniques
we used to show Theorem 5.50 and Theorem 5.52 are candidates, but showing exact
learning lower bounds for both query types is difficult.

In the next chapter, we consider the learnability of queries using only equivalence
queries and the PAC learnability of queries.

167

Chapter 6

Learning from Examples

In Chapters 4 and 5, we have discussed the learnability of queries with only mem
bership queries and with both membership queries and equivalence queries, re
spectively. It remains to answer if membership queries are really necessary for our
results in Chapter 5 or if learning, for example, of ELQs under ℰℒ𝑟 ontologies is also
possible using only equivalence queries. We approach this question by considering
PAC learnability of queries. Recall that, per Theorem 3.14, for query classes that
fulfill a certain property, polynomial time learnability with equivalence queries
implies polynomial time PAC learnability. Hence, if we show that polynomial time
PAC learning of a certain query class that fulfills this property is not possible, then
we can conclude that this query class cannot be learned in polynomial time with
only equivalence queries.

An advantage of PAC learning algorithms over exact learning algorithms is that,
in practical scenarios, a collection of labeled examples is easier to obtain than a
capable teacher that can answer equivalence queries. In the second half of this
chapter, we describe an implementation of a PAC learning algorithm, and perform
experiments on real data.

Structure of This Chapter

We begin in Section 6.1 by showing that, if RP ≠ NP, there are no polynomial time
PAC learning algorithms for many classes of CQs under the empty ontology. Most
importantly, this applies to the classes of ELQ, ELIQs, and symmetry-free ELIQs,
and thus complements the results in Chapter 5: both membership queries and
equivalence queries are necessary to learn one of these query classes in polynomial
time.

In Section 6.2 we thus turn away from polynomial time PAC learning, and instead
consider sample-efficient PAC learning. We show that sample-efficient PAC learning
algorithms exist for every query class and every ontology language, due to the
bounded VC-dimension of query classes under ontologies.

Subsequently, we show in Section 6.3 that not every fitting algorithm is a sample-
efficient PAC learning algorithm. Indeed, we show that algorithms that produce

169

6 Learning from Examples

one of three logically interesting kinds of fitting queries are not sample-efficient.
Then, in Section 6.4 we describe the implementation of one sample-efficient PAC

learning algorithm for ELQs under ℰℒℋ𝑟 ontologies, that uses a SAT solver to
compute fitting ELQs. We call this implementation SAT-based PAC ℰℒ Concept
Learner or SPELL. We then compare SPELL to the existing ELQ learning system
ELTL (ℰℒ tree learner) on various benchmarks in Section 6.5.

We conclude with discussing the results of this chapter in Section 6.6.

Related Publications

Section 6.1 is based on [tCat+24], but fixes a problem in the proof of Theorem 6.7.
Section 6.3 presents results from the research note [tCat+23a]. Sections 6.2, 6.4
and 6.5 are based on [tCat+23c].

6.1 PAC Learning of Queries in Polynomial Time

We begin by showing that every class of CQs that contains all path CQs is not
polynomial time PAC learnable. A path CQ is a unary CQ of the form

𝑞(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝐴(𝑥𝑗1) ∧ ⋯ ∧ 𝐴(𝑥𝑗𝑚)

where 𝑟 is a role name, 𝐴 is a concept name and 1 ≤ 𝑗𝑖 ≤ 𝑛 for all 1 ≤ 𝑖 ≤ 𝑚.
We begin with reviewing the connection between PAC learning and the fitting

problem. It is well known that in many learning settings, polynomial time PAC
learning implies that the corresponding fitting problem can be solved in polynomial
time, see for example [AB92, Theorem 6.2.1] or [PV88]. Many formulations of this
connection do not state two implicit properties of their respective learning setting.
Unfortunately, these properties do not necessarily hold in the setting of learning
queries under ontologies. In what follows, we state this connection precisely.

For this, we restrict our attention to certain sets of labeled examples. If 𝐹 is a
set of data examples, then 𝐹 × {+, −} is the set of all labeled data examples created
from 𝐹, and 2𝐹×{+,−} is the set of all sets of labeled data examples. For some 𝐹, let
𝑀 ⊆ 2𝐹×{+,−} be a set of finite sets of labeled examples. The fitting problem for a
query class 𝒬 and an ontology language ℒ on 𝑀 is defined similarly to the usual
fitting problem (Definition 3.9) with the only modifiation being that the input set
of labeled examples 𝐸 must be from 𝑀.

Let 𝒬 be a query class, ℒ an ontology language and 𝑀 a set of finite sets of labeled
examples. We say that 𝒬 has the polynomial size fitting property under ℒ ontologies
on 𝑀, if for every ℒ ontology 𝒪 and every 𝐸 ∈ 𝑀, the existence of a fitting query

170

6.1 PAC Learning of Queries in Polynomial Time

for 𝐸 under 𝒪 implies the existence of a fitting query whose size is bounded by a
polynomial of ‖𝐸‖ and ‖𝒪‖.

Recall that RP is the complexity class of all problems for which a probabilistic
polynomial time Turing machine exists that answers no if the correct answer is no,
and yes with probability ≥ 0.5 if the correct answer is yes. It is known that P ⊆
RP ⊆ NP and RP ⊆ BPP ⊆ P/poly. Since RP = NP thus implies that NP ⊆ P/poly,
which in turn implies via the Karp-Lipton theorem that the polynomial hierarchy
collapses to the second level [AB09], it is generally believed that RP ≠ NP. Also
note that RP ≠ NP implies that P ≠ NP.

We show the following.

Lemma 6.1. Let 𝒬 be a query class, ℒ an ontology language and 𝑀 a set of finite sets
of labeled examples such that 𝒬 queries can be answered in polynomial time under ℒ
ontologies on examples that occur in 𝑀, and 𝒬 has the polynomial size fitting property
under ℒ ontologies on 𝑀.

If 𝒬 is polynomial time PAC learnable under ℒ, then the fitting problem for 𝒬 and ℒ on
𝑀 is in RP.

 Proof. Assume that there is a (possibly randomized) polynomial time PAC learning
algorithm 𝐀 for 𝒬 and ℒ with associated sample size 𝑚 as in Definition 3.13. We use
it to solve the fitting problem for 𝒬 and ℒ in randomized polynomial time. Assume
that a set 𝐸 ∈ 𝑀 of 𝑘 labeled examples, an ℒ ontology 𝒪 and a signature Σ are given
as input. Let 𝑛𝑞𝑇 = 𝑝(‖𝐸‖, ‖𝒪‖), where 𝑝 is the polynomial witnessing the fact that 𝒬
has the polynomial-size fitting property under ℒ. Let 𝐷 be the distribution over
𝐸 that assigns each example in 𝐸 probability 1/𝑘, and let 𝑛𝒜 be the maximum size
of an example in 𝐸. Pick 𝛿 < 0.5 and 𝜖 < 1/𝑘. We generate a new polynomial-sized
collection of labeled examples 𝐸′ by drawing 𝑚(1𝛿 , 1𝜖 , |Σ|, ‖𝒪‖, 𝑛𝑞𝑇, 𝑛𝒜) samples from
distribution 𝐷, and start 𝐀 with inputs Σ, 𝒪 and 𝐸′.

Since 𝐀 is a polynomial time algorithm, there is a polynomial of |Σ|, ‖𝒪‖, and
‖𝐸′‖ that bounds the running time of 𝐀. Run 𝐀 for that many steps. If 𝐀 terminates
within this time, check if its output fits 𝐸 under 𝒪. If so, we answer yes. Otherwise,
if the output does not fit or if 𝐀 does not terminate, we answer no.

This means that, if there is no fitting query, the output will be no. If, on the other
hand, there is a fitting query, then there is one of size at most 𝑛, and hence, with
probability 1 − 𝛿, the algorithm 𝐀 will output a query with error less than 𝜖 under 𝒪
within the time bound. This, in fact, implies that the error is 0 because if the query
misclassifies an example to which 𝐷 assigns non-zero probability, then it will have
error at least 1/𝑘. Hence, with probability 1 − 𝛿 > 0.5 the algorithm outputs yes.

Note that both polynomial time query answering and the polynomial fitting
property are needed, in order for the described algorithm to run in polynomial
time.

171

6 Learning from Examples

Unfortunately, CQs, ELIQs, ELQs, and even path CQs do not have the polynomial
fitting property on arbitrary 𝑀, as mentioned in Section 3.2.

Example 6.2. Consider examples (𝒜𝑛, 𝑎1) that consist of a directed cycle of length 𝑛
where the last individual is labeled with 𝐴, that is

𝒜𝑛 = {𝑟(𝑎1, 𝑎2), … , 𝑟(𝑎𝑛, 𝑎1), 𝐴(𝑎𝑛)},

and the example ({𝑟(𝑏, 𝑏)}, 𝑏) that is an unlabeled cycle of length 1. Let 𝑝1, … , 𝑝𝑚 be
numbers that are coprime. Then, the smallest path CQ that fits the examples

𝐸 = {(𝒜𝑝𝑖, 𝑎1, +) ∣ 1 ≤ 𝑖 ≤ 𝑚} ∪ {({𝑟(𝑏, 𝑏)}, 𝑏, −)}

under the empty ontology has size at least ∏1≤𝑖≤𝑚 𝑝𝑖, but ‖𝐸‖ is polynomial in
∑

1≤𝑖≤𝑚 𝑝𝑖.

Therefore, we need to employ a more involved argument to show that these
classes are not polynomial time PAC learnable. We say that a CQ or ABox is forest-
shaped if it is a disjoint union of tree-shaped CQs or ABoxes, respectively. Recall
that tree-shaped means that the underlying graph forms a directed tree. To show
non-polynomial time PAC learnability, we restrict the space of the examples we
consider to only tree-shaped examples.

Lemma 6.3. Let Σ be a signature that contains only one role name and any number of
concept names. Given a unary CQ 𝑞 over Σ,

1. we can test in polynomial time whether there exists a tree-shaped example (𝒜, 𝑎) such
that 𝒜, ∅ ⊧ 𝑞(𝑎);

2. if the answer to the above question is positive, then we can construct in polynomial
time a forest-shaped CQ 𝑞′ over Σ such that for all tree-shaped examples (𝒜, 𝑎),
𝒜, ∅ ⊧ 𝑞(𝑎) if and only if 𝒜, ∅ ⊧ 𝑞′(𝑎).

 Proof. It suffices to show that we can construct tree-shaped CQs from connected
CQs. The general case then follows by component-wise analysis. Therefore, let 𝑞 be
a connected CQ. Additionally, let 𝑟 be the role name in Σ.

Let ∼ be the smallest equivalence relation over the variables of 𝑞 such that, when
ever 𝑟(𝑢, 𝑣) and 𝑟(𝑢′, 𝑣′) are conjuncts of 𝑞 and 𝑣 ∼ 𝑣′ then also 𝑢 ∼ 𝑢′. Let 𝑞′ be the
quotient of 𝑞 with regard to ∼, that is, 𝑞′ is obtained from 𝑞 by choosing a represen
tative of each ∼-equivalence class, and replacing every occurrence of a variable 𝑥
by the representative of the ∼-equivalence class of 𝑥. It is easy to see that, for all
tree-shaped examples (𝒜, 𝑎), 𝒜, ∅ ⊧ 𝑞(𝑎) if and only if 𝒜, ∅ ⊧ 𝑞′(𝑎).

If 𝑞′ contains a directed cycle, then 𝒜, ∅ ⊧̸ 𝑞′(𝑎) for all tree-shaped examples
(𝒜, 𝑎). Hence, in this case, we are done.

172

6.1 PAC Learning of Queries in Polynomial Time

If 𝑞′ does not contain a directed cycle, there must exist a variable 𝑦 for which 𝑞′
does not contain any conjunct of the form 𝑟(𝑥, 𝑦). Furthermore, any simple path
from 𝑦 to any other variable 𝑧 must consist entirely of forward edges. Otherwise,
the path would be of the form

𝑟(𝑦, 𝑥1), … , 𝑟(𝑥𝑖−1, 𝑥𝑖), 𝑟−(𝑥𝑖, 𝑥𝑖+1), … , 𝑟(𝑥𝑗, 𝑧)

and 𝑥𝑖−1 and 𝑥𝑖+1 would have been identified when we constructed 𝑞′. It follows that
𝑞′ is tree-shaped. Furthermore, let (𝒜𝑞′, 𝑎𝑞′) be the canonical example of 𝑞′. Then,
clearly, 𝒜𝑞′, ∅ ⊧ 𝑞′(𝑎𝑞′).

Because of Lemma 6.3, we can evaluate unary (potentially cyclic) CQs that only
use one role name over tree-shaped examples in polynomial time. Let (𝒜, 𝑎) be a
tree-shaped example and 𝑞 a unary CQ. First, construct a forest-shaped unary CQ 𝑞′
according to Lemma 6.3 in polynomial time and then decide whether 𝒜, ∅ ⊧ 𝑞′(𝑎),
which is possible in polynomial time [Yan81]. We therefore say that for every
unary class of CQs 𝒬 over Σ, 𝒬 queries can be answered in polynomial time over
tree-shaped examples. Note that his does not contradict that deciding the existence
of homomorphisms to acyclic interpretations is still NP-complete [HNZ96], as the
needed interpretations are not directed trees and thus are not tree-shaped according
to our definition. We use this fact for showing that there is a class of tree-shaped
examples for which the fitting problem is NP-hard and for which CQs have the
polynomial fitting property.

To obtain these tree-shaped examples, we use a reduction from the satisfiability
problem for 3CNF formulas, building on reductions given by Kietz [Kie93] and
Haussler [Hau89]. Let 𝜑 = 𝜑1 ∧ ⋯ ∧ 𝜑𝑘 be a 3CNF formula over the propositional
variables {𝑋1, … , 𝑋𝑚}. We denote by 𝐿 = {𝑋𝑖, ¬𝑋𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚} the set of all literals
over {𝑋1, … , 𝑋𝑚}. With every literal 𝑙 ∈ 𝐿, we associate a natural number 𝑗𝑙 as follows.
Set 𝑗𝑙 = 2𝑖 if 𝑙 is of the form 𝑋𝑖 and 𝑗𝑙 = 2𝑖 − 1 if 𝑙 is of the form ¬𝑋𝑖. Now, define an
ABox 𝒜𝜑 to contain the following assertions:

• 𝑟(𝑎𝑖, 𝑝𝑖,1) and 𝑟(𝑎𝑖, 𝑛𝑖,1) for 1 ≤ 𝑖 ≤ 𝑚,

• 𝑟(𝑝𝑖,𝑗, 𝑝𝑖,𝑗+1) and 𝑟(𝑛𝑖,𝑗, 𝑛𝑖,𝑗+1) for 1 ≤ 𝑖 ≤ 𝑚 and 𝑗 < 2𝑚,

• 𝐴(𝑝𝑖,𝑗𝑙) for every literal 𝑙 ∈ 𝐿 ⧵ {¬𝑋𝑖},

• 𝐴(𝑛𝑖,𝑗𝑙) for every literal 𝑙 ∈ 𝐿 ⧵ {𝑋𝑖},

• 𝑟(𝑏, 𝑏𝑖,1) for 1 ≤ 𝑖 ≤ 𝑘,

• 𝑟(𝑏𝑖,𝑗, 𝑏𝑖,𝑗+1) for 1 ≤ 𝑖 ≤ 𝑘 and 𝑗 < 2𝑚,

• 𝐴(𝑏𝑖,𝑗𝑙) for every 𝑙 ∈ 𝐿 and 𝑖 ≤ 𝑘 with 𝑙 not occurring in the clause 𝜑𝑖.

173

6 Learning from Examples

𝑎1

𝑝1,1 𝑛1,1 𝐴

𝑝1,2 𝐴

𝑝1,3 𝐴

𝑝1,4 𝐴

𝑛1,2

𝑛1,3 𝐴

𝑛1,4 𝐴

𝑎2

𝑝2,1 𝐴 𝑛2,1 𝐴

𝑝2,2 𝐴

𝑝2,3

𝑝2,4 𝐴

𝑛2,2 𝐴

𝑛2,3 𝐴

𝑛2,4

𝑏

𝑏1,1 𝐴

𝑏1,2

𝑏1,3 𝐴

𝑏1,4 𝐴

𝑏2,1 𝐴

𝑏2,2 𝐴

𝑏2,3 𝐴

𝑏2,4

𝑏3,1

𝑏3,2 𝐴

𝑏3,3 𝐴

𝑏3,4

Figure 6.1: The ABox 𝒜𝜑 for the formula 𝜑 = 𝑋1 ∧ 𝑋2 ∧ (¬𝑋1 ∨ 𝑋2).

Then set
𝐸𝜑 = {(𝒜𝜑, 𝑎𝑖, +) ∣ 1 ≤ 𝑖 ≤ 𝑚} ∪ {(𝒜𝜑, 𝑏, −)}.

Example 6.4. Consider the 3CNF formula 𝜑 = 𝑋1 ∧ 𝑋2 ∧ (¬𝑋1 ∨ 𝑋2) over the
propositional variables {𝑋1, … , 𝑋𝑚}. The ABox 𝒜𝜑 is displayed in Figure 6.1, where
each edge represents an 𝑟 assertion. Note that since 𝜑 is satisfiable, there is a path
CQ that fits the labeled examples 𝐸𝜑 = {(𝒜𝜑, 𝑎1, +), (𝒜𝜑, 𝑎2, +), (𝒜𝜑, 𝑏, −)}, namely

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) ∧ 𝑟(𝑥2, 𝑥3) ∧ 𝑟(𝑥3, 𝑥4) ∧ 𝐴(𝑥2) ∧ 𝐴(𝑥4).

Lemma 6.5. For all 3CNF formulas 𝜑 over {𝑋1, … , 𝑋𝑚}:

1. From a satisfying assignment for 𝜑, one can construct a path CQ that fits 𝐸𝜑 in
polynomial time.

2. Conversely, if there is a CQ that fits 𝐸𝜑, then 𝜑 has a satisfying assignment.

In particular, whenever there is a CQ that fits 𝐸𝜑, then there is a fitting path CQ of size
polynomial in 𝑚.

 Proof. We begin with Point 1. Let 𝑣 be a satisfying assignment for 𝜑. Let

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥2𝑚−1, 𝑥2𝑚) ∧ �
𝑙∈𝐿 such that 𝑣⊧𝑙

𝐴(𝑥𝑗𝑙).

Using the construction of 𝒜𝜑 it can be verified that 𝒜𝜑, ∅ ⊧ 𝑞(𝑎𝑖) for 1 ≤ 𝑖 ≤ 𝑚 and
𝒜𝜑, ∅ ⊧̸ 𝑞(𝑏).

We continue with Point 2. Let 𝑞(𝑥) be a unary CQ that fits 𝐸𝜑. By Lemma 6.3, we
may assume that 𝑞 is forest-shaped. Furthermore, we may assume without loss of
generality that 𝑞 is connected. If 𝑥 has an 𝑟-predecessor in 𝑞, then 𝑞 does not fit the
positive examples of 𝐸𝜑. Hence, 𝑥 is the root of the tree in 𝑞.

174

6.1 PAC Learning of Queries in Polynomial Time

Since 𝑞(𝑥) fits the negative example (𝒜𝜑, 𝑏), 𝒜𝜑, ∅ ⊧̸ 𝑞(𝑏). This means that either
(i) 𝑞 contains an atom of the form 𝐴(𝑥), or (ii) there is an 𝑟-successor 𝑦 of 𝑥, such
that 𝑞𝑦(𝑦) does not admit a homomorphism to (𝒜𝜑, 𝑏𝑖,1) for any 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.
Using the definition of 𝒜𝜑, we can see that (i) cannot happen because it implies
that 𝑞 does not fit the positive examples in 𝐸𝜑. Therefore, case (ii) must apply. Let
𝑦 be the 𝑟-successor in question.

We know that 𝒜𝜑, ∅ ⊧̸ 𝑞𝑦(𝑏𝑖,1) for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. Furthermore, since 𝑞 fits the
positive examples in 𝐸𝜑, for each 𝑖, either 𝒜𝜑, ∅ ⊧ 𝑞𝑦(𝑝𝑖,1) or 𝒜𝜑, ∅ ⊧ 𝑞𝑦(𝑛𝑖,1). Now,
let 𝐿𝑦 be the set

{𝑙 ∈ 𝐿 ∣ 𝐴(𝑧) ∈ 𝑞𝑦 with dist𝑞(𝑦, 𝑧) + 1 = 𝑗𝑙}.

Since 𝑞 fits the positive examples, 𝐿𝑦 does not contain both 𝑋𝑖 and ¬𝑋𝑖 for any
𝑖. Suppose, for the sake of a contradiction, that 𝜑 has a clause 𝜑𝑖, such that no
literal occurring in 𝜑𝑖 belongs to 𝐿𝑦. Then, 𝒜𝜑, ∅ ⊧ 𝑞𝑦(𝑏𝑖,1), as witnessed by the
homomorphism that maps each variable 𝑧 to 𝑏𝑖,𝑘 where 𝑘 = dist𝑞(𝑦, 𝑧) + 1. However,
we know that 𝒜𝜑, ∅ ⊧̸ 𝑞𝑦(𝑏𝑖,1), a contradiction. Hence, 𝐿𝑦 contains a literal from
every clause of 𝜑, and every assignment that is consistent with 𝐿𝑦 satisfies 𝜑.

From Lemma 6.5, together with the NP-hardness of 3CNF satisfiability, we im
mediately obtain the following.

Lemma 6.6. Let 𝒬 be any class of unary CQs that contains all path CQs, and let ℒ be any
ontology language. The fitting problem for 𝒬 and ℒ on 𝑀 = {𝐸𝜑 ∣ 𝜑 is a 3CNF formula}
is NP-hard.

Now, we can apply Lemma 6.1.

Theorem 6.7. Let 𝒬 be any class of unary CQs that contains all path CQs over a fixed
signature with at least one role name and one concept name. Then,

1. 𝒬 is not polynomial time PAC learnable under any ontology language, and

2. 𝒬 queries are not polynomial time learnable using only CQ-equivalence queries,

unless RP = NP.

 Proof. Assume that 𝒬 is polynomial PAC learnable under the empty ontology lan
guage. Let 𝑀 = {𝐸𝜑 ∣ 𝜑 is a 3CNF formula}. Then, by Lemma 6.3, 𝒬 queries can
be answered in polynomial time on the examples that occur in 𝑀, since all ex
amples are tree-shaped. Additionally, it follows from Lemma 6.5 that 𝒬 has the
polynomial fitting property on 𝑀. Therefore, the fitting problem for 𝒬 on 𝑀 is in
RP by Lemma 6.1. Since the fitting problem for 𝒬 on 𝑀 is NP-hard by Lemma 6.5,
it follows that RP = NP.

For Point 2, recall that an exact learning algorithm that uses only equivalence
queries can be used to construct a PAC learning algorithm by Theorem 3.14.

175

6 Learning from Examples

Note that ELQs, ELIQs and CQs contain all path CQs. Moreover, Point 2 of
Theorem 6.7 can be strengthened to “ unless P = NP” if shown directly and not via
the connection to PAC learning. See [FJL21a, Theorem 2].

In Chapters 4 and 5 we have seen that ELQs, ELIQs and CQs are polynomial
time learnable under the empty ontology if the learning algorithm can use both
membership queries and equivalence queries (Theorem 4.42, Theorem 5.39, Propo
sition 5.3). Now, Theorem 6.7 implies that membership queries are indeed necessary
for polynomial time learning and cannot be omitted. Furthermore, the results in
Section 4.1 imply that it is also not possible to avoid equivalence queries.

Motivated by these results, we turn our focus to sample-efficient PAC learning
algorithms, that do not need to run in polynomial time.

6.2 Sample-Efficient PAC Learning of Queries

As there exists no polynomial time PAC learning algorithm for ELQs by Theorem 6.7,
we aim to determine if there are sample-efficient PAC learning algorithms for ELQs.
Recall that, per Definition 3.13, a PAC learning algorithm is sample-efficient, if
its sample size 𝑚 is a polynomial of 1𝜖 , 1𝛿 , the size of the signature |Σ|, the size of
the ontology ‖𝒪‖, the size of the target query ‖𝑞𝑇‖, and the maximal size of the
examples.

In this section, we show that every fitting algorithm that produces small hypotheses
is a sample-efficient PAC learning algorithm. Intuitively, this makes sense for the
reason that fitting algorithms that can output hypotheses of unrestricted size can
include information about every labeled example in their hypothesis. The hypothe
ses can therefore just memorize the labels in the sample, and do not necessarily
generalize to unseen examples. In contrast, fitting algorithms that output hypothe
ses of small size need to compress the information available in the sample, and
therefore need to find commonalities of the examples and generalize to unseen
examples. Indeed, restricting the size of the output hypothesis to grow sublin
early with the sample size suffices for fitting algorithms to be sample-efficient PAC
learning algorithms.

The connection between fitting algorithms that produce small hypotheses and
sample-efficient PAC learning algorithms is well known, see for example [Blu+89]
or [SB14]. We follow Blumer et al. [Blu+89] and formalize this connection for our
setting in terms of Occam algorithms and the Vapnik-Chervonenkis dimension
(VC-dimension).

176

6.2 Sample-Efficient PAC Learning of Queries

Occam Algorithms and the VC-Dimension

In our learning setting, the VC-dimension measures the expressive power of a
query class. Let 𝒪 be an ontology and 𝒬 a query class. We say that 𝒬 shatters a set
of data examples 𝑆 under 𝒪 if for every subset 𝑆′ ⊆ 𝑆, there is a 𝑞 ∈ 𝒬 such that
𝑆′ = {(𝒜, 𝑎) ∈ 𝑆 ∣ 𝒜, 𝒪 ⊧ 𝑞(𝑎)}. The VC-dimension of 𝒬 under 𝒪 is the cardinality of
the largest set of examples 𝑆 that is shattered by 𝒬 under 𝒪. Note that if 𝒬 is a finite
query class, then the largest set 𝒬 can shatter has cardinality |𝑆| = log|𝒬|, as 𝒬 needs
to contain a query for all 2|𝑆| subsets of 𝑆. Additionally, the presence of non-empty
ontologies does not increase the VC-dimension of a query class, as concept inclusions
only increase the number of queries that are equivalent.

Definition 6.8 (Occam algorithm). Let ℒ be an ontology language, 𝒬 a class of
queries, and 𝐀 a fitting algorithm for 𝒬 and ℒ. For an ℒ ontology 𝒪, a finite
signature Σ, and 𝑛𝑞𝑇, 𝑚 ≥ 1, the effective hypothesis space 𝐻𝐀(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) of 𝐀 is the
set of all outputs that 𝐀 makes when started on 𝒪 and a collection of 𝑚 examples 𝐸
over Σ that are labeled according to 𝑞𝑇 under 𝒪 for some 𝑞𝑇 ∈ 𝒬Σ with ‖𝑞𝑇‖ ≤ 𝑛𝑞𝑇.

The fitting algorithm 𝐀 is an Occam algorithm if there exists a polynomial 𝑝 and a
constant 𝛼 with 0 ≤ 𝛼 < 1 such that for all ℒ ontologies 𝒪, finite signatures Σ, and
𝑛𝑞𝑇, 𝑚 ≥ 1, the VC-dimension of 𝐻𝐀(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) under 𝒪 is bounded from above
by 𝑝(𝑛𝑞𝑇, |Σ|) ⋅ 𝑚𝛼.

Theorem 3.2.1 of [Blu+89] implies the following, where log denotes the binary
logarithm.

Lemma 6.9. If 𝐀 is an Occam algorithm with the VC-dimension of effective hypothesis
spaces bounded by 𝑝(𝑛𝑞𝑇, |Σ|) ⋅ 𝑚𝛼, then 𝐀 is a PAC learning algorithm with sample size

𝑚�
1
𝜖

,
1
𝛿

, |Σ|, ‖𝒪‖, 𝑛𝑞𝑇, 𝑛𝒜� ≔ max �
4
𝜖
log

2
𝛿

, �
8𝑝(𝑛𝑞𝑇,|Σ|)

𝜖 log 13
𝜖

�
1/(1−𝛼)

�.

There are differences between the setting in this thesis and the setup of Blumer
et al. We comment on why Lemma 6.9 follows from Theorem 3.2.1 of [Blu+89]:
Blumer et al. study the learning of concept classes, which are defined as a set 𝒞 of
concepts 𝐶 ⊆ 𝑋 where 𝑋 is a fixed set of examples. Consequently, their definition of
PAC algorithms refers to concept classes and, in contrast to Definition 3.13, does
neither mention ontologies nor signatures. However, when fixing an ℒ ontology 𝒪
and signature Σ, we obtain an associated concept class 𝒞𝒪,Σ by taking 𝑋 to be the
set of all data examples over Σ and each query 𝑞 ∈ 𝒬Σ as the concept that consists of
all data examples that are positive examples for 𝑞 under 𝒪. Moreover, by fixing 𝒪
and Σ, any fitting algorithm 𝐀 for 𝒬 and ℒ turns into a learning algorithm for 𝒞𝒪,Σ
in the sense of Blumer et al. Here, fixing means that we promise to only run 𝐀 on

177

6 Learning from Examples

input ontology 𝒪 and collections of labeled examples 𝐸 that are labeled according
to some 𝑞𝑇 ∈ 𝒬Σ under 𝒪.

In contrast to Definition 6.8, the definition of Occam algorithms of Blumer et al.
refers to effective hypothesis spaces 𝐻𝐀(𝑠, 𝑚) and requires that their VC-dimension
is bounded by 𝑝(𝑠) ⋅ 𝑚𝛼, where ‖𝒪‖ and |Σ| are considered constants. If 𝐀 is an
Occam algorithm in the sense of Definition 6.8, then 𝐀 with 𝒪 and Σ fixed is an
Occam algorithm as defined by Blumer et al. The Theorem 3.2.1 of Blumer et al.
then implies that 𝐀 with 𝒪 and Σ fixed is a PAC learning algorithm for 𝒞𝒪,Σ with the
bound stated in Lemma 6.9. Then, every fitting algorithm 𝐀 that is a PAC learning
algorithm when restricted to 𝒪 and Σ, for any specific 𝒪 and Σ and with the same
function 𝑚 describing the sample size, is a PAC learning algorithm for ℒ and 𝒬.

There are two more small differences between our setup and the one of Blumer
et al. First, one of the preconditions of Theorem 3.2.1 is that an Occam algorithm
runs in polynomial time, but an analysis of the proof shows that this assumption is
not used. Second, the sample size 𝑚 in the definition of PAC algorithms of Blumer
et al. does not depend on the size of the examples. Definition 3.13 is a standard
variation which does not impair the application of Theorem 3.2.1. To see this, it
suffices to observe that we do not use this parameter in the definition of effective
hypothesis spaces and thus Occam algorithms (with fixed 𝒪 and Σ) according to
Definition 6.8 are also Occam algorithms in the sense of Blumer et al. Moreover,
every PAC algorithm in the sense of Blumer et al. is a PAC algorithm according to
Definition 3.13.

Including the data example size as a parameter of the sample size 𝑚 strengthens
results which prove that algorithms are not sample-efficient PAC learning algo
rithms, as it makes it impossible to use data examples of excessive size. It is also
more generous regarding the upper bounds (developing PAC algorithms), but we
do not make use of that generosity.

A perhaps surprising observation is that following Definition 3.13, due to the
generosity of including 𝑛𝒜 as a parameter of the sample size, every fitting algorithm
is a (not necessarily sample-efficient) PAC learning algorithm. This is because the
probability distribution 𝑃 from which examples are drawn may only assign a non-
zero probability to examples with ‖𝒜‖ ≤ 𝑛𝒜, which means the number of possible
examples is bounded exponentially by 𝑛𝒜. Hence, the sample size 𝑚 can be chosen,
such that every sample contains, with high likelihood, a large portion of the possible
examples, and every query that fits the sample therefore has only a small error over
the entire distribution. This, of course, requires that 𝑚 is an exponential function,
and hence does not show sample-efficient PAC learnability.

178

6.2 Sample-Efficient PAC Learning of Queries

Algorithm 6.1: The bounded fitting algorithm for ℒ and 𝒬.

Parameter A size-restricted fitting algorithm 𝐀 for ℒ and 𝒬
Input A signature Σ, an ℒ ontology 𝒪, and labeled data examples 𝐸
Output A 𝒬Σ query that fits 𝐸 under 𝒪

𝑛𝑞 ≔ 1
while 𝐀(Σ, 𝒪, 𝐸, 𝑛𝑞) does not return a fitting query do
 𝑛𝑞 ≔ 𝑛𝑞 + 1
end while
return the result of 𝐀(Σ, 𝒪, 𝐸, 𝑛𝑞)

Bounded Fitting

Lemma 6.9 tells us that we can obtain a sample-efficient PAC learning algorithm
for a query class from an Occam algorithm. To formulate an Occam algorithm,
it is important to realize that the VC-dimension of an effective hypothesis space
is bounded by the cardinality of the effective hypothesis space, and therefore also
by the size of hypotheses that an algorithm outputs. This is because, for a fixed
signature Σ and alphabet, the number of queries 𝑞 with ‖𝑞‖ ≤ 𝑛 is only exponential
in 𝑛.

Indeed, we show that an algorithm that outputs the smallest fitting query is
an Occam algorithm for every query class 𝒬 and ontology language ℒ. For this,
we define a variant of the fitting problem, namely size-restricted fitting. A size-
restricted fitting algorithm for ℒ and 𝒬 takes as input a signature Σ, an ℒ ontology 𝒪,
a collection of labeled data examples 𝐸 and a natural number 𝑛𝑞 ≥ 1 in unary and
returns, if it exists, a 𝑞 ∈ 𝒬Σ with ‖𝑞‖ ≤ 𝑛𝑞 that fits 𝐸 under 𝒪. If no such query exists,
it returns no. Note that in contrast to fitting algorithms, we demand size-restricted
fitting algorithms to always terminate, which is not a difficult requirement, as the
set of queries 𝑞 ∈ 𝒬Σ with ‖𝑞‖ ≤ 𝑛𝑞 is finite and can be enumerated.

The simple principle of a bounded fitting algorithm is displayed in Algorithm 6.1. A
bounded fitting algorithm uses an algorithm for the size-restricted fitting problem,
to identify the smallest fitting query for labeled data examples. Inspired by ap
proaches such as bounded model checking, it first searches for a fitting of size 1, then of
size 2, and so on, until one is found, and then returns it. Note that a bounded fitting
algorithm does not terminate if there is no fitting query, but in practice size bounds
can be used to guarantee termination. Of course, the smallest fitting query can also
be found by the arguably simpler strategy of enumerating all queries ordered by
size. However, size-restricted fitting algorithms may use smarter strategies than
naive enumeration and thus be significantly faster.

179

6 Learning from Examples

Theorem 6.10. Let ℒ be an ontology language and 𝒬 a query class. Every bounded fitting
algorithm for ℒ and 𝒬 is a sample-efficient PAC learning algorithm with sample size in

𝑂�
1
𝜖

⋅ log
1
𝜖

⋅ log
1
𝛿

⋅ log|Σ| ⋅ ‖𝑞𝑇‖�.

 Proof. Let 𝐁 be a bounded fitting algorithm for ℒ and 𝒬. Let 𝒪 be an ℒ ontology, Σ
a signature, and 𝑛𝑞𝑇, 𝑚 ≥ 0. We show that the VC-dimension of 𝐻𝐁(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) is
at most 𝑂(𝑛𝑞𝑇 ⋅ log|Σ|).

It is immediate from Algorithm 6.1 that, when started on Σ, 𝒪 and a collection of
𝑚 data examples 𝐸, that is labeled according to some 𝑞𝑇 ∈ 𝒬Σ with ‖𝑞𝑇‖ ≤ 𝑛𝑞𝑇 under
𝒪, then 𝐁 returns a 𝑞 ∈ 𝒬Σ that fits 𝐸 under 𝒪 whose size ‖𝑞‖ is smallest among all
fitting queries. Consequently, 𝐻𝐁(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) consists only of queries 𝑞 ∈ 𝒬Σ with
‖𝑞‖ ≤ 𝑛𝑞𝑇. There are at most (|Σ| + 𝑐 + 1)𝑛𝑞𝑇 such queries for some constant1 𝑐 and
since 𝑛 queries can at most shatter a set of cardinality log 𝑛, the VC-dimension of
𝐻𝐁(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) is at most

log (|Σ| + 𝑐 + 1)𝑛𝑞𝑇 ∈ 𝑂(𝑛𝑞𝑇 ⋅ log|Σ|),

as desired. It remains to apply Lemma 6.9.

It is interesting that the sample size in Theorem 6.10 does not depend on the
size of the examples 𝑛𝒜 or the size of the ontology ‖𝒪‖. This means that bounded
fitting is even a sample-efficient PAC learning algorithm in a stricter sense than
Definition 3.13. Additionally, it is useful to note that Theorem 6.10 does not rely on
the exact size measure used in the size-restricted fitting algorithm. If we choose
a different one, like the number of variables as a size measure for ELQs, we can
obtain a similar result, by using the following in the proof of Theorem 6.10.

For 𝑛 ≥ 1, let ELQ∃
(𝑛) be the set of ELQs that use at most 𝑛 variables.

Lemma 6.11. Let ℒ be an ontology language and 𝒪 an ℒ ontology. Then, for all 𝑛 ≥ 1,
the VC-dimension of ELQ∃

(𝑛) under 𝒪 is at most 2(|Σ| + 1)𝑛.

 Proof. We first observe that the number of queries in ELQ∃
(𝑛) is bounded from above

by 𝑚𝑛 = 4(|Σ|+1)𝑛. To see this, note that the number of rooted, directed, unlabeled
trees with 𝑛 nodes is bounded from above by the 𝑛-th Catalan number [OEI24],
which, in turn, is bounded from above by 4𝑛 [DB86]. Each such tree gives rise to
an ELQ by assigning a unique role name from Σ to each of the at most 𝑛 − 1 edges

1The number of symbols from the finite alphabet used to encode syntactic objects as a word from
the definition of ‖⋅‖.

180

6.3 Not Sample-Efficient Fitting Algorithms

of the tree and a set of concept names from Σ to each of the at most 𝑛 nodes of the
tree. This clearly yields the stated bound 𝑚𝑛 as

4𝑛 ⋅ |Σ|𝑛−1 ⋅ |Σ|𝑛 ≤ 4(|Σ|+1)𝑛.

Then, the VC-dimension of ELQ∃
(𝑛) under the empty ontology is at most log𝑚𝑛 =

2(|Σ| + 1)𝑛. Making the ontology non-empty may only decrease the VC-dimension
as it may make non-equivalent concepts equivalent, but not vice versa.

If one views other query classes, like ELIQs or 𝒜ℒ𝒞 concepts, as syntax trees,
one can see that the proof of Lemma 6.11 also applies to them. We use this different
size bound in Section 6.4.

6.3 Not Sample-Efficient Fitting Algorithms

Although it is straightforward to obtain sample-efficient PAC learning algorithms for
a query class by using bounded fitting, not every fitting algorithm is sample-efficient.
Indeed, fitting algorithms that do not aim to find a fitting query of minimal size but
aim for other properties of the fitting can often be shown not to be sample-efficient
PAC learning algorithms.

Under certain assumptions, it is known that sample-efficient PAC learning implies
the existence of Occam algorithms [BP92]. Meaning that, sample-efficient PAC
learning is intrinsically linked to finding small fitting queries. These assumptions,
however, require the concept space to be polynomially closed under exception lists,
which is not known to be the case for queries under ontologies.

Recently, extremal fitting CQs have been studied by [tCat+23b]. These are CQs
that fit given examples, but also have logically interesting properties in the set of
all fitting queries. In this section, we show that fitting algorithms that produce
these kinds of extremal fittings are not sample-efficient PAC learning algorithms. This
already holds in the case without an ontology. To simplify writing, we therefore
drop saying under the empty ontology. Although we show these results for CQs, the
same also holds for ELQs and ELIQs [tCat+23c].

Additionally, we show that fitting algorithms that aim to produce ELQs of mini
mal quantifier depth, are also not sample-efficient PAC learning algorithms.

We begin by formally introducing extremal fittings. Let 𝐸 be a collection of
labeled examples. A CQ 𝑞 that fits 𝐸 is a

• most-specific fitting CQ if for every CQ 𝑞′ that fits 𝐸, 𝑞 ⊆∅ 𝑞′;

• strongly most-general fitting CQ if for every CQ 𝑞′ that fits 𝐸, 𝑞′ ⊆∅ 𝑞;

181

6 Learning from Examples

• weakly most-general fitting CQ if for every CQ 𝑞′ that fits 𝐸, 𝑞 ⊆∅ 𝑞′ implies
𝑞 ≡∅ 𝑞′.

There is also a more general notion than strongly most-general fitting:

• a finite set of CQs {𝑞1, … , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸 if each 𝑞𝑖
fits 𝐸 and for all CQs 𝑞′ that fit 𝐸, we have 𝑞′ ⊆∅ 𝑞𝑖 for some 𝑖 ≤ 𝑛.

Note that the definition of most-specific fitting CQs parallels that of strongly most-
general fitting CQs. One may also define a weak version of most-specific fitting
CQs, but this definition turns out to be equivalent to the above definition of most-
specific fitting CQ [tCat+23b]. The different notions of most-general fitting CQ are
connected as follows. If 𝑞 is a strongly most-general fitting CQ, then {𝑞} is a basis of
most-general fitting CQs. If a basis of most-general fitting CQs is subset minimal,
then it contains only weakly most-general fitting CQs. Furthermore, if a strongly
most-general fitting CQ exists, then it is also the only weakly most-general fitting
CQ.

A most-specific fitting CQ 𝑞 and a basis of most-general fitting CQs {𝑞1, … , 𝑞𝑛}
completely describe the space of all fitting CQs: For all CQs 𝑞′, 𝑞 ⊆∅ 𝑞′ and 𝑞′ ⊆∅ 𝑞𝑖
for some 𝑖, if and only if 𝑞′ fits 𝐸.

Example 6.12. Consider the positive example ({𝐴1(𝑎), 𝐴2(𝑎), 𝐴3(𝑎)}, 𝑎) and the neg
ative examples ({𝐴1(𝑏)}, 𝑏), ({𝐴2(𝑏)}, 𝑏). The ELQ 𝑞(𝑥) ← 𝐴1(𝑥) ∧ 𝐴2(𝑥) ∧ 𝐴3(𝑥) is
the most-specific fitting CQ of these examples. The ELQs 𝑞1(𝑥) ← 𝐴1(𝑥) ∧ 𝐴2(𝑥)
and 𝑞2(𝑥) ← 𝐴3(𝑥) are both weakly most-general fitting CQs. There is no strongly
most-general fitting CQ, but the set {𝑞1, 𝑞2} is a basis of most-general fitting CQ.

Most-specific fitting CQs can be characterized in terms of direct products.

Theorem 6.13 ([tCat+23b]). For all CQs 𝑞 and collections of labeled examples 𝐸, the
following are equivalent:

1. 𝑞 is a most-specific fitting CQ for 𝐸,

2. 𝑞 fits 𝐸 and is equivalent to the canonical CQ of �
(𝒜,𝑎,+)∈𝐸

𝒜.

Strongly most-general fitting CQs and finite bases of most-general fitting CQs
can be characterized in terms of homomorphism dualities, a fundamental concept
that originates from combinatorial graph theory and that has found diverse appli
cations in different areas, including the study of constraint satisfaction problems,
database theory and knowledge representation. Here, we use a relativized version
of homomorphism dualities introduced by ten Cate et al. [tCat+23b].

182

6.3 Not Sample-Efficient Fitting Algorithms

Definition 6.14 (Relativized homomorphism duality). Let (ℬ, 𝑏) be an example. A
homomorphism duality relative to (ℬ, 𝑏) is a pair of finite sets of examples2 (𝐹, 𝐷) such
that for all examples (ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏, the following are equivalent:

1. 𝒜𝑓, 𝑎𝑓 → ℬ′, 𝑏′ for some (𝒜𝑓, 𝑎𝑓) ∈ 𝐹,

2. ℬ′, 𝑏′ ↛ 𝒜𝑑, 𝑎𝑑 for all (𝒜𝑑, 𝑎𝑑) ∈ 𝐷.

The use of relativized in Definition 6.14 refers to the restriction to only examples
(ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏. If one instead considers all examples (ℬ′, 𝑏′) one ob
tains the more common notion of unrelativized homomorphism dualities, which are
strongly connected (in the case without an ontology) to the unique characteriza
tions and frontiers we encountered before [tCD22]. Most-general fittings can be
characterized with the relativized variant as follows.

Theorem 6.15 ([tCat+23b]). For all CQs 𝑞1, … , 𝑞𝑛 and collections of labeled examples 𝐸,
the following are equivalent:

1. {𝑞1, … , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸

2. each 𝑞𝑖 fits 𝐸, and ({(𝒜𝑞1, 𝑎𝑞1), … , (𝒜𝑞𝑛, 𝑎𝑞𝑛)}, {(ℬ, 𝑏) ∣ (ℬ, 𝑏, −) ∈ 𝐸}) is a homomor
phism duality relative to ∏(𝒜,𝑎,+)∈𝐸 𝒜.

Or, formulated for strongly most-general fitting CQs: 𝑞 is a strongly most-general
fitting CQ if and only if 𝑞 fits 𝐸 and ({(𝒜𝑞, 𝑎𝑞)}, {(ℬ, 𝑏) ∣ (ℬ, 𝑏, −) ∈ 𝐸}) is a homomor
phism duality relative to ∏(𝒜,𝑎,+) 𝒜.

Most-General Fittings Preclude Sample-Efficiency

We show that fitting algorithms that always produce a most-general fitting CQ, if
it exists, cannot be sample-efficient PAC learning algorithms. We only show this
for strongly most-general fitting CQs since fitting algorithms that always produce
a weakly most-general fitting CQ or the elements of a base of most-general fitting
CQs must also produce a strongly most-general fitting CQ if it exists. Consequently,
our result also applies to the latter kinds of algorithms. Guided by Theorem 6.15
we base our proofs on relativized homomorphism dualities.

Known constructions of a homomorphism duality (𝐹, 𝐷) from 𝐹 relative to some
example (ℬ, 𝑏) result in examples 𝐷 with size exponential in ‖𝐹‖ and ‖ℬ‖, already
for acyclic examples [tCD22; NT05]. This makes them unsuitable for showing

2The 𝐹 stands for forbidden (as dualities were introduced in the context of forbidding certain graph
patterns) and the 𝐷 for duals.

183

6 Learning from Examples

non-sample-efficiency, as it would force us to use negative data examples that are
exponentially larger than the positive examples. Since Definition 3.13 allows the
sample size 𝑚 to depend on the size of the examples, examples of exponential
size would effectively allow a sample-efficient PAC learning algorithm to use an
exponential number of examples. In order to avoid this effect, we begin by showing
that for a certain restricted class of examples 𝐹, a relativized homomorphism duality
(𝐹, 𝐷) exists such that 𝐷 is of polynomial size and can be computed in polynomial
time.

A path ABox is an ABox 𝒜 such that the assertions in 𝒜 are of the form

𝑟1(𝑎0, 𝑎1), … , 𝑟𝑛(𝑎𝑛−1, 𝑎𝑛), 𝐴1(𝑎𝑗1), … , 𝐴𝑚(𝑎𝑗𝑚)

where all 𝑟𝑖 are role names, all 𝐴𝑖 are concept names, and for all 𝑗𝑖, 𝑗𝑖 > 0. A path
example (𝒜, 𝑎) is a unary data example, where 𝒜 is a path ABox and 𝑎 = 𝑎0. This is
the equivalent of path CQs from Section 6.1 for data examples, except that multiple
different concept names and role names are permitted.

Lemma 6.16. Let (𝒜, 𝑎0) and (ℬ, 𝑏0) be path examples. There exists an example (�ℬ, �𝑏)
that can be computed in time polynomial in ‖𝒜‖ and ‖ℬ‖ such that ({(𝒜, 𝑎0)}, {(�ℬ, �𝑏)}) is a
homomorphism duality relative to (ℬ, 𝑏0).

 Proof. Since 𝒜 and ℬ are path ABoxes, assume that ind(𝒜) = {𝑎0, … , 𝑎𝑛} and ind(ℬ) =
{𝑏0, … 𝑏𝑚}. We can check in polynomial time whether 𝒜, 𝑎0 → ℬ, 𝑏0. We distinguish
cases.

If 𝒜, 𝑎0 ↛ ℬ, 𝑏0, then it follows that 𝒜, 𝑎0 ↛ ℬ′, 𝑏′ for all data examples ℬ′, 𝑏′
with ℬ′, 𝑏′ → ℬ, 𝑏0. Then, ({(𝒜, 𝑎0)}, {(ℬ, 𝑏0)}) is a homomorphism duality relative
to (ℬ, 𝑏0).

If 𝒜, 𝑎0 → ℬ, 𝑏0, we construct a data example (�ℬ, �𝑏) such that ({(𝒜, 𝑎0)}, {(�ℬ, �𝑏)}) is
the desired homomorphism duality relative to (ℬ, 𝑏0) as follows. Since 𝒜, 𝑎0 → ℬ, 𝑏0,
it must be that 𝑛 ≤ 𝑚 and the role name 𝑟𝑖 is the same in 𝒜 and ℬ for all 𝑖 with
1 ≤ 𝑖 ≤ 𝑛. The individual names used in �ℬ are pairs ⟨𝑏𝑖, 𝑓⟩ where 𝑏𝑖 ∈ ind(ℬ) and 𝑓
is an assertion from 𝒜 that mentions 𝑎𝑖 or the dummy assertion ∘. More specifically,
ind(�ℬ) is the following set of individual names:

{⟨𝑏𝑖, ∘⟩ ∣ 𝑖 = 0 or 𝑛 < 𝑖 ≤ 𝑚} ∪
{⟨𝑏𝑖, 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖)⟩ ∣ 1 ≤ 𝑖 ≤ 𝑛} ∪
{⟨𝑏𝑖, 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1)⟩ ∣ 0 ≤ 𝑖 ≤ 𝑛 − 1} ∪
{⟨𝑏𝑖, 𝐴(𝑎𝑖)⟩ ∣ 1 ≤ 𝑖 ≤ 𝑛 and 𝐴(𝑎𝑖) ∈ 𝒜}.

For all individual names ⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩ in the set above, we add to �ℬ the assertion

• 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) if 𝑓 ≠ 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1) or 𝑓′ ≠ 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1),

184

6.3 Not Sample-Efficient Fitting Algorithms

• 𝐴(⟨𝑏𝑖+1, 𝑓′⟩) if 𝐴(𝑏𝑖+1) ∈ ℬ and 𝑓′ ≠ 𝐴(𝑎𝑖+1).

Then, set �𝑏 to be the individual name ⟨𝑏0, 𝑅1(𝑎0, 𝑎1)⟩. This completes the construction
of (�ℬ, �𝑏). Note that every role assertion 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) in �ℬ is a copy of a role
assertion 𝑟𝑖+1(𝑏𝑖, 𝑏𝑖+1) in ℬ. Since 𝑓, 𝑓′ ∈ 𝒜 ∪ {∘}, there are at most (‖𝒜‖ + 1)2 copies
of every role assertion of ℬ in �ℬ. The same is true for concept name assertions.
Therefore, ‖�ℬ‖ ≤ ‖ℬ‖ ⋅ (‖𝒜‖ + 1)2. It is easy to see that �ℬ can be computed in
polynomial time using the above construction.

It remains to show that ({(𝒜, 𝑎0)}, {(�ℬ, �𝑏)}) is a homomorphism duality relative
to (ℬ, 𝑏0). First, we prove that 𝒜, 𝑎0 → ℬ′, 𝑏′ implies ℬ′, 𝑏′ ↛ �ℬ, �𝑏 for all examples
(ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏0. For this, it suffices that 𝒜, 𝑎0 ↛ �ℬ, �𝑏. For all 𝑘, let 𝒜𝑘 be
the restriction of 𝒜 to assertions that contain only values 𝑎𝑖 with 𝑖 ≥ 𝑘. Then, for all
𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and all ⟨𝑏𝑖, 𝑓⟩ ∈ ind(�ℬ),

𝒜𝑖, 𝑎𝑖 → �ℬ, ⟨𝑏𝑖, 𝑓⟩ implies 𝑓 = 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖). (∗)

We show this by induction on 𝑛−𝑖. In the induction start, let 𝑖 = 𝑛. By construction of
�ℬ, 𝑓 ∈ {𝑟𝑛(𝑎𝑛−1, 𝑎𝑛)} ∪ {𝐴(𝑎𝑛) ∣ 𝐴(𝑎𝑛) ∈ 𝒜𝑛}. Assume that 𝒜𝑛, 𝑎𝑛 → �ℬ, ⟨𝑏𝑛, 𝑓⟩. Then,
it follows that 𝐴(⟨𝑏𝑛, 𝑓⟩) ∈ �ℬ for all 𝐴(𝑎𝑛) ∈ 𝒜, hence 𝑓 ≠ 𝐴(𝑎𝑛) for any 𝐴(𝑎𝑛) ∈ 𝒜.
Therefore, the only possibility for 𝑓 that remains is that 𝑓 = 𝑟𝑛(𝑎𝑛−1, 𝑎𝑛).

In the induction step, assume that (∗) holds for 𝑖 + 1 and that 𝒜𝑖, 𝑎𝑖 → �ℬ, ⟨𝑏𝑖, 𝑓⟩.
Again, this implies that 𝐴(⟨𝑏𝑖, 𝑓⟩) ∈ �ℬ for all 𝐴(𝑎𝑖) ∈ 𝒜𝑖, hence 𝑓 ∉ {𝐴(𝑎𝑖) ∣ 𝐴(𝑎𝑖) ∈
𝒜𝑖}. Additionally, from 𝒜𝑖, 𝑎𝑖 → �ℬ, ⟨𝑏𝑖, 𝑓⟩ and 𝑖 < 𝑛 it follows that there must be
a role assertion 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) ∈ �ℬ such that 𝒜𝑖+1, 𝑎𝑖+1 → �ℬ, ⟨𝑏𝑖+1, 𝑓′⟩. By the
induction hypothesis, 𝑓′ = 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1). It follows from 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) ∈ �ℬ,
that 𝑓 ≠ 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1). Thus, the only possibility that remains is that 𝑓 = 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖).

From (∗) and 𝑟1(𝑎0, 𝑎1) ∈ 𝒜 it now follows that 𝒜, 𝑎0 ↛ �ℬ, ⟨𝑏0, 111(𝑎0, 𝑎1)⟩ = �ℬ, �𝑏,
since by construction of �ℬ, 𝑟1(⟨𝑏0, 𝑟1(𝑎0, 𝑎1)⟩, ⟨𝑏1, 𝑟1(𝑎0, 𝑎1)⟩) ∉ �ℬ.

Second, we show that 𝒜, 𝑎0 ↛ ℬ′, 𝑏′ implies ℬ′, 𝑏′ → �ℬ, �𝑏 for all examples
(ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏0. Let ℬ′, 𝑏′ be an example such that 𝒜, 𝑎0 ↛ ℬ′, 𝑏′ and
ℬ′, 𝑏′ → ℬ, 𝑏0. Let ℎ be a homomorphism from ℬ′ to ℬ with ℎ(𝑏′) = 𝑏0. We construct
a homomorphism 𝑔 from ℬ′ to �ℬ with 𝑔(𝑏′) = �𝑏 as follows. For all 𝑎 ∈ ind(ℬ′), there
is an 𝑖 such that 0 ≤ 𝑖 ≤ 𝑚 and ℎ(𝑎) = 𝑏𝑖. Define 𝑔(𝑎) depending on this 𝑖 as follows.
For 𝑖 = 0,

• if 𝒜𝑖, 𝑎𝑖 → ℬ′, 𝑎, set 𝑔(𝑎) = ⟨𝑏0, ∘⟩;

• otherwise, that is, if 𝒜𝑖, 𝑎𝑖 ↛ ℬ′, 𝑎, set 𝑔(𝑎) = ⟨𝑏0, 𝑟1(𝑎0, 𝑎1)⟩.

For 1 ≤ 𝑖 ≤ 𝑛,

185

6 Learning from Examples

𝑦0

𝒜𝑞

𝑦1𝐴

𝑦2𝐵

�ℬ𝑞

⟨𝑥0, 𝑟(𝑦0, 𝑦1)⟩ ⟨𝑥0, ∘⟩

⟨𝑥1, 𝑟(𝑦0, 𝑦1)⟩𝐴, 𝐵

⟨𝑥2, 𝑟(𝑦1, 𝑦2)⟩𝐴, 𝐵

⟨𝑥1, 𝑟(𝑦1, 𝑦2)⟩𝐴, 𝐵 ⟨𝑥1, 𝐴(𝑦1)⟩𝐵

⟨𝑥2, 𝐵(𝑦2)⟩𝐴

𝑥0

𝒜𝑞𝑇

𝑥1𝐴, 𝐵

𝑥2𝐴, 𝐵

Figure 6.2: A homomorphism duality relative to a path example

• if 𝒜𝑖, 𝑎𝑖 → ℬ′, 𝑎, set 𝑔(𝑎) = ⟨𝑏𝑖, 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖)⟩;

• otherwise, that is, if 𝒜𝑖, 𝑎𝑖 ↛ ℬ′, 𝑎, we distinguish cases:

– if there is an 𝐴(𝑎𝑖) ∈ 𝒜𝑖 such that 𝐴(𝑎) ∉ ℬ′, set 𝑔(𝑎) = ⟨𝑏𝑖, 𝐴(𝑎𝑖)⟩;

– otherwise, set 𝑔(𝑎) = ⟨𝑏𝑖, 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1)⟩ (note that in this case 𝑖 < 𝑛 and
𝒜𝑖+1, 𝑎𝑖+1 ↛ ℬ′, 𝑎′ for all 𝑟𝑖+1(𝑎, 𝑎′) ∈ ℬ′).

For 𝑖 > 𝑛, set 𝑔(𝑎) = ⟨𝑏𝑖, ∘⟩.
It remains to verify that 𝑔 is a homomorphism. Let 𝐴(𝑎) be a concept name

assertion in ℬ′. Since ℎ is a homomorphism, there is a fact 𝐴(𝑏𝑖) ∈ ℬ with ℎ(𝑎) = 𝑏𝑖.
By definition of 𝑔, 𝑔(𝑎) = ⟨𝑏𝑖, 𝑓⟩ for some fact 𝑓 ∈ {∘, 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖), 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1)}∪{𝐴′(𝑎𝑖) ∈
𝒜 ∣ 𝐴′ ≠ 𝐴}. From the construction of �ℬ it follows that 𝐴(𝑔(𝑎)) ∈ �ℬ for all these
cases of 𝑓.

Let 𝑟(𝑎, 𝑎′) be a role assertion in ℬ′. Since ℎ is a homomorphism, there is a role
assertion 𝑟(𝑏𝑖, 𝑏𝑖+1) ∈ ℬ with ℎ(𝑎) = 𝑏𝑖, ℎ(𝑎′) = 𝑏𝑖+1 and 𝑟 = 𝑟𝑖+1. The function 𝑔 then
maps 𝑎 to ⟨𝑏𝑖, 𝑓⟩ and 𝑎′ to ⟨𝑏𝑖+1, 𝑓′⟩, for some assertions 𝑓, 𝑓′ ∈ 𝒜 ∪ {∘}. It follows
from the construction of �ℬ that there is an assertion 𝑟(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) ∈ �ℬ for all
𝑓, 𝑓′, except for 𝑓 = 𝑓′ = 𝑟(𝑎𝑖, 𝑎𝑖+1) ∈ 𝒜 (and 𝑖 + 1 ≤ 𝑛). Assume for contradiction
that there is an assertion 𝑟(𝑎𝑖, 𝑎𝑖+1) ∈ 𝒜 and 𝑓 = 𝑓′ = 𝑟(𝑎𝑖, 𝑎𝑖+1). By definition of 𝑔 and
𝑓 = 𝑟(𝑎𝑖, 𝑎𝑖+1) it follows that there is no assertion 𝑟(𝑎, 𝑎″) ∈ ℬ′ with 𝒜𝑖+1, 𝑎𝑖+1 → ℬ′, 𝑎″,
and it follows from definition of 𝑔 and 𝑓′ = 𝑟(𝑎𝑖, 𝑎𝑖+1) that 𝒜𝑖+1, 𝑎𝑖+1 → ℬ′, 𝑎′. A
contradiction, since 𝑟(𝑎, 𝑎′) ∈ ℬ′.

Example 6.17. Consider the path examples (𝒜𝑞, 𝑦0) and (𝒜𝑞𝑇, 𝑥0), and the ABox �ℬ𝑞

displayed in Figure 6.2. The example (�ℬ𝑞, ⟨𝑥0, 𝑟(𝑦0, 𝑦1)⟩) is the result of constructing a
homomorphism duality of (𝒜𝑞, 𝑦0) relative to (𝒜𝑞𝑇, 𝑥0) according to the construction

186

6.3 Not Sample-Efficient Fitting Algorithms

in the proof of Lemma 6.16. Note that �ℬ𝑞 is not itself a path ABox, and not even
tree-shaped.

We now build on Lemma 6.16 and Theorem 6.15 to show that fitting algorithms
that produce strongly most-general fittings are not sample-efficient PAC learning
algorithms.

Theorem 6.18. Let 𝐀 be a fitting algorithm for CQs that always produces a strongly
most-general fitting if it exists. Then 𝐀 is not a sample-efficient PAC learning algorithm.

 Proof. Assume to the contrary that 𝐀 is a sample-efficient PAC learning algorithm
that produces a strongly most-general fitting CQ, if it exists, with associated poly
nomial sample size 𝑚∶ ℝ2 × ℕ4 → ℕ as in Definition 3.13. We assume that the
value of 𝑚 is at least 2, for any input.

Choose a signature Σ that contains the concept names 𝐴, 𝐵 and a role name 𝑟,
𝛿 = 0.5, 𝜖 = 0.25, and 𝑛 ∈ ℕ large enough so that

2𝑛−1 > 𝑚�
1
𝛿

,
1
𝜖

, |Σ|, 0, 𝑝1(𝑛), 𝑝2(𝑛)�.

In that bound, 𝑝1 is a polynomial that bounds the size of the target CQ, and 𝑝2 is
a polynomial that bounds the size of the data examples, which we describe next.
Assume without loss of generality that 𝑝2(𝑛) ≥ 𝑝1(𝑛). As target CQ, we use

𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) ∧ 𝐵(𝑥1) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝐴(𝑥𝑛) ∧ 𝐵(𝑥𝑛).

Thus, 𝑞𝑇 is an 𝑟-path of length 𝑛 in which every node after the first is labeled with
𝐴 and 𝐵. We will use (𝒜𝑞𝑇, 𝑥0) as a positive example for 𝑞𝑇. Note that 𝒜𝑞𝑇 is a path
instance with ‖𝒜𝑞𝑇‖ = 𝑝1(𝑛) ≤ 𝑝2(𝑛).

Next, we construct instances that we use as negative examples. Define a set of
CQs

𝑆 = {𝑞(𝑦0) ← 𝑟(𝑦0, 𝑦1) ∧ 𝛼1(𝑦1) ∧ ⋯ ∧ 𝑟(𝑦𝑛−1, 𝑦𝑛) ∧ 𝛼𝑛(𝑦𝑛) ∣ 𝛼𝑖 ∈ {𝐴, 𝐵}}.

The CQs in 𝑆 resemble 𝑞𝑇, except that every node is labeled with only one of the
concept names 𝐴 and 𝐵. For all elements 𝑞 of 𝑆 it holds that 𝑞𝑇 ⊆∅ 𝑞 and 𝒜𝑞 is
a path instance of polynomial size. In order to obtain the negative examples, we
construct for each 𝑞 ∈ 𝑆, the example (�ℬ𝑞, 𝑎𝑞) such that ({(𝒜𝑞, 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞)}) is a
homomorphism duality relative to (𝒜𝑞𝑇, 𝑥0). Using Lemma 6.16, it is easy to see
that there is a fixed polynomial 𝑝2 such that ‖�ℬ𝑞‖ ≤ 𝑝2(𝑛). Since 𝒜𝑞, 𝑦0 → 𝒜𝑞𝑇, 𝑥0
for all 𝑞 ∈ 𝑆, it follows from the definition of relativized homomorphism duality
(Definition 6.14) that 𝒜𝑞𝑇, 𝑥0 ↛ �ℬ𝑞, 𝑎𝑞. Hence, all (�ℬ𝑞, 𝑎𝑞) are negative examples for
𝑞𝑇. An example of this duality for 𝑛 = 2 is displayed in Figure 6.2.

187

6 Learning from Examples

The central properties of the chosen examples are the following. For 𝑞1, 𝑞2 ∈ 𝑆,
let 𝑞1 ∧ 𝑞2 denote the unary CQ that joins 𝑞1 and 𝑞2 at the answer variable 𝑦0, but
keeps all existential variables distinct. For 𝑆′ ⊆ 𝑆, let 𝑞𝑆′ = ⋀

𝑞∈𝑆 𝑞.

Claim. For every 𝑆′ ⊆ 𝑆, ({(𝒜𝑞𝑆′ , 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞) ∣ 𝑞 ∈ 𝑆′}) is a homomorphism duality
relative to (𝒜𝑞𝑇, 𝑥0).

 Proof of the claim. Let 𝑆′ be a subset of 𝑆. By Definition 6.14, we have to show that
for all examples (𝒜, 𝑎) with 𝒜, 𝑎 → 𝒜𝑞𝑇, 𝑥0, it holds that 𝒜𝑞𝑆′ , 𝑦0 → 𝒜, 𝑎 if and only
if 𝒜, 𝑎 ↛ �ℬ𝑞, 𝑎𝑞 for all 𝑞 ∈ 𝑆′.

Let (𝒜, 𝑎) be an example such that 𝒜, 𝑎 → 𝒜𝑞𝑇, 𝑥0. First, we show that 𝒜𝑞′𝑆, 𝑦0 →
𝒜, 𝑎 implies that 𝒜, 𝑎 ↛ �ℬ𝑞, 𝑎𝑞 for all 𝑞 ∈ 𝑆′. So assume that 𝒜𝑞′𝑆, 𝑦0 → 𝒜, 𝑎.
It suffices to show that 𝒜𝑞𝑆′ , 𝑦0 ↛ �ℬ𝑞, 𝑎𝑞 for all 𝑞 ∈ 𝑆′. Take any 𝑞 ∈ 𝑆′. Since
({(𝒜𝑞, 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞)}) is a homomorphism duality relative to (𝒜𝑞𝑇, 𝑥0) and 𝒜𝑞, 𝑦0 →
𝒜𝑞𝑇, 𝑥0, we have that 𝒜𝑞, 𝑦0 ↛ �ℬ𝑞, 𝑎𝑞. By construction of 𝑞𝑆′, this implies 𝒜𝑞𝑆′ , 𝑦0 ↛
�ℬ𝑞, 𝑎𝑞.

Next, we show that 𝒜𝑞′𝑆, 𝑦0 ↛ 𝒜, 𝑎 implies that there is a 𝑞 ∈ 𝑆′ such that
𝒜, 𝑎 → �ℬ𝑞, 𝑎𝑞. Since 𝒜𝑞𝑆′ is the join of all 𝒜𝑞 with 𝑞 ∈ 𝑆′ at the answer variable,
there must be a 𝑞 ∈ 𝑆′ such that 𝒜𝑞, 𝑦0 ↛ 𝒜, 𝑎. By definition of homomorphism
dualities, therefore 𝒜, 𝑎 → �ℬ𝑞, 𝑎𝑞, as required. This completes the proof of the
claim.

Let the probability distribution 𝑃 assign probability 0.5 to the positive example
(𝒜𝑞𝑇, 𝑥0), probability 1

2𝑛+1
 to all negative examples (�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆, and proba

bility 0 to all other data examples. Now assume that the algorithm is started on a
collection 𝐸 of 𝑚(1𝛿 , 1𝜖 , |Σ|, 0, 𝑝1(𝑛), 𝑝2(𝑛)) data examples drawn according to 𝑃 and
labeled according to 𝑞𝑇. Let 𝑆′ = {𝑞 ∈ 𝑆 ∣ (�ℬ𝑞, 𝑎𝑞, −) ∈ 𝐸} ⊆ 𝑆. We argue that 𝑞𝑆′ fits
𝐸. Since 𝒜𝑞, 𝑦0 → 𝒜𝑞𝑇, 𝑥0 for all 𝑞 ∈ 𝑆, it follows that 𝑞𝑆′ fits the positive examples
in 𝐸 which are all of the form (𝒜𝑞𝑇, 𝑥0). Now let (�ℬ𝑞, 𝑎𝑞) be a negative example in
𝐸. We have 𝒜𝑞, 𝑦0 ↛ �ℬ𝑞, 𝑎𝑞 by the properties of homomorphism dualities and by
construction of 𝑞𝑆′ it follows that 𝑞𝑆′(𝑦0) ↛ �ℬ𝑞, 𝑎𝑞, as required.

We next observe that if (𝒜𝑞𝑇, 𝑥0, +) ∈ 𝐸, then it follows from Theorem 6.15 and
the claim that 𝑞𝑆′ is a strongly most-general fitting of 𝐸. Hence, with probability
1 − 1

2|𝐸|
> 1 − 𝛿 (since the value of 𝑚 and thus |𝐸| is at least 2), the algorithm 𝐀 returns

a CQ equivalent to 𝑞𝑆′.
We argue that 𝑞𝑆′ classifies all negative examples (�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆⧵𝑆′ incorrectly.

To see this, let 𝑞 be a CQ from 𝑆 ⧵ 𝑆′. Note that 𝒜𝑞, 𝑦0 ↛ 𝒜𝑞𝑆′ , 𝑦0 by construction
of 𝑞𝑆′. Then, it follows from ({(𝒜𝑞, 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞)}) being a homomorphism duality

188

6.3 Not Sample-Efficient Fitting Algorithms

relative to (𝒜𝑞𝑇, 𝑥0) and 𝒜𝑞𝑆′ , 𝑦0 → 𝒜𝑞𝑇, 𝑥0 that 𝒜𝑞𝑆′ , 𝑦0 → �ℬ𝑞, 𝑎𝑞. Therefore, all
(�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆 ⧵ 𝑆′ are labeled positively by 𝑞𝑆′.

Since |𝑆⧵𝑆′| = 2𝑛−|𝑆′| > 2𝑛−2𝑛−1 by choice of 𝑛 and each of the negative examples
(�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆 ⧵ 𝑆′ has probability 1

2𝑛+1
 to be drawn from 𝑃, we have

error𝑃,𝑞𝑇,∅(𝑞𝑆′) >
2𝑛 − 2𝑛−1

2𝑛+1
=

1
4

= 𝜖,

a contradiction.

Most-Specific Fittings Preclude Sample-Efficient PAC Learning

In contrast to most-general fitting CQs, Theorem 6.13 implies that most-specific
fitting CQs always exist, provided that a fitting CQ exists at all. We show that
fitting algorithms that always produce a most-specific fitting CQ also cannot be
sample-efficient PAC learning algorithms.

Theorem 6.19. Let 𝐀 be a fitting algorithm for CQs that always produces a most-specific
fitting CQ. Then 𝐀 is not a sample-efficient PAC learning algorithm.

 Proof. Assume to the contrary that 𝐀 is a sample-efficient PAC learning algorithm
with associated polynomial sample size 𝑚∶ ℝ2 × ℕ4 → ℕ as in Definition 3.13.
Choose a signature Σ that contains a concept name 𝐴 and a role name 𝑟, set 𝑞𝑇(𝑥0) ←
𝐴(𝑥0), 𝛿 = 𝜖 = 0.5, and 𝑛 even and large enough such that

1
2�

𝑛
𝑛/2� > 𝑚 �

1
𝜖

,
1
𝛿

, |Σ|, 0, ‖𝑞𝑇‖, 𝑝(𝑛)� ,

where 𝑝 is a fixed polynomial that bounds the size of the examples that we are
going to use. We next construct positive examples for 𝑞𝑇; negative examples are not

needed. Let 𝑁 denote the set of subsets of {1, … , 𝑛} and let 𝑁
1
2 be defined likewise,

but include only sets of cardinality exactly 𝑛/2. Note that |𝑁
1
2 | = � 𝑛

𝑛/2�. With every
𝑆 ∈ 𝑁, we associate the path ABox

𝒜𝑆 = {𝑟(𝑏0, 𝑏1), … , 𝑟(𝑏𝑛−1, 𝑏𝑛)} ∪ {𝐴(𝑏𝑖) ∣ 𝑖 ∈ 𝑆}.

as well as the example (𝒜′
𝑆, 𝑎0) that is obtained by constructing an example (ℬ𝑆, 𝑎0)

such that the pair ({(𝒜𝑆, 𝑏0)}, {(ℬ𝑆, 𝑎0)}) is a homomorphism duality relative to
(𝒜{1,…,𝑛}, 𝑏0) via the construction in the proof of Lemma 6.16 and then adding the
fact 𝐴(𝑎0). Due to this additional fact, every (𝒜′

𝑆, 𝑎0) is a positive data example for
𝑞𝑇 and using Lemma 6.16 one can show that there is a fixed polynomial 𝑝 such that
‖𝒜′

𝑆‖ ≤ 𝑝(𝑛)

189

6 Learning from Examples

Let 𝑃 be the probability distribution that assigns probability 1/|𝑁
1
2 | to every

example (𝒜′
𝑆, 𝑎0) with 𝑆 ∈ 𝑁

1
2 , and probability 0 to all other examples. Now, assume

that 𝐀 is started on a collection of 𝑚(1𝜖 , 1𝛿 , |Σ|, 0, ‖𝑞𝑇‖, 𝑝(2𝑛, 2𝑛) + 1) data examples 𝐸
drawn from 𝑃 and labeled according to 𝑞𝑇, and let 𝑞𝐻 be the CQ that is output by 𝐀.
Since 𝐸 contains no negative examples, Theorem 6.13 implies that a most-specific
fitting CQ exists. By the properties of 𝐀, 𝑞𝐻 must therefore be a most-specific CQ
that fits 𝐸.

We argue that 𝑞𝐻 labels incorrectly all data examples (𝒜′
𝑆, 𝑎0) with 𝑆 ∈ 𝑁

1
2 that

are not in the sample 𝐸. Let 𝑆 be any element of 𝑁
1
2 with (𝒜′

𝑆, 𝑎0, +) ∉ 𝐸. We
aim to show that 𝒜𝑞𝐻, 𝑎𝑞𝐻 ↛ 𝒜′

𝑆, 𝑎0. Let 𝑞𝑆 be the canonical CQ of (𝒜𝑆, 𝑏0). Since
({(𝒜𝑆, 𝑏0)}, {(ℬ𝑆, 𝑎0)}) is a homomorphism duality relative to (𝒜1,…,𝑛, 𝑏0), and 𝒜′

𝑆 =
ℬ𝑆 ∪ {𝐴(𝑎0)}, 𝒜𝑆, 𝑏0 ↛ 𝒜′

𝑆, 𝑎0. Hence, it suffices to show that 𝒜𝑆, 𝑏0 → 𝒜𝑞𝐻, 𝑎𝑞𝐻 or
equivalently that 𝑞𝐻 ⊆∅ 𝑞𝑆.

Recall that 𝑞𝐻 is a most-specific fitting for 𝐸. Hence, it suffices to show that 𝑞𝑆
is a fitting for 𝐸. Let 𝑆′ be any element of 𝑁

1
2 with (𝒜′

𝑆′, 𝑎0) ∈ 𝐸. Then, 𝑆 ≠ 𝑆′

and thus 𝒜𝑆′, 𝑏0 ↛ 𝒜𝑆, 𝑏0 by construction. Since 𝒜𝑆, 𝑏0 → 𝒜{1,…,𝑛}, 𝑏0 and the pair
({(𝒜𝑆′, 𝑏0)}, {(ℬ𝑆′, 𝑎0)}) is a homomorphism duality relative to (𝒜{1,…𝑛}, 𝑏0), it follows
that 𝒜𝑆, 𝑏0 → ℬ𝑆′, 𝑎0 and hence 𝒜𝑆, 𝑏0 → 𝒜′

𝑆′, 𝑎0. Therefore, (𝒜′
𝑆′, 𝑎0) is a positive

example for 𝑞𝑆, as required.
The definition of 𝑃 and the choice of 𝑛 now yield that with probability 1 > 1 − 𝛿,

error𝑃,𝑞𝑇(𝑞𝐻) =
|𝑁

1
2 | − |𝐸|

|𝑁
1
2 |

> 0.5,

a contradiction.

Minimum Quantifier Depth Precludes Sample-Efficiency

Other than most-specific and most-general fittings, one might also be interested in
fitting queries that are simple in some sense, to aid understanding of their meaning.
One way to judge the simplicity of queries, is the quantifier depth.

The quantifier depth of an ELQ is usually defined through its representation as
an ℰℒ concept. There, it is simply the deepest nesting of existential restrictions.
Formally, the function qdepth is defined inductively for all ℰℒ concepts by

qdepth(⊤) = 0
qdepth(𝐴) = 0

qdepth(𝐶 ⊓ 𝐷) = max(qdepth(𝐶), qdepth(𝐷))
qdepth(∃𝑟.𝐶) = qdepth(𝐶) + 1.

190

6.3 Not Sample-Efficient Fitting Algorithms

We may also define the quantifier depth of an ELQ 𝑞(𝑥0) as the codepth of its answer
variable 𝑥0.

Unfortunately, fitting ELQs of minimal quantifier depth can still be of large size.
We show that fitting algorithms that produce ELQs of minimal quantifier depth
are not sample-efficient PAC learning algorithms. To show this, we cannot use a
similar construction as in the last two proofs, and use homomorphism dualities
relative to some path example, as we do not use path-shaped queries. We require
unrelativized homomorphism dualities or homomorphism dualities relative to tree-
shaped examples, but there is no known construction, even for path examples, that
yields such homomorphism dualities of polynomial size. Therefore, we use the
weaker notion of simulation dualities, which suffice for ELQs. Recall that ⪯ℰℒ denotes
the existence of an ℰℒ simulation (Definition 5.25), and that ℰℒ simulations are
closely linked to ELQs (see also Lemma 5.26). The proof is standard and omitted.

Lemma 6.20. Let 𝑞(𝑥) be an ELQ and (𝒜, 𝑎) an example. Then, 𝒜, ∅ ⊧ 𝑞(𝑎) if and only if
𝒜𝑞, 𝑥 ⪯ℰℒ 𝒜, 𝑎.

This is a consequence of the semantics of CQs (and therefore also of ELQs) and
the fact that the existence of a homomorphism and the existence of an ℰℒ simulation
coincide if the source example is tree-shaped.

Definition 6.21 (Simulation duality). Let Σ be a signature. A Σ simulation duality is
a pair of finite sets of unary examples (𝐹, 𝐷) such that for all examples (ℬ, 𝑏) with
sig(ℬ) ⊆ Σ, the following are equivalent:

1. 𝒜𝑓, 𝑎𝑓 ⪯ℰℒ ℬ, 𝑏 for some (𝒜𝑓, 𝑎𝑓) ∈ 𝐹,

2. ℬ, 𝑏 ⪯̸ℰℒ 𝒜𝑑, 𝑎𝑑 for all (𝒜𝑑, 𝑎𝑑) ∈ 𝐷.

The main use of Definition 6.21 lies in the following property. Consider a Σ
simulation duality (𝐹, 𝐷) where 𝐹 = {(𝒜𝑞, 𝑎𝑞)} for some ELQ 𝑞. Then for any example
(ℬ, 𝑏) that uses only symbols from Σ with ℬ, ∅ ⊧̸ 𝑞(𝑏), there must be an (𝒜, 𝑎) ∈ 𝐷
with ℬ, 𝑏 ⪯ℰℒ 𝒜, 𝑎, due to Lemma 6.20. We show that for ELQs, such a set 𝐷 always
exists and is of polynomial size. Indeed, we show that this not only holds for ELQs,
but also for examples that are directed acyclic graph shaped (DAG-shaped), since
the notion of simulation dualities is of independent interest.

An ABox 𝒜 is DAG-shaped if its underlying directed graph is a DAG and there
are no role assertions of the form 𝑟(𝑥, 𝑦), 𝑠(𝑦, 𝑥) ∈ 𝒜. Similar to the codepth of tree-
shaped ABoxes, we define a notion of codepth for DAG-shaped ABoxes. The codepth
of an individual 𝑎 is 0 if there is no assertion 𝑟(𝑎, 𝑏) ∈ 𝒜 and the maximum of the
codepths of all individuals 𝑏 with 𝑟(𝑎, 𝑏) ∈ 𝒜 plus 1 otherwise.

191

6 Learning from Examples

Lemma 6.22. Let Σ be a signature and (𝒜, 𝑎) an example such that 𝒜 is DAG-shaped and
sig(𝒜) ⊆ Σ. Then, we can compute in polynomial time a set 𝐷 such that ({(𝒜, 𝑎)}, 𝐷) is
a Σ simulation duality. Moreover, if 𝒜 contains exactly one Σ assertion that mentions 𝑎,
then 𝐷 is a singleton set.

 Proof. Let (𝒜, 𝑎) be an example with 𝒜 DAG-shaped and Σ a signature. We construct
the required set 𝐷 as follows. First, we define an ABox 𝒜∗ which uses the following
individuals

ind(𝒜∗) = {⊤} ∪
{⟨𝑏, 𝐴(𝑏)⟩ ∣ 𝐴(𝑏) ∈ 𝒜, 𝐴 ∈ Σ} ∪
{⟨𝑏, 𝑟(𝑏, 𝑐)⟩ ∣ 𝑟(𝑏, 𝑐) ∈ 𝒜, 𝑟 ∈ Σ}

and include the following assertions, for all ⟨𝑏, 𝐴(𝑏)⟩ ∈ ind(𝒜∗) and ⟨𝑏, 𝑟(𝑏, 𝑐)⟩ ∈
ind(𝒜∗):

(i) 𝐵(⊤) for all 𝐵 ∈ Σ ∩ NC;

(ii) 𝑠(⊤, ⊤) for all 𝑠 ∈ Σ ∩ NR;

(iii) 𝐵(⟨𝑏, 𝐴(𝑏)⟩) for all 𝐵 ∈ Σ ∩ NC with 𝐵 ≠ 𝐴;

(iv) 𝑠(⟨𝑏, 𝐴(𝑏)⟩, ⊤) for all 𝑠 ∈ Σ ∩ NR;

(v) 𝐵(⟨𝑏, 𝑟(𝑏, 𝑐)⟩) for all 𝐵 ∈ Σ ∩ NC;

(vi) 𝑠(⟨𝑏, 𝑟(𝑏, 𝑐)⟩, ⊤) for all 𝑠 ∈ Σ ∩ NR with 𝑠 ≠ 𝑟;

(vii) 𝑟(⟨𝑏, 𝑟(𝑏, 𝑐)⟩, ⟨𝑐, 𝛼⟩) for all ⟨𝑐, 𝛼⟩ ∈ ind(𝒜∗).

We prove two auxiliary claims.

Claim 1. For all 𝑏 ∈ ind(𝒜) and ⟨𝑏, 𝛼⟩ ∈ ind(𝒜∗), 𝒜, 𝑏 ⪯̸ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

 Proof of Claim 1. We prove the claim by induction on the codepth of 𝑏 in 𝒜. If 𝑏 has
codepth 0, then 𝛼 is of the form 𝐴(𝑏), for 𝐴(𝑏) ∈ 𝒜. By Point (iii) in the definition
of 𝒜∗, 𝐴(⟨𝑏, 𝐴(𝑏)⟩) ∉ 𝒜∗, and thus 𝒜, 𝑏 ⪯̸ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

Now, let 𝑏 have codepth greater than 0. We distinguish cases on the shape of 𝛼.

• If 𝛼 is of the form 𝐴(𝑏) for some 𝐴(𝑏) ∈ 𝒜, then we can argue as in the base
case that 𝒜, 𝑏 ⪯̸ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

• If 𝛼 is of the form 𝑟(𝑏, 𝑐) for some 𝑟(𝑏, 𝑐) ∈ 𝒜, assume for contradiction that
there is an ℰℒ simulation 𝑆 from 𝒜 to 𝒜∗ with (𝑏, ⟨𝑏, 𝑟(𝑏, 𝑐)⟩) ∈ 𝑆. Since 𝑆 is an
ℰℒ simulation and 𝑐 is an 𝑟-successor of 𝑏 in 𝒜, there has to be an 𝑟-successor
𝑐′ of ⟨𝑏, 𝑟(𝑏, 𝑐)⟩ in 𝒜∗ with (𝑐, 𝑐′) ∈ 𝑆. By Point (vi) and (vii), 𝑐′ is of shape ⟨𝑐, 𝛼⟩.
But then 𝒜, 𝑐 ⪯ℰℒ 𝒜′, ⟨𝑐, 𝛼⟩, contradicting the induction hypothesis.

192

6.3 Not Sample-Efficient Fitting Algorithms

This completes the proof of Claim 1.

Claim 2. For all 𝑏 ∈ ind(𝒜) and examples (ℬ, 𝑐) that only use symbols from Σ, if
𝒜, 𝑏 ⪯̸ℰℒ ℬ, 𝑐 then there is a ⟨𝑏, 𝛼⟩ ∈ ind(𝒜∗) such that ℬ, 𝑐 ⪯ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

 Proof of Claim 2. We prove the claim by induction on the codepth of 𝑏 in 𝒜. If 𝑏 has
codepth 0 and 𝒜, 𝑏 ⪯̸ℰℒ 𝒜′, 𝑐, then there is a concept name 𝐴 ∈ Σ such that 𝐴(𝑏) ∈ 𝒜
and 𝐴(𝑐) ∉ ℬ. It can be verified using Points (i)–(iii) above that the relation

𝑆 = {(𝑐, ⟨𝑏, 𝐴(𝑏)⟩)} ∪ {(𝑐′, ⊤) ∣ 𝑐′ ∈ ind(ℬ)}

is an ℰℒ simulation from ℬ to 𝒜∗ with (𝑐, ⟨𝑏, 𝐴(𝑏)⟩) ∈ 𝑆 as required.
Now, let 𝑏 have codepth greater than 0 and assume 𝒜, 𝑏 ⪯̸ℰℒ ℬ, 𝑐. We distinguish

cases on why the latter is the case:

• If there is a concept name 𝐴 ∈ Σ such that 𝐴(𝑏) ∈ 𝒜 and 𝐴(𝑐) ∉ ℬ, we can
argue as in the base case that ℬ, 𝑐 ⪯ℰℒ 𝒜∗, ⟨𝑏, 𝐴(𝑏)⟩.

• If there is an assertion 𝑟(𝑏, 𝑏′) ∈ 𝒜 such that for all 𝑟(𝑐, 𝑐′) ∈ ℬ, 𝒜, 𝑏′ ⪯̸ℰℒ ℬ, 𝑐′.
We show that ℬ, 𝑐 ⪯ℰℒ 𝒜∗, ⟨𝑏, 𝑟(𝑏, 𝑏′)⟩.
The induction hypothesis implies that for all 𝑟(𝑐, 𝑐′) ∈ ℬ there is an ⟨𝑏′, 𝛽⟩ ∈
ind(𝒜∗) and a simulation 𝑆𝑐′ from ℬ to 𝒜∗ with (𝑐′, ⟨𝑏′, 𝛽⟩) ∈ 𝑆𝑐′. It can be
verified using Points (v)–(vii) above that

𝑆 = {(𝑏, ⟨𝑏, 𝑟(𝑏, 𝑏′)⟩)} ∪ {(𝑐′, ⊤) ∣ 𝑐′ ∈ ind(ℬ)} ∪ �
𝑟(𝑐,𝑐′)∈ℬ

𝑆𝑐′

is a simulation from 𝒜′ to 𝒜∗ with (𝑏, ⟨𝑏, 𝑟(𝑏, 𝑏′)⟩) ∈ 𝑆.

This completes the proof of Claim 2.

We now show that the set

𝐷𝑎 = {(𝒜∗, ⟨𝑎, 𝛼⟩) ∣ ⟨𝑎, 𝛼⟩ ∈ ind(𝒜∗)}

forms a Σ simulation duality together with {(𝒜, 𝑎)}.
Suppose that 𝒜, 𝑎 ⪯̸ℰℒ (ℬ, 𝑏) for some example (ℬ, 𝑏) with sig(ℬ) ⊆ Σ. Then

Claim 2 implies that there is some ⟨𝑎, 𝛼⟩ ∈ ind(𝒜∗) with ℬ, 𝑏 ⪯ℰℒ 𝒜∗, ⟨𝑎, 𝛼⟩. It
remains to note that (𝒜∗, ⟨𝑎, 𝛼⟩) ∈ 𝐷𝑎. Conversely, suppose that 𝒜, 𝑎 ⪯ℰℒ ℬ, 𝑏 and
assume for showing a contradiction that ℬ, 𝑏 ⪯ℰℒ 𝒜∗, ⟨𝑎, 𝛼⟩ for some ⟨𝑎, 𝛼⟩ ∈ ind(𝒜∗).
Since ⪯ℰℒ is transitive, we obtain 𝒜, 𝑎 ⪯ℰℒ 𝒜∗, ⟨𝑎, 𝛼⟩, in contradiction to Claim 1.

Clearly, 𝐷𝑎 is a singleton set if 𝒜 contains only a single assertion mentioning
𝑎. It remains to analyze the size of 𝒜∗. Points (i) and (ii) together contribute |Σ|
assertions to 𝒜∗. Points (iii) and (iv) contribute together |Σ| ⋅ 𝑛𝐶 assertions to 𝒜∗,

193

6 Learning from Examples

where 𝑛𝐶 denotes the number of assertions of shape 𝐴(𝑏) in 𝒜. Points (v) and (vi)
contribute |Σ| ⋅ 𝑛𝑅 assertions where 𝑛𝑅 denotes the number of assertions of shape
𝑟(𝑏, 𝑐) in 𝒜. Finally, Point (vii) contributes |𝒜|2 assertions. Overall, the number of
assertions in 𝒜∗ is bounded by a polynomial in |Σ| and |𝒜|. Therefore, it can be
computed in polynomial time.

Complementing Lemma 6.22, it is known that examples that are not DAG-shaped
(contain a directed cycle) do not have finite simulation dualities [tCat+23c]. We
find it remarkable to recall that DAG-shaped databases (that contain undirected
cycles) do, in general, not have finite homomorphism dualities [NT00].

For ELQs instead of DAG-shaped examples, a result similar to Lemma 6.22 was
obtained by Fortin et al. [For+22, Theorem 30]. There, dualities are called split
partners, as the two sets 𝐹 and 𝐷 split the set of all examples into two. Fortin et al.
also describe a construction of ⪯ℰℒℐ dualities of exponential size, and show that in
general no polynomial size ⪯ℰℒℐ dualities exist.

Now, we continue by using Lemma 6.22 to show that minimal quantifier depth
fitting algorithms are not sample-efficient PAC learning algorithms.

Theorem 6.23. Let 𝐀 be a fitting algorithm for ELQs that always produces a fitting of
minimal quantifier depth. Then, 𝐀 is not a sample-efficient PAC learning algorithm.

 Proof. Assume to the contrary that there is a sample-efficient PAC learning algo
rithm 𝐀 that produces a most shallow fitting concept, if it exists, with associated
polynomial sample size 𝑚∶ ℝ2 × ℕ4 → ℕ as in Definition 3.13.

Choose Σ = {𝑟, 𝑠, 𝑡}, 𝛿 = 0.5, 𝜖 = 0.4, and 𝑛 large enough such that

2𝑛!
2𝑛𝑝(𝑛)(2𝑛 − 𝑝(𝑛))!

> 1 − 𝛿 (∗)

where 𝑝(𝑛) is the polynomial

𝑝(𝑛) = 𝑚�
1
𝛿

,
1
𝜖

, 0, |Σ|, 𝑝1(𝑛), 𝑝2(𝑛)�

and 𝑝1 and 𝑝2 are fixed polynomials that describe the size of the target query and
of the examples that we are going to use respectively. Lemma 6.24 below shows
that such an 𝑛 always exists, regardless of the precise polynomial 𝑝. The meaning
of the expression on the left-hand side of (∗) will become clearer later.

We use the target query

𝑞𝑇(𝑥0) ← 𝑡(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑡(𝑥𝑛, 𝑥𝑛+1)

194

6.3 Not Sample-Efficient Fitting Algorithms

with quantifier depth 𝑛 + 1. We construct (both positive and negative) examples
such that, with high probability, the drawn examples admit a fitting of quantifier
depth 𝑛 that does not generalize well. Define a set of 2𝑛 ELQs

𝑆 = {𝑞(𝑦0) ← 𝑟1(𝑦0, 𝑦1) ∧ ⋯ ∧ 𝑟𝑛(𝑦𝑛−1, 𝑦𝑛) ∣ 𝑟𝑖 ∈ {𝑟, 𝑠}, 1 ≤ 𝑖 ≤ 𝑛}.

For each 𝑞 ∈ 𝑆, we can construct by Lemma 6.22 an example (𝑃𝑞, 𝑎) such that
({(𝒜𝑞, 𝑎𝑞)}, {(𝑃𝑞, 𝑎)}) is a Σ simulation duality. By the properties of simulation du
alities, (𝑃𝑞, 𝑎) is a positive example for 𝑞𝑇. Also by Lemma 6.22, there is a single
example (ℬ𝑇, 𝑎) such that ({(𝒜𝑞𝑇, 𝑎𝑞𝑇)}, {(ℬ𝑇, 𝑎)}) is a Σ simulation duality. For each
𝑞 ∈ 𝑆, we construct a negatively labeled example (𝑁𝑞, 𝑎) by taking

(𝑁𝑞, 𝑎) = (𝑃𝑞 × ℬ𝑇, (𝑎, 𝑎)).

Both the positive examples and the negative examples are of size polynomial in 𝑛.
We let 𝑝2(𝑛) be any polynomial that bounds (from above) the size of the examples.

Note that by the properties of dualities and products, for all 𝑞 ∈ 𝑆 and for all
ELQs 𝑞′ that only use symbols from Σ,

(i) 𝑃𝑞, ∅ ⊧ 𝑞′(𝑎) if and only if 𝑞′ ⊈∅ 𝑞, and

(ii) 𝑁𝑞, ∅ ⊧ 𝑞′(𝑎) if and only if 𝑞′ ⊈∅ 𝑞 and 𝑞′ ⊈∅ 𝑞𝑇.

To see Point (i) note that 𝑃𝑞, ∅ ⊧ 𝑞′(𝑎) if and only if (by Lemma 6.20) 𝒜𝑞′, 𝑎𝑞′ ⪯ℰℒ
𝑃𝑞, 𝑎 if and only if (by duality) 𝒜𝑞, 𝑎𝑞 ⪯̸ℰℒ 𝒜𝑞′, 𝑎𝑞′ if and only if (by Lemma 6.20)
𝑞′ ⊈∅ 𝑞. Point (ii) can be shown similarly and uses the fact that for all unary data
examples (𝒜, 𝑎), (𝒜1, 𝑎1), (𝒜2, 𝑎2), 𝒜, 𝑎 ⪯ℰℒ 𝒜1 × 𝒜2, (𝑎1, 𝑎2) if and only if 𝒜, 𝑎 ⪯ℰℒ
𝒜1, 𝑎1 and 𝒜, 𝑎 ⪯ℰℒ 𝒜2, 𝑎2, similar to Lemma 3.3.

Let 𝑃 be the probability distribution that assigns probability 1
2𝑛+1

 to (𝑃𝑞, 𝑎) and
(𝑁𝑞, 𝑎) for every 𝑞 ∈ 𝑆, and probability 0 to all other examples. Now, assume that 𝐀
is started on a collection of 𝑘 = 𝑚(1/𝛿, 1/𝜖, 0, |Σ|, 𝑝1(𝑛), 𝑝2(𝑛)) examples 𝐸 drawn from
𝑃 labeled according to 𝑞𝑇, and then outputs a hypothesis 𝑞𝐻.

Note that the probability of sampling ℓ different objects from an 𝑁-element set is
the ratio of those sequences of length ℓ that contain pairwise distinct elements in
the set of all sequences of length ℓ, that is,

∏ℓ−1
𝑖=0 (𝑁 − 𝑖)

𝑁ℓ =
𝑁!

𝑁ℓ ⋅ (𝑁 − ℓ)!
.

We apply this observation to 𝑁 = 2𝑛 and ℓ = 𝑘. By choice of 𝑛, with probability
> 1 − 𝛿 we have that for no 𝑞 ∈ 𝑆, both (𝑁𝑞, 𝑎, −) ∈ 𝐸 and (𝑃𝑞, 𝑎, +) ∈ 𝐸. We show that
if this is the case, then the error of 𝑞𝐻 is strictly larger than 𝜖.

195

6 Learning from Examples

Consider the ELQ 𝑞′(𝑦0) = ⋀
(𝑁𝑝,𝑎,−)∈𝐸

𝑝(𝑦0), where ⋀ denotes the joining of ELQs
at the answer variable. We claim that 𝑞′ fits 𝐸. Since, for all 𝑞 ∈ 𝑆, 𝑞 ⊆∅ 𝑞, Point (ii)
implies that 𝑁𝑞∅ ⊧̸ 𝑞(𝑎). Hence, 𝑞′ fits all negative examples in 𝐸. Together with our
assumption that for no 𝑞 ∈ 𝑆, both (𝑁𝑞, 𝑎, −) ∈ 𝐸 and (𝑃𝑞, 𝑎, +) ∈ 𝐸, Point (i) implies
that 𝑃𝑞, ∅ ⊧ 𝑝(𝑎) for all (𝑁𝑝, 𝑎, −) ∈ 𝐸 and (𝑃𝑝, 𝑎, +) ∈ 𝐸. Therefore, 𝑞′ fits all positive
examples in 𝐸.

Since 𝑞′ is a fitting of quantifier depth 𝑛 and 𝐀 finds a fitting of minimal quantifier
depth, 𝑞𝐻 must have quantifier depth at most 𝑛, which implies that 𝑞𝐻 ⊈∅ 𝑞𝑇.

Consider all 𝑞 ∈ 𝑆. It must be that either 𝑞𝐻 ⊆∅ 𝑞 or 𝑞𝐻 ⊈∅ 𝑞. In the first
case, Point (i) implies 𝑃𝑞, ∅ ⊧̸ 𝑞𝐻(𝑎), hence 𝑞𝐻 labels the (positive) example (𝑃𝑞, 𝑎)
incorrectly. In the second case, Point (ii) implies 𝑁𝑞, ∅ ⊧ 𝑞𝐻(𝑎), hence 𝑞𝐻 labels the
(negative) example (𝑁𝑞, 𝑎) incorrectly. Therefore,

error𝑃,𝑞𝑇,∅(𝑞𝐻) ≥ 0.5 > 𝜖,

a contradiction.

To complete the proof of Theorem 6.23, it remains to show that there always
exists a suitable 𝑛.

Lemma 6.24. For every polynomial 𝑝(𝑛),

lim
𝑛→∞ �

2𝑛!
2𝑛𝑝(𝑛)(2𝑛 − 𝑝(𝑛))!� = 1.

 Proof. As argued in the proof of Theorem 6.23, the term inside the limit is a proba
bility, so the limit is at most 1. We start with bounding the expression inside the
limit from below.

2𝑛!
2𝑛𝑝(𝑛)(2𝑛 − 𝑝(𝑛))!

=
2𝑛 ⋅ (2𝑛 − 1) ⋅ ⋯ ⋅ (2𝑛 − 𝑝(𝑛) + 1)

(2𝑛)𝑝(𝑛)

≥
(2𝑛 − 𝑝(𝑛) + 1)𝑝(𝑛)

(2𝑛)𝑝(𝑛)

= �1 −
𝑝(𝑛) + 1

2𝑛 �
𝑝(𝑛)

It suffices to show that the limit of the last expression is 1. In order to do so, we
manipulate the expression to avoid the 𝑝(𝑛) in the exponent. Let

�𝑝(𝑛) = 1 −
𝑝(𝑛) + 1

2𝑛
.

196

6.4 SAT-based PAC ℰℒ Concept Learner

Then,

lim
𝑛→∞

��𝑝(𝑛)𝑝(𝑛)� = lim
𝑛→∞

� exp � ln ��𝑝(𝑛)𝑝(𝑛)���

= exp � lim
𝑛→∞

� ln ��𝑝(𝑛)𝑝(𝑛)���

= exp � lim
𝑛→∞

�𝑝(𝑛) ⋅ ln(�𝑝(𝑛))��.

To determine the limit of a product where one factor 𝑝(𝑛) converges to ∞ and the
other ln(⋅) converges to 0, we apply l’Hôpital’s rule. Set 𝑓(𝑛) = ln(1 − 𝑝(𝑛)+1

2𝑛) and

𝑔(𝑛) = 1/𝑝(𝑛), so lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛) is exactly the limit we want to determine (inside the

exp(⋅)). L’Hôpital’s rule says that if lim𝑛→∞
𝑓′(𝑛)
𝑔′(𝑛) exists, then

lim
𝑛→∞

𝑓′(𝑛)
𝑔′(𝑛)

= lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

.

The derivatives 𝑓′(𝑛) and 𝑔′(𝑛) of 𝑓(𝑛) and 𝑔(𝑛) are:

𝑓′(𝑛) =
ln(2)(𝑝(𝑛) + 1) − 𝑝′(𝑛)

2𝑛 − 𝑝(𝑛) − 1

𝑔′(𝑛) =
−𝑝′(𝑛)
𝑞(𝑛)

 for some polynomial 𝑞(𝑛)

It remains to observe that 𝑓′(𝑛)/𝑔′(𝑛) is an expression that has an exponential 2𝑛 in
its numerator and only polynomials everywhere else. Thus,

lim
𝑛→∞

𝑓′(𝑛)
𝑔′(𝑛)

= 0 = lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

,

which yields exp(0) = 1 as desired.

Therefore, we cannot base a sample-efficient PAC learning algorithm on most-
general, most-specific, or quantifier depth minimal fittings. We instead continue with
an algorithm that finds fitting queries of smallest size, based on bounded fitting.

6.4 SAT-based PAC ℰℒ Concept Learner

There is general interest in software systems that learn concepts from data examples
for extracting knowledge from data [Bis+23; dAma20]. In Section 2.1, we briefly
described existing approaches to concept learning. However, no existing system
comes with formal guarantees in the sense of PAC learning, and many interesting
fitting algorithms are not sample-efficient PAC learning algorithms, as we have seen

197

6 Learning from Examples

in Section 6.3. Theorem 6.10 tells us that bounded fitting algorithms can be a good
foundation for query learning systems, as they are sample-efficient PAC learning
algorithms, that is, they are guaranteed to generalize from few examples. Of course,
to implement a bounded fitting algorithm, we need to specify and implement a
concrete size-restricted fitting algorithm. Hence, the practicality of bounded fitting
depends on the computational complexity of the corresponding size-restricted
fitting problem.

In contrast to the general fitting problem, the size-restricted fitting problem for
CQs is not coNExpTime-complete, but closer to being tractable.

Theorem 6.25 ([GLS99]). The size-restricted fitting problem for CQs under the empty
ontology is Σ𝑝

2-complete.

For ELQs, where the general fitting problem is ExpTime-complete, the size-restrict
ed fitting problem is even NP-complete. The NP-hardness is a direct consequence
of Lemma 6.5.

Theorem 6.26 ([Hau89]). The size-restricted fitting problem for ELQs under the empty
ontology is NP-complete.

These results also hold for different size measures, such as the word encoding
size, or the number of variables. The NP-hardness of size-restricted fitting for ELQs
seems a bit discouraging at first, but in practice many instances of NP-complete
problems can be quickly decided by leveraging the efficiency of SAT solvers. In
what follows, we describe an implementation of bounded fitting for ELQs under
ℰℒℋ𝑟 ontologies, that uses a SAT solver to decide instances of the NP-complete
size-restricted fitting problem.

First, we argue that adding an ℰℒℋ𝑟 ontology does not increase the complexity
of the size-restricted fitting problem for ELQs. Recall that in Section 5.3 we defined
ELQ-universal compact models of ℰℒ𝑟 ontologies (see Lemma 5.19). Similar models
can be constructed for ℰℒℋ𝑟 ontologies, by taking role inclusions into account.
For every ABox 𝒜 and ℰℒℋ𝑟 ontology 𝒪, we can compute in polynomial time
an interpretation 𝒞𝒜,𝒪 that is ELQ-universal, meaning that for all ELQs 𝑞 and
𝑎 ∈ ind(𝒜), 𝒜, 𝒪 ⊧ 𝑞(𝑎) if and only if 𝒞𝒜,𝒪, ∅ ⊧ 𝑞(𝑎) [LTW09]. As this interpretation
is finite, we can view 𝒞𝒜,𝒪 as an ABox and use it as a data example.

Now, given a collection of labeled data examples 𝐸 and an ℰℒℋ𝑟 ontology 𝒪,
we denote with 𝐸𝒪 the collection obtained from 𝐸 by replacing each (positive or
negative) example (𝒜, 𝑎, ⋅) with (𝒞𝒜,𝒪, 𝑎, ⋅), where ⋅ ∈ {+, −}. The following lemma
shows that a fitting algorithm for ELQs under the empty ontology gives rise to
a fitting algorithm for ELQs under ℰℒℋ𝑟 ontologies with at most a polynomial
increase in running time. It is immediate from the definition of ELQ-universality.

198

6.4 SAT-based PAC ℰℒ Concept Learner

Figure 6.3: A screenshot of the demo interface of SPELL

Lemma 6.27. An ELQ 𝑞 fits a collection of labeled examples 𝐸 under an ℰℒℋ𝑟 ontology 𝒪
if and only if 𝑞 fits 𝐸𝒪 under the empty ontology.

In contrast to ELQs, ELIQ-universal finite models of ontologies need not exist,
as discussed in Section 5.3 (see Example 5.21). The same holds for CQ-universal
models. Hence, we cannot hope to apply anything similar to Lemma 6.27 for PAC
learning of ELIQs or CQs.

We implemented bounded fitting for ELQs and ℰℒℋ𝑟 ontologies as the system
SPELL, short for SAT-based PAC ℰℒ concept Learner. SPELL is available at https:
//github.com/spell-system/SPELL, and includes a demo interface for selecting
positive and negative examples interactively, displayed in Figure 6.3. On the left
side, individuals from a searchable list can be selected as either positive or negative
examples, and the right side is updated in real-time to show the fitting query
found by SPELL. SPELL takes as input an ℰℒℋ𝑟 ontology 𝒪 and an ABox 𝒜 in
OWL RDF/XML format, as well as a collection 𝐸 of positive and negative examples
using 𝒜. SPELL outputs a fitting ELQ, represented as a SPARQL query. SPELL
is implemented in Python 3 and uses the PySat library to interact with the SAT
solver Glucose 4. For benchmarking, it provides integration into the SML-Bench
framework [Wes+19].

As a first step, SPELL removes the ontology 𝒪 by replacing the given examples
𝐸 with 𝐸𝒪 as per Lemma 6.27. It then runs bounded fitting in the variant where
in each round 𝑛, the algorithm searches for a fitting ELQ with at most 𝑛 variables
(rather than a fitting ELQ 𝑞 with ‖𝑞‖ ≤ 𝑛). The existence of such a fitting is checked
using a reduction to SAT and the SAT solver. By Lemma 6.11 and the argument in
the proof of Theorem 6.10, this variant of bounded fitting is also a sample-efficient

199

https://github.com/spell-system/SPELL
https://github.com/spell-system/SPELL

6 Learning from Examples

PAC learning algorithm with sample size

𝑂�
1
𝜖

⋅ log
1
𝜖

⋅ log
1
𝛿

⋅ |Σ| ⋅ ‖𝑞𝑇‖�.

We prefer this variant for implementation despite the additional factor |Σ| in the
sample complexity compared to Theorem 6.10 because it admits a more natural
reduction to SAT, which we describe next.

The SAT Encoding

From 𝐸𝒪 and the bound 𝑛, SPELL constructs a propositional formula 𝜑 = 𝜑1 ∧ 𝜑2
that is satisfiable if and only if there is an ELQ 𝑞 over Σ = sig(𝐸𝒪) with at most 𝑛
variables that fits 𝐸𝒪. Indeed, any model of 𝜑 returned by the SAT solver intuitively
represents such an ELQ, encoded as follows. The formula 𝜑1 ensures that such a
model represents an ELQ 𝑞(𝑧1) as a conjunction of atoms over variables 𝑧1, … , 𝑧𝑛.
In 𝜑1, we use Boolean variables of the form 𝑐𝑖,𝐴 to express that 𝐴(𝑧𝑖) is an element
of this conjunction, and Boolean variables 𝑥𝑗,𝑟 and 𝑦𝑖,𝑗 to express that 𝑟(𝑧𝑖, 𝑧𝑗) occurs
in this conjunction. Since the atoms should form an acyclic and rooted query, we
enforce that an atom of shape 𝑟(𝑧𝑖, 𝑧𝑗) occurs exactly once for each 𝑗, and that 𝑖 < 𝑗.
The second part 𝜑2 then enforces that 𝑞 fits 𝐸𝒪. Let 𝒜 be the disjoint union of all
databases that occur in an example in 𝐸𝒪. The encoding uses Boolean variables 𝑠𝑖,𝑎,
with 1 ≤ 𝑖 ≤ 𝑛 and 𝑎 ∈ ind(𝒜), to express that 𝒜, ∅ ⊧ 𝑞𝑧𝑖(𝑎). The exact definition of
𝜑2 uses ℰℒ simulations and relies on Lemma 5.26.

We now make the formula 𝜑 precise. For encoding the ELQ 𝑞, the formula 𝜑1
contains the following clauses for each 𝑖 with 2 ≤ 𝑖 ≤ 𝑛:

𝑖−1
�
𝑗=1

𝑦𝑗,𝑖 (6.1)

¬𝑦𝑗1,𝑖 ∨ ¬𝑦𝑗2,𝑖 for all 𝑗1, 𝑗2 with 1 ≤ 𝑗1 < 𝑗2 < 𝑖 (6.2)

�
𝑟∈Σ∩NR

𝑥𝑖,𝑟 (6.3)

¬𝑥𝑖,𝑟 ∨ ¬𝑥𝑖,𝑟′ for all 𝑟, 𝑟′ ∈ Σ ∩ NR with 𝑟 ≠ 𝑟′ (6.4)

The clauses (6.1) and (6.2) ensure that 𝑧𝑗 appears in exactly one atom of the form
𝑟(𝑧𝑖, 𝑧𝑗) and that 𝑖 < 𝑗 for all such atoms. Clauses (6.3) and (6.4) ensure that there is
a unique such role name.

The formula 𝜑2 makes sure that 𝑞 fits 𝐸𝒪 by enforcing that for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛
and 𝑎 ∈ ind(𝒜),

𝑠𝑖,𝑎 is true in a model of 𝜑 if and only if 𝒜, ∅ ⊧ 𝑞𝑧𝑖(𝑎) (∗)
 if and only if 𝒜𝑞𝑧𝑖

, 𝑧𝑖 ⪯ℰℒ 𝒜, 𝑎.

200

6.4 SAT-based PAC ℰℒ Concept Learner

To achieve this, we express the properties of ℰℒ simulations (see Definition 5.25)
in terms of clauses. The challenge is to capture both directions of the if and only if
in (∗) efficiently, in a way that does not produce too many clauses, even for large
examples.

In order to make the encoding more efficient for examples that contain many
similar individuals, we use the notion of types that are sets of concept names. For
all 𝑎 ∈ ind(𝒜), let type(𝑎) be the set {𝐴 ∈ NC ∣ 𝐴(𝑎) ∈ 𝒜}. Let TP then be the set
{type(𝑎) ∣ 𝑎 ∈ ind(𝒜)} of all types in that occur 𝒜. We introduce auxiliary variables
𝑡𝑖,𝜏, for every 1 ≤ 𝑖 ≤ 𝑛 and 𝜏 ∈ TP with the intention that 𝑡𝑖,𝜏 is true in a model if
and only if the concept names of all atoms 𝐴(𝑧𝑖) are contained in the type 𝜏. This
is enforced by including in 𝜑2 the following clauses for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and all
types 𝜏 ∈ TP:

¬𝑡𝑖,𝜏 ∨ ¬𝑐𝑖,𝐴 for all 𝐴 ∈ (Σ ∩ NC ⧵ 𝜏) (6.5)

𝑡𝑖,𝜏 ∨ �
𝐴∈(Σ∩NC⧵𝜏)

𝑐𝑖,𝐴. (6.6)

The following clauses then enforce the condition that concept names are preserved
by simulations, for 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and all 𝑎 ∈ ind(𝒜):

¬𝑠𝑖,𝑎 ∨ 𝑡𝑖,type(𝑎). (6.7)

This, however, only captures the only-if -direction of the if and only if in (∗) for
concept names. To encode the other direction and the ℰℒ simulation condition for
role names, we introduce further auxiliary variables 𝑑𝑖,𝑗,𝑎 that represent defects, that
is violations of the ℰℒ simulation conditions. More precisely, a variable 𝑑𝑖,𝑗,𝑎 is true
in a model if and only if 𝒜𝑞𝑧𝑖

, 𝑧𝑖 ⪯̸ℰℒ 𝒜, 𝑎 and the variable 𝑧𝑗 is an 𝑟-successor of
𝑧𝑖 that is not simulated in any 𝑟-successor of 𝑎. Here, the role name 𝑟 is uniquely
determined by 𝑗 by the Clauses (6.3) and (6.4). This behavior of the 𝑑𝑖,𝑗,𝑎 variables is
achieved by the following clauses for all 𝑖, 𝑗 with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑟 ∈ Σ ∩NR, 𝑎 ∈ ind(𝒜),
and all 𝑟(𝑎, 𝑏) ∈ 𝒜:

𝑠𝑖,𝑎 ∨ ¬𝑡𝑖,type(𝑎) ∨
𝑛

�
𝑘=𝑖+1

𝑑𝑖,𝑘,𝑎 (6.8)

𝑑𝑖,𝑗,𝑎 ∨ ¬𝑦𝑖,𝑗 ∨ ¬𝑥𝑗,𝑟 ∨ �
𝑟(𝑎,𝑐)∈𝒜

𝑠𝑗,𝑐 (6.9)

¬𝑠𝑖,𝑎 ∨ ¬𝑑𝑖,𝑗,𝑎 (6.10)
¬𝑑𝑖,𝑗,𝑎 ∨ 𝑦𝑖,𝑗 (6.11)
¬𝑑𝑖,𝑗,𝑎 ∨ ¬𝑥𝑗,𝑟 ∨ ¬𝑠𝑗,𝑏 (6.12)

201

6 Learning from Examples

As an example, Clause (6.11) can be read as follows: if there is a defect 𝑑𝑖,𝑗,𝑎, then
𝑦𝑖,𝑗 must be true, meaning that an atom 𝑟(𝑧𝑖, 𝑧𝑗) occurs in 𝑞 for some role name 𝑟.

The fact that 𝑞 fits 𝐸𝒪 is then expressed using (∗) as the clauses

�
(𝒜′,𝑎,+)∈𝐸𝒪

𝑠1,𝑎 ∧ �
(𝒜,𝑎,−)∈𝐸𝒪

¬𝑠1,𝑎.

These clauses suffice for correctness of the encoding. Summing up, the whole
formula produced by SPELL in round 𝑛 uses a number of variables that is in
𝑂(𝑛2 + 𝑛 ⋅ ‖𝒜‖), a number of clauses that is in 𝑂(𝑛3 ⋅ |Σ| ⋅ |ind(𝒜)|) and in total has
size in 𝑂(𝑛3 ⋅ |Σ| ⋅ ‖𝒜‖), which is linear in ‖𝒜‖.

We have implemented two improvements of this basic encoding in SPELL. The
first improvement is based on the simple observation that for computing a fitting
ELQ with 𝑛 variables, for every example (𝒜, 𝑎, ⋅) ∈ 𝐸𝒪 it suffices to consider indi
viduals that can be reached via at most 𝑛 − 1 role assertions from 𝑎. Moreover, we
may restrict the signature Σ to contain only symbols that occur in all 𝑛 − 1-reachable
parts of the positive examples.

The second improvement is based on the observation that the search space for
models of 𝜑 contains significant symmetries, in the sense that equivalent ELQs are
encoded differently.

Example 6.28. Consider the ELQs

𝑞1(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑠(𝑧2, 𝑧3) ∧ 𝑡(𝑧1, 𝑧4)

and
𝑞2(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑠(𝑧2, 𝑧4) ∧ 𝑡(𝑧1, 𝑧3).

The only difference between 𝑞1 and 𝑞2 are the names of existential variables, and
therefore 𝑞1 ≡∅ 𝑞2. In the search of a fitting ELQ of size 𝑛, it does not make sense
to consider both 𝑞1 and 𝑞2, considering one of the two suffices. However, they are
encoded differently in models of 𝜑

To avoid this kind of symmetry in round 𝑛 of bounded fitting, we add clauses
that permit for every tree-shaped graph 𝐺 with 𝑛 vertices only a single canonical
assignment of the variable names 𝑧1, … , 𝑧𝑛 to the vertices of 𝐺. In order to produce
the clauses, we enumerate outside the SAT solver all possible tree-shaped graphs
with 𝑛 vertices. The four tree-shaped graphs with four vertices are displayed in
Figure 6.4 using their canonical variable names. For each such graph 𝐺, we introduce
a propositional variable 𝑥𝐺 and encode (in a straightforward way) that 𝑥𝐺 is true if
and only if 𝑧1, … , 𝑧𝑛 are assigned to the vertices of 𝐺 in the canonical way. We then
assert using a disjunction that one of the 𝑥𝐺 has to be satisfied. However, note that
the number of tree-shaped graphs grows exponentially [OEI24] and therefore we

202

6.5 Performance of SPELL

𝑧1

𝑧2

𝑧3

𝑧4

𝑧1

𝑧2

𝑧3

𝑧4

𝑧1

𝑧2

𝑧3 𝑧4

𝑧1

𝑧2 𝑧3 𝑧4

Figure 6.4: The four tree-shaped graphs with four vertices

only add these clauses if 𝑛 < 12, to avoid spending too much time and undoing the
benefit of breaking this symmetry. There are other symmetries in the search space
that are not covered by these clauses.

Example 6.29. Consider the ELQs

𝑞1(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑟(𝑧1, 𝑧3) ∧ 𝐴(𝑧2) ∧ 𝐵(𝑧3)

and
𝑞2(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑠(𝑧1, 𝑧3) ∧ 𝐵(𝑧2) ∧ 𝐴(𝑧3).

Again, 𝑞1 ≡∅ 𝑞2, but 𝑞1 and 𝑞2 are represented by different models of 𝜑.

Currently, SPELL does try to break any other symmetries than the one described
above, and it is unclear if doing so is necessarily beneficial for the running time of
SPELL.

This completes the description of SPELL.

6.5 Performance of SPELL

In order to determine whether the bounded fitting and SAT-solving approach of
SPELL is practical, we evaluate its performance on several ELQ learning benchmarks.
We compare SPELL to the ELTL component of the DL-Learner system3, as it is the
only other system for learning ELQs or ℰℒ concepts we are aware of. ELTL is not
based on bounded fitting, but on the refinement-based approach briefly described
in Section 2.1.

Existing benchmarks for concept learning systems are often aimed at learning
concepts from the 𝒜ℒ𝒞 family of description logics, and fitting ELQs seldom

3The version of DL-Learner we used is available at https://github.com/SmartDataAnalytics/
DL-Learner as commit a7cd4441e52b6e54aefdea33a4914e9132ebfd97

203

https://github.com/SmartDataAnalytics/DL-Learner
https://github.com/SmartDataAnalytics/DL-Learner
https://github.com/SmartDataAnalytics/DL-Learner/commit/a7cd4441e52b6e54aefdea33a4914e9132ebfd97

6 Learning from Examples

exist. For example, in the popular Structured Machine Learning Benchmark (SML-
Bench) [Wes+19], SPELL and ELTL both identify the concept ⊤ as the best fitting
ELQs in six of the eight available benchmarks. The concept ⊤ is not a particularly
useful fitting concept, since it classifies all negative examples incorrectly.

Therefore, we designed several new benchmarks based on existing knowledge
bases, making sure that fitting ELQs always exist. The benchmarks and detailed
instructions on how to reproduce the reported results in this section are available
at https://github.com/spell-system/benchmarks. We believe that these bench
marks can be useful for future experimental evaluations of ELQ or ℰℒ concept
learning systems. Next, we describe the four different types of benchmarks and
report the performance4 of SPELL and ELTL. For increased readability, we write
ELQs as ℰℒ concepts.

YAGO Benchmarks

Our first set of benchmarks is based on the YAGO 4 knowledge base, which com
bines the concept and role names of schema.org with data from Wikidata [TWS20].
The ontology part of YAGO 4 consists of concept name inclusions 𝐴 ⊑ 𝐵, as well as
domain and range restrictions. We used the smallest version of YAGO 4, containing
only individuals that have an English Wikipedia entry. This version still contains
over 40 million assertions. To speed up processing and the generation of the bench
marks, we first extracted a fragment of 12 million assertions that focuses on famous
people and movies5. From this fragment, we generated a series of benchmarks of
varying difficulty by selecting positive and negative examples as follows.

First, we selected target queries. For 𝑛 with 4 ≤ 𝑛 ≤ 9 we used

𝐶𝑛 = ∃actor.
𝑛−2
�
𝑖=1

∃𝑟𝑖.⊤

where each 𝑟𝑖 is a role name that is a property of actors in YAGO 4, like alumniOf,
award, or spouse. Note that the ℰℒ concept 𝐶𝑛 uses 𝑛 variables if represented as an
ELQ. Then, based on a given sample size, we selected positive examples for 𝐶𝑛 by
querying the YAGO 4 fragment with 𝐶𝑛, and randomly selecting elements from the
answers. For selecting negative examples, we needed to select non-answers of 𝐶𝑛
in YAGO 4. To select negative examples that are also actors, but do not have all the
properties required by 𝐶𝑛, we queried YAGO 4 with generalizations of 𝐶𝑛. To ensure
that we obtain enough negative examples, we constructed these generalizations

4The reported running times were obtained on a 2021 MacBook Pro with M1 Pro Chip and 32 GB
RAM.

5More precisely: the extracted fragment consists of all assertions that contain only individuals that
can be reached in two steps in the underlying graph of YAGO 4 from a list of ∼2000 famous people.

204

https://github.com/spell-system/benchmarks

6.5 Performance of SPELL

variables4 5 6 7 8 9
sample size 4080120160200240

lo
g1

0
ru

nn
in

g
tim

e
[s

]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

SPELL
variables4 5 6 7 8 9

sample size 4080120160200240

lo
g1

0
ru

nn
in

g
tim

e
[s

]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

ELTL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g1

0
ru

nn
in

g
tim

e
[s

]

Figure 6.5: The running times of SPELL and ELTL in the YAGO benchmarks.

by first constructing the frontier of 𝐶𝑛 (see Definition 4.13), and then dropping
some immediate successors of the root in the resulting queries. The smallest fitting
query of the positive and negative examples selected for 𝐶𝑛 often has 𝑛 variables as
a result of this.

Example 6.30. For 𝑛 = 4, positive examples are selected from the answers to the
concept query

𝐶4 = ∃actor.�∃alumniOf.⊤ ⊓ ∃award.⊤�

and negative examples are selected from the answers to the concept queries

∃actor.∃alumniOf.⊤ and ∃actor.∃award.⊤.

We generated benchmarks by selecting 40, 80, 120, 160, 200, and 240 examples
for each target query size 𝑛 with 4 ≤ 𝑛 ≤ 9.

The running times of SPELL and ELTL on these benchmarks, that is, the time
to find a fitting concept query, are displayed in Figure 6.5. The dark red area
indicates that the execution of ELTL was aborted after a timeout of 3600 s. Note that
the running time axis is logarithmic. The running times of both systems behaves
similarly, in that the sample size appears to have only little influence on the running
time, while the number of variables of the smallest fitting query has an exponential
influence on the running time. However, SPELL is approximately 1.5 orders of
magnitude faster than ELTL in finding a fitting query. Specifically for 𝑛 = 8, SPELL
is able to find a fitting query in around 100 s while ELTL takes over 3600 s. This
indicates in particular that SPELL can handle larger target queries.

205

6 Learning from Examples

Table 6.1: The target concepts and sample sizes of the OWL2Bench benchmarks.

 Target concept query Sample size

 o2b-1 UGC ⊓ ∃isTaughtBy.(Man ⊓ ∃likes.Music) 183
 o2b-2 UGC ⊓ ∃isTaughtBy.(Woman ⊓ ∃sameHomeTown.Student) 238
 o2b-3 UGC ⊓ ∃isTaughtBy.(Woman ⊓ ∃assistantProfessorOf.⊤ ⊓ ∃isCrazyAbout.⊤) 234
 o2b-4 Woman ⊓ ∃teachesCourse.UGC 200
 o2b-5 Woman ⊓ ∃teachesCourse.UGC ⊓ ∃dislikes.⊤ 200
 o2b-6 Woman ⊓ ∃teachesCourse.UGC ⊓ ∃dislikes.⊤ ⊓ ∃assistantProfessorOf.⊤ 145

Table 6.2: The OWL2Bench benchmark running times in seconds, TO: > 3600s

 o2b-1 o2b-2 o2b-3 o2b-4 o2b-5 o2b-6

 ELTL TO TO 274 580 28 152
 SPELL < 1 < 1 < 1 < 1 < 1 < 1

OWL2Bench Benchmarks

In a second set of benchmarks, we aimed to complement the first benchmarks with
ones that use more features of ontologies. For this, we created six benchmarks
based on the OWL2Bench ontology. Originally, OWL2Bench is a benchmark for
ontology-mediated querying that combines an ABox generator with a handcrafted
ontology which extends the University Ontology Benchmark [SBM20; Zho+13].
The ontology of OWL2Bench is formulated in the OWL 2 EL profile. We extracted
its ℰℒℋ𝑟 fragment which uses all aspects of ℰℒℋ𝑟 and comprises 142 concept names,
83 role names, and 173 concept inclusions. We then generated a matching ABox by
running the OWL2Bench generator for one university.

From this ABox and ontology we generated benchmarks using a similar process
as for the YAGO knowledge base, but using six hand-designed ELQs as target
queries and fixed sample sizes instead of the 𝐶𝑛 concepts. Table 6.1 shows the target
queries and the samples sizes of the six benchmarks. Again, positive examples were
selected by querying with the target query and negative examples were obtained
by querying with generalizations of the target query.

The running times of SPELL and ELTL on the six OWL2Bench benchmarks are
displayed in Table 6.2. ELTL was aborted after a timeout of 3600 s in two cases.
The difference in running times observed in the YAGO benchmarks is even more
pronounced here, with SPELL returning a fitting ELQ almost instantaneously in all
cases. Unfortunately, ELTL crashes immediately on these benchmarks unless the

206

6.5 Performance of SPELL

option useMinimizer is switched off, which is enabled for all other benchmarks. We
thus ran ELTL without useMinimizer, which might impact its performance.

Synthetic Benchmarks

In order to better understand the results we have observed so far, we hypothesized
that SPELL and ELTL have different strengths and weaknesses based on the un
derlying fitting algorithms. Based on the results of the YAGO and OWL2Bench
benchmarks, we anticipated that the performance of bounded fitting as imple
mented in SPELL would be most affected by the number of variables in the target
query, whereas the performance of the refinement-based search implemented in
ELTL would be most affected by the length of specialization sequences from ⊤, where
a specialization sequence is an inverse generalization sequence (see Definition 4.33).

More formally, the depth of an ℰℒ concept query 𝐶 is the length 𝑘 of a sequence
𝐶1, … , 𝐶𝑘 with 𝐶1 = ⊤, 𝐶𝑘 = 𝐶, and for all 𝑖,

1. ∅ ⊧ 𝐶𝑖+1 ⊑ 𝐶𝑖, and

2. for all 𝐷 with ∅ ⊧ 𝐶𝑖+1 ⊑ 𝐷 and ∅ ⊧ 𝐷 ⊑ 𝐶𝑖, either ∅ ⊧ 𝐶𝑖+1 ≡ 𝐷 or
∅ ⊧ 𝐷 ≡ 𝐶𝑖.

Or in other words, 𝐶𝑖+1 is a downward neighbor of 𝐶𝑖. The depth of a concept
is unique and does not depend on the specific sequence [Kri18a]. It is also an
orthogonal parameter to the number of variables in a query: We will see shortly
that there are queries of high depth with few variables and queries of low depth
with many variables.

To investigate our hypothesis, we generated synthetic benchmarks, in which we
varied the number of variables and the depth of the target query systematically.
Target ELQs of the first class are called 𝑘-paths and are of the form

∃𝑟𝑘.⊤

for 𝑘 ≥ 1. These are expected to be difficult to learn for bounded fitting when the
number of variables 𝑘 + 1 becomes large, but easy to learn for refinement-based
approaches as the depth of ∃𝑟𝑘.⊤ is only 𝑘. Target ELQs of the second class are
called 𝑘-1-conj and are of the form

∃𝑟.
𝑘

�
𝑖=1

𝐴𝑖

for 𝑘 ≥ 1. These have only 2 variables but depth 2𝑘. Target ELQs of the third class
are called 𝑘-2-conj and are of the form

∃𝑟.∃𝑟.
𝑘

�
𝑖=1

𝐴𝑖

207

6 Learning from Examples

Table 6.3: The running times on the synthetic benchmarks in seconds, TO: > 600s

𝑘-path 𝑘-1-conj 𝑘-2-conj
𝑘 ELTL SPELL ELTL SPELL ELTL SPELL

 4 1 < 1 1 < 1 1 < 1
 5 1 < 1 1 < 1 4 < 1
 6 1 < 1 2 < 1 394 < 1
 7 1 < 1 4 < 1 TO < 1
 8 1 < 1 20 < 1 TO < 1
 9 1 < 1 124 < 1 TO < 1
 10 1 < 1 TO < 1 TO < 1
 11 1 3 TO < 1 TO < 1
 12 1 26 TO < 1 TO < 1
 13 1 26 TO < 1 TO < 1
 14 1 30 TO < 1 TO < 1
 15 1 38 TO < 1 TO < 1
 16 1 68 TO < 1 TO < 1
 17 1 152 TO < 1 TO < 1
 18 1 TO TO < 1 TO < 1

for 𝑘 ≥ 1 and even have depth 22𝑘 [Kri21]. The last two classes should be difficult
to learn for refinement-based algorithms when 𝑘 gets large, but easy for SPELL
due to the low number of variables. For each of these classes and for all 𝑘 with
4 ≤ 𝑘 ≤ 18, we generate a benchmark consisting of a single positive and a single
negative example, which are the canonical ABoxes of the target ELQ and the single
element of its frontier under the empty ontology.

Table 6.3 shows the running times of SPELL and ELTL on these benchmarks. ELTL
quickly finds all 𝑘-paths, but the running time also increases quickly with increasing
𝑘 on the 𝑘-1-conj and 𝑘-2-conj benchmarks. For SPELL, the situation is reversed, the
𝑘-1-conj and 𝑘-2-conj benchmarks are solved quickly, but its running time increases
on the longer 𝑘-paths benchmarks, due to the size of the SAT encoding.

Generalization Benchmarks

In Section 6.4 we have shown that SPELL is a sample-efficient PAC learning algo
rithm. In an initial set of experiments, we wanted to see if this theoretical guarantee
means that in practical benchmarks, SPELL is better able to generalize from a sample
than ELTL. For this, we again used the YAGO 4 knowledge base, the target query
𝐶6 constructed as described above, and defined a uniform probability distribution

208

6.6 Discussion

Table 6.4: Median accuracies on the generalization benchmarks

 Accuracy
 Sample size ELTL SPELL

 5 0.77 0.80
 10 0.78 0.81
 15 0.85 0.84
 20 0.85 0.85
 25 0.86 0.86
 30 0.89 0.86
 35 0.90 0.89
 40 0.96 0.97
 45 0.96 0.98
 50 0.96 0.98
 55 0.96 0.98
 60 0.98 0.98
 65 0.98 0.98
 70 0.98 0.98
 75 0.98 0.98

over all answers to the ELQ ∃actor.⊤ in the YAGO 4 knowledge base. For each 𝑘
with 1 ≤ 𝑘 ≤ 15 we then generated 20 benchmarks by independently drawing 𝑘 ⋅ 5
examples from the distribution and labeling them according to the target query.
Instead of running time, we measured the accuracy of the queries that ELTL and
SPELL return, with regard to the probability distribution. The median accuracies
of the 20 results for each sample size are listed in Table 6.4.

As expected, fitting queries returned by SPELL generalize well to unseen exam
ples, even when the number of training examples is small. To our surprise, ELTL
exhibits the same characteristics. This may be because some heuristics of ELTL
prefer fittings of smaller size, which might make ELTL an Occam algorithm and
thus a sample-efficient PAC learning algorithm. It would be interesting to carry out
more extensive experiments on this aspect, to determine if ELTL and SPELL have
similar ability to generalize in all cases, or not.

6.6 Discussion

In this chapter, we investigated the PAC learnability of queries and presented SPELL,
a sample-efficient PAC learning algorithm for ELQs under ℰℒℋ𝑟 ontologies. The

209

6 Learning from Examples

PAC learnability results can be summarized as follows.

• ELQs, ELIQs and CQs are not polynomial time PAC learnable and therefore
also not polynomial time learnable using only equivalence queries, unless
NP = RP (Theorem 6.7).

• Bounded fitting is a sample-efficient PAC learning algorithm for all query
classes and all ontology languages (Theorem 6.10).

• Other interesting fitting algorithms, that produce most-general, most-specific
or minimum quantifier depth fitting are not sample-efficient PAC learners
(Theorems 6.18, 6.19 and 6.23).

Most importantly, the first result implies that for the polynomial time learnability
results in Chapter 5, both membership and equivalence queries are necessary.

It is interesting to note that while the sample complexity of bounded fitting
does not depend on the query class or ontology language (just the encoding of
queries into an alphabet), its running time depends on both, as Theorem 6.26 and
Theorem 6.25 demonstrate. For SPELL, we chose the advantageous combination
of ELQs and ℰℒℋ𝑟 ontologies, to which we can apply Lemma 6.27 to remove the
ontology.

Polynomial Query Learnability of ELQs. ELQs are not polynomial time learnable
using only equivalence queries unless P = NP [FJL21a], but we do not know
whether ELQs are polynomial query learnable using only equivalence queries.
We conjecture that ELQs are polynomial query learnable using only equivalence
queries, and that similar techniques as those in the proof of Theorem 6.10 can be
used to show this. A result to the contrary would be surprising, due to the strong
connection of PAC learning and exact learning.

On Dualities, Frontiers, and Unique Characterizations. In Section 6.3 we used
duality constructions to obtain data examples with certain properties. It is interesting
to observe that, in the setting without ontologies, dualities, frontiers and unique
characterizations are closely connected [tCD22]. The connection between frontiers
and unique characterizations was already discussed in Chapter 4. If 𝑞(𝑥) is a CQ,
and ({(𝒜𝑞, 𝑥)}, 𝐹) is a homomorphism duality relative to 𝑞, then taking (𝒜𝑞, 𝑥) as a
positive example, and 𝐹 as negative examples, results in a unique characterization
of 𝑞. To see this, let 𝑝 be a CQ that fits these examples. Since (𝒜𝑞, 𝑥) is a positive
example, it must be that 𝑞 ⊆∅ 𝑝. Since all elements of 𝐹 are negative examples, it
follows from Definition 6.14 that 𝑝 ⊆∅ 𝑞. Similarly, it can be shown that the set
{(𝒜𝑞 × ℬ, 𝑥 ⊗ 𝑏) ∣ (ℬ, 𝑏) ∈ 𝐹} is a CQ-frontier of 𝑞. Analogous connections can be

210

6.6 Discussion

shown for ℰℒ simulation dualities, ELQs and ELQ-frontiers. This connection could
perhaps be used in learning algorithms. However, we are not aware of any results
on the existence of dualities under ontologies.

Future Directions for SPELL

While many practical queries can be expressed as ELQs (or ℰℒ concepts), there
are some non-relational features that often occur in concept learning benchmarks
like SML-Bench, but that are not yet supported by SPELL. These are nominals,
allowing queries to reference specific individual names in the ABox, and what OWL
calls datatype properties, allowing individuals to possess, for example, numerical
properties like age. Therefore, in order to make SPELL more useful in practice, it
could be extended to learn queries that contain nominals and datatype properties.
This requires efficient encoding of the numerical properties into SAT. Perhaps some
inspiration for such an encoding can be taken from the techniques to learn datatype
properties implemented in DL-Learner [BLW16].

It could also provide useful to investigate settings in which input examples may
be labeled erroneously or according to a target query formulated in a different
language than the query to be learned. In both cases, one has to admit non-perfect
fittings, for which the optimization features of SAT solvers and Max-SAT solvers
seem promising for efficient implementation.

Additionally, more experiments are needed to better compare the ability of SPELL
to generalize from examples to other query and concept learning systems.

As is, the support of ontology languages in SPELL is limited by Lemma 6.27,
since the current implementation relies on the construction of compact universal
models of ontologies. SPELL could be modified to use initial segments of (infinite)
universal models 𝒰𝒜,𝒪 instead, to correctly handle more query classes and ontology
languages. These initial segments are up to exponential in size and therefore would
result in SAT encodings of exponential size. This, in general, is unavoidable as
the size-restricted fitting problem for ELIQs under ℰℒℐ ontologies is ExpTime-
complete [tCat+23c], but it might not be an issue for ontologies that are used in
practice, due to the small size of their universal model.

With this modification, or under the empty ontology, the SAT encoding used
by SPELL could be extended to learn ELIQs, 𝒜ℒ𝒞 concepts, or CQs of bounded
treewidth (since the size-restricted fitting problem for CQs of bounded treewidth
is in NP). Extension to all CQs is not directly possible, as the size-restricted fitting
problem for CQs is Σ𝑝

2 complete, as mentioned in Theorem 6.25. Hence, an ASP
solver might be more suitable to implement bounded fitting for CQs.

211

Chapter 7

Conclusion

Algorithms that learn query or concept from data examples under DL ontologies
can support various query and ontology engineering tasks. To be usable in prac
tice, learning algorithms have to be efficient in some sense, either by running in
polynomial time, or by only requiring a polynomial number of examples. In this
thesis, we formalized this notion of learning algorithm for queries under ontologies
in Angluin’s exact learning model and Valiant’s PAC learning model, and aimed
to determine which query classes are efficiently learnable under which ontology
languages.

This thesis is the first investigation into this question, but builds upon work in
the related areas of learning queries without ontologies, learning DL concepts, and
learning ontologies.

We focused on ontologies written in DLs of the ℰℒ and DL-Lite families, and
on the query classes of CQs, ELIQs (acyclic and rooted unary CQs) and ELQs
(tree-shaped and rooted unary CQs). Other than efficiency, we were also interested
in the kinds of exact learning queries that are necessary to learn a given combination
of query class and ontology language. As mentioned before, ELIQs and ELQs can
also be viewed as ℰℒℐ concepts and ℰℒ concepts, respectively. This means that our
results also apply to the learning of concepts under ontology.

In Chapter 4, we looked at exact learning algorithms that only use membership
queries. The existing approach to learn ELIQs under the empty ontology can be
extended to show that ELIQs are polynomial time learnable under DL-Liteℋℱ−

core
ontologies using only membership queries. This requires significant groundwork,
namely the existence of frontiers of ELIQs under ontologies and a bound on the
length of generalization sequences under ontologies. Additionally, we showed that
polynomial time learning with only membership queries fails for many extensions
of DL-Liteℋℱ−

core and most importantly if ontologies contain conjunctions.
Therefore, in Chapter 5, we considered learning algorithms that use both mem

bership queries and equivalence queries, and discussed how the algorithms can
use the counterexamples provided by equivalence queries to make progress. Here,
extending the known learning algorithm for CQs under the empty ontology that
uses membership queries and equivalence queries to the case with ontologies is

213

7 Conclusion

difficult. This is mainly due to existential restrictions in the ontology that imply the
existence of anonymous individuals. We first showed that ELIQs are polynomial
time learnable under DL-Liteℋℱ−

core ontologies using guided generalizations to update
hypotheses with counterexamples. Then, we moved on to ℰℒ𝑟 ontologies and used
compact models to show that chordal and symmetry-free CQs, as well as symmetry-
free ELIQs and ELQs are polynomial time learnable. This required generalizing
several of our techniques for disconnected CQs. We also argued that even simple
queries are not polynomial time learnable under ℰℒℐ ontologies, and that ℰℒ𝒰
queries are likely also not polynomial time learnable.

In Chapter 6 we considered PAC learning of queries as it is closely related to
learning with only equivalence queries. We first reviewed that (with or without
ontologies) already simple query classes are not polynomial time PAC learnable,
and therefore focussed on sample-efficient PAC learning. We showed that while sev
eral fitting algorithms are not sample-efficient, bounded fitting is sample-efficient,
using a classic argument connecting PAC learning with Occam algorithms. We
then presented SPELL, an implementation of bounded fitting for ELQs and ℰℒℋ𝑟

ontologies, and compared it to an existing implementation of an ELQ learner, with
generally favorable results.

Thus, our results successfully begin to provide answers to the main question

Which query classes are efficiently learnable under which ontology languages?

However, the answers are not yet complete, as major questions remain open:

1. Are ELIQs polynomial time learnable under ℰℒ ontologies?

2. Are CQs polynomial time learnable under DL-Lite ontologies?

The techniques we used formulate learning algorithms in this thesis fail to answer
these questions. This is mainly because the task of updating hypotheses with
counterexamples from equivalence queries is difficult to tackle and must deal
with complicated interactions of query and ontology. Answering these questions
negatively is also especially difficult. No proof in the style of Theorem 5.50, or
reduction from another hard learning problem, has been found yet. Answering
these questions either positively or negatively will require the development of new
techniques that give new insight into the behavior of queries under ontologies.

So far, we have limited the investigation into the learnability of queries under
ontologies to DL ontologies and CQs that use unary and binary relations only.
Learning queries that use relations of higher arity is a natural step forward. Under
the empty ontology, the results concerning CQ learning hold for relations of any
arity [tCD22]. However, DL ontologies can only express knowledge about unary

214

and binary relations. So, to drop this restriction, it becomes necessary to adopt
a different family of ontology languages that can use higher-arity relations. One
possible choice are existential rules (also known as tuple generating dependencies).
Taking this step would raise many new questions about the learnability of queries
under ontologies. It is not at all clear whether the results of this thesis transfer to
the higher-arity case.

We look forward to the future developments in this research area and the insights
it may provide into queries, ontologies and knowledge representation. We hope
that it can serve a basis for exciting applications.

215

Bibliography

[ABS90] Brian Alspach, Jean-Claude Bermond, and Dominique Sotteau. “ De
composition into Cycles I: Hamilton Decompositions.” In: Cycles and
Rays. Edited by Geňa Hahn, Gert Sabidussi, and Robert E. Woodrow.
Dordrecht: Kluwer Academic Publishers, 1990, pages 9–18. doi: 10.
1007/978-94-009-0517-7_2 (cited on page 87).

[Ang87] Dana Angluin. “ Learning Regular Sets from Queries and Counterex
amples.” In: Information and Computation 75.2 (1987), pages 87–106.
issn: 08905401. doi: 10.1016/0890-5401(87)90052-6 (cited on
pages 5, 36, 42).

[Ang88a] Dana Angluin. “ Learning with Hints.” In: Proceedings of the First An
nual Workshop on Computational Learning Theory. COLT ’88. San Fran
cisco, CA, USA: Morgan Kaufmann, 1988, pages 167–181. url: https:
//dl.acm.org/doi/10.5555/93025.93075 (visited on 05/14/2024)
(cited on pages 40, 42).

[Ang88b] Dana Angluin. “ Queries and Concept Learning.” In: Machine Learn
ing 2.4 (1988), pages 319–342. doi: 10.1007/bf00116828 (cited on
pages 36, 38, 39, 42, 162).

[Ang90] Dana Angluin. “ Negative Results for Equivalence Queries.” In: Ma
chine Learning 5 (1990), pages 121–150. doi: 10.1007/BF00116034
(cited on page 37).

[Ang04] Dana Angluin. “ Queries Revisited.” In: Theoretical Computer Science
313.2 (2004), pages 175–194. doi: 10.1016/j.tcs.2003.11.004
(cited on page 40).

[AFP92] Dana Angluin, Michael Frazier, and Leonard Pitt. “ Learning Conjunc
tions of Horn Clauses.” In: Machine Learning 9.2–3 (1992), pages 147–
164. doi: 10.1007/bf00992675 (cited on pages 16, 162).

[AK95] Dana Angluin and Michael Kharitonov. “ When Won’t Membership
Queries Help?” In: Journal of Computer and System Sciences 50.2 (1995),
pages 336–355. doi: 10.1006/jcss.1995.1026 (cited on pages 42,
163).

217

https://doi.org/10.1007/978-94-009-0517-7_2
https://doi.org/10.1007/978-94-009-0517-7_2
https://doi.org/10.1016/0890-5401(87)90052-6
https://dl.acm.org/doi/10.5555/93025.93075
https://dl.acm.org/doi/10.5555/93025.93075
https://doi.org/10.1007/bf00116828
https://doi.org/10.1007/BF00116034
https://doi.org/10.1016/j.tcs.2003.11.004
https://doi.org/10.1007/bf00992675
https://doi.org/10.1006/jcss.1995.1026

Bibliography

[AB92] Martin Anthony and Norman Biggs. Computational Learning Theory.
Cambridge University Press, 1992 (cited on page 170).

[ADK16] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. “ Reverse En
gineering SPARQL Queries.” In: Proceedings of the 25th International
Conference on World Wide Web. WWW 2016. Edited by Jacqueline Bour
deau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao.
IW3C3, 2016, pages 239–249. doi: 10.1145/2872427.2882989 (cited
on page 13).

[AK02] Marta Arias and Roni Khardon. “ Learning Closed Horn Expressions.”
In: Information and Computation 178.1 (2002), pages 214–240. doi: 10.
1006/INCO.2002.3162 (cited on page 16).

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009. isbn: 978-0-521-42426-4
(cited on page 171).

[Art+09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael
Zakharyaschev. “ The DL-Lite Family and Relations.” In: Journal of
Artificial Intelligence Research 36 (2009), pages 1–69. doi: 10.1613/
jair.2820 (cited on pages 22, 23, 29).

[Baa03] Franz Baader. “ Computing the Least Common Subsumer in the De
scription Logic EL w.r.t. Terminological Cycles with Descriptive Se
mantics.” In: Conceptual Structures for Knowledge Creation and Com
munication. 11th International Conference on Conceptual Structures.
Edited by Aldo de Moor, Wilfried Lex, and Bernhard Ganter. Springer,
2003, pages 117–130. doi: 10.1007/978-3-540-45091-7_8 (cited on
page 13).

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. “ Pushing the EL
Envelope.” In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence. IJCAI 2005. Edited by Leslie Pack Kaelbling
and Alessandro Saffiotti. San Francisco, CA, USA: Morgan Kaufmann,
2005, pages 364–369. url: http://ijcai.org/Proceedings/05/
Papers/0372.pdf (visited on 05/14/2024) (cited on page 165).

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. “ Pushing the EL
Envelope Further.” In: Proceedings of the Fourth OWLED Workshop on
OWL: Experiences and Directions. Edited by Kendall Clark and Peter
Patel-Schneider. Volume 496. CEUR Workshop Proceedings. CEUR-
WS.org, 2008. url: http://ceur-ws.org/Vol-496/owled2008dc_
paper_3.pdf (visited on 05/14/2024) (cited on pages 29, 153).

218

https://doi.org/10.1145/2872427.2882989
https://doi.org/10.1006/INCO.2002.3162
https://doi.org/10.1006/INCO.2002.3162
https://doi.org/10.1613/jair.2820
https://doi.org/10.1613/jair.2820
https://doi.org/10.1007/978-3-540-45091-7_8
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf
http://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf

Bibliography

[Baa+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-
Schneider, and Daniele Nardi. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, 2003.
isbn: 0-521-78176-0 (cited on page 4).

[BD08] Franz Baader and Felix Distel. “ A Finite Basis for the Set of EL-
implications Holding in a Finite Model.” In: Formal Concept Analysis,
6th International Conference. ICFCA 2008. Edited by Raoul Medina and
Sergei A. Obiedkov. Volume 4933. Lecture Notes in Computer Science.
Springer, 2008, pages 46–61. doi: 10.1007/978-3-540-78137-0_4
(cited on page 19).

[BD09] Franz Baader and Felix Distel. “ Exploring Finite Models in the De
scription Logic ELgfp.” In: Formal Concept Analysis, 7th International
Conference. ICFCA 2009. Edited by Sébastien Ferré and Sebastian
Rudolph. Volume 5548. Lecture Notes in Computer Science. Springer,
2009, pages 146–161. doi: 10.1007/978-3-642-01815-2_12 (cited on
page 19).

[Baa+17] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Intro
duction to Description Logic. Cambridge University Press, 2017. isbn:
978-1-139-02535-5. doi: 10.1017/9781139025355 (cited on pages 4,
31, 54).

[BKM99] Franz Baader, Ralf Küsters, and Ralf Molitor. “ Computing Least Com
mon Subsumers in Description Logics with Existential Restrictions.”
In: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence. IJCAI 99. Edited by Thomas Dean. San Francisco, CA,
USA: Morgan Kaufmann, 1999, pages 96–103. url: http://ijcai.
org/Proceedings/99-1/Papers/015.pdf (visited on 05/14/2024)
(cited on page 13).

[BST07] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. “ Computing
the Least Common Subsumer w.r.t. a Background Terminology.” In:
Journal of Applied Logic 5.3 (2007), pages 392–420. doi: 10.1016/J.
JAL.2006.03.002 (cited on pages 13, 103).

[BN00] Liviu Badea and Shan-Hwei Nienhuys-Cheng. “ A Refinement Op
erator for Description Logics.” In: Inductive Logic Programming, 10th
International Conference. ILP 2000. Edited by James Cussens and Alan
M. Frisch. Volume 1866. Lecture Notes in Computer Science. London:
Springer, 2000, pages 40–59. doi: 10.1007/3-540-44960-4_3 (cited
on pages 14, 15, 34).

219

https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-642-01815-2_12
https://doi.org/10.1017/9781139025355
http://ijcai.org/Proceedings/99-1/Papers/015.pdf
http://ijcai.org/Proceedings/99-1/Papers/015.pdf
https://doi.org/10.1016/J.JAL.2006.03.002
https://doi.org/10.1016/J.JAL.2006.03.002
https://doi.org/10.1007/3-540-44960-4_3

Bibliography

[Bai+12] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman,
Mark van Harmelen, Rafael S. Gonçalves, and Cristina Garilao. “ Fish
Mark: A Linked Data Application Benchmark.” In: Proceedings of the
Joint Workshop on Scalable and High-Performance Semantic Web Systems.
SSWS+HPCSW 2012. Edited by Achille Fokoue, Thorsten Liebig, Eric
L. Goodman, Jesse Weaver, Jacopo Urbani, and David Mizell. Vol
ume 943. CEUR Workshop Proceedings. CEUR-WS.org, 2012, pages 1–
15. url: https://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.
pdf (visited on 05/14/2024) (cited on page 119).

[BR17] Pablo Barceló and Miguel Romero. “ The Complexity of Reverse Engi
neering Problems for Conjunctive Queries.” In: 20th International Con
ference on Database Theory. ICDT 2017. Edited by Michael Benedikt and
Giorgio Orsi. Volume 68. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017, 7:1–7:17. doi: 10.4230/LIPIcs.ICDT.2017.7
(cited on pages 13, 34).

[BO15] Meghyn Bienvenu and Magdalena Ortiz. “ Ontology-Mediated Query
Answering with Data-Tractable Description Logics.” In: Reasoning
Web. Web Logic Rules - 11th International Summer School 2015. Edited by
Wolfgang Faber and Adrian Paschke. Volume 9203. Lecture Notes in
Computer Science. Springer, 2015, pages 218–307. doi: 10.1007/978-
3-319-21768-0_9 (cited on pages 4, 33).

[Bie+13] Meghyn Bienvenu, Magdalena Ortiz, Mantas Simkus, and Guohui
Xiao. “ Tractable Queries for Lightweight Description Logics.” In: Pro
ceedings of the 23rd International Joint Conference on Artificial Intelligence.
IJCAI 2013. Edited by Francesca Rossi. Menlo Park, California: AAAI
Press/International Joint Conferences on Artificial Intelligence, 2013,
pages 768–774. url: https://www.ijcai.org/Proceedings/13/
Papers/120.pdf (visited on 05/14/2024) (cited on pages 30, 63, 113).

[Bis+23] Tomás Bisták, Peter Svec, Ján Kluka, Alexander Simko, Stefan Balogh,
and Martin Homola. “ Improving DL-learner on a Malware Detection
Use Case.” In: Proceedings of the 36th International Workshop on Descrip
tion Logics. DL 2023. Edited by Oliver Kutz, Carsten Lutz, and Ana
Ozaki. Volume 3515. CEUR Workshop Proceedings. CEUR-WS.org,
2023. url: https://ceur-ws.org/Vol-3515/paper-6.pdf (cited on
page 197).

[Blu94] Avrim L. Blum. “ Separating Distribution-Free and Mistake-Bound
Learning Models over the Boolean Domain.” In: SIAM Journal on

220

https://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
https://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/978-3-319-21768-0_9
https://www.ijcai.org/Proceedings/13/Papers/120.pdf
https://www.ijcai.org/Proceedings/13/Papers/120.pdf
https://ceur-ws.org/Vol-3515/paper-6.pdf

Bibliography

Computing 23.5 (1994), pages 990–1000. doi: 10.1137/S00975397922
3455X (cited on page 43).

[Blu+23] Sophie Blum, Raoul Koudijs, Ana Ozaki, and Samia Touileb. Learning
Horn Envelopes via Queries from Large Language Models. 2023. doi: 10.
48550/ARXIV.2305.12143. arXiv: 2305.12143. Pre-published (cited
on page 6).

[Blu+89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man
fred K. Warmuth. “ Learnability and the Vapnik-Chervonenkis Di
mension.” In: Journal of the ACM 36.4 (1989), pages 929–965. doi:
10.1145/76359.76371 (cited on pages 176–178).

[BP92] Raymond A. Board and Leonard Pitt. “ On the Necessity of Occam
Algorithms.” In: Theoretical Computer Science 100.1 (1992), pages 157–
184. doi: 10.1016/0304-3975(92)90367-O (cited on page 181).

[BCL15] Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. “ Learning Path
Queries on Graph Databases.” In: Proceedings of the 18th International
Conference on Extending Database Technology. EDBT 2015. Edited by
Gustavo Alonso, Floris Geerts, Lucian Popa, Pablo Barceló, Jens Teub
ner, Martín Ugarte, Jan Van den Bussche, and Jan Paredaens. Open
Proceedings.org, 2015, pages 109–120. doi: 10.5441/002/edbt.2015.
11 (cited on page 13).

[BDK16] Daniel Borchmann, Felix Distel, and Francesco Kriegel. “ Axiomati
sation of General Concept Inclusions from Finite Interpretations.”
In: Journal of Applied Non-Classical Logics 26.1 (2016), pages 1–46. doi:
10.1080/11663081.2016.1168230 (cited on page 19).

[Bor+89] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness,
and Lori Alperin Resnick. “ CLASSIC: A Structural Data Model for Ob
jects.” In: Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data. Edited by James Clifford, Bruce G. Lindsay, and
David Maier. ACM, 1989, pages 58–67. doi: 10.1145/67544.66932
(cited on page 17).

[Bot+16] Elena Botoeva, Roman Kontchakov, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. “ Games for Query Inseparability of
Description Logic Knowledge Bases.” In: Artificial Intelligence 234
(2016), pages 78–119. doi: 10.1016/J.ARTINT.2016.01.010 (cited
on pages 32, 107).

221

https://doi.org/10.1137/S009753979223455X
https://doi.org/10.1137/S009753979223455X
https://doi.org/10.48550/ARXIV.2305.12143
https://doi.org/10.48550/ARXIV.2305.12143
https://arxiv.org/abs/2305.12143
https://doi.org/10.1145/76359.76371
https://doi.org/10.1016/0304-3975(92)90367-O
https://doi.org/10.5441/002/edbt.2015.11
https://doi.org/10.5441/002/edbt.2015.11
https://doi.org/10.1080/11663081.2016.1168230
https://doi.org/10.1145/67544.66932
https://doi.org/10.1016/J.ARTINT.2016.01.010

Bibliography

[BS85] Ronald J. Brachman and James G. Schmolze. “ An Overview of the
KL-ONE Knowledge Representation System.” In: Cognitive Science 9.2
(1985), pages 171–216. doi: 10.1207/S15516709COG0902_1 (cited on
page 2).

[Bra04] Sebastian Brandt. “ Polynomial Time Reasoning in a Description Logic
with Existential Restrictions, GCI Axioms, and - What Else?” In: Pro
ceedings of the 16th Eureopean Conference on Artificial Intelligence. ECAI
2004. Edited by Ramó López de Mántaras and Lorenza Saitta. Ams
terdam, Netherlands: IOS Press, 2004, pages 298–302. doi: 10.5555/
3000001.3000065 (cited on page 29).

[BLW16] Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. “ DL-Learner
- A Framework for Inductive Learning on the Semantic Web.” In:
Journal of Web Semantics 39 (2016), pages 15–24. doi: 10.1016/j.
websem.2016.06.001 (cited on pages 3, 15, 211).

[Cal+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur
izio Lenzerini, and Riccardo Rosati. “ DL-Lite: Tractable Description
Logics for Ontologies.” In: Proceedings, The Twentieth National Confer
ence on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference. AAAI 2005. Edited by Manuela M.
Veloso and Subbarao Kambhampati. AAAI Press, 2005, pages 602–607.
url: http://www.aaai.org/Library/AAAI/2005/aaai05-094.php
(visited on 05/14/2024) (cited on page 30).

[Cal+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. “ Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Family.” In:
Journal of Automated Reasoning 39.3 (2007), pages 385–429. doi: 10.
1007/s10817-007-9078-x (cited on page 4).

[Cal+13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau
rizio Lenzerini, and Riccardo Rosati. “ Data Complexity of Query
Answering in Description Logics.” In: Artificial Intelligence 195 (2013),
pages 335–360. doi: 10.1016/J.ARTINT.2012.10.003 (cited on
page 4).

[CGL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
“ On the Decidability of Query Containment under Constraints.” In:
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sym
posium on Principles of Database Systems. PODS ’98. Edited by Alberto
O. Mendelzon and Jan Paredaens. ACM, 1998, pages 149–158. doi:
10.1145/275487.275504 (cited on page 4).

222

https://doi.org/10.1207/S15516709COG0902_1
https://doi.org/10.5555/3000001.3000065
https://doi.org/10.5555/3000001.3000065
https://doi.org/10.1016/j.websem.2016.06.001
https://doi.org/10.1016/j.websem.2016.06.001
http://www.aaai.org/Library/AAAI/2005/aaai05-094.php
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1016/J.ARTINT.2012.10.003
https://doi.org/10.1145/275487.275504

Bibliography

[tCDK13] Balder ten Cate, Víctor Dalmau, and Phokion G. Kolaitis. “ Learning
Schema Mappings.” In: ACM Transactions on Database Systems 38.4
(2013), 28:1–28:31. doi: 10.1145/2539032.2539035 (cited on pages 6,
15, 16, 47, 101, 102, 161).

[tCD15] Balder ten Cate and Víctor Dalmau. “ The Product Homomor
phism Problem and Applications.” In: 18th International Conference on
Database Theory. ICDT 2015. Edited by Marcelo Arenas and Martín
Ugarte. Volume 31. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für In
formatik, 2015, pages 161–176. doi: 10.4230/LIPIcs.ICDT.2015.161
(cited on pages 13, 34).

[tCat+18] Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew
Tan. “ Active Learning of GAV Schema Mappings.” In: Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. PODS ’18. Edited by Jan Van den Bussche and
Marcelo Arenas. ACM, 2018, pages 355–368. doi: 10.1145/3196959.
3196974 (cited on page 16).

[tCD22] Balder ten Cate and Víctor Dalmau. “ Conjunctive Queries: Unique
Characterizations and Exact Learnability.” In: ACM Transactions on
Database Systems 47.4 (2022), 14:1–14:41. doi: 10.1145/3559756 (cited
on pages 6, 16, 36, 47, 60, 88, 97, 183, 210, 214).

[tCK23] Balder ten Cate and Raoul Koudijs. Characterising Modal Formulas
with Examples. 2023. doi: 10.48550/ARXIV.2304.06646. arXiv: 2304.
06646. Pre-published (cited on page 16).

[tCat+23a] Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten
Lutz. Extremal Fitting CQs Do Not Generalize. Version 1. 2023. doi: 10.
48550/arXiv.2312.03407. arXiv: 2312.03407 [cs]. Pre-published
(cited on page 170).

[tCat+23b] Balder ten Cate, Víctor Dalmau, Maurice Funk, and Carsten Lutz.
“ Extremal Fitting Problems for Conjunctive Queries.” In: Proceedings
of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. PODS 2023. Edited by Floris Geerts, Hung Q. Ngo,
and Stavros Sintos. ACM, 2023, pages 89–98. doi: 10.1145/3584372.
3588655 (cited on pages 181–183).

[tCat+23c] Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten
Lutz. “ SAT-based PAC Learning of Description Logic Concepts.” In:
Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence. IJCAI 2023. Edited by Edith Elkind. International Joint

223

https://doi.org/10.1145/2539032.2539035
https://doi.org/10.4230/LIPIcs.ICDT.2015.161
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1145/3559756
https://doi.org/10.48550/ARXIV.2304.06646
https://arxiv.org/abs/2304.06646
https://arxiv.org/abs/2304.06646
https://doi.org/10.48550/arXiv.2312.03407
https://doi.org/10.48550/arXiv.2312.03407
https://arxiv.org/abs/2312.03407
https://doi.org/10.1145/3584372.3588655
https://doi.org/10.1145/3584372.3588655

Bibliography

Conferences on Artificial Intelligence, 2023, pages 3347–3355. doi:
10.24963/ijcai.2023/373 (cited on pages 170, 181, 194, 211).

[tCat+24] Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten Lutz.
“ On the Non-Efficient PAC Learnability of Conjunctive Queries.” In:
Information Processing Letters 183.106431 (2024). doi: 10.1016/J.IPL.
2023.106431 (cited on pages 35, 170).

[CM77] Ashok K. Chandra and Philip M. Merlin. “ Optimal Implementation
of Conjunctive Queries in Relational Data Bases.” In: Proceedings of the
9th Annual ACM Symposium on Theory of Computing. STOC ’77. Edited
by John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison.
ACM, 1977, pages 77–90. doi: 10.1145/800105.803397 (cited on
pages 25, 30).

[CF20] Hunter Chase and James Freitag. “ Bounds in Query Learning.”
In: Conference on Learning Theory. COLT 2020. Edited by Jacob D.
Abernethy and Shivani Agarwal. Volume 125. Proceedings of Ma
chine Learning Research. PMLR, 2020, pages 1142–1160. url: http:
/ / proceedings . mlr . press / v125 / chase20a . html (visited on
06/15/2024) (cited on page 40).

[CCL21] Gianluca Cima, Federico Croce, and Maurizio Lenzerini. “ Query
Definability and Its Approximations in Ontology-Based Data Man
agement.” In: The 30th ACM International Conference on Information
and Knowledge Management. CIKM ’21. Edited by Gianluca Demartini,
Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong.
ACM, 2021, pages 271–280. doi: 10.1145/3459637.3482466 (cited on
pages 14, 35).

[CS01] Edmund M. Clarke and Bernd-Holger Schlingloff. “ Model Checking.”
In: Handbook of Automated Reasoning. Edited by John Alan Robinson
and Andrei Voronkov. Cambridge, Massachusetts: MIT Press, 2001,
pages 1635–1790. isbn: 978-0-444-50813-3 (cited on page 122).

[CW16] Sara Cohen and Yaacov Y. Weiss. “ The Complexity of Learning Tree
Patterns from Example Graphs.” In: ACM Transactions on Database
Systems 41.2 (2016), 14:1–14:44. doi: 10 . 1145 / 2890492 (cited on
page 13).

[CBH92] William W. Cohen, Alexander Borgida, and Haym Hirsh. “ Computing
Least Common Subsumers in Description Logics.” In: Proceedings of
the 10th National Conference on Artificial Intelligence. AAAI 1992. Edited
by William R. Swartout. AAAI Press, 1992, pages 754–760. url: http:

224

https://doi.org/10.24963/ijcai.2023/373
https://doi.org/10.1016/J.IPL.2023.106431
https://doi.org/10.1016/J.IPL.2023.106431
https://doi.org/10.1145/800105.803397
http://proceedings.mlr.press/v125/chase20a.html
http://proceedings.mlr.press/v125/chase20a.html
https://doi.org/10.1145/3459637.3482466
https://doi.org/10.1145/2890492
http://www.aaai.org/Library/AAAI/1992/aaai92-117.php
http://www.aaai.org/Library/AAAI/1992/aaai92-117.php

Bibliography

//www.aaai.org/Library/AAAI/1992/aaai92-117.php (visited on
05/14/2024) (cited on page 13).

[CH92] William W. Cohen and Haym Hirsh. “ Learnability of Description
Logics.” In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. COLT ’92. ACM, 1992, pages 116–127. doi: 10.1145/
130385.130398 (cited on page 17).

[CH94a] William W. Cohen and Haym Hirsh. “ Learning the CLASSIC Descrip
tion Logic: Theoretical and Experimental Results.” In: Proceedings of
the 4th International Conference on Principles of Knowledge Representation
and Reasoning. KR 1994. Morgan Kaufmann, 1994, pages 121–133. doi:
10.1016/B978-1-4832-1452-8.50108-1 (cited on page 17).

[CH94b] William W. Cohen and Haym Hirsh. “ The Learnability of Description
Logics with Equality Constraints.” In: Machine Learning 17.2–3 (1994),
pages 169–199. doi: 10.1007/bf00993470 (cited on page 17).

[CH95] William W. Cohen and Haym Hirsh. “ Corrigendum for ”Learnability
of Description Logics”.” In: Proceedings of the Eighth Annual Conference
on Computational Learning Theory. COLT ’95. ACM, 1995, pages 463–
463. isbn: 978-0-89791-723-0. doi: 10.1145/225298.372773 (cited on
page 17).

[dAma20] Claudia d’Amato. “ Machine Learning for the Semantic Web: Lessons
Learnt and next Research Directions.” In: Semantic Web 11.1 (2020),
pages 195–203. doi: 10.3233/SW-200388 (cited on page 197).

[Dal99] Víctor Dalmau. “ Boolean Formulas Are Hard to Learn for Most
Gate Bases.” In: Algorithmic Learning Theory, 10th International Con
ference. ALT ’99. Edited by Osamu Watanabe and Takashi Yokomori.
Volume 1720. Lecture Notes in Computer Science. Springer, 1999,
pages 301–312. doi: 10.1007/3-540-46769-6_25 (cited on page 163).

[DN23] Caglar Demir and Axel-Cyrille Ngonga Ngomo. “ Neuro-Symbolic
Class Expression Learning.” In: Proceedings of the Thirty-Second Inter
national Joint Conference on Artificial Intelligence. IJCAI 2023. Edited
by Edith Elkind. International Joint Conferences on Artificial Intelli
gence, 2023, pages 3624–3632. doi: 10.24963/IJCAI.2023/403 (cited
on pages 3, 15).

[DB86] Ronald D. Dutton and Robert C. Brigham. “ Computationally Efficient
Bounds for the Catalan Numbers.” In: European Journal of Combinatorics
7.3 (1986), pages 211–213. doi: 10.1016/S0195-6698(86)80024-5
(cited on page 180).

225

http://www.aaai.org/Library/AAAI/1992/aaai92-117.php
http://www.aaai.org/Library/AAAI/1992/aaai92-117.php
http://www.aaai.org/Library/AAAI/1992/aaai92-117.php
https://doi.org/10.1145/130385.130398
https://doi.org/10.1145/130385.130398
https://doi.org/10.1016/B978-1-4832-1452-8.50108-1
https://doi.org/10.1007/bf00993470
https://doi.org/10.1145/225298.372773
https://doi.org/10.3233/SW-200388
https://doi.org/10.1007/3-540-46769-6_25
https://doi.org/10.24963/IJCAI.2023/403
https://doi.org/10.1016/S0195-6698(86)80024-5

Bibliography

[Eit+08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Simkus.
“ Query Answering in the Description Logic Horn-SHIQ.” In: Logics in
Artificial Intelligence, 11th European Conference. JELIA 2008. Edited by
Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing. Volume 5293.
Lecture Notes in Computer Science. Springer, 2008, pages 166–179.
doi: 10.1007/978-3-540-87803-2_15 (cited on pages 4, 30).

[FdAE08] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. “ DL-FOIL
Concept Learning in Description Logics.” In: Inductive Logic Program
ming, 18th International Conference. ILP 2008. Edited by Filip Zelezný
and Nada Lavrac. Volume 5194. Lecture Notes in Computer Science.
Springer, 2008, pages 107–121. doi: 10.1007/978-3-540-85928-4_12
(cited on page 15).

[Fan+18] Nicola Fanizzi, Giuseppe Rizzo, Claudia d’Amato, and Floriana Es
posito. “ DLFoil: Class Expression Learning Revisited.” In: European
Knowledge Acquisition Workshop. EKAW 2018. Edited by Catherine
Faron-Zucker, Chiara Ghidini, Amedeo Napoli, and Yannick Tous
saint. Volume 11313. Lecture Notes in Computer Science. Springer,
2018, pages 98–113. doi: 10.1007/978-3-030-03667-6_7 (cited on
pages 15, 34).

[For+22] Marie Fortin, Boris Konev, Vladislav Ryzhikov, Yury Savateev, Frank
Wolter, and Michael Zakharyaschev. “ Unique Characterisability and
Learnability of Temporal Instance Queries.” In: Proceedings of the 19th
International Conference on Principles of Knowledge Representation and
Reasoning. KR 2022. Edited by Gabriele Kern-Isberner, Gerhard Lake
meyer, and Thomas Meyer. International Joint Conferences on Arti
ficial Intelligence, 2022, pages 163–173. doi: 10.24963/kr.2022/17
(cited on pages 16, 194).

[FP96] Michael Frazier and Leonard Pitt. “ CLASSIC Learning.” In: Machine
Learning 25.2–3 (1996), pages 151–193. doi: 10.1023/A:10264430240
02 (cited on page 17).

[FJL21a] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Actively
Learning Concepts and Conjunctive Queries under ELr-ontologies.”
In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence. IJCAI 2021. Edited by Zhi-Hua Zhou. International Joint
Conferences on Artificial Intelligence, 2021, pages 1887–1893. doi:
10.24963/ijcai.2021/260 (cited on pages 101, 176, 210).

226

https://doi.org/10.1007/978-3-540-87803-2_15
https://doi.org/10.1007/978-3-540-85928-4_12
https://doi.org/10.1007/978-3-030-03667-6_7
https://doi.org/10.24963/kr.2022/17
https://doi.org/10.1023/A:1026443024002
https://doi.org/10.1023/A:1026443024002
https://doi.org/10.24963/ijcai.2021/260

Bibliography

[FJL21b] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Actively
Learning ELI Queries under DL-Lite Ontologies.” In: Proceedings of
the 34th International Workshop on Description Logics. DL 2021. Edited
by Martin Homola, Vladislav Ryzhikov, and Renate A. Schmidt. Vol
ume 2954. CEUR Workshop Proceedings. CEUR-WS.org, 2021. url:
http : / / ceur - ws . org / Vol - 2954 / paper - 14 . pdf (visited on
05/14/2024) (cited on page 49).

[FJL22a] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Exact Learn
ing of ELI Queries in the Presence of DL-Lite-Horn Ontologies.” In:
Proceedings of the 35th International Workshop on Description Logics. DL
2022. Edited by Ofer Arieli, Martin Homola, Jean Christoph Jung, and
Marie-Laure Mugnier. Volume 3263. CEUR Workshop Proceedings.
CEUR-WS.org, 2022. url: https://ceur-ws.org/Vol-3263/paper-
9.pdf (visited on 05/14/2024) (cited on pages 49, 101).

[FJL22b] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “ Frontiers
and Exact Learning of ELI Queries under DL-Lite Ontologies.” In:
Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence. IJCAI-ECAI-2022. Edited by Luc De Raedt. International
Joint Conferences on Artificial Intelligence, 2022, pages 2627–2633.
doi: 10.24963/ijcai.2022/364 (cited on page 49).

[Fun+19] Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini,
and Frank Wolter. “ Learning Description Logic Concepts: When Can
Positive and Negative Examples Be Separated?” In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence.
IJCAI 2019. Edited by Sarit Kraus. International Joint Conferences on
Artificial Intelligence, 2019, pages 1682–1688. doi: 10.24963/ijcai.
2019/233 (cited on pages 14, 34, 35, 153).

[Gli+08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. “ Con
junctive Query Answering for the Description Logic SHIQ.” In: Jour
nal of Artificial Intelligence Research 31 (2008), pages 157–204. doi:
10.1613/jair.2372 (cited on page 4).

[GLS99] Georg Gottlob, Nicola Leone, and Francesco Scarcello. “ On the
Complexity of Some Inductive Logic Programming Problems.” In:
New Generation Computing 17.1 (1999), pages 53–75. doi: 10.1007/
BF03037582 (cited on page 198).

[Gui+21] Ricardo Guimarães, Ana Ozaki, Cosimo Persia, and Baris Sertkaya.
“ Mining EL Bases with Adaptable Role Depth.” In: Thirty-Fifth AAAI
Conference on Artificial Intelligence. AAAI 2021. AAAI Press, 2021,

227

http://ceur-ws.org/Vol-2954/paper-14.pdf
https://ceur-ws.org/Vol-3263/paper-9.pdf
https://ceur-ws.org/Vol-3263/paper-9.pdf
https://doi.org/10.24963/ijcai.2022/364
https://doi.org/10.24963/ijcai.2019/233
https://doi.org/10.24963/ijcai.2019/233
https://doi.org/10.1613/jair.2372
https://doi.org/10.1007/BF03037582
https://doi.org/10.1007/BF03037582

Bibliography

pages 6367–6374. doi: 10 . 1609 / AAAI . V35I7 . 16790 (cited on
page 19).

[GJS18] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. “ Re
verse Engineering Queries in Ontology-Enriched Systems: The Case
of Expressive Horn Description Logic Ontologies.” In: Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelli
gence. IJCAI-ECAI 2018. Edited by Jérôme Lang. International Joint
Conferences on Artificial Intelligence, 2018, pages 1847–1853. doi:
10.24963/ijcai.2018/255 (cited on pages 14, 34, 35).

[Hau89] David Haussler. “ Learning Conjunctive Concepts in Structural Do
mains.” In: Machine Learning 4.1 (1989), pages 7–40. doi: 10.1007/
bf00114802 (cited on pages 16, 173, 198).

[Hau+91] David Haussler, Michael J. Kearns, Nick Littlestone, and Manfred K.
Warmuth. “ Equivalence of Models for Polynomial Learnability.” In:
Information and Computation 95.2 (1991), pages 129–161. doi: 10.1016/
0890-5401(91)90042-Z (cited on page 41).

[Heg95] Tibor Hegedüs. “ Generalized Teaching Dimensions and the Query
Complexity of Learning.” In: Proceedings of the Eigth Annual Conference
on Computational Learning Theory. COLT 1995. Edited by Wolfgang
Maass. ACM, 1995, pages 108–117. doi: 10.1145/225298.225311
(cited on page 40).

[HNZ96] P. Hell, J. Nešetřil, and X. Zhu. “ Complexity of Tree Homomor
phisms.” In: Discrete Applied Mathematics 70.1 (1996), pages 23–36.
issn: 0166218X. doi: 10.1016/0166-218X(96)00099-6 (cited on
page 173).

[Hel+96] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and
Dawn Wilkins. “ How Many Queries Are Needed to Learn?” In: Journal
of the ACM 43.5 (1996), pages 840–862. doi: 10.1145/234752.234755
(cited on page 40).

[Hir00] Kouichi Hirata. “ On the Hardness of Learning Acyclic Conjunctive
Queries.” In: Algorithmic Learning Theory, 11th International Conference.
ALT 2000. Edited by Hiroki Arimura, Sanjay Jain, and Arun Sharma.
Volume 1968. Lecture Notes in Computer Science. Springer, 2000,
pages 238–251. doi: 10.1007/3-540-40992-0_18 (cited on page 16).

[Hir05] Kouichi Hirata. “ Prediction-Hardness of Acyclic Conjunctive
Queries.” In: Theoretical Computer Science 348.1 (2005), pages 84–94.
doi: 10.1016/j.tcs.2005.09.006 (cited on page 16).

228

https://doi.org/10.1609/AAAI.V35I7.16790
https://doi.org/10.24963/ijcai.2018/255
https://doi.org/10.1007/bf00114802
https://doi.org/10.1007/bf00114802
https://doi.org/10.1016/0890-5401(91)90042-Z
https://doi.org/10.1016/0890-5401(91)90042-Z
https://doi.org/10.1145/225298.225311
https://doi.org/10.1016/0166-218X(96)00099-6
https://doi.org/10.1145/234752.234755
https://doi.org/10.1007/3-540-40992-0_18
https://doi.org/10.1016/j.tcs.2005.09.006

Bibliography

[HKR10] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations
of Semantic Web Technologies. Chapman and Hall/CRC, 2010. isbn: 978-
1-4200-9050-5. url: http://www.semantic-web-book.org/ (visited
on 05/14/2024) (cited on page 2).

[IPF07] Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. “ An Algorithm
Based on Counterfactuals for Concept Learning in the Semantic Web.”
In: Applied Intelligence 26.2 (2007), pages 139–159. doi: 10 . 1007 /
s10489-006-0011-5 (cited on page 15).

[Jun+20] Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter.
“ Logical Separability of Incomplete Data under Ontologies.” In: Pro
ceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning. KR 2020. Edited by Diego Calvanese,
Esra Erdem, and Michael Thielscher. 2020, pages 517–528. doi: 10.
24963/kr.2020/52 (cited on pages 14, 34).

[Jun+22] Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter.
“ Logical Separability of Labeled Data Examples under Ontologies.” In:
Artificial Intelligence 313 (2022), page 103785. doi: 10.1016/J.ARTINT.
2022.103785 (cited on pages 5, 14).

[JLW20] Jean Christoph Jung, Carsten Lutz, and Frank Wolter. “ Least General
Generalizations in Description Logic: Verification and Existence.” In:
The Thirty-Fourth AAAI Conference on Artificial Intelligence. AAAI 2020.
AAAI Press, 2020, pages 2854–2861. doi: 10.1609/aaai.v34i03.5675
(cited on pages 13, 103, 119, 140).

[Jun+23a] Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, and Michael
Zakharyaschev. Temporalising Unique Characterisability and Learnability
of Ontology-Mediated Queries. 2023. doi: 10.48550/arXiv.2306.07662.
arXiv: 2306.07662. Pre-published (cited on page 16).

[Jun+23b] Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, and Michael
Zakharyaschev. “ Temporalising Unique Characterisability and Learn
ability of Ontology-Mediated Queries (Extended Abstract).” In: Pro
ceedings of the 36th International Workshop on Description Logics. DL 2023.
Edited by Oliver Kutz, Carsten Lutz, and Ana Ozaki. Volume 3515.
CEUR Workshop Proceedings. CEUR-WS.org, 2023. url: https://
ceur-ws.org/Vol-3515/abstract-13.pdf (visited on 05/14/2024)
(cited on page 16).

229

http://www.semantic-web-book.org/
https://doi.org/10.1007/s10489-006-0011-5
https://doi.org/10.1007/s10489-006-0011-5
https://doi.org/10.24963/kr.2020/52
https://doi.org/10.24963/kr.2020/52
https://doi.org/10.1016/J.ARTINT.2022.103785
https://doi.org/10.1016/J.ARTINT.2022.103785
https://doi.org/10.1609/aaai.v34i03.5675
https://doi.org/10.48550/arXiv.2306.07662
https://arxiv.org/abs/2306.07662
https://ceur-ws.org/Vol-3515/abstract-13.pdf
https://ceur-ws.org/Vol-3515/abstract-13.pdf

Bibliography

[KV89] Michael J. Kearns and Leslie G. Valiant. “ Cryptographic Limitations
on Learning Boolean Formulae and Finite Automata.” In: Proceedings
of the 21st Annual ACM Symposium on Theory of Computing. STOC ’89.
Edited by David S. Johnson. ACM, 1989, pages 433–444. doi: 10.1145/
73007.73049 (cited on page 163).

[Kie93] Jörg-Uwe Kietz. “ Some Lower Bounds for the Computational Com
plexity of Inductive Logic Programming.” In: European Conference on
Machine Learning. ECML-93. Edited by Pavel Brazdil. Volume 667.
Lecture Notes in Computer Science. Springer, 1993, pages 115–123.
doi: 10.1007/3-540-56602-3_131 (cited on pages 16, 173).

[KKZ11] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev.
“ On (in)Tractability of OBDA with OWL 2 QL.” In: Proceedings of the
24th International Workshop on Description Logics. DL 2011. Edited by
Riccardo Rosati, Sebastian Rudolph, and Michael Zakharyaschev.
Volume 745. CEUR Workshop Proceedings. CEUR-WS.org, 2011.
url: http://ceur-ws.org/Vol-745/paper_7.pdf (visited on
05/14/2024) (cited on pages 30, 63).

[Kon+18] Boris Konev, Carsten Lutz, Ana Ozaki, and Frank Wolter. “ Exact
Learning of Lightweight Description Logic Ontologies.” In: Journal
of Machine Learning Research 18.201 (2018), pages 1–63. url: http:
//jmlr.org/papers/v18/16-256.html (visited on 05/14/2024)
(cited on page 18).

[KOW16] Boris Konev, Ana Ozaki, and Frank Wolter. “ A Model for Learning
Description Logic Ontologies Based on Exact Learning.” In: Proceed
ings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI 2016.
Edited by Dale Schuurmans and Michael P. Wellman. AAAI Press,
2016, pages 1008–1015. url: http://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/view/11948 (visited on 05/14/2024) (cited on
page 18).

[Kon+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. “ The Combined Approach to Query An
swering in DL-Lite.” In: Principles Of Knowledge Representation And
Reasoning: Proceedings Of The Twelfth International Conference. KR 2010.
Edited by Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski.
AAAI Press, 2010, pages 247–257. url: http://aaai.org/ocs/index.
php/KR/KR2010/paper/view/1282 (visited on 05/14/2024) (cited on
page 22).

230

https://doi.org/10.1145/73007.73049
https://doi.org/10.1145/73007.73049
https://doi.org/10.1007/3-540-56602-3_131
http://ceur-ws.org/Vol-745/paper_7.pdf
http://jmlr.org/papers/v18/16-256.html
http://jmlr.org/papers/v18/16-256.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11948
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11948
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282

Bibliography

[Kou22] Raoul Koudijs. “ Learning Modal Formulas via Dualities.” Master’s
thesis. Universiteit van Amsterdam, 2022. url: https://eprints.
illc.uva.nl/id/eprint/1957/1/MoL-2022-07.text.pdf (visited
on 06/19/2024) (cited on page 16).

[Kri18a] Francesco Kriegel. “ The Distributive, Graded Lattice of EL Concept
Descriptions and Its Neighborhood Relation.” In: Proceedings of the
Fourteenth International Conference on Concept Lattices and Their Appli
cations. CLA 2018. Edited by Dmitry I. Ignatov and Lhouari Nourine.
Volume 2123. CEUR Workshop Proceedings. CEUR-WS.org, 2018,
pages 267–278. url: http://ceur-ws.org/Vol-2123/paper22.pdf
(visited on 05/14/2024) (cited on pages 15, 80, 207).

[Kri18b] Francesco Kriegel. The Distributive, Graded Lattice of EL Concept Descrip
tions and Its Neighborhood Relation (Extended Version). Technical report
LTCS-18-10. Dresden University of Technology, 2018. url: https:
//lat.inf.tu-dresden.de/research/reports/2018/Kr-LTCS-18-
10.pdf (visited on 05/14/2024) (cited on page 15).

[Kri19] Francesco Kriegel. “ Constructing and Extending Description Logic
Ontologies Using Methods of Formal Concept Analysis.” PhD thesis.
Dresden University of Technology, 2019. url: https://nbn-reso
lving.org/urn:nbn:de:bsz:14-qucosa2-360998 (visited on
05/14/2024) (cited on page 15).

[Kri21] Francesco Kriegel. “ Navigating the EL Subsumption Hierarchy.” In:
Proceedings of the 34th International Workshop on Description Logics. DL
2021. Edited by Martin Homola, Vladislav Ryzhikov, and Renate A.
Schmidt. Volume 2954. CEUR Workshop Proceedings. CEUR-WS.org,
2021. url: http://ceur-ws.org/Vol-2954/paper-21.pdf (visited
on 05/14/2024) (cited on pages 15, 95, 208).

[Kri24] Francesco Kriegel. “ Efficient Axiomatization of OWL 2 EL Ontologies
from Data by Means of Formal Concept Analysis.” In: Thirty-Eighth
AAAI Conference on Artificial Intelligence. AAAI 2024. Edited by Michael
J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan. AAAI Press,
2024, pages 10597–10606. doi: 10.1609/AAAI.V38I9.28930 (cited on
page 19).

[KRH13] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. “ Complex
ities of Horn Description Logics.” In: ACM Transactions on Compu
tational Logic 14.1 (2013), 2:1–2:36. issn: 1529-3785. doi: 10.1145/
2422085.2422087 (cited on page 29).

231

https://eprints.illc.uva.nl/id/eprint/1957/1/MoL-2022-07.text.pdf
https://eprints.illc.uva.nl/id/eprint/1957/1/MoL-2022-07.text.pdf
http://ceur-ws.org/Vol-2123/paper22.pdf
https://lat.inf.tu-dresden.de/research/reports/2018/Kr-LTCS-18-10.pdf
https://lat.inf.tu-dresden.de/research/reports/2018/Kr-LTCS-18-10.pdf
https://lat.inf.tu-dresden.de/research/reports/2018/Kr-LTCS-18-10.pdf
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-360998
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-360998
http://ceur-ws.org/Vol-2954/paper-21.pdf
https://doi.org/10.1609/AAAI.V38I9.28930
https://doi.org/10.1145/2422085.2422087
https://doi.org/10.1145/2422085.2422087

Bibliography

[KM02] Ralf Küsters and Ralf Molitor. “ Approximating Most Specific Con
cepts in Description Logics with Existential Restrictions.” In: AI
Communications 15.1 (2002), pages 47–59. url: http : / / content .
iospress.com/articles/ai-communications/aic253 (visited on
05/14/2024) (cited on page 13).

[Lan+15] Davide Lanti, Martín Rezk, Guohui Xiao, and Diego Calvanese. “ The
NPD Benchmark: Reality Check for OBDA Systems.” In: Proceedings
of the 18th International Conference on Extending Database Technology.
EDBT 2015. Edited by Gustavo Alonso, Floris Geerts, Lucian Popa,
Pablo Barceló, Jens Teubner, Martín Ugarte, Jan Van den Bussche,
and Jan Paredaens. OpenProceedings.org, 2015, pages 617–628. doi:
10.5441/002/EDBT.2015.62 (cited on page 119).

[Leh+14] Jens Lehmann, Nicola Fanizzi, Lorenz Bühmann, and Claudia d’Am
ato. “ Concept Learning.” In: Perspectives on Ontology Learning. Edited
by Jens Lehmann and Johanna Völker. Volume 18. Studies on the Se
mantic Web. Amsterdam, Netherlands: IOS Press, 2014, pages 71–91
(cited on page 34).

[LH09] Jens Lehmann and Christoph Haase. “ Ideal Downward Refinement
in the EL Description Logic.” In: Inductive Logic Programming, 19th In
ternational Conference. ILP 2009. Edited by Luc De Raedt. Volume 5989.
Lecture Notes in Computer Science. Springer, 2009, pages 73–87. doi:
10.1007/978-3-642-13840-9_8 (cited on page 15).

[LH10] Jens Lehmann and Pascal Hitzler. “ Concept Learning in Description
Logics Using Refinement Operators.” In: Machine Learning 78.1–2
(2010), pages 203–250. doi: 10.1007/s10994-009-5146-2 (cited on
page 15).

[Lis12] Francesca A. Lisi. “ A Formal Characterization of Concept Learning in
Description Logics.” In: Proceedings of the 2012 International Workshop
on Description Logics. DL 2012. Edited by Yevgeny Kazakov, Domenico
Lembo, and Frank Wolter. Volume 846. CEUR Workshop Proceedings.
CEUR-WS.org, 2012. url: https://ceur-ws.org/Vol-846/paper_
66.pdf (visited on 05/14/2024) (cited on page 15).

[Lis16] Francesca Alessandra Lisi. “ A Model+solver Approach to Concept
Learning.” In: XVth International Conference of the Italian Association for
Artificial Intelligence. AI*IA 2016. Edited by Giovanni Adorni, Stefano
Cagnoni, Marco Gori, and Marco Maratea. Volume 10037. Lecture
Notes in Computer Science. Springer, 2016, pages 266–279. doi: 10.
1007/978-3-319-49130-1_20 (cited on page 15).

232

http://content.iospress.com/articles/ai-communications/aic253
http://content.iospress.com/articles/ai-communications/aic253
https://doi.org/10.5441/002/EDBT.2015.62
https://doi.org/10.1007/978-3-642-13840-9_8
https://doi.org/10.1007/s10994-009-5146-2
https://ceur-ws.org/Vol-846/paper_66.pdf
https://ceur-ws.org/Vol-846/paper_66.pdf
https://doi.org/10.1007/978-3-319-49130-1_20
https://doi.org/10.1007/978-3-319-49130-1_20

Bibliography

[LP22] Carsten Lutz and Marcin Przybylko. Efficient Answer Enumeration in
Description Logics with Functional Roles - Extended Version. Nov. 28,
2022. doi: 10.48550/arXiv.2211.15248. arXiv: 2211.15248 [cs].
Pre-published (cited on page 33).

[Lut+13] Carsten Lutz, Inanç Seylan, David Toman, and Frank Wolter. “ The
Combined Approach to OBDA: Taming Role Hierarchies Using Fil
ters.” In: The Semantic Web - ISWC 2013 - 12th International Semantic
Web Conference. ISWC 2013. Edited by Harith Alani, Lalana Kagal,
Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier Parreira,
Lora Aroyo, Natasha F. Noy, Chris Welty, and Krzysztof Janowicz.
Volume 8218. Lecture Notes in Computer Science. Springer, 2013,
pages 314–330. doi: 10.1007/978-3-642-41335-3_20 (cited on
page 119).

[LTW09] Carsten Lutz, David Toman, and Frank Wolter. “ Conjunctive Query
Answering in the Description Logic EL Using a Relational Database
System.” In: Proceedings of the 21st International Joint Conference on
Artificial Intelligence. IJCAI 2009. Edited by Craig Boutilier. AAAI
Press/International Joint Conferences on Artificial Intelligence, 2009,
pages 2070–2075. url: http://ijcai.org/Proceedings/09/Papers/
341.pdf (visited on 05/14/2024) (cited on pages 117, 198).

[LW10] Carsten Lutz and Frank Wolter. “ Deciding Inseparability and Conser
vative Extensions in the Description Logic EL.” In: Journal of Symbolic
Computation 45.2 (2010), pages 194–228. doi: 10.1016/J.JSC.2008.
10.007 (cited on page 122).

[Mar19] Denis Mayr Lima Martins. “ Reverse Engineering Database Queries
from Examples: State-of-the-art, Challenges, and Research Opportu
nities.” In: Information Systems 83 (2019), pages 89–100. doi: 10.1016/
J.IS.2019.03.002 (cited on page 13).

[NT00] Jaroslav Nesetril and Claude Tardif. “ Duality Theorems for Finite
Structures (Characterising Gaps and Good Characterisations).” In:
Journal of Combinatorial Theory, Series B 80.1 (2000), pages 80–97. doi:
10.1006/jctb.2000.1970 (cited on page 194).

[NT05] Jaroslav Nesetril and Claude Tardif. “ Short Answers to Exponentially
Long Questions: Extremal Aspects of Homomorphism Duality.” In:
SIAM Journal on Discrete Mathematics 19.4 (2005), pages 914–920. doi:
10.1137/S0895480104445630 (cited on page 183).

233

https://doi.org/10.48550/arXiv.2211.15248
https://arxiv.org/abs/2211.15248
https://doi.org/10.1007/978-3-642-41335-3_20
http://ijcai.org/Proceedings/09/Papers/341.pdf
http://ijcai.org/Proceedings/09/Papers/341.pdf
https://doi.org/10.1016/J.JSC.2008.10.007
https://doi.org/10.1016/J.JSC.2008.10.007
https://doi.org/10.1016/J.IS.2019.03.002
https://doi.org/10.1016/J.IS.2019.03.002
https://doi.org/10.1006/jctb.2000.1970
https://doi.org/10.1137/S0895480104445630

Bibliography

[ND97] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of In
ductive Logic Programming. Volume 1228. Springer Science & Business
Media, 1997. url: https://link.springer.com/book/10.1007/3-
540-62927-0 (visited on 05/14/2024) (cited on page 14).

[OEI24] OEIS Foundation Inc. Entry A000081. The On-Line Encyclopedia of
Integer Sequences. 2024. url: https://oeis.org/A000081 (visited
on 04/16/2024) (cited on pages 180, 202).

[Ort19] Magdalena Ortiz. “ Ontology-Mediated Queries from Examples: A
Glimpse at the DL-Lite Case.” In: Proceedings of the 5th Global Conference
on Artificial Intelligence. GCAI 2019. Edited by Diego Calvanese and
Luca Iocchi. Volume 65. EPiC Series in Computing. EasyChair, 2019,
pages 1–14. doi: 10.29007/jhtz (cited on pages 14, 35).

[Ott06] Martin Otto. “ Bisimulation Invariance and Finite Models.” In: Logic
Colloquium ’02. Edited by Zoé Chatzidakis, Peter Koepke, and Wolfram
Pohlers. Lecture Notes in Logic. 2006, pages 276–298. url: https:
//doi.org/10.1017/9781316755723.013 (cited on page 166).

[Oza20] Ana Ozaki. “ Learning Description Logic Ontologies Five Approaches:
Where Do They Stand.” In: Künstliche Intelligenz 34.3 (2020), pages 317–
327. doi: 10.1007/s13218-020-00656-9 (cited on page 19).

[OPM20] Ana Ozaki, Cosimo Persia, and Andrea Mazzullo. “ Learning Query
Inseparable ELH Ontologies.” In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence. AAAI 2020. AAAI Press, 2020, pages 2959–
2966. doi: 10.1609/aaai.v34i03.5688 (cited on pages 18, 43).

[PV88] Leonard Pitt and Leslie G. Valiant. “ Computational Limitations
on Learning from Examples.” In: Journal of the ACM 35.4 (1988),
pages 965–984. doi: 10.1145/48014.63140 (cited on pages 41, 170).

[PW90] Leonard Pitt and Manfred K. Warmuth. “ Prediction-Preserving Re
ducibility.” In: Journal of Computer and System Sciences 41.3 (1990),
pages 430–467. doi: 10.1016/0022-0000(90)90028-J (cited on
page 59).

[Pog+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De
Giacomo, Maurizio Lenzerini, and Riccardo Rosati. “ Linking Data to
Ontologies.” In: Journal on Data Semantics X. Lecture Notes in Com
puter Science 4900 (2008), pages 133–173. doi: 10.1007/978-3-540-
77688-8_5 (cited on pages 2, 4, 23).

234

https://link.springer.com/book/10.1007/3-540-62927-0
https://link.springer.com/book/10.1007/3-540-62927-0
https://oeis.org/A000081
https://doi.org/10.29007/jhtz
https://doi.org/10.1017/9781316755723.013
https://doi.org/10.1017/9781316755723.013
https://doi.org/10.1007/s13218-020-00656-9
https://doi.org/10.1609/aaai.v34i03.5688
https://doi.org/10.1145/48014.63140
https://doi.org/10.1016/0022-0000(90)90028-J
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5

Bibliography

[Pul22] Hadrien Pulcini. “ Logical Separability of Open-World Data.” PhD
thesis. University of Liverpool, 2022. doi: 10.17638/03165443 (cited
on page 14).

[RH97] Alan Rector and Ian Horrocks. “ Experience Building a Large, Re-
Usable Medical Ontology Using a Description Logic with Transitivity
and Concept Inclusions.” In: Proceedings of the Workshop on Ontological
Engineering. AAAI’97. AAAI Press, 1997, pages 321–325. url: https:
//aaai.org/papers/0013-ss97-06-013 (visited on 05/14/2024)
(cited on page 4).

[RFdA20] Giuseppe Rizzo, Nicola Fanizzi, and Claudia d’Amato. “ Class Expres
sion Induction as Concept Space Exploration: From DL-Foil to DL-
Focl.” In: Future Generation Computer Systems 108 (2020), pages 256–
272. issn: 0167-739X. doi: 10.1016/j.future.2020.02.071 (cited on
page 15).

[Ros07] Riccardo Rosati. “ On Conjunctive Query Answering in EL.” In: Pro
ceedings of the 2007 International Workshop on Description Logics. DL
2007. Edited by Diego Calvanese, Enrico Franconi, Volker Haarslev,
Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and Sergio Tes
saris. Volume 250. CEUR Workshop Proceedings. CEUR-WS.org, 2007.
url: http://ceur-ws.org/Vol-250/paper_83.pdf (visited on
05/14/2024) (cited on page 30).

[SH19] Md Kamruzzaman Sarker and Pascal Hitzler. “ Efficient Concept In
duction for Description Logics.” In: Proceedings of the 33rd AAAI Confer
ence on Artificial Intelligence. AAAI 2019. AAAI Press, 2019, pages 3036–
3043. doi: 10.1609/aaai.v33i01.33013036 (cited on page 15).

[Sch+09] Stefan Schulz, Boontawee Suntisrivaraporn, Franz Baader, and Martin
Boeker. “ SNOMED Reaching Its Adolescence: Ontologists’ and Logi
cians’ Health Check.” In: International Journal of Medical Informatics 78
(Supplement-1 2009), S86–S94. doi: 10.1016/J.IJMEDINF.2008.06.
004 (cited on page 4).

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning: From Theory to Algorithms. 1st edition. Cambridge University
Press, 2014. isbn: 978-1-107-29801-9. doi: 10.1017/CBO9781107298019
(cited on page 176).

[SBM20] Gunjan Singh, Sumit Bhatia, and Raghava Mutharaju. “ OWL2Bench:
A Benchmark for OWL 2 Reasoners.” In: The Semantic Web - ISWC
2020 - 19th International Semantic Web Conference. ISWC 2020. Edited
by Jeff Z. Pan, Valentina A. M. Tamma, Claudia d’Amato, Krzysztof

235

https://doi.org/10.17638/03165443
https://aaai.org/papers/0013-ss97-06-013
https://aaai.org/papers/0013-ss97-06-013
https://doi.org/10.1016/j.future.2020.02.071
http://ceur-ws.org/Vol-250/paper_83.pdf
https://doi.org/10.1609/aaai.v33i01.33013036
https://doi.org/10.1016/J.IJMEDINF.2008.06.004
https://doi.org/10.1016/J.IJMEDINF.2008.06.004
https://doi.org/10.1017/CBO9781107298019

Bibliography

Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Ka
gal. Volume 12507. Lecture Notes in Computer Science. Springer,
2020, pages 81–96. doi: 10.1007/978-3-030-62466-8_6 (cited on
page 206).

[SCC97] Kent A. Spackman, Keith E. Campbell, and Roger A. Côté. “ SNOMED
RT: A Reference Terminology for Health Care.” In: American Medical
Informatics Association Annual Symposium. AMIA 1997. AMIA, 1997,
pages 640–644. url: https://www.ncbi.nlm.nih.gov/pmc/arti
cles/PMC2233423/pdf/procamiaafs00001-0675.pdf (visited on
05/14/2024) (cited on page 4).

[Suc+23] Fabian M. Suchanek, Mehwish Alam, Thomas Bonald, Pierre-Henri
Paris, and Jules Soria. Integrating the Wikidata Taxonomy into YAGO.
2023. doi: 10.48550/ARXIV.2308.11884. arXiv: 2308.11884. Pre-
published (cited on page 2).

[TWS20] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek.
“ YAGO 4: A Reason-Able Knowledge Base.” In: The Semantic Web - 17th
International Conference. ESWC 2020. Edited by Andreas Harth, Sabrina
Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula,
Anna Lisa Gentile, Peter Haase, and Michael Cochez. Volume 12123.
Lecture Notes in Computer Science. Springer, 2020, pages 583–596.
doi: 10.1007/978-3-030-49461-2_34 (cited on page 204).

[Tra+14] Thanh-Luong Tran, Quang-Thuy Ha, Thi-Lan-Giao Hoang, Linh Anh
Nguyen, and Hung Son Nguyen. “ Bisimulation-Based Concept Learn
ing in Description Logics.” In: Fundamenta Informaticae 133.2–3 (2014),
pages 287–303. doi: 10.3233/FI-2014-1077 (cited on page 15).

[TZ13] Anni-Yasmin Turhan and Benjamin Zarrieß. “ Computing the Lcs w.r.t.
General EL+-TBoxes.” In: Informal Proceedings of the 26th International
Workshop on Description Logics. DL 2013. Volume 1014. CEUR Work
shop Proceedings. CEUR-WS.org, 2013, pages 477–488. url: https:
//ceur-ws.org/Vol-1014/paper_26.pdf (visited on 05/14/2024)
(cited on page 103).

[Val84] Leslie G. Valiant. “ A Theory of the Learnable.” In: Communications
of the ACM 27.11 (1984), pages 1134–1142. doi: 10.1145/1968.1972
(cited on pages 7, 40).

[Wes+19] Patrick Westphal, Lorenz Bühmann, Simon Bin, Hajira Jabeen, and
Jens Lehmann. “ SML-Bench - A Benchmarking Framework for Struc
tured Machine Learning.” In: Semantic Web 10.2 (2019), pages 231–245.
doi: 10.3233/SW-180308 (cited on pages 199, 204).

236

https://doi.org/10.1007/978-3-030-62466-8_6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233423/pdf/procamiaafs00001-0675.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233423/pdf/procamiaafs00001-0675.pdf
https://doi.org/10.48550/ARXIV.2308.11884
https://arxiv.org/abs/2308.11884
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.3233/FI-2014-1077
https://ceur-ws.org/Vol-1014/paper_26.pdf
https://ceur-ws.org/Vol-1014/paper_26.pdf
https://doi.org/10.1145/1968.1972
https://doi.org/10.3233/SW-180308

Bibliography

[Wil10] Ross Willard. “ Testing Expressibility Is Hard.” In: Principles and Prac
tice of Constraint Programming - 16th International Conference. CP 2010.
Edited by David Cohen. Volume 6308. Lecture Notes in Computer
Science. Springer, 2010, pages 9–23. doi: 10.1007/978-3-642-15396-
9_4 (cited on page 34).

[Xia+18] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico
Lembo, Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev.
“ Ontology-Based Data Access: A Survey.” In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence. IJCAI-
ECAI 2018. Edited by Jérôme Lang. International Joint Conferences on
Artificial Intelligence, 2018, pages 5511–5519. doi: 10.24963/IJCAI.
2018/777 (cited on pages 2, 4).

[Yan81] Mihalis Yannakakis. “ Algorithms for Acyclic Database Schemes.” In:
Very Large Data Bases, 7th International Conference. VLDB ’81. IEEE
Computer Society, 1981, pages 82–94. url: https://dl.acm.org/
doi/10.5555/1286831.1286840 (visited on 05/14/2024) (cited on
pages 30, 173).

[ZT13] Benjamin Zarrieß and Anni-Yasmin Turhan. “ Most Specific General
izations w.r.t. General EL-TBoxes.” In: Proceedings of the 23rd Interna
tional Joint Conference on Artificial Intelligence. IJCAI 2013. Edited by
Francesca Rossi. Menlo Park, California: AAAI Press/International
Joint Conferences on Artificial Intelligence, 2013, pages 1191–1197.
url: https://www.ijcai.org/Proceedings/13/Papers/179.pdf
(visited on 05/14/2024) (cited on page 13).

[Zho+13] Yujiao Zhou, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, and Jay
Banerjee. “ Making the Most of Your Triple Store: Query Answering
in OWL 2 Using an RL Reasoner.” In: 22nd International World Wide
Web Conference. WWW ’13. Edited by Daniel Schwabe, Virgílio A. F.
Almeida, Hartmut Glaser, Ricardo Baeza-Yates, and Sue B. Moon.
International World Wide Web Conferences Steering Committee /
ACM, 2013, pages 1569–1580. doi: 10.1145/2488388.2488525 (cited
on page 206).

[Zlo75a] Moshé M. Zloof. “ Query by Example.” In: American Federation of In
formation Processing Societies: 1975 National Computer Conference, 19-22
May 1975, Anaheim, CA, USA. Volume 44. AFIPS Conference Pro
ceedings. AFIPS Press, 1975, pages 431–438. doi: 10.1145/1499949.
1500034 (cited on page 1).

237

https://doi.org/10.1007/978-3-642-15396-9_4
https://doi.org/10.1007/978-3-642-15396-9_4
https://doi.org/10.24963/IJCAI.2018/777
https://doi.org/10.24963/IJCAI.2018/777
https://dl.acm.org/doi/10.5555/1286831.1286840
https://dl.acm.org/doi/10.5555/1286831.1286840
https://www.ijcai.org/Proceedings/13/Papers/179.pdf
https://doi.org/10.1145/2488388.2488525
https://doi.org/10.1145/1499949.1500034
https://doi.org/10.1145/1499949.1500034

Bibliography

[Zlo75b] Moshé M. Zloof. “ Query-by-Example: The Invocation and Definition
of Tables and Forms.” In: Proceedings of the International Conference on
Very Large Data Bases. VLDB ’75. Edited by Douglas S. Kerr. ACM,
1975, pages 1–24. doi: 10.1145/1282480.1282482 (cited on page 1).

238

https://doi.org/10.1145/1282480.1282482

Index of Notation and Symbols

⊤ Concept tautology Page 21

𝐶 ⊓ 𝐷 Conjunction Page 21

∃𝑅.𝐶 Existential restriction Page 21

𝐶 ⊑ 𝐷 Concept subsumption Page 22

𝑎 Tuple Page 24

ind(𝒜) Set of individual names in ABox 𝒜 Page 24

𝒜, 𝒪 ⊧ 𝐶(𝑎) 𝑎 is in the extension of the concept 𝐶 in
every model of 𝒜 and 𝒪

Page 25

ℐ1, 𝑑 → ℐ2, 𝑒 Existence of a homomorphism from ℐ1
to ℐ2 that maps 𝑑 to 𝑒

Page 26

var(𝑞) Set of variables of CQ 𝑞 Page 25

img(ℎ) Image of function ℎ Page 25

𝑞 ⊆𝒪 𝑝 Query implication under ontology 𝒪 Page 26

𝑞 ≡𝒪 𝑝 Query equivalence under ontology 𝒪 Page 26

ℐ ⊧ 𝑞(𝑑) 𝑑 is an answer to CQ 𝑞 in ℐ Page 26

𝒜, 𝒪 ⊧ 𝑞(𝑑) 𝑑 is an answer to CQ 𝑞 in every model of
ABox 𝒜 and ontology 𝒪

Page 26

sig(𝑜) Signature of 𝑜 Page 28

‖𝑜‖ Size of 𝑜 Page 28

𝑞𝑥 Subquery of ELIQ 𝑞 rooted at 𝑥 Page 28

𝒬Σ Class of all 𝒬 queries that only use sym
bols from Σ

Page 28

ℐ1 × ℐ2 Direct product of ℐ1 and ℐ2 Page 28

𝑥 ⊗ 𝑦 Tuple of pairs Page 28

239

Index of Notation and Symbols

𝑎 ⇝𝑅
𝒜,𝒪 𝑀 𝒜 and 𝒪 imply the existence of an 𝑅 suc

cessor of 𝑎
Page 31

error𝑃,𝑞𝑇,𝒪(𝑞) Error of 𝑞 relative to 𝑞𝑇 under 𝒪 Page 40

𝑞−𝒪𝑥 CQ 𝑞 without variable 𝑥 Page 62

𝒰𝒜,𝒪 Universal model of ABox 𝒜 and ontol
ogy 𝒪

Page 31

ℐ1, 𝑑1 ⪯ℰℒℐ ℐ2, 𝑑2 Existence of an ℰℒℐ simulation from ℐ1
to ℐ2 that includes 𝑑1 and 𝑑2

Page 89

𝒞𝒜,𝒪 Compact model of ABox 𝒜 and ontology
𝒪 that is ELQ-universal

Page 116

CQcsf Chordal and symmetry-free CQ Page 119

ELIQsf Symmetry-free ELIQ Page 119

dist𝑞(𝑥, 𝑦) Distance of variables 𝑥 and 𝑦 in 𝑞 Page 118

𝒞3
𝒜,𝒪 3-compact model of ABox 𝒜 and ontol

ogy 𝒪 that is CQcsf-universal
Page 120

ℐ1, 𝑑1 ⪯ℰℒ ℐ2, 𝑑2 Existence of an ℰℒ simulation from ℐ1
to ℐ2 that includes 𝑑1 and 𝑑2

Page 121

ℎ∗(𝑥) Function that maps 𝑥 to the root of the
trace ℎ(𝑥)

Page 126

240

List of Figures

3.1 Relationship of the sublanguages of ℰℒℐℋℱ⊥. 24
3.2 A CQ, an ELIQ and a ELQ. 27
3.3 An ABox 𝒜 and its universal model 𝒰𝒜,𝒪. 32

4.1 CQs that are not uniquely characterizable. 47
4.2 The sequence of hypothesis approximates 𝑞𝑇. 48
4.3 The queries 𝑞∗ and 𝑞𝑛. 52
4.4 An application of Replace concept name. 56
4.5 A frontier under the empty ontology. 60
4.6 A frontier under an ontology. 61
4.7 The steps of the construction of a frontier 67
4.8 An infinite generalizing chain of ELIQs under the empty ontology. 82
4.9 A generalization sequence under an ontology. 83
4.10 The query 𝑞0𝐻 for two concept names. 88
4.11 An application of Double cycle. 89

5.1 Two ELIQs and their direct product. 103
5.2 Queries without a finite ELIQ-LGG. 104
5.3 Steps of the guided ELIQ-generalization construction. 109
5.4 A compact ELQ-universal model 𝒞𝒜,𝒪. 116
5.5 Examples of CQcsf queries. 119
5.6 A 3-compact model 𝒞3

𝒜,𝒪 . 120
5.7 An application of Expand cycle. 131
5.8 An application of Split symmetry. 131
5.9 An application of Unravel. 142
5.10 A universal model containing a binary counter. 153
5.11 The interpretations 𝐿0-tree and 𝐾0-tree. 155

6.1 The ABox 𝒜𝜑 for the formula 𝜑 = 𝑋1 ∧ 𝑋2 ∧ (¬𝑋1 ∨ 𝑋2). 174
6.2 A homomorphism duality relative to a path example 186
6.3 A screenshot of the demo interface of SPELL 199
6.4 The four tree-shaped graphs with four vertices 203
6.5 The running times of SPELL and ELTL in the YAGO benchmarks. . 205

241

List of Tables

3.1 Overview of the ontology languages 24
3.2 Complexity of reasoning tasks . 30
3.3 Complexity results for the fitting problem 35

6.1 OWL2Bench benchmark details . 206
6.2 Owl2Bench benchmark results . 206
6.3 Synthetic benchmark results . 208
6.4 Generalization benchmark results . 209

243

Bibliographische Daten

 Titel Learning Queries under Description Logic Ontologies
 Typ Dissertation

 Autor Maurice Funk
 Jahr 2024

 Sprache Englisch
 Seiten 255

 Abbildungen 30
 Keywords Description Logic Ontologies, Conjunctive Queries,

Exact Learning, PAC Learning

245

	Introduction
	Related Work
	Fitting Examples with Queries
	Exact Learning of Queries
	Learning Description Logic Ontologies

	Preliminaries
	Description Logic and Conjunctive Queries
	The Fitting Problem
	Exact Learning
	Probably Approximately Correct Learning

	Learning with Membership Queries
	Limits of Membership Queries
	Reducing to Ontologies in Normal Form
	Frontiers of Queries
	Generalization Sequences of Queries
	Obtaining an Initial Hypothesis
	The Learning Algorithm for ELIQs
	Discussion

	Learning with Membership and Equivalence Queries
	Updating Hypotheses with Counterexamples
	Learning ELIQs under DL-Lite-horn Ontologies
	Learning under ELr Ontologies
	Handling Queries of Unbounded Arity
	Learning under ELI ontologies
	Queries with Disjunctions
	Discussion

	Learning from Examples
	PAC Learning of Queries in Polynomial Time
	Sample-Efficient PAC Learning of Queries
	Not Sample-Efficient Fitting Algorithms
	SAT-based PAC EL Concept Learner
	Performance of SPELL
	Discussion

	Conclusion
	Bibliography
	Index of Notation and Symbols
	List of Figures
	List of Tables

