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Abstract

This note serves three purposes: (i) we provide a self-contained exposition of the fact that conjunctive queries are not
efficiently learnable in the Probably-Approzimately-Correct (PAC) model, paying clear attention to the complicating
fact that this concept class lacks the polynomial-size fitting property, a property that is tacitly assumed in much of the
computational learning theory literature; (ii) we establish a strong negative PAC learnability result that applies to many
restricted classes of conjunctive queries (CQs), including acyclic CQs for a wide range of notions of acyclicity; (iii) we

show that CQs (and UCQs) are efficiently PAC learnable with membership queries.
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1. Introduction

Conjunctive queries (CQs) are an extensively stud-
ied database query language that plays a prominent role
in database theory. CQs correspond precisely to Dat-
alog programs with a single non-recursive rule and to
the positive-existential-conjunctive fragment of first-order
logic. Since the evaluation problem for conjunctive queries
is NP-complete, various tractable subclasses have been in-
troduced and studied. These include different variants of
acyclicity, such as a-acyclicity, S-acyclicity, ~y-acyclicity,
and Berge-acyclicity, which form a strict hierarchy with
Berge-acyclicity being most restrictive [15]. A landmark
result by Grohe states that a class of CQs is tractable if
and only if the treewidth of all CQs in it is bounded by a
constant (under certain assumptions) [18, 24].

In this note, we consider the learnability of CQs from
labeled examples, in Valiant’s well-known Probably Ap-
prozimately Correct (PAC) learning model [28]. We give a
self-contained proof that the class of all CQs as well as all
classes of acyclic CQs mentioned above are not efficiently
PAC learnable. While the general idea of our proof is due
to [23, 19], we strengthen the result in several respects and
present it in a form that is easily accessible to modern-day
database theorists.

The result ¢(I) of evaluating a k-ary CQ ¢ on a
database instance I is a set of k-tuples of values from the
active domain of I. An example, then, is most naturally
taken to be a pair (/,a) where I is a database instance
and a is a k-tuple of values from the active domain of I.
The example is positive if a € ¢(I) and negative otherwise.
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An efficient PAC algorithm is a (possibly randomized)
polynomial-time algorithm that takes as input a set of ex-
amples drawn from an unknown probability distribution D
and labeled as positive/negative according to an unknown
target CQ ¢* to be learned, and that outputs a CQ g,
such that, if the input sample is sufficiently large, then
with probability at least 1 — 0, ¢ has expected error at
most €, meaning that if we draw an example e from D,
then with probability 1 —e¢, ¢ and ¢* assign the same label
to e (cf. Figure 1). The required number of examples must
furthermore be bounded by a function polynomial in |g*|,
1/4, 1 /¢, and the example size. We give a precise definition
in Section 2. Note that since a PAC algorithm does not
know the example distribution D, it must perform well for
all distributions D. In this sense, the PAC model captures
a strong form of distribution-independent learning.

Our main result is the following, stated, for simplicity,
for unary CQs:

Theorem 1.1. (assuming RP # NP) Let C be any class
of unary CQs over a fized schema S that contains at least
one binary relation symbol and one unary relation sym-
bol. If C includes all path-CQs, then C is not efficiently
PAC learnable, even w.r.t. single-instance example distri-
butions.

Here, RP denotes the class of problems solvable by a
randomized algorithm with one-sided error that runs in
polynomial time, and by a path-C(@Q we mean a unary CQ
of the form

q(z1) =— Fzg ... xp(R(x1,22) Ao A R(Tp—1, )
AP(zj ) A= A P(xj,,))
where R is a binary relation symbol and P is a unary
relation symbol. That is, a path-CQ is a very simple type
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Figure 1: Graphical depiction of a PAC algorithm

of CQ that describes an outgoing directed path decorated
with a single unary relation symbol.

With a single-instance example distribution, we mean
an example distribution D such that for some database
instance I, D assigns non-zero probability mass only to
examples of the form (I,a). This captures the natural
scenario of learning CQs from positive and negative exam-
ples that all pertain to a single given database instance.
Clearly, efficient PAC learnability w.r.t. all example dis-
tributions implies efficient PAC learnability w.r.t. single-
instance distributions.

Note that efficient PAC learnability is not an anti-
monotone property of query classes, and Theorem 1.1 says
more than just that path-CQs are not efficiently PAC
learnable. In particular, Theorem 1.1 implies that the class
of all CQs is not efficiently PAC learnable, and the same
is true for all classes of acyclic CQs mentioned above since
path-CQs belong to all of these classes. Theorem 1.1 also
implies non-efficient PAC learnability of concept expres-
sions in the description logics ££ and ELZ (even in the
absence of a TBox), see e.g. [17] and references therein.

It is worth comparing the notion of a PAC learning
algorithm to that of a fitting algorithm. Both types of
algorithms take as input a set of labeled examples. A fit-
ting algorithm decides the existence of a CQ that agrees
with the labels of the input examples. The fitting problem
is coNExpTime-complete for CQs [29, 5] and, in fact, is
known to be hard already for some more restricted classes
of acyclic CQs [5, 16, 17]. A PAC algorithm, on the other
hand, produces a CQ that, with high probability, has a
low expected error, but is not required to fit the input
examples. Despite these differences, it is well-known that
for concept classes that are both polynomial-time evalu-
able and have the polynomial-size fitting property (de-
fined in Section 2), NP-hardness of the fitting problem
implies the non-existence of an efficient PAC learning al-
gorithm [26], see Proposition 2.6 below. Unfortunately,
the concept class of CQs has neither of these properties.
A main difficulty of our proof of Theorem 1.1 (which is
nevertheless based on a reduction from an NP-hard fitting
problem) is to find a way around this.

We also prove that PAC learnability of CQs can be
recovered by extending the PAC model with membership
queries, known from Angluin’s [1] model of exact learn-

ing. In a membership query, the learner chooses an ex-
ample (I,a) and asks an oracle to provide, in unit time,
the positive or negative labeling of (I,a) according to the
target query. In Angluin’s model of exact learning, CQs
are known to not be efficiently learnable with membership
queries alone, but they are efficiently learnable when also
equivalence queries are admitted (the learner may give a
hypothesis query to the oracle and ask whether it is equiv-
alent to the target query, requesting a counterexample if
this is not the case). The latter is implicit in [6], an explicit
proof can be found in [7], cf. also [3].

As pointed out in [6], the fact that CQs are effi-
ciently exactly learnable with membership and equivalence
queries implies PAC learnability with membership queries
and an NP-oracle (cf. [1]), where the NP-oracle is used
for evaluating hypotheses on examples. It was left open
whether CQs are efficiently PAC learnable with member-
ship queries without an NP-oracle. We give an affirmative
answer to this question and show that it also extends to
UCQs, that is, to disjunctions of conjunctive queries.

Theorem 1.2. Fiz any schema S and k > 0. The class
of all k-ary CQs over S is efficiently PAC learnable with

membership queries. The same is true for the class of all

k-ary UCQs over S.

1.1. Related work

Haussler [19] shows that the class of Boolean CQs over
a schema that contains an unbounded number of unary
relation symbols is not efficiently PAC-learnable (unless
RP = NP). The essential part of the proof is to show
that the fitting problem for the same concept class is NP-
complete. Over a schema that consists of unary relation
symbols only, every CQ is trivially Berge-acyclic. There-
fore, this implies that efficient PAC learnability fails for
acyclic Boolean CQs, for any of the aforementioned no-
tions of acyclicity. The fact that Haussler’s result is stated
for Boolean CQs and Theorem 1.1 is stated for unary CQs
is an inessential difference (cf. [23]). The fact that the
proof in [19] uses an unbounded number of unary rela-
tion symbols, however, is an important difference. Indeed,
if one was to consider Boolean queries over a fixed finite
schema that consists of unary relation symbols only, then
the resulting concept class would be finite and trivially
PAC learnable.



Kietz [23] proves that the class of unary CQs over a
schema that contains a single binary relation symbol and
an unbounded number of unary relation symbols is not
PAC-learnable (unless RP = NP). Again the essential
part of the proof is to show that the fitting problem is NP-
complete. Kietz’s result already applies to path-CQs of
length 1 with multiple unary relation symbols. This is only
possible because of the infinite schema, as, otherwise, the
concept class is again finite and trivially PAC learnable.

Cohen [12] proves that the class of unary CQs over a
schema that contains two binary relation symbols is not
PAC-predictable unless certain assumptions from the field
of cryptography fail. In PAC prediction, the output of the
algorithm is not required to be a concept from the concept
class, but instead must be any polynomial-time evaluable
concept such as a polynomial-time algorithm. PAC learn-
ability implies PAC predictability for concept classes that
are polynomial-time evaluable (cf. Remark 6.3). Cohen’s
result already applies to path-CQs (defined slightly differ-
ently than above, using two binary relation symbols and
no unary relation symbol — this difference is inessential).
As a consequence, Cohen’s result yields the restriction of
Theorem 1.1 to polynomial-time evaluable classes C' (such
as the class of all acyclic CQs, under any of the men-
tioned notions of acyclicity), under cryptographic assump-
tions. Moreover, in contrast to PAC learnability, PAC pre-
dictability is an anti-monotone property of concept classes.
Thus, Cohen’s result also yields Theorem 1.1 for efficient
PAC predictability in place of efficient PAC learnability,
again under cryptographic assumptions.

In an earlier paper [11], Cohen had proved a related but
weaker result that requires relation symbols of arity three.
The work of Hirata [21], in a similar vain, shows that there
is even a fixed database on which efficient PAC prediction
(and thus also learning) of acyclic CQs is impossible — a
stronger condition than single-instance example distribu-
tions. The result, however, requires ternary relation sym-
bols and CQs of unbounded arity. We also remark that
it follows from general results of Schapire, see Section 6.3
of [27], that any class of CQs that is NP-hard to evaluate
is not efficiently PAC-predictable unless NP C P /poly.

We consider, in this note, classes of CQs defined
through acyclicity conditions. In the literature on induc-
tive logic programming (ILP) various positive and negative
PAC learnability results have been obtained for classes of
CQs defined by different means (e.g., limitations on the use
of existential variables, determinacy conditions pertain-
ing to functional relations, and restricted variable depth).
These are orthogonal to acyclicity. An overview can be
found in [25, Chapter 18].

In [6], the authors study learnability of GAV schema
mappings, which are closely related to Unions of Con-
Junctive Queries (UCQs). Specifically, it was proved in
[6] that GAV schema mappings are not efficiently PAC
learnable, assuming RP # NP, on source schemas that
contain at least one relation symbol of arity at least two,
using a reduction of the non-PAC-learnability of proposi-

tional formulas in positive DNF. This result immediately
implies that, for any schema S containing a relation sym-
bol of arity at least two, and for each k£ > 0, the class
of k-ary UCQs over S is not efficiently PAC learnable,
assuming RP # NP. Additionally, in [6], the authors com-
pletely map out the (non-)learnability of restricted classes
of UCQs definable by conditions on their Gaifman graph.

There is also another line of work on PAC learnability
of conjunctive queries [13, 14, 10] that is somewhat dif-
ferent in nature: one fixes a schema S and an S-instance
I and defines a concept class where the concepts are now
all relations over the active domain of I definable by a
k-ary CQ (as evaluated in I). PAC learning for various
classes of Boolean formulas, such as 3-CNF, can be seen
as a special case of this framework, for a specific choice
of schema S and (two-element) instance I, where k then
corresponds to the number of Boolean variables. Since, for
a fixed choice of k, this yields a finite concept class, in this
setting, one is interested in the complexity of PAC learning
as a function of k. The mentioned papers establish effec-
tive dichotomies, showing that, depending on the choice of
S and 1, this concept class is either efficiently PAC learn-
able in k or is not even efficiently PAC predictable with
membership queries in k (under suitable cryptographic as-
sumptions). See also Remark 6.3 below.

2. Preliminaries

2.1. Conjunctive Queries

A schema S is a finite set of relation symbols with
associated arity. An instance I over schema S is a finite
set of facts over S, where a fact is an expression of the form
R(a1,...,a,) where R € S is an n-ary relation symbol and
ai,...,ay, are values. The active domain of an instance I,
denoted by adom(7) is the (finite) set of values that occur
in the facts of I.

A k-ary conjunctive query (CQ) over a schema S, for
k > 0, is an expression of the form

g(x) :— Jy(ar A+ Aay)

where X,y are tuples of variables, x has length k, and
each conjunct «; is an atomic formula that uses a relation
symbol from S and only variables from x and y , such that
each variable from x occurs in some conjunct. We denote
by ¢(I) the set of all k-tuples a such that I = ¢(a).

We will not define in depth the various notions of
acyclicity that have been mentioned in the introduction,
but we reiterate here that they form a hierarchy with
Berge-acyclicity being most restrictive, and that all men-
tioned classes of acyclic queries are polynomial-time evalu-
able, meaning that given a CQ ¢(x) from the class, an in-
stance I and a tuple a of elements of the active domain
of I, we can decide in polynomial time whether a € ¢([I).

The definition of path-CQs was given in Section 1.

Example 2.1. An example of a path-CQ is the query
q(z) == Jyzu(R(z,y) A R(y, z) A R(z,u) A P(y) A P(u)).



Every path-CQ is Berge-acyclic and hence polynomial-
time evaluable, see e.g. the classic paper where this is
proved for a-acyclic queries [15].

2.2. Computational Learning Theory

A concept class is a triple C = (®, Ex, =), where ® is
a set of concepts, Ex is a set of examples, and = C Ez x ®
represents whether an example is a positive or a negative
example for a given concept. We also denote by laby(e)
the label of e according to ¢, that is, labs(e) = + if e = ¢
and labg(e) = — otherwise. Two concepts ¢, ¢’ € ® are
said to be equivalent if laby(e) = laby (e) for all e € Ex.?

A labeled example is a pair (e,s) with e € Fz and
s € {+,—}. A concept ¢ € P fits a set of labeled examples
E if laby(e) = s for all (e, s) € E.

We only consider countable concept classes. Concepts
and examples are assumed to have an effective representa-
tion and a corresponding notion of size, which is denoted
by |¢| and |e|, respectively. We also denote the set of all
concepts (examples) of size at most n by ®(,, (respectively,
Ex(y)). For a finite set of (possibly labeled) examples £,
1B = e el

The following two properties of concept classes will be
important for us later on:

Definition 2.2 (Polynomial-time evaluability). A
concept class is polynomial-time evaluable if there exists a
polynomial-time algorithm that, given ¢ € ® and e € Ex,
outputs a Boolean indicating whether e = ¢.

Definition 2.3 (Polynomial-size fitting property).
A concept class has the polynomial-size fitting property
if for every finite set of labeled examples E, the existence
of a concept that fits E implies that there exists a fitting
concept whose size is bounded by a polynomial in ||E||.

We now define the two algorithmic problems mentioned
in the introduction, namely fitting and PAC learning.

Definition 2.4 (Fitting problem). The fitting prob-
lem (also known as consistency problem or separability
problem) for a concept class C is the problem to decide,
given a finite set of labeled examples E, whether there ex-
ists a concept in C that fits E.

In order to define PAC algorithms, we first need to
introduce some terminology and notation. An ezample
distribution for a concept class C' = (¥, Fz, =) is a prob-
ability distribution D over Ez. Given concepts ¢, ¢* € ¢
and an example distribution D,

errorp ¢+ (¢) = 6]ZrD(lab(b(e) # laby-(e))

is the expected error of ¢ relative to ¢* and D.

2This deviates slightly from the standard convention, which de-
fines a concept class to be a pair (Ez,C) where C C p(Fz) (and,
for ¢ € C, |c| to be the size of the smallest representation of ¢). The
difference is non-essential. We prefer this presentation as it makes it
easier to spell out unambiguously the algorithmic problems that we
consider (e.g., Definition 2.2)

Definition 2.5 (Efficient PAC learnability). An effi-
cient PAC algorithm for a concept class C is a pair (A, f)
where

e A is a randomized polynomial-time algorithm that
takes as input a set of labeled examples and outputs
a concept from C, and

o f(+,+,+) is a polynomial function, such that, for all
0,e € (0,1), alln,m € N, all example distributions D
over Bz, and all * € @y, if the input consists of
at least f(1/0,1/e,n,m) examples drawn from D and
labeled according to ¢*, then with probability at least
1 -4, A outputs a concept ¢ with errorg« p(¢p) < e.

If such an algorithm exists, we say that C' is efficiently
PAC learnable. If the function f depends only on § and
€ and not on n,m, then we say that (A, f) is a strongly
efficient PAC algorithm, and that the concept class C is
strongly efficiently PAC learnable.

This definition of efficient PAC algorithms is modeled
after the one in the textbook [2], in line with the literature
on inductive logic programming (cf., e.g., [25]). Our results
also apply to the alternative oracle-based definition.> We
prefer the above definition as it exhibits more clearly the
relationship to fitting algorithms.

The following proposition relates the two algorithmic
problems (fitting and PAC learning) to each other.

Proposition 2.6 (Pitt and Valiant [26]). Let C be a
polynomial-time evaluable concept class with the poly-
nomial-size fitting property. If C is efficiently PAC learn-
able, then the fitting problem for C' is in RP.

3 Following the oracle-based presentation in, e.g., [22], one can
define an efficient PAC learning algorithm for a concept class C to
be a randomized polynomial-time algorithm that takes as input d, € €
(0,1) and a bound n € N on the size of the target concept ¢*, and
that has access to an oracle EX 4« p which, when called, returns (in
unit time) a random example drawn from D and labeled according to
¢*. For every choice of §, ¢, ¢* € &, n > |¢*|, and for every example
distribution D, the algorithm must terminate in time polynomial
in 1/8,1/e, n, and the size of the largest example returned by the
oracle. Furthermore, it must return a concept that with probability
1 — J satisfies errory« p(¢) < e.

Note that, under this definition, not only the running time of the
algorithm but also the number of examples drawn from the distribu-
tion may depend on the size of examples: if the learning algorithm
encounters a large example e, it may follow up by requesting a num-
ber of additional examples that is polynomial in the size of e.

Efficient PAC learnability in the above sense implies efficient PAC
learnability in the sense of Definition 2.5: one can turn an oracle-
based learning algorithm into a learning algorithm according to Def-
inition 2.5 by drawing examples uniformly at random from the input
batch to answer EX oracle calls. (To guarantee polynomial-time ter-
mination, even on inputs where a fitting concept does not exist, we
can maintain a counter and terminating after p(n) steps, where p
is the polynomial that bounds the running time of the oracle-based
learner on consistent inputs). Our negative learnability results thus
apply also to the oracle-based definition. A classic paper that shows
equivalence of different PAC learning models is [20].



This is a well-known fact (cf. also [2, Thm 6.2.1]), al-
though not in this precise formulation, as, usually, polyno-
mial evaluability and the polynomial-size fitting property
are tacitly assumed (which has sometimes led to mistakes,
e.g., in the derivation of Corollary 15 in [23]). To be self-
contained, we outline the proof of Proposition 2.6 here.

Proof. (of Proposition 2.6) Assume that there is an ef-
ficient PAC algorithm (A4, f) for C. We use it to solve
the fitting problem for C' in randomized polynomial time.
Assume that a set E of k labeled examples is given as
the input. Let n = p(||E||), where p is the polynomial
witnessing the fact that C' has the polynomial-size fitting
property. Let D be the uniform distribution on E (where
each example in F gets probability mass 1/k), and let m
be the maximum size of an example in E. Pick § < .5
and € < 1/k. We generate a new (polynomial-sized) col-
lection of labeled examples E’ by drawing f(1/5,1/e,n,m)
samples from distribution D, and run algorithm A on it.
Finally, we check that the output of A is a fitting concept
for E. If so, we answer Yes. Otherwise, we answer No.
Clearly, if there is no fitting concept, the output will be
No. If, on the other hand, there is a fitting concept, then
there is one of size at most n, and hence, with probability
1 — 4, the algorithm will output a concept with error less
than e. This in fact implies that the error is 0 (because
if the query misclassifies an example to which D assigns
non-zero mass, then it will have error at least 1/k). Hence,
with probability 1 — ¢ > 0.5 the algorithm outputs Yes. [J

A variation on the same argument shows:

Proposition 2.7. If a concept class is strongly efficiently
PAC learnable, then it has the polynomial-size fitting prop-
erty.

Proof. The proof uses the same construction as before,
except that the sample size now does not depend on n.
Furthermore, we omit the verification step where we con-
firm that the produced concept fits the input examples. In-
stead, we just output the result of the learning algorithm.
In this way, we obtain a randomized polynomial-time al-
gorithm that has a non-zero probability of outputting a
fitting concept for given input labeled examples, whenever
a fitting concept exists. The polynomial-size fitting prop-
erty immediately follows from this (the run that outputs
a fitting concept does so in polynomial time). O

We also make use of the following trivial fact:

Proposition 2.8. If a concept class (@, Ex, =) is effi-
ciently PAC learnable, then, for every Ex' C Ex, the con-
cept class (®, BEx'| ) is also efficiently PAC learnable.

Indeed, this follows from the fact that every example
distribution over E.T/(n) is in particular also an example
distribution over Ex() (that assigns no probability mass
to any example in Ex \ Ex’).

Finally, we use a well known connection between PAC
algorithms and Occam algorithms.

Definition 2.9 (Occam algorithm). An Occam algo-
rithm for a concept class C = (®, Fz, |=), with parameters
a<1landk >1, is an algorithm that takes as input a set
of labeled examples E and outputs a concept ¢ € ® with
|6| < |E|%|¢*|* that fits E provided that any concept from
® does. Furthermore, the running time is required to be
bounded by a polynomial in |¢*| and ||E||.

Blumer et al. [4] proved that every Occam algorithm
A yields an efficient PAC algorithm, namely A’ = (A, f),
where the sample-size polynomial f is chosen such that

€

1/(1—w)
f(1/6,1/e,n,m) = (n’“an—l—ln(Q/é)) .

Note that f does not depend on its fourth component m
(i.e., the example size bound). Moreover, every Occam
algorithm gives rise to an efficient PAC algorithm, not
only in the sense of Definition 2.5 as explained above, but,
by the same arguments, also when considering the oracle-
based presentation of PAC algorithms (cf. Footnote 3).

Theorem 2.10 ([4]). Every concept class for which there
is an Occam algorithm is efficiently PAC learnable.

3. Classes of CQs as Concept Classes

Each class of CQs can be naturally viewed as a concept
class. Fix a schema S, an arity & > 0, and a class C of k-
ary CQs over S. In the associated concept class (C, Fz, =),
Ez is the class of all pairs (I,a) with I an S-instance and
a a k-tuple of elements of the active domain of I, and =
describes query answers, that is, (I,a) = ¢(x) iff a € ¢(I),
for all ¢(x) € C and (I,a) € Ex. We may abuse notation
and refer to this concept class (C, Ez, =) simply as C' when
no ambiguity arises. The following theorem summarizes
some basic properties.

Theorem 3.1 ([5, 8]). Fiz any schema S that contains
at least one binary relation symbol, and some k > 0.

1. The concept class of k-ary CQs over S is not
polynomial-time evaluable (unless P = NP). Indeed,
its evaluation problem is NP-complete.*

2. The concept class of k-ary CQs over S lacks the
polynomial-size fitting property. Indeed, the small-
est fitting CQ for a given set of labeled examples is
in general exponentially large.

3. The fitting problem for k-ary CQs over S is
coNEzp Time-complete.

Let us now consider restricted classes of (unary) CQs
that still include path-CQs. We will see in the next section
that every such class of CQs has an NP-hard fitting prob-
lem (cf. Theorem 5.6). We observe here that every such
class of CQs lacks the polynomial-size fitting property:

4The evaluation problem takes as input ¢ and e and asks if e = ¢.



Theorem 3.2. Fiz a schema S that contains at least a
binary and a unary predicate, and let C be any class of
unary CQs over S that includes all path-CQs. Then C
lacks the polynomial-size fitting property.

Proof. Let R € S be binary and P € S unary. For
m > 1, let L,, denote the “lasso” instance, with active
domain ag’, ..., aby, ; consisting of the facts R(aj",aj} )
for all i < 2m — 1 and R(a3},_q,a) and P(al?).

For ¢ > 1, let p; be the i-th prime number (where
p1 = 2). By the prime number theorem, p; = O(ilog ).

Finally, for n > 1, let I,, be the disjoint union of L,
for i = 1,...,n, extended with the fact R(b,b) for a fresh
value b. We now construct our set of examples E,, as
follows:

e Positive example (I,,,af’) for i =1...n.
e Negative example (I,,b).

It is easy to see that a fitting path-CQ for F, exists,
namely the query

q(z1) == Jzg ... xp(R(z1,22) A+ - A R(z—1, 1) A Pag))

where k = IL;—1 ,(pi).

We claim that every CQ that fits the examples must
be of size at least 2™. Let ¢(z) be any CQ that fits the
examples. Since positive and negative examples are based
on the same instance, we may assume that ¢ is connected.
First of all, note that ¢ must contain a conjunct of the form
P(y) (otherwise it would fail to fit the negative example).
Furthermore, y is not the free variable = and ¢ uses only
the relation symbols P and R (otherwise it would fail to fit
any positive example). Consider the directed graph where
the vertices are the variables of ¢ and there is an edge
from variable z to variable 2’ iff the atom R(z, z’) occurs
in q. Since ¢ is connected, there is an undirected path
connecting x to y. Take any such path of minimal length.
We can represent it as a sequence

T =T, 00, L1, X1y..., Ty =Y
where for each i < ¢, «; is an atom that occurs in ¢
that is either R(z;,x;11) (then «; is a “forward edge”)
or R(xz;+1,x;) (then «; is a “backward edge”). We define
the net-length of this path to be the number of forward
edges minus the number of backward edges.

Clearly, in order for the query ¢ to be satisfied in a
lasso instance L,,, the net length of the above path must
be divisible by m. Therefore, since ¢ fits all the examples
constructed above, the net-length must be divisible by p;,
foralli =1...n, and thus at least [[,_, . (p;). It follows,
then, that also the length (in the ordinary sense) of the
path must be at least [[,_; , (pi). Therefore, every CQ
that fits the above examples must have at least [[,_; . (i)
variables, which exceeds 2™. O

4. Failure of Strong PAC Learnability
By Proposition 2.7, Theorem 3.2 implies:

Corollary 4.1. Fiz any schema S that contains at least
a binary relation symbol and a unary relation symbol. Let
C be any class of unary CQs over S that includes all path-
CQs. Then C is not strongly efficiently PAC learnable.

Alternatively, Corollary 4.1 can be shown using a VC-
dimension argument. In fact, we may then even drop the
‘efficiently’ from the statement. We define strong PAC
learnability in the same way as strongly efficient PAC
learnability (cf. Definition 2.5) except that A is not re-
quired to run in polynomial time and f is not required to
be a polynomial function.

Theorem 4.2. Fiz any schema S that contains at least a
binary relation symbol and a unary relation symbol. Let C
be any class of unary CQs over S that includes all path-
CQs. Then C is not strongly PAC learnable.

Proof. Let us recall the definition of VC-dimension. We
say that a concept class C' shatters a set of examples S
if for every subset S’ C S there is a ¢ € C such that
S ={e €S |ekc} The VC-dimension of C is the
cardinality of the largest set of examples that is shattered
by C, or infinite if arbitrarily large sets can be shattered.
The fundamental theorem of statistical machine learning
says that a concept class is strongly PAC learnable iff it
has finite VC dimension [4].

Let S be a schema that contains a unary relation sym-
bol P and a binary relation symbol R, and let C' be a class
of unary CQs over S that contains all path-CQs. We show
that C has infinite VC-dimension.

Let n > 0. We construct a set S that contains n ex-
amples (I1,a1),...,(I,,a1). Each instance I; contains an
R-path of length n — 1 starting at aj, that is, adom(I;) =
{a1,...,a,} and R(aj,a;41) € I; forall j € {1,...,n—1}.
Moreover, we include in I; all facts P(a;) for j # 1.

To show that C shatters S, let S’ C S be an arbitrary
subset of S and let X C {1,...,n} be such that §' =
{(I;;a1) € S|i€ X} and set X = {1,...,n}\ X. Let
q(x1) be the path-CQ

q(x1) == Fzg ... an( /\ R(z;,xiv1) A /\ P(x;)).
i=l..n—1 jeX
One may verify that S’ = {(I;,a1) € S| ¢(a1) € I;}. O
The concept class of path-CQs is polynomial-time
evaluable, as follows from the fact that it forms a subclass

of the class of a-acyclic CQs, which is polynomial-time
evaluable [30]. We make use of this in the next section.

Theorem 4.3 ([30]). Fiz any schema S. The concept
class of path-CQs over S is polynomial-time evaluable.



5. Non-Efficient PAC Learnability

We now consider PAC learnability in the non-strong
version and show that no class of unary CQs that includes
all path-CQs is efficiently PAC learnable, cf. Theorem 1.1
from the introduction.

Recall that we cannot use Proposition 2.6 directly
to prove non-efficient PAC learnability, for two reasons.
First, the polynomial-size fitting property does not hold for
path-CQs. And second, the classes that we consider may
contain CQs that are not path-CQs, and thus polynomial-
time evaluability also fails, despite Theorem 4.3. To cir-
cumvent the latter issue, we work with a restricted class
of instances.

5.1. Tree-Shaped Instances

Definition 5.1 (Tree-Shaped Instances and CQs).
Let S be a schema that consists of a binary relation symbol
R and any number of unary relation symbols, and let I
be an S-instance. We say that I is tree-shaped if the
following two conditions hold:

1. There is a function level: adom(I) — N such that,
for each fact R(a,b) of I, level(b) = level(a) + 1.

2. I does not contain two binary facts R(a,b), R(a’,b)
that agree on the second value but not on the first.

A CQ over S is said to be tree-shaped if its canonical in-
stance is tree-shaped.®

Lemma 5.2. Fiz a schema S that consists of one binary
relation symbol and any number of unary relation symbols.
Given a CQ q over S,

1. we can test in polynomial time whether there exists
a tree-shaped instance I such that q(I) # 0,

2. if the answer to the above question is positive, then
we can construct in polynomial time a tree-shaped
CQ ¢ such that for all tree-shaped instances I,

q(I) = ¢'(I).

Proof. It suffices to prove the claim for connected CQs
(the general case then follows by a component-wise anal-
ysis). Therefore, let ¢ be a connected CQ.

Let ~ be the smallest equivalence relation over the vari-
ables of ¢ such that, whenever R(u,v) and R(u’,v’) are
conjuncts of ¢ and v ~ v’ then also u ~ u’. Let ¢’ be the
quotient of ¢ w.r.t. ~ (that is, ¢’ is obtained from ¢ by
choosing a representative of each ~-equivalence class, and
replacing every occurrence of a variable x by the represen-
tative of the ~-equivalence class of x). It is easy to see
that, for all tree-shaped instances I, a € ¢(I) iff a € ¢'(1)
(here, the left-to-right direction uses the tree-shape of I,
while the right-to-left direction holds for every instance I).

5The canonical instance of a CQ is the instance whose active
domain consists of the variables of the query and whose facts are the
conjuncts of the query.

If ¢’ contains a directed cycle, then clearly, ¢'(I) = 0
for all tree-shaped instances I, and we are done.

Assume, therefore, that ¢’ does not contain a directed
cycle. Since ¢’ is connected, there must then exist a (free
or existentially quantified) variable y for which ¢’ does not
contain any conjunct of the form R(-,y). Furthermore, any
simple path from gy to any other variable z must consist
entirely of forward edges, otherwise, the path would be of
the form
and then v and w would have been identified when we
constructed ¢'. It follows that ¢’ is tree-shaped. Further-
more, let I,/ be the canonical instance of ¢’. Then, clearly,

¢ (Iy) # 0. O

Since tree-shaped CQs are a-acyclic and hence can
be evaluated in polynomial time (on the class of all in-
stances) [30], Lemma 5.2 immediately implies:

Proposition 5.3. Fix a schema S that contains one bi-
nary relation symbol and any number of unary relation
symbols. For every class C' of CQs over S, the concept
class (C, Extree, |E), where Eipee is the set of tree-shaped
S-instances, is polynomial-time evaluable.

In what follows, we will therefore only work with tree-
shaped instances.

5.2. A reduction from 3CNF satisfiability

Fix a schema S containing a binary relation symbol R
and a unary relation symbol P.

We use a reduction from the satisfiability problem for
3CNF formulas, inspired by [23, 19]. Let ¢ = ¢1 A -+ A
¢ be any 3CNF formula over a propositional signature
PROP = {Xy,...,X,,}. We denote by LIT = {X;, X; |
i < m} the set of all literals over PROP. For every | €
LIT, set j; = 2i if [ is of the form X; and j; = 2i — 1 if [
is of the form X;. Define an S-instance I, as follows:

o R(a;,pi1) and R(a;,n;1) for i <m

o R(pij,pij+1) and R(n; j,n; j41) for i <m, j <2m

!

pij,) for every literal [ € LIT \ {X;}

°
)

o R

R(
(
(n;,5,) for every literal [ € LIT \ {X;}
(b,b;1) for i <k

(

o R(b; ;,b; jy1) for i <k and b <2m

e P(b;,) for every | € LIT and i < k with [ not
occurring in the clause ¢;.

Let By = {((p, a:),+) [ i <m}U{((Is,b),—)}.

Example 5.4. Let PROP = {X;,X>} and consider the
formula ¢ = X1 AXoA(X1V Xs). Then, the corresponding
S-instance I can be depicted as follows (where each edge
represents an R-edge directed downwards):
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Lemma 5.5. For all SCNF formulas ¢:

1. From a satisfying assignment for ¢, one can con-
struct in polynomial time a path-CQ) that fits Ey.

2. Conversely, if there is a CQ that fits Ey, then ¢ has
a satisfying assignment.

In particular, whenever there is a CQ that fits Eg, then
there is a fitting path-CQ of size polynomial in |PROP).

Proof. 1. Let v be a satisfying assignment for ¢. Let

q(zo) :— Jz1, ... Tam (R(x0, 1) A -+ A R(T2m—1, Tam) A
NieLIT such that vl P(z;,)).

Clearly, each a; € q(1y) and b & q(Iy).

2. Let g(z) be a unary CQ that fits E». By Lemma 5.2,
we may assume that ¢ is a tree-shaped CQ. Furthermore,
we may assume without loss of generality that ¢ is con-
nected. Let level,: Vars(q) — N be as given by Defini-
tion 5.1. We may assume levely(x) = 0 (if there was any
y € Vars(q) with level,(y) < levely(x), then ¢ would not
fit the positive examples of Ey).

Thus, ¢(x) is a connected tree-shaped CQ, where x is
the root of the tree. Since ¢(z) fits the negative example
(I4,b), we have that b & q(I5). This means that either (i)
q contains a conjunct of the form P(x), or (ii) for some
y € Vars(q) with levely(y) = 1, the subtree of g rooted
at y, does not admit a homomorphism to (I, b; 1) for any
i < n. It is easy to see that (i) cannot happen, because it
would imply that ¢ does not fit the positive examples in
Ey4. Therefore, case (ii) must apply. Let y be the variable
in question, and let us denote by ¢'(y) the subtree of ¢
rooted at y (with y as its free variable).

We know that ¢’ (1) does not contain b; 1 for any i < n.
Furthermore, it is easy to see (from the fact that ¢ fits the
positive examples in Ey), that for each ¢ < m, either p;;
or n;,1 belongs to ¢'(I,).

Now, let L, be the set

{l € LIT | ¢’ has a conjunct P(z) with level,(z) = j; + 1}

Claim 1: L, does not contain both X;, X; for any i < m.

Claim 1 follows immediately from the fact that ¢(z)
fits the positive examples.

Claim 2: L, contains a literal from each clause of ¢.

Suppose, for the sake of a contradiction, that ¢ has a
clause ¢;, such that no literal occurring in ¢; belongs to

L,. Then, b; 1 belongs to ¢'(I,), as witnessed by the vari-
able assignment that maps each variable 2z t0 b; jever, (2)—1-
However, we know that b; 1 € ¢'(I), a contradiction.
Claim 1 and 2 together imply that ¢ is satisfiable. In-
deed, it suffices to take any truth assignment consistent
with the literals in L,. 0

From Lemma 5.5, together with the NP-hardness of
3CNF satisfiability, we immediately get:

Theorem 5.6. Fiz any schema S that contains at least a
binary relation symbol and a unary relation symbol, and
let C' be any class of unary CQs over S that includes all
path-CQs. Then the fitting problem for C' is NP-hard.

Now, putting everything together, we can prove Theo-
rem 1.1, restated here:

Theorem 5.7. (assuming RP # NP) Fiz a schema S
containing at least one binary relation symbol R and one
unary relation symbol P. Let C be any class of unary
CQs over S that includes all path-CQs. Then C is not
efficiently PAC learnable, even w.r.t. single-instance dis-
tributions.

Proof. Assume that the concept class C = (C, Ex, =)
is efficiently PAC learnable. Then, by Proposition 2.8,
so is C' = (C,Ex',|E) where Ex' = {(I,a) | I =
I for some 3CNF formula ¢ and a € {a1,a2,b}}. It fol-
lows from Lemma 5.5 that C’ has the polynomial-size fit-
ting property. Furthermore, C’ is polynomial-time evalu-
able since all examples in Ez’ are tree-shaped and by
Proposition 5.3. By Proposition 2.6, the fitting problem
for C” is thus solvable in RP. By Theorem 5.6, this implies
that RP = NP.

A careful inspection of the proof of Proposition 2.6
and the construction of our examples reveals that even
efficient PAC learnability w.r.t. single-instance distribu-
tions already gives us, in the same way as above, an RP-
algorithm for the fitting problem for C". g

Remark 5.8. The above proof involves path-CQs of un-
bounded depth, over a fixed schema. It is easy to see that
if we were to bound both the depth of the path-CQs and
keep the schema fixed, we would end up with a finite con-
cept class, trivializing the PAC learning problem.

Remark 5.9. The above non-learnability proof cannot be
adapted to UCQs in an obvious way. In fact, we crucially
use the fact that the fitting problem for path-CQs is NP-
hard whereas the fitting problem for UCQs that are unions
of path-CQs can be solved in polynomial time. On the
other hand, as mentioned earlier, it follows from results in
[6] that UCQs are not efficiently PAC learnable, assuming
RP # NP.



Remark 5.10. The fact that the above proof involves a
reduction from the satisfiability problem for 3CNF formu-
las is remarkable, given that 3CNF formulas themselves
are efficiently PAC learnable [22].

Remark 5.11. Efficient PAC learnability as defined in
Definition 2.5 (in the non-strong version) is sometimes also
known as strong PAC learnability. In contrast, weak PAC
learnability then merely requires the existence of a learner
that works for some non-trivial choice of 6 and e. A well-
known result in computational learning theory states that,
for polynomial-time evaluable concept classes, weak learn-
ability implies strong learnability (cf. [22]). Since the con-
cept class of CQs is not polynomial-time evaluable, Theo-
rem 1.1, taken at face value, does not imply that the same
result holds in the weak PAC model. Nevertheless, inspec-
tion of our proof immediately shows that it yields the same
result also for the weak PAC model.

6. PAC Learnability with Membership Queries

We prove Theorem 1.2 from the introduction. For-
mally, a membership oracle MEMB,, for a concept ¢, is
an oracle that, given any unlabeled example e, returns (in
unit time) its label according to ¢. PAC learning with ac-
cess to a membership oracle for the target concept can be
viewed as a formal model of active learning.

Theorem 6.1. Fiz any schema S and k > 0. There is
an algorithm that takes as input a set E of examples la-
beled according to a k-ary CQ q* over S, has access to a
membership oracle for ¢*, and outputs a k-ary CQ q over
S with |q| < |¢*| that fits E. Moreover, the running time
of the algorithm is polynomial in ||E|| and |q*|.

Proof. We use ideas similar to the ones used in the proof
that CQs are efficiently exactly learnable with member-
ship and equivalence queries [6, 7]. Before we describe the
algorithm, we introduce a number of basic concepts.

Let I, J be instances over the same schema. A mapping
h: adom(l) — adom(J) is called homomorphism from I
to J if R(h(c)) € J for every R(c) € I. Given tuples
a and b of values from I and J, respectively, we write
(I,a) — (J,b) to denote the existence of a homomorphism
h from I to J with h(a) = b. Homomorphisms compose in
the sense that (I,a) — (J,b) and (J,b) — (K, c) implies
(I,a) = (K,c).

The direct product I x.J of two instances (over the same
schema S), is the S-instance that consists of all facts of the
form R({a1,b1),...,{an,byn)), where R(as,...,a,)is a fact
of I and R(by,...,by) is a fact of J. Note that the active
domain of I x J consists of pairs from adom(/) x adom(J).
The direct product (I,a) x (J,b) of two examples, where
a=aiy,...,ar and b = by,...b; are of the same length,
is given by (I x J,({a1,b1),...,{ak,br)). Note that, in
general, this may not yield a well-defined example, be-
cause there is no guarantee that the distinguished ele-
ments (ay,b1),..., (ax,bg) belong to adom(I x J). When

it is well-defined, then the projections to the respective
components witness that both (I,a) x (J,b) — (I,a) and
(I,a) x (J,b) — (J,b).

A critical positive example for a CQ ¢* is a positive ex-
ample (I,a) for ¢*, such that, for every proper subinstance
I' C I, (I',a) is a negative example for ¢*.

The following claim is easy to prove ([7, Lemma 5.4]):

Claim 1: Given a positive example (I, a) for an unknown
CQ ¢*, we can construct from it in linear time a critical
positive example (I’;a) for ¢*, with I’ C I, given access
to a membership oracle for ¢*.

Claim 2: If (I,a) and (J,b) are positive examples for a
CQ ¢*, then (I,a) x (J,b) is a well-defined example, and
it is a positive example for ¢*.

Proof of Claim 2: Let (I,a) and (J,b) be positive ex-
amples for a CQ ¢*. Let hy and hy be the respective wit-
nessing variable assignments. Then the map h given by
h(z) = (hi(x), ha(x)) is a satisfying variable assignment
for ¢* in (I, a) x (J, b), showing that the latter is a positive
example for ¢*. It remains to show that it is a well-defined
example, i.e., that each distinguished element occurs in a
fact. This follows from the fact that each free variable of
¢* occurs in a conjunct of ¢* (by the definition of CQs),
and that each distinguished element of (I, a) x (J, b) is the
h-image of a free variable of ¢* (cf. [7, Lemma 5.5]).

Given a set E of examples labeled according to ¢*,
the algorithm proceeds as follows. Let (I1,a1),..., (In,a,)
be an enumeration of the positive examples in F. We
construct, by induction on n, a critical positive example
(J, b) for ¢* such that there is a homomorphism from (.J, b)
to each (I;,a;). This is done by applying Claim 1 and
Claim 2 in an interleaved fashion. More precisely:

e Start by setting (J1,b1) to be the critical positive
example obtained from (Iy,a;) via Claim 1.

e Fori=2,...,n,let (J/,b}) be (Ji_1,b;—1) x (I;,a;)
and obtain (J;, b;) as critical positive example from
(J!,b}) via Claim 1.

e Set (J,b) = (J,by).

Note that, by Claim 2 and the fact that homomorphisms
compose, each (J!,b’) is a well-defined example that has a
homomorphism to all examples (I1,a;), ..., (I;,a;). Thus,
(J,b) has a homomorphism to all positive examples. Let
b = b1,...,b; and let ¢ be the canonical CQ of (J,b),
that is, the CQ q(zp,, ..., 2p, ) that has a conjunct for ev-
ery fact of J, where each element b € adom(J) is replaced
by a corresponding variable x. Then ¢ fits the positive
examples in E since (J,b) has a homomorphism to each
positive example. It also fits the negative examples in E:
(J,b) is a positive example for ¢* by construction and if ¢
fails to fit a negative example (I,a) in E, then (J,b) has a
homomorphism to (I,a), which, by composition of homo-
morphisms, leads to a contradiction with ¢* fitting (I, a).



Furthermore, one can easily see that any critical pos-
itive example (I,a) for ¢* satisfies |I| < |¢*|. Hence,
each J; satisfies |J;] < |¢*|. This implies, in particular,
that |g| < |g¢*| as required. Moreover, it implies that
|7/| € O(]|E||-1g*]), for all i. Since J; is obtained from J! in
linear time by Claim 1, the running time of this algorithm
is O(|EIP - ¢°]). 0

The algorithm given in Theorem 6.1 is an Occam al-
gorithm (with & = 0 and & = 1) in the sense of Def-
inition 2.9, except for the fact that it uses a member-
ship oracle. While Theorem 2.10 is stated for the case
without membership queries, its proof applies also to Oc-
cam algorithms with membership queries, yielding efficient
PAC learnability with membership queries (stated as The-
orem 1.2 in the introduction):

Corollary 6.2. Fiz any schema S and k > 0. The class
of all k-ary CQs over S is efficiently PAC learnable with

membership queries.

Remark 6.3. The proof of Theorem 6.1 establishes some-
thing stronger, namely that CQs are efficiently PAC learn-
able with membership queries even when the schema S and
the arity k are not fixed but treated as part of the input
of the learning task. This is remarkable, because it follows
from results in [13] that CQs are not PAC predictable with
membership queries when the arity is treated as part of the
input (under suitable cryptographic assumptions). How-
ever, note that efficient PAC learnability (with member-
ship queries) implies PAC predictability (with membership
queries) only for concept classes that are polynomial-time
evaluable, which the class of CQs is not.

Remark 6.4. We expect that, with respect to each of the
various notions of “acyclicity” mentioned in the introduc-
tion, acyclic CQs are efficiently PAC learnable with mem-
bership queries. However, since efficient PAC learnability
(with or without membership queries) is not a monotone
property of concept classes, this requires a case-by-case
analysis. A challenge is posed by the fact that the posi-
tive examples (I;,a;) are not guaranteed to correspond to
queries from the considered class, and thus neither are the
hypotheses that our algorithm generates.

The above proof can also be modified to apply to the
concept class of unions of conjunctive queries (UCQs). By
a k-ary UCQ over a schema S we mean a non-empty finite
disjunction of k-ary CQs over S.

Theorem 6.5. Fiz any schema S and k > 0. The class
of k-ary UCQs over S is efficiently PAC learnable with
membership queries.

Proof. We sketch the modified algorithm. Given a
set E of labeled examples, it proceeds as follows. Let
(I1,a1),...,(In,a,) be an enumeration of the positive ex-
amples in . We construct sets of critical positive exam-
ples Xo,..., X, such that for all i and all (I;,a;) with
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Jj < i <mn, there exists a (J,b) € X; that admits a homo-
morphism to (I;,a;). As before, this is done by applying
Claim 1 and Claim 2 in an interleaved fashion.

More precisely, set Xo = 0; fori = 1,...,n, we first test
whether there is a (J,b) € X;_1 such that (J,b) x (I;,a;)
is a positive example for the target query ¢*. We use
a membership query for this. If such (J,;b) € X;_;
exists, then we choose an arbitrary one and set X; =
(X;—1 \ {(J,;b}) U {(J',b")}, where (J',b) is a subin-
stance of (J,b) x (I;, a;) that is a critical positive example
for ¢*. Otherwise (if no such (J,b) € X;_; exists), we set
X; = X;_1 U{(J',b")} where (J',b’) is a subinstance of
(I;,a;) that is a critical positive example for ¢*.

Let ¢ be the UCQ that is the disjunction of the canon-
ical CQs of the examples in X,,. By similar arguments as
before, we can show that ¢ fits F and |g| < |¢*|. In partic-
ular, for each i < n the sum of the sizes of the structures
in X; is at most the size of ¢*. O

Remark 6.6. The problem of learning GAV schema map-
pings closely corresponds to the problem of learning UCQs
(cf. [7]). In particular, Theorem 6.5 implies that GAV
schema mappings are efficiently PAC learnable with mem-
bership queries. This resolves an open question in [6].

7. Conclusion

We established a strong negative result on the efficient
PAC learnability of classes of CQs that include all path-
CQs. Although our result indicates that interesting classes
of CQs tend to not be efficiently PAC learnable, from a
theoretical perspective it would be interesting to work to-
wards a complete classification of classes of CQs that are
(or are not) efficiently PAC learnable. On the positive
side, we showed that CQs and UCQs are efficiently PAC
learnable with membership queries.

In the following, we discuss how one could try to over-
come the negative result by loosening the running time
requirements. A first observation is that while PAC learn-
ability of (the class of all) CQs cannot be attained by a
polynomial-time algorithm, PAC learning with only poly-
nomial sample size is always possible when more running
time is granted. Indeed, this approach has been success-
fully exploited in [9] for PAC learning unary tree-shaped
CQs (over a schema that contains only unary and binary
relations) with the help of a SAT solver.

The fact that a PAC learning algorithm for CQs exists
with polynomial sample size but super-polynomial running
time, is not difficult to establish. One can simply use an
Occam algorithm that enumerates candidate CQs ¢ in the
order of increasing size, checks for each ¢ whether it fits
the input examples E, and returns the first fitting CQ
found. If a fitting CQ exists, then there is one of size
single exponential in ||E|| [5]. We may thus terminate
(and return an arbitrary CQ) when that bound is reached.
The algorithm runs in double exponential time even if we
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