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Abstract

We study extensions of expressive decidable fragments of first-
order logic with circumscription, in particular the two-variable
fragment FO2, its extension C2 with counting quantifiers, and
the guarded fragment GF. We prove that if only unary pred-
icates are minimized (or fixed) during circumscription, then
decidability of logical consequence is preserved. For FO2 the
complexity increases from CONEXP to CONEXPNP-complete,
for GF it (remarkably!) increases from 2EXP to TOWER-
complete, and for C2 the complexity remains open. We also
consider querying circumscribed knowledge bases whose on-
tology is a GF sentence, showing that the problem is decidable
for unions of conjunctive queries, TOWER-complete in com-
bined complexity, and elementary in data complexity. Already
for atomic queries and ontologies that are sets of guarded ex-
istential rules, however, for every k ≥ 0 there is an ontology
and query that are k-EXP-hard in data complexity.

1 Introduction
There are various approaches to defining non-monotonic log-
ics such as default rules, autoepistemic operators, and circum-
scription. Most of these are mainly used with propositional
logic rather than with first-order logic (FO), for two reasons.
First, many of the approaches such as default rules can yield
non-intuitive results when used with first-order logics, inter-
acting in unexpected ways with existential quantification; see
for example (Baader and Hollunder 1995) for a discussion of
this issue. And second, the undecidability of first-order logic
of course carries over to its non-monotonic variants.

Description logics (DLs) are decidable fragments of FO
for which non-monotonic variations have been studied ex-
tensively, see e.g. (Baader and Hollunder 1995; Donini,
Nardi, and Rosati 2002; Bonatti, Lutz, and Wolter 2009;
Giordano et al. 2013; Bonatti et al. 2015b). It turned out that
circumscription provides one of the most well-behaved of
such variations: it does not interact in dramatic ways with ex-
istential quantification, has a simple and appealing semantics
that boils down to minimizing the interpretation of certain
predicates, and comes with a clean way to preserve the de-
cidability of the base logic. The latter is in fact achieved by
permitting only unary predicates to be minimized or fixed
during minimization while binary predicates must be allowed
to vary (Bonatti, Lutz, and Wolter 2009). This still covers the
main application of circumscription which is reasoning about

typical properties of objects that belong to a certain class. To
model the statement that KR papers are typically interesting,
for example, one may write

KRPaper(x) ∧ ¬abKRpaper(x) → Interesting(x)

and then minimize the unary ‘abnormality predicate’
abKRpaper. In this way, one may conclude that any concrete
KR paper is interesting unless there is concrete evidence
against that. For more information on DLs with circumscrip-
tion, we refer to (Bonatti et al. 2015a; Stefano, Ortiz, and
Simkus 2023; Lutz, Manière, and Nolte 2023)

It is well-known that DLs are generalized by various de-
cidable and more expressive FO fragments, of which the
two-variable fragment FO2, the guarded fragment GF, and
the extension C2 of FO2 with counting quantifiers are the
most important ones. In this paper, we ask the following
questions: Do expressive decidable fragments of FO remain
decidable when extended with circumscription (when only
unary predicates are minimized or fixed)? And if so, what is
the impact on computational complexity? The answers are,
in our opinion, somewhat surprising.

We study the reasoning problems of circumscribed con-
sequence and circumscribed querying. In the former, two
sentences ϕ and ψ are given along with a ‘circumscription
pattern’ CP that specifies which predicates are minimized,
fixed, and varying. We are then interested in deciding whether
ψ holds in every model that is minimal in the sense specified
by CP, written ϕ |=CP ψ. Circumscribed querying is defined
in the same way, but now ϕ is a knowledge base that con-
sists of a sentence from the FO fragment under consideration
(specifying an ontology) and a database, and ψ is a query.
As query languages, we consider single-atom queries (AQs),
conjunctive queries (CQs), and and unions thereof (UCQs).

We start with studying FO2. Similarly to the case of de-
scription logic (Bonatti, Lutz, and Wolter 2009), a crucial
step for proving decidability is to show that circumscribed
FO2 has the finite model property (FMP) in the sense that
if ϕ ̸|=CP ψ, then there is a CP-minimal model A of ϕ with
A ̸|= ψ that is of bounded size. To prove this, we build on a
well-known construction from (Grädel, Kolaitis, and Vardi
1997), used there to establish the FMP of non-circumscribed
FO2, which converts a potentially infinite model A of an FO2

sentence ϕ into a model B of single exponential size. To
apply this construction in the circumscribed case, however,
we need an additional condition to be satisfied:
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(♡) B must not realize any 1-type more often than A (for a
suitable notion of 1-type).

The construction of (Grädel, Kolaitis, and Vardi 1997) does
not satisfy this condition. We remark that this is in contrast to
filtration, the (much simpler) finite model construction used
for description logics such as ALC.

We thus rework the construction of (Grädel, Kolaitis, and
Vardi 1997) in a suitable way, obtaining a version that satis-
fies Condition (♡). This yields the FMP for circumscribed
FO2 and decidability as well as a CONEXPNP upper com-
plexity bound for circumscribed consequence. A matching
lower bound is obtained from ALC and thus circumscribed
consequence in FO2 is of the same complexity as in (the
much less expressive) ALC. We obtain the same result for
the combined complexity of circumscribed AQ-querying and
also show Πp2-completeness for data complexity, again the
same as in ALC. Querying with UCQs is undecidable already
for non-circumscribed FO2, so we do not study it.

For GF, we follow the same general approach, with a re-
markably different outcome. There are two constructions
that show the finite model property of GF, both of them
rather intricate. The historically first one was proposed by
Grädel, based on a combinatorial construction due to Her-
wig (Grädel 1999). Later, Rosati introduced a different fi-
nite model construction while studying certain integrity con-
straints for databases (Rosati 2006), and this construction,
now known as the Rosati cover, has been adapted to GF in
(Bárány, Gottlob, and Otto 2014). Both constructions fail
to yield Property (♡) and modifying them to achieve this
property turns out to be much more difficult than in the case
of FO2. We give a modified version of the Rosati cover that
yields finite models of non-elementary size, compared to
single exponential size as for the original Rosati cover. This
yields the FMP for circumscribed GF. We then show that the
non-elementary size of finite models is unavoidable: circum-
scribed consequence in GF is TOWER-complete! To us, this
huge difference to the FO2 case came as a big surprise. We
also show that circumscribed querying in GF is decidable,
generalizing recent work on DLs (Lutz, Manière, and Nolte
2023). In combined complexity, it is TOWER-complete with
the lower bound applying to AQs and the upper bound to
UCQs. Regarding data complexity, it is elementary in the
sense that for each GF ontology O, circumscription pattern
CP, and UCQ q, querying is in k-EXP for some k. We also
show that there is no uniform bound on k: for each k ≥ 1
we identify an ontology O, circumscription pattern CP, and
AQ q for which querying is k-EXP-hard. In fact, O is a set of
existential rules, a ‘positive’ fragment of GF that is important
for querying. We also show that with a single minimized
predicate and all other predicates varying, the data complex-
ity of AQ-querying is EXP-hard in GF. Note that since CQs
are sandwiched beween AQs and UCQs, this also completely
clarifies the (combined and data) complexity for this query
language.

In addition, we provide first results on circumscribed conse-
quence and AQ-querying in C2. Using a reduction to Boolean
algebra with Presburger arithmetic, we show that these prob-
lems are decidable. The complexity remains open.

An appendix with full proofs can be found in the long
version of this paper, see (Lutz and Manière 2024).

2 Preliminaries
When speaking of first-order logic (FO), we generally mean
the version with equality and constants (unless otherwise
noted) and without function symbols. FO2 is the two-variable
fragment of FO, obtained by fixing two variables x and y
and disallowing the use of any other variables (Scott 1962;
Mortimer 1975; Grädel, Kolaitis, and Vardi 1997). C2 is the
extension of FO2 with counting quantifiers of the form ∃≤n,
∃≥n, and ∃=n for every n ≥ 0 (Grädel, Otto, and Rosen
1997; Pacholski, Szwast, and Tendera 1997; Pratt-Hartmann
2005). In FO2 and C2, we generally only admit predicates
of arity at most two. In the guarded fragment of FO, denoted
GF, quantification is restricted to the pattern

∀ȳ(α(x̄, ȳ) → φ(x̄, ȳ)) ∃ȳ(α(x̄, ȳ) ∧ φ(x̄, ȳ))

where φ(x̄, ȳ) is a GF formula with free variables among
x̄, ȳ and α(x̄, ȳ) is a relational atom R(x̄, ȳ) or an equal-
ity atom x = y that in either case contains all vari-
ables in x̄, ȳ (Andréka, Németi, and van Benthem 1998;
Grädel 1999). The formula α is called the guard of the
quantified formula.

We use the standard notation of first-order logic, denoting
structures with A and B, their universes with A and B, and
the interpretation of predicates R with RA and RB. We
reserve a countably infinite set of predicates of each arity.
We use |ϕ| to denote the length of the formula ϕ, that is, the
length of ϕ when encoded as a word over a suitable alphabet.

Circumscription. A circumscription pattern is a tuple CP =
(≺,M,F,V), where M, F and V partition the unary predicates
into minimized, fixed and varying predicates, and ≺ is a strict
partial order on M called the preference relation. The order
≺ also induces a preference relation <CP on structures by
setting B <CP A if the following conditions hold:

1. B = A and cA = cB for all constants c,
2. for all P ∈ F, PB = PA,
3. for all P ∈ M with PB ̸⊆ PA, there is a Q ∈ M, Q ≺ P ,

such that QB ⊊ QA,
4. there exists a P ∈ M such that PB ⊊ PA and for all
Q ∈ M, Q ≺ P implies QB = QA.

A CP-minimal model of an FO sentence ϕ is a model A of
ϕ such that there is no B <CP A that is a model of ϕ. Note
that predicates of arity larger than one always vary to avoid
undecidability (Bonatti, Lutz, and Wolter 2009). We also
assume that nullary predicates always vary, which is w.l.o.g.
as they can be simulated by unary predicates.

For FO sentences ϕ and ψ, we write ϕ |=CP ψ if every CP-
minimal model A of ϕ satisfies A |= ψ. Take any fragment
F of FO such as FO2. With circumscribed consequence in
F we mean the problem to decide, given sentences ϕ and ψ
from F and a circumscription pattern CP, whether ϕ |=CP ψ.

Ontology-mediated querying. Ontology-mediated querying
with circumscribed knowledge bases, as recently studied in
(Lutz, Manière, and Nolte 2023), can be seen as a version
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of circumscribed consequence where ϕ encodes an ontology
and a database and ψ is a query. We next make this precise.

A database is a finite set of ground atoms, in this context
called facts. We use adom(D) to denote the set of constants
that occur in D. A structure A satisfies a database D if (1) it
satisfies all facts in it and (2) interprets all constant symbols
c in adom(D) as cA = c (and thus no two such c denote the
same element of A). We then also say that A is a model of D
and write A |= D. Note that Point (2) is the standard names
assumption, as usually made in the context of databases. A
knowledge base (KB) K takes the form

∧
O ∧ D with O

a finite set of FO sentences, called the ontology, and D a
database. We usually denote K as a pair (O, D). We call K
a GF-KB if all sentences in O fall into GF, and likewise for
other FO fragments.

A conjunctive query (CQ) is an FO formula of the form
q = ∃x̄ φ(x̄) where φ is a conjunction of relational atoms,
possibly involving constants. An atomic query (AQ) is a
CQ of the simple form R(c̄) with c̄ a tuple of constants. A
union of conjunctive queries (UCQ) q(x̄) is a disjunction
of CQs. Let K be a KB and q a UCQ. We write K |=CP q
if A |= q for every CP-minimal model A of K. The notion
K |= q is defined analogously, except that all models of K are
considered, not only CP-minimal ones. Take a fragment F of
FO such as GF and a query language Q such as UCQs. With
circumscribed Q-querying in F , we mean the problem to
decide, given a knowledge base K = (O, D) with O a set of
sentences from F and a query q from Q, whether K |=CP q.
When studying the combined complexity of this problem, all
of K, CP, and q are treated as inputs. For data complexity,
we assume O, CP, and q to be fixed and thus of constant
size. We remark that our queries are Boolean, that is, they do
not have answer variables. This is without loss of generality
since constants are admitted in queries.

We shall also consider ontologies O that are sets of
guarded existential rules. An existential rule is an FO sen-
tence of the form

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄))

where ϕ and ψ are conjunctions of relational atoms. We call
ϕ the body of the rule and ψ the head. The rule is guarded
if the body contains an atom that contains all variables in
it. When writing existential rules, we usually omit the uni-
versal quantifiers. For every ontology O that is a set of
guarded existential rules, there is a GF ontology O′ such
that for all databases D and UCQs q, we have (O, D) |= q
iff (O′, D) |= q (Calı̀, Gottlob, and Lukasiewicz 2009). To
construct O′, one simply adds a fresh predicate to the head
of each rule in O that contains all variables in the head, and
then translates the resulting set of rules into an equivalent GF
sentence in a straightforward way. This proof also applies to
circumscribed querying, letting the fresh predicates vary.

Example 1. Consider the database

D = {W (w1),W (w2), E(w1), E(w2), offers(s, p)}.

where offers(s, p) means that supplier s offers product p, W
stands for warehouse, and E for express. Assuming that
we have complete knowledge of all existing warehouses (e.g.

in our company), we use a circumscription pattern CP that
minimizes predicate W and lets all other predicates vary. Let
the ontology O contain the guarded existential rules

offers(x, y) → ∃z supplies(x, y, z)
supplies(x, y, z) →W (z)

where supplies(x, y, z) expresses that supplier x supplies
product y to warehouse z. Note that since W is minimized,
the existentially quantified variable z in the upper rule can
only bind to w1 and w2. We thus obtain

(O, D) |=CP ∃z (supplies(s, p, z) ∧ E(z)).

We now illustrate a basic trick that underlies the hardness
proofs in Section 5. Extend the database with mirror(w1, w2)
and mirror(w2, w1) expressing that w1 and w2 are supplied
with the same products by the same suppliers. We wish to
extend O with

supplies(x, y, z1) ∧mirror(z1, z2) → supplies(x, y, z2)

which yields

(O, D) |=CP supplies(s, p, wi) for all i ∈ {1, 2}. (∗)

However, the above rule is not guarded. We may work around
this by using the guarded rules
supplies(x, y, z1) → ∃z2 (mirror(z1, z2) ∧ supplies(x, y, z2))

mirror(x, y) ∧mirror(x, y) → false

and extend the data with mirror(wi, wi) for i ∈ {1, 2}. Then
if z1 binds to w1, the existentially quantified variable z2 can
only bind to w2 and vice versa, and we again obtain (∗).

Substitutions, Signatures, Types. For a tuple ā, we gener-
ally use ai to denote the i-th element of ā, for 1 ≤ i ≤ |ā|. A
substitution σ is a function that maps variables to variables.
We typically write σx in place of σ(x). For a tuple ū of vari-
ables and constants, we write σū to denote the tuple obtained
by applying σ componentwise, treating it as the identity on
constants.

A signature is a set of constants and relation symbols. For
an FO sentence ϕ, we use sig(ϕ) to denote the set of such
symbols in ϕ, const(ϕ) to denote the set of constants in ϕ,
and const=(ϕ) to denote the set of constants used in ϕ in
an equality atom. A signature is unary if it only contains
constants symbols and unary predicates.

Fix a signature Σ. A term is a variable or a constant
from Σ. An atom is of the form R(ū) or v1 = v2 with
R a relation symbol from Σ, ū a tuple of terms and v1, v2
terms. A literal is an atom or a negated atom. For every
n ≥ 1, fix a sequence of variables x1, . . . , xn. An n-type
on Σ is a maximal satisfiable set of literals that uses exactly
the variables x1, . . . , xn. Let A be a structure. If ā ∈ An,
then the n-type on Σ realized at ā in A, denoted tpnA,Σ(ā),
is the unique n-type t on Σ with A |= t(ā). We may drop
superscript n as n is always identical to the length of ā. In
this paper, 1-types will play a crucial role. For a set S ⊆ A,
we use tp1A,Σ(S) to denote the set of 1-types {tp1A,Σ(a) | a ∈
S}. As an abbreviation, we may write tp1Σ(A) in place of
tp1A,Σ(A). Moreover, For every 1-type t on Σ, set

#A(t) := |{a ∈ A | tp1A,Σ(a) = t}|.
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3 The Two-Variables Fragment FO2

We show that circumscribed consequence is CONEXPNP-
complete in FO2 and so is circumscribed AQ-querying, in
combined complexity. Note that querying with CQs or UCQs
is undecidable already for non-circumscribed FO2. We re-
mark that this section showcases the general approach that
we also use, in a more intricate form, for GF later on.

An FO2 sentence is in Scott normal form if it has the form

ϕ = ∀x∀y φ ∧
∧

i=1..n∃

∀x∃y ψi (∗)

with φ and ψi quantifier-free. It has been shown in (Scott
1962; Grädel, Kolaitis, and Vardi 1997) that every FO2 sen-
tence ϕ0 can be converted in polynomial time into an FO2

sentence ϕ in Scott normal form that is a conservative exten-
sion of ϕ0: every model of ϕ is a model of ϕ0 and, conversely,
every model of ϕ0 can be extended to a model of ϕ by in-
terpreting the fresh predicates in ϕ. It can be verified that
the same holds for CP-minimal models, for any circumscrip-
tion pattern CP, where the fresh predicates are set to varying.
It follows that for deciding circumscribed consequence and
circumscribed querying, we can w.l.o.g. assume the input sen-
tence to be in Scott normal form. We thus assume throughout
this section that all FO2 sentences are in Scott normal form.

We now establish an improved finite model property for
non-circumscribed FO2 that satisfies Property (♡) from the
introduction.

Proposition 1. Let ϕ be an FO2 sentence with n∃ existen-
tial quantifiers, Σ ⊆ sig(ϕ) a unary signature that contains
const=(ϕ), A a model of ϕ, and k = |(sig(ϕ) \ const(ϕ)|)∪
const=(ϕ). Then there exists a model B of ϕ such that

1. |B| ≤ |ϕ|n∃+1 · 2n∃4(k+6);
2. tp1Σ(A) = tp1Σ(B);
3. #B(t) ≤ #A(t) for each 1-type t on Σ;

4. #B(t) = #A(t) for each 1-type t on Σ s.t. #A(t) ≤ 2|Σ|;
5. cA = cB and tp1A,Σ(c) = tp1B,Σ(c) for all constants c.

The reader should think of Σ as containing all unary rela-
tions that are minimized and fixed in a circumscription pat-
tern. We remark that the construction from (Grädel, Kolaitis,
and Vardi 1997) only yields Proposition 1 without Points 3
and 4, that is, it may increase the number of instances of
some of the 1-types realized in the original model. We next
use Proposition 1 to establish the following.

Theorem 1. Circumscribed FO2 has the finite model prop-
erty: if ϕ, ψ are FO2-sentences with ϕ ̸|=CP ψ, then there is
a CP-minimal model A of ϑ = ϕ ∧ ¬ψ with |A| ≤ |ϑ|n∃+1 ·
4n∃(k+6), where n∃ is the number of existential quantifiers in
the Scott normal form of ϑ and k = |sig(ϑ) \ const(ϑ)|.

Proof. Assume that ϕ ̸|=CP ψ and let CP = (≺,M,F,V).
Then there is a CP-minimal model A of ϕ with A ̸|= ψ. Thus
A is a model of ϕ ∧ ¬ψ. Let Σ = M ∪ F ∪ const=(ϕ). By
Proposition 1, there is a model B of ϕ ∧ ¬ψ that satisfies
Points 1-4 of the proposition, with Σ = sig(ϕ ∧ ¬ψ). We
show that B is a CP-minimal model of ϕ.

Assume to the contrary that there is a model B′ of ϕ such
that B′ <CP B. To obtain a contradiction, we construct a
model A′ of ϕ such that A′ <CP A.

Of course, A′ must have the same universe as A, thus we
set A′ = A. Due to Points 3 and 4 of Proposition 1, we find
an injection f : B → A such that

(i) tp1B,Σ(b) = tp1A,Σ(f(b)) for all b ∈ B;

(ii) if t is a 1-type on Σ with #A(t) ≤ 2|Σ|, then tp1A,Σ(a) = t
implies that a is in the range of f , for all a ∈ A.

We define A′ so that its restriction to the range of f is isomor-
phic to B′, with f being an isomorphism. In particular, this
restriction interprets all constants c ∈ const=(ϕ). It can be
verified that cA

′
= cA for all such c, see appendix.

To define the remaining part of A′, we use cloning. For
every a ∈ A that is not in the range of f we identify an â ∈ A
that is in the range of f and such that tp1A,Σ(â) = tp1A,Σ(a).
Take any such a and let tp1A,Σ(a) = t. From (ii), we obtain
#A(t) > 2|Σ|. Point 4 yields #B(t) > 2|Σ|. Thus, we find
distinct b, b′ ∈ B such that tp1B,Σ(b) = tp1B,Σ(b

′) = t and
tp1B′,Σ(b) = tp1B′,Σ(b

′). Set â = f(b).
We then make each a ∈ A that is not in the range of f a

clone of â in A′, that is, for Γ = sig(ϕ) we set

• tp1A′,Γ(a) = tp1A′,Γ(â);

• tp2A′,Γ(a, b) = tp2A′,Γ(â, b) for all b in the range of f ;

• tp2A′,Γ(a, b) = tp2A′,Γ(â, b̂) for all b not in the range of f .

It remains to interpret the constants c ∈ Γ \ const=(ϕ): set
cA

′
= cA.

We prove in the appendix that A′ is a model of ϕ, since B′

is and it can be verified that A′ <CP A, since B′ <CP B.

It is now easy to derive the main result of this section.
Theorem 2. Circumscribed consequence in FO2 is
CONEXPNP-complete.

Proof. The lower bound is inherited from the description
logic ALC (Bonatti, Lutz, and Wolter 2009). The upper
bound is based on Theorem 1, as follows.

It is not hard to see that there exists an NP algorithm that
takes as input an FO2 sentence ϕ, a circumscription pattern
CP, and a finite structure A and checks whether A is not a CP-
minimal model of ϕ: the algorithm first checks in polynomial
time whether A is a model of ϕ, answering “yes” if this is not
the case. Otherwise, it guesses a structure A′ with A′ = A
and checks whether A′ is a model of ϕ and A′ <CP A. It
answers “yes” if both checks succeed, and “no” otherwise.
Clearly, checking whether A′ <CP A can be done in time
polynomial in the size of A.

We use this NP algorithm as an oracle in a NEXP-
algorithm for deciding ϕ ̸|=CP ψ: by Theorem 1, it suffices
to guess a structure A with |A| ≤ |ϑ|n∃+1 · 2n∃4(k+6), check
that it is not a model of ψ, and then use the NP algorithm
from above to check that A is a CP-minimal model of ϕ.

From the above, we also obtain results on circumscribed
AQ-querying.
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Theorem 3. Circumscribed AQ-querying in FO2 is
CONEXPNP-complete in combined complexity and Πp2-
complete in data complexity.

Proof. For combined complexity, it suffices to show that
circumscribed consequence and circumscribed AQ-querying
mutually reduce to one another in polynomial time. First,
(O, D) |=CP R(c̄) is equivalent to ϕ |=CP′ R(c̄) where

ϕ =
∧

O ∧
∧
D ∧

∧
c∈adom(D)

(
Pc(c) ∧

∧
c′∈adom(D)\{c}

¬Pc′(c)
)
.

with each Pc a fresh unary predicate and CP′ identical to
CP except that the fresh predicates are varying. And second,
ϕ |=CP ψ is equivalent to ϕ′ |=CP′ P (c) where ϕ′ = ϕ ∧
(ψ → P (c)), P is a fresh unary predicate that is varying in
CP′, and c a fresh constant.

The lower bound for data complexity is inherited from
ALC (Lutz, Manière, and Nolte 2023). For the upper bound,
we may argue exactly as in the proof of Theorem 2, where
the structure A to be guessed is now of polynomial size since
n∃ and k are now constants in Propositions 1 and Theorem 1.
For k, this depends on the assumption, which we may make
w.l.o.g., that the database contains only predicates that occur
also in the ontology or query.

4 Upper Bounds for the Guarded Fragment
We show that circumscribed consequence in GF is in TOWER
and so is circumscribed UCQ-querying, in combined com-
plexity. We also show that UCQ-querying is in ELEMENTARY
in data complexity, that is, for every GF ontology O, circum-
scription pattern CP, and AQ A(x̄), there is a k ≥ 1 such
that given a database D, it is in k-EXP to decide whether
(O, D) |=CP A(x̄).

We remind the reader of the relevant complexity classes,
namely ELEMENTARY =

⋃
k≥1 k-EXP and

TOWER =
⋃

f∈FELEM

SPACE(tower(f(n))

where FELEM is the class of all elementary functions and
tower(x) denotes a tower of twos of height x.

4.1 Circumscribed Consequence
A GF sentence is in Scott normal form if it takes the form∧
1≤i≤n∀

∀x̄ (αi → φi)∧
∧

1≤i≤n∃

∀x̄ (βi → ∃ȳ (γi∧ψi)) (∗)

where the αi, βi and γi are atoms and the φi and ψi are
quantifier-free. It has been shown in (Grädel 1999) that every
GF sentence ϕ can be converted in polynomial time into a GF
sentence in Scott normal form that is a conservative extension
of ϕ. As in the case of FO2, we may thus assume that all
sentences are in Scott normal form.

We now state the improved finite model property for
GF that satisfies Property (♡) from the introduction.
Let tower(0, n) := n and, for every k ≥ 1, define
tower(k, n) := 2tower(k−1,n), so that tower(k, n) refers to
an exponentiation tower that consists of k twos followed by
an n.

Proposition 2. Let ϕ be a GF sentence in Scott normal form,
Σ ⊆ sig(ϕ) a unary signature that contains const=(ϕ), and
A a model of ϕ. Then there exists a model B of ϕ that satisfies
the following properties:

1. |B| ≤ tower(4|Σ|+4, |ϕ|);
2. tp1Σ(A) = tp1Σ(B);
3. |{a ∈ B | tp1B,Σ(a) = t}| ≤ |{a ∈ A | tp1A,Σ(a) = t}|

for every 1-type t on Σ;
4. cA = cB for all constants c in ϕ.

To establish Proposition 2, we use a modified version of
the Rosati cover that leaves untouched a selected part ∆ from
the original model. In addition, if ∆ contains all the instances
of some unary type in the original model, then so does ∆ in
the modified Rosati cover. The precise formulation follows.
Lemma 1. Let ϕ be a GF sentence in Scott normal form and
Σ ⊆ sig(ϕ) a unary signature that contains const=(ϕ). For
all models A of ϕ and all ∆ ⊆ A that contain cA for every
constant c in ϕ, there exists a model B of ϕ that satisfies the
following properties:

1. |B| ≤ 2(|∆|+|ϕ|)|ϕ|+11

;
2. tp1A,Σ(a) = tp1B,Σ(a) for all a ∈ ∆;

3. tp1A,Σ(A \∆) = tp1B,Σ(B \∆);

4. ∆ ⊆ B and cA = cB for all constants c in ϕ.
We now prove Proposition 2 by using Lemma 1 and choos-

ing an appropriate ∆. For any structure A and ∆ ⊆ A that
contains cA for all constants c in ϕ, we use rc(A,∆) to de-
note the finite model of ϕ produced by Lemma 1 (where ‘rc’
stands for ‘Rosati cover’).

Let ϕ, Σ, and A be as in Proposition 2. The challenge is to
choose ∆ so that Point 3 of Proposition 2 is satisfied. Call
a 1-type t stable w.r.t. ∆ ⊆ A if #rc(A,∆)(t) ≤ #A(t) and
call ∆ stabilizing if all 1-types are stable w.r.t. ∆. To attain
Point 3, it clearly suffices to choose a stabilizing ∆.

We use a set ∆ that contains all instances of 1-types real-
ized only a certain number of times: for m ≥ 1, set

∆m := {a ∈ A | #A(tp
1
A,Σ(a)) ≤ m} ∪

{cA | c ∈ const(ϕ)}.

Now consider ∆m, for some m ≥ 1. For those 1-types
t that are realized in A at most m times, it is clear from
Points 2 and 3 of Lemma 1 that rc(A,∆m) has the very same
instances of t, and thus t is stable w.r.t. ∆m. Other types,
however, may not be stable.

So can we find a value for m to make ∆m stabilizing?
This is trivially the case for

m := max({#A(t) | t ∈ tp1Σ(A)uc,#A(t) < +∞}),

but we would like to have an m that is bounded from above
to comply with Point 1 in Proposition 2.
Lemma 2. There exists a stabilizing set ∆m such that 2 ≤
m ≤ tower(22|Σ|+4, |ϕ|).

Proof. We start with m0 = 2 (starting with 1 would also
work but using 2 simplifies calculations as we are deal-
ing with towers of 2s). If ∆m0

is stabilizing, we are done.
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Otherwise there must be a 1-type t on Σ that is not stable
w.r.t. ∆m0 , i.e. #rc(A,∆m0

)(t) > #A(t). This implies in par-
ticular that #A(t) is no larger than the size of the universe
of rc(A,∆m0

). Using the bound from Point 1 of Lemma 1,
we set m1 = 2(|∆m0 |+|ϕ|)|ϕ|+11

. Now all instances of t in
A are contained in ∆m1 and by Points 2 and 3 of Lemma 1
we have #rc(A,∆m1

)(t) = #A(t), thus t is stable w.r.t. ∆m1 ,
and in fact w.r.t. every ∆m with m ≥ m1. We proceed in
this way, with m1 in place of m0, etc. This yields a sequence
m0,m1,m2, . . . and for each i ≥ 0 the set of 1-types on
Σ that is stable w.r.t. ∆mi+1

is a strict superset of the set
of 1-types on Σ that is stable w.r.t. ∆mi . Since Σ is unary
and the 1-types of interest all come from the fixed interpre-
tation A, thus agreeing on the constant symbols, there are
at most 2|Σ| many 1-types to consider. Therefore, after at
most 2|Σ| iterations we have found an i such that ∆mi

is
stabilizing. Let us argue that we have achieved the claimed
bound on m. Take any i ≥ 0. Then |∆mi

| ≤ |ϕ| + 2|Σ|mi.
Moreover, using the bound from Point 1 of Lemma 1 and

mi ≥ 2, we can show that mi+1 ≤ 2m
|ϕ|7
i . From this, an

easy induction on i yields mi ≤ tower(i + 1, |ϕ|7i). Since
we stop at the latest at i = 2|Σ|, from this in turn we can
show that mi ≤ tower(2|Σ| + 1, |ϕ|7·2

|Σ|
), which implies

mi ≤ tower(22|Σ|+4, |ϕ|).

To conclude the proof of Proposition 2, it then suffices to
apply Lemma 1 with ∆ = ∆m, where m is in Lemma 2, and
taking B to be the resulting Rosati cover rc(A,∆m). Since
∆m is stabilizing, Point 3 of Proposition 2 is satisfied. For
Point 1, we may use Point 1 of Lemma 1 and the fact that
|∆m| ≤ 2|Σ|m+ |ϕ|.

We now lift the finite model property from Proposition 2
to circumscribed consequence. To apply Proposition 2, we
choose a unary signature Σ that contains the minimized and
fixed predicates from the circumscription pattern used. The
rest of the proof is similar to that of Theorem 1.
Theorem 4. Circumscribed GF has the finite model prop-
erty. More precisely, every satisfiable GF sentence ϕ cir-
cumscribed by CP = (≺,M,F,V) has a model A with
|A| ≤ tower(4|Σ|+4, |ϕ|), where Σ = const=(ϕ) ∪M ∪ F.

Building on Theorem 4, we now obtain the following using
a brute-force enumeration procedure.
Theorem 5. Circumscribed consequence in GF is decidable
and in TOWER.

4.2 Circumscribed Querying
We prove that UCQ-querying (and thus also CQ- and AQ-
querying) in GF is decidable.
Theorem 6. Circumscribed UCQ-querying in GF is in
TOWER w.r.t. combined complexity and in ELEMENTARY
w.r.t. data complexity.

Without circumscription, decidability of UCQ-querying in
GF is almost immediate as one can replace the UCQ q with
the disjunction q′ of all acyclic CQs that imply a CQ in q
(up to a certain size) and then express q′ as a GF sentence,

obtaining a reduction to unsatisfiability (Bárány, Gottlob, and
Otto 2014). This does not work with circumscription.
Example 2. Take the ontology O that consists of the sentence

∀x
(
A(x) → ∃y(R(x, y) ∧ ∃z(R(y, z) ∧

∃u (R(z, u) ∧A(u))))
)
,

the database D = {A(a)}, and let CP minimize A and vary
all other predicates. Then (O, D) |=CP q where:

q := ∃x ∃y ∃z R(x, y) ∧R(y, z) ∧R(z, x),
but there is no acyclic CQ q′ that implies q and satisfies
(O, D) |=CP q

′.
We thus use a more sophisticated approach which exploits

the fact that if (O, D) ̸|=CP q, then this is witnessed by a
model B that, in a certain loose sense, has the shape of a
forest. More precisely, B can be obtained from any model A
that witnesses (O, D) ̸|=CP q by a version of guarded unrav-
eling (see e.g. (Grädel and Otto 2014)) that leaves untouched
a ‘core’ of A defined as
coreΣ(A) := {a ∈ A | #A(tp

1
A,Σ(a)) ≤ tower(4|Σ|+4, |ϕ|)}

for a suitable signature Σ. With ‘leaving untouched’, we
mean that elements from this core are not duplicated during
unraveling, but ‘reused’ whenever needed. This serves the
purpose of guaranteeing minimality w.r.t. the circumscription
pattern. We do not explicitly define this unraveling as this is
not needed for the proofs, but we hope that this discussion
guides the reader’s intuition.

To prepare for the subsequent development, we give a
central lemma that establishes a sufficient condition for a
model B to be CP-minimal, based on comparing it to a CP-
minimal reference model A. This is a version of the ‘core
lemma’ of (Lutz, Manière, and Nolte 2023).
Lemma 3. Let ϕ be a GF sentence, CP = (≺,M,F,V), and
Σ = const=(ϕ) ∪ M ∪ F. Further let A be a CP-minimal
model of ϕ and let B be a model of ϕ such that

1. coreΣ(A) ⊆ B and cB = cA for all c ∈ const(ϕ);
2. tp1A,Σ(a) = tp1B,Σ(a) for all a ∈ coreΣ(A);

3. tp1B,Σ(B \ coreΣ(A)) = tp1A,Σ(A \ coreΣ(A)),
Then B is a CP-minimal model of ϕ.

Intuitively, Lemma 3 says that the exact multiplicity of
types realized in A outside of coreΣ(A) is irrelevant for CP-
minimality.

Assume that we are given as an input a GF knowledge base
(O, D), a circumscription pattern CP, and a Boolean UCQ q.
We want to decide whether there is a countermodel I against
(O, D) |=CP q(ā). This may be rephrased as ϕ |=CP q(ā) for

ϕ =
∧

O ∧
∧
D ∧

∧
c∈adom(D)

(
Pc(c) ∧

∧
c′∈adom(D)\{c}

¬Pc′(c)
)
.

We shall use the latter formulation. We may assume that
ϕ is in Scott normal form, that is, of the form (∗). Let
Σ = const=(ϕ) ∪ M ∪ F. Set M = |const(ϕ)| + 2|Σ| ·
tower(4|Σ|+4, |ϕ|) + 2|Σ|, and fix a set U of size M . In an
outer loop, our algorithm iterates over all pairs (A0, Tcore)
with A0 a finite structure that interprets all constants from ϕ
and Tcore a set of 1-types such that the following conditions
are satisfied:
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• A0 ⊆ U ;
• Tcore ⊆ tp1Σ(A0).
We define ∆ := {a ∈ A0 | tp1A0,Σ

(a) /∈ Tcore}.
For each pair (A0, Tcore), we then check whether the fol-

lowing additional conditions are satisfied:
(I) A0 can be extended to a model A of ϕ such that
(a) A|A0

= A0,
(b) tp1A,Σ(A \∆) = Tcore,
(c) A ̸|= q;

(II) there exists a CP-minimal model B of ϕ such that
(d) coreΣ(B) = ∆;
(e) tp1B,Σ(a) = tp1A0,Σ

(a) for all a ∈ ∆ and

(f) tp1B,Σ(B \∆) = Tcore

We return ‘yes’ if all pairs fail the check and ‘no’ otherwise.
If the checks succeed, then the model A of ϕ from Con-

dition (I) is a countermodel against (O, D) |=CP q. In par-
ticular, we may apply Lemma 3, using the model B from
Condition (II) as the reference model, to show that A is
CP-minimal. Conversely, from any countermodel A against
(O, D) |=CP q, we can read off a pair (A0, Tcore) by choosing
Tcore := tp1A,Σ(A \ coreΣ(A)) and A0 to be the restriction of
A to universe

UA := {cA | c ∈ const(ϕ)} ∪ coreΣ(A) ∪ {wt | t ∈ Tcore}

where wt ∈ A is chosen arbitrarily such that tp1A,Σ(wt) = t.
Then A witnesses Condition (I) and choosing B = A wit-
nesses Condition (II).

Of course, we have to prove that Conditions (I) and (II) are
decidable. For Condition (II), we prove that the following is
a consequence of Theorem 1 and Lemma 3.
Lemma 4. Let ϕ be a GF sentence, CP = (≺,M,F,V), and
Σ = const=(ϕ)∪M∪F. Let A be a CP-minimal model of ϕ.
Then there exists a CP-minimal model B of ϕ such that
1. coreΣ(B) = coreΣ(A);
2. tp1B,Σ(a) = tp1A,Σ(a) for all a ∈ coreΣ(A);

3. tp1B,Σ(B \ coreΣ(A)) = tp1A,Σ(A \ coreΣ(A));
4. |B| ≤ 2|Σ|(1 + tower(4|Σ|+4, |ϕ|)).

It follows that if a model as in (II) exists, then there exists
one of size at most 2|Σ|(1 + tower(4|Σ|+4, |ϕ|)) and thus we
can iterate over all candidate structures B up to this size,
check whether B is a model of ϕ that satisfies Conditions (d)
to (f), and then iterate over all models B′ of ϕ with B′ = B
to check that B is CP-minimal.

Condition (I) requires more work. We use a mosaic ap-
proach, that is, we attempt to assemble the structure A re-
quired by Condition (I) by combining small pieces called
mosaics. Fix a pair (A0, Tcore). A mosaic for (A0, Tcore) is
a decorated finite structure whose universe contains A0 and
possibly elements from a fixed set U+ of 2 · ar elements
where ar is the maximum arity of predicates in ϕ.

The purpose of the decoration is to trace partial homomor-
phisms from CQs in q through the mosaics, as follows. A
match triple for a structure B takes the form (p, p̂, h) such

that p is a CQ in q, p̂ ⊆ p, and h is a partial map from var(p̂)
to B that is a homomorphism from p̂|dom(h) to B where
p̂|dom(h) denotes the restriction of p̂ to the variables in the
domain of h. Intuitively, B is a mosaic and the triple (p, p̂, h)
expresses that a homomorphism from p̂ to A exists, with the
variables in dom(h) being mapped to the current piece B
and the variables in var(p̂) \ dom(h) mapped to other pieces
of A. A match triple is complete if p̂ = p and incomplete oth-
erwise. To make A a countermodel, we must avoid complete
match triples. A specification for a structure B is a set S of
match triples for B and we call S saturated if the following
conditions are satisfied:

• if p is a CQ in q, p̂ ⊆ p, and h is a homomorphism from p̂
to B, then (p, p̂, h) ∈ S;

• if (p, p̂, h), (p, p̂′, h′) ∈ S and h(x) = h′(x) is defined for
all x ∈ var(p̂) ∩ var(p̂′), then (p, p̂ ∪ p̂′, h ∪ h′) ∈ S.

In the following, we use the symbols introduced in (∗).

Definition 1. A mosaic for (A0, Tcore) is a pair M = (B, S)
where

• B is a finite structure such that

1. B ⊆ A0 ∪ U+;
2. B|A0

= A0;
3. tp1B,Σ(B \∆) ⊆ Tcore;

4. B satisfies ∀x̄ (αi → φi), for 1 ≤ i ≤ n∀;

• S is a saturated specification for B that contains only
incomplete match triples.

We use BM to refer to B and SM to refer to S.

Let M be a set of mosaics for (A0, Tcore). We say that
M ∈ M is good in M if for 1 ≤ i ≤ n∃, the following
condition is satisfied: if βi = R(z̄) and ā ∈ RB, then we
find a mosaic M ′ ∈ M such that

1. tpBM ,Σ(ā) = tpBM′ ,Σ(ā);

2. BM ′ |= ∃ȳ (γi ∧ ψi)[ā];
3. if (p, p̂, h′) ∈ SM ′ , then (p, p̂, h) ∈ SM where h is the

restriction of h′ to range A0 ∪ ā.

To verify Condition (I), we start with the set of all mosaics
for (A0, Tcore) and repeatedly and exhaustively eliminate
mosaics that are not good.

Lemma 5. A0 can be extended to a model A of ϕ that satis-
fies Conditions (a) to (c) iff at least one mosaic survives the
elimination process.

At this point, we have established Theorem 6. It should
be clear that the presented algorithm establishes membership
in TOWER in combined complexity. For data complexity,
note that the size M of the stuctures A0 in pairs (A0, Tcore)
is now k-exponential for a constant k: it is essentially an
exponentiation tower of twos followed by |ϕ| whose height
is independent of D (while |ϕ| depends linearly on |D|). The
same is true for the bound established by Lemma 4 and the
size of mosaics.
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5 Lower Bounds for the Guarded Fragment
We prove lower bounds that match the upper bounds given
in Section 4. Our proofs are formulated in terms of the data
complexity of AQ-querying, but we also derive from them
tight complexity results for circumscribed consequence.

We start with an EXP lower bound on the data complexity
of AQ-querying for the restricted yet natural case where only
a single predicate is minimized and no predicate is fixed.
It is then of course pointless to use a preference relation
in the circumscription pattern. The bound applies even for
ontologies O that are sets of existential rules.
Theorem 7. AQ-querying in GF is EXP-hard in data com-
plexity even for ontologies that are sets of existential rules,
with a single minimized predicate and no fixed predicates,
and with a fixed signature.

For UCQ-querying, the same even holds for a fixed signa-
ture in which all predicates have arity at most two.

We invite the reader to verify the proof of Theorem 7,
provided in the appendix, as a warmup for the proof of the
main result of this section, which is up next.

We show that, when using multiple minimized predicates
as well as a preference order, then the data complexity is no
longer in k-EXP for any k ≥ 1. In other words, while for
every fixed ontology O, query q, and circumscription pattern
CP querying is in k-EXP in data complexity for some k (c.f.
Theorem 6), k cannot be uniformly bounded by a constant
from above for all O, q, and CP. In combined complexity,
AQ-querying is even TOWER-hard.
Theorem 8. AQ-querying in GF is

1. TOWER-hard in combined complexity (under logspace re-
ductions) and

2. k-EXP-hard for every k ≥ 1 in data complexity.

This holds already for circumscribed sets of guarded existen-
tial rules and without fixed predicates.

We prove Point 2 as follows. It is known that, for every
κ ≥ 1, there is a fixed (κ− 1)-exponentially space-bounded
alternating Turing machine (ATM) whose word problem is
κ-EXP-hard (Chandra, Kozen, and Stockmeyer 1981). We
provide a reduction from the word problem of each of these
ATMs to AQ-querying in GF.1 Our reductions are uniform
across all κ and, as discussed in (Schmitz 2016), this also
yields TOWER-hardness in combined complexity.

Let κ ≥ 1 and let M be a (κ − 1)-exponentially space-
bounded alternating Turing machine (ATM) whose word
problem is κ-EXP-hard. We exhibit a set of existential rules
O and a circumscription pattern CP such that given an input
e = e1 · · · en ∈ Σ∗ to M, we can construct in polynomial
time a database D such that M accepts e iff O, D |=CP

goal(a), where goal is a unary predicate and a a dedicated
constant symbol.

One main challenge is to generate a tape of the required
length and we first focus on achieving that. To this end, we
produce κ linear orders, with the kth order being of length

1We use ATMs for uniformity with the proof of Theorem 7. We
could also work with deterministic Turing machines which, however,
would only simplify the proof in a minor way.

tower(k − 1, p(n)). In other words, the first order has length
p(n), the second has length 2p(n), the third 22

p(n)

, and so
on, until the κth order which has length tower(κ − 1, p(n))
and will be used as the tape for the ATM computation. The
positions in the (k+1)st order will be encoded in binary using
elements of the kth order as bit positions. For each k, the
element of the kth order are marked with the unary predicate
ordk. To guarantee that the encoding of a position in the
(k + 1)st order indeed only uses bit positions from the kth

tape, the predicates ord1, . . . , ordκ are minimized.
We also use other minimized predicates, arranged in a

preference order as follows:
root ≺ err1 ≺ ord1 ≺ · · · ≺ errκ ≺ ordκ ≺ errκ+1.

The predicate errk is used to ‘report’ errors in the k-th or-
der by being made true on the constant a. This shall then
make the query predicate goal true on a and in this way rule
out erroneous models. The preferred minimization of errk
over ordk acts as an incentive to avoid such errors. We use
an additional predicate errκ+1 to detect errors in the ATM
computation. To enforce that errk is reported precisely on a,
we use root and include in D

root(a).

Any other predicate used is varying, which concludes the
definition of CP. We now clarify how error reporting works.
Since the minimization of root is preferred over that of all
other predicates, in every CP-minimal model A we have
rootA = {aA}. When an error on the kth tape is detected at
some element x, we generate an instance y of errk. We then
require errk to be subsumed by root, so that, in every CP-
minimal model, y is actually a. We also require errk to be
subsumed by goal so that goal holds at aA whenever an error
is detected in the representation of the kth order. Formally,
we include in O, for every k ∈ {1, . . . , κ+ 1}, the rules

errk(x) → root(x), goal(x).

We do not want distinct orders to share elements and report
an error if they do. We also require a not to be used as an
order element. For 1 ≤ i < j ≤ κ, add

ordi(x), ordj(x) → ∃y errj(y)
ordk(x), root(x) → ∃y errk(y).

Elements of the first order are represented in the database D
as constants c1i , 1 ≤ i ≤ p(n):

ord1(c
1
i ) for 0 ≤ i < p(n).

The kth order is represented by the binary predicate succk,
for 1 ≤ k ≤ κ. We use a unary predicate end to mark the
elements of orders that are not the final element. For all
k ∈ {1, . . . , κ}, we add the rules

succk(x, x
′) → ordk(x), ordk(x

′)

ordk(x), end(x) → ∃x′ succk(x, x′).
For the first order, we ensure the intended interpretation of
succ1 via a binary predicate succ1, the following facts in D:

succ1(c
1
i , c

1
j ) for 0 ≤ i, j < p(n) with j ̸= i+ 1,

start(c1i ) for 0 < i < p(n)

end(c1i ) for 0 ≤ i < p(n)− 1,
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ones◁(x, y), start(y), ordk−1(y) → ∃y′ ones◁(x, y′), succk−1(y
′, y), bitk,1(x, y

′) (1)

zeros◁(x, y), start(y), ordk−1(y) → ∃y′ zeros◁(x, y′), succk−1(y
′, y), bitk,0(x, y

′) (2)

copy▷(x, x
′, y), end(y), ordk−1(y) → ∃y′ copy▷(x, x′, y′), succk−1(y

′, y), copy(x, x′, y′) (3)

Figure 1: Additional rules used in the proof of Theorem 8 for every k ∈ {2, . . . , κ}.

and the rule

succ1(x, y), succ1(x, y) → ∃z err1(z).
Note that we also introduced a start predicate, for later use.

For the kth order, with k ∈ {2, . . . , κ}, the positions of
elements are represented by the two binary predicates bitk,0
and bitk,1 pointing to the elements of the (k − 1)st order,
which serve as bit positions. Intuitively, bitk,b(x, y) says that
the yth bit in the binary encoding of the position of element
x in the kth order is b. We add the following rules, for every
k ∈ {2, . . . , κ} and b ∈ {0, 1}:

bitk,b(x, y) → ordk(x), ordk−1(y)

bitk,0(x, y) → end(x)

bitk,1(x, y) → start(x)

bitk,0(x, y), bitk,1(x, y) → ∃z errk(z).
We need to guarantee that the encoding of positions is

incremented when moving along the predicate succk, gener-
ally assuming that the least significant bit position is the first
element in the order. We use a binary predicate fzk (for First
Zero) and the following rules, for all k ∈ {2, . . . , κ}:

ordk(x), end(x) → ∃y fzk(x, y)

fzk(x, y) → bitk,0(x, y), ones◁(x, y).

The second rule makes sure that the position represented by y
has value 0 and that all positions to the left of y have value 1.
The latter is enforced by the binary predicate ones◁ which
propagates to every position strictly to the left of y, enforcing
a bit value of 1; see Rule 1 in Figure 1.

The following rules introduce a ternary predicate nextfzk
extending each instance of succk(x, x′) to further include
the position of the first zero in the encoding of x. We use
nextfzk to properly set up the bit values in the encoding of
the position of x′. Add, for every k ∈ {2, . . . , κ},

succk(x, x
′) → ∃y nextfzk(x, x

′, y), fzk(x, y)

nextfzk(x, x
′, y) → bitk,1(x

′, y), zeros◁(x
′, y), copy▷(x, x

′, y).

Predicate zeros◁(x
′, y) enforces that all 1 bits to the left of

the first zero in the encoding of the position of x, which is at
position y, are flipped to 0s in the encoding of the position
of x′. The 0 in position y for x is flipped to a 1 for x′.
All other positions keep their bit values thanks to predicate
copy▷ which instantiates a copy that, in turn, complies with
the following rule for b = 0, 1:

copy(x, x′, y), bitk,b(x, y) → bitk,b(x
′, y).

Details can be found as Rules 2 and 3 in Figure 1.
As explained above, the κth order has the desired length

and we use its elements as positions of tape cells in the ATM

computation. We show in the appendix how to encode that
computation. The challenging part is to ensure that the tape
symbols that are not under the head are preserved when the
ATM makes a transition. This is enforced by a mechanism
similar to the propagation of the predicate ones◁ above.

The (straightforward) polynomial time reduction from
circumscribed AQ-querying to circumscribed consequence
given in the proof of Theorem 3 also applies to GF. Thus,
Theorem 8 also yields the following.

Corollary 1. Circumscribed consequence in GF is TOWER-
hard.

6 FO2 with Counting: C2

We observe that in C2, circumscribed consequence and cir-
cumscribed AQ-querying are decidable. This is achieved by
combining a result from (Wies, Piskac, and Kuncak 2009)
with ideas from (Bonatti et al. 2015a).

Recall that Presburger arithmetic is the first-order theory
of the natural numbers with addition and equality. BAPA is a
multisorted theory that combines Presburger arithmetic with
the theory of (uninterpreted) sets and their cardinalities. We
refer to (Kuncak, Nguyen, and Rinard 2006) for full details
and only remark that numerical variables are denoted with
x, y, z, set variables with B, and set cardinality with |B|.

For a structure A and a 1-type t, we write tA to denote the
set of elements {a ∈ A | tp1A(a) = t}. The following was
proved in (Wies, Piskac, and Kuncak 2009), making intense
use of the results of (Pratt-Hartmann 2005).

Theorem 9. Let ϕ be a C2 sentence and let t1, . . . , tn be the
1-types for ϕ. One can compute a formula χϕ(x1, . . . , xn) of
Presburger arithmetic such that

1. for every model A of ϕ, χϕ[|tA1 |, . . . , |tAn |] is true;
2. if χϕ[k1, . . . , kn] is true, then there is a model A of ϕ with

|tAi | = ki for 1 ≤ i ≤ n.

The above provides a reduction from conse-
quence in C2 to unsatisfiability in BAPA: the C2

consequence ϕ |= ψ holds iff the BAPA sentence
∃B1 · · · ∃Bn χϕ∧¬ψ[|B1|/x1, . . . , |Bn|/xn] is unsatisfiable.
We extend this to circumscribed consequence.

Assume that we want to decide ϕ |=CP ψ, with ϕ, ψ two C2

sentences and CP = (≺,M,F,V). We may assume w.l.o.g.
that ϕ and ψ contain the same predicates and thus have the
same 1-types. With ϑ, we denote the BAPA formula

χϕ[|B1|/x1, . . . , |Bn|/xn] ∧
∧

A∈M∪F

(
BA =

⋃
ti|A(x1)∈ti

Bi
)

and we define ϑ′ to be like ϑ, but using set variables B′
i in

place of Bi and B′
A in place of BA. Let B be the tuple of set
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variables in ϑ and let B
′

be the corresponding tuple for ϑ′.
We write B

′
<CP B to denote the conjunction of

• BA = B′
A for all A ∈ F;

• for all A ∈ M: B′
A ̸⊆ BA →

∨
A′∈M|A′≺A

B′
A′ ⊊ BA′ ;

•
∨
A∈M

(
B′
A ⊊ BA ∧

∧
A′∈M|A′≺A

B′
A′ = BA′

)
.

Now let χ denote the BAPA sentence

∃B
(
ϑ ∧ χψ[|B1|/x1, . . . , |Bn|/xn]∧
∀B′ (

B
′
<CP B → ¬ϑ′

))
.

It can be verified that ϕ |=CP ψ iff χ is unsatisfiable. Since
satisfiability in BAPA is decidable (Feferman and Vaught
1959; Kuncak, Nguyen, and Rinard 2006), we obtain decid-
ability of circumscribed consequence in C2. This carries over
to circumscribed AQ-querying in the same straightforward
way as for FO2.
Theorem 10. In C2, circumscribed consequence and circum-
scribed AQ-querying are decidable.

Since BAPA is also decidable over finite models, we also
obtain the version of Theorem 10 where circumscribed con-
sequence and querying are defined w.r.t. finite models.

7 Conclusion
We have studied the impact on computational complexity
of adding circumscription to decidable fragments of first-
order logic, which turns out to be remarkably varied: while
FO2 is very tame and does not have higher complexity than
ALC in its circumscribed version, GF suffers from a dra-
matic complexity explosion. We remark that there is a
close connection between circumscription and querying with
closed predicates as studied in (Ngo, Ortiz, and Simkus 2016;
Lutz, Seylan, and Wolter 2019), see also Example 1. More
details are in (Lutz, Manière, and Nolte 2023). As an ex-
ample, Theorem 7 also applies to AQ-querying of guarded
existential rules with a single unary closed predicate. This,
in turn, is related to results in (Benedikt et al. 2016).

Several interesting questions remain open. What is the
exact complexity of circumscribed consequence in C2? We
speculate that by making careful use of the techniques in
(Pratt-Hartmann 2005), one can bring it down to CONEXPNP.
What is the complexity of circumscribed consequence in
GF with only a single minimized predicate or with multiple
such predicates but no preference order? Is circumscribed
UCQ-querying in GF finitely controllable? What is the com-
plexity of circumscribed querying with less expressive classes
of existential rules such as inclusion dependencies? Is cir-
cumscribed consequence decidable in the unary / guarded
negation fragments of FO? Note that satisfiability in the latter
fragment is known to be reducible to UCQ-querying in GF
(Bárány, ten Cate, and Segoufin 2015), but that this reduction
relies on arguments based on treeifications of some subformu-
las of interest, a technique that cannot be applied in presence
of circumscription as discussed with Example 2.
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