
SAT-Based PAC Learning of Description Logic Concepts

Balder ten Cate1 , Maurice Funk2,3 , Jean Christoph Jung4 and Carsten Lutz2,3
1ILLC, University of Amsterdam

2Leipzig University
3Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)

4TU Dortmund University
b.d.tencate@uva.nl, maurice.funk@uni-leipzig.de, jean.jung@tu-dortmund.de, carsten.lutz@uni-leipzig.de

Abstract
We propose bounded fitting as a scheme for learning
description logic concepts in the presence of ontolo-
gies. A main advantage is that the resulting learning
algorithms come with theoretical guarantees regard-
ing their generalization to unseen examples in the
sense of PAC learning. We prove that, in contrast,
several other natural learning algorithms fail to pro-
vide such guarantees. As a further contribution,
we present the system SPELL which efficiently im-
plements bounded fitting for the description logic
ELHr based on a SAT solver, and compare its per-
formance to a state-of-the-art learner.

1 Introduction
In knowledge representation, the manual curation of knowl-
edge bases (KBs) is time consuming and expensive, mak-
ing learning-based approaches to knowledge acquisition an
attractive alternative. We are interested in description log-
ics (DLs) where concepts are an important class of expres-
sions, used for querying KBs and also as central building
blocks for ontologies. The subject of learning DL con-
cepts from labeled data examples has received great inter-
est, resulting in various implemented systems such as DL-
Learner, DL-Foil, and YINYANG [Bühmann et al., 2016;
Fanizzi et al., 2018; Iannone et al., 2007]. These systems
take a set of positively and negatively labeled examples and
an ontology O, and try to construct a concept that fits the
examples w.r.t. O. The related fitting problem, which asks to
decide the existence of a fitting concept, has also been stud-
ied intensely [Lehmann and Hitzler, 2010; Funk et al., 2019;
Jung et al., 2021].

The purpose of this paper is to propose a new approach to
concept learning in DLs that we call bounded fitting, inspired
by both bounded model checking as known from systems
verification [Biere et al., 1999] and by Occam algorithms from
computational learning theory [Blumer et al., 1989]. The idea
of bounded fitting is to search for a fitting concept of bounded
size, iteratively increasing the size bound until a fitting is
found. This approach has two main advantages, which we
discuss in the following.

First, it comes with formal guarantees regarding the gen-
eralization of the returned concept from the training data

to previously unseen data. This is formalized by Valiant’s
framework of probably approximately correct (PAC) learn-
ing [Valiant, 1984]. Given sufficiently many data examples
sampled from an unknown distribution, bounded fitting re-
turns a concept that with high probability δ has a classification
error bounded by some small ϵ. It is well-known that PAC
learning is intimately linked to Occam algorithms which guar-
antee to find a hypothesis of small size [Blumer et al., 1989;
Board and Pitt, 1992]. By design, algorithms following the
bounded fitting paradigm are Occam, and as a consequence the
number of examples needed for generalization depends only
linearly on 1/δ, 1/ϵ, and the size of the target concept to be
learned. This generalization guarantee holds independently of
the DL used to formulate concepts and ontologies. In contrast,
no formal generalization guarantees have been established for
DL concept learning approaches.

The second advantage is that, in important cases, bounded
fitting enables learning based on SAT solvers and thus lever-
ages the practical efficiency of these systems. We consider
ontologies formulated in the description logic ELHr and con-
cepts formulated in EL, which may be viewed as a core of the
ontology language OWL 2 EL. In this case, the size-restricted
fitting problem, which is defined like the fitting problem except
that the maximum size of fitting concepts to be considered
is given as an additional input (in unary), is NP-complete;
it is thus natural to implement bounded fitting using a SAT
solver. For comparison, we mention that the unbounded fitting
problem is EXPTIME-complete in this case [Funk et al., 2019].

As a further contribution of the paper, we analyze the gener-
alization ability of other relevant approaches to constructing fit-
ting EL-concepts. We start with algorithms that return fittings
that are ‘prominent’ from a logical perspective in that they
are most specific or most general or of minimum quantifier
depth among all fittings. Algorithms with such characteristics
and their applications are discussed in [ten Cate et al., 2023].
Notably, constructing fittings via direct products of positive ex-
amples yields most specific fittings [Zarrieß and Turhan, 2013;
Jung et al., 2020]. Our result is that, even without ontolo-
gies, these types of algorithms are not sample-efficient, that is,
no polynomial amount of positive and negative examples is
sufficient to achieve generalization in the PAC sense.

We next turn to algorithms based on so-called downward
refinement operators which underlie all implemented DL learn-
ing systems that we are aware of. We consider two natural such



operators that are rather similar to one another and combine
them with a breadth-first search strategy. The first operator
can be described as exploring ‘most-general specializations’
of the current hypotheses and the second one does the same,
but is made ‘artificially Occam’ (with, most likely, a negative
impact on practicality). We prove that while the first operator
does not lead to a not sample-efficient algorithm (even without
ontologies), the second one does. This leaves open whether
or not implemented systems based on refinement operators
admit generalization guarantees, as they implement complex
heuristics and optimizations.

As our final contribution we present SPELL, a SAT-based
system that implements bounded fitting of EL-concepts under
ELHr-ontologies. We evaluate SPELL on several datasets and
compare it to the only other available learning system for EL
that we are aware of, the EL tree learner (ELTL) incarnation
of the DL-Learner system [Bühmann et al., 2016]. We find
that the running time of SPELL is almost always significantly
lower than that of ELTL. Since, as we also show, it is the size
of the target concept that has most impact on the running time,
this means that SPELL can learn larger target queries than
ELTL. We also analyze the relative strengths and weaknesses
of the two approaches, identifying classes of inputs on which
one of the systems performs significantly better than the other
one. Finally, we make initial experiments regarding general-
ization, where both systems generalize well to unseen data,
even on very small samples. While this is expected for SPELL,
for ELTL it may be due to the fact that some of the heuris-
tics prefer fittings of small size, which might make ELTL an
Occam algorithm.

Proof details are provided in the appendix.

Related work. Cohen and Hirsh identified a fragment of the
early DL CLASSIC that admits sample-efficient PAC learning,
even in polynomial time [Cohen and Hirsh, 1994]. For several
DLs such as EL and CLASSIC, concepts are learnable in poly-
nomial time in Angluin’s framework of exact learning with
membership and equivalence queries [Frazier and Pitt, 1996;
ten Cate and Dalmau, 2021; Funk et al., 2021; Funk et al.,
2022b]. The algorithms can be transformed in a standard way
into sample-efficient polynomial time PAC learning algorithms
that, however, additionally use membership queries to an or-
acle [Angluin, 1987]. It is known that sample-efficient PAC
learning under certain assumptions implies the existence of
Occam algorithms [Board and Pitt, 1992]. These assumptions,
however, do not apply to the learning tasks studied here.

2 Preliminaries
Concepts, ontologies, queries. Let NC, NR, and NI be count-
ably infinite sets of concept names, role names, and individual
names, respectively. An EL-concept is formed according to
the syntax rule

C,D ::= ⊤ | A | C ⊓D | ∃r.C

where A ranges over NC and r over NR. A concept of the
form ∃r.C is called an existential restriction and the quan-
tifier depth of a concept is the maximum nesting depth of
existential restrictions in it. An ELHr-ontology O is a finite
set of concept inclusions (CIs) C ⊑ D, role inclusions r ⊑ s,

and range assertions ran(r) ⊑ C where C and D range over
EL-concepts and r, s over role names. An EL-ontology is an
ELHr-ontology that uses neither role inclusions nor range
assertions. We also sometimes mention ELI-concepts and
ELI-ontologies, which extend their EL-counterparts with in-
verse roles r− that can be used in place of role names. See
[Baader et al., 2017] for more information. A database D
(also called ABox in a DL context) is a finite set of concept
assertions A(a) and role assertions r(a, b) where A ∈ NC,
r ∈ NR, and a, b ∈ NI. We use adom(D) to denote the set of
individual names that are used in D. A signature is a set of
concept and role names, in this context uniformly referred to
as symbols. For any syntactic object O, such as a concept or an
ontology, we use sig(O) to denote the set of symbols used in
O and ||O|| to denote the size of O, that is, the number of sym-
bols used to write O encoded as a word over a finite alphabet,
with each occurrence of a concept or role name contributing a
single symbol.

The semantics is defined in terms of interpretations I =
(∆I , ·I) where ∆I is the domain of I and ·I assigns a set
AI ⊆ ∆I to every A ∈ NC and a binary relation rI ⊆ ∆I ×
∆I to every r ∈ NR. The extension CI of EL-concepts C is
then defined as usual [Baader et al., 2017]. An interpretation I
satisfies a concept or role inclusion α ⊑ β if αI ⊆ βI , a range
assertion ran(r) ⊑ C if the projection of rI to the second
component is contained in CI , a concept assertion A(a) if
a ∈ AI , and a role assertion r(a, b) if (a, b) ∈ rI . We say
that I is a model of an ontology/database if it satisfies all
inclusions/assertions in it.

An EL-concept C can be viewed as an EL-query (ELQ) q,
as follows. Let D be a database and O an ELHr-ontology.
Then a ∈ adom(D) is an answer to q on D w.r.t. O if a ∈ CI

for all models I of D and O. In a similar way, we may view
ELI-concepts as ELI-queries (ELIQs). We will from now on
mostly view EL-concepts as ELQs. This does not, however,
restrict their use, which may be as actual queries or as concepts
used as building blocks for ontologies.

An ontology-mediated query (OMQ) language is a pair
(L,Q) with L an ontology language and Q a query language,
such as (ELHr,ELQ) and (ELI,ELIQ). For a query lan-
guage Q and signature Σ, we use QΣ to denote the set of
all queries q ∈ Q with sig(q) ⊆ Σ. All query languages
considered in this paper are unary, that is, they return a sub-
set of adom(D) as answers. We use q(D ∪ O) to denote the
set of answers to q on D w.r.t. O. For an L-ontology O and
queries q1, q2, we write O |= q1 ⊑ q2 if for all databases D,
q1(D ∪ O) ⊆ q2(D ∪ O). We say that q1 and q2 are equiv-
alent w.r.t. O, written O |= q1 ≡ q2, if O |= q1 ⊑ q2 and
O |= q2 ⊑ q1. When O = ∅, we write q1 ⊑ q2 and q1 ≡ q2.

Every ELQ q may be viewed as a database Dq in an obvious
way, e.g. q = ∃r.∃s.A as Dq = {r(aq, a1), s(a1, a2), A(a2)}.
Let D1,D2 be databases and Σ a signature. A Σ-simulation
from D1 to D2 is a relation S ⊆ adom(D1)×adom(D2) such
that for all (a1, a2) ∈ S:

1. if A(a1) ∈ D1 with A ∈ Σ, then A(a2) ∈ D2;
2. if r(a1, b1) ∈ D1 with r ∈ Σ, there is r(a2, b2) ∈ D2

such that (b1, b2) ∈ S.
For a1 ∈ adom(D1) and a2 ∈ adom(D2), we write



(D1, a1) ⪯Σ (D2, a2) if there is a Σ-simulation S from D1 to
D2 with (a1, a2) ∈ S. We generally drop the mention of Σ in
case that Σ = NC ∪ NR. The following well-known lemma
links simulations to ELQs.
Lemma 1. For all ELQs q, databases D, and a ∈ adom(D):
a ∈ q(D) iff (Dq, aq) ⪯ (D, a). Consequently, for all
ELQs q, p: q ⊑ p iff (Dp, ap) ⪯ (Dq, aq).
Fitting. A pointed database is a pair (D, a) with D a
database and a ∈ adom(D). A labeled data example takes
the form (D, a,+) or (D, a,−), the former being a positive
example and the latter a negative example.

Let O be an ontology, Q a query language, and E a collec-
tion of labeled data examples. A query q ∈ Q fits E w.r.t. O
if a ∈ q(D ∪O) for all (D, a,+) ∈ E and a /∈ q(D ∪O) for
all (D, a,−) ∈ E. We then call E a q-labeled data example
w.r.t. O. We say that q is a most specific fitting if O |= q ⊑ q′

for every q′ ∈ Q that fits E, and that it is most general if
O |= q′ ⊑ q for every q′ ∈ Q that fits E.
Example 1. Consider the collection E0 of examples
({r(a, a), A(a), B(a)}, a,+), ({A(a), r(a, b), B(b)}, a,+),
({r(a, b)}, b,−). It has several ELQ fittings, the most specific
one being A ⊓ ∃r.B. There is no most general fitting ELQ as
both A and ∃r.B fit, but no common generalization does.

A fitting algorithm for an OMQ language (L,Q) is an algo-
rithm that takes as input an L-ontology O and a collection of
labeled data examples E and returns a query q ∈ Q that fits E
w.r.t. O, if such a q exists, and otherwise reports non-existence
or does not terminate. The size-restricted fitting problem for
(L,Q) means to decide, given a collection of labeled data ex-
amples E, an L-ontology O, and an s ≥ 1 in unary, whether
there is a query q ∈ Q with ||q|| ≤ s that fits E w.r.t. O.

It is well-known that for every database D and ELHr-
ontology O, we can compute in polynomial time a
database UD,O that is universal for ELQs in the sense that
a ∈ q(D ∪ O) iff a ∈ q(UD,O) for all ELQs q and a ∈
adom(D) [Lutz et al., 2009]. Given a collection of labeled
data examples E and an ELHr-ontology O, we denote with
EO the collection obtained from E by replacing each (pos-
itive or negative) example (D, a, ·) with (UD,O, a, ·). The
following proposition shows that a fitting algorithm for ELQ
without ontologies also gives rise to a fitting algorithm for
(ELHr,ELQ) with at most a polynomial increase in running
time. It is immediate from the definition of universality.
Proposition 1. An ELQ q fits a collection of labeled examples
E w.r.t. an ELHr-ontology O iff q fits EO w.r.t. ∅.

We remark that in contrast to ELQs, finite databases that
are universal for ELIQs need not exist [Funk et al., 2022a].
PAC learning. We recall the definition of PAC learning, in
a formulation that is tailored towards OMQ languages. Let P
be a probability distribution over pointed databases and let qT
and qH be queries, the target and the hypothesis. The error of
qH relative to qT and P is
errorP,qT (qH) = Pr

(D,a)∼P
(a ∈ qH(D ∪O) ∆ qT (D ∪O))

where ∆ denotes symmetric difference and Pr(D,a)∼P X is
the probability of X when drawing (D, a) randomly according
to P .

Definition 1. A PAC learning algorithm for an OMQ language
(L,Q) is a (potentially randomized) algorithm A associated
with a function m : R2 × N4 → N such that

• A takes as input an L-ontology O and a collection of
labeled data examples E;

• for all ϵ, δ ∈ (0, 1), all L-ontologies O, all finite sig-
natures Σ, all sQ, sE ≥ 0, all probability distributions
P over pointed databases (D, c) with sig(D) ⊆ Σ and
||D|| ≤ sE , and all qT ∈ QΣ with ||qT || ≤ sQ, the
following holds: when running A on O and a collec-
tion E of at least m(1/δ, 1/ϵ, ||O||, |Σ|, sQ, sE) labeled
data examples that are qT -labeled w.r.t. O and drawn
according to P , it returns a hypothesis qH such that with
probability at least 1− δ (over the choice of E), we have
errorP,qT (qH) ≤ ϵ.

We say that A has sample size m and call A sample-efficient
if m is a polynomial.

Note that a PAC learning algorithm is not required to
terminate if no fitting query exists. It would be desir-
able to even attain efficient PAC learning which addition-
ally requires A to be a polynomial time algorithm. How-
ever, ELQs are known to not be efficiently PAC learnable
even without ontologies, unless RP = NP [Kietz, 1993;
ten Cate et al., 2022]. The same is true for ELIQs and any
other class of conjunctive queries that contains all ELQs.

3 Bounded Fitting and Generalization
We introduce bounded fitting and analyze when fitting algo-
rithms are PAC learning algorithms.

Definition 2. Let (L,Q) be an OMQ language and let A be
an algorithm for the size-restricted fitting problem for (L,Q).
Then BOUNDED-FITTINGA is the algorithm that, given a col-
lection of labeled data examples E and an L-ontology O, runs
A with input (E,O, s) to decide whether there is a q ∈ Q
with ||q|| ≤ s that fits E w.r.t. O, for s = 1, 2, 3 . . ., returning
a fitting query as soon as it finds one.

Example 2. Consider again Example 1. For s = 1, bounded
fitting tries the candidates ⊤, A,B, ∃r.⊤ and returns the fit-
ting A. If started on E0 extended with ({A(a)}, a,−), it finds
one of the fitting ELQs A ⊓ ∃r.⊤ and ∃r.B in Round 2.

In spirit, bounded fitting focusses on finding fitting queries
when they exist, and not on deciding the existence of a fitting
query. This is in analogy with bounded model checking, which
focusses on finding counterexamples rather than on proving
that no such examples exist. If an upper bound on the size
of fitting queries is known, however, we can make bounded
fitting terminate by reporting non-existence of a fitting query
once the bound is exceeded. This is more of theoretical than
of practical interest since the size bounds tend to be large.
For ELQs without ontologies and for (EL,ELQ), for instance,
it is double exponential [Funk, 2019]. It thus seems more
realistic to run an algorithm that decides the existence of a
fitting in parallel to bounded fitting and to report the result
as soon as one of the algorithms terminates. There are also
important cases where fitting existence is undecidable, such
as for the OMQ language (ELI,ELIQ) [Funk et al., 2019].



Bounded fitting may be used also in such cases as long as
the size-restricted fitting problem is still decidable. This is
the case for (ELI,ELIQ), as a direct consequence of query
evaluation to be decidable in this OMQ language [Baader et
al., 2008], see Appendix H.

A major advantage of bounded fitting is that it yields a
sample-efficient PAC learning algorithm with sample size
linear in the size of the target query. This is because bounded
fitting is an Occam algorithm which essentially means that it
produces a fitting query that is at most polynomially larger
than the fitting query of minimal size [Blumer et al., 1989].1

Theorem 1. Let (L,Q) be an OMQ language. Ev-
ery bounded fitting algorithm for (L,Q) is a (sample-
efficient) PAC learning algorithm with sample size
O
(
1
ϵ · log

(
1
ϵ

)
· log

(
1
δ

)
· log |Σ| · ||qT ||

)
.

We remark that bounded fitting is robust in that other
natural measures of query size (such as the number of ex-
istential restrictions) and enumeration sequences such as
s = 1, 2, 4, 8, . . . also lead to sample-efficient PAC learning
algorithms. This results in some flexibility in implementations.

We next show that many other fitting algorithms are not
sample-efficient when used as PAC learning algorithms. We
start with algorithms that return fittings which are most specific
or most general or of minimum quantifier depth. No such
algorithm is a sample-efficient PAC learning algorithm, even
without ontologies.

Theorem 2. If A is a fitting algorithm for ELQs that satisfies
one of the conditions below, then A is not a sample-efficient
PAC learning algorithm.

1. A always produces a most specific fitting, if it exists;

2. A always produces a most general fitting, if it exists;

3. A produces a fitting of minimal quantifier depth, if a
fitting exists.

The proof of Theorem 2 relies on duals of finite relational
structures, which are widely known in the form of homomor-
phism duals [Nesetril and Tardif, 2000]. Here, we introduce
the new notion of simulation duals.

Let (D, a) be a pointed database and Σ a signature. A set
M of pointed databases is a Σ-simulation dual of (D, a) if for
all pointed databases (D′, a′), the following holds:

(D, a) ⪯Σ (D′, a′) iff (D′, a′) ̸⪯Σ (D′′, a′′)

for all (D′′, a′′) ∈ M.

For illustration, consider the simulation dual M of (Dq, aq) for
an ELQ q. Then every negative example for q has a simulation
into an element of M and q is the most general ELQ that fits
{(D, a,−) | (D, a) ∈ M}. We exploit this in the proof of
Theorem 2. Moreover, we rely on the fact that ELQs have
simulation duals of polynomial size. In contrast, (non-pointed)
homomorphism duals of tree-shaped databases may become
exponentially large [Nesetril and Tardif, 2005].

1A precise definition of Occam algorithms is based on the notion
of VC-dimension; it is not crucial to the main part of the paper, details
can be found in the appendix.

Theorem 3. Given an ELQ q and a finite signature Σ, a Σ-
simulation dual M of (Dq, aq) of size ||M || ≤ 3·|Σ|·||q||2 can
be computed in polynomial time. Moreover, if Dq contains only
a single Σ-assertion that mentions aq , then M is a singleton.

The notion of simulation duals is of independent interest and
we develop it further in the appendix. We show that Theorem 3
generalizes from databases Dq to all pointed databases (D, a)
such that the directed graph induced by the restriction of D
to the individuals reachable (in a directed sense) from a is
a DAG. Conversely, databases that are not of this form do
not have finite simulation duals. We find it interesting to
recall that DAG-shaped databases do in general not have finite
homomorphism duals [Nesetril and Tardif, 2000].

Using Theorem 3, we now prove Point 2 of Theorem 2.
Points 1 and 3 are proved in the appendix.

Proof. To highlight the intuitions, we leave out some minor
technical details that are provided in the appendix. Assume
to the contrary of what we aim to show that there is a sample-
efficient PAC learning algorithm that produces a most general
fitting ELQ, if it exists, with associated polynomial function
m : R2 × N4 as in Definition 1. As target ELQs qT , we use
concepts Ci where C0 = ⊤ and Ci = ∃r.(A ⊓ B ⊓ Ci−1).
Thus, Ci is an r-path of length i in which every non-root node
is labeled with A and B.

Choose Σ = {A,B, r}, δ = ϵ = 0.5, and n large enough
so that 2n > 2m(1/δ, 1/ϵ, 0, |Σ|, 3n, 3 · |Σ| · ||Cn||2). Further
choose qT = Cn.

We next construct negative examples; positive examples are
not used. Define a set of ELQs S = Sn where

S0 = {⊤} Si = {∃r.(α ⊓ C) | C ∈ Si−1, α ∈ {A,B}}.
Note that the ELQs in S resemble qT except that every node
is labeled with only one of the concept names A,B. Now
consider any q ∈ S. Clearly, qT ⊑ q. Moreover, the pointed
database (Dq, aq) contains a single assertion that mentions aq .
By Theorem 3, q has a singleton Σ-simulation dual {(D′

q, a
′
q)}

with ||D′
q|| ≤ 3 · |Σ| · ||Cn||2. We shall use these duals as

negative examples.
The two crucial properties of S are that for all q ∈ S,
1. q is the most general ELQ that fits (D′

q, a
′
q,−);

2. for all T ⊆ S, q /∈ T implies
d

p∈T p ̸⊑ q.

By Point 1 and since qT ⊑ q, each (D′
q, a

′
q) is also a negative

example for qT .
Let the probability distribution P assign probability 1

2n to
all (D′

q, a
′
q) with q ∈ S and probability 0 to all other pointed

databases. Now assume that the algorithm is started on a
collection of m(1/δ, 1/ϵ, 0, |Σ|, 3n, 3 · |Σ| · ||Cn||2) labeled
data examples E drawn according to P . It follows from Point 1
that qH =

d
(D′

q,a
′
q)∈E q is the most general ELQ that fits E.

Thus, (an ELQ equivalent to) qH is output by the algorithm.
To obtain a contradiction, it suffices to show that with prob-

ability 1 − δ, we have errorP,qT (qH) > ϵ. We argue that,
in fact, qH violates all (negative) data examples that are not
in the sample E, that is, aq ∈ qH(Dp) for all p ∈ S with
(D′

p, a
′
p) /∈ E. The definition of P and choice of n then yield

that with probability 1, errorP,qT (qH) = |S|−|E|
|S| > 1

2 .



Thus consider any p ∈ S such that (D′
p, a

′
p) /∈ E. It follows

from Point 2 that qH ̸⊑ p and the definition of duals may now
be used to derive a′p ∈ qH(D′

p) as desired.

4 Refinement Operators
We discuss fitting algorithms based on refinement operators,
used in implemented systems such as ELTL, and show that the
generalization abilities of such algorithms subtly depend on
the exact operator (and strategy) used.

Let (L,Q) be an OMQ language. A (downward) refinement
of a query q ∈ Q w.r.t. an L-ontology O is any p ∈ Q
such that O |= p ⊑ q and O ̸|= q ⊑ p. A (downward)
refinement operator for (L,Q) is a function ρ that associates
every q ∈ QΣ, L-ontology O, and finite signature Σ with a
set ρ(q,O,Σ) of downward refinements p ∈ QΣ of q w.r.t. O.
The operator ρ is ideal if it is finite and complete where ρ is

1. finite if ρ(q,O,Σ) is finite for all q, O, and finite Σ, and

2. complete if for all finite signatures Σ and all q, p ∈ QΣ,
O |= p ⊑ q implies that there is a finite ρ,O,Σ-
refinement sequence from q to p, that is, a sequence of
queries q1, . . . , qn such that q = q1, qi+1 ∈ ρ(qi,O,Σ)
for 1 ≤ i < n, and O |= qn ≡ p.

When O is empty, we write ρ(q,Σ) in place of ρ(q,O,Σ).
For (EL,ELQ) and thus also for (ELHr,ELQ), it is known

that no ideal refinement operator exists [Kriegel, 2019]. This
problem can be overcome by making use of Proposition 1
and employing an ideal refinement operator for ELQs without
ontologies, which does exist [Lehmann and Haase, 2009]. But
also these refinement operators are not without problems. It
was observed in [Kriegel, 2021] that for any such operator,
non-elementarily long refinement sequences exist, potentially
impairing the practical use of such operators. We somewhat
relativize this by the following observation. A refinement
operator ρ for (L,Q) is f -depth bounded, for f : N → N,
if for all q, p ∈ Q and all L-ontologies O with O |= p ⊑ q,
there exists a ρ,O,Σ-refinement sequence from q to p that is
of length at most f(||p||).
Theorem 4. Let (L,Q) be an OMQ-language. If (L,Q)
has an ideal refinement operator, then it has a 2O(n)-depth
bounded ideal refinement operator.

The depth bounded operator in Theorem 4 is obtained by
starting with some operator ρ and adding to each ρ(q,O,Σ) all
p ∈ QΣ such that O |= p ⊑ q, O ̸|= q ⊑ p, and ||p|| ≤ ||q||.
Note that the size of queries is used in an essential way, as in
Occam algorithms.

A refinement operator by itself is not a fitting algorithm as
one also needs a strategy for applying the operator. We use
breadth-first search as a simple yet natural such strategy.

We consider two related refinement operators ρ1 and ρ2
for ELQs. The definition of both operators refers to (small)
query size, inspired by Occam algorithms. Let q be an ELQ.
Then ρ1(q,Σ) is the set of all p ∈ ELQΣ such that p ⊑ q,
q ̸⊑ p, and ||p|| ≤ 2||q||+ 1. The operator ρ2 is defined like
ρ1 except that we include in ρ2(q,Σ) only ELQs p that are a
(downward) neighbor of q, that is, for all ELQs p′, p ⊑ p′ ⊑ q
implies p′ ⊑ p or q ⊑ p′. The following lemma shows that

ρ2(q,Σ) actually contains all neighbors of q with sig(q) ⊆ Σ,
up to equivalence. An ELQ q is minimal if there is no ELQ p
such that ||p|| < ||q|| and p ≡ q.
Lemma 2. For every ELQ q and minimal downward neighbor
p of q, we have ||p|| ≤ 2||q||+ 1.

Both ρ1 and ρ2 can be computed by brute force. For more
elaborate approaches to computing ρ2, see [Kriegel, 2021]
where downward neighbors of ELQs are studied in detail.
Lemma 3. ρ1 and ρ2 are ideal refinement operators for ELQ.

We next give more details on what we mean by breadth-first
search. Started on a collection of labeled data examples E,
the algorithm maintains a set M of candidate ELQs that fit
all positive examples E+ in E, beginning with M = {⊤}
and proceeding in rounds. If any ELQ q in M fits E, then
we return such a fitting q with ||q|| smallest. Otherwise, the
current set M is replaced with the set of all ELQs from⋃

q∈M ρ(q, sig(E)) that fit E+, and the next round begins.
For i ∈ {1, 2}, let Ai be the version of this algorithm that uses
refinement operator ρi. Although ρ1 and ρ2 are defined quite
similarly, the behavior of the algorithms A1 and A2 differs.
Theorem 5. A1 is a sample-efficient PAC learning algorithm,
but A2 is not.

To prove Theorem 5, we show that A1 is an Occam algo-
rithm while A2 produces a most general fitting (if it exists),
which allows us to apply Theorem 2.

The above is intended to provide a case study of refinement
operators and their generalization abilities. Implemented sys-
tems use refinement operators and strategies that are more
complex and include heuristics and optimizations. This makes
it difficult to analyze whether implemented refinement-based
systems constitute a sample-efficient PAC learner.

We comment on the ELTL system that we use in our ex-
periments. ELTL is based on the refinement operator for
(ELHr,ELQ) presented in [Lehmann and Haase, 2009]. That
operator, however, admits only ELHr ontologies of a rather
restricted form: all CIs must be of the form A ⊑ B with
A,B concept names. Since no ideal refinement operators for
unrestricted (EL,ELQ) exist and ELTL does not eliminate
ontologies in the spirit of Proposition 1, it remains unclear
whether and how ELTL achieves completeness (i.e., finding a
fitting whenever there is one).

5 The SPELL System
We implemented bounded fitting for the OMQ language
(ELHr,ELQ) in the system SPELL (for SAT-based PAC EL
concept Learner).2 SPELL takes as input a knowledge base in
OWL RDF/XML format that contains both an ELHr ontology
O and a collection E of positive and negative examples, and
it outputs an ELQ represented as a SPARQL query. SPELL is
implemented in Python 3 and uses the PySat library to interact
with the Glucose SAT solver. It provides integration into the
SML-Bench benchmark framework [Westphal et al., 2019].

In the first step, SPELL removes the ontology O by re-
placing the given examples E with EO as per Proposition 1.

2Available at https://github.com/spell-system/SPELL.

https://github.com/spell-system/SPELL
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Figure 1: Yago experiment, dark red area indicates timeout (60min)

It then runs bounded fitting in the variant where in each
round n, fitting ELQs with at most n − 1 existential re-
strictions are considered (rather than fitting ELQs q with
||q|| ≤ n). The existence of such a fitting is checked us-
ing the SAT solver. Also this variant of bounded fitting results
in a sample-efficient PAC learning algorithm, with sample size
O
(
1
ϵ · log

(
1
ϵ

)
· log

(
1
δ

)
· |Σ| · ||qT ||

)
, see the appendix. We

prefer this variant for implementation because it admits a more
natural reduction to SAT, described next.

From EO and the bound n, we construct a propositional
formula φ = φ1∧φ2 that is satisfiable if and only if there is an
ELQ q over Σ = sig(EO) with at most n−1 existential restric-
tions that fits EO. Indeed, any model of φ returned by the SAT
solver uniquely represents a fitting ELQ q. More precisely, φ1

ensures that such a model represents EL-concepts C1, . . . , Cn

where each Ci only contains existential restrictions of the form
∃r.Cj with j > i, and we take q to be C1. We use variables of
the form ci,A to express that the concept name A is a conjunct
of Ci, and variables xj,r and yi,j to express that ∃r.Cj is a
conjunct of Ci. Then φ2 enforces that the represented ELQ fits
EO. Let D be the disjoint union of all databases that occur in
an example in EO. We use variables si,a, with 1 ≤ i ≤ n and
a ∈ adom(D), to express that a ∈ Ci(D); the exact definition
of φ2 uses simulations and relies on Lemma 1. The number
of variables in φ is O

(
n2 · |D|

)
, thus linear in |D|.

We have implemented several improvements over this basic
reduction of which we describe two. The first improvement is
based on the simple observation that for computing a fitting
ELQ with n − 1 existential restrictions, for every example
(D′, a,±) ∈ EO it suffices to consider individuals that can be
reached via at most n− 1 role assertions from a. Moreover,
we may restrict Σ to symbols that occur in all n− 1-reachable
parts of the positive examples. The second improvement is
based on the observation that the search space for satisfy-
ing assignments of φ contains significant symmetries as the
same ELQ q may be encoded by many different arrangements
of concepts C1, . . . Cn. We add constraints to φ so that the
number of possible arrangements is reduced, breaking many
symmetries. For details see the appendix.

6 Experimental Evaluation
We evaluate SPELL on several benchmarks3 and compare it
to the ELTL component of the DL-Learner system [Bühmann
et al., 2016]. Existing benchmarks do not suit our purpose
as they aim at learning concepts that are formulated in more
expressive DLs of the ALC family. As a consequence, a fitting
EL concept almost never exists. This is the case, for example,
in the often used Structured Machine Learning Benchmark
[Westphal et al., 2019]. We thus designed several new bench-
marks leveraging various existing knowledge bases, making
sure that a fitting EL concept always exists. We hope that our
benchmarks will provide a basis also for future experimental
evaluations of EL learning systems.

Performance evaluation. We carried out two experiments
that aim at evaluating the performance of SPELL. The main
questions are: Which parameters have most impact on the
running time? And how does the running time compare to that
of ELTL?

The first experiment uses the Yago 4 knowledge base which
combines the concept classes of schema.org with data from
Wikidata [Tanon et al., 2020]. The smallest version of Yago 4
is still huge and contains over 40 million assertions. We ex-
tracted a fragment of 12 million assertions assertions that
focusses on movies and famous persons. We then systemati-
cally vary the number of labeled examples and the size of the
target ELQs. The latter take the form Cn = ∃actor.

dn
i=1 ri.⊤

where each ri is a role name that represents a property of ac-
tors in Yago and n is increased to obtain larger queries. The
positive examples are selected by querying Yago with Cn and
the negative examples by querying Yago with generalizations
of Cn. The results are presented in Figure 1. They show that
the size of the target query has a strong impact on the run-
ning time whereas the impact of the number of positive and
negative examples is much more modest. We also find that
SPELL performs ∼1.5 orders of magnitude better than ELTL,
meaning in particular that it can handle larger target queries.

3Available at https://github.com/spell-system/benchmarks.

https://github.com/spell-system/benchmarks


Sample Size 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ELTL 0.77 0.78 0.85 0.85 0.86 0.89 0.90 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.98
SPELL 0.80 0.81 0.84 0.85 0.86 0.86 0.89 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 1: Generalization experiment accuracies

o2b-1 o2b-2 o2b-3 o2b-4 o2b-5 o2b-6

ELTL TO TO 274 580 28 152
SPELL < 1 < 1 < 1 < 1 < 1 < 1

Table 2: OWL2Bench running times [s], TO: >60min

Since Yago has only a very restricted ontology that es-
sentially consists of inclusions A ⊑ B with A,B con-
cept names, we complement the above experiment with
a second one based on OWL2Bench. OWL2Bench is a
benchmark for ontology-mediated querying that combines
a database generator with a hand-crafted ontology which ex-
tends the University Ontology Benchmark [Singh et al., 2020;
Zhou et al., 2013]. The ontology is formulated in OWL 2 EL
and we extracted its ELHr fragment which uses all aspects of
this DL and comprises 142 concept names, 83 role names, and
173 concept inclusions. We use datasets that contain 2500-
2600 individuals and 100-200 examples, generated as in the
Yago case. We designed 6 ELQs with 3-5 occurrences of con-
cept and role names and varying topology. The results are
shown in Table 2. The difference in running time is even more
pronounced in this experiment, with SPELL returning a fitting
ELQ almost instantaneously in all cases.4

Strengths and weaknesses. In this experiment, we aim to
highlight the respective strengths and weaknesses of SPELL
and ELTL or, more generally, of bounded fitting versus
refinement-operator based approaches. We anticipated that the
performance of bounded fitting would be most affected by the
number of existential restrictions in the target query whereas
the performance of refinement would be most affected by the
(unique) length of the sequence C1, . . . , Ck such that C1 = ⊤,
Ci+1 is a downward neighbor of Ci for 1 ≤ i < k, and Ck is
the target query. Let us call this the depth of Ck. The number
of existential restrictions and depth are orthogonal parameters.
In the k-path benchmark, we use target ELQs of the form
∃rk.⊤, k ≥ 1. These should be difficult for bounded fitting
when the number k of existential restrictions gets large, but
easy for refinement as the depth of ∃rk.⊤ is only k. In the k-1-
conj benchmark, we use ELQs of the form ∃r.

dk
i=1 Ai, k ≥ 1.

These have only one existential restriction and depth 2k. ELQs
in the k-2-conj benchmark take the form ∃r.∃r.

dk
i=1 Ai and

even have depth 22
k [Kriegel, 2021]. These should be difficult

for refinement when k gets large, but easy for SPELL. There
is no ontology and we use only a single positive and a single
negative example, which are the target ELQ and its unique
upwards neighbor (defined in analogy with downwards neigh-
bors). The results in Table 3 confirm our expectations, with
ELTL arguably degrading faster than SPELL.

4ELTL crashes on this benchmark unless one option (‘useMini-
mizer’) is switched off. We thus ran ELTL without useMinimizer.

k-path k-1-conj k-2-conj
k ELTL SPELL ELTL SPELL ELTL SPELL

4 1 <1 1 <1 1 <1
6 1 <1 2 <1 394 <1
8 1 <1 20 <1 TO <1
10 1 <1 TO <1 TO <1
12 1 26 TO <1 TO <1
14 1 30 TO <1 TO <1
16 1 68 TO <1 TO <1
18 1 TO TO <1 TO <1

Table 3: Strengths/weaknesses running time [s], TO: >10min

Generalization. We also performed initial experiments to
evaluate how well the constructed fittings generalize to unseen
data. We again use the Yago benchmark, but now split the ex-
amples into training data and testing data (assuming a uniform
probability distribution). Table 1 lists the median accuracies
of returned fittings (over 20 experiments) where the number of
examples in the training data ranges from 5 to 75. As expected,
fittings returned by SPELL generalize extremely well, even
when the number of training examples is remarkably small.
To our surprise, ELTL exhibits the same characteristics. This
may be due to the fact that some heuristics of ELTL prefer
fittings of smaller size, which might make ELTL an Occam
algorithm. It would be interesting to carry out more extensive
experiments on this aspect.

7 Conclusion and Future Work

We have introduced the bounded fitting paradigm along with
the SAT-based implementation SPELL for (ELHr,ELQ), with
competitive performance and formal generalization guaran-
tees. A natural next step is to extend SPELL to other DLs
such as ELI, ALC, or ELU , both with and without ontolo-
gies. We expect that, in the case without ontology, a SAT
encoding of the size-restricted fitting problem will often be
possible. The case with ontology is more challenging; e.g.,
size-restricted fitting is EXPTIME-complete for (ELI,ELIQ),
see Appendix H for additional discussion. It is also interesting
to investigate query languages beyond DLs such as conjunc-
tive queries (CQs). Note that the size-restricted fitting problem
for CQs is Σp

2-complete [Gottlob et al., 1999] and thus beyond
SAT solvers; one could resort to using an ASP solver or to
CQs of bounded treewidth.

It would also be interesting to investigate settings in which
input examples may be labeled erroneously or according to a
target query formulated in different language than the query to
be learned. In both cases, one has to admit non-perfect fittings
and the optimization features of SAT solvers and Max-SAT
solvers seem to be promising for efficient implementation.
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A Additional Preliminaries
We make precise how ELQs can be viewed as databases as
announced in Section 2 of the main paper. Formally, we
inductively associate to every q a pointed database (Dq, aq)
with Dq tree-shaped (recall that a database is tree-shaped if
the directed graph GD = (adom(D), {(a, b) | r(a, b) ∈ D})
is a tree), as follows:

• If q = ⊤, then Dq contains the single fact ⊤(aq);5

• if q = A, then Dq contains the single fact A(aq);

• if q = q1 ⊓ q2, then Dq is obtained from
(Dq1 , dq1), (Dq2 , dq2) by first taking the disjoint union
of Dq1 and Dq2 and then identifying aq1 and aq2 to aq;

• if q = ∃r.p, then Dq is obtained from (Dp, ap) by taking
Dq = Dp ∪ {r(aq, ap)} for a fresh individual aq .

Let I1 and I2 be interpretations. The direct product of I1
and I2, denoted I1 × I2, is the interpretation with domain
∆I1 × ∆I2 and such that for all concept names A and role
names r:

AI1×I2 = AI1 ×AI2

rI1×I2 = rI1 × rI2 .

B Occam Algorithms and Proof of Theorem 1
Let O be an ontology and Q a class of queries. For a set
of pointed databases S, we say that Q shatters S w.r.t. O if
for every subset S′ ⊆ S, there is a q ∈ Q such that S′ =
{(D, a) ∈ S | a ∈ q(D ∪ O)}. The VC-dimension of Q
w.r.t. O is the cardinality of the largest set of pointed databases
S that is shattered by Q w.r.t. O.

Let (L,Q) be an OMQ language and A a fitting algorithm
for (L,Q). For an L-ontology O, a finite signature Σ, and
s,m ≥ 1, we use HA(O,Σ, s,m) to denote the set of all
outputs that A makes when started on O and a collection of m
data examples E such that sig(E) ⊆ Σ and E is qT -labeled
w.r.t. O according to some qT ∈ QΣ with ||qT || ≤ s. This is
called an effective hypothesis space of A. We say that A is an
Occam algorithm if there exists a polynomial p and a constant
α ∈ [0, 1) such that for all L-ontologies O, finite signatures Σ,
and s,m ≥ 1, the VC-dimension of HA(O,Σ, s,m) w.r.t. O
is bounded by p(s, |Σ|) ·mα.

Theorem 3.2.1 of [Blumer et al., 1989] then implies the
following.

Lemma 4. If A is an Occam algorithm with the VC-dimension
of effective hypothesis spaces bounded by p(s, |Σ|) ·mα, then
A is a PAC learning algorithm with sample size

m(1/ϵ, 1/δ, n) = max
(4
ϵ
log

2

δ
,
(8p(s, |Σ|)

ϵ
log

13

ϵ

)1/(1−α))
.

There are certain difference between the setup used in this
paper and the setup in [Blumer et al., 1989]. We comment on
why we still obtain Lemma 4 from Theorem 3.2.1 of [Blumer
et al., 1989]. The aim of [Blumer et al., 1989] is to study
the learning of concept classes which are defined in a general
way as a set C of concepts C ⊆ X where X is a fixed set of
examples. Consequently, their definition of PAC algorithms

5We allow facts of the form ⊤(a) for convenience.

refers to concept classes and, in contrast to Definition 1, does
neither mention ontologies nor signatures. However, when fix-
ing an L-ontology O and signature Σ, we obtain an associated
concept class CO,Σ by taking X to be the set of all pointed
Σ-databases and each query q ∈ Q as the concept that consists
of all pointed Σ-databases that are positive examples for q.
Moreover, by simply fixing O and Σ, any fitting algorithm
A for (L,Q) turns into a learning algorithm for CO,Σ in the
sense of [Blumer et al., 1989]. Here, ‘fixing’ means that we
promise to only run A on input ontology O and collections
of labeled data examples E such that sig(E) ⊆ Σ and E is
qT -labeled w.r.t. O according to some qT ∈ QΣ. The defini-
tion of Occam algorithms in [Blumer et al., 1989] refers to
effective hypothesis spaces HA(s,m) and requires that their
VC-dimension is bounded by p(s) ·mα (where ||O|| and |Σ|
are considered constants). If A is Occam in our sense, then
A with O and Σ fixed is Occam in the sense of [Blumer et
al., 1989]. Theorem 3.2.1 of that paper then gives that A with
O and Σ fixed is a PAC learning algorithm for CO,Σ with the
bound stated in Lemma 4.

We remark that the precondition of Theorem 3.2.1 in
[Blumer et al., 1989] actually demands that the algorithm
runs in polynomial time, but an analysis of the proof shows
that this assumption is not used. Then, by Definition 1, ev-
ery fitting algorithm A that is a PAC learning algorithm when
restricted to O and Σ, for any O and Σ and with the same func-
tion m describing the sample size, is a PAC learning algorithm
for (L,Q).

A final small difference is that, in [Blumer et al., 1989],
the function m in the definition of PAC algorithms does not
depend on the size of the examples. Our version is a stan-
dard variation and does not impair the application of Blumer’s
Theorem 3.2.1: to see this, it suffices to observe that we do
not use this parameter in the definition of effective hypothesis
spaces and thus our Occam algorithms (with fixed O and Σ)
are also Occam algorithms in the sense of Blumer. Moreover,
every PAC algorithm in the sense of Blumer is a PAC algo-
rithm in our sense. Intuitively, having the example size as a
parameter in the function m makes the lower bounds (results
on algorithms not being non-sample PAC learners) stronger as
it makes it impossible to use examples of excessive size. It is
also more generous regarding the upper bounds (developing
PAC algorithms), but we do not make use of that generosity.

Theorem 1. Let (L,Q) be an OMQ language. Ev-
ery bounded fitting algorithm for (L,Q) is a (sample-
efficient) PAC learning algorithm with sample size
O
(
1
ϵ · log

(
1
ϵ

)
· log

(
1
δ

)
· log |Σ| · ||qT ||

)
.

Proof. Let B = BOUNDED-FITTINGA be a bounded fitting
algorithm for (L,Q). Let O be an L-ontology, Σ a finite
signature, and s,m ≥ 0. We show that the VC-dimension of
HB(O,Σ, s,m) is at most O(s · log |Σ|).

It is immediate from Definition 2 that when started on O
and a collection of m data examples E such that sig(E) ⊆ Σ
and E is qT -labeled w.r.t. O according to some qT ∈ QΣ with
||qT || ≤ s, then B returns a fitting q ∈ Q for E w.r.t. O whose
size ||q|| is smallest among all fitting queries. Consequently,
HB(O,Σ, s,m) consists only of queries q ∈ Q with ||q|| ≤ s.



There are at most (|Σ|+c+1)s such queries for some constant6

c and since 2|S| queries are needed to shatter a set S, the VC-
dimension of HB(O,Σ, s,m) is at most log((|Σ|+c+1)s) ∈
O(s · log |Σ|), as desired. It remains to apply Lemma 4.

We next comment on the fact that, in the i-th round of the
SPELL system, we try to fit ELQs that have at most i − 1
existential quantifiers, rather than ELQs of size at most i. By
using the following lemma and applying the same arguments
as in the proof of Theorem 1, we obtain that our SAT-based
approach yields a PAC learning algorithm with sample size
O
(
1
ϵ · log

(
1
ϵ

)
· log

(
1
δ

)
· |Σ| · ||qT ||

)
.

Lemma 5. Let O be an ELHr-ontology, n ≥ 1, and ELQ∃
(n)

the set of ELQs that have at most n existential restric-
tions. Then the VC-dimension of ELQ∃

(n) w.r.t. O is at most
2(|Σ|+ 1)n.

Proof. Let n ≥ 1. We first observe that the number of con-
cepts in ELQ∃

(n) is bounded from above by mn = 4(|Σ|+1)n.
To see this, note that the number of rooted, directed, unlabeled
trees with n nodes is bounded from above by the n-th Catalan
number, which in turn is bounded from above by 4n [Dutton
and Brigham, 1986]. Each such tree gives rise to an ELQ by
assigning a unique role name from Σ to each of the at most
n− 1 edges of the tree and a set of concept names from Σ to
each of the at most n nodes of the tree. This clearly yields the
stated bound mn. Then trivially, the VC-dimension of ELQ∃

(n)

w.r.t. the empty ontology is at most logmn, thus 2(|Σ|+ 1)n.
Making the ontology non-empty may only decrease the VC-
dimension as it may make non-equivalent concepts equivalent,
but not vice versa.

It is easy to see that (the proof of) Lemma 5 applies also to
other DLs such as ELI and ALCI.

C Proof of Theorem 2
We split the three Points in Theorem 2 into three separate
theorems.

Theorem 6. Let A be a fitting algorithm for ELQs that always
produces a most specific fitting, if it exists. Then A is not a
sample-efficient PAC learning algorithm.

Proof. Assume to the contrary of what we aim to show that
there is a sample-efficient PAC learning algorithm that pro-
duces a most specific fitting concept, if it exists, with polyno-
mial function m : R2 × N4 → N as in Definition 1. Choose
Σ = {A, r}, qT = A, δ = ϵ = 0.5, and n even and large
enough such that(

n

n/2

)
> 2m(1/ϵ, 1/δ, 0, |Σ|, ||qT ||, n(n+ 1)).

We next construct positive examples; negative examples are
not used. Let S denote the set of subsets of {1, . . . , n} and let

6The number of symbols from the finite alphabet used to encode
syntactic objects as a word from the definition of || · ||.

S 1
2 be defined likewise, but include only sets of cardinality

exactly n/2. With every S ∈ S, we associate the database

DS = {r(b0, b1), . . . , r(bn−1, bn)} ∪ {A(bi) | i ∈ S}

as well as the pointed database (D′
S , a0) that can be obtained

by starting with {A(a0)} and then taking, for every i ∈ S,
a disjoint copy of D{1,...,n}\{i} and identifying the root b0
with a0. Note that every (D′

S , a0) is a positive example for qT .
A crucial property of (D′

S , a0) is that it is a simulation dual
of (DS , a0) restricted to structures (DS′ , a0), meaning the
following.7

Claim. For all S, S′ ∈ S:

(DS , a0) ⪯Σ (DS′ , a0) iff (DS′ , a0) ̸⪯Σ (D′
S , a0).

The claim is easy to verify. We do not work with unrestricted
simulation duals here because we want the databases (D′

S , a0)
to be acyclic, and unrestricted simulation duals are not.

Let P be the probability distribution that assigns probabil-
ity 1/|S 1

2 | to every (D′
S , a0) with S ∈ S 1

2 , and probability 0
to all other pointed databases.

Now assume that the algorithm is started on a collection of
m(1/ϵ, 1/δ, 0, |Σ|, ||qT ||, n(n+ 1)) labeled data examples E.
Since all examples are acyclic, the most specific fitting qH
exists [Jung et al., 2020] and is output by the algorithm. It is
not important to make explicit at this point the exact details
of qH , but it can be thought of as the direct product of all the
examples in E, viewed as an ELQ.

To obtain a contradiction, it suffices to show that with prob-
ability at least 1− δ = 0.5, we have errorP,qT (qH) > ϵ = 0.5.
We argue that, in fact, qH violates all data examples (D′

S , a0)

with S ∈ S 1
2 that are not in the sample E. The defini-

tion of P and choice of n then yield that with probability 1,
errorP,qT (qH) > 0.5.

Thus take S ∈ S 1
2 with (D′

S , a0) /∈ E. To show that
a0 /∈ qH(D′

S), it suffices to prove the following:
1. (DS , a0) ⪯ (DqH , aqH );

Let qS be (DS , a0) viewed as an ELQ. We show that
qS is a fitting of E. Take any (DS′ , a0) ∈ E. Then
S ̸= S′ and thus (DS′ , a0) ̸⪯ (DS , a0). The claim yields
(DS , a0) ⪯ (D′

S′ , a0). Thus a0 ∈ qS(D′
S′), and we are

done.
Since qH is the most specific fitting of E, it follows from
qS being a fitting that qH ⊑ qS , which yields (DS , a0) ⪯
(DqH , aqH ) as desired.

2. (DS , a0) ̸⪯ (D′
S , a0).

Follows from the claim and the fact that (DS , a0) ⪯
(DS , a0).

Now, a0 /∈ qH(D′
S) follows from (DqH , aqH ) ⪯ (D′

S , a0)
which is ruled out by Points 1 and 2 above and the fact that
the composition of two simulations is again a simulation.

Theorem 7. Let A be a fitting algorithm for ELQs that always
produces a most general fitting, if it exists. Then A is not a
sample-efficient PAC learning algorithm.

7For homomorphisms, the notion of a restricted duality is well-
established, see for example [Nesetril and de Mendez, 2012].



Proof. We only provide the missing details from the proof in
the main part, that is, the proof of Points 1 and 2 stated in the
main part and the place of the proof that say “it follows from
Point 1 that”:

1. q is the most general ELQ that fits (D′
q, a

′
q,−);

Let p be an ELQ such that (D′
q, a

′
q) is a negative example

for p. We have to show that p ⊑ q.
(D′

q, a
′
q) being a negative example for p means that a′q /∈

p(D′
q) and thus (Dp, ap) ̸⪯ (D′

q, a
′
q) by Lemma 1. The

definition of duals thus yields (Dq, aq) ⪯ (Dp, ap) and
Lemma 1 gives p ⊑ q, as desired.

2. For all T ⊆ S, q /∈ T implies pT ̸⊑ q where pT =d
p∈T p.

Consider the database DpT
. Then clearly apT

∈
pT (DpT

). But since q /∈ T , DpT
contains no r-path

outgoing from apT
that contains the A/B-labeling of q,

and thus apT
/∈ q(DpT

).

3. It follows from Point 1 that qH =
d

(D′
q,a

′
q)∈E q is the

most general ELQ that fits E.
Clearly, qH ⊑ q for every (D′

q, a
′
q) ∈ E, and thus

(Dq, aq) ⪯ (DqH , aqH ). By Point 1, (Dq, aq) ̸⪯
(D′

q, a
′
q). Since the composition of two simulations is

a simulation, this implies (DqH , aqH ) ̸⪯ (D′
q, a

′
q). It

follows that qH fits E.
It remains to show that qH is most general. Assume
that some ELQ p fits E. Then a′q /∈ p(D′

q) for all
(D′

q, a
′
q) ∈ E and thus (Dp, ap) ̸⪯ (D′

q, a
′
q). By defini-

tion of duals, (Dq, aq) ⪯ (Dp, ap) and this is witnessed
by some simulation Sq. But then

⋃
q Sq is a simulation

showing (DqH , aqH ) ⪯ (Dp, ap), and thus p ⊑ qH as
desired.

Theorem 8. Let A be a fitting algorithm for ELQs that always
produces a fitting of minimum quantifier depth. Then A is not
a sample-efficient PAC learning algorithm.

Proof. Assume to the contrary of what we aim to show that
there is a sample-efficient learning algorithm that produces
a most shallow fitting concept, if it exists, with associated
polynomial function m : R2×N4 → N as in Definition 1. We
are going to use target queries of the form qT = ∃tn+1.⊤.

Choose Σ = {r, s, t}, δ = 0.5, ϵ = 0.4, and n large enough
such that

2n!

2np(n)(2n − p(n))!
> 1− δ (∗)

where p(n) is the polynomial

p(n) = m(
1

δ
,
1

ϵ
, 0, |Σ|, n+ 1, p′(n))

and p′ is a fixed polynomial that describes the size of the exam-
ples that we are going to use. Lemma 6 below shows that such
an n always exists, regardless of the precise polynomial p′.
The meaning of the expression on the left-hand side of (∗) will
be explained later.

Recall that the target query qT = ∃tn+1.⊤ is of quantifier
depth n + 1. We construct (both positive and negative) ex-
amples such that with high probability, the drawn examples
admit a fitting of quantifier depth n that, however, does not
generalize well. Define a set of ELQs

S = {∃r1. . . .∃rn.⊤ | ri ∈ {r, s}, 1 ≤ i ≤ n}.

By Theorem 3, each q ∈ S has a polynomially sized Σ-dual
that consists of a single element (Pq, a). By duality, (Pq, a)
is a positive example for qT . Also by Theorem 3, qT has
a polynomially sized Σ-dual that contains a single element
(DT , a). For each q ∈ S, we construct a negative example
(Nq, a) by taking

(Nq, a) = (Pq, a)× (DT , a)

where × denotes the direct product of two pointed databases.
Since the direct product is of polynomial size, both the positive
examples and the negative examples are of size polynomial in
n. We let p′(n) be any polynomial that bounds (from above)
the size of the examples.

Note that by the properties of duals and products, for all
q ∈ S and for all Σ-ELQs q′, we have

(i) a ∈ q′(Pq) iff q′ ̸⊑ q, and
(ii) a ∈ q′(Nq) iff q′ ̸⊑ q and q′ ̸⊑ qT .

To see Point (i) note that a ∈ q′(Pq) iff (by Lemma 1)
(Dq′ , aq′) ⪯ (Pq, a) iff (by duality) (Dq, aq) ̸⪯ (Dq′ , aq′)
iff (by Lemma 1) q′ ̸⊑ q. Point (ii) can be shown similar
and uses that (D, a) ⪯ (D1, a1) × (D2, a2) iff (D, a) ⪯
(D1, a1) and (Da) ⪯ (D2, a2), for all pointed databases
(D, a), (D1, a1), (D2, a2).

Let P be the probability distribution that assigns probability
1

2n+1 to every (Pq, a) and (Nq, a), and probability 0 to all
other pointed databases. Now, assume that the algorithm is
started on a collection of k = m(1/δ, 1/ϵ, 0, |Σ|, n+1, p′(n))
pointed databases E labeled according to qT and outputs a
hypothesis qH .

Note that the probability of sampling ℓ different objects from
an N -element set is the ratio of those sequences of length ℓ that
contain pairwise distinct elements in the set of all sequences
of length ℓ, that is,∏ℓ−1

i=0(N − ℓ)

N ℓ
=

N !

N ℓ · (N − ℓ)!
.

We apply this observation to N = 2n and ℓ = k. By choice of
n, with probability > 1− δ we have that for no q ∈ S, both
(Nq, a) ∈ E and (Pq, a) ∈ E. To derive a contradiction, we
show that the error of qH is strictly larger than ϵ if this is the
case.

Consider the ELQ q′ =
d

(Np,a,−)∈E p. We claim that q′

fits E. Note that q ̸⊑ qT for any q ∈ S. Point (ii) then
implies a /∈ q(Nq) for all q ∈ S and thus q′ fits all negative
examples. Together with our assumption that for no q ∈ S,
both (Nq, a) ∈ E and (Pq, a) ∈ E, Point (i) implies that
a ∈ p(Pq) for all (Np, a,−) ∈ E and (Pp, a,+) ∈ E.

Since q′ is a fitting of depth n and the algorithm finds a
fitting of minimal depth, qH must have depth at most n, which
implies that qH ̸⊑ qT .



Consider all q ∈ S. It must be that either qH ⊑ q or
qH ̸⊑ q. In the first case, Point (i) implies a /∈ qH(Pq),
hence qH labels the (positive) example (Pq, a) incorrectly. In
the second case, Point (ii) implies a ∈ qH(Nq), hence qH
labels the (negative) example (Nq, a) incorrectly. Therefore,
errorP,qT (qH) ≥ 0.5 > ϵ.

Lemma 6. For every polynomial p(n),

lim
n→∞

(
2n!

2np(n)(2n − p(n))!
) = 1.

Proof. As argued in the proof of Theorem 8, the term inside
the limit is a probability, so the limit is at most 1. We start
with bounding the expression inside the limit from below.

2n!

2np(n)(2n − p(n))!
=

2n · (2n − 1) · · · · · (2n − p(n) + 1)

(2n)p(n)

≥ (2n − p(n) + 1)p(n)

(2n)p(n)

=

(
1− p(n) + 1

2n

)p(n)

It clearly suffices to show that the limit of the last expression
is 1. In order to do so, we reformulate the expression to avoid
the p(n) in the exponent.

lim
n→∞

(

(
1− p(n) + 1

2n

)p(n)

)

= lim
n→∞

(exp(ln(

(
1− p(n) + 1

2n

)p(n)

)))

= exp( lim
n→∞

(ln(

(
1− p(n) + 1

2n

)p(n)

)))

= exp( lim
n→∞

(p(n) · ln(1− p(n) + 1

2n
))).

To determine the limit of a product where one factor p(n)
converges to ∞ and the other ln(·) converges to 0, we
apply l’Hôpital’s rule. Set f(n) = ln(1 − p(n)+1

2n ) and
g(n) = 1/p(n), so limn→∞

f(n)
g(n) is exactly the limit we want

to determine (inside the exp(·)). L’Hôpital’s rule says that
if limn→∞

f ′(n)
g′(n) exists, then limn→∞

f ′(n)
g′(n) = limn→∞

f(n)
g(n) .

The derivations f ′(n) and g′(n) of f(n) and g(n) are:

f ′(n) =
ln(2)(p(n) + 1)− p′(n)

2n − p(n)− 1

g′(n) =
−p′(n)

q(n)
for some polynomial q(n)

It remains to observe that f ′(n)/g′(n) is an expression that
has an exponential 2n in its numerator and everywhere else
only polynomials. Thus, limn→∞

f ′(n)
g′(n) = 0 = limn→∞

f(n)
g(n) ,

which yields exp(0) = 1 as desired.

D Proof of Theorem 3 and Simulation Duals
Instead of proving Theorem 3, we directly prove the more gen-
eral version in which databases Dq for an ELQ q are replaced
with DAG-shaped databases. A database D is DAG-shaped if
the directed graph GD = (adom(D), {(u, v) | r(u, v) ∈ D})
is a DAG.

Let D be a database and a, b ∈ adom(D). A path from
a to b in D is a finite sequence a1, r1, a2, . . . , rk−1, ak such
that a1 = a, ak = b, and ri(ai, ai+1) ∈ D, for 1 ≤ i < k.
Note that role assertions may be traveled forwards, but not
backwards. The codepth of an individual a in a DAG-shaped
database D is the length of the longest path starting in a;
the codepth of an individual a such that there is no assertion
r(a, b) ∈ D is defined to be 0.
Theorem 9. Let Σ be a finite signature and (D, a) be a pointed
database such that D is DAG-shaped. Then, we can compute
in polynomial time a Σ-simulation dual M of (D, a) such that

• ||M || ≤ 3 · |Σ| · ||D||3, and

• if D is tree-shaped, then ||M || ≤ 3 · |Σ| · ||D||2.

Moreover, if D contains exactly one Σ-assertion that men-
tions a, then the computed M is actually a singleton set.

Proof. Let (D, a) be a pointed database with D DAG-shaped
and Σ a finite signature. We construct a Σ-simulation dual of
(D, a) as follows. First, we define a database D∗ with domain

adom(D∗) = {b⊤} ∪
{⟨b, A(b)⟩ | A(b) ∈ D, A ∈ Σ} ∪
{⟨b, r(b, c)⟩ | r(b, c) ∈ D, r ∈ Σ}

and include the following assertions, for all ⟨b, A(b)⟩ ∈
adom(D∗) and ⟨b, r(b, c)⟩ ∈ adom(D∗):

(i) B(b⊤) for all B ∈ Σ ∩ NC;
(ii) s(b⊤, b⊤) for all s ∈ Σ ∩ NR;

(iii) B(⟨b, A(b)⟩) for all B ∈ Σ ∩ NC with B ̸= A;
(iv) s(⟨b, A(b)⟩, b⊤) for all s ∈ Σ ∩ NR;
(v) B(⟨b, r(b, c)⟩) for all B ∈ Σ ∩ NC;

(vi) s(⟨b, r(b, c)⟩, b⊤) for all s ∈ Σ ∩ NR with s ̸= r;
(vii) r(⟨b, r(b, c)⟩, ⟨c, α⟩) for all ⟨c, α⟩ ∈ adom(D∗).

We prove two auxiliary claims.
Claim 1. For all b ∈ adom(D) and ⟨b, α⟩ ∈ adom(D∗),
(D, b) ̸⪯Σ (D∗, ⟨b, α⟩).
Proof of Claim 1. We prove the claim by induction on the
codepth of b in D. If b has codepth 0, then α is of the form
A(b), for A(b) ∈ D. By Point (iii) in the definition of D∗,
A(⟨b, A(b)⟩) /∈ D∗, and thus (D, b) ̸⪯Σ (D∗, ⟨b, α⟩).

Now, let b have codepth greater than 0. We distinguish cases
on the shape of α.

• If α is of the form A(b) for some A(b) ∈ D, then we can
argue as in the base case that (D, b) ̸⪯Σ (D∗, ⟨b, α⟩).

• If α is of the form r(b, c) for some r(b, c) ∈ D, assume
for contradiction that there is a Σ-simulation S from D
to D∗ with (b, ⟨b, r(b, c)⟩ ∈ S). Since S is a simula-
tion and c is an r-successor of b in D, there has to be



an r-successor c′ of ⟨b, r(b, c)⟩ in D∗ with (c, c′) ∈ S.
By Point (vi) and (vii), c′ is of shape ⟨c, α⟩. But then
(D, c) ⪯Σ (D′, ⟨c, α⟩), contradicting the induction hy-
pothesis.

Claim 2. For all b ∈ adom(D) and pointed databases (D′, c),
if (D, b) ̸⪯Σ (D′, c) then there is a ⟨b, α⟩ ∈ adom(D∗) such
that (D′, c) ⪯Σ (D∗, ⟨b, α⟩).
Proof of Claim 2. We prove the claim by induction on the
codepth of b in D. If b has codepth 0 and (D, b) ̸⪯Σ (D′, c),
then there is a concept name A ∈ Σ such that A(b) ∈ D and
A(c) /∈ D′. It can be verified using Points (i)–(iii) above that
the relation

S = {(c, ⟨b, A(b)⟩)} ∪ {(c′, b⊤) | c′ ∈ adom(D′)}

is a Σ-simulation from D′ to D∗ with (c, ⟨b, A(b)⟩) ∈ S as
required.

Now, let b have codepth greater than 0 and assume
(D, b) ̸⪯Σ (D′, c). We distinguish cases on why the latter
is the case:

• If there is a concept name A ∈ Σ such that A(b) ∈ D
and A(c) /∈ D′, we can argue as in the base case that
(D′, c) ⪯Σ (D∗, ⟨b, A(b)⟩).

• If there is an assertion r(b, b′) ∈ D such that for all
r(c, c′) ∈ D′, (D, b′) ̸⪯Σ (D′, c′). We show that
(D′, c) ⪯Σ (D∗, ⟨b, r(b, b′)⟩).
The induction hypothesis implies that for all r(c, c′) ∈ D′

there is an ⟨b′, β⟩ ∈ adom(D∗) and a simulation Sc′ from
D′ to D∗ with (c′, ⟨b′, β⟩) ∈ Sc′ . It can be verified using
Points (v)-(vii) above that

S = {(b, ⟨b, r(b, b′)⟩)} ∪ {(c′, b⊤) | c′ ∈ adom(D′)} ∪⋃
r(c,c′)∈D′

Sc′

is a simulation from D′ to D∗ with (b, ⟨b, r(b, b′)⟩) ∈ S.
This completes the proofs of Claims 1 and 2. The next claim

shows how to read off a simulation dual of (D, a) from D∗.
Claim 3. The set

Ma = {(D∗, ⟨a, α⟩) | ⟨a, α⟩ ∈ adom(D∗)}

is a Σ-simulation dual of (D, a).
Proof of Claim 3. Suppose (D, a) ̸⪯Σ (D′, a′) for some
(D′, a′). Then Claim 2 implies that there is some ⟨a, α⟩ ∈
adom(D∗) with (D′, a′) ⪯ (D∗, ⟨a, α⟩). It remains to
note that (D∗, ⟨a, α⟩) ∈ Ma. Conversely, suppose that
(D, a) ⪯Σ (D′, a′) and assume for showing a contradiction
that (D′, a′) ⪯Σ (D∗, ⟨a, α⟩) for some ⟨a, α⟩ ∈ adom(D∗).
Since ⪯Σ is transitive, we obtain (D, a) ⪯Σ (D∗, ⟨a, α⟩), in
contradiction to Claim 1. This finishes the proof of Claim 3.

Clearly, Ma is a singleton set if D contains only a single Σ-
assertion mentioning a. It remains to analyze ||Ma||. We start
with analyzing ||D∗||. Points (i) and (ii) together contribute
|Σ| assertions. Points (iii) and (iv) contribute together |Σ| ·nC

assertions where nC denotes the number of assertions of shape
A(b) in D. Points (v) and (vi) contribute |Σ| · nR assertions
where nR denotes the number of assertions of shape r(b, c) in

D. Finally, Point (vii) contributes |D|2 assertions. Overall, we
obtain

||D∗|| ≤ |Σ|+ |Σ| · nC + |Σ| · nR + |D|2 ≤ 3 · |Σ| · |D|2.

Thus, ||Ma|| ≤ |D| · 3 · |Σ| · |D|2 ≤ 3 · |Σ| · ||D||3 as required.
If D is tree-shaped, then the bound on the number of as-

sertions that Point (vii) contributes can be improved. Only a
single incoming assertion is added for each ⟨c, α⟩, resulting in
|D| assertions. This improves the overall bounds to

||D∗|| ≤ |Σ|+ |Σ| · nC + |Σ| · nR + |D| ≤ 3 · |Σ| · |D|.

Thus, ||Ma|| ≤ |D| · 3 · |Σ| · |D| ≤ 3 · |Σ| · ||D||2 as required.

We next characterize the pointed databases that admit finite
simulation duals. We need some additional notation.

We say that b is reachable from a if there is a path from a
to b. We use D↓a to denote the database that consists of all
facts A(b), r(b, b′) ∈ D with b, b′ reachable from a. We note
that, for some a ∈ adom(D), D↓a might be empty (namely,
if there are no assertions of the form A(a), r(a, b) ∈ D). In
a slight abuse of notation, we then allow to write (∅, a) and
mean the pointed database ({⊤(a)}, a). We use DΣ to denote
the restriction of a database D to its Σ-assertions, for any
signature Σ. Hence, D↓a

Σ is the restriction of D↓a to Σ.
The proof of the characterization relies on the (standard)

notion of unravelings. Let D be a database and a ∈ adom(D).
The unraveling of D at a is the (possibly infinite) database
U whose domain adom(U) consists of all paths starting in
a and that contains the following assertions for every p =
a1, r1, a2, . . . , rk−1, ak ∈ adom(U):

• A(p) for all A(ak) ∈ D and
• rk−1(p

′, p) for p′ = a1, r1, . . . , ak−1.

Theorem 10. Let Σ be a finite signature and (D, a) a pointed
database. Then, (D, a) has a finite Σ-simulation dual iff D↓a

Σ
is DAG-shaped.

Proof. For the “if”-direction, suppose that D↓a
Σ is DAG-

shaped. It should be clear that both (D, a) ⪯Σ (D↓a
Σ , a) and

(D↓a
Σ , a) ⪯Σ (D, a), and thus (D, a) and (D↓a

Σ , a) have the
same Σ-simulation duals. Theorem 9 implies the existence of
a finite Σ-simulation for (D↓a

Σ , a) and thus of (D, a).
For “only if”, we assume that D↓a

Σ is not DAG-shaped and
show that there cannot be a finite Σ-simulation dual. Assume
to the contrary of what is to be shown that M is a finite Σ-
simulation dual of (D, a). Let U be the unraveling of D↓a

Σ at
a. Note that U is an infinite (and tree-shaped) database as D↓a

Σ
is not DAG-shaped. Let, moreover, Ui denote the restriction
of U to individuals that have distance at most i from the root
a, for i ≥ 0. Clearly, we have:

(i) (D, a) ⪯Σ (U , a), and
(ii) (D, a) ̸⪯Σ (Ui, a), for all i ≥ 0.

By duality and Point (ii), for every i ≥ 0 there exists some
(D′, a′) ∈ M with (Ui, a) ⪯Σ (D′, a′). Since M is finite,
there is some (D∗, a∗) ∈ M such that (Ui, a) ⪯Σ (D∗, a∗)



for infinitely many i ≥ 0. Using a standard “simulation skip-
ping” argument, we can inductively construct a simulation
S witnessing (U , a) ⪯Σ (D∗, a∗). By duality, we obtain
(D, a) ̸⪯Σ (U , a), which is in contradiction to Point (i) above.

Let us now give some details regarding the simulation skip-
ping argument. Let I be an infinite set such that (Ui, a) ⪯Σ

(D∗, a∗) for all i ∈ I , and let (Si)i∈I be a family of Σ-
simulations witnessing that. We provide an infinite family
(S∗

i )i≥0 of relations adom(Ui) × adom(D∗) such that, for
every i ≥ 0:
(a) S∗

i is a Σ-simulation witnessing (Ui, a) ⪯Σ (D∗, a∗),
and

(b) S∗
i ⊆ Sj , for infinitely many j ∈ I .

We start with setting S∗
0 = {(a, a)} which clearly satis-

fies Points (a) and (b). To obtain S∗
i+1 from S∗

i , let B =
adom(Ui+1) \ adom(Ui). Note that B is finite. By Point (b)
applied to S∗

i , there is an infinite set J ⊆ I such that S∗
i ⊆ Sj

for every j ∈ J . Since both B and D∗ are finite, we can pick
an infinite subset J ′ ⊆ J such that for every b ∈ B, every
d ∈ adom(D∗), and every j, j′ ∈ J ′, we have

(b, d) ∈ Sj iff (b, d) ∈ Sj′ .

Obtain S∗
i+1 from S∗

i by adding (b, d) ∈ B × adom(D∗) in
case (b, d) ∈ Sj for all j ∈ J ′. It is routine to verify that S∗

i+1
satisfies Points (a) and (b), and that

S =
⋃
i≥0

S∗
i

witnesses (U , a) ⪯Σ (D∗, a∗), as desired.

E Proof of Theorem 4
Let (L,Q) be an OMQ language, O an L-ontology, and Σ a
finite signature. A (downward) frontier for a query q ∈ Q
with respect to O and Σ is a finite set F ⊆ Q such that

1. each p ∈ F is a downward refinement of q w.r.t. O and
2. for each p ∈ QΣ that is a downward refinement of q

w.r.t. O, there is some p′ ∈ F such that O |= p ⊑ p′.
Note that for both refinement operators ρ1 and ρ2 defined in
the main part of the paper and any ELQ q and signature Σ,
ρi(q,Σ) is a downward frontier for q with respect to the empty
ontology and Σ.

The following clearly implies Theorem 4.
Theorem 11. Let (L,Q) be an OMQ language. The following
are equivalent:

1. (L,Q) has an ideal downward refinement operator,
2. (L,Q) has an ideal downward refinement operator that

is 2O(n)-depth bounded,
3. for all L-ontologies O and all finite signatures Σ, each

q ∈ Q has a downward frontier w.r.t. O and Σ.

Proof. From 1 to 3. Let ρ be a downward refinement operator.
We claim that, for each L-ontology O and q ∈ Q and finite
signature Σ, ρ(q,O,Σ) is a downward frontier of q w.r.t. O
and Σ. For Point 1 in the definition of downward frontier, note
that any p ∈ ρ(q,O,Σ) is a downward refinement of q w.r.t. O.

For Point 2, let p ∈ QΣ be any downward refinement of q
w.r.t. O. By completeness, there is a finite sequence q1, . . . , qn
with q1 = q, qn = p, and qi+1 = ρ(qi,O,Σ) for all i. Note
that, necessarily, n ≥ 2. It follows that q2 ∈ ρ(q,O,Σ) and
O |= p ⊑ q2.

From 3 to 2. Take any L-ontology O and finite signature
Σ. For each q ∈ Q, let F (q,O,Σ) be a downward frontier for
q w.r.t. O and Σ. Let ρ(q,O,Σ) be the union of F (q,O,Σ)
with the set of all downwards refinements q′ ∈ QΣ of q with
||q′|| ≤ ||q||. Clearly, ρ is a finite downward refinement opera-
tor. To show that ρ is complete, consider any pair of queries
(q, p) from Q such that O |= p ⊑ q. Suppose for the sake of a
contradiction that there is no downward ρ,O,Σ-refinement se-
quence starting in q and ending in a query p′ with O |= p ≡ p′.
It then follows from the properties of downward frontiers that
there exists an infinite sequence of (pairwise non-equivalent)
queries

q1, q2, . . .

with q1 = q and qi+1 ∈ F (qi,O,Σ) for all i ≥ 0, such that p
is a downward refinement of each qi w.r.t. O. Let k > 0 be
minimal with ||qk|| ≥ ||p||. Clearly, k = 2O(||p||). Moreover,
q1, . . . , qk, p is a ρ,O,Σ-refinement sequence starting in q and
ending in p, a contradiction. Hence, ρ is an ideal downward
refinement operator. Furthermore, ρ is 2O(n)-depth bounded.

The implication from 2 to 1 is trivial.

F Proof of Lemma 2 and Theorem 5
Before proving Lemma 2 and Theorem 5, we recall some
important properties of minimal ELQs. Recall that an ELQ q
is minimal if there is no ELQ p with p ≡ q and ||p|| < ||q||.
Due to the correspondence of ELQs and EL-concepts, we
may speak of minimal EL-concepts. Minimal ELQs (and
thus, minimal EL-concepts) can be characterized in terms of
functional simulations, where a simulation S between D1 and
D2 is called functional if for every d ∈ adom(D1), there is at
most one e ∈ adom(D2) with (d, e) ∈ S.

Lemma 7. An ELQ q is minimal iff the only functional simu-
lation S from Dq to Dq with (aq, aq) ∈ S is the identity.

The following lemma shows several ways how to refine a
minimal EL-concept. Its proof is straightforward using sim-
ulations and Lemmas 1 and 7, details are left to the reader.

Lemma 8. Let C be a minimal EL-concept and D = A1 ⊓
· · · ⊓ Ak ⊓ ∃r1.D1 ⊓ · · · ⊓ ∃rℓ.Dℓ a subconcept of C. Then
the following hold:

1. For all C ′ that can be obtained from C by replacing D
with D ⊓A for some concept name A /∈ {A1, . . . , Ak},
we have C ′ ⊑ C and C ̸⊑ C ′.

2. For all C ′ that can be obtained from C by replacing D
with D ⊓ ∃r.⊤ for some role name r /∈ {r1, . . . , rℓ}, we
have C ′ ⊑ C and C ̸⊑ C ′.

3. For all C ′ that can be obtained from C by replacing a D

with D ⊓ ∃r.D̂ for some role name r ∈ {r1, . . . , rℓ} and
a concept D̂ such that Dj ̸⊑ D̂ for all j with r = rj , we
have C ′ ⊑ C and C ̸⊑ C ′.



The following is a slight strengthening of [Jung et al., 2020,
Lemma 6 in the full paper]. Recall that D↓a denotes the set of
all assertions A(b), r(b, b′) in D such that b, b′ are reachable
from a, c.f. Section D.

Lemma 9. Let (D1, a1) and (D2, a2) be pointed databases
with D2 tree-shaped. If (D1, a1) ̸⪯ (D2, a2), then there exists
a set D ⊆ D1 with a1 ∈ adom(D1) such that |D| ≤ |D↓a2

2 |+1
and (D, a1) ̸⪯ (D2, a2).

Proof. The proof is by induction on the depth of D↓a2

2 .
Assume first that D↓a2

2 has depth 0. If there exists a concept
name A ∈ NC with A(a1) ∈ D1 but A(a2) ̸∈ D2, then D =
{A(a1)} is as required. Otherwise there exists a role name
r ∈ NR and a′ with r(a1, a

′) ∈ D1. Then, D = {r(a1, a′)} is
as required.

Now, suppose that D↓a2

2 has depth k > 0 and assume
(D1, a1) ̸⪯ (D2, a2). If there exists a concept name A ∈ NC

with A(a1) ∈ D1 but A(a2) ̸∈ D2, then D = {A(a1)} is
as required. Otherwise there exists a role name r ∈ NR and
some r(a1, a

′) ∈ D1 such that for all b with (a2, b) ∈ D2,
we have (D1, a

′) ̸⪯ (D2, b). Fix a′. By induction hypoth-
esis, we can fix for every b with r(a2, b) ∈ D2, a subset
Db ⊆ D1 with a′ ∈ adom(Db) such that |Db| ≤ |D↓b

2 | + 1
and (Db, a

′) ̸⪯ (D2, b). Let D be the union of {r(a, a′)} and
all Db with r(a2, b) ∈ D2. Then D is as required.

Lemma 2. For every ELQ q and minimal downward neighbor
p of q, we have ||p|| ≤ 2||q||+ 1.

Proof. Let p, q be ELQs such that p is a minimal downward
neighbor of q, that is, p ⊑ q, q ̸⊑ p, and for all p′ with
p ⊑ p′ ⊑ q, we have p′ ≡ p or q ≡ p′. Since ||q|| ≥ ||q′|| for
every minimal ELQ q′ with q′ ≡ q, we may assume that also
q is minimal.

Let (Dp, ap) and (Dq, aq) be the pointed databases asso-
ciated with p and q, respectively. By Lemma 1, there is a
simulation S from Dq to Dp with (aq, ap) ∈ S. We can
w.l.o.g. assume S to be functional. Clearly, the inverse S−

of S is not a simulation from Dp to Dq since q ̸⊑ p. We
distinguish two cases.

Case 1. There is (a, a′) ∈ S such that A(a′) ∈ Dp, but
A(a) /∈ Dq. Obtain Dq′ from Dq by adding A(a), and let q′
be the corresponding ELQ. Clearly, S is a simulation from Dq′

to Dp, hence p ⊑ q′. Moreover, by construction and Point 1 of
Lemma 8, we have q′ ⊑ q and q ̸⊑ q′. Since p is a downward
neighbor of q and p ⊑ q′ ⊑ q, we thus have p ≡ q′. Since q′

is obtained from q by adding a single atom and ||p|| ≤ ||q′||,
we obtain ||p|| ≤ 2||q||+ 1 as required.

Case 2. Case 1 does not apply and there is (a, a′) ∈ S
and an assertion r(a′, b′) ∈ Dp such that there is no b with
(b, b′) ∈ S. Choose such an (a, a′) such that a′ has maximal
distance from the root ap. We distinguish two subcases.

(a) If a does not have an r-successor in Dq , obtain Dq′ from
Dq by adding an atom r(a, b), for some fresh b.
Clearly, S′ = S∪{(b, b′)} is a functional simulation from
Dq′ to Dp with (aq, ap) ∈ S′, hence p ⊑ q′. Moreover,
by construction and Point 2 of Lemma 8, q′ ⊑ q and

q ̸⊑ q′. Since p is a downward neighbor of q, we have
q′ ≡ p. Since p is obtained from q by adding a single
atom and ||p|| ≤ ||q′||, we obtain ||p|| ≤ 2||q|| + 1 as
required.

(b) Otherwise, a has r-successors a1, . . . , ak in Dq. Let
b1, . . . , bk be the (uniquely defined) elements with
(ai, bi) ∈ S for every i. In particular, b′ /∈ {b1, . . . , bk}.
Note that (Dp, b

′) ̸⪯ (Dq, ai) for every i ∈ {1, . . . , k}:
otherwise, we would have (Dp, b

′) ⪯ (Dp, bi) for some
i in contradiction to minimality of p.
Let D̂ be a minimal subset of Dp such that b′ ∈ adom(D̂)

and (D̂, b′) ̸⪯ (Dq, ai) for all i. By Lemma 9, |D̂| ≤
(n1 + 1) + · · · + (nk + 1) where ni is the number of
assertions in the tree rooted at ai. It follows that |D̂| ≤
|Dq|.
Now, obtain Dq′ from Dq by adding D̂ (assuming that
the individuals in Dq and D̂ are disjoint) as well as the
assertion r(a, b′). Note that ||q′|| = |Dq′ | ≤ |Dq|+ |D̂|+
1 ≤ 2|Dq|+ 1 = 2||q||+ 1.
Clearly, S can be extended to a functional simulation
from Dq′ to Dp, hence p ⊑ q′. Moreover, by construction
and Point 3 of Lemma 8, q′ ⊑ q and q ̸⊑ q′. Since p is
a downward neighbor of q, this implies q′ ≡ p. Hence,
||p|| ≤ ||q′|| ≤ 2||q||+ 1 as required.

This finishes the proof of the lemma.

Let Σ be a finite signature and p, q ∈ ELQΣ. A Σ-
specialization sequence from p to q is a sequence q1, . . . , qk
of queries from ELQΣ such that q1 = p, qk = q, and qi+1 is
a neighbor of qi, that is, qi+1 ∈ ρ2(qi,Σ), for 1 ≤ i < k.8
We recall two useful properties of the EL-subsumption lat-
tice [Kriegel, 2019, Corollary 5.2.3], namely that for all ELQs
p, q ∈ ELQΣ with p ⊑ q,

(I) there is a (finite) Σ-specialization sequence from q to p
and

(II) all Σ-specialization sequences from q to p have the same
length (Jordan-Dedekind chain condition).

Lemma 3. ρ1 and ρ2 are ideal refinement operators for ELQ.

Proof. Both ρ1 and ρ2 are finite by definition. It follows from
Property (I) above and the definition of ρ2, and Lemma 2 that
ρ2 is complete. The same is then true for ρ1 as it contains ρ2
in the sense that ρ1(q,Σ) ⊆ ρ2(q,Σ) for every ELQ q and
finite signature Σ.

Theorem 5. A1 is a sample-efficient PAC learning algorithm,
but A2 is not.

Proof. We start with analyzing A2. Let E be the input to
A2 and let Σ = sig(E). By Theorem 2, it suffices to show
that A2 produces a most general fitting of E (if it exists).
By the Jordan-Dedekind chain condition, we can assign a
level to every ELQ q defined as the length of Σ-specialization
sequences from ⊤ to q. Let M1,M2, . . . be the sequence of

8Note the difference to refinement sequences where refinements
are used in place of neighbors.



sets M constructed by the breadth-first search algorithm A2,
that is, M1 = {⊤} and Mi+1 is obtained from Mi by applying
the refinement operator ρ2. It is easy to show that for all i ≥ 0,
the set Mi contains precisely the ELQs of level i that fit the
positive examples E+ in E.

So suppose that a most general fitting q∗ exists and that A2

returns some ELQ q after n rounds. Then q ∈ Mn. Since q
is a fitting and q∗ is a most general fitting, we have q ⊑ q∗.
By Property (I) above, there is a non-empty Σ-specialization
sequence from q∗ to q. Thus, the level of q∗ is strictly smaller
than that of q. But then there is an m < n such that the set
Mm contains q∗, in contradiction to q being output by A2.

To show that A1 is a sample-efficient PAC learning algo-
rithm we show that it is an Occam algorithm. Let M1,M2, . . .
be the sequence of sets M constructed by the breadth-first
search algorithm A1. We show below that

(i) for all i ≥ 1, q ∈ Mi implies ||q|| ≤ 2i − 1, and
(ii) if q is an ELQs with ||q|| ≤ s that fits the positive exam-

ples E+ in E, then there is an i ≤ 2 log(s) with q ∈ Mi.
Points (i) and (ii) imply that A1 returns a fitting ELQ that
is only polynomially larger than a smallest fitting ELQ and
is thus Occam. Indeed, let a smallest fitting ELQ q∗ be of
size ||q∗|| = s and let q be the ELQ returned by A1. By (ii),
A1 discovers q∗ after 2 log(s) rounds, which by definition of
A1 implies that q is returned after at most 2 log(s) rounds. It
thus follows from (i) that the returned ELQ q satisfies

||q|| ≤ 22 log(s) − 1 ∈ O(s2).

Consequently, there is a polynomial p such that
HA1(O,Σ, s,m) contains only ELQs q with ||q|| ≤ p(s).
There are at most |Σ|p(s) such queries and since 2|S|

queries are needed to shatter a set S, the VC-dimension of
HA1(O,Σ, s,m) is at most log(|Σ|p(s)) = p(s) · log(|Σ|). It
then follows from Lemma 4 that A1 is a sample-efficient PAC
learning algorithm.

It thus remains to prove Points (i) and (ii). Point (i) can be
shown by induction on i. For the induction start, it suffices to
recall that M1 = {⊤} and ||⊤|| = 1. For i > 1, Mi consists
of ELQs p with ||p|| ≤ 2||q|| + 1 for some ELQ q ∈ Mi−1.
Applying the induction hypothesis, we obtain

||p|| ≤ 2 ·
(
2i−1 − 1

)
+ 1 = 2i − 1.

For Point (ii), let q be an ELQ with ||q|| ≤ s fitting E+.
It suffices to show that there is a ρ1,Σ-refinement sequence
q1, . . . , qk from ⊤ to q with k ≤ 2 log(s).

Let p1, . . . , pm be a Σ-specialization sequence from ⊤ to q,
that is, pi+1 is a downward neighbor of pi (equivalently:
pi+1 ∈ ρ2(pi,Σ)), for all i. Inductively define q1, q2 . . . as
follows:

• q1 = p1 = ⊤, and
• for even numbers j ≥ 2, let ℓ be maximal with ||pℓ|| ≤
2||qj−1||+ 1, and set:

– qj = pℓ, and
– qj+1 = pℓ+1 if ℓ < m.

Stop if qj or qj+1 is pm.

By construction, ||qj || ≤ 2||qj−1||+ 1 for even j ≥ 2. More-
over, for odd j ≥ 2, qj ∈ ρ2(qj−1,Σ) and thus Lemma 2
implies that ||qj || ≤ 2||qj−1|| + 1. Finally, observe that the
construction ensures that ||qj+2|| > 2||qj ||, for all odd j and
thus the process stops after at most 2 log(s) steps.

G Details for Section 5
From EO and the bound n, SPELL constructs a propositional
φ = φ1 ∧φ2 that is satisfiable if and only if there is an ELQ q
over Σ = sig(EO) with n− 1 existential restrictions that fits
EO.

Intuitively, φ1 makes sure that every model of φ encodes
an ELQ q in the variables ci,A, xi,r, yi,j as described in the
main part. Recall that we use an arrangement of n concepts
C1, . . . , Cn. In what follows, we let q denote the encoded ELQ
and assume that Dq has individuals 1, . . . , n (as indicated by
C1, . . . , Cn) with 1 being the root. For encoding a proper
arrangement, φ1, it contains the following clauses for each i
with 2 ≤ i ≤ n:

i−1∨
j=1

yj,i (1)

¬yj1,i ∨ ¬yj2,i for all j1, j2 with 1 ≤ j1 < j2 < i (2)∨
r∈Σ∩NR

xi,r (3)

¬xi,r ∨ ¬xi,r′ for all r, r′ ∈ Σ ∩ NR with r ̸= r′ (4)

Clauses (1) and (2) ensure that Cj appears in exactly one Ci,
i < j as a conjunct of the form ∃r.Cj for some role name r.
Clauses (3) and (4) ensure that there is a unique such role
name.

The formula φ2 makes sure that q fits EO by enforcing that

(∗) the variables si,a are true in a model of φ iff a ∈ Ci(D)
iff (Dq, i) ⪯ (D, a),

where D is the disjoint union of all databases that occur in EO.
To achieve this, we implement the properties of simulations in
terms of clauses. The challenge is to capture both directions
of the “iff” in (∗) in an efficient way.

For all a ∈ adom(D), type(a) is the set {A ∈ NC | A(a) ∈
D}. Let TP = {type(a) | a ∈ adom(D)} be the set of all
types in that occur D. We introduce auxiliary variables ti,τ ,
for every 1 ≤ i ≤ n and τ ∈ TP with the intuition that
ti,τ is true iff all concept names that occur as a conjunct in
Ci are contained in τ . This is enforced by including in φ2

the following clauses for all i with 1 ≤ i ≤ n and all types
τ ∈ TP:

¬ti,τ ∨ ¬ci,A for all A ∈ (Σ ∩ NC \ τ) (5)

ti,τ ∨
∨

A∈(Σ∩NC\τ)

ci,A (6)

The simulation condition on concept names is now enforced
by the following clauses, for i with 1 ≤ i ≤ n and all a ∈
adom(D):

¬si,a ∨ ti,type(a) (7)



This captures, however, only the “only if”-direction of the “iff”
in (∗). To implement the other direction and the simulation
condition for role names, we introduce further auxiliary vari-
ables di,j,a (d as in defect to indicate non-simulation) with
the intuitive meaning that di,j,a is true iff (Dq, i) ̸⪯ (D, a)
and there is an r-successor to j that is not simulated in
any r-successor of a (the r is uniquely determined by j by
Clauses (3) and (4)). This is achieved by the following clauses
for all i, j with 1 ≤ i < j ≤ n, and r ∈ Σ∩NR, a ∈ adom(D),
and all r(a, b) ∈ D:

si,a ∨ ¬ti,type(a) ∨
n∨

k=i+1

di,k,a (8)

di,j,a ∨ ¬yi,j ∨ ¬xj,r ∨
∨

r(a,c)∈D

sj,c (9)

¬si,a ∨ ¬di,j,a (10)
¬di,j,a ∨ yi,j (11)
¬di,j,a ∨ ¬xj,r ∨ ¬sj,b (12)

As an example, Clause (11) can be read as follows: if there
is a defect di,j,a, then yi,j must be true, meaning that ∃r.Cj

occurs as a conjunct in Ci.
It can be verified that the number of variables is O(n2 + n ·

|D|), the number of clauses is O(n3 · |Σ| · |adom(D)|) and
that the overall size of the formula is O(n3 · |Σ| · |D|) as well.

Next, we give details on the additional clauses that break
some symmetries in φ. As an example for these symmetries,
consider the ELQ ∃r.∃s.⊤⊓ ∃t.⊤. In our encoding, it may be
represented by the concepts

C1 = ∃r.C2 ⊓ ∃t.C3, C2 = ∃s.C4, C3 = C4 = ⊤
or equivalently by the concepts

C ′
1 = ∃r.C ′

2 ⊓ ∃t.C ′
4, C

′
2 = ∃s.C ′

3, C
′
3 = C ′

4 = ⊤.

These different representations correspond to different mod-
els of φ1. Consider the underlying graphs GDC

=
(adom(DC), {(a, b) | r(a, b) ∈ DC}) of concepts, where
DC is the concept C viewed as a pointed database. Note
that GDC1

= GDC′
1

. The only difference between the arrange-
ments C1, . . . , C4 and C ′

1, . . . , C
′
4 comes from assigning them

in a different way to the vertices of GDC1
.

To avoid this, we add in Round n of bounded fitting clauses
that permit for every tree-shaped graph G with n vertices only
a single canonical assignment of the concepts C1, . . . Cn to
the vertices of G. It suffices to consider tree-shaped graphs
since GC is tree-shaped for every EL-concept C. To produce
the clauses, we enumerate (outside the SAT solver) all possi-
ble tree-shaped graphs with n vertices. For each such graph
G, we introduce a propositional variable xG and encode (in
a straightforward way) that xG is true iff C1, . . . , Cn are as-
signed to the vertices of G in the canonical way. We then
assert (with a big disjunction) that one of the xG has to be
satisfied. However, note that there are exponentially many
possible graphs and therefore we only add these clauses if
n < 12, to avoid spending too much time and undoing the
benefit of breaking this symmetry. It is an interesting research
question how to break even more symmetries.

H Size-restricted fitting for EL and ELI
We analyze the complexity of the size-restricted fitting prob-
lem for ELQs, for ELIQs, and for the OMQ language
(ELI,ELIQ). Recall that universal databases in the sense
defined before Proposition 1 do not exist for the latter, and in
fact not even for (EL,ELIQ). We discuss this a bit further at
the end of this section. Recall that we generally assume unary
coding of the input k to the size-restricted fitting problem.9
An investigation of the problem under binary coding is left as
future work; a good starting point for this are results in [Jung
et al., 2019; Jung et al., 2020].
Lemma 10. The following problems are NP-complete:

• the size-restricted fitting problem for ELQs;

• the problem of deciding given a set of labeled examples
E and a number k, whether there is an ELQ that fits E
and that uses at most k existential restrictions.

Proof. The arguments are essentially identical, so we give the
proof only for the size-restricted fitting problem.

For the NP upper bound, let E, k be an input to the size-
restricted fitting problem. Observe that we can guess in poly-
nomial time an ELQ q with ||q|| ≤ k and verify in polynomial
time that a ∈ q(D) for all (D, a,+) ∈ E and a /∈ q(D) for
all (D, a,−) ∈ E. The latter is true since query evaluation of
ELQs is possible in PTIME.

For NP-hardness, recall that the fitting problem for every
class of unary conjunctive queries that includes all ELQs is
NP-hard [ten Cate et al., 2022]. The proof of that statement is
by reduction from 3CNF-satisfiability. In more detail, a given
3CNF-formula φ with m variables is translated to a collection
of labeled data examples E such that φ is satisfiable iff E has
a fitting ELQ of size p(m) for some fixed polynomial p. Thus,
it actually constitutes a reduction to the size-restricted fitting
problem for ELQs.

Theorem 12. The size-restricted fitting problem is
NP-complete for ELIQs and EXPTIME-complete for
(ELI,ELIQ).

Proof. We start with the case without ontologies. For the
NP upper bound, let E, k be an input to the size-restricted
fitting problem. Observe that we can guess in polynomial
time an ELIQ q with ||q|| ≤ k and verify in polynomial time
that a ∈ q(D) for all (D, a,+) ∈ E and a /∈ q(D) for all
(D, a,−) ∈ E. The latter is true since query evaluation of
ELIQs is possible in PTIME.

For NP-hardness, recall that the fitting problem for every
class of unary conjunctive queries that includes all ELQs is
NP-hard [ten Cate et al., 2022]. The proof of that statement
is by reduction from 3CNF-satisfiability. In more detail, a
3CNF-formula φ with m variables is translated to a collection
of labeled data examples E such that φ is satisfiable iff E
has a fitting ELIQ of size p(m) for some fixed polynomial p.

9This seems more relevant in the context of the current paper:
it suffices for the size-restricted fitting problem to be in NP with k
coded in unary to enable a SAT approach to bounded fitting with
the SAT formulas being of size polynomial in (the size of the data
examples and) k.



Thus, it actually constitutes a reduction to the size-restricted
fitting problem.

We now consider the OMQ language (ELI,ELIQ). We
show EXPTIME-hardness by reduction from subsumption w.r.t.
ELI-ontologies which is known to be EXPTIME-hard [Baader
et al., 2008]. Let O, A,B be an input to the subsumption prob-
lem, that is, the question is to decide whether O |= A ⊑ B.
Construct a copy O′ of O by replacing every concept name
X ∈ sig(O) \ {B} with a fresh concept name X ′ and every
role name r ∈ sig(O) with a fresh role name r′. Clearly,
O |= A ⊑ B iff O′ |= A′ ⊑ B. Then let E consist of the two
labeled examples

({A(a)}, a,+) and ({A′(a)}, a,+).

Then O |= A ⊑ B iff there is a fitting of E w.r.t. O ∪ O′ iff
B is a fitting of E w.r.t. O ∪O′.

For the EXPTIME-upper bound let O, E, k be an input to the
size-restricted fitting problem. We provide a Turing reduction
to subsumption w.r.t. ELI-ontologies. In the reduction, we
enumerate all ELIQs q with ||q|| ≤ k, and test for each whether
it fits E w.r.t. O using an oracle for answering instance queries
over ELI knowledge bases. Since there are only exponentially
many candidates q, each test whether q fits E w.r.t. O uses
only |E| calls to the oracle. Since k is encoded in unary, the
inputs to the oracle are of polynomial size. Finally, as the
oracle itself runs in exponential time [Baader et al., 2008], the
EXPTIME-upper bound follows.

Let us return to the issue of universal databases in
(ELI,ELIQ). As mentioned above, universal databases as de-
fined in the main body of the paper do not exist for this OMQ
language. For bounded fitting, however, one might consider a
weaker notion. For every database D, ELI-ontology O, and
k ≥ 1, one can compute a database UD,O,k that is k-universal
for ELIQs in the sense that a ∈ q(D∪O) iff a ∈ q(UD,O,k) for
all ELIQs q with at most k existential restrictions (or of size
at most ||k||, a stronger condition) and all a ∈ adom(D). We
do not give a detailed construction here, but only mention that
such a database can be obtained from an infinite tree-shaped
universal database by cutting off at depth k. What this means
is that while we do not have available a universal database
that works for all rounds of bounded fitting, for each single
round k we can compute a k-universal database to be used
in that round. In contrast to the case of (EL,ELQ), these k-
universal databases may become exponential in size. One may
hope, though, that their size is still manageable in practical
cases. Note that keeping the ontology and treating it in the
SAT encoding is not an option due to the EXPTIME-hardness
identified by Theorem 12.
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