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ABSTRACT
The fitting problem for conjunctive queries (CQs) is the problem

to construct a CQ that fits a given set of labeled data examples.

When a fitting CQ exists, it is in general not unique. This leads us to

proposing natural refinements of the notion of a fitting CQ, such as

most-general fitting CQ, most-specific fitting CQ, and unique fitting

CQ. We give structural characterizations of these notions in terms

of (suitable refinements of) homomorphism dualities, frontiers,

and direct products, which enable the construction of the refined

fitting CQs when they exist. We also pinpoint the complexity of

the associated existence and verification problems, and determine

the size of fitting CQs. We study the same problems for UCQs and

for the more restricted class of tree CQs.
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1 INTRODUCTION
The fitting problem for conjunctive queries (CQs) is the problem

to construct a CQ 𝑞 that fits a given set of labeled data examples,

meaning that 𝑞 returns all positive examples as an answer while re-

turning none of the negative examples. This fundamental problem

has a long history in database research. It lies at the heart of the clas-

sic Query-By-Example paradigm that aims to assist users in query

formation and query refinement, and has been intensively studied

for CQs [4, 38, 44] and other types of queries (e.g., [3, 7, 20]). The fit-

ting problem is also central to Inductive Logic Programming [21, 25],

where CQs correspond to the basic case of non-recursive single-rule

Datalog programs, and has close connections to fitting problems

for schema mappings [2, 10]. More recent motivation comes from

automatic feature generation in machine learning with relational

data [5, 34]. Here, the CQ fitting problem arises because a CQ
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that separates positive from negative examples in (a sufficiently

large subset of) a labeled dataset is a natural contender for being

added as an input feature to the model [5]. In addition, there has

been significant recent interest in fitting CQs and other queries in

knowledge representation, typically in the presence of an ontol-

ogy [9, 24, 31, 32, 37, 42].

When a fitting CQ exists, in general it need not be unique up

to equivalence. In fact, there may be infinitely many pairwise non-

equivalent fitting CQs. However, the fitting CQs form a convex set:

whenever two CQs 𝑞1, 𝑞2 fit a set of labeled examples, then the same

holds for every CQ 𝑞 with 𝑞1 ⊆ 𝑞 ⊆ 𝑞2, where “⊆” denotes query
containment. Maximal elements of this convex set can be viewed as

“most-general” fitting CQs, whileminimal elements can be viewed as

“most-specific” fitting CQs. The set of all most-general and all most-

specific fitting CQs (when they exist), can thus be viewed as natural

representatives of the entire set of fitting CQs, c.f. the version-

space representation theorem used inmachine learning [39, Chapter

2.5]. In the context of automatic feature generation mentioned

above, it would thus be natural to compute all extremal fitting CQs

and add them as features, especially when infinitely many fitting

CQs exist. Likewise, in query refinement tasks where the aim is

to construct a modified query that excludes unwanted answers or

includes missing answers (cf. [44]), it is also natural to ask for a

most-general, respectively, most-specific fitting query.

In this paper we embark on a systematic study of extremal fitting

CQs. To the best of our knowledge, we are the first to do so. We

show that the intuitive concepts of most-general and most-specific

fitting CQs can be formalized in multiple ways. We give structural

characterizations of each notion, study the associated verification,

existence, and computation problems, and establish upper and lower

bounds on the size of extremal fitting CQs. The characterizations

link “weakly most-general” fittings to the notion of homomorphism

frontiers, “complete bases” of most-general fittings to (a certain

relativized version of) homomorphism dualities, and most-specific

fittings to direct products. We use the structural characterizations

to obtain effective algorithms and pinpoint the exact complexity of

the decision and computation problems mentioned above, and to

establish size bounds. Our algorithms use a combination of tech-

niques from automata theory and from the literature on constraint

satisfaction problems. We perform the same study for two other

natural classes of database queries, namely unions of conjunctive

queries (UCQs) and acyclic connected unary CQs, from now on

referred to as tree CQs. For the latter class, which holds significance
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Verification Existence Construction and size

Any Fitting DP-c (Thm 3.1) coNExpTime-c [10, 46] In ExpTime [46]; Exp size lower bound (Thm 3.26)

Most-Specific NExpTime-c (Thm 3.7, 3.23) coNExpTime-c [10, 46] In ExpTime [46]; Exp size lower bound (Thm 3.26)

Weakly Most-General NP-c (Thm 3.12) ExpTime-c (Thm 3.13, 3.24) In 2ExpTime (Thm 3.13); Exp size lower bound (Thm 3.26)

Basis of Most-General NExpTime-c (Thm 3.17, 3.23) NExpTime-c (Thm 3.17, 3.23) In 3ExpTime (Thm 3.18); 2Exp size lower bound (Thm 3.27)

Unique NExpTime-c (Thm 3.21, 3.23) NExpTime-c (Thm 3.21, 3.23) In ExpTime [46]; Exp size lower bound (Thm 3.26)

Table 1: Summary of results for CQs

Verification Existence Construction and size

Any Fitting DP-complete (Thm 4.5) coNP-complete (Thm 4.5) in PTime (Thm 4.5

Most-Specific DP-complete (Thm 4.5) coNP-complete (Thm 4.5) in PTime (Thm 4.5)

Most-General HomDual-equivalent (Thm 4.7) NP-c (Thm 4.5) in 2ExpTime (Thm 4.5)

Unique HomDual-equivalent (Thm 4.7) HomDual-equivalent (Thm 4.7) in PTime (Thm 4.5)

Table 2: Summary of results for UCQs

Verification Existence Construction and size

Any Fitting PTime (Thm 5.2) ExpTime-c [24] In 2ExpTime (Thm 5.4); 2Exp size lower bound (Thm 5.21)

Most-Specific ExpTime-c (Thm 5.7, 5.20) ExpTime-c (Thm 5.7, 5.20) In 2ExpTime (Thm 5.8)

Weakly Most-General PTime (Thm 5.11) ExpTime-c (Thm 5.12, 5.20) In 2ExpTime (Thm 5.12)

Basis of Most-General ExpTime-c (Thm 5.16, 5.20) ExpTime-c (Thm 5.18, 5.20) In 3ExpTime (2Exp upper bound on size of members) (Thm 5.18)

Unique ExpTime-c (Thm 5.13, 5.20) ExpTime-c (Thm 5.13, 5.20) in 2ExpTime (Thm 5.4)

Table 3: Summary of results for tree CQs

as it corresponds to the concept language of the description logic

ELI that is prominent in knowledge representation, we restrict

our attention to relation symbols of arity one and two. The main

complexity results and size bounds for CQs, UCQs, and tree CQs

are summarized in Tables 1, 2, and 3. Note that, since the classical

(non-extremal) fitting problem for CQs is already coNExpTime-

complete [10, 46], it is not surprising that many of the problems

we consider here turn out to be of similarly high complexity. We

will comment on possible strategies for taming the complexity of

these problems in Sect. 6.

All proofs are provided in the appendix of the long version, made

available at [12].

RelatedWork. The fitting problem for CQs and UCQs, as well as

for bounded-treewidth CQs and UCQs, was studied in [2, 4, 10, 46].

Note that, from a fitting point of view, the GAV schema mappings

and LAV schema mappings studied in [2] correspond in a precise

way to UCQs and CQs, respectively, cf. [10]. The fitting problem

for tree CQs (equivalently, ELI-concept expressions) was studied
in [24]. The fitting problem for CQs is also closely related to the

ILP consistency problem for Horn clauses, studied in [25], although

the latter differs in assuming a bound on the size of clauses.

The notion of a most-specific fitting query appears in several

places in this literature, largely because of the fact that some of

the canonical fitting algorithms naturally produce such fittings. We

are not aware of any prior work studying the verification or con-

struction of most-general fitting queries or unique fitting queries,

although [11] studies the inverse problem, namely the existence

and construction of uniquely characterizing examples for a query,

and we build on results from [11].

The problem of deriving queries from data examples has also

been studied from the perspective of computational learning theory,

cf. the related work sections in [11, 14].

2 PRELIMINARIES
Schema, Instance, CQ, Homomorphism, Core. A schema

(or relational signature) is a finite set of relation symbols S =

{𝑅1, . . . , 𝑅𝑛}, where each relation symbol 𝑅𝑖 has an associated arity

arity(𝑅𝑖 ) ≥ 1. A fact over S is an expression 𝑅(𝑎1, . . . , 𝑎𝑛), where
𝑎1, . . . , 𝑎𝑛 are values, 𝑅 ∈ S, and arity(𝑅) = 𝑛. An instance over

S is a finite set 𝐼 of facts over S. The active domain of 𝐼 (denoted

adom(𝐼 )) is the set of all values occurring in facts of 𝐼 .

Let 𝑘 ≥ 0. A 𝑘-ary conjunctive query (CQ) 𝑞 over a schema S is

an expression of the form 𝑞(x) :- 𝛼1∧ · · ·∧𝛼𝑛 where x = 𝑥1, . . . , 𝑥𝑘
is a sequence of variables, and each 𝛼𝑖 is an atomic formula using

a relation from S. Note that 𝛼𝑖 may use variables from x as well

as other variables. The variables in x are called answer variables,

and the other variables existential variables. Each answer variable

is required to occur in at least one conjunct 𝛼𝑖 . This requirement is

known as the safety condition. A CQ of arity 0 is called a Boolean CQ.

If 𝑞 is a 𝑘-ary CQ and 𝐼 is an instance over the same schema

as 𝑞, we denote by 𝑞(𝐼 ) the set of all 𝑘-tuples of values from the

active domain of 𝐼 that satisfy the query 𝑞 in 𝐼 . We write 𝑞 ⊆ 𝑞′ if
𝑞 and 𝑞′ are queries over the same schema, and of the same arity,

and 𝑞(𝐼 ) ⊆ 𝑞′ (𝐼 ) holds for all instances 𝐼 . We say that 𝑞 and 𝑞′ are
logically equivalent (denoted 𝑞 ≡ 𝑞′) if 𝑞 ⊆ 𝑞′ and 𝑞′ ⊆ 𝑞 both hold.

Given two instances 𝐼 , 𝐽 over the same schema, a homomorphism

ℎ : 𝐼 → 𝐽 is a map from adom(𝐼 ) to adom(𝐽 ) that preserves all
facts. When such a homomorphism exists, we say that 𝐼 “homo-

morphically maps to” 𝐽 and write 𝐼 → 𝐽 . We say that 𝐼 and 𝐽 are

homomorphically equivalent if 𝐼 → 𝐽 and 𝐽 → 𝐼 .

It is well known that every instance 𝐼 has a unique (up to iso-

morphism) minimal subinstance to which it is homomorphically

equivalent, known as the core of 𝐼 . Furthermore, two instances are

homomorphically equivalent iff their cores are isomorphic.

Pointed Instance, Canonical Instance, Canonical CQ,
UNP. A pointed instance for schema S is a pair (𝐼 , a) where 𝐼 is
an instance over S, and a is a tuple of values. The values in a are
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typically elements of adom(𝐼 ), but we also admit here values from

outside of adom(𝐼 ) as this allows us to simplify some definitions

and proofs. If the tuple a consists of 𝑘 values, then we call (𝐼 , a) a
𝑘-ary pointed instance. We refer to a as the distinguished elements

of the pointed instance.

The definition of a homomorphism naturally extends to pointed

instances. More precisely a homomorphism ℎ : (𝐼 , a) → (𝐽 , b) is a
map from adom(𝐼 ) ∪ {a} to adom(𝐽 ) ∪ {b} that maps every fact of

𝐼 to a fact of 𝐽 , and that maps every distinguished element 𝑎𝑖 to the

corresponding distinguished element 𝑏𝑖 .

There is a natural correspondence between 𝑘-ary CQs over a

schema S and 𝑘-ary pointed instances over S. In one direction,

the canonical instance of a CQ 𝑞(x) is the pointed instance 𝑞 =

(𝐼𝑞, x), where the domain of 𝐼𝑞 is the set of variables occurring

in 𝑞 and the facts of 𝐼𝑞 are the conjuncts of 𝑞. Note that every

distinguished element of 𝑞 does indeed belong to the active domain

(i.e. occurs in a fact), due to the safety condition of CQs. Conversely,

the canonical CQ of a pointed instance (𝐼 , a) with a = 𝑎1, . . . , 𝑎𝑘
is the CQ 𝑞(𝑥𝑎1

, . . . , 𝑥𝑎𝑘 ) that has a variable 𝑥𝑎 for every value

𝑎 ∈ adom(𝐼 ), and a conjunct for every fact of 𝐴. Here, we assume

that all distinguished elements belong to the active domain.

We write 𝑞 → 𝑞′ when there is a homomorphism ℎ : 𝑞 → 𝑞′

and 𝑞 → (𝐼 , a) when 𝑞 → (𝐼 , a). By the classic Chandra-Merlin

Thm. [18], then, a tuple a belongs to 𝑞(𝐼 ) if and only if 𝑞 → (𝐼 , a)
holds; and 𝑞 ⊆ 𝑞′ holds if and only if 𝑞′ → 𝑞.

A pointed instance (𝐼 , a), with a = 𝑎1, . . . , 𝑎𝑘 , has the Unique

Names Property (UNP) if 𝑎𝑖 ≠ 𝑎 𝑗 for all 𝑖 ≠ 𝑗 .

Disjoint Union, Direct Product. Let (𝐼 , a) and (𝐽 , a) be
pointed instances over the same schema S with the UNP, where

both pointed instances have the same tuple of distinguished ele-

ments. Furthermore, assume that adom(𝐼 ) ∩ adom(𝐽 ) ⊆ {a}. Then
the disjoint union (𝐼 , a) ⊎ (𝐽 , a) is the pointed instance (𝐼 ∪ 𝐽 , a),
where the facts of 𝐼 ∪ 𝐽 are the union of the facts of 𝐼 and 𝐽 . This con-
struction generalizes to arbitrary pairs of 𝑘-ary pointed instances

with the UNP, by taking suitable isomorphic copies of the input

instances (to ensure that they have the same tuple of distinguished

elements, and are disjoint otherwise). This operation also naturally

generalizes to finite sets of 𝑘-ary pointed instances with the UNP.

The direct product of two 𝑘-ary pointed instances (𝐼 , a) and
(𝐽 , b), where a = ⟨𝑎1, . . . 𝑎𝑘 ⟩ and b = ⟨𝑏1, . . . , 𝑏𝑘 ⟩ is the 𝑘-ary

pointed instance (𝐼 × 𝐽 , ⟨(𝑎1, 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘 )⟩, where 𝐼 × 𝐽 consists
of all facts 𝑅((𝑐1, 𝑑1), . . . , (𝑐𝑛, 𝑑𝑛)) such that 𝑅(𝑐1, . . . , 𝑐𝑛) is a fact
of 𝐼 and 𝑅(𝑑1, . . . , 𝑑𝑛) is a fact of 𝐽 . The same operation of direct

product can also be applied to CQs: for CQs 𝑞1 (x), 𝑞2 (y) (over
the same schema and of the same arity), 𝑞1 × 𝑞2 is the canonical

CQ of the direct product of pointed instances (𝐼𝑞1
, x) × (𝐼𝑞2

, y).
However, this yields a well-defined CQ only when the designated

elements of (𝐼𝑞1
, x) × (𝐼𝑞2

, y) belong to the active domain, which

is not necessarily the case. This construction extends naturally

to finite sets of pointed instances (where the direct product of an

empty set of pointed instances is, by convention, the pointed in-

stance (𝐼 , ⟨𝑎, . . . , 𝑎⟩) where 𝐼 consists of all possible facts over the
singleton domain {𝑎}).

Data Example, Fitting Problem. A 𝑘-ary data example for

schema S (for 𝑘 ≥ 0) is a pointed instance 𝑒 = (𝐼 , a) where a is

a 𝑘-tuple of values from adom(𝐼 ). A data example (𝐼 , a) is said to

be a positive example for a query 𝑞 (over the same schema and of

the same arity) if a ∈ 𝑞(𝐼 ), and a negative example otherwise. By a

collection of labeled examples we mean a pair 𝐸 = (𝐸+, 𝐸−) of finite
sets of data examples. The size of a data example 𝑒 (as measured by

the number of facts) is denoted by |𝑒 |, and the combined size of a

set of data examples 𝐸 by | |𝐸 | | = Σ𝑒∈𝐸 |𝑒 |.
We say that 𝑞 fits 𝐸 if each data example in 𝐸+ is a positive

example for 𝑞 and each data example in 𝐸− is a negative example

for 𝑞. The fitting problem (for CQs) is the problem, given as input a

collection of labeled examples, to decide if a fitting CQ exists.

A special case is where the input examples involve a single

database instance 𝐼 , and hence can be given jointly as (𝐼 , 𝑆+, 𝑆−),
where 𝑆+, 𝑆− are sets of tuples. We focus on the general version of

the fitting problem here, but note that the aforementioned special

case typically carries the same complexity (cf. [10, Thm. 2]).

Frontiers, Dualities, C-Acyclicity, Degree. A frontier for a

CQ is, intuitively, a finite complete set of minimal weakenings of 𝑞.

Formally, a finite set of CQs {𝑞1, . . . , 𝑞𝑛} is a frontier for a CQ 𝑞,

with respect to a class C of CQs, if:

(1) for all 𝑖 ≤ 𝑛, 𝑞𝑖 → 𝑞 and 𝑞 ̸→ 𝑞𝑖 , and

(2) for all 𝑞′ ∈ C such that 𝑞′ → 𝑞 and 𝑞 ̸→ 𝑞′, it holds that
𝑞′ → 𝑞𝑖 for some 𝑖 ≤ 𝑛.

If C is the class of all CQs, we simply call {𝑞1, . . . , 𝑞𝑛} a frontier for𝑞.
Another related concept is that of homomorphism dualities. A pair

of finite sets of data examples (𝐹, 𝐷) is a homomorphism duality if

{𝑒 | 𝑒 is a data example and 𝑒 → 𝑒′ for some 𝑒′ ∈ 𝐷} =
{𝑒 | 𝑒 is a data example and 𝑒′ ̸→ 𝑒 for all 𝑒′ ∈ 𝐹 }.

Homomorphism dualities have been studied extensively in the liter-

ature on combinatorics and constraint satisfaction, and elsewhere

(e.g., [6, 23, 35]).

Frontiers and homomorphism dualities were studied in [11, 23].

Their existence was characterized in terms of a structural property

called c-acyclicity: the incidence graph of a CQ 𝑞 is the bipartite

multi-graph consisting of the variables and the atoms of 𝑞, and

such that there is a distinct edge between a variable and an atom

for each occurrence of the variable in the atom. A CQ 𝑞 is c-acyclic

if every cycle in the incidence graph (including every self-loop and

every cycle of length 2 consisting of different edges that connect

the same pair of nodes) passes through an answer variable of 𝑞.

Theorem 2.1 ([1, 11]). For all CQs 𝑞 the following are equivalent:

(1) 𝑞 has a frontier,

(2) there exists a homomorphism duality ({𝑞}, 𝐷),
(3) the core of the canonical instance of 𝑞 is c-acyclic.

Furthermore, for any fixed 𝑘 ≥ 0, a frontier for a 𝑘-ary c-acyclic CQs

can be computed in polynomial time, and a set 𝐷 as in (2) can be

computed in exponential time.

By the degree of a CQ 𝑞 we mean the maximum degree of vari-

ables in the incidence graph of 𝑞 (i.e., the maximum number of

occurrences of a variable in 𝑞).

3 THE CASE OF CONJUNCTIVE QUERIES
In this section, we study the fitting problem for CQs. We first

review results for the case where the fitting CQ needs not satisfy

any further properties. After that, we introduce and study extremal
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fitting CQs, including most-general, most-specific, and unique

fittings. For these, we first concentrate on characterizations and

upper bounds, deferring lower bounds to Sect. 3.5

To simplify presentation, when we speak of a CQ 𝑞 in the context

of a collection of labeled examples 𝐸, we mean that 𝑞 ranges over

CQs that have the same schema and arity as the data examples in 𝐸.

3.1 Arbitrary Fitting CQs
We first consider the verification problem for fitting CQs: given a

collection of labeled examples 𝐸 and a CQ𝑞, does𝑞 fit 𝐸? This problem

naturally falls in the complexity class DP (i.e., it can be expressed as

the intersection of a problem in NP and a problem in coNP). Indeed:

Theorem 3.1. The verification problem for fitting CQs is DP-

complete. The lower bound holds for a schema consisting of a single bi-

nary relation, a fixed collection of labeled examples, and Boolean CQs.

The existence problem for fitting CQs (given a collection of labeled

examples 𝐸, is there a CQ that fits 𝐸?) was studied in [10, 46].

Theorem 3.2 ([10, 46]). The existence problem for fitting CQs is

coNExpTime-complete. The lower bound holds already for Boolean

CQs over a fixed schema consisting of a single binary relation.

Theorem 3.3 ([46]). If any CQ fits a collection of labeled examples

𝐸 = (𝐸+, 𝐸−), then the canonical CQ of the direct product Π𝑒∈𝐸+ (𝑒)
is well-defined and fits 𝐸.

When we are promised that a fitting CQ exists, then we can

construct one in (deterministic) single exponential time. We will

see in Sect. 3.5 that this is optimal, as there is a matching lower

bound.

3.2 Most-Specific Fitting CQs
There are two natural ways to define most-specific fitting CQs:

Definition 3.4.

• A CQ 𝑞 is a strongly most-specific fitting CQ for a collection

of labeled examples 𝐸 if 𝑞 fits 𝐸 and for every CQ 𝑞′ that fits 𝐸,
we have 𝑞 ⊆ 𝑞′.
• A CQ 𝑞 is a weakly most-specific fitting CQ for a collection

of labeled examples 𝐸 if 𝑞 fits 𝐸 and for every CQ 𝑞′ that fits 𝐸,
𝑞′ ⊆ 𝑞 implies 𝑞 ≡ 𝑞′.

It follows from Thm. 3.3 that the above two notions coincide:

Proposition 3.5. For all CQs 𝑞 and collections of labeled examples

𝐸 = (𝐸+, 𝐸−), the following are equivalent:
(1) 𝑞 is strongly most-specific fitting for 𝐸,

(2) 𝑞 is weakly most-specific fitting for 𝐸,

(3) 𝑞 fits 𝐸 and 𝑞 is homomorphically equivalent to the canonical

CQ of Π𝑒∈𝐸+ (𝑒). 1

In light of Prop. 3.5, we simply speak of most-specific fitting CQs,

dropping “weak” and “strong”.

Example 3.6. Let S = {𝑅, 𝑃}, where 𝑅 is a ternary relation and

𝑃 is a unary relation. Consider the collection of labeled examples

𝐸 = (𝐸+ = {𝐼1, 𝐼2}, 𝐸− = {𝐼3}), where 𝐼1 = {𝑅(𝑎, 𝑎, 𝑏), 𝑃 (𝑎)}, 𝐼2 =

{𝑅(𝑐, 𝑑, 𝑑), 𝑃 (𝑐)}, and 𝐼3 = ∅. The Boolean CQs 𝑞1 :- ∃𝑥𝑦𝑧 𝑅(𝑥,𝑦, 𝑧)
1
In particular, in this case, the canonical CQ of Π𝑒∈𝐸+ (𝑒 ) is well-defined.

and 𝑞2 :- ∃𝑥𝑦𝑧 (𝑅(𝑥,𝑦, 𝑧) ∧ 𝑃 (𝑥)) both fit 𝐸, but 𝑞2 is more specific

than 𝑞1. Indeed, 𝑞2 is most-specific fitting for 𝐸, as it is homomor-

phically equivalent to the canonical query of 𝐼1 × 𝐼2.

It follows from Prop. 3.5 and Thm. 3.2 that the existence prob-

lem for most-specific fitting CQs coincides with that for arbitrary

fitting CQs, and hence, is coNExpTime-complete; and that we can

construct in exponential time a CQ 𝑞 (namely, the canonical CQ of

Π𝑒∈𝐸+ (𝑒)), with the property that, if there is a most-specific fitting

CQ, then 𝑞 is one. For the verification problem, finally, Thm. 3.3,

with Thm. 3.1, implies:

Theorem 3.7. The verification problem for most-specific fitting

CQs is in NExpTime.

3.3 Most-General Fitting CQs
Formost-general fitting CQs, there are again two natural definitions.

Definition 3.8.

• A CQ 𝑞 is a strongly most-general fitting CQ for a collection

of labeled examples 𝐸 if 𝑞 fits 𝐸 and for all CQs 𝑞′ that fit 𝐸, we
have 𝑞′ ⊆ 𝑞.
• A CQ 𝑞 is a weakly most-general fitting CQ for a collection

of labeled examples 𝐸 if 𝑞 fits 𝐸 and for every CQ 𝑞′ that fits 𝐸,
𝑞 ⊆ 𝑞′ implies 𝑞 ≡ 𝑞′

Unlike in the case of most-specific fitting CQs, as we will see,

these two notions do not coincide. In fact, there is a third:

Definition 3.9. A finite set of CQs {𝑞1, . . . , 𝑞𝑛} is a basis of most-
general fitting CQs for 𝐸 if each 𝑞𝑖 fits 𝐸 and for all CQs 𝑞′ that
fit 𝐸, we have 𝑞′ ⊆ 𝑞𝑖 for some 𝑖 ≤ 𝑛. If, in addition, no strict subset

of {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸, we say

that {𝑞1, . . . , 𝑞𝑛} is a minimal basis.

Each member of a minimal basis is indeed guaranteed to be

weakly most-general fitting. The same does not necessarily hold

for non-minimal bases. We could have included this as an explicit

requirement in the definition, but we decided not to, in order to

simplify the statement of the characterizations below.

It is easy to see thatminimal bases are unique up to homomorphic

equivalence. Also, a strongly most-general fitting CQ is simply a

basis of size 1. We will therefore consider the notions of weakly

most-general fitting CQs and basis of most-general fitting CQs, only.

Example 3.10. Let S = {𝑅, 𝑃,𝑄}, where 𝑅 is a binary relation and

𝑃,𝑄 are unary relations. The following examples pertain to Boolean

CQs. Let 𝐾2 be the 2-element clique, i.e., 𝐾2 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑎)}.
Furthermore, let 𝐼𝑃 , 𝐼𝑄 , and 𝐼𝑃𝑄 be the instances consisting of the

set of facts {𝑃 (𝑎)}, {𝑄 (𝑎)}, and {𝑃 (𝑎), 𝑄 (𝑎)}, respectively.
(1) The collection of labeled examples (𝐸+ = ∅, 𝐸− = {𝐼𝑃𝑄 }) has

a strongly most-general fitting CQ, namely 𝑞 :- ∃𝑥𝑦 (𝑅(𝑥,𝑦)).
(2) The collection of labeled examples 𝐸 = (𝐸+ = ∅, 𝐸− = {𝐼𝑃 , 𝐼𝑄 })

has a basis of most-general fitting CQs of size two, consisting

of 𝑞1 :- ∃𝑥𝑦 (𝑅(𝑥,𝑦)) and 𝑞2 :- ∃𝑥𝑦 (𝑃 (𝑥) ∧𝑄 (𝑦)). In particular,

each of these two CQs is weakly most-general fitting for 𝐸.

(3) The collection of labeled examples 𝐸 = (𝐸+ = ∅, 𝐸− = {𝐾2})
does not have a weakly most-general fitting CQ. Indeed, a

CQ 𝑞 fits 𝐸 iff 𝑞 is not two-colorable, i.e., 𝑞, viewed as a graph,

contains a cycle of odd length. Take a fitting CQ 𝑞 and let 𝑘 be
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the size of the smallest cycle in𝑞 of odd length. For𝐶
3𝑘 the (odd)

cycle of length 3𝑘 , we have 𝑞 ⊆ 𝐶
3𝑘 and𝐶

3𝑘 ⊈ 𝑞, and𝐶3𝑘 fits 𝐸.

(4) The collection of labeled examples (𝐸+ = ∅, 𝐸− = {𝐾2, 𝐼𝑃 , 𝐼𝑄 })
has a weakly most-general fitting CQ, namely

𝑞 :- ∃𝑥𝑦 (𝑃 (𝑥) ∧ 𝑄 (𝑦)). By the same reasoning as in (3),

there is no basis of most-general fitting CQs.

Weakly most-general fitting CQs. As it turns out, weakly

most-general fitting CQs can be characterized in terms of frontiers.

Proposition 3.11. The following are equivalent for all collections

of labeled examples 𝐸 = (𝐸+, 𝐸−) and all CQs 𝑞:
(1) 𝑞 is weakly most-general fitting for 𝐸,

(2) 𝑞 fits 𝐸, 𝑞 has a frontier and every element of the frontier has a

homomorphism to an example in 𝐸− ,
(3) 𝑞 fits 𝐸 and {𝑞 × 𝑞𝑒 | 𝑒 ∈ 𝐸− and 𝑞 × 𝑞𝑒 is a well-defined CQ}

is a frontier for 𝑞,

where 𝑞𝑒 is the canonical CQ of 𝑒 .

Using Thm. 2.1, we can now show:

Theorem 3.12. Fix 𝑘 ≥ 0. The verification problem for weakly

most-general fitting 𝑘-ary CQs is NP-complete. In fact, it remains

NP-complete even if the examples are fixed suitably and, in addition,

the input query is assumed to fit the examples.

Theorem 3.13. The existence problem for weakly most-general

fitting CQs is in ExpTime. Moreover, if such a CQ exists, then

(1) there is one of doubly exponential size and

(2) we can produce one in time 2
𝑝𝑜𝑙𝑦 (𝑛) + 𝑝𝑜𝑙𝑦 (𝑚) where 𝑛 = | |𝐸 | |

and𝑚 is the size of the smallest weakly most-general fitting CQ.

The proof of Thm. 3.13 uses tree automata. More precisely, we

show that, given a collection of labeled examples 𝐸 = (𝐸+, 𝐸−),
(i) if there is a weakly most-general fitting CQ for 𝐸, then there is

one that is c-acyclic and has a degree at most | |𝐸− | |; and (ii) we

can construct in ExpTime a non-deterministic tree automaton 𝔄𝐸

that accepts precisely the (suitably encoded) c-acyclic weakly most-

general fitting CQs for 𝐸 of degree at most | |𝐸− | |.

Bases of most-general fitting CQs. In the same way that

the weakly most-general fitting CQs are characterized in terms of

frontiers, bases of most-general fitting CQs admit a characterization

in terms of homomorphism dualities. To spell this out, we need a

refinement of this concept, relativized homomorphism dualities.

Definition 3.14 (Relativized homomorphism dualities). A pair of

finite sets of data examples (𝐹, 𝐷) forms a homomorphism duality

relative to a data example 𝑝 , if for all data examples 𝑒 with 𝑒 → 𝑝 ,

the following are equivalent:

(1) 𝑒 homomorphically maps to a data example in 𝐷 ,

(2) No data example in 𝐹 homomorphically maps to 𝑒 .

Proposition 3.15. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−), the following are equivalent for all CQs 𝑞1, . . . , 𝑞𝑛 :

(1) {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸,

(2) each 𝑞𝑖 fits 𝐸 and ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a homomorphism du-

ality relative to 𝑝 ,

where 𝑝 = Π𝑒∈𝐸+ (𝑒) and 𝑒𝑞𝑖 is the canonical instance of 𝑞𝑖 .

While homomorphism dualities have been studied extensively,

we are not aware of the relativized variant having been considered.

Theorem 3.16.

(1) The following is NP-complete: given a finite set of data exam-

ples𝐷 and a data example 𝑝 , is there a finite set of data examples

𝐹 such that (𝐹, 𝐷) is a homomorphism duality relative to 𝑝?

(2) Given a finite set of data examples 𝐷 and a data example 𝑝 , if

there is a finite set of data examples 𝐹 such that (𝐹, 𝐷) is a homo-

morphism duality relative to 𝑝 , then we can compute in 2ExpTime

such a set 𝐹 , where each 𝑒 ∈ 𝐹 is of size 2
𝑂 ( | |𝐷 | |2 ·log | |𝐷 | | · |𝑝 | )

.

Thm. 3.16(1) was proved in [35] and [8] for non-relativized duali-

ties and where𝐷 consists of a single instance without distinguished

elements. Our proof, given in the appendix, extends the one in [8].

As a consequence, we get:

Theorem 3.17. The existence and verification problems for bases

of most-general fitting CQs is in NExpTime.

Theorem 3.18. Let 𝐸 = (𝐸+, 𝐸−) be a collection of labeled exam-

ples, for which a basis of most-general fitting CQs exists. Then we can

compute a minimal such basis in 3ExpTime, consisting of CQs of size

2
𝑝𝑜𝑙𝑦 ( | |𝐸− | | ) ·2𝑂 ( | |𝐸+ ||) )

.

3.4 Unique fitting CQs
By a unique fitting CQ for a collection of labeled examples 𝐸, we

mean a fitting CQ 𝑞 with the property that every CQ that fits 𝐸 is

logically equivalent to 𝑞.

Example 3.19. Let S consist of a single binary relation 𝑅, and let

𝐼 be the instance consisting of the facts 𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑎), and 𝑅(𝑏,𝑏).
Let 𝐸 = (𝐸+, 𝐸−), where 𝐸+ = {(𝐼 , 𝑏)} and 𝐸− = {(𝐼 , 𝑎)}.

The query 𝑞(𝑥) :- 𝑅(𝑥, 𝑥) is a unique fitting CQ for 𝐸. Indeed, 𝑞

fits 𝐸, and it is easy to see that if 𝑞′ (𝑥) is any CQ that fits 𝐸, then

𝑞′ must contain the conjunct 𝑅(𝑥, 𝑥) (in order to fit 𝐸− ). From this,

it is easy to see that 𝑞 and 𝑞′ admit homomorphisms to each other.

Proposition 3.20. For every CQ 𝑞 and collection of labeled exam-

ples 𝐸 = (𝐸+, 𝐸−) the following are equivalent:
(1) 𝑞 is a unique fitting CQ for 𝐸,

(2) 𝑞 is a most-specific and weakly most-general fitting CQ for 𝐸,

(3) 𝑞 is homomorphically equivalent to Π𝑒∈𝐸+ (𝑞𝑒 ) and {𝑞 × 𝑒 | 𝑒 ∈
𝐸− and 𝑞 × 𝑒 is a well-defined CQ} is a frontier for 𝑞.

Our previous results on most-specific fitting CQs and weakly

most-general fitting CQs now immediately imply:
2

Theorem 3.21. The verification and existence problems for unique

fitting CQs are in NExpTime. When a unique fitting CQ exists, it can

be computed in exponential time.

3.5 Lower bounds
The lower bound proofs below involve reductions from the Product

Homomorphism Problem (PHP) [10]. The PHP takes as input a set of

instances 𝐼1, . . . , 𝐼𝑛 and an instance 𝐽 , and asks whether the direct

product 𝐼1 × · · · × 𝐼𝑛 admits a homomorphism to 𝐽 . This problem is

NExpTime-complete [10, 46]. We need a refinement of this:

2
Indeed, the existence of a unique fitting CQ for 𝐸 = (𝐸+, 𝐸− ) can be tested simply

by checking that Π𝑒∈𝐸+ (𝑒 ) is weakly most-general fitting for 𝐸.
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Theorem 3.22. Let S consist of a single binary relation. There is a

fixed 𝑘 for which the following problem is NExpTime-complete: given

𝑘-ary pointed S-instances (𝐼1, a1) . . . , (𝐼𝑛, a𝑛) and (𝐽 , b) with the

UNP, where (𝐽 , b) is c-acyclic, is it the case that Π𝑖 (𝐼𝑖 , a𝑖 ) → (𝐽 , b)?

Using this we obtain the following results:

Theorem 3.23. The following problems are NExpTime-hard:

(1) The verification problem for most-specific fitting CQs.

(2) The verification problem for unique fitting CQs.

(3) The existence problem for unique fitting CQs.

(4) The verification problem for bases of most-general fitting CQs.

(5) The existence problem for bases of most-general fitting CQs.

Each problem is NExpTime-hard already for a fixed schema and arity,

and, in the case of the verification problems, when restricted to inputs

where the input CQ fits the examples, or, in the case of the existence

problems, when restricted to inputs where a fitting CQ exists.

For the existence of weakly most-general fitting CQs, we prove

an ExpTime lower bound by adapting a reduction from the word

problem for certain alternating Turing machines used in [28] to

prove hardness of a product simulation problem for transition sys-

tems. Unlike the previous reductions, it does not apply to the re-

stricted case where a fitting CQ is promised to exist.

Theorem 3.24. The existence problem for weakly most-general

fitting CQs is ExpTime-hard.

The same proof also shows that Thm. 3.24 holds for tree CQs,

which we will introduce and study in Sect. 5.

The following results provide size lower bounds:

Theorem 3.25. Fix a schema consisting of a single binary relation.

For 𝑛 > 0, we can construct a collection of Boolean data examples of

combined size polynomial in 𝑛 such that a fitting CQ exists, but not

one of size less than 2
𝑛
.

We can prove something stronger (but not for a fixed schema):

Theorem 3.26. For 𝑛 ≥ 0, we can construct a schema with 𝑂 (𝑛)
unary and binary relations and a collection of labeled examples of

combined size polynomial in 𝑛 such that

(1) There is a unique fitting CQ.

(2) Every fitting CQ contains at least 2
𝑛
variables.

Theorem 3.27. For 𝑛 ≥ 0, we can construct a schema with 𝑂 (𝑛)
unary and binary relations and a collection of labeled examples of

combined size polynomial in 𝑛 such that

(1) There is a basis of most-general fitting CQs.

(2) Every such basis contains at least 2
2
𝑛
CQs.

4 THE CASE OF UCQS
A 𝑘-ary union of conjunctive queries (UCQ) over a schema S is an

expression of the form 𝑞1∪· · ·∪𝑞𝑛 , where 𝑞1, . . . , 𝑞𝑛 are 𝑘-ary CQs

over S. Each 𝑞𝑖 is called a disjunct of 𝑞. Logically, 𝑞 is interpreted

as the disjunction of 𝑞1, . . . , 𝑞𝑛 . For two UCQs 𝑞, 𝑞′, we say that 𝑞

maps homomorphically to 𝑞′ (written: 𝑞 → 𝑞′) if, for every disjunct

𝑞′
𝑖
of 𝑞′, there is a disjunct 𝑞 𝑗 of 𝑞 such that 𝑞 𝑗 → 𝑞′

𝑖
. Under this

definition, as for CQs we have 𝑞 → 𝑞′ precisely if 𝑞′ ⊆ 𝑞. All the
notions and problems considered in Sect. 3 now naturally generalize

to UCQs.

Example 4.1. Consider a schema consisting of the unary relations

𝑃,𝑄, 𝑅, and let𝑘 = 0. Let 𝐸 consist of positive examples {𝑃 (𝑎), 𝑄 (𝑎)}
and {𝑃 (𝑎), 𝑅(𝑎)}, and negative examples {𝑃 (𝑎)} and {𝑄 (𝑎), 𝑅(𝑎)}.
Clearly, the UCQ ∃𝑥𝑃 (𝑥) ∧𝑄 (𝑥) ∪ ∃𝑥𝑃 (𝑥) ∧ 𝑅(𝑥) fits. Indeed, it
can be shown that this UCQ is unique fitting for 𝐸. However, there

is no fitting CQ for 𝐸, as the direct product of the positive examples

maps to the first negative example.

We next give characterizations for most-specific fitting UCQs,

most-general fitting UCQs, and unique fitting UCQs, in the style of

the characterization for CQs provided in Sect. 3. For most-general

fitting UCQs, the weak and the strong version turn out to coincide,

unlike for CQs.

Proposition 4.2. (Implicit in [2].) For all collections of labeled

examples 𝐸 = (𝐸+, 𝐸−) and UCQs 𝑞, the following are equivalent:
(1) 𝑞 is a strongly most-specific fitting UCQ for 𝐸,

(2) 𝑞 is a weakly most-specific fitting UCQ for 𝐸,

(3) 𝑞 fits 𝐸 and is homomorphically equivalent to

⋃
𝑒∈𝐸+ 𝑞𝑒 .

Proposition 4.3. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−) and UCQs 𝑞 = 𝑞1 ∪ · · · ∪ 𝑞𝑛 , the following are equivalent:
(1) 𝑞 is a strongly most-general fitting UCQ for 𝐸,

(2) 𝑞 is a weakly most-general fitting UCQ for 𝐸,

(3) 𝑞 fits 𝐸+ and ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a homomorphism duality.

Proposition 4.4. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−) and UCQs 𝑞, the following are equivalent:
(1) 𝑞 is a unique fitting UCQ for 𝐸,

(2) 𝑞 fits 𝐸 and the pair (𝐸+, 𝐸−) is a homomorphism duality,

(3) 𝑞 is homomorphically equivalent to

⋃
𝑒∈𝐸+ 𝑞𝑒 and (𝐸+, 𝐸−) is a

homomorphism duality.

Based on these characterizations we obtain:

Theorem 4.5.

(1) The existence problem for fitting UCQs (equivalently, for most-

specific fitting UCQs) is coNP-complete; if a fitting UCQ exists, a

most-specific fitting UCQ can be computed in PTime.

(2) The existence problem for most-general fitting UCQs is NP-

complete; if a most-general fitting UCQ exists, one can be com-

puted in 2ExpTime.

(3) The verification problem for fitting UCQs is DP-complete.

(4) The verification problem for most-specific fitting UCQs is DP-

complete.

In order to state the remaining complexity results, let HomDual

be the problem of testing if a given pair (𝐹, 𝐷) is a homomorphism

duality. The precise complexity of this problem is not known, but

we prove the following.

Proposition 4.6. HomDual is in ExpTime and NP-hard.

The upper bound in Prop. 4.6 is based on the observation that,

in order for (𝐹, 𝐷) to be a homomorphism duality, each 𝑒 ∈ 𝐹 must

be c-acyclic. For the lower bound, we use an argument that was

also used in [35] to show that FO definability of a CSP is NP-hard:

we reduce from 3-SAT.

Theorem 4.7. The following problems are computationally equiv-

alent (via polynomial conjunctive reductions) to HomDual:
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(1) The existence problem for unique fitting UCQs,

(2) The verification problem for unique fitting UCQs,

(3) The verification problem for most-general fitting UCQs.

As we mentioned, there is a PTime-computable “canonical candi-

date” fitting UCQ, namely

⋃
𝑒∈𝐸+ (𝑞𝑒 ). That is, computing a fitting

UCQ under the promise that one exists, is in PTime. While this can

be viewed as a positive result, it is somewhat disappointing as the

UCQ in question does nothing more than enumerate the positive

examples. It does not “compress” or “generalize from” the input

examples in a meaningful way. This, it turns out, is unavoidable:

Theorem 4.8 ([13]). There does not exist an “efficient Occam algo-

rithm” for UCQs, i.e., a PTime algorithm taking as input a collection

of labeled examples 𝐸 for which a fitting UCQ is promised to exists

and producing a fitting UCQ of size 𝑂 (𝑚)𝛼 · 𝑝𝑜𝑙𝑦 (𝑛) where𝑚 is the

size of the input, 𝑛 is the size of the smallest fitting UCQ, and 𝛼 < 1.

5 THE CASE OF TREE CQS
We now consider tree CQs, that is, unary CQs that are acyclic and

connected. Moreover, we concentrate on schemas that consist only

of unary and binary relations, which we refer to as binary schemas.

Note that this type of schema is at the core of prominent web data

formalisms such as RDF and OWL. Apart from being natural per se,

the class of tree CQs holds significance as it correspond to concept

expressions in the description logic ELI. Table 3 summarizes our

complexity results on tree CQs.

As we shift from unrestricted CQs to tree CQs, simulations take

on the role of homomorphisms. In addition, unraveling a CQ or

an instance into a (finite or infinite) tree turns out to be a central

operation.

Simulation. Given two instances 𝐼 , 𝐽 over the same binary

schema, a simulation of 𝐼 in 𝐽 is a relation 𝑆 ⊆ adom(𝐼 ) × adom(𝐽 )
that satisfies the following properties:

(1) if 𝐴(𝑎) ∈ 𝐼 and (𝑎, 𝑎′) ∈ 𝑆 , then 𝐴(𝑎′) ∈ 𝐽 ;
(2) if 𝑅(𝑎, 𝑏) ∈ 𝐼 and (𝑎, 𝑎′) ∈ 𝑆 , then there is an 𝑅(𝑎′, 𝑏′) ∈ 𝐽 with
(𝑏, 𝑏′) ∈ 𝑆 .

(3) if 𝑅(𝑎, 𝑏) ∈ 𝐼 and (𝑏,𝑏′) ∈ 𝑆 , then there is an 𝑅(𝑎′, 𝑏′) ∈ 𝐽 with
(𝑎, 𝑎′) ∈ 𝑆 .

We write (𝐼 , 𝑎) ⪯ (𝐽 , 𝑏) if there exists a simulation 𝑆 of 𝐼 in 𝐽 with

(𝑎, 𝑏) ∈ 𝑆 . A simulation of a tree CQ 𝑞(𝑥) in an instance 𝐼 is a

simulation of 𝐼𝑞 in 𝐼 , and we write 𝑞 ⪯ (𝐼 , 𝑎) as shorthand for

(𝐼𝑞, 𝑥) ⪯ (𝐼 , 𝑎), and likewise for (𝐼 , 𝑎) ⪯ 𝑞. It is well-known that if

𝐼 is a tree, then (𝐼 , 𝑎) ⪯ (𝐽 , 𝑏) iff there is a homomorphism ℎ from 𝐼

to 𝐽 with ℎ(𝑎) = 𝑏. We thus have the following.

Lemma 5.1. For all instances 𝐼 , 𝑎 ∈ adom(𝐼 ), and tree CQs 𝑞(𝑥),
𝐼 |= 𝑞(𝑎) iff 𝑞 ⪯ (𝐼 , 𝑎).

Unraveling. Let 𝐼 be an instance over a binary schema. A role

is a binary relation symbol 𝑅 or its converse 𝑅− . For an instance 𝐼 ,

we may write 𝑅− (𝑎, 𝑏) ∈ 𝐼 to mean 𝑅(𝑏, 𝑎) ∈ 𝐼 . A path in 𝐼 is a

sequence 𝑝 = 𝑎1𝑅1 · · ·𝑅𝑘−1
𝑎𝑘 , 𝑘 ≥ 1, where 𝑎1, . . . , 𝑎𝑘 ∈ adom(𝐼 )

and 𝑅1, . . . , 𝑅𝑘−1
are roles such that 𝑅𝑖 (𝑎𝑖 , 𝑎𝑖+1) ∈ 𝐼 for 1 ≤ 𝑖 < 𝑘 .

We say that 𝑝 is of length𝑘 , starts at𝑎1 and ends at𝑎𝑘 . The unraveling

of 𝐼 at 𝑎 ∈ adom(𝐼 ) is the instance𝑈 with active domain adom(𝑈 )
that consists of all paths starting at 𝑎. It contains the fact

• 𝐴(𝑝) for every path 𝑝 ∈ adom(𝑈 ) that ends with some 𝑏 ∈
adom(𝐼 ) such that 𝐴(𝑏) ∈ 𝐼 , and
• 𝑅(𝑝, 𝑝𝑅𝑏) for every path 𝑝𝑅𝑏 ∈ adom(𝑈 ).

For all𝑚 ≥ 1, the𝑚-finite unraveling of 𝐼 at 𝑎 is the (finite) restric-

tion of 𝐼 to all paths of length at most𝑚.

5.1 Arbitrary Fitting Tree CQs
By Lem. 5.1, we can decide verification of arbitrary fitting tree

CQs by checking the (non-)existence of simulations to positive

and negative examples. Since the existence of simulations can be

decided in PTime [30], we obtain the following.

Theorem 5.2. The verification problem for fitting tree CQs is in

PTime.

The following was proved in [24] in the setting of the description

logic ELI, see Thm. 12 of that paper and its proof.

Theorem 5.3 ([24]). The existence problem for fitting tree CQs is

ExpTime-complete. The lower bound already holds for a fixed schema.

We actually reprove the ExpTime upper bound in Thm. 5.3 using

an approach based on (two-way alternating) tree automata. What

we gain from this is the following result regarding the size of fitting

tree CQs.

Theorem 5.4. If any tree CQ fits a collection of labeled examples

𝐸 = (𝐸+, 𝐸−), then we can produce a DAG representation of a fitting

tree CQ with a minimal number of variables in single exponential

time and the size of such a tree CQ is at most double exponential.

A matching lower bound is given in Sect. 5.5.

5.2 Most-Specific Fitting Tree CQs
We may define a strong and a weak version of most-specific fitting

tree CQs, in analogy with Def. 3.4. We then observe the following

counterpart of Prop. 3.5.

Proposition 5.5. For all tree CQs 𝑞 and collections of labeled

examples 𝐸 = (𝐸+, 𝐸−), the following are equivalent:
(1) 𝑞 is a weakly most-specific fitting for 𝐸,

(2) 𝑞 is a strongly most-specific fitting for 𝐸,

(3) 𝑞 fits 𝐸 and Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞.

We thus simply speak of most-specific fittings tree CQs. Unlike

in the non-tree case, the existence of most-specific fitting tree CQs

does not coincide with the existence of arbitrary fitting tree CQs.

Example 5.6. Consider the single positive example 𝑅(𝑎, 𝑎) and
the empty set of negative examples. Then 𝑞(𝑥) :- 𝑅(𝑥,𝑦) is a fitting
tree CQ and 𝑝 (𝑥) :- 𝑅(𝑥, 𝑥) is a most-specific fitting CQ, but there

is no most-specific fitting tree CQ. In fact, any𝑚-finite unraveling

of 𝑝 (𝑥) is a fitting tree CQ and there is no (finite) fitting tree CQ

that is more specific than all these.

In [33] it is shown that verification and existence of a most-

specific fitting tree CQ are in ExpTime and PSpace-hard when there

are only positive examples, but no negative examples. We extend

the upper bounds to the case with negative examples.

Theorem 5.7. Verification and existence of most-specific fitting

tree CQs is in ExpTime.
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The upper bound for verification follows from Prop. 5.5, and the

upper bound for existence follows from Prop. 5.5 and the results in

[33]. However, we reprove the latter using tree automata to show

the following.

Theorem 5.8. If a collection of labeled examples 𝐸 = (𝐸+, 𝐸−)
admits a most-specific tree CQ fitting, then we can construct a DAG

representation of such a fitting with a minimal number of variables

in single exponential time and the size of such a tree CQ is at most

double exponential.

The proof of Thm. 5.8 comes with a characterization of most-

specific fitting tree CQs in terms of certain initial pieces of the

unraveling of

∏
𝑒∈𝐸+ (𝑒).

5.3 Weakly Most-General and Unique Fitting
Tree CQs

Wedefineweakly and stronglymost-general tree CQs in the obvious

way and likewise for bases of most-general fitting tree CQs and

unique fitting tree CQs, see Def. 3.8 and 3.9. The following example

illustrates that the existence of weakly most-general tree CQs does

not coincide with the existence of weakly most-general CQs.

Example 5.9. Let (𝐸+ = ∅, 𝐸− = {{𝑃 (𝑎0)}, {𝑅(𝑎0, 𝑎0)}}. Then
there are no weakly most-general fitting tree CQs. To see this, let

𝑞(𝑥) be a tree CQ that fits the examples. Clearly, 𝑞(𝑥) must contain

both an 𝑅-atom and a 𝑃 atom. Let 𝑛 be the shortest distance, in

the graph of 𝑞, from 𝑥 to some 𝑦 that satisfies 𝑃 , and let 𝜋 be the

path from 𝑥 to 𝑦, written as a sequence of roles 𝑅 and 𝑅− . If 𝜋 is

empty, then the query 𝑅(𝑥,𝑦) ∧𝑅(𝑦, 𝑥) ∧ 𝑃 (𝑥) is homomorphically

strictly weaker than 𝑞, but still fits. If 𝜋 is non-empty, then the

query 𝑥 (𝜋 ;𝜋− ;𝜋)𝑦 ∧ 𝑃 (𝑦) is homomorphically weaker than 𝑞, but

fits. Thus 𝑞 is not weakly most-general.

However, weakly most-general fitting CQs exist that are not tree

CQs. In fact, we obtain a complete basis of most-general fitting

CQs of size 3 by taking the CQs 𝑞(𝑥) :- ∃𝑦𝑧𝑢 (𝛼 (𝑥) ∧𝑅(𝑦, 𝑧) ∧𝑃 (𝑢))
where 𝛼 (𝑥) is 𝑃 (𝑥) or ∃𝑣𝑅(𝑥, 𝑣) or ∃𝑣𝑅(𝑣, 𝑥), serving purely to

make the CQ safe.

As in the case of unrestricted CQs, we may characterize weakly

most-general fitting tree CQs using frontiers. The following is an

immediate consequence of the definition of frontiers.

Proposition 5.10. The following are equivalent for all collections

of labeled examples 𝐸 = (𝐸+, 𝐸−) and tree CQs 𝑞:
(1) 𝑞 is a weakly most-general fitting for 𝐸,

(2) 𝑞 fits 𝐸 and every element of the frontier for 𝑞 w.r.t. tree CQs

simulates to an example in 𝐸− .

As every tree CQ is c-acyclic, it has a frontier that can be com-

puted in polynomial time. We have the choice of using the same

frontier construction as in the proofs for Sect. 3.3 or one that is tai-

lored towards trees and ‘only’ yields a frontier w.r.t. tree CQs [11].

Both constructions need only polynomial time and, together with

Prop. 5.10, yield a PTime upper bound for the verification problem.

Theorem 5.11. Verification of weakly most-general fitting tree

CQs is in PTime.

For the existence problem, we choose the frontier construction

from [11] and then again use an approach based on tree automata.

We also obtain the same results regarding the size and computation

of weakly most-general fitting tree CQs as in Sect. 5.1 and 5.2.

Theorem 5.12. Existence of weaklymost-general fitting tree CQs is

in ExpTime. Moreover, if a collection of labeled examples 𝐸 = (𝐸+, 𝐸−)
admits a weakly most-general tree CQ fitting, then we can construct

a DAG representation of such a fitting with a minimal number of

variables in single exponential time and the size of such a tree CQ is

at most double exponential.

For uniquely fitting tree CQs, we observe that a fitting tree CQ

is a unique fitting iff it is both a most-specific and a weakly most-

general fitting. This immediately gives an ExpTime upper bound

for verification, from the ExpTime upper bounds for verifying most-

specific and weakly most-general tree CQs. We obtain an ExpTime

upper bound for the existence of uniquely fitting tree CQs by com-

bining the automata constructions for these two cases.

Theorem 5.13. Verification and existence of unique fitting tree

CQs is in ExpTime.

We remark that Thm. 5.4 clearly also applies to unique fitting

tree CQs: if a unique fitting tree CQ exists, then the algorithm from

the proof of Thm. 5.4 must compute it.

5.4 Bases of Most General Fitting Tree CQs
In Sect. 3, we have characterized bases of most-general fitting CQs

in terms of relativized homomorphism dualities. Here, we do the

same for tree CQs, using simulation dualities instead.

Definition 5.14 (Relativized simulation dualities). A pair of finite

sets of data examples (𝐹, 𝐷) forms a simulation duality if, for all

data examples 𝑒 , the following are equivalent:

(1) 𝑒 ⪯ 𝑒′ for some 𝑒 ∈ 𝐷 ,
(2) 𝑒′ ⪯̸ 𝑒 for all 𝑒′ ∈ 𝐹 .
We say that (𝐹, 𝐷) forms a simulation duality relative to a data

example 𝑝 if the above conditions hold for all 𝑒 with 𝑒 ⪯ 𝑝 .
Proposition 5.15. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−), the following are equivalent, for 𝑝 = Π𝑒∈𝐸+ (𝑒):
(1) {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting tree CQs for 𝐸,

(2) each 𝑞𝑖 fits 𝐸 and ({𝑞1, . . . , 𝑞𝑛}, 𝐸−) is a simulation duality

relative to 𝑝 .

We use Prop. 5.15 and the fact any homomorphism duality (𝐹, 𝐷)
where 𝐹 consists only of trees is also a simulation duality to show

that the verification problem for bases of most-general fitting tree

CQs is in ExpTime.

Theorem 5.16. The verification problem for bases of most-general

fitting tree CQs is in ExpTime.

For the existence problem, we use the following characterization:

let 𝐷 be a finite collection of data examples. A tree CQ 𝑞 is a critical

tree obstruction for 𝐷 if 𝑞 ⪯̸ 𝑒 for all 𝑒 ∈ 𝐷 and every tree CQ 𝑞′

that can be obtained from 𝑞 by removing subtrees satisfies 𝑞′ ⪯ 𝑒
for some 𝑒 ∈ 𝐷 .

Proposition 5.17. Let 𝐷 be a finite set of data examples and �̂� a

data example. Then the following are equivalent:

(1) there is a finite set of tree data examples 𝐹 such that (𝐹, 𝐷) is a
simulation duality relative to �̂� ,
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(2) there is a finite number of critical tree obstructions 𝑞 for 𝐷 that

satisfy 𝑞 → �̂� (up to isomorphism).

We use Prop. 5.2 to provide a reduction to the infinity problem

for tree automata. This also yields bounds for the construction and

size of bases of most-general fitting tree CQs

Theorem 5.18. The existence problem for bases of most-general

fitting tree CQs is in ExpTime. Moreover, if a collection of labeled

examples 𝐸 has a basis of most-general fitting tree CQs, then it has

such a basis in which every tree CQ has size at most double exponential

in | |𝐸 | |.

5.5 Lower Bounds
All the complexity upper bounds stated for tree CQs above are tight.

We establish matching ExpTime lower bounds by a polynomial

time reduction from the product simulation problem into trees

(with one exception).

Product Simulation Problem Into Trees. The product simulation

problem asks, for finite pointed instances (𝐼1, 𝑎1), . . . , (𝐼𝑛, 𝑎𝑛) and
(𝐽 , 𝑏), whether Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏). A variant of this problem

was shown to be ExpTime-hard in [28] where simulations are

replaced with ↓-simulations, meaning that the third condition of

simulations is dropped, and certain transition systems are used

in place of instances. This result was adapted to database instances

in [24]. Here, we consider instead the product simulation problem

into trees where the target instance 𝐽 is required to be a tree (and

full simulations are used in place of ↓-simulations). We prove

ExpTime-hardness by a non-trivial reduction from the ↓-simulation

problem studied in [24].

Theorem 5.19. The product simulation problem into trees is

ExpTime-hard, even for a fixed schema.

This improves a PSpace lower bound from [33] where, however,

all involved instances were required to be trees. It is easy to prove

an ExpTime upper bound by computing the product and then

deciding the existence of a simulation in polynomial time [30].

Theorem 5.20. The verification problem and the existence problem

are ExpTime-hard for:

(1) weakly most-general fitting tree CQs,

(2) most-specific fitting tree CQs,

(3) unique fitting tree CQs, and

(4) complete bases of most-general fitting tree CQs.

Each problem is ExpTime-hard already for a fixed schema and arity,

and, in the case of the verification problems, when restricted to inputs

where the input CQ fits the examples, or, in the case of the existence

problems, when restricted to inputs where a fitting CQ exists.

Points (2) to (4) of Thm. 5.20 are proved by reductions from the

product simulation problem into trees. Point (1) is proved simul-

taneously with Thm. 3.24 by adapting a reduction from the word

problem for alternating Turing machines used in [28].

We also establish a double exponential lower bound on the size

of (arbitrary) fitting tree CQs.

Theorem 5.21. For all 𝑛 ≥ 0, there is a collection of labeled ex-

amples of combined size polynomial in 𝑛 such that a fitting tree CQ

exists and the size of every fitting tree CQ is at least 2
2
𝑛
. This even

holds for a fixed schema.

We do not currently have a similar lower bound for any of the

other types of fitting tree CQs listed in Table 3.

6 CONCLUSION
The characterizations and complexity results we presented, we

believe, give a fairly complete picture of extremal fitting problems

for CQs, UCQs, and tree CQs. Similar studies could be performed,

of course, for other query and specification languages (e.g., graph

database queries, schema mappings). In particular, the problem

of computing fitting queries has received considerable interest

in knowledge representation, where, additionally, background

knowledge in the form of an ontology is considered. The existence

of a fitting ELI concept (corresponding to a tree CQ) is unde-

cidable in the presence of an ELI ontology [24], but there are

more restricted settings, involving e.g. EL concept queries, that

are decidable and have received considerable interest [9, 24, 36].

Since the non-extremal fitting problem for CQs is already

coNExpTime-complete [10, 46], it is not surprising that many of

our complexity bounds are similarly high. In [4], it was shown that

the (non-extremal) fitting problem for CQs can be made tractable

by a combination of two modifications to the problem: (i) “desyn-

chronization”, which effectively means to consider UCQs instead

of CQs, and (ii) replacing homomorphism tests by 𝑘-consistency

tests, which effectively means to restrict attention to queries of

bounded treewidth. Similarly, in our results we also see improved

complexity bounds when considering UCQs and tree CQs. While

we have not studied unions of tree CQs in this paper, based on re-

sults in [4] one may expect that they will exhibit a further reduction

in the complexity of fitting. We leave this as future work. Another

way to reduce the complexity is to consider size-bounded versions

of the fitting problem, an approach that also has learning-related

benefits [15].

A question that we have not addressed so far is what to do if

an extremal fitting query of interest does not exist. For practical

purposes, in such cases (and possibly in general) it may be natural

to consider relaxations where the fitting query is required to be, for

instance, most-general, only as compared to other queries on some

given (unlabeled) dataset. It is easy to see that, under this relaxation,

a basis of most-general fitting queries always exists.

It would also be interesting to extend our extremal fitting analysis

to allow for approximate fitting, for instance using a threshold based

approach as in [5] or an optimization-based approach as in [16, 26].
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A ADDITIONAL PRELIMINARIES
The following fundamental fact about direct products (cf. [29]) will

be used in many proofs.

PropositionA.1. For all pointed instances (𝐼 , a), (𝐽1, b1), (𝐽2, b2),
the following are equivalent:

(1) (𝐼 , a) → (𝐽1, b1) and (𝐼 , a) → (𝐽2, b2)
(2) (𝐼 , a) → (𝐽1, b1) × (𝐽2, b2)

Recall that, for CQs 𝑞, 𝑞′, we denote by 𝑞×𝑞′ the canonical CQ of

the direct product of the canonical instances of 𝑞, 𝑞′, if well-defined.
It follows, by the Chandra-Merlin theorem, that the following ana-

logue of Prop. A.1 holds for CQs:

Proposition A.2. For all CQs 𝑞, 𝑞1, 𝑞2, the following are equiva-

lent:

(1) 𝑞 → 𝑞1 and 𝑞 → 𝑞2,

(2) 𝑞1 × 𝑞2 is a well-defined CQ and 𝑞 → 𝑞1 × 𝑞2.

Proof. In light of the previous proposition and the definition of

direct products for CQs, we only need to show that, if 𝑞 → 𝑞1 and

𝑞 → 𝑞2, then 𝑞1 × 𝑞2 is well-defined. Indeed, let (𝐼1, ⟨𝑎1, . . . , 𝑎𝑘 ⟩)
and (𝐼2, ⟨𝑏1, . . . , 𝑏𝑘 ⟩) be the canonical instances of 𝑞1 and 𝑞2, and

consider their direct product (𝐼1 × 𝐼2, ⟨(𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)⟩. We

must show that every distinguished element (pair) (𝑎𝑖 , 𝑏𝑖 ) belongs
to the active domain, that is, occurs in some fact of 𝐼1 × 𝐼2. Let
𝑞 = 𝑞(𝑥1, . . . , 𝑥𝑛) and consider any fact 𝑓 of 𝑞 containing 𝑥𝑖 . Such

a fact must exist, by the safety condition of CQs. Let ℎ1 : 𝑞 →
(𝐼1, a) and ℎ2 : 𝑞 → (𝐼2, b), and let ℎ be the map given by ℎ(𝑥) =
(ℎ1 (𝑥), ℎ2 (𝑥)). Then then ℎ-image of 𝑓 must belong to 𝐼1 × 𝐼2 and

must contain (𝑎𝑖 , 𝑏𝑖 ). □

B DETAILED PROOFS FOR SECT. 3
Theorem 3.1. The verification problem for fitting CQs is DP-

complete. The lower bound holds for a schema consisting of a single bi-

nary relation, a fixed collection of labeled examples, and Boolean CQs.

Proof. Clearly it is equivalent to a conjunction of problems

that are in NP or coNP. For the lower bound we can reduce from

exact-4-colorability, i.e., testing that a graph is 4-colorable and not

3-colorable [43]. Fix a schema consisting of a single binary relation

𝑅. Let 𝐾3 be the 3-clique (viewed as an instance with a symmetric,

irreflexive relation), and let 𝐾4 be the 4-clique. Let 𝐸− = {𝐾3} and
𝐸+ = {𝐾4}. Then a graph 𝐺 is exact-4-colorable if and only if the

canonical CQ of 𝐺 fits (𝐸+, 𝐸−). □

Remark B.1. A special case of the existence problem for arbitrary

fitting CQs, is CQ definability, where the input is a input is a pair

(𝐼 , 𝑆) with 𝐼 an instance and 𝑆 ⊆ 𝑎𝑑𝑜𝑚(𝐼 )𝑘 a 𝑘-ary relation, and

the task is to decide whether there exists a CQ 𝑞 such that 𝑞(𝐼 ) = 𝑆 .
Note that the CQ definability problem is meaningful only for 𝑘 ≥ 1.

For fixed 𝑘 ≥ 1, this polynomially reduces to a fitting problem,

namely for 𝐸 = (𝐸+, 𝐸−) with 𝐸+ = {(𝐼 , a) | a ∈ 𝑆}, and 𝐸− =

{(𝐼 , a) | a ∈ 𝑎𝑑𝑜𝑚(𝐼 )𝑘 \ 𝑆}. In other words, CQ definability can be

viewed as a special case of the CQ fitting, where all input examples

share the same instance 𝐼 and where the 𝑘-tuples appearing in

the positive and negative examples cover the complete set of all

𝑘-tuples over 𝑎𝑑𝑜𝑚(𝐼 ).

The lower bound of Thm. 3.1, in fact, already holds for this more

restricted CQ definability problem. For the second variant of the

lower bound, we let 𝐼 be the disjoint union 𝐾3 ⊎ 𝐾4, let 𝐸
+
be the

set of all triples (𝐼 , 𝑎) where 𝑎 lies on the 4-clique, and let 𝐸− be the

set of all data examples (𝐼 , 𝑎) where 𝑎 lies on the 3-clique. Then,

for any connected graph 𝐺 , if 𝑎 is an arbitrarily chosen vertex

of 𝐺 , then we have that 𝐺 is exact-4-colorable if and only if the

canonical unary CQ of (𝐺, 𝑎) fits 𝐸. Disconnected graphs 𝐺 can be

handled similarly: in this case, we can linearly order its connected

components and add a connecting edge from each component to

the next one, without affecting the 3-colorability or 4-colorability

of the graph.

Proposition 3.5. For all CQs 𝑞 and collections of labeled examples

𝐸 = (𝐸+, 𝐸−), the following are equivalent:
(1) 𝑞 is strongly most-specific fitting for 𝐸,

(2) 𝑞 is weakly most-specific fitting for 𝐸,

(3) 𝑞 fits 𝐸 and 𝑞 is homomorphically equivalent to the canonical

CQ of Π𝑒∈𝐸+ (𝑒). 3

Proof. (1⇒ 2) is trivial. (2⇒ 3): If 𝑞 fits 𝐸, then, by Thm. 3.3,

the canonical CQ 𝑞∗ of Π (𝐼 ,a) ∈𝐸+ (𝐼 , a) is well defined and fits. It

then follows from the basic properties of direct products that 𝑞∗

is a most-specific fitting CQ for 𝐸: if 𝑞′ is any fitting CQ, then 𝑞′

has a homomorphism to each positive example, and hence, 𝑞′ has
a homomorphism to their product. It follows that 𝑞 → 𝑞∗. Since
𝑞 is weakly most-specific, 𝑞 ⊆ 𝑞∗, which means that 𝑞∗ → 𝑞 and

hence 𝑞 and 𝑞∗ are homomorphically equivalent. (3⇒ 1): Let 𝑞∗ be
the canonical CQ of Π𝑒∈𝐸+ (𝑒). As we already pointed out, if 𝑞∗ fits
then it is a strongly most-general fitting CQ for 𝐸. □

Theorem 3.7. The verification problem for most-specific fitting

CQs is in NExpTime.

Proof. we first verify that 𝑞 fits 𝐸 (in DP by Thm. 3.1). If this

test succeeds, we apply by Thm. 3.3 and Prop. 3.5, we test that 𝑞

is homomorphically equivalent to the canonical CQ of Π𝑒∈𝐸+ (𝑒).
This puts us in NExpTime because Π𝑒∈𝐸+ (𝑒) can be computed in

exponential time. □

Proposition 3.11. The following are equivalent for all collections

of labeled examples 𝐸 = (𝐸+, 𝐸−) and all CQs 𝑞:
(1) 𝑞 is weakly most-general fitting for 𝐸,

(2) 𝑞 fits 𝐸, 𝑞 has a frontier and every element of the frontier has a

homomorphism to an example in 𝐸− ,
(3) 𝑞 fits 𝐸 and {𝑞 × 𝑞𝑒 | 𝑒 ∈ 𝐸− and 𝑞 × 𝑞𝑒 is a well-defined CQ}

is a frontier for 𝑞,

where 𝑞𝑒 is the canonical CQ of 𝑒 .

Proof.

(1 ⇒ 3): If {𝑞 × 𝑞𝑒 | 𝑒 ∈ 𝐸− and 𝑞 × 𝑞𝑒 is a well-defined CQ}
is not a frontier for 𝑞, then there exists an query 𝑞′ that is ho-
momorphically strictly weaker than 𝑞 but that does not map to

{𝑞 × 𝑞𝑒 | 𝑒 ∈ 𝐸− and 𝑞 × 𝑞𝑒 is a well-defined CQ}. It follows that
𝑞′ has no homomorphism to any example in 𝑒 ∈ 𝐸− (for, if it did,

then, by Prop. A.2, we would have that 𝑞′ → 𝑞×𝑞𝑒 and 𝑞×𝑞𝑒 would
be well-defined). Hence, 𝑞′ is a fitting CQ that is strictly weaker

than 𝑞, showing that 𝑞 is not a weakly most-general fitting CQ. (3

3
In particular, in this case, the canonical CQ of Π𝑒∈𝐸+ (𝑒 ) is well-defined.
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⇒ 2) is trivial. (2⇒ 1): let 𝑞′ be homomorphically strictly weaker

than 𝑞. Then 𝑞′ maps to the frontier of 𝑞 and hence to a negative

example. Therefore 𝑞′ does not fit 𝐸. □

Theorem 3.12. Fix 𝑘 ≥ 0. The verification problem for weakly

most-general fitting 𝑘-ary CQs is NP-complete. In fact, it remains

NP-complete even if the examples are fixed suitably and, in addition,

the input query is assumed to fit the examples.

Proof. The algorithm showing NP-membership is as follows.

We check by means of a non-deterministic guess that 𝑞 is homo-

morphically equivalent to a c-acyclic CQ 𝑞′ (which can be assumed

to be of polynomial size by Thm. 2.1(3)). Then we check whether

𝑞′ fits. This can be done in polynomial time since 𝑞′ is c-acyclic
by means of an easy dynamic programming argument. Finally, we

compute the frontier of 𝑞′ (which we can do in polynomial time

by Thm. 2.1 since 𝑘 is fixed), and we check each member of the

frontier has a homomorphism to a negative example.

Let us now turn our attention to the NP-hardness. For every

graph𝑇 , let𝐶𝑆𝑃 (𝑇 ) be the problem consisting to determinewhether

an input graph𝐺 is homomorphic to𝑇 . It is known ([27]) that there

exists some directed trees 𝑇 such that 𝐶𝑆𝑃 (𝑇 ) is NP-complete. Fix

any such directed tree 𝑇 , and let us turn it into a pointed instance

(𝑇, a) by selecting a to be any tuple of 𝑘 (non necessarily different)

values from 𝑇 .

Since (𝑇, a) is c-acyclic, it has a frontier 𝐹 . Now, given any graph

𝐺 , we have that𝐺 is homomorphic to𝑇 if and only if 𝐹 is a frontier

for (𝑇, a) ⊎𝐺 . This, in turn, holds if and only if the canonical CQ of

(𝑇, a) ⊎𝐺 is a weakly most-general fitting CQ for (𝐸+ = ∅, 𝐸− = 𝐹 ).
To see that this is the case, note that if𝐺 is homomorphic to𝑇 , then

(𝑇, a) ⊎𝐺 is homomorphically equivalent to (𝑇, a) itself, whereas if
𝐺 is not homomorphic to 𝑇 , then (𝑇, a) ⊎𝐺 is strictly greater than

(𝑇, a) in the homomorphism order.

□

Theorem 3.13. The existence problem for weakly most-general

fitting CQs is in ExpTime. Moreover, if such a CQ exists, then

(1) there is one of doubly exponential size and

(2) we can produce one in time 2
𝑝𝑜𝑙𝑦 (𝑛) + 𝑝𝑜𝑙𝑦 (𝑚) where 𝑛 = | |𝐸 | |

and𝑚 is the size of the smallest weakly most-general fitting CQ.

The proof is lengthy and is given in Appendix B.1.

Proposition 3.15. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−), the following are equivalent for all CQs 𝑞1, . . . , 𝑞𝑛 :

(1) {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸,

(2) each 𝑞𝑖 fits 𝐸 and ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a homomorphism du-

ality relative to 𝑝 ,

where 𝑝 = Π𝑒∈𝐸+ (𝑒) and 𝑒𝑞𝑖 is the canonical instance of 𝑞𝑖 .

Proof. (1⇒ 2): By assumption, each 𝑞𝑖 fits. Let 𝑒 be any data

example such that 𝑒 → 𝑝 . We need to show that 𝑒𝑞𝑖 → 𝑒 for some

𝑖 ≤ 𝑛 iff 𝑒 does not map to any data example in 𝐸− . First, assume

𝑒𝑞𝑖 → 𝑒 , and assume for the sake of a contradiction that 𝑒 has a

homomorphism to a data example in 𝐸− . Then, by transitivity, 𝑒𝑞𝑖
also has a homomorphism to the same negative example, contra-

dicting the fact that 𝑞𝑖 fits 𝐸. For the converse direction, assume

𝑒 does not have a homomorphism to a data example in 𝐸− . Since
𝑒 → 𝑝 , by Prop. A.1, 𝑒 has a homomorphism to every data example

in 𝐸+. Therefore, the canonical CQ 𝑞𝑒 of 𝑒 fits 𝐸. Hence, we have

𝑞𝑒 ⊆ 𝑞𝑖 for some 𝑞𝑖 , and therefore, 𝑒𝑞𝑖 → 𝑒 . (2⇒ 1): let 𝑞′ be any
CQ that fits (𝐸+, 𝐸−). Then, by Prop. A.1, 𝑒𝑞′ → 𝑝 , and 𝑒𝑞′ does not

map to any negative example in 𝐸− . It follows that some 𝑒𝑞𝑖 maps

to 𝑒𝑞′ , and hence, 𝑞𝑖 → 𝑞′, which means that 𝑞′ ⊆ 𝑞𝑖 . □

Theorem 3.16.

(1) The following is NP-complete: given a finite set of data exam-

ples𝐷 and a data example 𝑝 , is there a finite set of data examples

𝐹 such that (𝐹, 𝐷) is a homomorphism duality relative to 𝑝?

(2) Given a finite set of data examples 𝐷 and a data example 𝑝 , if

there is a finite set of data examples 𝐹 such that (𝐹, 𝐷) is a homo-

morphism duality relative to 𝑝 , then we can compute in 2ExpTime

such a set 𝐹 , where each 𝑒 ∈ 𝐹 is of size 2
𝑂 ( | |𝐷 | |2 ·log | |𝐷 | | · |𝑝 | )

.

The proof is lengthy and is given in Appendix B.2.

Theorem 3.17. The existence and verification problems for bases

of most-general fitting CQs is in NExpTime.

Proof. For the existence problem, let a collection of labeled

examples 𝐸 = (𝐸+, 𝐸−) be given. Let 𝑝 = Π𝑒∈𝐸+ (𝑒). We claim that

the following are equivalent:

(1) a basis of most-general fitting CQs exists for 𝐸,

(2) there exists a finite set of data examples 𝐹 such that (𝐹, 𝐸−) is
a homomorphism duality relative to 𝑝 .

The direction from (i) to (ii) is immediate from Prop. 3.15. For

the converse direction, let 𝑄 be the set of all canonical CQs of

data examples in 𝐹 that fit 𝐸. Then 𝑄 is a basis of most-general

fitting CQs: let 𝑞′ be any query that fits 𝐸. Then, by Prop. A.1,

𝑒𝑞′ → 𝑝 . Furthermore 𝑒𝑞′ does not have a homomorphism to any

data example in 𝐸− . Therefore, we have 𝑒 → 𝑒𝑞′ for some 𝑒 ∈ 𝐹 .
Since 𝑒 → 𝑒𝑞′ and 𝑒𝑞′ → 𝑝 , 𝑒 has a homomorphism to every data

example in 𝐸+. Therefore, 𝑞𝑒 fits 𝐸, and hence, belongs to 𝑄 .

This puts the problem in NExpTime, since 𝑝 can be computed in

exponential time, and, by Thm. 3.16, (ii) can be tested in NP given 𝑝 .

For the verification problem, let 𝐸 = (𝐸+, 𝐸−) and {𝑞1, . . . , 𝑞𝑛}
be given. We may assume that each 𝑞𝑖 fits 𝐸 (as this can be checked

in DP by Thm. 3.1). We may also assume that 𝑞1, . . . , 𝑞𝑛 are pairwise

homomorphically incomparable (if not, we can select a minimal

subset, with the property that the queries in this subset homomor-

phically map into all others), and core. It is then straightforward to

see that, in order for {𝑞1, . . . , 𝑞𝑛} to be a basis of most-general fit-

ting CQs, each 𝑞𝑖 must be a weakly most-general fitting CQ. By 3.11

and Thm. 2.1, for this to be the case, each 𝑞𝑖 must be c-acyclic.

Since, at this point, we have that 𝑞1, . . . , 𝑞𝑛 are c-acyclic, by

Thm. 2.1, we can compute, in single exponential time, for each 𝑞𝑖 , a

set of data examples𝐷𝑞𝑖 , such that ({𝑒𝑞𝑖 }, 𝐷𝑞𝑖 ) is a homomorphism

duality. Let 𝐷 = {𝑒1 × · · · × 𝑒𝑛 | 𝑒𝑖 ∈ 𝐷𝑞𝑖 }. It is easy to see (using

Prop. A.1) that ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐷) is a homomorphism duality.

Finally, we claim that the following are equivalent:

(1) {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸,

(2) ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a homomorphism duality relative to 𝑝 ,

where 𝑝 = Π𝑒∈𝐸+ (𝑒),
(3) For each 𝑒 ∈ 𝐷 , there is 𝑒′ ∈ 𝐸− such that 𝑒 × 𝑝 → 𝑒′.

The equivalence of 1 and 2 is given by Prop. 3.15. (2⇒ 3): let 𝑒 ∈ 𝐷 .
Since ({𝑒𝑞1

, . . . , 𝑒𝑞𝑛 }, 𝐷) is a homomorphism duality and 𝑒 ∈ 𝐷 , we
have 𝑒𝑞𝑖 ̸→ 𝑒 for all 𝑖 ≤ 𝑛. Hence, by Prop. A.1, also 𝑒𝑞𝑖 ̸→ 𝑒 × 𝑝 .
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Therefore, since 𝑒 × 𝑝 → 𝑝 , we have that 𝑒 × 𝑝 → 𝑒′ for some

𝑒′ ∈ 𝐸− . (3⇒ 2): let 𝑒 be any data example such that 𝑒 → 𝑝 . If

some 𝑒𝑞𝑖 → 𝑒 , then, since 𝑞𝑖 fits 𝐸, we know that 𝑒 ̸→ 𝑒′ for all
𝑒′ ∈ 𝐸− . If, on the other hand, no 𝑒𝑞𝑖 has a homomorphism to 𝑒 ,

then 𝑒 → 𝑒′ for some 𝑒′ ∈ 𝐷 . Hence, since 𝑒 → 𝑝 , by Prop. A.1,

we have that 𝑒 → 𝑒′ × 𝑝 , and therefore 𝑒 → 𝑒′′ for some 𝑒′′ ∈ 𝐸− .
This concludes the proof since (3) can be tested in NExpTime. □

Theorem 3.18. Let 𝐸 = (𝐸+, 𝐸−) be a collection of labeled exam-

ples, for which a basis of most-general fitting CQs exists. Then we can

compute a minimal such basis in 3ExpTime, consisting of CQs of size

2
𝑝𝑜𝑙𝑦 ( | |𝐸− | | ) ·2𝑂 ( | |𝐸+ ||) )

.

Proof. It follows from Prop. 3.15 together with Thm. 3.16(2) that

there exists a basis consisting of CQs of size 2
𝑝𝑜𝑙𝑦 ( | |𝐸− | | ) ·2𝑂 ( | |𝐸+ ||)

.

Trivially, this means that the set of all fitting such CQs is a basis.

Since the fitting problem is in DP by Thm. 3.1, this basis can be

enumerated, and, subsequently, minimized, in 3ExpTime. □

Theorem 3.22. Let S consist of a single binary relation. There is a

fixed 𝑘 for which the following problem is NExpTime-complete: given

𝑘-ary pointed S-instances (𝐼1, a1) . . . , (𝐼𝑛, a𝑛) and (𝐽 , b) with the

UNP, where (𝐽 , b) is c-acyclic, is it the case that Π𝑖 (𝐼𝑖 , a𝑖 ) → (𝐽 , b)?

Proof. The NExpTime-hardness results in [10, 46] are based on

encodings of a (single, fixed) domino system whose tiling problem

is NExpTime-hard. Let 𝑁 be the number of tile types of this domino

system. Specifically, Thm. 1(3) in [10] shows that PHP is NExpTime-

hard for instances over a fixed schema consisting of a single binary

relation, and without distinguished elements. The target instance 𝐽

used in this construction contains a value for each of the 𝑁 tile

type as well as a variable number of other values. This instance 𝐽 is,

in general, not acyclic. However, as it turns out, careful inspection

shows that every cycle in the incidence graph of 𝐽 passes through

one of the𝑁 values that correspond to tile types. We can exploit this

as follows: for each instance 𝐼𝑖 let 𝐼
∗
𝑖
be the instance that extends

𝐼𝑖 with 𝑁 distinct, isolated distinguished elements. Furthermore,

let 𝐽 ∗ be a copy of the instance 𝐽 where each of the 𝑁 values that

denotes a tile type, becomes a distinguished element. It is easy to

see that Π𝑖 𝐼
∗
𝑖
→ 𝐽 ∗ if and only if Π𝑖 𝐼𝑖 → 𝐽 . By construction, 𝐽 ∗ is

c-acyclic.

□

Lemma B.1. For pointed instances (𝐼1, a1), . . . , (𝐼𝑛, a𝑛) and (𝐽 , b)
of the same arity and with the UNP, the following are equivalent:

(1) Π𝑖 (𝐼𝑖 , a𝑖 ) → (𝐽 , b)
(2) Π𝑖 ((𝐼𝑖 , a𝑖 ) ⊎ (𝐽 , b)) → (𝐽 , b)

Proof. (sketch) A homomorphism from Π𝑖 (𝐼𝑖 , a𝑖 ) to (𝐽 , b), can
be extended to a homomorphism from Π𝑖 ((𝐼𝑖 , a𝑖 ) ⊎ (𝐽 , b)) to (𝐽 , b)
by sending every 𝑘-tuple that contains at least one value from (𝐽 , b),
to the first element of the 𝑘-tuple in question that is a value from

(𝐽 , b). The converse direction is trivial. □

Theorem 3.23. The following problems are NExpTime-hard:

(1) The verification problem for most-specific fitting CQs.

(2) The verification problem for unique fitting CQs.

(3) The existence problem for unique fitting CQs.

(4) The verification problem for bases of most-general fitting CQs.

(5) The existence problem for bases of most-general fitting CQs.

Each problem is NExpTime-hard already for a fixed schema and arity,

and, in the case of the verification problems, when restricted to inputs

where the input CQ fits the examples, or, in the case of the existence

problems, when restricted to inputs where a fitting CQ exists.

Proof. (1) By a reduction from the PHP, which is NExpTime-

hard already for 𝑘 = 0 and over a schema consisting of a single

binary relation [10]. Given 𝐼1, . . . , 𝐼𝑛 and 𝐽 , let 𝐸 be the set of labeled

examples that contains (𝐼1 ⊎ 𝐽 ), . . . , (𝐼𝑛 ⊎ 𝐽 ) as positive examples,

and that does not contain any negative examples. Let 𝑞 be the

canonical query of 𝐽 . It is clear from the construction that 𝑞 fits 𝐸.

Furthermore, 𝑞 is a most-specific fitting CQ for 𝐸 if and only if (by

Prop. 3.5) Π𝑖 (𝐼𝑖 ⊎ 𝐽 ) → 𝐽 if and only if (by Lemma B.1) Π𝑖 𝐼𝑖 → 𝐽 .

(2–3) By reduction from Thm. 3.22. It follows from Prop. 3.20 and

Lemma B.1 that, if 𝐽 is c-acyclic, then the following are equivalent:

(1) (𝐼1, a1) × · · · × (𝐼𝑛, a𝑛) → (𝐽 , b)
(2) 𝑞 is a unique fitting CQ for (𝐸+ = {(𝐼𝑖 , a𝑖 ) ⊎ (𝐽 , b) | 1 ≤ 𝑖 ≤

𝑛}, 𝐸− = 𝐹 )
(3) There is a unique fitting CQ for (𝐸+ = {(𝐼𝑖 , a𝑖 ) ⊎ (𝐽 , b) | 1 ≤

𝑖 ≤ 𝑛}, 𝐸− = 𝐹 )
where 𝐹 is the frontier of (𝐽 , b) (which can be computed in polyno-

mial time, since (𝐽 , b) is c-acyclic) and where 𝑞 is the canonical CQ

of (𝐽 , b). Therefore, the verification and the existence problem for

unique fitting CQs are both NExpTime-hard.

(4–5) Next, we show how to modify this reduction to also show

hardness for the verification and existence problems for bases

of most-general CQs. For any 𝑘-ary pointed instance (𝐶, a) over
schema S, we will denote by (𝐶, a)∗ the 𝑘 + 1-ary pointed instance

over schema S∗ = S ∪ {𝑅, 𝑃}, that extends (𝐶, a) with a fresh des-

ignated element 𝑎𝑘+1 and a non-designated element 𝑑 , and with

facts 𝑅(𝑎𝑘+1, 𝑑) and 𝑃 (𝑑). In addition, we denote by (𝐶𝑠𝑖𝑛𝑘 , c) the
pointed instance with distinguished elements c = 𝑐1, . . . , 𝑐𝑘+1 and

non-distinguished element 𝑑 , consisting of all possible S-facts over
{𝑐1, . . . , 𝑐𝑘+1) and all possible S∗ facts over {𝑑}. We claim that the

following are equivalent:

(1) (𝐼1, a1) × · · · × (𝐼𝑛, a𝑛) → (𝐽 , b)
(2) (𝐼1, a1)∗ × · · · × (𝐼𝑛, a𝑛)∗ → (𝐽 , b)∗
(3) 𝑞 is a unique fitting CQ for (𝐸+ = {(𝐼𝑖 , a𝑖 )∗ ⊎ (𝐽 , b)∗ | 1 ≤ 𝑖 ≤

𝑛}, 𝐸− = 𝐹 ∪ {(𝐶𝑠𝑖𝑛𝑘 , c)})
(4) There is a basis of most-general fitting CQ for (𝐸+ = {(𝐼𝑖 , a𝑖 )∗⊎
(𝐽 , b)∗ | 1 ≤ 𝑖 ≤ 𝑛}, 𝐸− = 𝐹 ∪ {(𝐶𝑠𝑖𝑛𝑘 , c)})

where 𝐹 is the frontier of (𝐽 , b)∗ (which can be computed in poly-

nomial time, since (𝐽 , b)∗ is c-acyclic) and where 𝑞 is the canonical

CQ of (𝐽 , b)∗. Therefore, the verification and the existence problem

for unique fitting CQs are both NExpTime-hard.

The equivalence between (1) and (2) is easy to see. Note that

Π𝑖 ((𝐼𝑖 , a𝑖 )∗) is homomorphically equivalent to (Π𝑖 (𝐼𝑖 , a𝑖 ))∗. The
argument for the implication from (2) to (3) is similar to the one we

gave above with the simpler reduction (note that 𝑞 clearly does not

map homomorphically to (𝐶𝑠𝑖𝑛𝑘 , c)). The implication from (3) to

(4) is trivial, because a unique fitting CQ, by definition, constitutes

a singleton basis of most-general fitting CQs. It therefore remains

only to show that (4) implies (2).

Let {𝑞1, . . . , 𝑞𝑚} be a basis of most-general fitting CQs for

(𝐸+, 𝐸−) and assume towards a contradiction that (2) fails. Let
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𝑝 = Π𝑒∈𝐸+ (𝑒). It is not hard to see that 𝑝 is homomorphically equiv-

alent to Π𝑖 ((𝐼𝑖 , a𝑖 ) ⊎ (𝐽 , b))∗. With a slight abuse of notation, in

what follows we will identify 𝑝 with Π𝑖 ((𝐼𝑖 , a) ⊎ (𝐽 , b))∗, so that we
can speak about the unique 𝑅-edge in 𝑝 . For 𝑖 ≥ 1, let 𝑝′

𝑖
be obtained

from 𝑝 by replacing this 𝑅-edge by a zig-zag path of length 𝑖 , i.e.,

an oriented path of the form→ (←→)𝑖 . Clearly, 𝑝′
𝑖
→ 𝑝 . There-

fore, in particular 𝑝′
𝑖
fits the positive examples 𝐸+. Also, clearly, 𝑝′

𝑖
fits the negative example (𝐶𝑠𝑖𝑛𝑘 , c). It also fits the other negative
examples: Suppose 𝑝′

𝑖
had a homomorphism ℎ to 𝑒 ∈ 𝐹 . Since 𝐹 is

a frontier for (𝐽 , b)∗, this implies that 𝑝′
𝑖
→ (𝐽 , b)∗. Since (𝐽 , b)∗

has a unique 𝑅-edge it follows that every 𝑅-edge in the zigzag of

𝑝′
𝑖
must necessarily be mapped to it by ℎ. In turn, this implies that

𝑝 is homomorphic to (𝐽 , b)∗, contradiction the fact that (2) fails.

Thus, each 𝑝′
𝑖
fits (𝐸+, 𝐸−). Hence, some member 𝑞 𝑗 of the basis

must homomorphically map to infinitely many 𝑝′
𝑖
. It follows that

𝑞 𝑗 does not contain any finite undirected 𝑅-path from a designated

element to a value satisfying the unary 𝑃 (for if such a path existed,

of length ℓ , then 𝑞 𝑗 would not map to 𝑝′
𝑖
for any 𝑖 > ℓ). It follows

that 𝑞 𝑗 maps to (𝐶𝑠𝑖𝑛𝑘 , c), a contradiction. □

Theorem 3.24. The existence problem for weakly most-general

fitting CQs is ExpTime-hard.

The proof of Theorem 3.24 is given in Appendix D.6, where the

result is established simultaneously for CQs and for tree CQs.

Theorem 3.25. Fix a schema consisting of a single binary relation.

For 𝑛 > 0, we can construct a collection of Boolean data examples of

combined size polynomial in 𝑛 such that a fitting CQ exists, but not

one of size less than 2
𝑛
.

Proof. For 𝑖 ≥ 1, let 𝐶𝑝𝑖 denote the directed cycle of length 𝑝𝑖 ,

with 𝑝𝑖 the 𝑖-th prime number (where 𝑝1 = 2). Note that, by the

prime number theorem,𝐶𝑝𝑖 is of size𝑂 (𝑖 log 𝑖). Let 𝐸+𝑛 = {𝐶𝑝𝑖 | 𝑖 =
2, . . . , 𝑛} and let 𝐸−𝑛 = {𝐶𝑝1

}. Then it is easy to see that a fitting

CQ for (𝐸+𝑛 , 𝐸−𝑛 ) exists (namely the any cycle whose length is a

common multiple of the lengths of the cycles in 𝐸+𝑛 ). Furthermore,

every fitting CQ must necessarily contain a cycle of odd length (in

order not to fit the negative example), and the length of this cycle

must be a common multiple of the prime numbers 𝑝2, . . . , 𝑝𝑛 (in

order to fit the positive examples). This shows that the query must

have size at least 2
𝑛
. □

Remark B.2. Continuing from Remark B.1, the above proof

can be adapted to also apply also to the CQ definability

problem: let 𝐼𝑛 be the disjoint union

⊎
𝑖=1...𝑛 𝐶𝑝𝑖 , let 𝐸

+
𝑛 =

{(𝐼𝑛, 𝑎) | 𝑎 lies on the cycle of length 2} and 𝐸−𝑛 = {(𝐼𝑛, 𝑎) |
𝑎 lies on a cycle of length greater than 2}. By the same reasoning

as before, there is a unary CQ that fits these examples, but every

unary CQ that fits must have size at least 2
𝑛
.

Theorem 3.26. For 𝑛 ≥ 0, we can construct a schema with 𝑂 (𝑛)
unary and binary relations and a collection of labeled examples of

combined size polynomial in 𝑛 such that

(1) There is a unique fitting CQ.

(2) Every fitting CQ contains at least 2
𝑛
variables.

Proof. The follow construction is inspired by the lower bound

arguments in [10]. The schema contains relations 𝑇1, . . . ,𝑇𝑛 ,

𝐹1, . . . , 𝐹𝑛 (used to encode bit-strings of length 𝑛) and 𝑅1, . . . , 𝑅𝑛

where the intended interpretation of 𝑅𝑖 is “the successor relation

on bit-strings, restricted to pairs of bit-strings where the 𝑖-th bit is

the one that flips to from 0 to 1”. Note that the union of these 𝑅𝑖 ’s

is precisely the ordinary successor relation on bit-strings.

Next, we describe the positive examples. For each 𝑖 ≤ 𝑛, let 𝑃𝑖
be the two-element instance that has domain {0, 1} and contains

the following facts:

• 𝐹𝑖 (0) and 𝑇𝑖 (1)
• all facts involving unary relations 𝑇𝑗 and 𝐹 𝑗 for 𝑗 ≠ 𝑖

• all facts 𝑅 𝑗 (0, 0) and 𝑅 𝑗 (1, 1) for 𝑗 < 𝑖
• all facts 𝑅𝑖 (0, 1)
• all facts 𝑅 𝑗 (1, 0) for 𝑗 > 𝑖
Let 𝑃 be the direct product 𝑃1 × · · · × 𝑃𝑛 . It can easily be verified

that 𝑃 is a directed path of length 2
𝑛
, starting with ⟨0, . . . , 0⟩ and

ending with ⟨1, . . . , 1⟩, where the unary and binary relations have

the intended interpretation as described above. For example, if

𝑛 = 2, then the instance 𝑃 can be depicted as follows:

⟨0, 0⟩ 𝑅2−−→ ⟨0, 1⟩ 𝑅1−−→ ⟨1, 0⟩ 𝑅2−−→ ⟨1, 1⟩
Our negative example is the instance 𝑁 , whose domain consists

of 3𝑛 values, 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 , and 𝑐1, . . . , 𝑐𝑛 , and such that

𝑁 contains the following facts:

• All facts over domain 𝐴 = {𝑎1, . . . , 𝑎𝑛} except 𝑇𝑖 (𝑎𝑖 ) for 𝑖 ≤ 𝑛;
• All facts over domain 𝐵 = {𝑏1, . . . , 𝑏𝑛} except 𝐹𝑖 (𝑏𝑖 ) for 𝑖 ≤ 𝑛;
• All facts over domain 𝐶 = {𝑐1, . . . , 𝑐𝑛} except 𝑇𝑖 (𝑐𝑖 ) and 𝐹𝑖 (𝑐𝑖 )
for 𝑖 ≤ 𝑛;
• All binary facts 𝑅 𝑗 (𝑥,𝑦) where 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐴
• All binary facts 𝑅 𝑗 (𝑥,𝑦) where 𝑥 ∈ 𝐶 or 𝑦 ∈ 𝐶

In particular, note that there are no directed edges going from the

𝐴 cluster to the 𝐵 cluster.

We claim that 𝑃 does not map to 𝑁 . Indeed, the only values in

𝑁 that satisfy 𝐹1 (𝑥) ∧ · · · ∧ 𝐹𝑛 (𝑥) (and hence, to which the value

⟨0, . . . , 0⟩ of 𝑃 could bemapped) are𝑎1, . . . , 𝑎𝑛 , while the only values

in 𝑁 that satisfy𝑇1 (𝑥) ∧ · · · ∧𝑇𝑛 (𝑥) (and hence, to which the value

⟨1, . . . , 1⟩ of 𝑃 could be mapped), are 𝑏1, . . . , 𝑏𝑛 . By construction,

the latter cannot be reached from the former by a path consisting

of forward edges only, except if the path goes through the𝐶 cluster.

Note that the values in the 𝐶 cluster are not viable candidates for

the homomorphism because each fails to satisfy 𝑇𝑖 ∨ 𝐹𝑖 for some 𝑖 .

It follows that the canonical CQ of 𝑃 is a fitting CQ, and, indeed, a

most-specific fitting CQ. In the remainder of the proof, we show

that it is in fact a unique fitting CQ.

Let 𝑞′ be any fitting CQ and let 𝐼 be its canonical instance. Then

𝐼 maps to 𝑃 and not to 𝑁 . Consider any connected component of 𝐼

that does not map to 𝑁 .

The component in question must contain a node 𝑎 satisfying all

𝐹1, . . . , 𝐹𝑛 (otherwise the entire component could be mapped to the

{𝑏1, . . . , 𝑏𝑛}-subinstance of 𝑁 . Similarly, it must contain a node 𝑏

satisfying all 𝑇1, . . . ,𝑇𝑛 (otherwise the entire component could be

mapped to the {𝑎1, . . . , 𝑎𝑛}-subinstance of 𝑁 .

We can now distinguish three cases:

• There is no directed path in 𝐼 from a node 𝑎 satisfying 𝐹1, . . . , 𝐹𝑛
to a node 𝑏 satisfying 𝑇1, . . . ,𝑇𝑛 . In this case, let 𝑋 be the set

of all values of 𝐼 that are reachable by a directed path from an

value satisfying 𝐹1, . . . , 𝐹𝑛 . Take any map ℎ that sends every
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𝑥 ∈ 𝑋 to some 𝑎 𝑗 (where 𝑗 is chosen so that 𝑥 omits𝑇𝑗 ) and that

sends every value 𝑦 outside 𝑋 to a 𝑏 𝑗 of 𝑁 (where 𝑗 is chosen

so that 𝑦 omits 𝐹 𝑗 ). Then ℎ is a homomorphism from 𝐼 to 𝑁 ,

contradicting the fact that 𝑞′ is a fitting CQ. Therefore, this

cannot happen.

• Every directed path in 𝐼 from a node 𝑎 satisfying 𝐹1, . . . , 𝐹𝑛 to

a node 𝑏 satisfying 𝑇1, . . . ,𝑇𝑛 , contains a “bad” node, by which

we mean a value that, for some 𝑗 ≤ 𝑛, fails to satisfy either 𝑇𝑗
or 𝐹 𝑗 . In this case, let 𝑋 be the set of all values of 𝐼 that can be

reached from a node satisfying 𝐹1, . . . , 𝐹𝑛 by a path that does

not contain bad nodes. We construct a homomorphism from 𝐼 to

𝑁 by sending all the values in 𝑋 to a suitable 𝑎 𝑗 ; all bad nodes

to 𝑐 𝑗 (where 𝑗 is such that the bad node in question fails to

satisfy𝑇𝑗 or 𝐹 𝑗 ); all other nodes to suitable 𝑏 𝑗 . Therefore, again,

we have a contradiction, showing that this cannot happen.

• There are nodes 𝑎 and 𝑏 satisfying 𝐹1, . . . , 𝐹𝑛 and 𝑇1, . . . ,𝑇𝑛 ,

respectively, such that there is a directed path from 𝑎 to 𝑏 that

does not contain any bad node. In this case, we can easily see

that the homomorphism from 𝐼 to 𝑃 maps this path bijectively

to 𝑃 and hence its inverse contains a homomorphism from 𝑃 to

𝐼 . It follows that 𝐼 and 𝑃 are homomorphically equivalent, and

hence, 𝑞′ is logically equivalent to 𝑞.

□

Theorem 3.27. For 𝑛 ≥ 0, we can construct a schema with 𝑂 (𝑛)
unary and binary relations and a collection of labeled examples of

combined size polynomial in 𝑛 such that

(1) There is a basis of most-general fitting CQs.

(2) Every such basis contains at least 2
2
𝑛
CQs.

Proof. It suffices to make minor changes to the construction

used in the proof of Thm. 3.26. Specifically, (i) we expand the schema

with unary relation symbols 𝑍0 and 𝑍1, (ii) we extend the positive

examples and the negative example with all possible 𝑍0- and 𝑍1-

facts over their domain, and (iii) we extend the negative example 𝑁

with one further value 𝑧 where 𝑧 satisfies all possible unary facts

except𝑍0 (𝑧) and𝑍1 (𝑧), as well as all binary facts 𝑅 𝑗 (𝑥,𝑦) for which
it holds that 𝑧 ∈ {𝑥,𝑦}.

Let 𝑃 be the direct product 𝑃1 × · · · × 𝑃𝑛 . It can again be verified

that 𝑃 is a directed path of length 2
𝑛
, startingwith ⟨0, . . . , 0⟩ and end-

ing with ⟨1, . . . , 1⟩, where the unary relations 𝑇1, . . . ,𝑇𝑛, 𝐹1, . . . , 𝐹𝑛
and the binary relations 𝑅1, . . . 𝑅𝑛 have the intended interpreta-

tion, and such that the unary relation symbols 𝑍0 and 𝑍1 are true

everywhere.

Let 𝑋 be the set containing all subinstances of 𝑃 obtained by

removing, for each node 𝑥 in its domain, exactly one of the facts

𝑍0 (𝑥) or 𝑍1 (𝑥). We shall show that (𝑋, {𝑁 }) is a homomorphism

duality relative to 𝑃 .

First, note that every instance in 𝑋 is not homomorphic to 𝑃 .

Now, let𝑄 be any instance satisfying𝑄 → 𝑃 and𝑄 ↛ 𝑁 . We need

to show that 𝑄 admits an homomorphism from some instance in

𝑋 . To do so, let 𝑄 ′ be any connected component of 𝑄 such that

𝑄 ′ ↛ 𝑁 .

By the same arguments as in the proof of Thm. 3.26,𝑄 ′ contains
nodes 𝑎 and 𝑏 satisfying 𝐹1, . . . , 𝐹𝑛 and 𝑇1, . . . ,𝑇𝑛 respectively and

there a directed path from 𝑎 to 𝑏 containing no bad nodes (that is a

value that for some 𝑗 ≤ 𝑛, fails to satisfy either𝑇𝑗 or 𝐹 𝑗 ). Mimicking

the same arguments it is immediate to show that, additionally, every

node in this directed path satisfies 𝑍0 or 𝑍1. Since 𝑄 → 𝑃 there is

an homomorphism ℎ from this directed path to 𝑃 . It is easy to see

that ℎ must be bijective. Since every node 𝑥 in the path satisfies

𝑍0 or 𝑍1 it follows that the inverse of ℎ defines an homomorphism

from some instance in 𝑋 to 𝑄 .

Finally, note that𝑋 has 2
2
𝑛
values and that every pair of instances

in 𝑋 is not homomorphically equivalent. By Proposition 3.15, the

set containing the canonical queries of instances in𝑋 , which clearly

fits, is a minimal basis of most general fitting CQs. □

B.1 Proof of Thm. 3.13 (via Automata that
accept Weakly Most-General Fitting CQs)

This section is devoted to the proof of:

Theorem 3.13. The existence problem for weakly most-general

fitting CQs is in ExpTime. Moreover, if such a CQ exists, then

(1) there is one of doubly exponential size and

(2) we can produce one in time 2
𝑝𝑜𝑙𝑦 (𝑛) + 𝑝𝑜𝑙𝑦 (𝑚) where 𝑛 = | |𝐸 | |

and𝑚 is the size of the smallest weakly most-general fitting CQ.

The main result of this section is that, given collection of labeled

examples 𝐸, we can construct in exponential time a tree automaton

that accepts (suitable encodings of) weakly most-general fitting

c-acyclic CQs for 𝐸. The existence problem for weakly most-general

fitting CQs then reduces to the emptiness problem for the corre-

sponding automaton, and hence can be solved in ExpTime. Simi-

larly, the other claims in Theorem 3.13 follow by basic facts from

automata theory, cf. Theorem B.5 below. Note that, by Prop. 3.11

and Thm. 2.1, the core of a weakly most-general fitting CQ is always

c-acyclic, and hence we can restrict attention to c-acyclic CQs here.

In fact, we will restrict attention to c-acyclic CQs with the Unique

Names Property (UNP). We will explain afterwards how to lift the

UNP restriction.

First, we must introduce tree automata.

Definition B.2 (𝑑-ary Σ-trees). Fix a finite alphabet Σ and a 𝑑 > 0.

A 𝑑-ary Σ-tree is a pair (𝑇, 𝐿𝑎𝑏) where 𝑇 is a non-empty prefix-

closed finite subset of {1, . . . , 𝑑}∗, and 𝐿𝑎𝑏 : 𝑇 → Σ. By abuse of

notation, we will sometimes use the symbol 𝑇 to refer to the pair

(𝑇, 𝐿𝑎𝑏) and we will write 𝐿𝑎𝑏𝑇 for 𝐿𝑎𝑏. For (𝑖1, . . . , 𝑖𝑛) ∈ 𝑇 , we
will denote (𝑖1, . . . , 𝑖𝑛) also by 𝑆𝑢𝑐𝑖𝑛 ((𝑖1, . . . , 𝑖𝑛−1)). Note that the
empty sequence 𝜀 belongs to every tree.

This permits a node to have a 𝑆𝑢𝑐𝑖 -successor without having a

𝑆𝑢𝑐 𝑗 -successor for 𝑗 < 𝑖 .

Definition B.3 (Non-Deterministic Tree Automaton). A 𝑑-ary non-

deterministic tree automaton (NTA) is a tuple 𝔄 = (𝑄, Σ,Δ, 𝐹 )
where

• 𝑄 is a finite set of states

• Σ is a finite alphabet

• Δ ⊆ (𝑄 ∪ {⊥}){1,...,𝑑 } × Σ ×𝑄 is the transition relation

• 𝐹 ⊆ 𝑄 is the set of accepting states.

When specifying an automaton, for the sake of readability, we

will use the notation ⟨𝑞1, . . . , 𝑞𝑑 ⟩
𝜎
===⇒ 𝑞 for transitions, instead of

writing ⟨𝑞1, . . . , 𝑞𝑑 , 𝜎, 𝑞⟩ ∈ Δ.
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Definition B.4 (Accepting Run; Acceptance). An accepting run of

a 𝑑-ary NTA A = (𝑄, Σ,Δ, 𝐹 ) on a 𝑑-ary Σ-tree 𝑇 is a mapping

𝜌 : 𝑇 → 𝑄 such that:

• 𝜌 (𝜀) ∈ 𝐹 , and
• for each 𝑡 ∈ 𝑇 , the transition

⟨𝜌1 (𝑡), . . . , 𝜌𝑑 (𝑡)⟩
𝐿𝑎𝑏𝑇 (𝑡 )
=========⇒ 𝜌 (𝑡)

belongs to Δ, where 𝜌𝑖 (𝑡) = 𝜌 (𝑡 · 𝑖)) if (𝑡 · 𝑖) ∈ 𝑇 , and 𝜌𝑖 (𝑡) = ⊥
otherwise.

When such an accepting run exist, we say that 𝔄 accepts 𝑇 . The

tree language recognized by 𝔄 (denoted by 𝐿(A)) is the set of all
𝑑-ary Σ-trees 𝔄 accepts.

The following theorem lists a number of well-known facts about

non-deterministic tree automata, which can be found in any stan-

dard textbook on tree automata.
4

Theorem B.5.

(1) The problem to decide, given an NTA 𝔄, whether 𝐿(𝔄) is non-
empty, is in PTime.

(2) Given an NTA 𝔄 for which 𝐿(𝔄) is non-empty, we can compute

in polynomial time a succinct representation (in the form of a

directed acyclic graph) of a tree 𝑇 of minimal size accepted by

𝐿(𝔄).
(3) For a Boolean combinations of NTAs, we can construct in ExpTime

an NTA that defines the same tree language.

(4) For a constant number of NTAs, we can construct in polynomial

time an NTA that defines the intersection.

Here, and in what follows, 𝑑 and Σ are not treated as a fixed

constant in the complexity analysis, but as part of the input (and

it’s assumed 𝑑 is given in unary).

Step 1: Encoding c-acyclic CQs (with UNP) as trees
To simplify the presentation in the remainder of this section, let

us fix a schema S and arity 𝑘 ≥ 0. Furthermore choose some 𝑑 >

max-arity(S) (Proposition B.10 below will tell us more precisely

how to choose 𝑑).

We will encode 𝑘-ary c-acyclic CQs over S by trees over the

alphabet

Σ = {⟨𝑅, 𝜋⟩ | 𝑅 ∈ S and 𝜋 ∈ ({up, down, ans1, . . . , ans𝑘 })arity(𝑅) )}∪{𝜈}
where 𝜈 is a new symbol. The intuition behind this choice of al-

phabet is as follows: each node of the tree, other than the root

node, represents an existentially quantified variable or a fact (i.e.,

an atomic conjunct) of the query. The nodes at even distance from

the root represent existentially quantified variables while the nodes

at odd distance from the root represent facts. Each node of the

tree that represents a fact has a label of the form ⟨𝑅, 𝜋⟩, where 𝑅
indicates the relation of the fact, and 𝜋 describes the arguments of

the fact.

Definition B.6 (Proper 𝑑-ary Σ-tree). We say that a 𝑑-ary Σ-tree
(𝑇, 𝐿𝑎𝑏) is proper if the following hold for every 𝑡 ∈ 𝑇 (where |𝑡 |
denotes the length of the sequence 𝑡 ):

4
Item (2) can be shown by a straightforward dynamic programming algorithm that

computes, for each state 𝑠 of the automaton (starting with the final states) a pair (𝑇,𝑛) ,
where𝑇 is a succinct representation of a tree accepted by the automaton from starting

state 𝑠 , and 𝑛 is the size of the corresponding non-succinct representation.

C-acyclic query: 𝑞 (𝑥1, 𝑥2 ) :- ∃𝑧, 𝑧′ (𝑅 (𝑥1, 𝑧 ) ∧ 𝑅 (𝑧, 𝑧′ ) ∧ 𝑅 (𝑥1, 𝑧
′ ) ∧ 𝑃 (𝑥2 ) )

Incidence graph: 𝑥1

𝑧

𝑧′

𝑥2

𝑅 (𝑥1, 𝑧 )

𝑅 (𝑧, 𝑧′ )

𝑅 (𝑥1, 𝑧
′ )

𝑃 (𝑥2 )

Tree encoding: 𝜀 𝜈

⟨1⟩ ⟨𝑅, ans1, down⟩

⟨1, 1⟩ 𝜈

⟨1, 1, 1⟩ ⟨𝑅, up, down⟩

⟨1, 1, 1, 1⟩ 𝜈

⟨1, 1, 1, 1, 1⟩ ⟨𝑅, ans1, up⟩

⟨2⟩ ⟨𝑅, ans2 ⟩

Figure 1: Example of a c-acyclic CQ and its encoding as a
𝑑-ary Σ-tree

• If |𝑡 | is even, then 𝐿𝑎𝑏 (𝑡) = 𝜈 . In particular, 𝐿𝑎𝑏 (𝜀) = 𝜈
• If |𝑡 | = 1, then 𝐿𝑎𝑏 (𝑡) is of the form ⟨𝑅, 𝜋⟩ for some 𝜋 not

containing up.
• If |𝑡 | is odd and |𝑡 | > 1, then 𝐿𝑎𝑏 (𝑡) is of the form ⟨𝑅, 𝜋⟩ for
some 𝜋 that includes exactly one occurrence of up.
• If 𝐿𝑎𝑏 (𝑡) = ⟨𝑅, 𝜋⟩ with 𝜋 = 𝑑𝑖𝑟1 . . . 𝑑𝑖𝑟𝑛 , then we have that

(1) for all 𝑖 ≤ 𝑛, 𝑑𝑖𝑟𝑖 = down iff (𝑡 · 𝑖) ∈ 𝑇 , and
(2) for all 𝑖 > 𝑛, (𝑡 · 𝑖) ∉ 𝑇 .

• For each 𝑖 ≤ 𝑘 , there exists at least one node whose label is of
the form ⟨𝑅, 𝜋⟩ where 𝜋 contains ans𝑖 .

Definition B.7 (The CQ encoded by a proper tree). Let 𝑇 =

(𝑇, 𝐿𝑎𝑏) be a proper 𝑑-ary Σ-tree. We construct a corresponding

CQ 𝑞𝑇 (𝑥1, . . . , 𝑥𝑘 ) as follows:
• For each non-root 𝑡 ∈ 𝑇 labeled 𝜈 , 𝑞𝑇 contains an existentially

quantified variable 𝑦𝑡 .

• For each 𝑡 ∈ 𝑇 labeled ⟨𝑅, 𝜋⟩ with 𝜋 = 𝑑𝑖𝑟1, . . . , 𝑑𝑖𝑟𝑛 , 𝑞𝑇 con-

tains a conjunct of the form 𝑅(𝑢1, . . . , 𝑢𝑛) where 𝑢𝑖 = 𝑥 𝑗 if

𝑑𝑖𝑟𝑖 = ans𝑗 ; 𝑢𝑖 = 𝑦 (𝑡 ·𝑖 ) if 𝑑𝑖𝑟𝑖 = down; and 𝑢𝑖 = 𝑦𝑡 ′ if 𝑑𝑖𝑟𝑖 = up
and 𝑡 ′ is the parent of 𝑡 in 𝑇 .

We leave it to the reader to verify that 𝑞𝑇 is indeed a well-defined

CQ. In particular the 5th bullet in the above definition of proper

trees guarantees that 𝑞𝑇 satisfies the safety condition.

An example of a tree encoding of a c-acyclic CQ is given in

Figure 1.
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Remark B.3. The size of 𝑞𝑇 , as counted by the number of existential

quantifiers plus the number of conjuncts, is at most the number of

nodes of 𝑇 minus 1.

Definition B.8. A CQ is said to be encodable by a 𝑑-ary Σ-tree if
there is a proper 𝑑-ary Σ-tree 𝑇 such that 𝑞𝑇 is equal to 𝑞 (up to a

one-to-one renaming of variables).

For the next proposition, we need to introduce some terminology.

The fact graph of 𝑞 is the (undirected) graph whose nodes are the

facts of 𝑞 and such that there is an edge connecting two facts if

they share an existential variable. By an fg-connected component of

𝑞 we will mean a connected component of the fact graph of 𝑞.

Proposition B.9. A 𝑘-ary CQ 𝑞 over S is encodable by a 𝑑-ary

Σ-tree (for 𝑑 ≥ max-arity(S)) if and only if the following hold:

(1) 𝑞 is c-acyclic,

(2) 𝑞 has the UNP,

(3) 𝑞 has at most 𝑑 fg-connected components, and

(4) every existential variable of 𝑞 occurs in at most 𝑑 + 1 facts.

Indeed, if a c-acyclic CQ 𝑞 meets these conditions, then 𝑞 is encodable

by a 𝑑-ary Σ-tree 𝑇 where the number of nodes of 𝑇 is equal to the

number of existential variables of 𝑞 plus the number of conjuncts of 𝑞

plus 1.

Proof. (sketch) If𝑇 is a proper𝑑-ary Σ-tree, then, it is clear from
the definitions that𝑞𝑇 satisfies (1) – (4). Conversely, let𝑞(𝑥1, . . . , 𝑥𝑘 )
be a 𝑘-ary query that satisfies conditions (1) – (4). Let 𝑞1, . . . , 𝑞𝑛
be the fg-connected components of 𝑞 (where 𝑛 ≤ 𝑑). Furthermore,

choose arbitrarily one fact from each fg-connected component. We

will denote the chosen fact from 𝑞𝑖 by 𝑓𝑖 . We construct a mapping 𝑔

from existential variables and facts of 𝑞 to sequences in {1, . . . , 𝑑}∗
as follows, iteratively:

• 𝑔(𝑓𝑖 ) = ⟨𝑖⟩ for 𝑖 ≤ 𝑛.
• Let 𝑓 = 𝑅(𝑧1, . . . , 𝑧𝑚) be a fact of 𝑞𝑖 (for some 𝑖 ≤ 𝑛) and

suppose that 𝑧 𝑗 is an existential variable (for some 𝑖 ≤ 𝑚). We

say that 𝑧𝑖 is a parent variable of 𝑓 , if 𝑧𝑖 lies on the shortest

path from 𝑓𝑖 to 𝑓 in the incidence graph of 𝑞𝑖 . Note that, by

c-acyclicity, there can be at most one such parent variable. If 𝑧 𝑗
is not a parent variable of 𝑓 and 𝑔(𝑓 ) = 𝑡 , then 𝑔(𝑧 𝑗 ) = 𝑡 · 𝑗 .
• Let 𝑧 be an existential variable of 𝑞𝑖 and let 𝑓 ′

1
, . . . , 𝑓 ′𝑚 be the

facts in which 𝑧 occurs (with𝑚 ≤ 𝑑 + 1). Exactly one of of these

facts must lie on the shortest path from 𝑓𝑖 to 𝑧 in the incidence

graph of 𝑞𝑖 , and we will will refer to it as the parent fact of 𝑧.

For each fact 𝑓 ′
𝑗
that is not the parent fact of 𝑧, and 𝑔(𝑧) = 𝑡 ,

then we set 𝑔(𝑓 ′
𝑗
) = 𝜋 · 𝑗 .

The image of the map 𝑔 thus obtained, is a non-empty prefix closed

subset of {1, . . . , 𝑑}∗ if we add to it also the empty sequence 𝜀. We

can expand this into a 𝑑-ary Σ-tree𝑇 by defining a suitable labeling

function 𝜆. Specifically, we set 𝜆(𝑥) = 𝜈 if 𝑥 = 𝜀 or if 𝑥 ∈ {1, . . . , 𝑑}∗
is the 𝑔-image of an existential variable; if 𝑥 ∈ {1, . . . , 𝑑}∗ is the
𝑔-image of a fact 𝑅(𝑧1, . . . , 𝑧𝑚), we set 𝜆(𝑥) = (𝑅, ⟨𝑑𝑖𝑟1, . . . , 𝑑𝑖𝑟𝑚⟩),
where 𝑑𝑖𝑟 𝑗 = ans𝑖 if 𝑧 𝑗 = 𝑥𝑖 ; 𝑑𝑖𝑟 𝑗 = up if 𝑧 𝑗 is the answer variable

of 𝑓 , and 𝑑𝑖𝑟 𝑗 = down otherwise. See Figure 1 for an example. It is

then easy to see that 𝑞𝑇 is isomorphic to 𝑞. □

Proposition B.10. Let 𝐸 = (𝐸+, 𝐸−) be a collection of

𝑘-ary labeled examples over a schema S, and let 𝑑 =

max{max-arity(S), | |𝐸− | |} If there exists a weakly most-general fit-

ting CQ with UNP for 𝐸, then there is one that is core and encodable

by a 𝑑-ary Σ-tree.

Proof sketch. Let 𝑞(x) be a weakly most-general fitting CQ

with UNP for 𝐸. Without loss of generality, we may assume that

𝑞 is minimal, in the sense that no strict sub-query of 𝑞 fits 𝐸. In

particular, then, 𝑞 is a core, and, it follows from Prop. 3.11 and

Thm. 2.1 that 𝑞 is c-acyclic.

We know that 𝑞 fits the negative examples, which means that

for each negative example, there is an fg-connected component of

𝑞 that does not homomorphically map to that negative example.

It follows from the minimality assumption that the number of fg-

connected components of 𝑞 is at most |𝐸− | ≤ 𝑑 .
Next, we tackle the degree. It follows from the minimality as-

sumption that 𝑞 is a core. Hence, by Prop. 3.11 and Thm. 2.1, 𝑞 is

c-acyclic. That is, the incidence graph of 𝑞 can be represented as

a tree, whose leaves may be marked by answer variables. Since

𝑑 > max-arity(S), every fact-node in the incidence graph has at

most 𝑑 variable-children. Now, let 𝑦 be any variable-node in the

incidence graph, and let 𝑓1, . . . , 𝑓𝑛 be its fact-children. We will show

that 𝑛 ≤ ||𝐸− | | ≤ 𝑑 .
For each 𝑖 ≠ 𝑛, let 𝑞𝑖 be the subquery of 𝑞 that is rooted at that

fact. Let

𝑆𝑖 = {(𝑒, 𝑑) | 𝑒 = (𝐼 , c) ∈ 𝐸−, 𝑑 ∈ 𝑎𝑑𝑜𝑚(𝐼 ), (𝑞𝑖 , x, 𝑦) → (𝐼 , c, 𝑑)} .
In other words, 𝑆𝑖 is set of all values from the negative exam-

ples, to which 𝑦 can be mapped by a homomorphism from 𝑞𝑖 . Let

𝑇𝑖 =
⋂

𝑗=1...𝑖 𝑆𝑖 . Clearly, the sequence 𝑇1,𝑇2, . . . is decreasing in the

sense that 𝑇𝑖+1 ⊆ 𝑇𝑖 . Furthermore, we know that 𝑇𝑛 = ∅, because
𝑞 fits 𝐸 and hence 𝑞 does not have a homomorphism to any of

the negative examples. We claim that the sequence 𝑇1,𝑇2, . . . must

be strictly decreasing, and hence, its length is bounded by | |𝐸− | |.
Suppose, for the sake of a contradiction, that 𝑆𝑖 = 𝑆𝑖+1. In partic-

ular, then

⋂
𝑗=1...,𝑖,𝑖+2...𝑛 𝑆 𝑗 = ∅. It follows that the subquery 𝑞′ be

obtained from 𝑞 by removing the subquery consisting of all facts

and variables belonging to the subtree 𝑞𝑖+1, fits 𝐸. This contradicts
our initial minimality assumption on 𝑞. □

Step 2: A Tree Automaton that Accepts Fitting
C-Acyclic CQs

Lemma B.11. Given a schema, 𝑘 ≥ 0, and 𝑑 > 0, we can construct

in polynomial time a 𝑑-ary NTA 𝔄 that accepts precisely the proper

𝑑-ary Σ-trees.

Proof. (sketch) To simplify the presentation, here, we describe

the automaton that accepts a 𝑑-ary Σ-tree𝑇 if and only if𝑇 satisfies

the first four conditions of Definition B.6. The automaton can easily

be extended to test the last condition as well. Our automaton has

four states: 𝑄 = {𝑞root, 𝑞root-fact, 𝑞fact, 𝑞exvar}, where 𝐹 = {𝑞root}.
The transition relation Δ consists of all transitions of the form

• ⟨𝑞1, . . . , 𝑞𝑑 ⟩
𝜈
===⇒ 𝑞root where ⟨𝑞1, . . . , 𝑞𝑑 ⟩ ∈ {𝑞root-fact}+{⊥}∗

• ⟨𝑞1, . . . , 𝑞𝑑 ⟩
⟨𝑅,𝑑𝑖𝑟1,...,𝑑𝑖𝑟ℓ ⟩

================⇒ 𝑞
root-fact

, where, for each 𝑖 ≤ ℓ ,

either 𝑑𝑖𝑟𝑖 = down and 𝑞𝑖 = 𝑞exvar, or 𝑑𝑖𝑟𝑖 ∈ {ans1, . . . , ans𝑘 }
and 𝑞𝑖 = ⊥; furthermore 𝑞𝑖 = ⊥ for 𝑖 > ℓ

• ⟨𝑞1, . . . , 𝑞𝑑 ⟩
𝜈
===⇒ 𝑞exvar where ⟨𝑞1, . . . , 𝑞𝑑 ⟩ ∈ {𝑞𝑓 𝑎𝑐𝑡 }∗{⊥}∗
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• ⟨𝑞1, . . . , 𝑞𝑑 ⟩
⟨𝑅,𝑑𝑖𝑟1,...,𝑑𝑖𝑟ℓ ⟩

================⇒ 𝑞
fact

, where, for each 𝑖 ≤ ℓ , either
𝑑𝑖𝑟𝑖 = down and 𝑞𝑖 = 𝑞exvar, or 𝑑𝑖𝑟𝑖 ∈ {up, ans1, . . . , ans𝑘 } and
𝑞𝑖 = ⊥; furthermore, 𝑞𝑖 = ⊥ for 𝑖 > ℓ , and there is exactly one

𝑖 ≤ ℓ for which 𝑑𝑖𝑟𝑖 = 𝑢𝑝 .
It is easily verified that this automaton accepts precisely the 𝑑-trees

that satisfy the first four conditions of Definition B.6. □

Lemma B.12. Given a schema, 𝑘 ≥ 0, 𝑑 > 0 and a 𝑘-ary data

example 𝑒 = (𝐼 , a), we can construct in polynomial time, a NTA 𝔄𝑒 ,

such that, for all proper 𝑑-ary Σ-trees 𝑇 , we have 𝑇 ∈ 𝐿(𝔄𝑒 ) if and
only if 𝑞𝑇 fits 𝑒 as a positive example (i.e., a ∈ 𝑞𝑇 (𝐼 )).

Proof. The set of states 𝑄 of the automaton consists of:

• an accepting state 𝑞root,

• a state 𝑞root-fact
𝑅 (𝑏1,...,𝑏𝑛 ) for each fact 𝑅(𝑏1, . . . , 𝑏𝑛) of 𝐼 ,

• a state 𝑞fact
𝑅 (𝑏1,...,𝑏𝑛 ), 𝑗 for each fact 𝑅(𝑏1, . . . , 𝑏𝑛) of 𝐼 , and 𝑗 ≤ 𝑛,

• a state 𝑞exvar
𝑏

for each 𝑏 ∈ 𝑎𝑑𝑜𝑚(𝐼 ).
The transition relation Δ contains all transitions of the form:

• ⟨𝑞1, . . . , 𝑞𝑑 ⟩
𝜈
===⇒ 𝑞root where each 𝑞𝑖 ∈ {⊥, 𝑞root-fact𝑅 (𝑏1,...,𝑏𝑛 ) |

𝑅(𝑏1, . . . , 𝑏𝑛) is a fact of 𝐼 },
• ⟨𝑞1, . . . , 𝑞𝑑 ⟩

𝜈
===⇒ 𝑞𝑎 where each 𝑞𝑖 ∈ {⊥, 𝑞fact𝑅 (𝑏1,...,𝑏𝑛 ), 𝑗 |

𝑅(𝑏1, . . . , 𝑏𝑛) is a fact of 𝐼 and 𝑏 𝑗 = 𝑎}

• ⟨𝑞1, . . . , 𝑞𝑛,⊥, . . . ,⊥⟩
⟨𝑆,𝑑𝑖𝑟1,...,𝑑𝑖𝑟𝑛 ⟩

================⇒ 𝑞root-fact
𝑆 (𝑏1,...,𝑏𝑛 ) where for

each 𝑖 ≤ 𝑛, either 𝑑𝑖𝑟𝑖 = ansℓ for some ℓ ≤ 𝑘 and 𝑏𝑖 = 𝑎ℓ ,

or else 𝑑𝑖𝑟𝑖 = down and 𝑞𝑖 = 𝑞
exvar

𝑏𝑖

• ⟨𝑞1, . . . , 𝑞𝑛,⊥, . . . ,⊥⟩
⟨𝑆,𝑑𝑖𝑟1,...,𝑑𝑖𝑟𝑛 ⟩

================⇒ 𝑞fact(𝑆 (𝑏1,...,𝑏𝑛 ),𝑖 ) where

𝑑𝑖𝑟𝑖 = up, and, for each 𝑗 ≤ 𝑛 with 𝑗 ≠ 𝑖 , either 𝑑𝑖𝑟 𝑗 = ansℓ for
some ℓ ≤ 𝑘 and 𝑏 𝑗 = 𝑎ℓ , or else 𝑑𝑖𝑟 𝑗 = down and 𝑞 𝑗 = 𝑞𝑏 𝑗

It is easy to verify that every accepting run of 𝔄𝑒 on a tree

encoding 𝑇 corresponds to a homomorphism from 𝑞𝑇 (a) to 𝑒 , and
vice versa. In particular, 𝔄𝑒 accepts 𝑇 if and only if 𝑞𝑇 fits 𝑒 as a

positive example. □

From the above two lemmas, as well as Thm. B.5, we immediately

get:

Theorem B.13. Given a schema, 𝑘 ≥ 0, 𝑑 > 0, and a collection of

labeled examples 𝐸 = (𝐸+, 𝐸−), we can construct in exponential time

an NTAs 𝔄𝐸 that defines the tree language consisting of all proper

𝑑-ary Σ-trees 𝑇 for which it holds that 𝑞𝑇 fits 𝐸.

Step 3: An Automaton that Accepts
Weakly-Most-General Fitting C-Acyclic CQs
Recall that every c-acyclic CQ has a frontier. Our next aim is to

show that we can create, for a given collection of labeled examples

𝐸, an automaton that accepts (tree encodings of) those c-acyclic

CQs with the UNP whose frontier consists of queries that do not fit

𝐸. Combining this with Thm. B.13, by Propositions 3.11, we then

obtain an automaton that accepts precisely weakly most-general

fitting c-acyclic CQs with the UNP.

We make use of a frontier construction from [11]. The presenta-

tion given here is slightly different to the one in [11] (because it is

phrased in terms of conjunctive queries instead of finite structures),

but it is equivalent.

Wewill denote the set of answer variables of a CQ𝑞 byANSVAR𝑞
and we will denote the set of existential variables by EXVAR𝑞 . We

denote the set of facts of 𝑞 by FACTS𝑞 .

Definition B.14 (𝐹 (𝑞)). Let 𝑞 be any fg-connected c-acyclic CQ

with the UNP. Then 𝐹 (𝑞) is the possible-unsafe CQ defined as

follows:

• ANSVAR𝐹 (𝑞) = ANSVAR𝑞

• EXVAR𝐹 (𝑞) = {𝑢 (𝑦,𝑓 ) |
𝑦 ∈ EXVAR𝑞 occurs in 𝑓 ∈ FACTS𝑞} ∪ {𝑢𝑥 | 𝑥 ∈ ANSVAR𝑞}.
We will call each variable of the form 𝑢𝑦,𝑓 a replica of the

existential variable 𝑦. By the replicas of an answer variable

𝑥 ∈ ANSVAR𝑘 we will mean 𝑢𝑥 and 𝑥 itself.

• FACTS𝐹 (𝑞) consists of all acceptable instances of facts

in FACTS𝑞 , where an acceptable instance of a fact 𝑓 =

𝑅(𝑧1, . . . , 𝑧𝑛) ∈ FACTS𝑞 is a fact of the form 𝑅(𝑧′
1
, . . . , 𝑧′𝑛)

where each 𝑧′
𝑖
is a replica of 𝑧𝑖 , and for some 𝑖 ≤ 𝑛, either

𝑧′
𝑖
is of the form 𝑢 (𝑧𝑖 ,𝑓 ′ ) with 𝑓

′ ≠ 𝑓 , or 𝑧′
𝑖
is of the form 𝑢𝑧𝑖 .

Definition B.15 (Frontier construction for c-acyclic CQs with the

UNP [11]). Let 𝑞(x) be a c-acyclic CQ with the UNP with 𝑚 fg-

connected components. Then F𝑞 = {𝐹 𝑖 (𝑞) | 𝑖 ≤ 𝑚)}, where 𝐹 𝑖 (𝑞)
denotes the possibly-unsafe CQ obtained from 𝑞 by performing the

𝐹 (·) operation on the 𝑖-th fg-connected component (and leaving all

other fg-connected components unchanged).

Proposition B.16 ([11]). Let 𝑞(x) be a c-acyclic CQ with the UNP.

(1) Each query in F𝑞 maps homomorphically to 𝑞, and

(2) If 𝑞 is a core, then F𝑞 is a frontier for 𝑞.

It is worth pointing out that 𝐹 (𝑞) as constructed above is not nec-
essarily c-acyclic. Furthermore, it may in fact not satisfy the safety

condition that is part of the definition of CQs. Indeed, consider the

(fg-connected) c-acyclic CQ 𝑞(𝑥) :- 𝑃 (𝑥). Then, 𝐹 (𝑞) is the query
𝑞′ (𝑥) :- 𝑃𝑦, which is an unsafe CQ. Consequently, F𝑞 in general

includes unsafe CQs. This will however not be a problem for what

follows, because the characterization of weakly most-general fitting

CQs in terms of frontiers (Prop. 3.11) applies also if the frontier is

taken to include unsafe CQs.

Lemma B.17. Given a schema, 𝑘 ≥ 0, 𝑑 > 0, and a set 𝐸 of 𝑘-ary

data examples, we can construct, in exponential time, for every 𝑖 ≤ 𝑑 ,
a NTA 𝔄

frontier

𝐸,𝑖
, such that, for all proper 𝑑-ary Σ trees 𝑇 , we have

that 𝑇 ∈ 𝐿(𝔄frontier

𝐸,𝑖
) if and only if 𝑞𝑇 has at least 𝑖 fg-connected

components and 𝐹 𝑖 (𝑞𝑇 ) admits a homomorphism to an example in 𝐸.

Proof. Wewill show how to construct the automaton in the case

of a single data example. The general result then follows because

we can construct 𝔄frontier

𝐸,𝑖
as the union of the (polynomially many)

automata 𝔄frontier

𝑒,𝑖
for all 𝑒 ∈ 𝐸 (using non-determinism in the

initial state transitions effectively to select the example).

Let 𝑒 = (𝐼 , a) with a = 𝑎1, . . . , 𝑎𝑘 .

The automaton 𝔄frontier

𝑒,𝑖
, intuitively, has to check two things: (1)

it has to check that subtree from the 𝑖-th child of the root (which

encodes the 𝑖-th fg-connected component of the query, encodes

a subquery 𝑞′ such that 𝐹 (𝑞′) fits 𝑒 as a positive example, and (2)

it has to check that, for every 𝑗 ≠ 𝑖 , the subtree rooted at the 𝑗-

th child of the root (if it exists), encodes a query that fits 𝑒 as a
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positive example. For (2) we already showed in Lemma B.12 how

to do this, and in fact, we can include in our automaton a copy of

the automaton from Lemma B.12 to handle this part. Note that no

alternation is needed for this, as this is effectively a conjunction

where each conjunct pertains to a different subtree of the input tree

(i.e., a different child of the root).

Therefore, it suffices to focus on (1). Before we spell out the

details of the automaton, we make two observations that provide

the idea behind the automaton. First of all, recall that 𝐹 (𝑞′) has
an existential variable 𝑢 (𝑦,𝑓 ) for every pair (𝑦, 𝑓 ), where 𝑦 is an

existential variable of 𝑞′ and 𝑓 is a fact in which 𝑦 occurs. When we

look at the tree encoding of the query, then we can see that each

existential variable 𝑦 of 𝑞′ is a node in the tree encoding, and the

facts in which 𝑦 occurs are precisely the children and the parent of

𝑦 in the tree encoding.

The second observation is that every existential variable of 𝑞′

may have up to 𝑑 + 1 many replicas in 𝐹 (𝑞′), and a homomorphism

from 𝐹 (𝑞′) to 𝑒 is a map that, among other things, has to send

each replica to a value in 𝑎𝑑𝑜𝑚(𝐼 ). We want to set things up so

that, from an accepting run of the automaton, we can obtain such

a homomorphism. To do this, we can create a different state of the

automaton for every 𝑑 + 1-length vector of values from 𝑎𝑑𝑜𝑚(𝐼 ).
Such a state then encodes, for a given variable, the value in 𝑎𝑑𝑜𝑚(𝐼 )
that each of its replicas gets mapped to. In addition, for each answer-

variable 𝑥 of 𝑞′, 𝐹 (𝑞′) also includes an existential variable 𝑢𝑥 that

has to be mapped to some value in 𝑎𝑑𝑜𝑚(𝐼 ). We can include this

information in the states as well by further increasing the length

of the vector by 𝑘 .

Based on these ideas, the construction of the automaton is now

a relatively straightforward extension of the automaton given in

the proof of Lemma B.12.

By a “vector” 𝑣 we will mean a 𝑑 + 𝑘 + 1-length vector of values

from 𝑎𝑑𝑜𝑚(𝐼 ). We say that two vectors 𝑣, 𝑣 ′ are compatible if the

last 𝑘 items of the vectors are identical, i.e., 𝑣 [𝑑 + 2, . . . , 𝑑 +𝑘 + 1] =
𝑣 ′ [𝑑 + 2, . . . , 𝑑 + 𝑘 + 1]. (Recall that the last 𝑘 components of the

vector are used to encode what 𝑢𝑥𝑖 gets mapped to, for each answer

variable 𝑥𝑖 . By requiring all vectors to be compatible, we ensure that

this choice is effectively made only once for the entire accepting

run of the automaton.)

The states of the automaton include all states of the automaton

𝔄𝑒 given in the proof of Lemma B.12, plus:

• A state 𝑞exvar𝑣 for every vector 𝑣 ,

• A state 𝑞root-fact
𝑅,⟨𝑣1,...,𝑣𝑛 ⟩ where 𝑛 = arity(𝑅) and 𝑣1, . . . , 𝑣𝑛 are pair-

wise compatible vectors.

• A state 𝑞fact
𝑅,⟨𝑣1,...,𝑣𝑛 ⟩, 𝑗,ℓ where 𝑛 = arity(𝑅) and 𝑗 ≤ 𝑛, ℓ ≤ 𝑑 , and

𝑣1, . . . , 𝑣𝑛 are pairwise compatible vectors.

For a state of the form 𝑞fact
𝑅,⟨𝑣1,...,𝑣𝑛 ⟩, 𝑗,ℓ , intuitively, 𝑗 represents

the index at which the parent existential variable occurs in the fact,

while ℓ will merely be used to keep track that the current node is

going to be the ℓ-th child of its parent in the 𝑑-tree.

The transitions include all the transitions of the automaton 𝔄,

except for those going to the root state. In addition, we have:

• ⟨𝑞1, . . . , 𝑞𝑑 ⟩
𝜈
===⇒ 𝑞root where 𝑞𝑖 is of the form 𝑞root-fact

𝑅,⟨𝑣1,...,𝑣𝑛
⟩, and

where each 𝑞 𝑗 for 𝑗 ≠ 𝑖 is either ⊥ or is a state from 𝔄𝑒 of the

form 𝑞root-fact
𝑅 (𝑏1,...,𝑏𝑛 ) ,

• ⟨𝑞1, . . . , 𝑞𝑑 >
𝜈
===⇒ 𝑞exvar𝑣 where each 𝑞 𝑗 is either ⊥ or of the

form 𝑞fact
𝑅,⟨𝑣1,...,𝑣𝑛 ⟩, 𝑗 ′, 𝑗 with 𝑣 𝑗

′ = 𝑣 ,

• ⟨𝑞1, . . . , 𝑞𝑛,⊥, . . . ,⊥⟩
⟨𝑅,𝑑𝑖𝑟1,...,𝑑𝑖𝑟𝑛 ⟩

================⇒ 𝑞root-fact
𝑅,⟨𝑣1,...,𝑣𝑛 ⟩ where (i)

for each 𝑗 ≤ 𝑛, if 𝑑𝑖𝑟 𝑗 = down then 𝑞 𝑗 = 𝑞exvar𝑣𝑗
, and (ii)

⟨𝑅,𝑑𝑖𝑟1, . . . , 𝑑𝑖𝑟𝑛⟩ is “fulfilled” by ⟨𝑣1, . . . , 𝑣𝑛⟩ at ℓ = −1,

• ⟨𝑞1, . . . , 𝑞𝑛,⊥, . . . ,⊥⟩
⟨𝑅,𝑑𝑖𝑟1,...,𝑑𝑖𝑟𝑛 ⟩

================⇒ 𝑞fact
𝑅,⟨𝑣1,...,𝑣𝑛 ⟩, 𝑗,ℓ where (i)

𝑑𝑖𝑟 𝑗 = up, (ii) for each 𝑗 ′ ≤ 𝑛, if 𝑑𝑖𝑟 𝑗 ′ = down then 𝑞 𝑗 ′ = 𝑞
exvar

𝑣𝑗 ′ ,

and (iii) ⟨𝑅,𝑑𝑖𝑟1, . . . , 𝑑𝑖𝑟𝑛⟩ is “fulfilled” by ⟨𝑣1, . . . , 𝑣𝑛⟩ at ℓ .
The above definition of the transitions refer to the notion

of “being fulfilled”, which we define now. This definition natu-

rally reflects the frontier construction in Def. B.14. A node label

𝜎 = ⟨𝑅,𝑑𝑖𝑟1, . . . , 𝑑𝑖𝑟𝑛⟩ ∈ Σ is “fulfilled” by 𝑛-tuple of vectors

(𝑣1, . . . , 𝑣𝑛) at ℓ , if every “acceptable instance” of 𝜋 relative to

(𝑣1, . . . , 𝑣𝑛) and ℓ is a tuple in 𝑅. Here, an acceptable instance of

𝜎 relative to (𝑣1, . . . , 𝑣𝑛) and ℓ is a tuple (𝑦1, . . . , 𝑦𝑛) where
• for each 𝑖 ≤ 𝑛, either 𝑑𝑖𝑟𝑖 ∈ {down, up} and 𝑦𝑖 ∈ 𝑣𝑖 [1 . . . 𝑑 + 1],
or 𝑑𝑖𝑟𝑖 = ans𝑗 and 𝑦𝑖 ∈ {𝑎 𝑗 , 𝑣𝑖 [𝑑 + 1 + 𝑗]}, and
• for some 𝑖 ≤ 𝑛, either (i) 𝑑𝑖𝑟𝑖 = down and 𝑦𝑖 ∈ 𝑣𝑖 [2, . . . , 𝑑 + 1],
or (ii) 𝑑𝑖𝑟𝑖 = up and 𝑦𝑖 = 𝑣𝑖 [𝑚 + 1] for some𝑚 ∈ {1, . . . , 𝑑 + 1}
with𝑚 ≠ ℓ + 1 or (iii) 𝑑𝑖𝑟𝑖 = ans𝑗 and 𝑦𝑖 = 𝑣𝑖 [𝑑 + 1 + 𝑗].

Note that, the first entry in the vector corresponds to the replica

𝑢 (𝑥,𝑓 ) where 𝑓 is the parent fact of 𝑥 , while the 𝑖 + 1-th entry in

the vector (for 𝑖 ≤ 𝑑) corresponds to the replica 𝑢 (𝑥,𝑓 ) where 𝑓 is
the 𝑖-th child fact of 𝑥 .

If the automaton has an accepting run on input𝑇 , then, it already

follows from the above root transition and the proof of Lemma B.12,

that every fg-connected component of 𝑞𝑇 other than the 𝑖-th one,

admits a homomorphism to 𝑒 . It should also be clear from the above

discussion that if we denote the 𝑖-th fg-connected component by 𝑞′,
then 𝐹 (𝑞′) has a homomorphism to 𝑒 . The converse holds as well,

and therefore the automaton accepts𝑇 if and only if 𝐹 𝑖 (𝑞𝑇 ) admits

a homomorphism to 𝑒 . □

By taking the intersection of the NTA 𝔄𝐸 from Thm. B.13 with

the NTAs 𝔄
𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟

𝐸,𝑖
(for 𝑖 = 1, . . . , 𝑑) from Lemma B.17, we get:

Theorem B.18. Given a schema, 𝑘 ≥ 0, 𝑑 > 0, and a collection of

labeled examples 𝐸, we can construct in exponential time an NTA 𝔄

such that 𝐿(𝔄) consists of proper 𝑑-ary Σ-trees 𝑇 for which it holds

that 𝑞𝑇 is weakly most-general fitting for 𝐸. In particular, 𝐿(𝔄) is
non-empty iff there is a CQs with UNP that is weakly most-general

fitting for 𝐸 and that is encodable by a 𝑑-ary Σ-tree.

Since Prop. B.10 allows us to polynomially bound 𝑑 , and the core

of a weakly most-general fitting CQ is c-acyclic, we get

Corollary B.19. Given a collection of labeled examples 𝐸, we

can decide in ExpTime the existence of a CQ with UNP that is weakly

most-general fitting for 𝐸, and we can produce in ExpTime a succinct

DAG-representation of a minimal-size such CQ if it exists.

Step 4: Lifting the restriction to UNP
In the above, for simplicity we restricted attention to CQs with the

UNP. However, the same techniques applies in the general case. We

will restrict ourselves here to giving a high-level explanation of the
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changes required. As a concrete example, let us consider the 3-ary

CQ

𝑞(𝑥1, 𝑥2, 𝑥3) :- 𝑅(𝑥1, 𝑥2, 𝑥3), 𝑃1 (𝑥1), 𝑃2 (𝑥2), 𝑃3 (𝑥3), (𝑥1 = 𝑥2)

Note that we use here equalities in the body of the CQ, but

the same query could be expressed equivalently using repeated

occurrences of variables in the head.

By an equality-type we will mean an equivalence relation over

the set of answer variables {𝑥1, 𝑥2, 𝑥3}. The equality type ≡𝑞 of the

above query 𝑞 is the equivalence relation that identifies 𝑥1, 𝑥2 with

each other but not with 𝑥3.

A frontier for such a query can be obtained by taking the set 𝐹

of all instances that can be obtained in one of the following two

ways:

(1) Compute a CQ 𝑞′ of lower arity by replacing every equiv-

alence class of answer variable by a single representative

of that class. By construction, 𝑞′ has the UNP. We take all

queries belonging to the frontier of 𝑞′, and, finally, add equal-

ities to obtain queries of the original arity. Specifically, in

the case of our example query 𝑞 above, 𝑞′ is the 2-ary query

𝑞′ (𝑥1, 𝑥3) :- 𝑅(𝑥1, 𝑥1, 𝑥3), 𝑃1 (𝑥1), 𝑃2 (𝑥1), 𝑃3 (𝑥3). We then take

each CQ belonging to the frontier of 𝑞′, and extend it with a

conjunct 𝑥2 = 𝑥1 to make that CQ ternary again, and add the

result to 𝐹 .

(2) Let ≡ be the equality type of the query at hand. A minimal

weakening of ≡ is an equivalence relation in which some equiv-

alence class is divided in two. In our example, the only minimal

weakening of ≡𝑞 is the equality type ≡′ that does not identify
any answer variables with each other. For each such weak-

ening (i.e., in the case of our example, ≡′), we then construct

another CQ 𝑞′ where we drop from 𝑞 all equalities and replace

them with the equalities (𝑥𝑖 = 𝑥 𝑗 ) for (𝑥𝑖 , 𝑥 𝑗 ) ∈≡′. We add 𝑞′

to our set 𝐹 . In our specific example, 𝑞′ ends up being identical
to 𝑞 except without the 𝑥1 = 𝑥2 conjunct.

It follows from results in [11] that 𝐹 , thus constructed, is a frontier

for 𝑞.

All of the above can be implemented by a tree automaton. First

of all, this requires a minor modification to the tree representation

of c-acyclic CQs: we will store the equality type of the query in

the root label of the tree. Next, with a non-deterministic root tran-

sitions, we guess whether item 1 or 2 as described above, applies.

In first case, we reuse (with minimal modification) the automata

we constructed earlier. In the second case, we guess a minimally

weaker equality type. It is not hard to write an automaton that ac-

cepts a tree-encoding of a c-acyclic CQ if and only its corresponding

minimal weakening fits the labeled examples. We omit the details

here.

B.2 Proof of Thm. 3.16 (Relativized
homomorphism dualities)

This section is dedicated to the proof of:

Theorem 3.16.

(1) The following is NP-complete: given a finite set of data exam-

ples𝐷 and a data example 𝑝 , is there a finite set of data examples

𝐹 such that (𝐹, 𝐷) is a homomorphism duality relative to 𝑝?

(2) Given a finite set of data examples 𝐷 and a data example 𝑝 , if

there is a finite set of data examples 𝐹 such that (𝐹, 𝐷) is a homo-

morphism duality relative to 𝑝 , then we can compute in 2ExpTime

such a set 𝐹 , where each 𝑒 ∈ 𝐹 is of size 2
𝑂 ( | |𝐷 | |2 ·log | |𝐷 | | · |𝑝 | )

.

We proceed in two steps: we first reduce to the case where 𝐷 is

a single example, and then we provide a characterization for this

case, which leads to an criterion that can be evaluated in NP.

Reduction to the case where 𝐷 is a single example
It will be convenient to regard equivalence relations 𝛼 on some set

𝐴, as subsets of 𝐴2
. In this way we can write 𝛼 ⊆ 𝛽 to indicate that

𝛼 refines 𝛽 . We shall use ∧ and ∨ to indicate the meet and join of

equivalence relations.

Let be (𝐼 , a) be a pointed instance and let 𝛼 be an equivalence

relation on adom(𝐼 ). For every array b containing values from

adom(𝐼 ) we define b𝛼 to be the tuple obtained by replacing every

value in b by its 𝛼-class. Also, we define (𝐼 , a)𝛼 to be (𝐼𝛼 , a𝛼 ) where
the facts of 𝐼𝛼 are {𝑅(b𝛼 ) | 𝑅(b) ∈ 𝐼 }.

For this part of the proof it will be convenient to generalize the

disjoint union of a pair of pointed instances 𝑞1 = (𝐼 , a1) and 𝑞2 =

(𝐼 , a2) which, so far, has only been defined under the assumption

that𝑞1 and𝑞2 have the UNP. In its full generality we define𝑞1⊎𝑞2 as

(𝐼1∪𝐼2, a1)𝛼 where 𝛼 is the more refined equivalence such that a1 [𝑖]
and a2 [𝑖] are 𝛼-related for every 𝑖 ∈ [𝑘]. Note that (𝐼1, a1) ⊎ (𝐼2, a2)
is defined so that for every pointed instance (𝐼 , a) the following is

equivalent:

(1) (𝐼𝑖 , a𝑖 ) → (𝐼 , a) for 𝑖 = 1, 2

(2) (𝐼1, a1) ⊎ (𝐼2, a2) → (𝐼 , a).
We say that (𝐼 , a) is fg-connected if it cannot be expressed as the

disjoint union (𝐼1, a1)⊎(𝐼2, a1) where both 𝐼1 and 𝐼2 are non-empty.
5

We say that an example 𝑒 ∈ 𝐷 is strictly subsumed relative to 𝐷

and 𝑝 if, for some 𝑒′ ∈ 𝐷 , 𝑝 × 𝑒 → 𝑒′ and 𝑝 × 𝑒′ ↛ 𝑒 . We say that

an example 𝑒 ∈ 𝐷 is non-subsumed if it is not strictly subsumed

by any 𝑒′ ∈ 𝐷 . We note that a pair (𝐹, 𝐷) is a homomorphism

duality relative to 𝑝 if and only if (𝐹, 𝐷′) is a homomorphism duality

relative to 𝑝 , where 𝐷′ is the set of non-subsumed examples in 𝐷 .

The next lemma reduces our problem to the case where 𝐷 con-

tains a single example.

Lemma B.20. For every finite set of data examples 𝐷 and data

example 𝑝 , the following are equivalent:

(1) There exists a finite set 𝐹 such that (𝐹, 𝐷) is a generalized duality
relative to 𝑝 .

(2) For every non-subsumed 𝑒 ∈ 𝐷 there exists a finite set 𝐹𝑒 such

that (𝐹𝑒 , {𝑒}) is a generalized duality relative to 𝑝 .

Proof. Let 𝐷′ = {𝑒1, . . . , 𝑒𝑛} be the set of non-subsumed exam-

ples in 𝐷 .

(2) ⇒ (1) It can easily verified that (𝐹, 𝐷′) (and hence (𝐹, 𝐷))
is a generalized duality relative to 𝑝 when 𝐹 = {𝑞1 ⊎ · · · ⊎ 𝑞𝑛 | 𝑞𝑖 ∈
𝐹𝑒𝑖 , 𝑖 ∈ [𝑛]}.
(1) ⇒ (2) Let 𝑒𝑖 ∈ 𝐷′. For every pointed instance 𝑥 = (𝑋, x)

with 𝑘 distinguished elements we shall use 𝛾 (𝑥) to denote the

5
This terminology stems from the fact that it corresponds to connectedness of the

“fact graph”, i.e., the graph consisting of the facts, with an edge between two facts if

they share a non-designated element.
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equivalence relation on [𝑘] where 𝑖, 𝑗 ∈ [𝑘] are related if x[𝑖] =
x[ 𝑗].

Let 𝛿 = 𝛾 (𝑒) ∧ 𝛾 (𝑝). For every pointed instance 𝑥 = (𝑋, x)
satisfying 𝛿 ⊆ 𝛾 (𝑥) we shall use 𝑥 ′ to denote the pointed instance

𝑥 ′ = (𝑋, x′) where x′ is obtained from x by removing elements that

belong to the same 𝛿-class. Formally, fix a representative 𝑖1, . . . , 𝑖𝑟
for each one of the 𝛿-classes and define x′ [ 𝑗] to be x[𝑖 𝑗 ].

Let𝑚 be the maximum domain size of any pointed instance in 𝐹

and let 𝐹 ′
𝑖
be the set of all pointed instances with at most𝑚 values

that are not homomorphic to 𝑒′
𝑖
. We shall show that (𝐹 ′

𝑖
, {𝑒′

𝑖
}) is

a generalized duality relative to 𝑝′. This completes the proof of

(1) ⇒ (2) as it is easily verified that 𝑒𝑖 and 𝑝 satisfy Lemma B.21(1)

iff 𝑒′
𝑖
and 𝑝 satisfy it as well.

Let us then show that (𝐹 ′
𝑖
, {𝑒′

𝑖
}) is a generalized duality relative

to 𝑝′. Let𝑦 be satisfying𝑦 ↛ 𝑒′
𝑖
and𝑦 → 𝑝′. We note that𝑦 = 𝑥 ′ for

some 𝑥 = (𝑋, x) satisfying 𝑥 ↛ 𝑒𝑖 , 𝑥 → 𝑝 , and 𝛿 ⊆ 𝛾 (𝑥). We can

assume that 𝛾 (𝑥) ⊆ 𝛾 (𝑒𝑖 ) since otherwise, (∅, x′) (which belongs

to 𝐹 ′𝑒𝑖 ) is homomorphic to 𝑥 ′ and we are done.

We note that 𝛿 = 𝛾 (𝑝 × 𝑒𝑖 ). Also, since 𝛾 (𝑥) ⊆ 𝛾 (𝑒𝑖 ) and 𝛾 (𝑥) ⊆
𝛾 (𝑝) it follows that 𝛾 (𝑥) ⊆ 𝛿 . Hence, we have 𝛾 (𝑥) = 𝛿 .

Consider 𝑥 ⊎ (𝑝 × 𝑒𝑖 ). We note that in general we cannot assume

that the disjoint union 𝑦1 ⊎𝑦2 of two pointed instances contains 𝑦1

(or 𝑦2) as a subinstance since some values can be identified while

computing the disjoint union. However, since 𝛾 (𝑥) = 𝛿 = 𝛾 (𝑝 × 𝑒𝑖 )
it follows that 𝑥 ⊎ (𝑝 × 𝑒𝑖 ) contains 𝑥 as a subinstance. This fact

will be necessary later in the proof.

We claim that 𝑥 ⊎ (𝑝 × 𝑒𝑖 ) ↛ 𝑒 𝑗 for every 𝑗 ∈ [𝑛]. The case 𝑗 = 𝑖
follows from 𝑥 ↛ 𝑒𝑖 . The case 𝑗 ≠ 𝑖 follows from the fact that 𝑒𝑖
is non-subsumed. Also, since 𝑥 → 𝑝 and (𝑝 × 𝑒𝑖 ) → 𝑝 we have

that 𝑥 ⊎ (𝑝 × 𝑒𝑖 ) → 𝑝 . By (1) it follows that there exists 𝑞 satisfying

𝑞 → 𝑥 ⊎ (𝑝 × 𝑒𝑖 ) and 𝑞 ↛ 𝑒 𝑗 for every 𝑗 ∈ [𝑛].
Let ℎ : 𝑞 → 𝑥 ⊎ (𝑝 × 𝑒𝑖 ). We can assume that ℎ is injective since

otherwise we could replace 𝑞 by 𝑞𝛼 where 𝛼 is the equivalence

relation that partitions adom(𝑞) according to the image of ℎ. This

implies, in particular, that 𝛾 (𝑞) = 𝛿 . To simplify notation we will

assume further that 𝑞 is a subinstance of 𝑥 ⊎ (𝑝 × 𝑒𝑖 ), i.e, 𝑞 has been
just obtained by (possibly) removing facts from 𝑥 ⊎ (𝑝 × 𝑒𝑖 ).

Let 𝑞 𝑗 , 𝑗 ∈ 𝐽 be the fg-connected components of 𝑞 and let 𝑡 =⊎
𝑗∈ 𝐽 ′ 𝑞 𝑗 where 𝑗 ∈ 𝐽 ′ if 𝑞 𝑗 ↛ 𝑒𝑖 . We note that by definition 𝑡 ↛ 𝑒𝑖 .

For every 𝑗 ∈ 𝐽 ′, 𝑞 𝑗 ↛ (𝑝 × 𝑒𝑖 ) and, since 𝑞 𝑗 is fg-connected,
we can conclude that 𝑞 𝑗 is a subinstance of 𝑥 (here we are using

implicitly 𝑥 ⊎ (𝑝 × 𝑒𝑖 ) contains 𝑥 as a subinstance). Hence, 𝑡 → 𝑥 .

Finally, we have 𝛿 ⊆ 𝛾 (𝑡). Consequently 𝑡 ′ → 𝑥 ′ and 𝑡 ′ ∈ 𝐹 ′𝑒 ,
completing the proof. □

The case where 𝐷 contains a single example
We shall now deal with the case where 𝐷 contains a single ex-

ample. To this end, we adapt the techniques introduced in [8] to a

broader setting, since the setup in [8] did not consider distinguished

elements and, more importantly, did not include the relativized ver-

sion considered here. In addition, the proof given here is more

streamlined as, unlike in [8], it does not go via mixing properties.

We shall need to introduce a few extra definitions. Let 𝐴 be an

instance. We define a walk in 𝐴 as a walk in its incidence graph

that starts and finishes at values from adom(𝐴). That is, a walk 𝜌

in 𝐴 is a sequence

𝑎0, 𝑅1 (a1), 𝑎1, . . . , 𝑎𝑛−1, 𝑅𝑛 (a𝑛), 𝑎𝑛
for some 𝑛 ≥ 0, such that, for all 1 ≤ ℓ ≤ 𝑛,
• 𝑅ℓ (aℓ ) is a fact of 𝐴, and
• 𝑎ℓ−1, 𝑎ℓ ∈ {aℓ }.
In this case, we will say that 𝑎0 and 𝑎𝑛 are the starting and ending

point of 𝜌 , and that the length of the walk 𝜌 is 𝑛. The distance

between two values is defined to be the smallest length among all

the walks that join them. The diameter of a connected instance is the

maximum distance of any pair of its values, while the diameter of

an instance with multiple connected components is the maximum

of the diameters of its components.

Let 𝑎, 𝑏 be values from adom(𝐴). We say that 𝑏 dominates 𝑎 (in𝐴)

if for every fact 𝑅(𝑎1, . . . , 𝑎𝑟 ) in𝐴 and for every 𝑖 ∈ [𝑟 ] with 𝑎𝑖 = 𝑎,
we also have that the fact 𝑅(𝑎1, . . . , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, . . . , 𝑎𝑟 ) belongs to
𝐴. Additionally, if 𝑎 ≠ 𝑏, then the instance 𝐴′ obtained from 𝐴 by

removing 𝑎 and all the facts in which 𝑎 participates is said to be

obtained from 𝐴 by folding 𝑎.

A sequence of instances𝐴0, . . . , 𝐴ℓ is a dismantling sequence if for

every 0 ≤ 𝑗 < ℓ , 𝐴 𝑗+1 has been obtained from 𝐴 𝑗 by folding some

value 𝑎 𝑗 dominated in 𝐴 𝑗 . In this case, we say that 𝐴0 dismantles to

𝐴ℓ .

In what follows, let (𝑃, p), (𝐸, e) be pointed instances over a

common schema 𝜎 . Consider the new schema 𝜎 ⊆ 𝜎 containing, in

addition, a new unary relation symbol 𝑅𝑝 for each 𝑝 ∈ adom(𝑃)
and consider the instances 𝑃 and 𝐸 over schema 𝜎 defined as 𝑃 =

𝑃 ∪ {𝑅𝑝 (𝑝) | 𝑝 ∈ adom(𝑃)} and 𝐸 = 𝐸 ∪ {𝑅𝑝 (𝑒) | 𝑝 ∈ adom(𝑃), 𝑒 ∈
adom(𝐸)}.

Let 𝑢 = ⟨(𝑝1, 𝑑1), (𝑝2, 𝑑2)⟩ ∈ adom(𝑃 × 𝐸)2. We shall use 𝜋𝑖𝑢

to denote the 𝑖th projection (𝑝𝑖 , 𝑑𝑖 ), 𝑖 = 1, 2 of 𝑢. We say that 𝑢 is

𝑃-diagonal if 𝑝1 = 𝑝2. If additionally, 𝑎1 = 𝑎2 then we say that 𝑢 is

diagonal. The symmetric pair of 𝑢 is the value ⟨(𝑝2, 𝑑2), (𝑝1, 𝑑1)⟩.
For every subinstance 𝐼 of (𝑃 × 𝐸)2 we shall use diag𝑃 (𝐼 ) (resp.

diag(𝐼 )) to denote the subinstance of 𝐼 induced by its 𝑃-diagonal

(resp. diagonal) values.

An endomorphism is a homomorphism from a instance into itself.

A retraction is an endomorphism ℎ with the property that ℎ(𝑥) = 𝑥
for every 𝑥 in the range of ℎ.

We will say that a pointed instance (𝐴, a) is a critical obstruction
of (𝐸, e) relative to (𝑃, p), if (𝐴, a) → (𝑃, p), (𝐴, a) ↛ (𝐸, e), and
(𝐴′ a) → (𝐸, e) for any 𝐴′ ⊊ 𝐴. It is easy to see that critical

obstructions are always fg-connected.

Lemma B.21. Let (𝑃, p) and (𝐸, e) be pointed instances. The fol-
lowing are equivalent:

(1) There exists a retraction from (𝑃, p) × (𝐸, e) to some subinstance

(𝐼 , i) such that diag𝑃 (𝐼
2) dismantles to diag(𝐼2).

(2) Every critical obstruction (𝐴, a) for (𝐸, e) relative to (𝑃, p) has
diameter at most𝑚 = |adom(𝑃) | · |adom(𝐸) |2 + 2.

(3) There are finitely many (modulo isomorphism) critical obstruc-

tions of (𝐸, e) relative to (𝑃, p).
(4) There exists 𝐹 such that (𝐹, {(𝐸, e)}) is a generalized duality

relative to (𝑃, p).

Proof. (3) ⇔ (4): The equivalence (3) ⇔ (4) is immediate.

Indeed, in the direction from (3) to (4), we can set 𝐹 to be the set
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of critical obstructions, while in the direction from (4) to (3), it is
easy to see that the size of each critical obstruction is bounded by

the size of the instances in 𝐹 .

(2) ⇒ (3). This proof is an adaptation of [35]. Let (𝐴, a) be
a critical obstruction of (𝐸, e) relative to (𝑃, p). We shall use the

sparse incomparability lemma (SIL) [41] (see also Theorem 5 in

[22]). However, since SIL was originally only proved for instances

without constants we need to do some adjustments. By the girth of

an instance 𝐴, we will mean the length of the shortest cycle in the

incidence graph of 𝐴, where the length is measured by the number

of facts the lie on the cycle. If the incidence graph is acyclic, the

instance is said to have girth∞. Let a = (𝑎1, . . . , 𝑎𝑘 ) and associate

to (𝐴, a) the instance 𝐴′ obtained from 𝐴 by adding facts 𝑅𝑖 (𝑎𝑖 )
where 𝑅𝑖 , 𝑖 ∈ [𝑘] are new relation symbols. We define similarly 𝐸′

and 𝑃 ′. Note that 𝐴′ → 𝑃 ′ and 𝐴′ ↛ 𝐸′. Then, according to SIL

there is an instance 𝐵′ with girth greater than𝑚 satisfying 𝐵′ → 𝐴′

and 𝐵′ ↛ 𝐸′.
Consider the pointed instance (𝐵, b) obtained from 𝐵′ in the fol-

lowing way. For every 𝑖 ∈ [𝑘] we remove all facts with relation sym-

bol 𝑅𝑖 and glue all the values occurring in them into a single value,

which then we place in the 𝑖th coordinate of b. Clearly, we have
(𝐵, b) → (𝐴, a) (and, hence, (𝐵, b) → (𝑃, p)) and (𝐵, b) ↛ (𝐸, e).
Further, remove facts and values from (𝐵, b) until becomes a critical

obstruction of (𝐸, e) relative to (𝑃, p). Note that by assumption 𝐵

has diameter at most𝑚.

Now, consider the subinstance, 𝐶 , of 𝐵 induced by its non-

distinguished elements. By the minimality of 𝐵, 𝐶 must be con-

nected. Note that 𝐶 is a subinstance of 𝐵′ as well and, hence, it has
girth larger than𝑚. Since 𝐵 has diameter at most𝑚 it follows that

𝐶 is a tree (i.e., an acyclic connected instance). We claim that every

value 𝑐 of 𝐶 appears in at most 𝑛𝐸 facts where 𝑛𝐸 is the number of

values in 𝐸. Indeed, let 𝑓1, . . . , 𝑓𝑟 be the facts in which 𝑐 participates.

For every 𝐼 ⊆ [𝑟 ], let𝐶𝐼 be the maximal subinstance of𝐶 containing

all the facts 𝑓𝑖 , 𝑖 ∈ 𝐼 and none of the facts 𝑓𝑖 , 𝑖 ∈ [𝑟 ] \ 𝐼 , let 𝐵𝐼 be the
subinstance of 𝐵 induced by 𝐶𝐼 ∪ {b} and let

𝑆𝐼 = {ℎ(𝑐) | ℎ is an homomorphism from (𝐵𝐼 , b) to (𝐸, e)}

We have that 𝑆 [1] , 𝑆 [2] , . . . , 𝑆 [𝑘 ] are all different since, otherwise,
say 𝑆 [𝑖−1] = 𝑆 [𝑖 ] , then 𝑆 [𝑘 ]\𝑖 = ∅ contradicting the minimality of

(𝐵, b).
Since both the diameter and the branching of 𝐶 are bounded

it follows that there is a bound (depending only on 𝑚 and 𝑒) on

the number of values of 𝐶 (and, hence, of 𝐵). Indeed, |adom(𝐵) | ≤
2
𝑂 ( |adom(𝑃 ) | · |adom(𝐸 ) |2 ·log( |adom(𝐸 ) | ) )

. Since (𝐴, a) is critical and
admits an homomorphism from (𝐵, b) it follows that the size of the
domain of 𝐴 is not larger than the size of the domain of 𝐵.

(1) ⇒ (2) Assume that (1) holds. Let 𝐽 = diag𝑃 (𝐼
2) and let

𝐽
0
, 𝐽

1
, . . . , 𝐽𝑛 be a dismantling sequence where 𝐽

0
= 𝐽 and 𝐽𝑛 =

diag(𝐽 ). For every 𝑖 ∈ [𝑛] there is a natural retraction 𝑠𝑖 : 𝐽 𝑖−1
→ 𝐽 𝑖

that sends the folded value 𝑎 ∈ adom(𝐽 𝑖−1
) \ adom(𝐽 𝑖 ) to a value

in adom(𝐽 𝑖 ) that dominates it.

We shall use 𝐼 , 𝐽 , 𝐽0, . . . , 𝐽𝑛 to denote be the instance on schema

𝜎 obtained by removing all facts with relation symbol 𝑅𝑝 , 𝑝 ∈ 𝑃
from 𝐼 , 𝐽 , 𝐽

0
, . . . , 𝐽𝑛 respectively.

We claim that for every critical obstruction (𝐴, a) for (𝐸, e) rela-
tive to (𝑃, p) the diameter of 𝐴 is bounded above by𝑚 = 𝑛 + 2 ≤
|adom(𝑃) | · |adom(𝐸) |2 + 2.

Towards a contradiction, let (𝐴, a) contradicting the claim. Since

the diameter of𝐴 is larger than 2𝑛+2 it follows that there exists two

facts 𝑓1 = 𝑅1 (a1), 𝑓2 = 𝑅(a2) in𝐴 such that 𝑁𝑛 ({a1}) ∩𝑁𝑛 ({a2}) =
∅ where for every 𝑋 ⊆ adom(𝐴) and 𝑖 ≥ 0, 𝑁𝑖 (𝑋 ) denotes the set
of all values from 𝐴 that are at distance at most 𝑖 from some value

in 𝑋 .

Let 𝐴𝑖 , 𝑖 = 1, 2 be the instance obtained removing fact 𝑓𝑖 from

𝐴. It follows that there are homomorphisms 𝑔𝑖 : (𝐴𝑖 , a) → (𝐸, e),
𝑖 = 1, 2. Let 𝑣 : (𝐴, a) → (𝑃, p). Hence, for every 𝑖 = 1, 2, mapping

𝑎 ↦→ (𝑣 (𝑎), 𝑔𝑖 (𝑎)) defines an homomorphism from𝐴𝑖 to 𝑃 ×𝐸. If we
let ℎ𝑖 = 𝑢 · (𝑣, 𝑔𝑖 ) where 𝑢 : (𝑃, p) × (𝐸, e) → (𝐼 , i) is the retraction
guaranteed to exist from (1), we have ℎ𝑖 : 𝐴𝑖 → 𝐼 .

Let 𝐵 be the subinstance of 𝐴 obtained by removing both 𝑓1 and

𝑓2 and let ℎ = (ℎ1, ℎ2) : 𝐵 → 𝐼2. Also, note that due to the facts

with relation symbol 𝑅𝑝 , 𝑝 ∈ adom(𝑃) added in 𝑃 × 𝐸 it follows

that the image of ℎ is necessarily in adom(𝐽 ), and, hence ℎ : 𝐵 → 𝐽 .

Since 𝑔1 (a) = 𝑔2 (a) = e it follows that ℎ(a) contains only diagonal

values.

Let 𝑟0, . . . , 𝑟𝑛 : adom(𝐵) → adom(𝐽 ) be the sequence of map-

pings where 𝑟0 = ℎ and 𝑟𝑖 (𝑏), 𝑏 ∈ adom(𝐵), 𝑖 ∈ [𝑛], is defined as

follows:

𝑟𝑖 (𝑏) =
{
𝑟𝑖−1 (𝑏) if 𝑏 ∈ 𝑁𝑖 ({a1}) ∪ 𝑁𝑖 ({a2})
𝑠𝑖 · 𝑟𝑖−1 (𝑏) otherwise

It follows that 𝑟𝑖 : 𝐵 → 𝐽 for every 𝑖 ≤ 𝑛. Further, since

𝑁𝑛 ({a1}) ∩ 𝑁𝑛 ({a2}) = ∅ it follows that there is no fact in 𝐵 that

contains at the same time at least one value from 𝑁𝑛−1 ({a1}) and
at least one value from 𝑁𝑛−1 ({a2}). In addition 𝑟𝑛 (𝑏) is a diago-
nal value whenever 𝑏 ∉ 𝑁𝑛 ({a1}) ∪ 𝑁𝑛 ({a2}). Consequently the

mapping 𝑧, defined as

𝑧 (𝑏) =
{
𝜋1 · 𝑟𝑛 (𝑏) if 𝑏 ∈ 𝑁𝑛−1 ({a1})
𝜋2 · 𝑟𝑛 (𝑏) otherwise

is an homomorphism from 𝐵 to 𝑃 × 𝐸. Note that 𝑟𝑖 , 𝑖 ≤ 𝑛 agrees

with ℎ on {a1} ∪ {a2}. This implies that 𝑧 agrees with ℎ𝑖 on {a𝑖 } for
𝑖 = 1, 2. In consequence, mapping 𝑧 preserves facts 𝑓1 and 𝑓2 as well.

Further, since ℎ(a) contains only diagonal values it follows that 𝑟𝑛
agrees with ℎ on a, and, hence 𝑧 (a) = e. Putting all together we

have 𝑧 : (𝐴, a) → (𝐸, b), contradicting our assumptions on (𝐴, a).
(3) ⇒ (1) Assume that (1) does not hold. Let (𝐼 , i) be the core of

(𝑃, p) × (𝐸, e) and let 𝐽 = diag𝑃 (𝐼
2). We define 𝐾 be any instance

obtained from a distmantling sequence starting at 𝐽 until no further

distmantling if possible. Since 𝐽 does not distmantle to its diagonal

it adom(𝐾) contains some non-diagonal value. It is easy to see (see

[8], Remark 3.8) that such distmantling sequence can be done by

folding symmetric pairs so that 𝐾 contains the symmetric pair of

any of its values.

Define 𝐼 , 𝐽 and 𝐾 to be obtained by removing all the facts with

relation symbol 𝑅𝑝 , 𝑝 ∈ adom(𝑃) from 𝐼 , 𝐽 , and 𝐾 respectively. We

shall show that for every𝑚 ≥ 0 there is a critical obstruction of

(𝐸, e) relative to (𝑃, p) with at least𝑚 values.

Let 𝑘0 be a non-diagonal value in 𝐾 . We construct an instance

𝑇 (without distinguished elements) in the following way. The do-

main of 𝑇 consists of all the walks in 𝐾 of length𝑚 + 1 starting
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at 𝑘0. For every fact 𝑓 = 𝑅(𝑘1, . . . , 𝑘𝑟 ) in 𝐾 , for every 𝑖 ∈ [𝑟 ],
and for every walk 𝜌 ending at 𝑘𝑖 , we include in 𝑇 the fact

𝑅(𝜌1, . . . , 𝜌𝑖−1, 𝜌, 𝜌𝑖+1, . . . , 𝜌𝑟 ), where 𝜌 𝑗 , 𝑗 ≠ 𝑖 , is the walk obtained
from 𝜌 by extending it with 𝑓 , 𝑘 𝑗 . The root of 𝑇 is the walk 𝜌0 of

length 0 consisting only of 𝑘0 and the leafs of 𝑇 are the walks of

length𝑚 + 1.

It is immediate that the map 𝑢 sending every walk 𝜌 to its last

node is an homomorphism from𝑇 to (𝑃 × 𝐸). Also let 𝑣 : 𝐽 → 𝑃 be

the mapping sending value ⟨𝑝, 𝑎1), (𝑝, 𝑎2)⟩ to 𝑝 .

Claim 1. Let 𝑔 : 𝑇 → 𝐾 be any homomorphism that agrees with

𝑢 on the leaves of𝑇 . Further, assume that 𝑣 ◦ 𝑔 = 𝑣 ◦𝑢. Then we have

that 𝑔 = 𝑢.

Proof of claim. This follows by induction by showing that for

every ℓ ∈ [𝑚 + 1], if 𝑔 agrees with 𝑢 for every walk of length

ℓ it also agrees for every walk of length ℓ − 1. In particular, let

𝜌 ∈ 𝑇 of length ℓ − 1. It follows from the definition of 𝑇 and the

inductive hypothesis that 𝑔(𝜌) dominates 𝑢 (𝜌) in 𝐾 . Additionally,
since 𝑣 ◦𝑔(𝜌) = 𝑣 ◦𝑢 (𝜌) it follows that 𝑔(𝜌) dominates 𝑢 (𝜌) also in
𝐾 . Since 𝐾 cannot be further dismantled it follows that 𝑔(𝜌) = 𝑢 (𝜌)
as desired. □

Let (𝐴𝑖 , i𝛼 ), 𝑖 = 1, 2 be the pointed instances (𝑇 ∪ 𝐼 , i)𝛼 where 𝛼

can be informally described as gluing every leaf 𝜌 ∈ adom(𝑇 ) with
value 𝜋𝑖 ◦ 𝑢 (𝜌) in adom(𝐼 ). We also glue the root 𝜌0 to some leaf

𝜌′ such that 𝑢 (𝜌0) and 𝑢 (𝜌′) are symmetric (here we use the fact

that adom(𝐾) is closed under symmetric pairs).

We note that all the values in adom(𝐼 ) have been glued to some

value in 𝑇 . This allows to simplify a bit our notation as we can

naturally extend 𝑢 to adom(𝐴1) (and adom(𝐴2)) by defining 𝑢 (𝑎)
as 𝑢 (𝜌) for any walk 𝜌 contained in 𝛼-class 𝑎.

Claim 2. (𝐴1, i𝛼 ) ↛ (𝐸, e) or (𝐴2, i𝛼 ) ↛ (𝐸, e).

Proof of claim. Assume towards a contradiction that there are

homomorphisms 𝑓𝑖 : (𝐴𝑖 , i𝛼 ) → (𝐸, e) for 𝑖 = 1, 2. Then, mapping

𝑔1 (𝑎) = (𝑣 · 𝑢 (𝑎), 𝑓1 (𝑎)) defines an homomorphism from (𝐴1, i𝛼 )
to (𝑃, p) × (𝐸, e). Let 𝑧 : (𝑃, p) × (𝐸, e) → (𝐼 , i) be any retraction

and let ℎ1 = 𝑧𝑛 ◦ 𝑔1 for some 𝑛 ≥ 1 to be chosen later. Note that

ℎ1 : (𝐴1, i𝛼 ) → (𝐼 , i). Note that map 𝑖 ↦→ 𝑖𝛼 defines an isomorphism

from (𝐼 , i) to (𝐴1, i𝛼 ). We might abuse slightly notation and refer

to the copy or (𝐼 , i) in (𝐴1, i𝛼 ) simply as (𝐼 , i). Then, the restriction
of ℎ1 to adom(𝐼 ) must be a bijection since otherwise this would

contradict the fact that (𝐼 , i) is a core. Hence we can choose 𝑛 so

that ℎ1 acts as the identity on (𝐼 , i). Note that 𝑣 · ℎ1 = 𝑣 · 𝑢
We can similarly show that there exists ℎ2 : (𝐴2, i𝛼 ) → (𝐼 , i)

that acts as the identity on (𝐼 , i) and 𝑣 ·ℎ2 = 𝑣 ·𝑢. It follows that the
mapping ℎ(𝜌) = (ℎ1 (𝜌𝛼 ), ℎ2 (𝜌𝛼 )) defines an homomorphism from

𝑇 to 𝐽 satisfying 𝑣 · ℎ = 𝑣 · 𝑢. Note also that ℎ acts as the identity

on the leaves of 𝑇 , which implies that, indeed, ℎ : 𝑇 → 𝐾 . Hence

Claim 1 implies that ℎ = 𝑢.

Since 𝛼0 and 𝛼 ′ have been glued in both 𝐴1 and 𝐴2 it follows

that ℎ agrees on 𝛼0 and 𝛼 ′. However this is impossible since we

have chosen 𝑢 (𝛼0) to be non-diagonal and 𝑢 (𝛼 ′) and 𝑢 (𝛼0) are
symmetric pairs. □

Assume that (𝐴1, i𝛼 ) ↛ (𝐸, e) (the case (𝐴2, i𝛼 ) ↛ (𝐸, e) is
analogous). Then there exists some 𝐵 ⊆ 𝐴1 such that (𝐵, i𝛼 ) is

a critical obstruction for (𝐸, e) relative to (𝑃, p). To conclude our

proof it is only necessary to note that 𝐵 has at least𝑚 values as a

consequence of the following claim.

Claim 3. For every ℓ = 1, . . . ,𝑚, 𝐵 contains at least one value of

𝑇 of level ℓ .

Proof of claim. Assume that some ℓ falsifies the claim. Then

the mapping 𝑔 defined as follows is an homomorphism from (𝐵, i𝛼 )
to (𝐸, e), a contradiction. Let 𝑏 ∈ 𝐵 (recall that 𝑏 is a 𝛼-class). If 𝑏

contains some value (𝑎, 𝑒) in 𝐼 then define 𝑔(𝑏) to be 𝑒 . If 𝑏 contains
some 𝜌 in𝑇 we define 𝑔(𝜌) in the following way: Let 𝑖 be the length

of 𝜌 and let 𝑢 (𝜌) = ⟨(𝑎, 𝑒1), (𝑎, 𝑒2)⟩ be its last value. Then 𝑔(𝜌) is
defined to be 𝑒2 if 𝑖 < ℓ and 𝑒1 if 𝑖 > ℓ . It is immediate to see that 𝑔

is well defined and that defines an homomorphism. □

This concludes the main proof. □

Putting everything together
Proof of Thm. 3.16. (1) By combining Lemmas B.20 and B.21

we obtain an NP algorithm to decide whether there exists 𝐹 such

that (𝐹, 𝐷) is a generalized duality relative to 𝑝: for every 𝑒 ∈ 𝐷 ,
we non-deterministically verify that there is some homomorphism

(𝑝 × 𝑒) → 𝑒′ for some 𝑒′ ∈ 𝐷 different than 𝑒 or that condition (1)

in Lemma B.21 is satisfied for 𝑒 and 𝑝 . This condition can be tested

in NP by guessing the retraction.

The NP lower bound holds already in the non-relativized case

without designated elements (i.e., where 𝑘 = 0 and (𝑃, p) is the
pointed instance containing all possible facts over a single-element

domain) [35].

(2) By Lemma B.21, in the single-example case, when the set

of critical obstructions is finite, then, in fact, each critical obstruc-

tion has domain size at most 2
𝑂 ( |adom(𝑃 ) | · |adom(𝐸 ) |2 ·log( |adom(𝐸 ) | ) )

.

Hence, 𝐹 can be constructed to consist of instances of this size. In

the general case with a set of examples 𝐷 , inspection of the proof

of Lemma B.20 shows that we take 𝐹 = {𝑒′
1
⊎ · · · ⊎ 𝑒′𝑛 | 𝑒′𝑖 ∈

𝐹𝑒𝑖 , 𝑖 ∈ [𝑛]}, where {𝑒1, . . . , 𝑒𝑛} be the set of all non-subsumed

examples in 𝐷 . It follows that each member of 𝐹 has size at most

2
𝑂 ( |adom(𝑃 ) | · | |adom(𝐷 ) | |2 ·log( | |adom(𝐷 ) | | ) )

, as claimed. □

C DETAILED PROOFS FOR SECT. 4
Proposition 4.2. (Implicit in [2].) For all collections of labeled

examples 𝐸 = (𝐸+, 𝐸−) and UCQs 𝑞, the following are equivalent:
(1) 𝑞 is a strongly most-specific fitting UCQ for 𝐸,

(2) 𝑞 is a weakly most-specific fitting UCQ for 𝐸,

(3) 𝑞 fits 𝐸 and is homomorphically equivalent to

⋃
𝑒∈𝐸+ 𝑞𝑒 .

Proof. The implication from 1 to 2 is trivial.

For the implication from 2 to 3, suppose that 𝑞 is a weakly most-

specific fitting UCQ for 𝐸. Let 𝑞′ =
⋃

𝑒∈𝐸+ 𝑞𝑒 . Since 𝑞 fits 𝐸, we have
𝑞 → 𝑞′. Furthermore, 𝑞′ fits 𝐸. Indeed, 𝑞′ fits 𝐸+ by construction,

and if there was a homomorphism from a disjunct of𝑞′ to a negative
example, then, since 𝑞 → 𝑞′, also 𝑞 would fail to fit the same

negative example. Thus, 𝑞′ ⊆ 𝑞 and 𝑞 fits 𝐸. Therefore, by the

definition of “weakly most-specific”, we have that 𝑞 ≡ 𝑞′, which
means that 𝑞 and 𝑞′ are homomorphically equivalent.

For the implication from 3 to 1, let 𝑞′ =
⋃

𝑖 𝑞
′
𝑖
be any UCQ that

fits 𝐸. We must show that 𝑞 ⊆ 𝑞′. Consider any disjunct 𝑞𝑖 of 𝑞.
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Since 𝑞 is homomorphically equivalent to

⋃
𝑒∈𝐸+ 𝑞𝑒 , we know that,

for some 𝑒 ∈ 𝐸+, 𝑞𝑒 → 𝑞𝑖 . Furthermore, since 𝑞′ fits 𝐸+, for some

disjunct 𝑞′
𝑗
of 𝑞′ we have 𝑞′

𝑗
→ 𝑞𝑒 . Therefore, by composition,

𝑞′
𝑗
→ 𝑞𝑖 , which means that 𝑞𝑖 ⊆ 𝑞′𝑗 . □

Proposition 4.3. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−) and UCQs 𝑞 = 𝑞1 ∪ · · · ∪ 𝑞𝑛 , the following are equivalent:
(1) 𝑞 is a strongly most-general fitting UCQ for 𝐸,

(2) 𝑞 is a weakly most-general fitting UCQ for 𝐸,

(3) 𝑞 fits 𝐸+ and ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a homomorphism duality.

Proof. The implication from 1 to 2 is trivial.

For the implication from 2 to 3, assume that 𝑞 =
⋃

𝑖 𝑞𝑖 is weakly

most-general fitting for 𝐸, and let 𝑒 be any data example. If 𝑒𝑞𝑖 → 𝑒 ,

then 𝑒 ̸→ 𝐸− , as otherwise, by transitivity, we would have that

𝑒𝑞𝑖 → 𝐸− , which we know is not the case because 𝑞 fits 𝐸. Con-

versely, if 𝑒 ̸→ 𝐸− , then the UCQ 𝑞′ = 𝑞 ∪ 𝑞𝑒 fits 𝐸. Since 𝑞 is con-
tained in 𝑞′, it follows by the definition of “weakly most-general”

that 𝑞 ≡ 𝑞′, which means that 𝑞 and 𝑞′ are homomorphically equiv-

alent. In particular, some 𝑞𝑖 maps to 𝑞𝑒 , and hence, 𝑒𝑞𝑖 → 𝑒 .

Finally, for the implication from 3 to 1, suppose 𝑞′ is a fitting
UCQ for 𝐸. Consider any disjunct 𝑞′

𝑖
of 𝑞′. Then 𝑞′

𝑖
does not map to

𝐸− . Hence, since ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a homomorphism duality,

we have that some 𝑒𝑞 𝑗
maps to 𝑒𝑞′

𝑖
, and hence, 𝑞 𝑗 → 𝑞′

𝑖
. This shows

that 𝑞 homomorphically maps to 𝑞′. □

Proposition 4.4. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−) and UCQs 𝑞, the following are equivalent:
(1) 𝑞 is a unique fitting UCQ for 𝐸,

(2) 𝑞 fits 𝐸 and the pair (𝐸+, 𝐸−) is a homomorphism duality,

(3) 𝑞 is homomorphically equivalent to

⋃
𝑒∈𝐸+ 𝑞𝑒 and (𝐸+, 𝐸−) is a

homomorphism duality.

Proof. From 1 to 2, suppose 𝑞 is a unique fitting UCQ for 𝐸. We

must show that (𝐸+, 𝐸−) is a homomorphism duality. Let 𝑒 be any

data example. If a positive example maps to 𝑒 , then 𝑞 maps to 𝑒 .

Since 𝑞 does not map to any negative example, it follows that 𝑒 does

not map to any negative example either. If, on the other hand, no

positive example maps to 𝑒 , then 𝑒 must map to a negative example.

For, otherwise, 𝑞′ = 𝑞 ∪ 𝑞𝑒 would be a fitting UCQ that is not

homomorphically equivalent (and hence not logically equivalent)

to 𝑞.

For the implication from 2 to 3, we must show that 𝑞 is homo-

morphically equivalent to 𝑞′ =
⋃

𝑒∈𝐸+ 𝑞𝑒 . The direction 𝑞 → 𝑞′ is
immediate from the fact that 𝑞 fits 𝐸+. For the other direction, let
𝑞𝑖 be any disjunct of 𝑞. Since 𝑞𝑖 fits 𝐸

−
and (𝐸+, 𝐸−) is a homomor-

phism duality, we know that, for some positive example 𝑒 ∈ 𝐸+,
𝑞𝑒 → 𝑞𝑖 . This shows that 𝑞

′ → 𝑞.

For the implication from 3 to 1, it follows from Prop. 4.2 that 𝑞

is a most-specific fitting UCQ for 𝐸, and from Prop. 4.3 that 𝑞 is a

most-general fitting UCQ for 𝐸. Hence, 𝑞 is a unique fitting UCQ

for 𝐸. □

Theorem 4.5.

(1) The existence problem for fitting UCQs (equivalently, for most-

specific fitting UCQs) is coNP-complete; if a fitting UCQ exists, a

most-specific fitting UCQ can be computed in PTime.

(2) The existence problem for most-general fitting UCQs is NP-

complete; if a most-general fitting UCQ exists, one can be com-

puted in 2ExpTime.

(3) The verification problem for fitting UCQs is DP-complete.

(4) The verification problem for most-specific fitting UCQs is DP-

complete.

Proof. 1. By Prop. 4.2, it suffices to test that the UCQ

⋃
𝑒∈𝐸+ 𝑞𝑒

fits. It fits the positive examples by definition. Therefore, it is enough

to test the non-existence of a homomorphism to 𝐸− , which can

be done in coNP. The lower bound is by reduction from graph

homomorphism:𝐺 → 𝐻 holds if and only if there is no fitting UCQ

for (𝐸+ = {𝐺}, 𝐸− = {𝐻 }).
2. The upper bound follows immediately from Prop. 4.3 together

with Thm. 3.16 (one can choose 𝑝 to be the single-element instance

containing all possible facts). The NP-hardness follows directly

from [35] (we can choose 𝐸+ = ∅). Finally, it follows from Propo-

sition 4.3 and Theorem 3.16(2) (again choosing 𝑝 to be the single-

element instance containing all possible facts) that the union of the

canonical queries of all instances of size at most 2
𝑂 (𝑝𝑜𝑙𝑦 ( | |𝐸− | | ) )

not

homomorphic to any instance in 𝐸− is a most-general fitting UCQ,

provided it exists. Hence, such 𝑞 can be constructed in 2ExpTime.

3. To test if 𝑞 fits 𝐸 = (𝐸+, 𝐸−), we test that (i) for each 𝑒 ∈ 𝐸+,
some disjunct of 𝑞 maps to it, and (ii) no disjunct of 𝑞 maps to

any 𝑒 ∈ 𝐸− . This clearly shows that the problem is in DP. For the

lower bound, we reduce from exact 4-colorability [43]: a graph

𝐺 is exact 4-colorable if and only if the canonical CQ of 𝐺 fits

(𝐸+ = {𝐾4}, 𝐸− = {𝐾3}), where 𝐾𝑛 is the 𝑛-element clique.

4. To verify that 𝑞 is a most-specific fitting UCQ for 𝐸 = (𝐸+, 𝐸−),
by Prop. 4.2, it suffices to test that (i) 𝑞 is homomorphically equiv-

alent to

⋃
𝑒∈𝐸+ 𝑞𝑒 , and (ii) fits 𝐸− . This clearly places the prob-

lem in DP. For the lowerbound, we reduce again from exact 4-

colorability [43]: a graph 𝐺 is exact 4-colorable if and only if

the canonical CQ of 𝐺 is a most-specific fitting UCQ for (𝐸+ =

{𝐾4 ×𝐺}, 𝐸− = {𝐾3}). □

In order to prove the upper bound in Proposition 4.6 we shall

need the algorithm given in the next lemma.

Lemma C.1. There is polynomial time algorithm (arc consistency)

that given instances 𝑒′, 𝑒 with possible distinguished elements as input

determines whether it is true that for each 𝑐-acyclic 𝑡 , 𝑡 → 𝑒′ implies

𝑡 → 𝑒 .

Proof. The constraint literature includes several sightly dif-

ferent algorithms under the name ’arc consistency’ so we give a

reference for the sake of concreteness [19]. It is well known that

the arc-consistency algorithm, which has been defined only for

instances without designated elements, verifies precisely the condi-

tion stated. To extend it to instances with distinguished elements,

the only modification that is needed is to initialize the algorithm

such that each designated element in 𝑒′ is mapped to the corre-

sponding designated element in 𝑒 . □

Proposition 4.6. HomDual is in ExpTime and NP-hard.

Proof. We first prove the upper bound. We may assume that 𝐹

consists of pairwise homomorphically incomparable instances: if

not, then we can take a minimal subset 𝐹 ′ ⊆ 𝐹 with the property



Extremal Fitting Problems for ConjunctiveQueries PODS ’23, June 18–23, 2023, Seattle, WA, USA

that for every 𝑒 ∈ 𝐹 , there is 𝑒′ ∈ 𝐹 ′ such that 𝑒′ → 𝑒 . Similarly, we

can assume that𝐷 consists of pairwise homomorphic incomparable

instances: again, we can take a minimal subset 𝐷′ ⊆ 𝐷 , with the

property that for every 𝑒 ∈ 𝐷 , there is 𝑒′ ∈ 𝐷′ such that 𝑒 → 𝑒′.
It is easy to see that (𝐹, 𝐷) is a homomorphism duality if and

only if (𝐹 ′, 𝐷′) is. We may also assume that each 𝑒 ∈ 𝐹 ∪ 𝐷 is a

core.

We claim that, in order for (𝐹, 𝐷) to be a homomorphism duality,

each 𝑒 ∈ 𝐹 must be c-acyclic. By Thm. 2.1, it suffices to show that,

if (𝐹, 𝐷) is a homomorphism duality, then each 𝑒 ∈ 𝐹 has a frontier

(since, core instances that have a frontier are c-acyclic). Indeed, if

(𝐹, 𝐷) is a homomorphism duality, then 𝐹𝑟𝑒 = {𝑒′ × 𝑒 | 𝑒′ ∈ 𝐷} is a
frontier for 𝑒 : since 𝑒 ̸→ 𝑒′, we have that 𝑒′ × 𝑒 → 𝑒 and 𝑒 ̸→ 𝑒 × 𝑒′
(by Prop. A.1). Furthermore, suppose 𝑒′′ → 𝑒 and 𝑒 ̸→ 𝑒′′. Since 𝐹
consists of pairwise homomorphically incomparable data examples,

it follows that there is no data example in 𝐹 has a homomorphism

to 𝑒′′. Hence, 𝑒′′ → 𝑒′ for some 𝑒′ ∈ 𝐷 . Therefore, 𝑒′′ → 𝑒′ × 𝑒 .
The latter belongs to 𝐹𝑟𝑒 by construction.

Next, we therefore test that 𝐹 consists of c-acyclic instances. If

this test succeeds, then, by Thm. 2.1, we can compute, for each 𝑒 ∈ 𝐹 ,
a finite set 𝐷𝑒 such that ({𝑒}, 𝐷𝑒 ) is a homomorphism duality. Let

𝐷′ = {𝑒1 × · · · × 𝑒𝑛 | (𝑒1, . . . , 𝑒𝑛) ∈ Π𝑒∈𝐹𝐷𝑒 }. It is straightforward
to show that (𝐹, 𝐷′) is a homomorphism duality.

It follows that (𝐹, 𝐷) is a homomorphism duality if and only 𝐷

and 𝐷′ are homomorphically equivalent, in the sense that (i) for

each 𝑒 ∈ 𝐷 , there is 𝑒′ ∈ 𝐷′ such that 𝑒 → 𝑒′, and (ii) vice versa:

for each 𝑒′ ∈ 𝐷 , there is a 𝑒 ∈ 𝐷 , such that 𝑒′ → 𝑒 .

Condition (i) can be tested in polynomial time since it is equiv-

alent to the fact that 𝑒 ↛ 𝑒′ for every 𝑒 ∈ 𝐹 and 𝑒′ ∈ 𝐷 (and 𝑒 is

guaranteed to be 𝑐-acyclic). For condition (ii) we first check whether

there is some set 𝐹 ′ of instances such that (𝐹 ′, 𝐷) is a homomor-

phism duality. It follows from Lemmas B.20 and B.21 that this can

be done by verifying that every 𝑒 ∈ 𝐷 satisfies condition (1) in

Lemma B.21 (choosing 𝑃 to be the instance with only one element

and having all possible facts). This check can be done clearly in NP

(and, indeed, in polynomial time if 𝑒 is a core although this is not

needed here).

Next, let 𝑒′ ∈ 𝐷′ and 𝑒 ∈ 𝐷 . We shall show that 𝑒′ → 𝑒 is

equivalent to the condition checked by the algorithm in Lemma C.1.

We note that since𝐷′ has at most exponentially many instances and

all of them have size bounded above exponentially then this implies

that (ii) can be verified in ExpTime by an iterative application of

arc-consistency.

Let us proof our claim. Let 𝑒′ ∈ 𝐷′ and 𝑒 ∈ 𝐷 . If 𝑒′ → 𝑒 ,

then, clearly (by composition of homomorphisms), 𝑡 → 𝑒′ implies

𝑡 → 𝑒 , for all c-acyclic instances 𝑡 . For the converse, assume that

𝑡 → 𝑒′ implies 𝑡 → 𝑒 for every c-acyclic instance 𝑡 . Since 𝑒 satisfies

Lemma B.21(1) it follows that there exists some set 𝑇 of instances

such that (𝑇, {𝑒}) is a homomorphism duality. Moreover, by [1],

there is such a set 𝑇 consisting of c-acyclic instances. Then, for

every 𝑡 ∈ 𝑇 , we have that 𝑡 ↛ 𝑒′ since otherwise 𝑡 → 𝑒 , which is

impossible as (𝑇, {𝑒}) is a homomorphism duality. Again, using the

fact that (𝑇, {𝑒}) is a homomorphism duality it follows that 𝑒′ → 𝑒 .

For the lower bound, we use an argument that was also used in

[35] to show that FO definability of a CSP is NP-hard: we reduce

from 3-SAT. Fix a schema consisting of a single binary relation

𝑅. Let 𝐹 = {𝑃𝑛+1} where 𝑃𝑛+1 is the path of length 𝑛 + 1, and let

𝐷 = {𝑇𝑛} where 𝑇𝑛 is the transitive tournament (i.e., total linear

order) of length 𝑛. It is well known that (𝐹, 𝐷) is a homomorphism

duality (this is known as the Gallai–Hasse–Roy–Vitaver theorem).

Now, consider any 3-SAT input

𝜙 =
∧

𝑖=1...𝑛

∨
𝑗=1,2,3

𝐿𝑖 𝑗

Let 𝐻 be the instance with domain {1, . . . , 𝑛} × {1, 2, 3}, with an

atom 𝑅(⟨𝑖, 𝑗⟩, ⟨𝑖′, 𝑗 ′⟩) whenever 𝑖 < 𝑗 and 𝐿𝑖′ 𝑗 ′ is not the negation

of 𝐿𝑖 𝑗 . We claim that the following are equivalent:

(1) 𝜙 is satisfiable

(2) 𝐻 is homomorphically equivalent to 𝑇𝑛
(3) (𝐹, {𝐻 }) is a homomorphism duality

The equivalence of 2 and 3 is obvious. Therefore, it suffices only to

show that 1 and 2 are equivalent. By construction, 𝐻 → 𝑇𝑛 . From

1 to 2, a homomorphism from 𝑇𝑛to 𝐻 may be constructed out of a

satisfying assignment by mapping the 𝑖-th element of𝑇𝑛 to any true

literal from the 𝑖-th clause of 𝜙 . Conversely, any homomorphism

from𝑇𝑛 to𝐻 clearly induces a satisfying truth assignment for𝜙 . □

Theorem 4.7. The following problems are computationally equiv-

alent (via polynomial conjunctive reductions) to HomDual:

(1) The existence problem for unique fitting UCQs,

(2) The verification problem for unique fitting UCQs,

(3) The verification problem for most-general fitting UCQs.

Proof. Recall that a conjunctive reduction takes an instance

of the first problem and produces one or more instances of the

second problem, such that the input instance is a Yes instance for

the first problem if and only if each output instance is a Yes instance

of the second problem. It follows immediately from Prop. 4.4 and

Prop. 4.3, together with the NP-hardness of HomDual that these

problems polynomially conjunctively reduce to HomDual. The

converse direction is immediate as well (where, for the verification

problems, it suffices to choose 𝑞 =
⋃

𝑒∈𝐸+ 𝑞𝑒 ). □

D DETAILED PROOFS FOR SECT. 5
D.1 Preliminaries
We start with a basic lemma that pertains to simulations and un-

ravelings.

Lemma D.1. Let 𝐼 , 𝐽 be instances, 𝑎 ∈ adom(𝐼 ), 𝑏 ∈ adom(𝐽 ), and
𝑈 the unraveling of 𝐼 at 𝑎. Then (𝐼 , 𝑎) ⪯ (𝐽 , 𝑏) iff (𝑈 , 𝑎) ⪯ (𝐽 , 𝑏).
Moreover, if 𝐼 and 𝐽 are finite, then this is the case iff (𝑈𝑚, 𝑎) ⪯ (𝐽 , 𝑏)
for all𝑚-finite unravelings𝑈𝑚 of 𝐼 at 𝑎.

Proof. For the ‘if’ direction, assume that (𝑈 , 𝑎) ⪯ (𝐽 , 𝑏) is
witnessed by simulation 𝑆 . Then 𝑆 ′ = {(𝑎′, 𝑏′) | (𝑝, 𝑏′) ∈
𝑆 and 𝑝 ends in 𝑎′} is a simulation that witnesses (𝐼 , 𝑎) ⪯ (𝐽 , 𝑏).
For the ‘only if’ direction, assume that (𝐼 , 𝑎) ⪯ (𝐽 , 𝑏) is witnessed
by simulation 𝑆 . Then 𝑆 ′ = {(𝑝, 𝑏′) | (𝑎′, 𝑏′) ∈ 𝑆 and 𝑝 ends in 𝑎′}
is a simulation that witnesses (𝑈 , 𝑎) ⪯ (𝐽 , 𝑏).

For the ‘moreover’ part, the ‘only if’ direction is clear. Thus

assume that (𝑈𝑚, 𝑎) ⪯ (𝐽 , 𝑏) for all𝑚-finite unravelings𝑈𝑚 of 𝐼 at

𝑎. Then also 𝑈𝑚 → 𝐽 for all𝑚 ≥ 1 via homomorphism ℎ1, ℎ2, . . .

with ℎ𝑖 (𝑎) = 𝑏. It suffices to manipulate this sequence so that

(∗) ℎ𝑖 (𝑎) = ℎ 𝑗 (𝑎) whenever ℎ𝑖 (𝑎), ℎ 𝑗 (𝑎) are both defined,
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as then

⋃
𝑖≥1

ℎ𝑖 is a homomorphism from the (unbounded) unravel-

ing𝑈 of 𝐼 at 𝑎 to 𝐽 . The first part of the lemma yields (𝐼 , 𝑎) ⪯ (𝐽 , 𝑏),
as required.

To achieve (∗), we start with ℎ1 and observe that since 𝑈1 and

𝐽 are finite, there are only finitely many homomorphisms ℎ from

𝑈1 to 𝐽 . Some such homomorphism must occur infinitely often

in the restrictions of ℎ1, ℎ2, . . . to adom(𝑈1) and thus we find a

subsequence ℎ′
1
, ℎ′

2+1, . . . of ℎ1, ℎ2, . . . such that the restriction of

each ℎ′
𝑖
to adom(𝑈1) is identical. We may assume w.l.o.g. that each

ℎ′
𝑖
is a homomorphism from𝑈𝑖 to 𝐽 and can thus replace ℎ1, ℎ2, . . .

with ℎ′
1
, ℎ′

2
, . . . . We proceed in the same way for the restrictions

of the sequence ℎ2, ℎ3, . . . to adom(𝑈2), then for the restrictions

of the sequence ℎ3, ℎ4, . . . to adom(𝑈3), and so on. In the limit, we

obtain a sequence that satisfies (∗). □

D.2 Alternating Tree Automata
We introduce alternating tree automata, which are used in several

of the subsequent upper bound proofs. A tree is a non-empty set

𝑇 ⊆ N∗ closed under prefixes. We say that 𝑇 is𝑚-ary if for every

𝑥 ∈ 𝑇 , the set {𝑖 | 𝑥 · 𝑖 ∈ 𝑇 } is of cardinality at most𝑚, and assume

w.l.o.g. that all nodes in an𝑚-ary tree are from the set {1, . . . ,𝑚}∗.
For an alphabet Γ, a Γ-labeled tree is a pair (𝑇, 𝐿) with 𝑇 a tree and

𝐿 : 𝑇 → Γ a node labeling function.

For any set 𝑋 , let B+ (𝑋 ) denote the set of all positive Boolean
formulas over 𝑋 , i.e., formulas built using conjunction and disjunc-

tion over the elements of 𝑋 used as propositional variables, and

where the special formulas true and false are admitted as well. An

infinite path 𝑃 in a tree 𝑇 is a prefix-closed set 𝑃 ⊆ 𝑇 such that for

every 𝑖 ≥ 0, there is a unique 𝑥 ∈ 𝑃 with |𝑥 | = 𝑖 , where |𝑥 | denotes
the length of word 𝑥 .

Definition D.2 (TWAPA). A two-way alternating parity automaton

(TWAPA) on finite𝑚-ary trees is a tuple𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐) where 𝑆 is
a finite set of states, Γ is a finite alphabet, 𝛿 : 𝑆 × Γ → B+ (tran(𝔄))
is the transition function with tran(𝔄) = {⟨𝑖⟩𝑠, [𝑖]𝑠 | −1 ≤ 𝑖 ≤
𝑚 and 𝑠 ∈ 𝑆} the set of transitions of 𝔄, 𝑠0 ∈ 𝑆 is the initial state,

and 𝑐 : 𝑆 → N is the parity condition that assigns to each state a

priority.

Intuitively, a transition ⟨𝑖⟩𝑠 with 𝑖 > 0 means that a copy of the

automaton in state 𝑠 is sent to the 𝑖-th successor of the current node,

which is then required to exist. Similarly, ⟨0⟩𝑠 means that the au-

tomaton stays at the current node and switches to state 𝑠 , and ⟨−1⟩𝑠
indicates moving to the predecessor of the current node, which

is then required to exist. Transitions [𝑖]𝑠 mean that a copy of the

automaton in state 𝑠 is sent to the relevant successor/predecessor

if it exists, which is then not required.

Definition D.3 (Run, Acceptance). Let 𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐) be a

TWAPA on finite 𝑚-ary trees. A run of 𝔄 on a finite Γ-labeled
𝑚-ary tree (𝑇, 𝐿) is a𝑇 × 𝑆-labeled tree (𝑇𝑟 , 𝑟 ) such that the follow-

ing conditions are satisfied:

(1) 𝑟 (𝜀) = (𝜀, 𝑠0);
(2) if 𝑦 ∈ 𝑇𝑟 , 𝑟 (𝑦) = (𝑥, 𝑠), and 𝛿 (𝑠, 𝐿(𝑥)) = 𝜑 , then there is a

(possibly empty) set 𝑆 ⊆ tran(𝔄) such that 𝑆 (viewed as a

propositional valuation) satisfies 𝜑 as well as the following

conditions:

(a) if ⟨𝑖⟩𝑠′ ∈ 𝑆 , then 𝑥 ·𝑖 is defined and there is a node𝑦 · 𝑗 ∈ 𝑇𝑟
such that 𝑟 (𝑦 · 𝑗) = (𝑥 · 𝑖, 𝑠′);

(b) if [𝑖]𝑠′ ∈ 𝑆 and 𝑥 · 𝑖 is defined and a node in 𝑇 , then there

is a node 𝑦 · 𝑗 ∈ 𝑇𝑟 such that 𝑟 (𝑦 · 𝑗) = (𝑥 · 𝑖, 𝑠′).
We say that (𝑇𝑟 , 𝑟 ) is accepting if on all infinite paths 𝜀 = 𝑦1𝑦2 · · ·
in 𝑇𝑟 , the maximum priority that appears infinitely often is even.

A finite Γ-labeled𝑚-ary tree (𝑇, 𝐿) is accepted by 𝔄 if there is an

accepting run of 𝔄 on (𝑇, 𝐿). We use 𝐿(𝔄) to denote the set of all

finite Γ-labeled𝑚-ary trees accepted by 𝔄.

We remark that most of our automata use the acceptance condi-

tion in a trivial way, that is, every state has priority 0 and thus every

run is accepting. In fact, we shall typically remain silent about the

acceptance condition, then meaning that every state has priority

0. But we shall also apply complementation to TWAPAs, which

gives rise to other types of acceptance. The following properties of

TWAPAs are well-known [40, 45].

Theorem D.4.

(1) Given a TWAPA 𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐), it can be decided in time

single exponential in |𝑆 | and the maximum priority used by 𝑐 ,

and polynomial in |𝔄 |, whether 𝐿(𝔄) is empty.

(2) Given a TWAPA 𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐), one can compute in poly-

nomial time a TWAPA 𝔄 = (𝑆, Γ, 𝛿 ′, 𝑠0, 𝑐′) such that 𝐿(𝔄′) =
𝐿(𝔄).

(3) Given TWAPAs 𝔄𝔦 = (𝑆𝑖 , Γ, 𝛿𝑖 , 𝑠0,𝑖 , 𝑐𝑖 ), 𝑖 ∈ {1, 2}, one can com-

pute in polynomial time a TWAPA𝔄 = (𝑆1⊎𝑆2⊎{𝑠0}, Γ,Δ, 𝑠0, 𝑐)
with 𝐿(𝔄) = 𝐿(𝔄1) ∩ 𝐿(𝔄2).

(4) Given a TWAPA 𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐), one can compute in single

exponential time an NTA 𝔄′ = (𝑆 ′, Γ,Δ, 𝐹 ) with 𝔄 = 𝔄′.
(5) Given a TWAPA 𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐) on 𝑚-ary trees with

𝐿(𝔄) ≠ ∅, we can compute in single exponential time a suc-

cinct representation (in the form of a directed acyclic graph) of a

tree with a minimal number of nodes accepted by𝔄. The number

of nodes in that tree is at most𝑚2
𝑝 ( |𝑆 |)

, 𝑝 a polynomial.

(6) Given a TWAPA 𝔄 = (𝑆, Γ, 𝛿, 𝑠0, 𝑐) on 𝑚-ary trees, it can be

decided in time single exponential in |𝑆 | and the maximum pri-

ority used by 𝑐 , and polynomial in |𝔄 |, whether 𝐿(𝔄) is infinite.
Moreover, if 𝐿(𝔄) is finite, then the size of every tree in it is at

most The number of nodes in that tree is at most𝑚2
𝑝 ( |𝑆 |)

, 𝑝 a

polynomial.

Note that Point (5) follows from Point (4) together with Point 2

of Theorem B.5. To obtain the decision procedure promised by

Point (6), one would first convert the TWAPA 𝔄 to an equivalent

NTA 𝔄′ via Point (4). Let the state set of 𝔄′ be 𝑄 and let 𝑚 be

the cardinality of 𝑄 . We then use the fact that 𝐿(𝔄′) is infinite iff
𝐿(𝔄′) contains a tree whose depth exceeds the number𝑚 of states

of𝔄′. More concretely, we convert𝔄′ into an NTA𝔄′′ that accepts
exactly the trees in 𝐿(𝔄′) that are of depth exceeding𝑚 by using

as the new states {0, . . . ,𝑚} ×𝑄 and implementing a counter on

the first component of the states and simulation 𝔄′ on the second

component. It remains to decide the non-emptiness of 𝐿(𝔄′′) via
Point (1) of Theorem B.5.

D.3 Tree CQs as Γ-labeled trees
For the automata constructions in the subsequent sections, we wish

to view tree CQs as Γ-labeled trees, for some suitable alphabet Γ.
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Since our automata run on trees of bounded degree, however, it is

convenient to bound the degree of fitting tree CQs. The following

lemma shows that this can be done in many relevant cases. The

remaining cases are covered by Lemma D.8 below.

Lemma D.5. Let (𝐸+, 𝐸−) be a collection of labeled examples. If

there is a tree CQ 𝑞 that is a fitting of (𝐸+, 𝐸−), then there is such a

𝑞 of degree at most | |𝐸− | |. The same is true for weakly and strongly

most-general fittings, for unique fittings, and for all these kinds of

fittings with a minimal number of variables.

Proof. Take any tree CQ 𝑞(𝑥0) that is a fitting for (𝐸+, 𝐸−). We

consider the answer variable 𝑥0 to be the root of 𝑞, imposing a direc-

tion on it and allowing us to speak about successors, predecessors,

etc.

Assume that 𝑞 contains a variable 𝑥 with more than | |𝐸− | | suc-
cessors 𝑦1, . . . , 𝑦𝑚 . For 1 ≤ 𝑖 ≤ 𝑚, let 𝑞 |𝑖𝑥 denote the tree CQ

obtained from the subquery of 𝑞 rooted at 𝑥 by deleting all suc-

cessors 𝑦𝑖 , . . . , 𝑦𝑚 and the subtrees below them. We define 𝑆𝑖 to

be the set of all values 𝑎 such that for some 𝑒 ∈ 𝐸− , there is a

homomorphism ℎ from 𝑞 |𝑖𝑥 to 𝑒 with ℎ(𝑥) = 𝑎. Clearly, 𝑆1 ⊇ 𝑆2 · · · .
Consequently, 𝑆 𝑗 = 𝑆 𝑗+1 for some 𝑗 ≤ ||𝐸− | |. Let 𝑞′ be obtained
from 𝑞 by removing the successor 𝑦 𝑗+1 of 𝑥 and the subtree below

it.

We show in the following that 𝑞′ is a fitting for (𝐸+, 𝐸−). It must

then be weakly/strongly most-general resp. unique if 𝑞 is since 𝑞′

may only be more general than 𝑞 (and 𝑞′ must be equivalent to 𝑞 if

𝑞 is a unique fitting). Likewise, 𝑞′ cannot have more variables than

𝑞 and thus if 𝑞′ had a minimal number of variables, then so does 𝑞′.
In fact, 𝑞′ has less variables than 𝑞, so showing that 𝑞′ is a fitting
for (𝐸+, 𝐸−) establishes a contradiction to our assumption that 𝑞

has degree exceeding | |𝐸− | |.
It is also clear that 𝑞′ fits all positive examples. For the negative

examples, assume to the contrary that there is an (𝐼 , 𝑐) ∈ 𝐸− and a

homomorphism ℎ′ from 𝑞′ to 𝐼 with ℎ′ (𝑥0) = 𝑐 . We can construct

from ℎ′ a homomorphism ℎ from 𝑞 to 𝐼 with ℎ(𝑥0) = 𝑐 , yielding
a contradiction. Clearly, ℎ′ is also a homomorphism from 𝑞 | 𝑗𝑥 to 𝐼

and since 𝑆 𝑗 = 𝑆 𝑗+1, this means that we also find a homomorphism

𝑔 from 𝑞 | 𝑗+1𝑥 to 𝐼 such that ℎ′ (𝑥) = 𝑔(𝑥). We can plug 𝑔 into ℎ in an

obvious way to find the desired homomorphism ℎ from 𝑞 to 𝐼 with

ℎ(𝑥0) = 𝑐 .
If we apply the above argument repeatedly, we thus find a fitting

of degree at most | |𝐸− | | and this fitting is weakly/strongly most-

general and has a minimal number of variables if this was the case

for the original fitting. □

Now for the encoding of tree CQs as Γ-labeled trees. Assume that

we are concerned with a collection of labeled examples over some

binary schema S. Then the symbols in Γ are the sets 𝜎 that contain

at most one S-role (binary relation symbol from S or converse

thereof) and any number of unary relation symbols from S. A Γ-
labeled tree is proper if the symbol 𝜎 that labels the root contains

no S-role while any other label used contains exactly one S-role.
Nodes in the tree correspond to variables in the tree CQ and the S-
role in a node/variable label determines how the predecessor links to

the variable. If, for example, (𝑇, 𝐿) is a Γ-labeled tree, 122 ∈ 𝑇 with

𝑅− ∈ 𝐿(122), 𝑥 is the variable that corresponds to node 122 in the

tree CQ and 𝑦 its predecessor (corresponding to node 12), then the

tree CQ contains the atom 𝑅(𝑥,𝑦). In this way, tree CQs correspond

to proper Γ-labeled trees in an obvious way, and vice versa. In the

following, we do often not explicitly distinguish between tree CQs

and their encoding as a Γ-labeled tree and say, for example, that

an automaton accepts a tree CQ. Note that properness can always

be ensured by intersecting with a trivial two-state TWAPA which

ensures that the input tree is proper.

D.4 Arbitrary Tree CQ Fittings
Theorem 5.4. If any tree CQ fits a collection of labeled examples

𝐸 = (𝐸+, 𝐸−), then we can produce a DAG representation of a fitting

tree CQ with a minimal number of variables in single exponential

time and the size of such a tree CQ is at most double exponential.

To prove Thm. 5.4, we use an automata-based approach that also

reproves the ExpTime upper bound from Theorem 5.3 and will be

reused to prove results in subsequent sections.

Let (𝐸+, 𝐸−) be a collection of labeled examples over schema S.
We construct a TWAPA 𝔄 that accepts exactly the fittings for

(𝐸+, 𝐸−) of degree at most | |𝐸− | | and whose number of states is

only polynomial in | |𝐸+∪𝐸− | |. Wemay then use an emptiness check

on 𝔄 to reprove the ExpTime upper bound from Thm. 5.3. What is

more important, we might use Point 5 of Thm. D.4 to extract from

𝔄 in single exponential time the DAG representation of a fitting

for (𝐸+, 𝐸−) with a minimal number of variables, and to show that

the number of variables in that fitting is at most 2
2
𝑝 ( | |𝐸+∪𝐸− ||)

, 𝑝 a

polynomial. By Lemma D.5, the number of variables in the resulting

fitting is minimal not only among the fittings of degree at most

| |𝐸− | |, but also among all fittings.

To obtain the desired TWAPA 𝔄, we construct one TWAPA 𝔄𝑒

for each example 𝑒 ∈ 𝐸+ ∪ 𝐸− , ensuring that it accepts exactly the

tree CQs of degree at most𝑚 that admit a simulation (equivalently:

a homomorphism) to 𝑒 , then complement the TWAPA 𝔄𝑒 if 𝑒 ∈ 𝐸− ,
and finally take the intersection of all obtained TWAPAs. Building

the TWAPA 𝔄𝑒 is very simple, we only give a sketch. Let 𝑒 = (𝐼 , 𝑐0).
The set of states 𝑆 of𝔄𝑒 contains the pairs (𝑐, 𝑅) such that 𝐼 contains
a fact of the form 𝑅(𝑐′, 𝑐) or 𝑐 ∈ adom(𝐼 ) and 𝑅 is the special

symbol ‘−’. The initial state is (𝑐0,−). All that 𝔄𝑒 does is repeatedly

sending a copy of itself to every successor node in the input tree,

guessing a homomorphism target in 𝐼 for that node. Since the

connecting role is only made explicit at that successor, we also

guess that role and then verify that the guess was correct once that

we are at the successor. More precisely, for (𝑐, 𝑅) ∈ 𝑆 and 𝜎 ∈ Γ,
we set

𝛿 ((𝑐, 𝑅), 𝜎) =
∧

1≤𝑖≤𝑚

∨
𝑅′ S-role and 𝑅′ (𝑐,𝑑 ) ∈𝐼

[𝑖] (𝑑, 𝑅′)

if 𝑅 ∈ 𝜎 ∪ {−} and 𝐴 ∈ 𝜎 implies 𝐴(𝑐) ∈ 𝐼 , and otherwise put

𝛿 ((𝑐, 𝑅), 𝜎) = false.

D.5 Most-Specific Fitting Tree CQ
The equivalence between Points 2 and 3 of the following proposition

has already been observed in [33].

Proposition 5.5. For all tree CQs 𝑞 and collections of labeled

examples 𝐸 = (𝐸+, 𝐸−), the following are equivalent:
(1) 𝑞 is a weakly most-specific fitting for 𝐸,
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(2) 𝑞 is a strongly most-specific fitting for 𝐸,

(3) 𝑞 fits 𝐸 and Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞.

Proof. “2⇒ 1” is immediate. For “3⇒ 2”, assume that 𝑞 fits 𝐸

and Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞. Further, let 𝑝 be a tree CQ that fits 𝐸. We have to

show that 𝑞 ⊆ 𝑝 . Since 𝑝 fits 𝐸, we have 𝑝 ⪯ (𝐼 , 𝑎) for all (𝐼 , 𝑎) ∈ 𝐸+
and thus also 𝑝 ⪯ Π𝑒∈𝐸+ (𝑒). From Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞, we obtain 𝑝 ⪯ 𝑞,
thus 𝑞 ⊆ 𝑝 as required.

For “1⇒ 3”, assume that 𝑞 is a weakly most-specific fitting for 𝐸.

Then 𝑞 ⪯ 𝑒 for all 𝑒 ∈ 𝐸+ and thus also 𝑞 ⪯ Π𝑒∈𝐸+ (𝑒). Let𝑚 be the

depth of𝑞. Then also𝑞 ⪯ 𝑈𝑚 where𝑈𝑚 is the𝑚-finite unraveling of

Π𝑒∈𝐸+ (𝑒) at the tuple 𝑒 that consists of the distinguished elements

of the examples in 𝐸+. Since 𝑞 is a fitting for 𝐸, 𝑞 ⪯̸ 𝑒 for all 𝑒 ∈ 𝐸−
and thus 𝑞 ⪯ 𝑈𝑚 implies that 𝑈𝑚 ⪯̸ 𝑒 for all 𝑒 ∈ 𝐸− . Consequently,
𝑈𝑚 is a fitting for 𝐸. It easily follows that the𝑚′-finite unraveling
𝑈𝑚′ of Π𝑒∈𝐸+ (𝑒) at 𝑒 is also a fitting for 𝐸, for all𝑚′ ≥ 𝑚. Since

𝑞 is weakly most-specific and 𝑞 ⪯ 𝑈𝑚′ , we must have 𝑈𝑚′ ⪯ 𝑞
for all𝑚′ ≥ 𝑚 (for, otherwise, the canonical CQ of 𝑈𝑚′ would a

fitting tree CQ that is strictly more specific than 𝑞). Then clearly

also𝑈𝑖 ⪯ 𝑞 for all 𝑖 ≥ 1. Thus Lemma D.1 yields Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞, as
required. □

In [33] it is shown that verification and existence of a most-

specific fitting tree CQ are in ExpTime and PSpace-hard when

there are only positive examples, but no negative examples. Here,

we consider the case with negative examples and show ExpTime-

completeness.

Theorem 5.7. Verification and existence of most-specific fitting

tree CQs is in ExpTime.

Proof. By Prop. 5.5, we may verify whether a tree CQ 𝑞 is a

most-specific fitting for some 𝐸 = (𝐸+, 𝐸−) by checking whether 𝑞

fits 𝐸 based on Thm. 5.2, then constructing Π𝑒∈𝐸+ (𝑒) and deciding

in PTime whether Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞. This gives the desired ExpTime

upper bound.

Now for existence. An ExpTime upper bound is proved in [33]

for the case where there are only positive examples, but no negative

examples. We extend this to negative examples. Given a collection

of labeled examples 𝐸 = (𝐸+, 𝐸−), we may first decide whether 𝐸

has a fitting tree CQ based on Thm. 5.3, answer ‘no’ if this is not

the case, and then use the algorithm from [33] to decide whether

(𝐸+, ∅) has a strongly most-specific fitting tree CQ and return the

result.

We have to argue that this is correct. This is clearly the case

if 𝐸 has no fitting tree CQ. Thus assume that there is such a CQ

𝑞0. First assume that the answer returned by the second check is

‘no’. Assume to the contrary of what we have to prove that 𝐸 has

a most-specific fitting tree CQ 𝑞. Then Point 3 of Prop. 5.5 yields

Π𝑒∈𝐸+ (𝑒) ⪯ 𝑞. Since 𝑞 fits also (𝐸+, ∅), again from Point 3 we obtain

that 𝑞 is also a most-specific fitting for (𝐸+, ∅), a contradiction. Now
assume that the answer returned by the second check is ‘yes’. It

suffices to show that any (strongly) most-specific fitting tree CQ

𝑞+ for (𝐸+, ∅) satisfies 𝑞+ ⪯̸ 𝑒 for all 𝑒 ∈ 𝐸− . But this follows from
the existence of 𝑞0 since we know that 𝑞0 ⪯ 𝑞+ (since 𝑞0 also fits

(𝐸+, ∅) and 𝑞+ is strongly most-specific for (𝐸+, ∅)) and 𝑞0 ⊀ 𝑒 for
all 𝑒 ∈ 𝐸− . □

We next establish an upper bound on the size of most-specific

fitting tree CQs.

Theorem 5.8. If a collection of labeled examples 𝐸 = (𝐸+, 𝐸−)
admits a most-specific tree CQ fitting, then we can construct a DAG

representation of such a fitting with a minimal number of variables

in single exponential time and the size of such a tree CQ is at most

double exponential.

To prove Thm. 5.8, we again use an automata-based approach

that also reproves the ExpTime upper bound in Thm. 5.7 and will

be reused to prove results in subsequent section. It relies on a

characterization of most-specific fittings via complete initial pieces

of the unraveling of Π𝑒∈𝐸+ (𝑒). We next make this precise. It is

related to the decision procedure for the existence of weakly most-

specific fitting tree CQs with only positive examples given in [33].

Let 𝐸 = (𝐸+, 𝐸−) be a collection of labeled examples, and let𝑈 be

the unraveling of Π𝑒∈𝐸+ (𝑒). An initial piece 𝑈 ′ of 𝑈 is a connected

instance that is obtained as the restriction of𝑈 to some finite non-

empty subset 𝑆 ⊆ adom(𝑈 ). We say that 𝑈 ′ is complete if for all

paths 𝑝𝑅𝑎 ∈ adom(𝑈 ) with 𝑝 ∈ adom(𝑈 ′) and 𝑝𝑅𝑎 ∉ adom(𝑈 ′),
there is an 𝑅(𝑝, 𝑐) ∈ 𝑈 ′ with (𝑈 , 𝑝𝑅𝑎) ⪯ (𝑈 , 𝑐).

Lemma D.6. If𝑈 ′ is a complete initial piece of𝑈 , then𝑈 ⪯ 𝑈 ′.

Proof. Let𝑈 ′ be a complete initial piece of𝑈 . It can be verified

that the following is a simulation from𝑈 to𝑈 ′: 𝑆 = {(𝑝, 𝑝′) | 𝑝 ∈
adom(𝑈 ), 𝑝′ ∈ adom(𝑈 ′) and (𝑈 , 𝑝) ⪯ (𝑈 , 𝑝′)}. □

In the following, we view an initial piece 𝑈 ′ of 𝑈 as a CQ. We

then take the unique path of length 1 in adom(𝑈 ′) to be the answer
variable. The following proposition links complete initial pieces

tightly to most-specific fittings. In particular, it implies that if there

is a most-specific fitting, then there is a complete initial piece that

is a most-specific fitting.

Proposition D.7. Let 𝐸 = (𝐸+, 𝐸−) be a collection of labeled

examples. Then

(1) any complete initial piece of the unraveling 𝑈 of Π𝑒∈𝐸+ (𝑒) that
fits 𝐸 is a most-specific fitting for 𝐸 and conversely,

(2) any most-specific fitting of 𝐸 is simulation equivalent to some

and every complete initial piece of𝑈 .

Proof. For Point 1, let 𝑈 ′ be a complete initial piece of 𝑈 that

fits 𝐸. By Lemma D.6, 𝑈 ⪯ 𝑈 ′, and thus also Π𝑒∈𝐸+ (𝑒) ⪯ 𝑈 ′. By
Prop. 5.5,𝑈 ′ is thus a most-specific fitting for 𝐸.

For Point 2, let𝑞 be a most specific fitting for 𝐸. Then the fact that

𝑞 ⪯ Π𝑒∈𝐸+ (𝑒) and Prop. 5.5 imply that 𝑞 is simulation equivalent

to Π𝑒∈𝐸+ (𝑒), thus to𝑈 . By Lemma D.6,𝑈 is simulation equivalent

to any complete initial piece of𝑈 . It therefore remains to show that

a complete initial piece of𝑈 exists.

We first observe that there is an𝑚 ≥ 1 such that 𝑈 ⪯ 𝑈𝑚 with

𝑈𝑚 the𝑚-finite unraveling of 𝑈 . In fact, simulation equivalence

of 𝑈 and 𝑞 implies that there is a homomorphism ℎ1 from 𝑈 to 𝑞

and ℎ2 from 𝑞 to𝑈 , but since 𝑞 is finite the composition ℎ2 ◦ℎ1 is a

homomorphism from𝑈 into some𝑈𝑚 .

Since𝑈 ⪯ 𝑈𝑚 , there is a homomorphism ℎ from𝑈 to𝑈𝑚 that is

the identity on the root of𝑈 (the unique path in𝑈 of length 1). Let

𝑈 ′ be the initial piece of 𝑈 such that adom(𝑈 ′) is the range of ℎ.
We argue that 𝑈 ′ is complete. Take any path 𝑝𝑅𝑎 ∈ adom(𝑈 ) with
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𝑝 ∈ adom(𝑈 ′) and 𝑝𝑅𝑎 ∉ adom(𝑈 ′). Then ℎ(𝑝𝑅𝑎) ∈ adom(𝑈 ′)
and 𝑅(𝑝, ℎ(𝑝𝑅𝑎)) ∈ 𝑈 ′. Moreover, ℎ witnesses that (𝑈 , 𝑝𝑅𝑎) ⪯
(𝑈 ′, ℎ(𝑝𝑅𝑎)), thus (𝑈 , 𝑝𝑅𝑎) ⪯ (𝑈 ,ℎ(𝑝𝑅𝑎)) as desired. □

Next, we establish a version Lemma D.5 for most-specific fittings

and make some additional observations. In contrast to Lemma D.5,

however, we can only bound the degree exponentially instead of

linearly. This shall not be a problem inwhat follows and in particular

using tree automata on trees of exponential outdegree does not

stand in the way of obtaining ExpTime upper bounds.

Lemma D.8. Let (𝐸+, 𝐸−) be a collection of labeled examples. If

there is a tree CQ 𝑞 that is a most-specific fitting of (𝐸+, 𝐸−), then
there is such a 𝑞 of degree at most 2

| |𝐸+ | |
. The same is true with a

minimal number of variables. Moreover, any most-specific fitting

with a minimal number of variables must be isomorphic to a complete

initial piece of the unraveling of Π𝑒∈𝐸+ (𝑒).

Proof. The case where we disregard the number of variables

is immediate. Prop. D.7 tells us that if there exists a most-specific

fitting 𝑞, then some initial piece 𝑝 of the unraveling of Π𝑒∈𝐸+ (𝑒) is
a fitting of the same kind. Clearly, the degree of 𝑝 is bounded by

2
| |𝐸+ | |

and we are done.

Let us now add the requirement that the number of variables be

minimal. It suffices to show that 𝑞(𝑥) has an injective homomor-

phism ℎ to 𝑝 (𝑥) with ℎ(𝑥) = 𝑥 because this means that 𝑞 is actually

a subquery of 𝑝 (can be obtained from it by dropping atoms), and

thus the degree of 𝑞 cannot be larger than that of 𝑝 . Since 𝑝 and 𝑞

are simulation equivalent, we find homomorphisms ℎ1 from 𝑝 to 𝑞

and ℎ2 from 𝑞 to 𝑝 , both the identity on 𝑥 . The composition ℎ1 ◦ℎ2

is a homomorphism from 𝑞 to 𝑞 and must be surjective as otherwise

it identifies a strict subquery of 𝑞 (with fewer variables!) that is

homomorphically equivalent to 𝑞, and thus simulation equivalent.

But the composition can only be surjective if ℎ2 is injective, so ℎ2

is the desired injective homomorphism from 𝑞 to 𝑝 .

For the ‘moreover part’, we note that we have already shown

above that a most-specific fitting 𝑞 with a minimal number of vari-

ables is isomorphic to a subtree 𝑝′ of some initial piece 𝑝 of the

unraveling𝑈 of Π𝑒∈𝐸+ (𝑒), but that subtree 𝑝′ is an initial piece of𝑈
itself, and thus it remains to prove that 𝑝′ is complete. However, any

incomplete initial piece 𝑝′ of𝑈 does not admit a simulation from

𝑈 as otherwise the simulation would witness completeness of 𝑝′.
Consequently, 𝑝′ must be complete as by Prop. 3.5 it is simulation

equivalent to𝑈 . □

We now give the NTA construction for Thm. 5.8. Let (𝐸+, 𝐸−)
be a collection of labeled examples over schema S and set 𝑚 =

2
| |𝐸+ | |

. We aim to build an NTA 𝔄 with single exponentially many

states that accepts exactly the most-specific tree CQ fittings for

(𝐸+, 𝐸−) which have degree at most 𝑚 and are isomorphic to a

complete initial piece of the unraveling 𝑈 of Π𝑒∈𝐸+ (𝑒). Note that
the latter conditions are without loss of generality due to Prop. D.7

and Lemma D.8, no matter whether we want to decide the existence

of most-specific fittings or construct a most-specific fitting with a

minimal number of variables.

We may use an emptiness check on 𝔄 to reprove the ExpTime

upper bound from Thm. 5.7. Moreover, we might use Point 2 of

Thm. B.5 to extract from 𝔄 in single exponential time the DAG

representation of a most-specific fitting for (𝐸+, 𝐸−) with a minimal

number of variables, and to show that the number of variables in

that fitting is at most 2
2
𝑝 ( | |𝐸+∪𝐸− ||)

, 𝑝 a polynomial.

The NTA 𝔄 is constructed as the intersection of two NTAs 𝔄1

and 𝔄2, c.f. Point 4 of Thm. B.5. The first NTA checks that the input

tree CQ is a fitting for (𝐸+, 𝐸−). It is obtained by converting the

TWAPA used in the proof of Thm. 5.3 into an NTA as per Point 4

of Thm. D.4. The second NTA verifies that the input tree CQ is a

complete initial piece of the unraveling𝑈 of Π𝑒∈𝐸+ (𝑒) and thus, by
Prop. D.7, a most-specific fitting.

We define 𝔄2 = (𝑄, Γ,Δ, 𝐹 ) where Γ is the alphabet for tree CQs

over schema S. The states in 𝑄 take the form (𝑎𝑅,𝑏) with 𝑎, 𝑏 ∈
adom(Π𝑒∈𝐸+ (𝑒)) and 𝑅 an S-role. As a special case, 𝑎𝑅 can be ‘−’.
Informally, state (𝑎𝑅,𝑏) means that we are currently visiting a path

in𝑈 that ends with 𝑎𝑅𝑏. In the transition relation, we verify that all

successors required for the initial piece to be complete are present.

It is convenient to view 𝔄2 as a top-down automaton and 𝐹 as a set

of initial states. We set 𝐹 = {(−, 𝑒0)} where 𝑒0 ∈ adom(Π𝑒∈𝐸+ (𝑒))
is the root of the unraveling 𝑈 of Π𝑒∈𝐸+ (𝑒), that is, the tuple that
consists of all the selected points in the data examples in 𝐸+. We

then include in Δ all transitions

⟨𝑞1, . . . , 𝑞𝑚⟩
𝜎
===⇒ (𝑎𝑅,𝑏),

where each 𝑞𝑖 can also be ⊥, such that the following conditions are

satisfied:

(1) 𝑅 ∈ 𝜎 (unless 𝑎𝑅 = −);
(2) 𝐴 ∈ 𝜎 iff 𝐴(𝑏) ∈ Π𝑒∈𝐸+ (𝑒), for all unary 𝐴 ∈ S;
(3) if 𝑞𝑖 = (𝑏𝑆𝑖 , 𝑐𝑖 ), then 𝑆𝑖 (𝑏, 𝑐𝑖 ) ∈ Π𝑒∈𝐸+ (𝑒) for 1 ≤ 𝑖 ≤ 𝑚;

(4) if 𝑏 has an 𝑆-successor 𝑐 in𝑈 , then one of the following holds:

• there is an 𝑖 such that 𝑞𝑖 = (𝑏𝑆, 𝑐𝑖 ) and (Π𝑒∈𝐸+ (𝑒), 𝑐) ⪯
(Π𝑒∈𝐸+ (𝑒), 𝑐𝑖 );
• 𝑅 = 𝑆− and (Π𝑒∈𝐸+ (𝑒), 𝑐) ⪯ (Π𝑒∈𝐸+ (𝑒), 𝑎);

(5) all of 𝑞1, . . . , 𝑞𝑚 that are not ⊥ are pairwise distinct.

It can be verified that the automaton recognizes precisely the in-

tended language. Note that to construct the NTA, we need to know

about simulations between values in Π𝑒∈𝐸+ (𝑒). We determine these

by first constructing Π𝑒∈𝐸+ (𝑒) in single exponential time and then

computing in PTime the maximal simulation on it.

D.6 Weakly Most-General Fitting Tree CQs

Theorem 5.11. Verification of weakly most-general fitting tree

CQs is in PTime.

Based on Prop. 5.10, Thm. 5.11 is easy to prove. Given a CQ 𝑞

and a collection of labeled examples (𝐸+, 𝐸−), we may first verify in

polynomial time that 𝑞 fits 𝐸. We then compute in polynomial time

a frontier F of 𝑞 w.r.t. tree CQs and then check that none of the

CQs in F simulates into a negative example. For the latter, we can

use the frontier construction presented in Sect. B.1 which yields a

frontier not only w.r.t. tree CQs, but w.r.t. unrestricted CQs.

Prop. 5.10 also serves as the basis for a decision procedure for

the existence of weakly most-general fitting tree CQs. In principle,

we could use the frontier construction from Sect. B.1 and NTAs,

as in that section. However, the construction presented there is

already complex and we would have to replace homomorphisms

with simulations, which results in additional complications. This led



PODS ’23, June 18–23, 2023, Seattle, WA, USA Balder ten Cate, Victor Dalmau, Maurice Funk, and Carsten Lutz

us to working with a different frontier construction tailored towards

tree CQs, presented in [11], and with alternating tree automata.

Theorem 5.12. Existence of weaklymost-general fitting tree CQs is

in ExpTime. Moreover, if a collection of labeled examples 𝐸 = (𝐸+, 𝐸−)
admits a weakly most-general tree CQ fitting, then we can construct

a DAG representation of such a fitting with a minimal number of

variables in single exponential time and the size of such a tree CQ is

at most double exponential.

Let (𝐸+, 𝐸−) be a collection of labeled examples over schema S
and set𝑚 := | |𝐸− |. We aim to construct a TWAPA 𝔄 with polyno-

mially many states that accepts exactly the weakly most-general

tree CQ fittings for (𝐸+, 𝐸−) which have degree at most 𝑚. The

latter restriction is justified by Lemma D.5. By Prop. 5.10, we may

construct 𝔄 as the intersection of two TWAPAs 𝔄1 and 𝔄2 where

𝔄1 verifies that the 𝑞 fits (𝐸+, 𝐸−) and 𝔄2 that every element of the

frontier F for 𝑞 w.r.t. tree CQs simulates to an example in 𝐸− . For
𝔄1, we can use the TWAPA from Sect. D.4.

We next describe the frontier construction.

Step 1: Generalize. For each variable 𝑥 in 𝑞, define a set F0 (𝑥)
that contains all tree CQs which can be obtained by starting with

the subquery of 𝑞 rooted at 𝑥 and then doing one of the following:

(1) choose an atom 𝐴(𝑥) and remove it;

(2) choose a successor 𝑦 of 𝑥 , with 𝑅(𝑥,𝑦) ∈ 𝑞𝑥 , and then

(a) remove 𝑅(𝑥,𝑦) and the subtree rooted at 𝑦 and

(b) for each 𝑞′ (𝑦) ∈ F0 (𝑦), add a disjoint copy 𝑞′ of 𝑞′ and
the role atom 𝑅(𝑥,𝑦′′) with 𝑦′′ the copy of 𝑦 in 𝑞′.

Every variable 𝑥 in the resulting tree CQs may be associated in an

obvious way with a variable from 𝑞 that it derives from. We denote

that original variable with 𝑥↓.

Step 2: Compensate. We construct the frontier F of 𝑞(𝑥0) by
including, for each 𝑝 ∈ F0 (𝑥0), the tree CQ obtained from 𝑝 by

adding, for every atom 𝑅(𝑥,𝑦) in 𝑝 directed away from the root, an

atom 𝑅(𝑧,𝑦), 𝑧 a fresh variable, as well as a disjoint copy 𝑞 of 𝑞 and

glue the copy of 𝑥↓ in 𝑞 to 𝑧.

Let 𝐸− = {(𝐼1, �̂�1), . . . , (𝐼𝑛, �̂�𝑛)}. We assume w.l.o.g. that the

negative counterexamples have pairwise disjoint domains. Set

𝐼 = 𝐼1 ∪ · · · ∪ 𝐼𝑛 and adom = adom(𝐼 ). The TWAPA 𝔄2 starts

in state 𝑠0 and universally branches over all queries in the frontier,

choosing for each of them a negative example that it simulates into.

Since the queries in the frontier are tree CQs, we can actually verify

the existence of a homomorphism in place of a simulation (which

we consider slightly more intuitive).

Assume that the input tree represents the tree CQ 𝑞(𝑥0). Then
by construction, F contains a query 𝑞𝐴 for every atom 𝐴(𝑥0) ∈ 𝑞
and a query 𝑞𝑦 for every successor 𝑦 of 𝑥 in 𝑞. We set for all 𝜎 ∈ Γ:

𝛿 (𝑠0, 𝜎) =
∧
𝐴∈𝜎

∨
1≤ℓ≤𝑛

𝑠𝐴
�̂�ℓ
∧

∧
1≤𝑖≤𝑚

( [𝑖]⊥ ∨
∨

1≤ℓ≤𝑛
𝑠𝑖
�̂�ℓ
).

So the TWAPA is now located at the root of the input tree, in

state 𝑠𝐴
�̂�ℓ

to verify that the query 𝑞𝐴 in F maps to �̂�ℓ , and in state

𝑠𝑖
�̂�ℓ

to verify that the query 𝑞𝑦 in F , where 𝑦 is the variable in 𝑞

represented by the 𝑖-th successor of the root in the input tree, maps

to �̂�ℓ .

The queries 𝑞𝐴 are easy to deal with. We can essentially use the

same automaton as in Sect. D.4, except that we must ignore the

atom 𝐴(𝑥0) and also take into account the subqueries added in the

compensate step. More precisely, for all 𝑐 ∈ adom and 𝜎 ∈ Γ we set

𝛿 (𝑠𝐴𝑐 , 𝜎) =
∧

1≤𝑖≤𝑚

∨
𝑅 S-role and 𝑅 (𝑐,𝑑 ) ∈𝐼

[𝑖]𝑠𝑑,𝑅

if 𝐵 ∈ 𝜎 \ {𝐴} implies 𝐵(𝑐) ∈ 𝐼 , and 𝛿 (𝑠𝐴𝑐 , 𝜎) = false otherwise. For

all 𝑐 ∈ adom, S-roles 𝑅, and 𝜎 ∈ Γ we also set

𝛿 (𝑠𝑐,𝑅, 𝜎) = 𝑡0𝑐,𝑅 ∧
∧

1≤𝑖≤𝑚

∨
𝑅′ S-role and 𝑅′ (𝑐,𝑑 ) ∈𝐼

[𝑖]𝑠𝑑,𝑅′

if 𝑅 ∈ 𝜎 and 𝐴 ∈ 𝜎 implies 𝐴(𝑐) ∈ 𝐼 , and 𝛿 (𝑠𝑐,𝑅, 𝜎) = false oth-

erwise. The state 𝑡0
𝑐,𝑅

is for verifying the subqueries added in the

compensate step. For all 𝜎 ∈ Γ, set

𝛿 (𝑡0
𝑐,𝑅
, 𝜎) =

∨
𝑅′ S-role and 𝑅 (𝑑,𝑐 ) ∈𝐼

⟨−1⟩𝑡𝑑,𝑅′

and for all 𝑐 ∈ adom, S-roles 𝑅, and 𝜎 ∈ Γ, set

𝛿 (𝑡𝑐,𝑅, 𝜎) = 𝑠𝑐,𝑅 ∧
∨

𝑅′ S-role and 𝑅 (𝑑,𝑐 ) ∈𝐼
[−1]𝑡𝑑,𝑅′

if 𝑅 ∈ 𝜎 and 𝐴 ∈ 𝜎 implies 𝐴(𝑐) ∈ 𝐼 , and 𝛿 (𝑠𝑐,𝑅, 𝜎) = false other-

wise.

It remains to deal with the states 𝑠𝑖𝑐 . Remember that their purpose

is to verify that the query 𝑞𝑦 in F , where 𝑦 is the variable in 𝑞

represented by the 𝑖-th successor of the root in the input tree, maps

to �̂�ℓ . Also recall that in the generalize step of the construction of

𝑞𝑦 , the successor 𝑦 of 𝑥0 is replaced with one successor for each

query in F0 (𝑦). For 1 ≤ 𝑖 ≤ 𝑚 and all 𝑐 ∈ adom, set

𝛿 (𝑠𝑖𝑐 , 𝜎) =
∨

𝑅 S-role
⟨𝑖⟩𝑢𝑐,𝑅 ∧

∧
1≤ 𝑗≤𝑚

𝑗≠𝑖

∨
𝑅 S-role and 𝑅 (𝑐,𝑑 ) ∈𝐼

[ 𝑗]𝑠𝑑,𝑅

State 𝑢𝑐,𝑅 expresses that variable 𝑦 of the input tree CQ 𝑞 that the

TWAPA is currently visiting is replaced with each of the queries

in F0 (𝑦), and that it is an 𝑅-successor of its predecessor, which is

mapped to 𝑐 . There is one such query for each atom 𝐴(𝑦) in 𝑞 and

every successor of 𝑦 in 𝑞. We are thus in a very similar, though not

identical, situation as in the beginning. For all 𝑐 ∈ adom, S-roles 𝑅,
and 𝜎 ∈ Γ set

𝛿 (𝑢𝑐,𝑅, 𝜎) =
∧
𝐴∈𝜎

∨
𝑅 (𝑐,𝑑 ) ∈𝐼

𝑠𝐴
𝑑
∧

∧
1≤𝑖≤𝑚

( [𝑖]⊥ ∨
∨

𝑅 (𝑐,𝑑 ) ∈𝐼
𝑠𝑖
𝑑
) .

if𝑅 ∈ 𝜎 and 𝛿 (𝑢𝑐,𝑅, 𝜎) = ⊥ otherwise. This finishes the construction

of the automaton.

D.7 Unique Fitting Tree CQ
Clearly, a fitting tree CQ is a unique fitting if and only if it is both

a most-specific fitting and a weakly most-general fitting. We may

thus obtain results for unique fitting tree CQs by combining the

results from Sections D.5 and D.6.

Theorem 5.13. Verification and existence of unique fitting tree

CQs is in ExpTime.

The upper bound for verification in Thm. 5.13 is a direct conse-

quence of the upper bounds in Theorems 5.7 and 5.12.
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The upper bound for existence can be established as follows. In

the proof of Thm. 5.8, we have constructed, given a collection of

labeled examples (𝐸+, 𝐸−), an NTA 𝔄1 with single exponentially

many states that accepts exactly the fitting tree CQs for (𝐸+, 𝐸−)
that are most-specific, have degree at most 2

| |𝐸+ | |
, and are isomor-

phic to a complete initial piece of the unraveling of Π𝑒∈𝐸+ (𝑒). Recall
that the latter two conditions are w.l.o.g. in the sense that (i) if a

most-specific fitting exists, then there exists one that satisfies the

conditions and (ii) if there is any most-specific fitting at all, then the

most-specific fitting with the minimal number of variables also sat-

isfies the conditions. Clearly, the same is true for unique fittings as

every unique fitting is a most-specific fitting. We can easily modify

𝔄1 so that it runs on trees of degree𝑚 := max{2 | |𝐸+ | | , | |𝐸− | |}.
In the proof of Thm. 5.12, we have constructed a TWAPA 𝔄2

with polynomially many states that accepts exactly the fitting tree

CQs for (𝐸+, 𝐸−) that are weakly most-general and have degree

at most | |𝐸− | |. We can easily modify 𝔄2 so that it runs on tree

of degree𝑚. Moreover, we can convert it into an equivalent NTA

with single exponentially many states and then intersect with 𝔄1

to obtain an NTA 𝔄 with still single exponentially many states that

accepts exactly the unique fitting tree CQs for (𝐸+, 𝐸−) of degree
at most𝑚. It remains to check emptiness of 𝔄 in polynomial time.

D.8 Basis of Most-General Fitting Tree CQ
Proposition 5.15. For all collections of labeled examples 𝐸 =

(𝐸+, 𝐸−), the following are equivalent, for 𝑝 = Π𝑒∈𝐸+ (𝑒):
(1) {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting tree CQs for 𝐸,

(2) each 𝑞𝑖 fits 𝐸 and ({𝑞1, . . . , 𝑞𝑛}, 𝐸−) is a simulation duality

relative to 𝑝 .

Proof. From 1 to 2: By assumption, each 𝑞𝑖 fits 𝐸. Let 𝑒 be any

data example such that 𝑒 → 𝑝 (and, hence, 𝑒 fits 𝐸+). We need to

show that 𝑞𝑖 ⪯ 𝑒 for some 𝑖 ≤ 𝑛 iff 𝑒 ⪯̸ 𝑒′ for all 𝑒′ ∈ 𝐸− . First,
assume 𝑞𝑖 ⪯ 𝑒 , and assume for the sake of a contradiction that

𝑒 ⪯ 𝑒′ ∈ 𝐸− . Then, by transitivity, 𝑞𝑖 ⪯ 𝑒′, and hence (since 𝑞𝑖 is

a tree CQ), 𝑞𝑖 → 𝑒′, contradicting the fact that 𝑞𝑖 fits 𝐸. For the

converse direction, assume 𝑒 ⪯̸ 𝑒′ for all 𝑒′ ∈ 𝐸− . Since 𝑒 ⪯ 𝑝 ,

this means that there is some finite unraveling 𝑒∗ of 𝑒 , such that

canonical CQ 𝑞𝑒∗ of 𝑒
∗
is a tree CQ that fits 𝐸. Hence, 𝑞𝑖 ⪯ 𝑞𝑒∗ for

some 𝑖 ≤ 𝑛.
From 2 to 1: let 𝑞′ be any tree CQ that fits (𝐸+, 𝐸−). Then 𝑞′ → 𝑝

and hence 𝑞′ ⪯ 𝑝 . Furthermore, for all 𝑒 ∈ 𝐸− , 𝑞′ ̸→ 𝑒 and hence

𝑞′ ⪯̸ 𝑒 . It follows that 𝑞𝑖 ⪯ 𝑞′ for some 𝑖 ≤ 𝑛, and therefore

𝑞′ ⊆ 𝑞𝑖 . □

Proposition 5.17. Let 𝐷 be a finite set of data examples and �̂� a

data example. Then the following are equivalent:

(1) there is a finite set of tree data examples 𝐹 such that (𝐹, 𝐷) is a
simulation duality relative to �̂� ,

(2) there is a finite number of critical tree obstructions 𝑞 for 𝐷 that

satisfy 𝑞 → �̂� (up to isomorphism).

Proof. “(1) ⇒ (2)”. Assume that (𝐹, 𝐷) is a simulation duality

relative to �̂� with 𝐹 a set of tree examples. Let 𝑛 be the maximum

number of variables of any example in 𝐹 . To show that there are

only finitely many critical tree obstructions 𝑞 for 𝐷 that satisfy

𝑞 ⪯ �̂� , it suffices to show that each such 𝑞 has at most 𝑛 variables.

So take a critical tree obstruction 𝑞 for 𝐷 with 𝑞 ⪯ �̂� . Then 𝑞 ⪯̸ 𝑒
for all 𝑒 ∈ 𝐷 and thus there is an 𝑒′ ∈ 𝐹 with 𝑒′ ⪯ 𝑞. Since 𝑒′ is
a tree, this implies 𝑒′ → 𝑞. Now, the homomorphism witnessing

the latter must be surjective as otherwise it gives rise to a tree CQ

𝑞′ that can be obtained from 𝑞 by dropping subtrees and that still

satisfies 𝑞′ ⪯̸ 𝑒 for all 𝑒 ∈ 𝐷 (because 𝑞′ ⪯ 𝑒 would yield 𝑒′ ⪯ 𝑒
by composition of simulations) which contradicts the fact that 𝑞

is a critical tree obstruction for 𝐷 . Consequently, the number of

variables in 𝑞 is bounded by the number of variables in 𝑒′, thus by
𝑛.

“(2) ⇒ (1)”. Assume that there is a finite number of critical tree

obstructions 𝑞 for 𝐷 that satisfy 𝑞 → �̂� , up to isomorphism. Let

𝐹 be a set of tree CQs that contains one representative for every

isomorphism class. Then (𝐹, 𝐷) is a simulation duality relative to �̂� .

To see this, first take a data example 𝑒 such that 𝑒 ⪯ 𝑒′ for some

𝑒′ ∈ 𝐷 and 𝑒 ⪯ �̂� . Then 𝑒′′ ⪯̸ 𝑒 for all 𝑒′′ ∈ 𝐹 because otherwise we

obtain 𝑒′′ ⪯ 𝑒′ be composing simulations, which contradicts the

fact that 𝑒′′ satisfies the first condition of critical tree obstructions.

Now take a data example 𝑒 with 𝑒′ ⪯̸ 𝑒 for all 𝑒′ ∈ 𝐹 and 𝑒 ⪯ �̂� .
Assume to the contrary of what we have to show that 𝑒 ⪯̸ 𝑒′′ for
all 𝑒′′ ∈ 𝐷 . By Lemma D.1, there is then some𝑚-finite unraveling

𝑢 of 𝑒 such that 𝑢 ⪯̸ 𝑒′′ for all 𝑒′′ ∈ 𝐷 . Moreover, 𝑢 ⪯ �̂� . Let 𝑢′ be
obtained from 𝑢 by dropping subtrees as long as 𝑢′ ⪯̸ 𝑒′′ for all
𝑒′′ ∈ 𝐷 . Clearly,𝑢′ is a critical tree obstruction. But then 𝐹 contains

a CQ that is isomorphic to 𝑢′, contradicting our assumption that

𝑒′ ⪯̸ 𝑒 for all 𝑒′ ∈ 𝐹 .
□

Theorem 5.16. The verification problem for bases of most-general

fitting tree CQs is in ExpTime.

Proof. Let 𝐸 = (𝐸+, 𝐸−) and {𝑞1, . . . , 𝑞𝑛} be given. We first

verify in ExpTime that each 𝑞𝑖 fits 𝐸.

By Thm. 2.1, we can compute, in single exponential time, for

each 𝑞𝑖 , a set of data examples 𝐷𝑞𝑖 , such that ({𝑒𝑞𝑖 }, 𝐷𝑞𝑖 ) is a ho-
momorphism duality. Let 𝐷 = {𝑒1 × · · · × 𝑒𝑛 | 𝑒𝑖 ∈ 𝐷𝑞𝑖 }. It is easy
to see (using Prop. A.1) that ({𝑒𝑞1

, . . . , 𝑒𝑞𝑛 }, 𝐷) is a homomorphism

duality. Since the elements of {𝑒𝑞1
, . . . , 𝑒𝑞𝑛 } are trees, it is also a

simulation duality.

We claim that the following are equivalent:

(1) {𝑞1, . . . , 𝑞𝑛} is a basis of most-general fitting tree CQs for 𝐸,

(2) ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐸−) is a simulation duality relative to 𝑝 , where

𝑝 = Π𝑒∈𝐸+ (𝑒),
(3) For each 𝑒 ∈ 𝐷 , there is 𝑒′ ∈ 𝐸− such that 𝑒 × 𝑝 ⪯ 𝑒′.
The equivalence of 1 and 2 is given by Prop. 5.15.

(2⇒ 3) Let 𝑒 ∈ 𝐷 . Since ({𝑒𝑞1
, . . . , 𝑒𝑞𝑛 }, 𝐷) is a homomorphism

duality and 𝑒 ∈ 𝐷 , we have 𝑒𝑞𝑖 ⪯̸ 𝑒 for all 𝑖 ≤ 𝑛. Hence, by Prop. A.1,
also 𝑒𝑞𝑖 ⪯̸ 𝑒 × 𝑝 . Therefore, since 𝑒 × 𝑝 ⪯ 𝑝 , we have that 𝑒 × 𝑝 ⪯ 𝑒′
for some 𝑒′ ∈ 𝐸− .

(3 ⇒ 2) Let 𝑒 be any data example such that 𝑒 ⪯ 𝑝 . If some

𝑒𝑞𝑖 ⪯ 𝑒 , then, since 𝑞𝑖 fits 𝐸, we know that 𝑒 ⪯̸ 𝑒′ for all 𝑒′ ∈ 𝐸− . If,
on the other hand, 𝑒𝑞𝑖 ⊀ 𝑒 for all 𝑒𝑞𝑖 , then 𝑒 ⪯ 𝑒′ for some 𝑒′ ∈ 𝐷 .
Hence, since 𝑒 ⪯ 𝑝 , by Prop. A.1, we have that 𝑒 ⪯ 𝑒′ × 𝑝 , and
therefore 𝑒 ⪯ 𝑒′′ for some 𝑒′′ ∈ 𝐸− .

This concludes the proof since (3) can be tested in ExpTime. □
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We now turn to the existence problem. Let (𝐸+, 𝐸−) be a collec-
tion of labeled examples. A fitting tree CQ 𝑞 for (𝐸+, 𝐸−) is critical
if no tree CQ that can be obtained from 𝑞 by removing subtrees

is a fitting. The following is a consequence of Propositions 5.15

and 5.17.

Lemma D.9. A collection (𝐸+, 𝐸−) of labeled examples has a basis

of most-general fitting tree CQs iff it has a finite number of critical

fitting tree CQs (up to isomorphism).

Lemma D.10. If 𝑞 is a critical fitting tree CQ for a collection of

labeled examples (𝐸+, 𝐸−), then the degree of 𝑞 is bounded by | |𝐸− | |.

Proof. The proof is similar to that of Lemma D.5. Let 𝑞(𝑥0) be
a critical fitting tree CQ for (𝐸+, 𝐸−). Assume to the contrary of

what we want to show that 𝑞 contains a variable 𝑥 with more than

| |𝐸− | | successors 𝑦1, . . . , 𝑦𝑚 . For 1 ≤ 𝑖 ≤ 𝑚, let 𝑞 |𝑖𝑥 denote the tree

CQ obtained from the subquery of 𝑞 rooted at 𝑥 by deleting all

successors 𝑦𝑖 , . . . , 𝑦𝑚 and the subtrees below them. We define 𝑆𝑖
to be the set of all values 𝑎 such that for some 𝑒 ∈ 𝐸− , there is a
homomorphism ℎ from 𝑞 |𝑖𝑥 to 𝑒 with ℎ(𝑥) = 𝑎. Clearly, 𝑆1 ⊇ 𝑆2 · · · .
Consequently, 𝑆 𝑗 = 𝑆 𝑗+1 for some 𝑗 ≤ ||𝐸− | |. Let 𝑞′ be obtained
from 𝑞 by removing the successor 𝑦 𝑗+1 of 𝑥 and the subtree below

it. We can show as in Lemma D.5 that 𝑞′ is fitting for (𝐸+, 𝐸−). This,
however, contradicts the fact that 𝑞 is critical. □

Theorem 5.18. The existence problem for bases of most-general

fitting tree CQs is in ExpTime. Moreover, if a collection of labeled

examples 𝐸 has a basis of most-general fitting tree CQs, then it has

such a basis in which every tree CQ has size at most double exponential

in | |𝐸 | |.

Assume that we are given a collection of labeled examples

𝐸 = (𝐸+, 𝐸−). We construct a TWAPA 𝔄 with polynomially many

states that accepts exactly the critical fitting tree CQs for 𝐸. By

Lemma D.10, 𝔄 may run on tree of degree at most𝑚 := | |𝐸− | |.

The TWAPA 𝔄 is the intersection of three TWAPAs 𝔄1, 𝔄2, and

𝔄3 such that

• 𝔄1 accepts those tree CQs that have no homomorphism to any

negative example;

• 𝔄2 accepts those tree CQs that have a homomorphism to some

negative example once any subtree is dropped;

• 𝔄3 accepts those tree CQs that have a homomorphism to all

positive examples.

Already in the context of arbitrary fittings, we have seen that the

automata 𝔄1 and 𝔄3 are easy to construct. The TWAPA 𝔄2 is a

straightforward variation, we only sketch the idea. The automaton

first sends a copy of itself to every node in the input tree except

the root. It then verifies that, when the subtree rooted at the node

that it currently visits is dropped, then the remaining input tree

maps to some negative example. It does this by traveling upwards

one step to the predecessor and memorizing the successor that it

came from. It also uses disjunction to guess an (𝐼 , 𝑐) ∈ 𝐸− and

an 𝑎 ∈ adom(𝐼 ) that the predecessor maps to. It then behave es-

sentially like 𝔄3, verifying the existence of a homomorphism to 𝐼 ,

but avoiding the subtree at the memorized successor. Once the

root of the input tree is reached, the automaton verifies that the

constructed homomorphism uses 𝑐 as the target.

Since 𝔄 accepts exactly the critical fitting tree CQs for 𝐸, by

Lemma D.9 it remains to solve the infinity problem for 𝔄. By

Point (6) of Theorem D.4, we obtain an ExpTime upper bound.

We next observe that if a collection of labeled examples 𝐸 has a

basis of most-general fitting tree CQs, then it has such a basis in

which every tree CQ has size at most double exponential in | |𝐸 | |. If,
in fact, 𝐸 has a basis of most-general fitting tree CQs, then we might

assume w.l.o.g. that the basis contains only critical fitting tree CQs.

By Lemma D.9, 𝐸 has only finitely many critical fitting tree CQs,

and by the construction of 𝔄 above and Point (6) of Theorem D.4,

every critical fitting tree CQ has size at most double exponential in

| |𝐸 | |.

D.9 The Product Simulation Problem into Trees
We prove the following result, which underlies almost all our lower

bounds for the verification and existence of fitting tree CQs.

Theorem 5.19. The product simulation problem into trees is

ExpTime-hard, even for a fixed schema.

The proof is by reduction of the product ↓-simulation problem

on instances with a fixed schema Σ and fixed target instance 𝐼 and

target value 𝑐 ∈ adom(𝐼 ), proved ExpTime-hard in [24]. We may

assume w.l.o.g. that adom(𝐼 ) contains at least two values.

Assume that we are given as input Σ-instances 𝐼1, . . . , 𝐼𝑛 and a

value 𝑐 ∈ adom(∏
1≤𝑖≤𝑛 𝐼𝑖 ). We refer to 𝐼1, . . . , 𝐼𝑛 as the source

instances and to 𝑐 as the source value. The aim is to decide whether

(∏
1≤𝑖≤𝑛 𝐼𝑖 , 𝑐) ⪯↓ (𝐼 , 𝑐).
Let Γ be the schema that contains all unary relations from Σ,

a single binary relation 𝑅, as well as fresh unary relations From𝑐

and To𝑐 for all 𝑐 ∈ adom(𝐼 ). Note that since Σ and 𝐼 are fixed, the

schema Γ is finite and fixed. For the product simulation problem

into trees that we are reducing to, we use schema Γ. As in the

problem that we are reducing from, it shall suffice to use a fixed

target (tree) instance 𝐼 ′.
We convert every instance 𝐼𝑖 , 1 ≤ 𝑖 ≤ 𝑛, into a Γ-instance 𝐼 ′

𝑖
by replacing every fact 𝑆 (𝑐, 𝑐′) ∈ 𝐼𝑖 with a collection of paths of

length 6. More precisely, we introduce one path for every value

𝑑 ∈ adom(𝐼 ) as follows, where each 𝑎𝑐,𝑐′,𝑆,𝑑,𝑖 is a fresh value:

• 𝑅(𝑎𝑐,𝑐′,𝑆,𝑑,1, 𝑐), 𝑅(𝑎𝑐,𝑐′,𝑆,𝑑,2, 𝑎𝑐,𝑐′,𝑆,𝑑,1),
𝑅(𝑎𝑐,𝑐′,𝑆,𝑑,3, 𝑎𝑐,𝑐′,𝑆,𝑑,2), 𝑅(𝑎𝑐,𝑐′,𝑆,𝑑,3, 𝑎𝑐,𝑐′,𝑆,𝑑,4),
𝑅(𝑎𝑐,𝑐′,𝑆,𝑑,4, 𝑎𝑐,𝑐′,𝑆,𝑑,5), 𝑅(𝑎𝑐,𝑐′,𝑆,𝑑,5, 𝑐′);
• From𝑑 (𝑎𝑐,𝑐′,𝑆,𝑑,4);
• To𝑑 ′ (𝑎𝑐,𝑐′,𝑆,𝑑,5) for all 𝑆 (𝑑,𝑑′) ∈ 𝐼 ;
• Out(𝑎𝑐,𝑐′,𝑆,𝑑,1) and In(𝑎𝑐,𝑐′,𝑆,𝑑,5).

This is illustrated in Figure 2 where we only show the unary rela-

tions on one path and only the ‘𝑖’ component of values 𝑎𝑐,𝑐′,𝑆,𝑑,𝑖 .

Informally, the labels From𝑑 and To𝑑 ′ identify the edge 𝑆 (𝑑, 𝑑′)
in 𝐼 that an edge 𝑆 (𝑐, 𝑐′) in ∏

1≤𝑖≤𝑛 𝐼𝑖 is mapped to. The labels In
and Out serve to deal with the issue that we are reducing from a

problem defined in terms of ↓-simulations to a problem defined in

terms of ↑↓-simulations. We shall refer to this as the ↓/↑↓-issue.
As the source instances for the product simulation problem into

trees, we use 𝐼 ′
1
, . . . , 𝐼 ′𝑛 plus an additional instance 𝐼 ′

0
illustrated in

Figure 3. For all 𝑑 ∈ adom(𝐼 ), it contains the following facts:
• 𝑃 (𝑐0) for every unary relation symbol 𝑃 ∈ Σ;
• 𝑅(𝑐𝑑,1, 𝑐0), 𝑅(𝑐𝑑,2, 𝑐𝑑,1), 𝑅(𝑐𝑑,3, 𝑐𝑑,2), 𝑅(𝑐𝑑,3, 𝑐𝑑,4);
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Figure 2: Gadget in 𝐼 ′
𝑖
replacing 𝑆 (𝑐, 𝑐′) ∈ 𝐼𝑖 .
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Figure 3: The additional instance 𝐼 ′
0

𝑐0𝑐
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1Out 1

2 2

3 3

4From𝑑 4
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To𝑑1

5

In
To𝑑2
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. . .
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Figure 4: Gadget in
∏

0≤𝑖≤𝑛 𝐼
′
𝑖
replacing a fact 𝑆 (𝑐, 𝑐′) in∏

1≤𝑖≤𝑛 𝐼𝑖 .

• Out(𝑐𝑑,1), From𝑑 (𝑐𝑑,4);
• for all 𝑑′ ∈ adom(𝐼 ):

– 𝑅(𝑐𝑑,4, 𝑐𝑑,𝑑 ′,5), 𝑅(𝑐𝑑,𝑑 ′,5, 𝑐0);
– In(𝑐𝑑,𝑑 ′,5), To𝑑 ′ (𝑐𝑑,𝑑 ′,5).

The source value is 𝑐′ = 𝑐0𝑐 .

Analyzing the interplay of the above gadgets, the reader may

verify that every edge 𝑆 (𝑐, 𝑐′) in the product

∏
1≤𝑖≤𝑛 𝐼𝑖 is replaced

in the product

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
by a gadget of the form shown in Figure 4.

There are actually some additional ‘improper’ paths from 𝑐 to 𝑐′

not shown in the figure that carry no From𝑑 label and/or no To𝑑 ′

label, but these map homomorphically into the properly labeled

paths and can be disregarded.

For any instance 𝐼 ′ and 𝑐′ ∈ adom(𝐼 ′), we have

(∏
0≤𝑖≤𝑛 𝐼

′
𝑖
, 𝑐′) ⪯↑↓ (𝐼 ′, 𝑐′) iff there is a homomorphism ℎ′ from

the unraveling𝑈 ′ of
∏

0≤𝑖≤𝑛 𝐼
′
𝑖
to 𝐼 ′ with ℎ(𝑐′) = 𝑐′. We prefer to

think in terms of this latter presentation. Let us discuss the shape

of 𝑈 ′. Recall that the values in unravelings are paths. We are most

interested in the paths 𝑝 ∈ adom(𝑈 ′) that end in a value of the

form 𝑐0
¯𝑑 with

¯𝑑 ∈ adom(∏
1≤𝑖≤𝑛 𝐼𝑖 ). Note that this is the case for

the root of 𝑈 ′, that is, the path of length 1 that consists of only

the source value. Then for every fact 𝑆 ( ¯𝑑, ¯𝑑′) in∏
1≤𝑖≤𝑛 𝐼𝑖 and any

path in𝑈 ′ that ends in ¯𝑑 , we find in𝑈 ′ a subtree rooted at 𝑝 that

can be obtained from the gadget in Figure 4 by duplicating the point

𝑐′ sufficiently many times so that a tree is obtained. This subtree

contains, for every fact 𝑆 (𝑑, 𝑑′) ∈ 𝐼 , a path of length 6 that starts

at 𝑝 and ends at a 𝑝′ ∈ adom(𝑈 ′) that in turn ends with a value

𝑐0
¯𝑑′. The first value on the path is labeled with Out, the fourth

with From𝑑 , and the fifth with In and with To𝑑 ′ . Informally, each

of the paths represents the choice for ℎ′ to map edge 𝑆 (𝑐, 𝑐′) to
𝑆 (𝑑,𝑑′) ∈ 𝐼 . Note that there is an and/or-issue arising here: ℎ′ needs
to map 𝑆 (𝑐, 𝑐′) only to a single 𝑆 (𝑑, 𝑑′) ∈ 𝐼 , but have paths for all
possible choices.

Unsurprisingly, the ↓/↑↓-issue shows up in𝑈 ′. There may in fact

be other successors of 𝑝 in 𝑈 ′ than the ones described above. For

every fact 𝑆 (𝑐′, 𝑐) in ∏
1≤𝑖≤𝑛 𝐼𝑖 , there is a gadget in

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
of

the form shown in Figure 4 with 𝑐0
¯𝑑 in place of 𝑐0𝑐

′
. This leads to

undesired successors of 𝑝 in𝑈 ′ that are labeled with In rather than

with Out, the latter being the case for the desired successors.

We next define a Γ-instance 𝐼 ′ that replaces 𝐼 . We start with a

tree of depth three that branches only at the root 𝑏0 and has one

leaf for every pair of values in 𝐼 . It contains the following facts for

all 𝑐, 𝑐′ ∈ adom(𝐼 ):
• 𝑅(𝑏0, 𝑏𝑐,𝑐′,1), 𝑅(𝑏𝑐,𝑐′,1, 𝑏𝑐,𝑐′,2), 𝑅(𝑏𝑐,𝑐′,2, 𝑏𝑐,𝑐′,3);
• From𝑐 (𝑏𝑐,𝑐′,1), To𝑐′ (𝑏𝑐,𝑐′,2);
• 𝑃 (𝑏𝑐,𝑐′,3) for all 𝑃 (𝑐′) ∈ 𝐼 .

To address the ↓/↑↓-issue and the and/or issue, we include in 𝐼 ′ addi-
tional gadgets. Note that both issues pertain to additional, undesired

successors in𝑈 ′. The additional gadgets, which we refer to as sinks,

can accommodate these surplus successors and the subtrees below

them. There are sinks of three types:

(I) when 𝑆 (𝑐, 𝑐′) is mapped to 𝑆 (𝑑, 𝑑′) ∈ 𝐼 , a sink that takes paths

labeled From𝑒 with 𝑒 ≠ 𝑑 ;

(II) when 𝑆 (𝑐, 𝑐′) is mapped to 𝑆 (𝑑, 𝑑′) ∈ 𝐼 , a sink that takes paths

labeled From𝑑 and To𝑒 with 𝑒 ≠ 𝑑′;
(III) sinks that deal with additional successors in 𝑈 due to the ↓/↑↓-

issue.

Each sink takes the form of a path. For a word 𝑤 = 𝜎1 · · ·𝜎𝑘 ∈
{𝑅, 𝑅−}∗, a full𝑤-path is a path in which the 𝑖-th edge is a forward

𝑅-edge if 𝜎𝑖 = 𝑅 and a backward 𝑅-edge if 𝜎𝑖 = 𝑅
−
. Moreover, every

value on the path except the starting value is labeled with all unary

relation symbols from Γ.
Let 𝑐, 𝑐′ ∈ adom(𝐼 ). The sink of Type (I) is attached to value

𝑏𝑐,𝑐′,1. We add the following facts:

• 𝑅(𝑠𝑐,𝑐′,𝐼 ,3, 𝑏𝑐,𝑐′,1), 𝑅(𝑠𝑐,𝑐′,𝐼 ,3, 𝑠𝑐,𝑐′,𝐼 ,4);
• From𝑒 (𝑠𝑐,𝑐′,𝐼 ,4) for all 𝑒 ∈ adom(𝐼 ) \ {𝑑};
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Figure 5: The instance 𝐼 ′ and the three types of sinks

• a full 𝑅𝑅𝑅−𝑅−𝑅−𝑅𝑅𝑅-path attached to 𝑠𝑐,𝑐′,𝐼 ,4.

The sink of Type (II) is also attached to value 𝑏𝑐,𝑐′,1. We add the

following facts:

• 𝑅(𝑏𝑐,𝑐′,1, 𝑠𝑐,𝑐′,𝐼 𝐼 ,5);
• To𝑒 (𝑠𝑐,𝑐′,𝐼 𝐼 ,5) for all 𝑒 ∈ adom(𝐼 ) \ {𝑑′};
• a full 𝑅𝑅−𝑅−𝑅−𝑅𝑅𝑅-path attached to 𝑠𝑐,𝑐′,𝐼 𝐼 ,5.

The sink of Type (III) is attached to value 𝑏𝑐,𝑐′,3. We add the follow-

ing facts:

• 𝑅(𝑠𝑐,𝑐′,𝐼 𝐼 𝐼 ,1, 𝑏𝑐,𝑐′,3);
• In(𝑠𝑐,𝑐′,𝐼 𝐼 𝐼 ,1) and To𝑒 (𝑠𝑐,𝑐′,𝐼 𝐼 𝐼 ,1)) for all 𝑒 ∈ adom(𝐼 );
• a full 𝑅−𝑅−𝑅𝑅𝑅𝑅−𝑅−𝑅−𝑅𝑅𝑅-path attached to 𝑠𝑐,𝑐′,𝐼 𝐼 𝐼 ,1.

This finishes the construction of 𝐼 ′, which is illustrated in Figure 5.

We make a few remark on sinks. It is important to realize which

labels are missing on the first node in the sink. For sinks of Type I,

the missing label is From𝑑 , for sinks of Type II it is To𝑑 ′ , and for

sinks of Type III it is Out. The latter, for example, is important

to make sure that sinks of Type III will only accommodate the

undesired successors that are due to the ↓/↑↓-issue (these are labeled
with In), but not the desired successors (which are labeled with

Out). The length and shape of the full paths that we attach in the

third items is determined by which nodes in the gadget in Figure 4

we intend to map to the sink. These are nodes of depth 3 for sinks

of Type (I), nodes of depth 5 for sinks of Type (II), and nodes of

depth 1 for sinks of Type (III). A path of length 6 is not enough

since, as described, the first node in the sink is missing some labels.

But note that all attached full paths end in a path of length 6 with

the pattern 𝑅−𝑅−𝑅−𝑅𝑅𝑅, and these are the actual sinks in the sense
that anything can be mapped there.

We also note that the structure of 𝐼 is not reflected by 𝐼 ′, but
rather by (the labels in)

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
. Instead, 𝐼 ′ is merely a naviga-

tion gadget that is traversed by any simulation of

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
in

a systematic way. This is made more precise in the proof of the

subsequent lemma, which asserts correctness of the reduction.

Lemma D.11. (∏
1≤𝑖≤𝑛 𝐼𝑖 , 𝑐) ⪯↓ (𝐼 , 𝑐) iff (

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
, 𝑐′) ⪯↑↓

(𝐼 ′, 𝑏𝑐,𝑐,3).6

6
We could use any 𝑏𝑐′,𝑐,3 in place of 𝑏𝑐,𝑐,3 .

Proof. “if”. Let 𝑆 ′ be a ↑↓-simulation that witnesses

(∏
0≤𝑖≤𝑛 𝐼

′
𝑖
, 𝑐′) ⪯↑↓ (𝐼 ′, 𝑏𝑐,𝑐,3). Define relation 𝑆 by setting

𝑆 := {( ¯𝑑, 𝑑) ∈ adom(∏
1≤𝑖≤𝑛 𝐼𝑖 ) × adom(𝐼 ) |

(𝑐0
¯𝑑, 𝑏𝑒,𝑑,3) ∈ 𝑆 ′ for some 𝑒}.

It can be verified that 𝑆 is a ↓-simulation from

∏
1≤𝑖≤𝑛 𝐼𝑖 to 𝐼 . In

fact, it is easy to use the definitions of the instances 𝐼 ′
𝑖
and 𝐼 ′ to

verify that Condition 1 of such simulations is satisfied.

For Condition 2, take an edge 𝑅( ¯𝑑, ¯𝑑′) in ∏
1≤𝑖≤𝑛 𝐼𝑖 and let

( ¯𝑑, 𝑒) ∈ 𝑆 . Then (𝑐0
¯𝑑, 𝑏 𝑓 ,𝑒,3) ∈ 𝑆 ′ for some 𝑓 . The edge 𝑅( ¯𝑑, ¯𝑑′)

gives rise to a corresponding gadget in

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
that starts at 𝑐0

¯𝑑

and ends at 𝑐0
¯𝑑′, as shown in Figure 4. The gadget has multiple

paths that branch at the end, one for each value in adom(𝐼 ). Con-
sider the path associated with 𝑒 ∈ adom(𝐼 ) and let us analyze the

value in 𝐼 ′ that 𝑆 ′ simulates this path into, starting from the root

that 𝑆 ′ simulates into 𝑏 𝑓 ,𝑒,3.

The first node on the path is labeled Out and 𝑆 ′ cannot simulate

it into the sink of Type III attached in 𝐼 ′ to 𝑏 𝑓 ,𝑒,3 since the first node
in that sink is missing the Out label. Thus, the node is simulated

into 𝑏 𝑓 ,𝑒,2. The second node on the path is then simulated into

𝑏 𝑓 ,𝑒,1. The third and fourth node, the latter labeled From𝑒 , are best

considered together. They cannot be simulated into the sink of

Type I attached to 𝑏 𝑓 ,𝑒,1 because the fourth node is labeled From𝑒 ,

but the second node in the sink is not. Consequently, the third node

is simulated into 𝑏0 and the fourth one into some 𝑏𝑒,𝑒′,1 as only

such nodes are labeled From𝑒 .

At the fourth node, the ‘path’ that we are following branches.

We are interested in further following the branch on which the fifth

node is labeled To𝑒′ . This node cannot be simulated into the sink

of Type II attached to 𝑏𝑒,𝑒′,1 because the first node in that sink is

not labeled To𝑒′ . It must consequently be mapped to 𝑏𝑒,𝑒′,2 which

leaves 𝑆 ′ with the only option of simulating the ending node of the

gadget 𝑐0
¯𝑑′ to 𝑏𝑒,𝑒′,3. The definition of 𝑆 thus yields ( ¯𝑑′, 𝑒′) ∈ 𝑆 .

Since the gadget contains a path that has labels From𝑒 and To𝑒′ , by
construction of the instances 𝐼 ′

1
, . . . , 𝐼 ′𝑛 we know that 𝑅(𝑒, 𝑒′) ∈ 𝐼 .

We have just shown that Condition 2 of ↓-simulations is satisfied.

“only if”. Assume that (∏
1≤𝑖≤𝑛 𝐼𝑖 , 𝑐) ⪯↓ (𝐼 , 𝑐) and let 𝑆 be a wit-

nessing ↓-simulation. To prove that (∏
0≤𝑖≤𝑛 𝐼

′
𝑖
, 𝑐′) ⪯↑↓ (𝐼 ′, 𝑏𝑐,𝑐,3),

it suffices to show that there is a homomorphism ℎ′ from the un-

raveling of

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
at 𝑐′ to 𝐼 ′ with ℎ′ (𝑐′) = 𝑏𝑐,𝑐,3.

We define ℎ′ step by step, obtaining the desired homomorphism

in the limit. Start with setting ℎ′ (𝑐′) = 𝑏𝑐,𝑐,3 and note that 𝑏𝑐,𝑐,3
satisfies the same unary relations in 𝐼 ′ that 𝑐 satisfies in 𝐼 .

We call a 𝑝 ∈ adom(𝑈 ′) a frontier point if ℎ′ (𝑝) is defined and

𝑈 ′ contains an edge 𝑅(𝑝, 𝑝𝑅𝑎) with ℎ′ (𝑝𝑅𝑎) undefined (the con-

struction will ensure that then ℎ′ (𝑝𝑅𝑎) is undefined for all edges

𝑅(𝑝, 𝑝𝑅𝑎) in 𝑈 ′). We will maintain the invariant that if ℎ′ (𝑝) is
defined, then

(∗) 𝑝 (which is a path, c.f. the definition of unravelings) ends in a

value that takes the form 𝑐0
¯𝑑 with

¯𝑑 ∈ adom(∏
1≤𝑖≤𝑛 𝐼𝑖 ) and

there is an 𝑒 ∈ adom(𝐼 ) with ℎ′ (𝑝) = 𝑏 𝑓 ,𝑒,3 (for some 𝑓 ) and

( ¯𝑑, 𝑒) ∈ 𝑆 .
We extend ℎ′ by repeatedly selecting frontier points 𝑝 whose length
as a path is as short as possible (for fairness). Let 𝑝 end at 𝑏. By

Invariant (∗), 𝑏 takes the form 𝑐0
¯𝑑 with

¯𝑑 ∈ adom(∏
1≤𝑖≤𝑛 𝐼𝑖 ) and
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there is an 𝑒 ∈ adom(𝐼 ) with ℎ′ (𝑝) = 𝑏 𝑓 ,𝑒,3 (for some 𝑓 ) and

( ¯𝑑, 𝑒) ∈ 𝑆 . Now consider every edge 𝑅( ¯𝑑, ¯𝑑′) ∈ ∏
1≤𝑖≤𝑛 𝐼𝑖 . The

edge gives rise to a corresponding gadget in

∏
0≤𝑖≤𝑛 𝐼

′
𝑖
that starts

at 𝑐0
¯𝑑 and ends at 𝑐0

¯𝑑′, as shown in Figure 4. This in turns gives

rise to a subtree 𝑈 in 𝑈 ′ obtained from the gadget from Figure 4

by duplicating the point 𝑐′ sufficiently many times so that a tree

is obtained. In fact, we shall view this subtree as several subtrees,

one for each successor of 𝑝 or, in other words, one subtree for

every label From𝑑 . Since ( ¯𝑑, 𝑒) ∈ 𝑆 , we find an 𝑒′ ∈ adom(𝐼 ) such
that ( ¯𝑑′, 𝑒′) ∈ 𝑆 . We now extend ℎ′ to the mention subtree in the

following way:

• ℎ′ maps the initial path in the subtree with the From𝑒 label

upwards in 𝐼 ′ from 𝑏 𝑓 ,𝑒,3, to the root 𝑏0, and then downwards

again one step to 𝑏𝑒,𝑒′,1. At this point, the subtree branches.

The branch labeled To𝑒′ is mapped downwards the remaining

two steps to 𝑏𝑒,𝑒′,3 and all other branches are mapped to the

sink of Type II attached to 𝑏𝑒,𝑒′,1, and so are the entire subtrees

of𝑈 ′ below them.

• ℎ′ maps all path with a From𝑔 label, 𝑔 ≠ 𝑒 , upwards from 𝑏 𝑓 ,𝑒,3
for two steps, and then down into the sink of Type I attached

to 𝑏 𝑓 ,𝑒,1; the entire subtrees of 𝑈
′
below them are also mapped

into that sink.

This does not yet complete the extension of ℎ′ as we have not

necessarily covered all successors of 𝑝 in 𝑈 ′ with the above con-

struction. We now treat the remaining ones. Consider every edge

𝑅( ¯𝑑′, ¯𝑑) ∈ ∏
1≤𝑖≤𝑛 𝐼𝑖 . The edge gives rise to a successor 𝑝𝑅−𝑐0

¯𝑑′

of 𝑝 in 𝑈 ′. We map this successor, as well as the entire subtree of

𝑈 ′ below it, to the sink of Type III attached to 𝑏 𝑓 ,𝑒,3. □

D.10 Lower Bounds
We start with the proof of Theorem 5.20, which we split up into

several theorems.

Theorem D.12. Verification and existence of unique fitting tree

CQs and bases of strongly most-general fitting tree CQs are ExpTime-

hard. This holds already when the tree CQ / all tree CQs in the basis

are promised to fit resp. when a fitting tree CQ is promised to exist.

Proof. We prove the hardness results in Thm. D.12 simultane-

ously, by reduction from the product simulation problem into trees,

see Thm. 5.19. Assume that we are given finite pointed instances

(𝐼1, 𝑎1), . . . , (𝐼𝑛, 𝑎𝑛) and (𝐽 , 𝑏) with 𝐽 a tree, and that we are to de-

cide whether Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏). Let 𝐼1, . . . , 𝐼𝑛, 𝐽 be formulated

in schema S.
We construct a collection of labeled examples 𝐸 = (𝐸+, 𝐸−), as

follows. Assume w.l.o.g. that adom(𝐼𝑖 ) ∩adom(𝐽 ) = ∅ for 1 ≤ 𝑖 ≤ 𝑛.
Let 𝑅 be a binary relation symbol that does not occur in S. 𝐸+
contains the instances (𝐼 ′

1
, 𝑎′

1
), . . . , (𝐼 ′𝑛, 𝑎′𝑛) where (𝐼 ′𝑖 , 𝑎

′
𝑖
) is obtained

by starting with (𝐼𝑖 , 𝑎𝑖 ) and adding the following facts:

(1) 𝑅(𝑎′
𝑖
, 𝑎𝑖 );

(2) 𝑅(𝑎′
𝑖
, 𝑏) and all facts from 𝐽 (we refer to this as the copy of 𝐽

in 𝐼 ′
𝑖
).

Since (𝐽 , 𝑏) is a tree, we may view it as a tree CQ 𝑞(𝑥). Let 𝑞′ (𝑥 ′) be
the tree CQ obtained from 𝑞 by making 𝑥 ′ the answer variable and
adding the atom 𝑅(𝑥 ′, 𝑥). It was shown in [11] that every tree CQ

has a frontier w.r.t. tree CQs which can be computed in polynomial

time. We may thus compute such a frontier F = {𝑝1 (𝑥), . . . , 𝑝𝑘 (𝑥)}
for 𝑞′. 𝐸− contains the instances (𝑝1, 𝑥), . . . , (𝑝𝑘 , 𝑥). It is easy to

verify that 𝑞′ is a fitting for 𝐸.
To establish all of the results in the theorem, it remains to show

the following:

(a) If Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏), then 𝑞′ is a unique fitting tree CQ

for 𝐸;

(b) If Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯̸ (𝐽 , 𝑏), then 𝐸 has no basis of strongly most-

general fitting tree CQs.

For Point (a), assume that Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏) and let 𝑞(𝑥) be
a fitting tree CQ for 𝐸. We have to show that 𝑞 ⪯ 𝑞′ and 𝑞′ ⪯ 𝑞.
The latter actually follows from the former since 𝑞 ⪯ 𝑞′ and 𝑞′ ⪯̸ 𝑞
would imply that 𝑞 simulates into some element of the frontier of

𝑞′, thus into a negative example, in contradiction to 𝑞(𝑥) being a
fitting for 𝐸.

To obtain 𝑞 ⪯ 𝑞′, in turn, it suffices to show Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
) ⪯ 𝑞′

since 𝑞 is a fitting and thus 𝑞 ⪯ Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
). Let 𝑆 be a simulation

witnessing Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏). We obtain 𝑆 ′ from 𝑆 as follows:

(1) add (𝑎′, 𝑥 ′) for 𝑎′ = (𝑎′
1
, . . . , 𝑎′𝑛);

(2) for all 𝑎 ∈ adom(Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
)) that contain an element 𝑐 of

adom(𝐽 ), add (𝑎, 𝑐).
It can be verified that 𝑆 ′ is a simulation of Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎

′
𝑖
) in 𝑞′. We

have thus shown that Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
) ⪯ 𝑞′, as desired.

For Point (b), let Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯̸ (𝐽 , 𝑏) and assume to the con-

trary of what we have to show that 𝐸 has a complete basis of

strongly most-general fitting tree CQs. By Lemma D.1, there is then

also an𝑚 ≥ 1 such that (𝑈𝑚, 𝑎) ⪯̸ (𝐽 , 𝑏) where 𝑈𝑚 is the𝑚-finite

unraveling of Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) and 𝑎 = 𝑎1 · · ·𝑎𝑛 . Since (𝑈𝑚, 𝑎) is a
tree, we may view it as a tree CQ 𝑝′ (𝑧). For all 𝑖 ≥ 0, let 𝑝′

𝑖
(𝑦0) be

obtained from 𝑝′ by making 𝑦0 the answer variable and adding an

initial 𝑅-zig-zag path, that is:

𝑅(𝑦0, 𝑧0), 𝑅(𝑦1, 𝑧0), 𝑅(𝑦1, 𝑧1), 𝑅(𝑦2, 𝑧1), 𝑅(𝑦2, 𝑧2), . . . , 𝑅(𝑦𝑖 , 𝑧𝑖−1), 𝑅(𝑦𝑖 , 𝑧)
where 𝑦0, . . . , 𝑦𝑖 and 𝑧0, . . . , 𝑧𝑖−1 are fresh variables. We argue that

each 𝑝′
𝑖
is a fitting for 𝐸. By construction, 𝑝′

𝑖
fits the positive exam-

ples. It does not fit any of the negative examples because any such

example simulates into 𝑞′ and thus we would obtain 𝑝′
𝑖
⪯ 𝑞′ and

any simulation witnessing this would also show𝑈𝑚 ⪯ (𝐽 , 𝑏).
Since𝐸 has a basis of stronglymost-general fitting tree CQs, there

is some CQ 𝑞 that maps into infinitely many of the tree CQs 𝑝′
𝑖
.

Since 𝑞 is connected and the length of the initial 𝑅-zig-zag path gets

longer with increasing 𝑖 , it follows that the query 𝑞 simulates into

an 𝑅-zig-zag path, and thus into the simple CQ 𝑞0 (𝑥) :- ∃𝑦 𝑅(𝑥,𝑦).
But then 𝑞 clearly simulates into a negative example, which is a

contradiction. □

Theorem D.13. Verification and existence of most-specific fitting

tree CQs is ExpTime-hard. This holds already when the tree CQ / all

tree CQs in the basis are promised to fit resp. when a fitting tree CQ

is promised to exist.

Proof. We again reduce from the product simulation prob-

lem into trees Assume that we are given finite pointed instances

(𝐼1, 𝑎1), . . . , (𝐼𝑛, 𝑎𝑛) and (𝐽 , 𝑏) with 𝐽 a tree, and that we are to de-

cide whether Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏).
We construct a collection of labeled examples 𝐸 = (𝐸+, 𝐸−), as

follows. Assume w.l.o.g. that adom(𝐼𝑖 ) ∩adom(𝐽 ) = ∅ for 1 ≤ 𝑖 ≤ 𝑛.
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Let 𝑅 be a fresh binary relation symbol and 𝐴1, 𝐴2, 𝐵1, 𝐵2 fresh

unary relation symbols. 𝐸+ contains instances (𝐼 ′
1
, 𝑎′

1
), . . . , (𝐼 ′𝑛, 𝑎′𝑛)

where (𝐼 ′
𝑖
, 𝑎′

𝑖
) is obtained by starting with (𝐼𝑖 , 𝑎𝑖 ) and adding the

following facts:

(1) 𝑅(𝑎′
𝑖
, 𝑎𝑖 );

(2) 𝑅(𝑎′
𝑖
, 𝑏) and all facts from 𝐽 (we refer to this as the copy of 𝐽

in 𝐼 ′
𝑖
);

(3) 𝑅(𝑎′
𝑖
, 𝑐1), 𝑅(𝑎′𝑖 , 𝑐3), 𝑅(𝑐2, 𝑐1), 𝑅(𝑐2, 𝑐3), 𝐴1 (𝑎′𝑖 ), 𝐵1 (𝑐1), 𝐵2 (𝑐3), 𝐴2 (𝑐2)

with 𝑐1, 𝑐2, 𝑐3 fresh values;

(4) 𝑅(𝑏, 𝑑), 𝐴1 (𝑏), 𝐴2 (𝑏), 𝐵1 (𝑑), 𝐵2 (𝑑) with 𝑏, 𝑑 fresh values.

The purpose of Point 3 above is to create, in the unraveling of

𝐼𝑖 at 𝑎
′
𝑖
, an infinite path that starts at 𝑎′

𝑖
. The path is obtained

by traveling 𝑎′
𝑖
, 𝑐2, 𝑐4, 𝑐3, 𝑎

′
𝑖
, ad infinitum. It alternates between

forward and backwards 𝑅-edges and the labeling of its nodes with

𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴1, . . . ensures that the path does not simulate into

a finite prefix of itself. Also note that there is a simulation of the

subinstance created in Point 3 in the subinstance created in Point 4.

Since (𝐽 , 𝑏) is a tree, we may view it as a tree CQ 𝑞(𝑥). It was
shown in [11] that every tree CQ has a frontier w.r.t. tree CQs

which can be computed in polynomial time. We may thus com-

pute such a frontier F = {𝑝1 (𝑥), . . . , 𝑝𝑘 (𝑥)} for 𝑞. 𝐸− contains

instances (𝐿1, 𝑥
′), . . . , (𝐿𝑘 , 𝑥 ′) where (𝐿𝑖 , 𝑥) is obtained by starting

with (𝑝𝑖 , 𝑥) and adding the following facts:

(1) 𝑅(𝑥 ′, 𝑥);
(2) 𝑅(𝑥, 𝑑), 𝐴1 (𝑏), 𝐴2 (𝑏), 𝐵1 (𝑑), 𝐵2 (𝑑) with 𝑏, 𝑑 fresh values.

Note that Point 2 above creates the same gadget as Point 4 in the

definition of 𝐼 ′
𝑖
.

Let 𝑞′ (𝑥 ′) be the tree CQ obtained from 𝑞 by making 𝑥 ′ the
answer variable and adding the atoms

(1) 𝑅(𝑥 ′, 𝑥);
(2) 𝑅(𝑥,𝑦), 𝐴1 (𝑦), 𝐴2 (𝑦), 𝐵1 (𝑦), 𝐵2 (𝑦) with 𝑦 a fresh variable.

Observe that 𝑞′ is a fitting for 𝐸. In fact, it is clear by construction

of 𝐸+ that 𝑞′ ⪯ (𝐼 ′
𝑖
, 𝑎′

𝑖
) for all (𝐼 ′

𝑖
, 𝑎′

𝑖
) ∈ 𝐸+. Moreover, since 𝑞 ⪯̸ 𝑝

for any 𝑝 ∈ F and the relation symbols in Point 2 of the definition

of (𝐿𝑖 , 𝑥 ′) do not occur in 𝑞, we also have 𝑞′ ⪯̸ (𝐿𝑖 , 𝑥 ′) for all
(𝐿𝑖 , 𝑥 ′) ∈ 𝐸− .

To establish the theorem, it remains to show the following:

(a) If Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏), then 𝑞′ is a strongly most-specific

fitting for 𝐸;

(b) If Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯̸ (𝐽 , 𝑏), then 𝐸 has no most-specific fitting.

For Point (a), assume that Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏) and let 𝑞 be

a fitting for 𝐸. We have to show that 𝑞 ⪯ 𝑞′. We first ar-

gue that Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
) ⪯ 𝑞′. Let 𝑆 be a simulation witnessing

Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯ (𝐽 , 𝑏). We obtain 𝑆 ′ from 𝑆 as follows:

(1) add (𝑎′, 𝑥 ′) for 𝑎′ = (𝑎′
1
, . . . , 𝑎′𝑛);

(2) add (𝑎, 𝑥) for all 𝑎 ∈ adom(Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
)) that contain only

values 𝑎𝑖 , 𝑏, and 𝑐2;

(3) add (𝑎,𝑦) for all 𝑎 ∈ adom(Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
)) that contain only

values 𝑐1, 𝑐3, and 𝑑 ;

(4) for all 𝑎 ∈ adom(Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
)) that contain an element 𝑐 of

adom(𝐽 ), add (𝑎, 𝑐).
It can be verified that 𝑆 ′ is a simulation of Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎

′
𝑖
) in 𝑞′. In

particular, every tuple 𝑎 ∈ adom(Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
)) that is reachable

in Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
) from (𝑎′

1
, . . . , 𝑎′𝑛) and contains any of the values

𝑐1, 𝑐2, 𝑐3, 𝑑 must be of one of the forms treated in Points 2 and 3

above. We have thus shown that Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
) ⪯ 𝑞′. Together

with 𝑞 ⪯ Π1≤𝑖≤𝑛 (𝐼 ′𝑖 , 𝑎
′
𝑖
), which holds since 𝑞 is a fitting of 𝐸, we

obtain 𝑞 ⪯ 𝑞′, as desired.
For Point (b), assume that Π1≤𝑖≤𝑛 (𝐼𝑖 , 𝑎𝑖 ) ⪯̸ (𝐽 , 𝑏). By Lemma D.1,

there is then also an 𝑚 ≥ 1 such that (𝑈𝑚, 𝑎) ⪯̸ (𝐽 , 𝑏) with 𝑈𝑚
the 𝑚-finite unraveling of Π1≤𝑖≤𝑛𝐼𝑖 at 𝑎 = (𝑎1, . . . , 𝑎𝑛). Let 𝑈 ′𝑚
be 𝑈𝑚 extended with fact 𝑅(𝑥, 𝑎) and let 𝑞(𝑥) be 𝑈 ′𝑚 viewed as a

tree CQ. By construction of 𝐸+, 𝑞 ⪯ (𝐼 ′
𝑖
, 𝑎′

𝑖
) for all (𝐼 ′

𝑖
, 𝑎′

𝑖
) ∈ 𝐸+.

Moreover, 𝑞 ⪯̸ (𝐿𝑖 , 𝑥 ′) for all (𝐿𝑖 , 𝑥 ′) ∈ 𝐸− because otherwise

from the composition of simulations witnessing 𝑞 ⪯ (𝐿𝑖 , 𝑥 ′) and
𝑝𝑖 ⪯ (𝐽 , 𝑏) we may obtain a simulation witnessing (𝑈𝑚, 𝑎) ⪯̸ (𝐽 , 𝑏),
a contradiction. Thus, 𝑞 is a fitting for 𝐸. For every 𝑖 ≥ 1, let 𝑞𝑖
be 𝑞 extended with a path on variables

¯𝑏, 𝑥1, . . . , 𝑥𝑖 that alternates

between forwards and backwards 𝑅-edges (starting with forwards)

and is additionally labeled with atoms

𝐴1 (𝑥0), 𝐵1 (𝑥1), 𝐴2 (𝑥2), 𝐵2 (𝑥3), 𝐴1 (𝑥4) . . .
to achieve that it does not map into a finite prefix of itself, as

described above. It is easy to verify that 𝑞𝑖 is a fitting for all 𝑖 ≥ 1.

Clearly, 𝑞𝑖 ≺ 𝑞𝑖+1 for all 𝑖 ≥ 1. To finish the proof, it thus remains

to show that there is no fitting 𝑝 for 𝐸 such that 𝑞𝑖 ⪯ 𝑝 for all 𝑖 ≥ 1.

Assume to the contrary that there is such a 𝑝 (𝑥). Then 𝑝 ⪯ (𝐼 ′
1
, 𝑎′

1
).

Let ℎ be a homomorphism from 𝑝 to (𝐼 ′
1
, 𝑎′

1
) with ℎ(𝑥) = 𝑎′

1
. We

must find a 𝑅(𝑥,𝑦) ∈ 𝑝 such that for infinitely many 𝑖 , there is

a homomorphism ℎ𝑖 from 𝑞𝑖 to 𝑝 with ℎ𝑖 (𝑥) = 𝑥 and ℎ𝑖 ( ¯𝑏) = 𝑦.

Then ℎ(𝑦) = 𝑎𝑖 as the only other option ℎ(𝑦) = 𝑏 implies that

(𝑈𝑚, 𝑎) ⪯ (𝐽 , 𝑏), which is not the case. Consequently, each ℎ𝑖 ◦ ℎ
maps the path

¯𝑏, 𝑥1, . . . , 𝑥𝑖 in 𝑞𝑖 to the subinstance of 𝐼 ′
1
induced by

the values 𝑎𝑖 , 𝑐1, 𝑐2, 𝑐3. But clearly there is no tree instance (resp.

tree CQ) that admits a homomorphism from all paths
¯𝑏, 𝑥1, . . . , 𝑥𝑖 ,

𝑖 ≥ 1, and also a homomorphism to this subinstance. □

Next, we prove a matching lower bound. The proof applies si-

multaneously to tree CQs and to arbitrary CQs.

Theorem D.14. The existence problem is ExpTime-hard for weakly

most-general fitting CQs and for weakly most-general fitting tree CQs.

Proof. We adapt a proof of ExpTime-hardness of the simulation

problem for concurrent transition systems from [28]. Specifically,

we reduce from the word problem for alternating, linear space

bounded Turing machines (TMs). It is well known that there is

a fixed such TM whose word problem is ExpTime-complete [17].

Given a word𝑤 , we thus construct a collection of labeled examples

(𝐸+, 𝐸−) such that (𝐸+, 𝐸−) permits a weakly most-general fitting

CQ iff 𝑀 does not accept𝑤 . The weakly most-general fitting CQ

of (𝐸+, 𝐸−) is always a tree CQ, therefore this reduction shows

hardness of the existence problem for CQs as well as of the existence

problem for tree CQs.

In [24], a similar adaptation of the reduction in [28] is used to

show that deciding the existence of an arbitrary fitting EL concept

/ directed tree CQ is ExpTime-hard. In our adaptation, we need to

be more careful since we are interested in the existence of weakly

most-general fittings.

For our purposes, an alternating Turing machine (ATM)𝑀 is a tu-

ple𝑀 = (Γ, 𝑄∀, 𝑄∃, ↦→, 𝑞0, 𝐹acc, 𝐹rej) consisting of a finite set of tape
symbols Γ, a set of universal states𝑄∀ , a set of existential states𝑄∃ ,
a set of accepting states 𝐹acc, a set of rejecting states 𝐹rej an initial
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state𝑞0 ∈ 𝑄∀ and a transition relation ↦→⊆ 𝑄×Γ×𝑄×Γ×{−1, 0, +1}.
The last component of the transition relation that is either −1, 0 or

+1 indicates the head of the TM moving to the left, staying at the

same tape cell, and moving to the right, respectively. We assume

that the sets 𝑄∀ , 𝑄∃ , 𝐹acc, 𝐹rej partition 𝑄 and refer to states in

𝐹acc ∪ 𝐹rej as final states. A configuration of 𝑀 is universal if its

state is universal, and likewise for existential configurations and

final configurations. In our model of alternation, every existential

or universal configuration has exactly two successor configura-

tions and every final configuration has no successor configurations.

Hence, we write (𝑞, 𝑎) ↦→ ((𝑞ℓ , 𝑏ℓ ,Δℓ ), (𝑞𝑟 , 𝑏𝑟 ,Δ𝑟 )) to indicate that

when 𝑀 is in state 𝑞 ∈ 𝑄∀ ∪𝑄∃ reading symbol 𝑎, it branches to

“the left” with (𝑞ℓ , 𝑏ℓ ,Δℓ ) and to “the right” with (𝑞𝑟 , 𝑏𝑟 ,Δ𝑟 ). These
directions are not related to the movement of the head on the tape.

Furthermore, we assume that ↦→ alternates between existential

states and universal states, that 𝑞0 is a universal state, and that𝑀

always reaches a final state.

With each configuration that is reached by an alternating TM𝑀

on an input𝑤 , we associate an acceptance value of 1 or 0 as follows.

Final configurations with an accepting state have acceptance value

1 and final configurations with a rejecting state have acceptance

value 0. The acceptance value of a universal configuration is the

minimum of the acceptance value of its two successors. The accep-

tance value of an existential configuration is the maximum of the

acceptance value of its two successors. An alternating TM accepts

input𝑤 if the initial configuration 𝑞0𝑤 of𝑀 on𝑤 has acceptance

value 1 and rejects 𝑤 otherwise.

Let 𝑀 = (Γ, 𝑄∀, 𝑄∃, ↦→, 𝑞0, 𝐹acc, 𝐹rej) be a fixed alternating TM

with linear space bound 𝑠 (𝑛). Given a word 𝑤 with |𝑤 | = 𝑛, we

construct pointed instances (𝐼𝑖 , 𝑐𝑖 ) for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑠 (𝑛) to be

used as positive examples and a pointed instance (𝐽 , 𝑐) to be used

as the only negative example. As the schema, we use the unary

relation symbols Reject, Accept and the binary relation symbols

𝑟𝑞,𝑎,𝑖 and ℓ𝑞,𝑎,𝑖 for all 𝑞 ∈ 𝑄 , 𝑎 ∈ Γ and 𝑖 with 1 ≤ 𝑖 ≤ 𝑠 (𝑛). What

we want to achieve is that

(1) if 𝑀 accepts 𝑤 , then (∏
1≤𝑖≤𝑠 (𝑛) 𝐼𝑖 , 𝑐1 . . . 𝑐𝑠 (𝑛) ) → (𝐽 , 𝑐) and

thus there is no fitting CQ;

(2) if𝑀 rejects𝑤 , then the computation tree of𝑀 on𝑤 , defined

in the usual way, describes a fitting tree CQ 𝑞; moreover, we

can extract from 𝑞 a weakly most-general CQ by dropping

subtrees.

We start with the pointed instances (𝐼𝑖 , 𝑐𝑖 ). Each 𝐼𝑖 uses the values 𝑎
and (𝑞, 𝑎) for all 𝑞 ∈ 𝑄 and 𝑎 ∈ Γ to represent the 𝑖-th tape cell of𝑀 .

The value 𝑎 represents that the head of𝑀 is not on cell 𝑖 and that

cell 𝑖 contains the symbol 𝑎. The value (𝑞, 𝑎) represents that the
head of𝑀 is on cell 𝑖 , that𝑀 is in state 𝑞 and that the cell 𝑖 contains

the symbol 𝑎. The facts in each 𝐼𝑖 ensure that 𝑟𝑞,𝑎,𝑖 (𝑒, 𝑒′) is true in
the part of

∏
1≤𝑖≤𝑠 (𝑛) 𝐼𝑖 that is reachable from the value 𝑐1 . . . 𝑐𝑠 (𝑛)

iff in state 𝑞, reading symbol 𝑎 and head at tape cell 𝑖 ,𝑀 branches

right from the configuration represented by 𝑒 to the configuration

represented by 𝑒′. The same is true for the facts ℓ𝑞,𝑎,𝑖 (𝑒, 𝑒′) and
branching left.

For each transition (𝑞, 𝑎) ↦→ ((𝑞ℓ , 𝑏ℓ ,Δℓ ), (𝑞𝑟 , 𝑏𝑟 ,Δ𝑟 )) of 𝑀 , 𝐼𝑖
contains the following facts:

(1) Facts that correspond to the head moving away from cell 𝑖:

ℓ𝑞,𝑎,𝑖 ((𝑞, 𝑎), 𝑏ℓ ) if Δℓ ≠ 0,

𝑟𝑞,𝑎,𝑖 ((𝑞, 𝑎), 𝑏𝑟 ) if Δ𝑟 ≠ 0.

(2) Facts that correspond to the head staying on cell 𝑖:

ℓ𝑞,𝑎,𝑖 ((𝑞, 𝑎), (𝑞ℓ , 𝑏ℓ )) if Δℓ = 0,

𝑟𝑞,𝑎,𝑖 ((𝑞, 𝑎), (𝑞𝑟 , 𝑏𝑟 )) if Δ𝑟 = 0.

(3) Facts that correspond to the head moving onto cell 𝑖 from cell

𝑖 − 1 or 𝑖 + 1. For all 𝑏 ∈ Γ:
ℓ𝑞,𝑎,𝑖−1 (𝑏, (𝑞ℓ , 𝑏)) if Δℓ = +1,
𝑟𝑞,𝑎,𝑖−1 (𝑏, (𝑞𝑟 , 𝑏)) if Δ𝑟 = +1,
ℓ𝑞,𝑎,𝑖+1 (𝑏, (𝑞ℓ , 𝑏)) if Δℓ = −1,

𝑟𝑞,𝑎,𝑖+1 (𝑏, (𝑞𝑟 , 𝑏)) if Δ𝑟 = −1.

(4) Facts that correspond to the transition not modifying the cell 𝑖 .

For all 𝑗 ≠ 𝑖 with 1 ≤ 𝑗 ≤ 𝑠 (𝑛):
ℓ𝑞,𝑎,𝑗 (𝑏, 𝑏) if Δℓ = +1 and 𝑗 ≠ 𝑖 − 1,

𝑟𝑞,𝑎,𝑗 (𝑏, 𝑏) if Δ𝑟 = +1 and 𝑗 ≠ 𝑖 − 1,

ℓ𝑞,𝑎,𝑗 (𝑏, 𝑏) if Δℓ = −1 and 𝑗 ≠ 𝑖 + 1,

𝑟𝑞,𝑎,𝑗 (𝑏, 𝑏) if Δ𝑟 = −1 and 𝑗 ≠ 𝑖 + 1,

ℓ𝑞,𝑎,𝑗 (𝑏, 𝑏) if Δℓ = 0,

𝑟𝑞,𝑎,𝑗 (𝑏, 𝑏) if Δ𝑟 = 0.

Additionally, 𝐼𝑖 includes the following unary atoms for all 𝑎 ∈ Γ to

mark accepting and rejecting final configurations:

Reject((𝑞, 𝑎)), for all 𝑞 ∈ 𝐹rej,

Reject(𝑎),
Accept((𝑞, 𝑎)), for all 𝑞 ∈ 𝐹acc,

Accept(𝑎).
Note that

∏
1≤𝑖≤𝑠 (𝑛) 𝐼𝑖 contains the fact Accept(𝑒) iff 𝑒 represents

a configuration in an accepting state, similarly for Reject(𝑒) and
rejecting states. We do not treat the cases 𝑖 = 1 and 𝑖 = 𝑠 (𝑛)
in a special way since we can assume that 𝑀 does not move its

head beyond tape cell 1 or 𝑠 (𝑛). This completes the description

of the instances 𝐼𝑖 . We choose the values 𝑐𝑖 such that the value

𝑐1 . . . 𝑐𝑠 (𝑛) ∈ adom(
∏

1≤𝑖≤𝑠 (𝑛) 𝐼𝑖 ) represents the initial configura-
tion of𝑀 on𝑤 . For input𝑤 = 𝑎1 . . . 𝑎𝑛 and all 𝑖 with 1 ≤ 𝑖 ≤ 𝑠 (𝑛)
we choose

𝑐𝑖 =


(𝑞0, 𝑎1) if 𝑖 = 1

𝑎𝑖 if 2 ≤ 𝑖 ≤ 𝑛
𝛽 otherwise

where 𝛽 ∈ Γ is the symbol for an empty tape cell.

Next, we describe the negative example (𝐽 , 𝑐). Informally, the

instance 𝐽 together with the choice of 𝑐 ∈ adom(𝐽 ) encodes that a
computation is accepting. For that, adom(𝐽 ) contains the two val-

ues 0 and 1 for final configurations, the values (∀, 0, 0, 0), (∀, 1, 0, 0),
(∀, 0, 1, 0), (∀, 1, 1, 1) (∃, 0, 0, 0), (∃, 1, 0, 1), (∃, 0, 1, 1), (∃, 1, 1, 1) as
well as the two “sink”-values 𝑠1 and 𝑠2. A value of the form (∀, ℓ, 𝑟 , 𝑣)
represents that a configuration is in a universal state, that the left

successor configuration has acceptance value ℓ and that the right

successor configuration has acceptance value 𝑟 and the configu-

ration hence has acceptance value 𝑣 , and similarly for values of
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the form (∃, ℓ, 𝑟 , 𝑣). Reflecting this intuition, 𝐽 includes the fol-

lowing facts for all 𝑞 ∈ 𝑄 , 𝑎 ∈ Γ, 𝑖 with 1 ≤ 𝑖 ≤ 𝑠 (𝑛), and
(∗, ℓ, 𝑟 , 𝑣), (∗′, ℓ′, 𝑟 ′, 𝑣 ′) ∈ adom(𝐽 ) with ∗ ≠ ∗′:
• 𝑟𝑞,𝑎,𝑖 ((∗, ℓ, 𝑟 , 𝑣), (∗′, ℓ′, 𝑟 ′, 𝑣 ′)) if 𝑣 ′ = 𝑟 , and
• ℓ𝑞,𝑎,𝑖 ((∗, ℓ, 𝑟 , 𝑣), (∗′, ℓ′, 𝑟 ′, 𝑣 ′)) if 𝑣 ′ = ℓ .

Reflecting the acceptance behavior of final configurations, 𝐽 addi-

tionally includes the facts

Reject(0),Accept(1)

aswell as the following facts, for all𝑞 ∈ 𝑄 ,𝑎 ∈ Γ, 𝑖 with 1 ≤ 𝑖 ≤ 𝑠 (𝑛),
and (∗, ℓ, 𝑟 , 𝑣) ∈ adom(𝐽 ):

𝑟𝑞,𝑎,𝑖 ((∗, ℓ, 𝑟 , 𝑣), 𝑟 ) and ℓ𝑞,𝑎,𝑖 ((∗, ℓ, 𝑟 , 𝑣), ℓ) .

At this point, we have completely described the computational

behavior of𝑀 . If we stopped here, however, then a weakly most-

general fitting CQ would never exist, no matter whether𝑀 accepts

𝑤 or not. We thus extend 𝐽 with the following facts which ensure

that if there is a fitting CQ at all, then there is a weakly most-general

fitting CQ:

• 𝑟𝑞,𝑎,𝑖 (𝑠1, 𝑒) and ℓ𝑞,𝑎,𝑖 (𝑠1, 𝑒) for all 𝑒 ∈ adom(𝐽 ),
• 𝑟𝑞,𝑎,𝑖 (𝑒, 𝑠2) and ℓ𝑞,𝑎,𝑖 (𝑒, 𝑠2) for all 𝑒 ∈ adom(𝐽 ) \ {𝑠1, 𝑠2},
• 𝑟𝑞,𝑎,𝑖 ((∃, 1, 0, 1), 𝑠1), ℓ𝑞,𝑎,𝑖 ((∃, 0, 1, 1), 𝑠1),
• 𝑟𝑞,𝑎,𝑖 ((∃, 1, 0, 1), (∀, 1, 1, 1)), ℓ𝑞,𝑎,𝑖 ((∃, 0, 1, 1), (∀, 1, 1, 1)), and
• Accept(𝑠1), Reject(𝑠1)

for all 𝑞 ∈ 𝑄 , 𝑎 ∈ Γ and 𝑖 with 1 ≤ 𝑖 ≤ 𝑠 (𝑛). This completes the

construction of 𝐽 . We choose 𝑐 = (∀, 1, 1, 1) and set 𝐸 = (𝐸+, 𝐸−)
with 𝐸+ = {(𝐼𝑖 , 𝑐𝑖 ) | 1 ≤ 𝑖 ≤ 𝑠 (𝑛)} and 𝐸− = {(𝐽 , 𝑐)}.

It remains to show that the reduction is correct, that is:

𝑀 rejects𝑤 iff 𝐸 has a weakly most-general fitting CQ.

First, assume that 𝑀 accepts 𝑤 . To show that 𝐸 has

no weakly most-general fitting CQ, it suffices to show that

(∏
1≤𝑖≤𝑠 (𝑛) 𝐼𝑖 , 𝑐1 . . . 𝑐𝑠 (𝑛) ) → (𝐽 , 𝑐).
Let 𝐼 =

∏
1≤𝑖≤𝑠 (𝑛) 𝐼𝑖 and 𝑐 = 𝑐1 . . . 𝑐𝑠 (𝑛) . We define a homomor-

phism ℎ from 𝐼 to 𝐽 with ℎ(𝑐) = 𝑐 . If 𝑒 ∈ adom(𝐼 ) is not reachable
from 𝑐 , set ℎ(𝑒) = 𝑠1. If 𝑒 ∈ adom(𝐼 ) is reachable from 𝑐 , then it

describes a configuration of𝑀 that appears in the computation of

𝑀 on𝑤 . In the following, we will not distinguish values reachable

from 𝑐 in 𝐼 and configurations of𝑀 . Let 𝑣 be the acceptance value

associated with 𝑒 . If 𝑒 is a final configuration, set ℎ(𝑒) = 𝑣 . If 𝑒 is
an existential or a universal configuration, then 𝑒 must have a left

successor and a right successor. Let ℓ be the acceptance value of

the left successor and 𝑟 the acceptance value of the right successor

of 𝑒 . Set ℎ(𝑒) = (∀, ℓ, 𝑟 , 𝑣) if 𝑒 is universal and ℎ(𝑒) = (∃, ℓ, 𝑟 , 𝑣) if 𝑒
is existential.

To verify thatℎ is as required, first note thatℎ(𝑐) = (∀, 1, 1, 1) = 𝑐
as 𝑀 accepts 𝑤 and 𝑐 is a universal configuration. Then, let

𝑟𝑞,𝑎,𝑖 (𝑒, 𝑒′) be a fact in 𝐼 that is reachable from 𝑐 with 𝑒 a universal

configuration. The case of facts ℓ𝑞,𝑎,𝑖 and of existential configura-

tions is similar. Then ℎ(𝑒) = (∀, ℓ, 𝑟 , 𝑣) and ℎ(𝑒′) = (∃, ℓ′, 𝑟 ′, 𝑣 ′) for
some ℓ, 𝑟, 𝑣, ℓ′, 𝑟 ′, 𝑣 ′ with 𝑣 ′ = 𝑟 by definition of computations of𝑀

and definition of ℎ. Hence, 𝑟𝑞,𝑎,𝑖 (ℎ(𝑒), ℎ(𝑒′)) ∈ 𝐽 by construction.

Thus, ℎ is a homomorphism as required.

For the other direction, assume that𝑀 rejects𝑤 . From the compu-

tation of𝑀 on𝑤 we construct a CQ 𝑞 that is a weakly most-general

fitting of 𝐸. Informally, 𝑞 will be a smallest subset of the unraveling

of the computation of𝑀 on𝑤 that still witnesses that𝑀 rejects𝑤 .

For defining 𝑞 formally, we first introduce the notion of a mini-

mal path of the computation of𝑀 on𝑤 . A path of the computation

of 𝑀 on 𝑤 is a sequence 𝑝 = 𝑒1𝑑1 . . . 𝑑𝑛−1𝑒𝑛 where 𝑒1 is the ini-

tial configuration of 𝑀 on 𝑤 and for all 𝑖 , 𝑑𝑖 = 𝑟 if 𝑒𝑖 has right

successor 𝑒𝑖+1 and 𝑑𝑖 = 𝑙 if 𝑒𝑖 has left successor 𝑒𝑖+1. We define

tail(𝑒1𝑑1 . . . 𝑑𝑛−1𝑒𝑛) = 𝑒𝑛 . A path in the computation of𝑀 on𝑤 is

minimal if for all 𝑖 , 𝑒𝑖 has acceptance value 0 and if 𝑒𝑖 is a universal

configuration and has a left successor with acceptance value 0, then

𝑑𝑖 = ℓ .

Now, let𝑞(𝑒1) be the unary CQ that contains the following atoms

for all minimal paths 𝑝, 𝑝′ of the computation of𝑀 on𝑤 :

• 𝑟𝑞,𝑎,𝑖 (𝑝, 𝑝′) if 𝑝′ = 𝑝𝑟𝑒 and tail(𝑝) is a configuration with state

𝑞 and head at tape cell 𝑖 , which contains 𝑎.

• ℓ𝑞,𝑎,𝑖 (𝑝, 𝑝′) if 𝑝′ = 𝑝𝑙𝑒 and tail(𝑝) is a configuration with state

𝑞 and head at tape cell 𝑖 , which contains 𝑎.

• Reject(𝑝) if tail(𝑝) is a configuration in a rejecting state

Note that 𝑞 is finite due to the assumption that𝑀 always terminates.

By construction, it is a tree CQ and fg-connected. By Definition B.14

and Proposition B.16,𝑞 therefore has a frontier consisting of a single

query 𝐹 (𝑞). To prove that 𝑞(𝑒1) is a weakly most-general fitting CQ

for 𝐸, it thus remains to show that 𝑞(𝑒1) → (𝐼 , 𝑐), 𝑞(𝑒1) ̸→ (𝐽 , 𝑐)
and 𝐹 (𝑞) → (𝐽 , 𝑐).

We begin with 𝑞(𝑒1) → (𝐼 , 𝑐). Recall that by construction of 𝐼 ,

the values that are reachable from 𝑐 represent configurations of

the computation of 𝑀 on 𝑤 and that 𝑐 corresponds to the initial

configuration of𝑀 on𝑤 . We can thus construct a homomorphism

ℎ from 𝑞 to 𝐼 with ℎ(𝑒1) = 𝑐 by setting ℎ(𝑝) = tail(𝑝) for all
𝑝 ∈ var(𝑞).

Next, we show that 𝑞(𝑒1) ̸→ (𝐽 , 𝑐). Recall that 𝑐 = (∀, 1, 1, 1). For
all 𝑝 ∈ var(𝑞), we use 𝑞𝑝 (𝑝) to denote the restriction of 𝑞 to all

paths that start with 𝑝 and has answer variable 𝑝 . We show that

𝑞𝑝 (𝑝) ̸→ (𝐽 , 𝑐) for all 𝑝 ∈ var(𝑞) if tail(𝑝) is universal or final,
by induction on the depth of tree CQ 𝑞𝑝 (𝑝). The desired result

𝑞(𝑒1) ̸→ (𝐽 , 𝑐) then follows for 𝑝 = 𝑒1. In the induction start, let

𝑞𝑝 (𝑝) be of depth 0. Then tail(𝑝) must be final by construction of

𝑞 and hence 𝑞𝑝 (𝑝) = Reject(𝑝). It follows that 𝑞𝑝 (𝑝) ̸→ (𝐽 , 𝑐).
Next, let 𝑞𝑝 (𝑝) have depth > 0, with tail(𝑝) universal, and

assume that the statement holds for all 𝑞′𝑝 (𝑝′) of smaller depth.

By construction of 𝑞 tail(𝑝) = 𝑒 has acceptance value 0. Thus,

there must be an atom 𝑟𝑞,𝑎,𝑖 (𝑝, 𝑝𝑟𝑒′) or ℓ𝑞,𝑎,𝑖 (𝑝, 𝑝𝑙𝑒′) in 𝑞𝑝 and 𝑒′

must be existential or final. Assume that 𝑟𝑞,𝑎,𝑖 (𝑝, 𝑝𝑟𝑒′) is in 𝑞𝑝 ,
the other case is similar. If 𝑒′ is final, it must be rejecting and

hence 𝑞𝑝 contains Reject(𝑝𝑟𝑒′), implying that 𝑞𝑝 (𝑝) ̸→ (𝐽 , 𝑐). If 𝑒′
is in an existential state, then by construction 𝑞𝑝 must contain

both atoms 𝑟𝑞,𝑎,𝑖 (𝑝𝑟𝑒′, 𝑝′𝑟 ) for 𝑝′𝑟 = 𝑝𝑟𝑒′𝑟𝑒′′ and ℓ𝑞,𝑎,𝑖 (𝑝𝑟𝑒′, 𝑝′ℓ )
for 𝑝′

ℓ
= 𝑝𝑟𝑒′𝑙𝑒′′′. For both 𝑝′ = 𝑝′𝑟 and 𝑝′ = 𝑝′

ℓ
, we have

𝑞𝑝′ ̸→ (𝐽 , 1), 𝑞𝑝′ ̸→ (𝐽 , 𝑠2) since 1 and 𝑠2 do not have out-

going edges in 𝐽 , and 𝑞𝑝′ ̸→ (𝐽 , 𝑐) by the induction hypothe-

sis. Consequently, 𝑞𝑝𝑟𝑒′ (𝑝𝑟𝑒′) ̸→ (𝐽 , (∃, 1, 1, 1)), 𝑞𝑝𝑟𝑒′ (𝑝𝑟𝑒′) ̸→
(𝐽 , (∃, 1, 0, 1)), and 𝑞𝑝𝑟𝑒′ (𝑝𝑟𝑒′) ̸→ (𝐽 , (∃, 0, 1, 1)), implying that

𝑞𝑝 (𝑝) ̸→ (𝐽 , (∀, 1, 1, 1)), as required.
It remains to show 𝐹 (𝑞) → (𝐽 , 𝑐). For that, recall that by Def-

inition B.14, the answer variable of 𝐹 (𝑞) is 𝑒1 and the existential

variables of 𝐹 (𝑞) are 𝑢𝑒1
and 𝑢 (𝑝,𝑓 ) for all minimal paths 𝑝 and
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atoms 𝑓 ∈ 𝑞 such that 𝑝 occurs in 𝑓 . A variable of the latter kind

is a replica of 𝑝 . We construct a homomorphism ℎ from 𝐹 (𝑞) to 𝐽
with ℎ(𝑒1) = 𝑐 = (∀, 1, 1, 1). Start by setting ℎ(𝑒1) = (∀, 1, 1, 1) and
ℎ(𝑢𝑒1

) = 𝑠1. Now let 𝑢 (𝑝,𝑓 ) be a replica of the variable 𝑝 of 𝑞.

If tail(𝑝) is rejecting, then 𝑝 occurs in exactly two atoms in𝑞: 𝑓1 =

𝑑𝑞,𝑎,𝑖 (𝑝′, 𝑝) for some 𝑑 ∈ {𝑟, ℓ} and 𝑓2 = Reject(𝑝). Set ℎ(𝑢 (𝑝,𝑓1 ) ) =
0 and ℎ(𝑢 (𝑝,𝑓2 ) ) = 𝑠2.

If tail(𝑝) is existential, then 𝑝 occurs in exactly three atoms in 𝑞:

𝑓1 = 𝑑𝑞,𝑎,𝑖 (𝑝′, 𝑝) for some 𝑑 ∈ {𝑟, ℓ}, 𝑓2 = 𝑟𝑞′,𝑎′,𝑖′ (𝑝, 𝑝𝑟𝑒𝑟 ) and
𝑓3 = ℓ𝑞′,𝑎′,𝑖′ (𝑝, 𝑝𝑙𝑒ℓ ). Set ℎ(𝑢 (𝑝,𝑓1 ) ) = 𝑠1, ℎ(𝑢 (𝑝,𝑓2 ) ) = (∃, 0, 1, 1) and
ℎ(𝑢 (𝑝,𝑓3 ) ) = (∃, 1, 0, 1).

If tail(𝑝) is universal and not 𝑒1, then 𝑝 occurs in exactly two

atoms in 𝑞: 𝑓1 = 𝑑𝑞,𝑎,𝑖 (𝑝′, 𝑝) for some 𝑑 ∈ {𝑟, ℓ} and 𝑓2 =

𝑑′
𝑞′,𝑎′,𝑖′ (𝑝, 𝑝𝑑

′𝑒) for some 𝑑′ ∈ {𝑟, ℓ}. Set ℎ(𝑢 (𝑝,𝑓1 ) ) = 𝑠1 and

ℎ(𝑢 (𝑝,𝑓2 ) ) = (∀, 1, 1, 1).
To verify that ℎ is a homomorphism, consider an atom

𝑟𝑞,𝑎,𝑖 (𝑝, 𝑝′) in 𝑞, let 𝑢 (𝑝,𝑓 ) be a replica of 𝑝 in 𝐹 (𝑞) and let 𝑢 (𝑝′,𝑓 ′ )
be a replica of 𝑝′ in 𝐹 (𝑞). The case for ℓ𝑞,𝑎,𝑖 atoms is symmetrical.

If tail(𝑝) is a universal configuration, then by defini-

tion of ℎ, ℎ(𝑢 (𝑝,𝑓 ) ) ∈ {𝑠1, (∀, 1, 1, 1)} and ℎ(𝑢 (𝑝′,𝑓 ′ ) ) ∈
{0, 𝑠1, 𝑠2, (∃, 1, 0, 1), (∃, 0, 1, 1)}, since tail(𝑝′) must be existential or

final. By construction of 𝐽 , 𝑟𝑞,𝑎,𝑖 (ℎ(𝑢 (𝑝,𝑓 ) ), ℎ(𝑢 (𝑝′,𝑓 ′ ) )) ∉ 𝐽 implies

that ℎ(𝑢 (𝑝,𝑓 ) ) = (∀, 1, 1, 1) and ℎ(𝑢 (𝑝′,𝑓 ′ ) ) = 𝑠1 or ℎ(𝑢 (𝑝′,𝑓 ′ ) ) = 0.

In both cases the definitions of ℎ and 𝑞 imply 𝑓 = 𝑓 ′ and hence

𝑟𝑞,𝑎,𝑖 (𝑢 (𝑝,𝑓 ) , 𝑢 (𝑝′,𝑓 ′ ) ) ∉ 𝐹 (𝑞) by construction of 𝐹 (𝑞). Note that this
case also applies to 𝑝 = 𝑒1, where 𝑢 (𝑝,𝑓 ) is either 𝑝 or 𝑢𝑝 and the

fact 𝑓 is uniquely determined.

If tail(𝑝) is an existential configuration, then by definition

of ℎ, ℎ(𝑢 (𝑝,𝑓 ) ) ∈ {𝑠1, (∃, 1, 0, 1), (∃, 0, 1, 1)} and ℎ(𝑢 (𝑝′,𝑓 ′ ) ) ∈
{0, 𝑠1, 𝑠2, (∀, 1, 1, 1)}, since tail(𝑝′) must be universal or final. By

construction of 𝐽 , 𝑟𝑞,𝑎,𝑖 (ℎ(𝑢 (𝑝,𝑓 ) ), ℎ(𝑢 (𝑝′,𝑓 ′ ) )) ∉ 𝐽 implies that

ℎ(𝑢 (𝑝,𝑓 ) ) = (∃, 0, 1, 1) and ℎ(𝑢 (𝑝′,𝑓 ′ ) ) = 𝑠1 or ℎ(𝑢 (𝑝′,𝑓 ′ ) ) = 0. In

both cases the definitions of ℎ and 𝑞 imply 𝑓 = 𝑓 ′ and hence

𝑟𝑞,𝑎,𝑖 (𝑢 (𝑝,𝑓 ) , 𝑢 (𝑝′,𝑓 ′ ) ) ∉ 𝐹 (𝑞) by construction of 𝐹 (𝑞).
Hence, ℎ is a homomorphism as required. □

Theorem 5.21. For all 𝑛 ≥ 0, there is a collection of labeled ex-

amples of combined size polynomial in 𝑛 such that a fitting tree CQ

exists and the size of every fitting tree CQ is at least 2
2
𝑛
. This even

holds for a fixed schema.

Proof. The following construction extends the one used in the

proof of Thm. 3.25 with branching to force every fitting tree CQ

to have double exponential size. Let 𝐴 be the unary relation of the

schema and 𝑅, 𝐿 the binary relations.

First, we describe the positive examples which each will consist

of a cycle of prime length where two facts, an 𝑅 fact and an 𝐿

fact, connect an element of the cycle to the next one. Formally, for

𝑗 ≥ 1, let 𝐷 𝑗 denote the instance with domain {0, . . . , 𝑗 − 1} and
the following facts:

• 𝑅(𝑘, 𝑘 + 1), 𝐿(𝑘, 𝑘 + 1) for all 𝑘 < 𝑗 − 1,

• and 𝑅( 𝑗 − 1, 0), 𝐿( 𝑗 − 1, 0), 𝐴( 𝑗 − 1).
For 𝑖 ≥ 1, let 𝑝𝑖 denote the 𝑖-th prime number (where 𝑝1 = 2). Note

that by the prime number theorem, 𝐷𝑝𝑖 is of size 𝑂 (𝑖 log 𝑖).
For the negative examples, construct the instance 𝐼 with domain

{00, 01, 10, 11, 𝑏} and the following facts:

• 𝑅(00, 𝑎), 𝐿(00, 𝑎) for all 𝑎 ∈ {00, 01, 10},

• 𝐿(10, 11), and 𝑅(10, 𝑎) for all 𝑎 ∈ {00, 01, 10},
• 𝑅(01, 11), and 𝐿(01, 𝑎) for all 𝑎 ∈ {00, 01, 10},
• 𝑅(𝑏, 𝑏), 𝐿(𝑏, 𝑏), 𝐴(𝑏), and 𝑅(𝑏, 𝑎), 𝐿(𝑏, 𝑎) for all 𝑎 ∈ {00, 01, 10},
• 𝐿(11, 11), 𝑅(11, 11), 𝐴(11).
To establish the result of the theorem, we will show that there

is a tree CQ that fits the examples 𝐸+𝑛 = {𝐷𝑝𝑖 | 𝑖 = 1, . . . , 𝑛} and
𝐸−𝑛 = {(𝐼 , 𝑎) | 𝑎 ∈ {00, 01, 10}}, and that every fitting CQ has size at

least 2
2
𝑛
. For this we will talk about a tree CQ 𝑞 as if it were a tree,

i.e. use the notions of successors and predecessors of a variable as

well as subtree below a variable. Additionally, we will refer to a

binary tree where 𝐴 is holds at every leaf and every non-leaf has

exactly one direct 𝐿 successor and one direct 𝑅 successor as an

𝐿, 𝑅,𝐴-tree. We say that a tree CQ 𝑞(𝑥) contains an 𝐿, 𝑅,𝐴-tree if
there is a subset of atoms of 𝑞 that is an 𝐿, 𝑅,𝐴-tree rooted at 𝑥 . The

following claim holds for the negative examples:

Claim. Let 𝑞 be a tree CQ over the schema {𝐿, 𝑅,𝐴}. If 𝑞 does not
contain an 𝐿, 𝑅,𝐴-tree, then 𝑞 ⪯ (𝐼 , 𝑎) for some 𝑎 ∈ {00, 10, 01}.

Proof of the claim.We show this claim by induction on the height

of 𝑞(𝑥). In the induction start 𝑞 has height 0. If 𝑞 contains no 𝐿, 𝑅,𝐴

tree, then 𝑞 does not contain 𝐴(𝑥) and therefore 𝑞 ⪯ (𝐼 , 𝑎) for any
𝑎 ∈ {00, 10, 01}. Now let the claim hold for all tree CQs of height

at most 𝑖 and let 𝑞 be a tree CQ of height 𝑖 + 1. If 𝑞 contains no

𝐿, 𝑅,𝐴-tree, then there is a 𝑃 ∈ {𝐿, 𝑅} such that there is no direct

𝑃 successor 𝑥 ′ of 𝑥 that contains an 𝐿, 𝑅,𝐴-tree. Consider the case

𝑃 = 𝐿, the case 𝑃 = 𝑅 is analogous. Then there is a simulation

𝑆 that witnesses 𝑞 ⪯ (𝐼 , 01), that can be constructed as follows:

Start with (𝑥, 01) ∈ 𝑆 . If 𝑞 contains the atom 𝑅(𝑥, 𝑥 ′) for some

𝑥 ′, map 𝑥 ′ and the entire subtree below 𝑥 ′ to 11. If 𝑞 contains

the atom 𝐿(𝑥, 𝑥 ′), then, by the induction hypothesis, there is an

𝑎 ∈ {00, 01, 10} and a simulation from the subtree below 𝑥 ′ to (𝐼 , 𝑎).
Extend 𝑆 to the subtree below 𝑥 ′ according to this simulation. If 𝑞

contains 𝑅(𝑥 ′, 𝑥) or 𝐿(𝑥 ′, 𝑥) map 𝑥 ′ and the entire subtree below

𝑥 ′ to 𝑏. This completes the construction of 𝑆 and the proof of the

claim.

Now, let 𝑞 be the full binary 𝐿, 𝑅,𝐴-tree of depth (∏𝑛
𝑖=1

𝑝𝑖 ) − 1.

Observe that

∏𝑛
𝑖=1

𝐷𝑝𝑖 is a double-linked cycle of size
∏𝑛

𝑖=1
𝑝𝑖 > 2

𝑛

and 𝐴 is only true at the last element. Therefore, 𝑞 ⪯ 𝐷𝑝𝑖 for all 𝑖 =

1, . . . , 𝑛 and it can be shown that 𝑞 ⪯̸ (𝐼 , 𝑎) for all 𝑎 ∈ {00, 01, 10}..
Thus, 𝑞 is a fitting tree CQ. The query 𝑞 is even a weakly most-

general fitting of 𝐸+ and 𝐸− , as every element of its frontier no

longer contains an 𝐿, 𝑅,𝐴-tree.

Let 𝑝 be any fitting tree CQ over the schema. By the property

of 𝐼 shown in the claim, 𝑝 must contain a 𝐿, 𝑅,𝐴-tree, but since

𝑝 ⪯ 𝐷𝑝𝑖 for all 𝑖 = 1, . . . , 𝑛 every 𝐴 in this 𝐿, 𝑅,𝐴-tree must have

distance (∏𝑛
𝑖=1

𝑝𝑖 ) − 1 > 2
𝑛
from the root. Hence, 𝑝 must at least

have size 2
2
𝑛
. □
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