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Abstract. This paper connects the classes of weighted alternating finite automata
(WAFA), weighted finite tree automata (WFTA), and polynomial automata (PA).

First, we investigate the use of trees in the run semantics for weighted alternating
automata and prove that the behavior of a weighted alternating automaton can be char-
acterized as the composition of the behavior of a weighted finite tree automaton and a
specific tree homomorphism if weights are taken from a commutative semiring.

Based on this, we give a Nivat-like characterization for weighted alternating automata.
Moreover, we show that the class of series recognized by weighted alternating automata is
closed under inverses of homomorphisms, but not under homomorphisms. Additionally, we
give a logical characterization of weighted alternating automata, which uses weighted MSO
logic for trees.

Finally, we investigate the strong connection between weighted alternating automata
and polynomial automata. We prove: A weighted language is recognized by a weighted
alternating automaton iff its reversal is recognized by a polynomial automaton. Using the
corresponding result for polynomial automata, we are able to prove that the ZERONESS
problem for weighted alternating automata with weights taken from the rational numbers
is decidable.

1. Introduction

Non-determinism, a situation with several possible outcomes, is usually interpreted as a
choice. This view has deep historical and philosophical roots and is adapted to automata
theory in the following way: An (existential) automaton accepts if there exists at least one
successful run. However, we may as well view a situation with several possible outcomes as
an obligation: A universal automaton accepts only if all possible runs are successful. While
this notion of “universal non-determinism” is less prominent, without further context it is as
natural as the well known (existential) non-determinism. Allowing for the simultaneous use
of existential and universal non-determinism leads to the concept of alternation, such as in
alternating Turing machines [CKS81] or alternating automata on finite [BL80], or infinite
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structures [DS87]. States of an alternating finite automaton (AFA) are either existential, or
universal. For an existential state at least one of the outgoing runs needs to be successful,
for a universal state all outgoing runs need to be successful to make the entire run successful.
It is even possible to mix both modes by assigning a propositional formula over the states
to each pair of state and letter. Alternating finite automata have been known for a long
time. They are more succinct than finite automata and constructions like the complement,
or intersection are easy for them. Due to this, they have many uses such as a stepping stone
between logics and automata [DGV13], or in program verification [Var95].

While alternating automata recognize the same class of languages as finite automata,
the situation is different in the weighted setting. A weighted finite automaton (WFA) assigns
a weight to each of its transitions. The weight of a run is computed by multiplying its
transition weights. Finally, the automaton assigns to each input the sum over all weights of
runs corresponding to this input. By this, a weighted automaton recognizes a quantitative
language i.e. a mapping from the set of words into a weight structure. Depending on the
weight structure used, we may view a quantitative language as a probability distribution over
the words, as a cost or yield assignment, or as the likelihood or quantity of success for each
input. To simultaneously allow for a multitude of interesting weight structures, weighted
automata have been studied over arbitrary semirings [DKV09].

To adapt alternating automata into the weighted setting, it can be observed that the
existence of a run in a finite automaton becomes a sum over all runs in a weighted automaton.
Analogously, the demand for all runs to be successful becomes a product over all runs. More
precisely, if a weighted alternating finite automaton (WAFA) is in an additive state, it
will evaluate to the sum over the values of all outgoing runs. If the weighted alternating
automaton is in a multiplicative state, it will evaluate to the product over the values of all
outgoing runs. And again, we are able to mix both modes, this time by assigning polynomials
over the states to each pair of state and letter. Weighted alternating automata over infinite
words were studied in [CDH09] and in [AK11] over finite words. While these authors focused
on very specific weight structures, a more recent approach defines weighted alternating
automata over arbitrary commutative semirings [KM18].

Weighted alternating automata have the same expressive power as weighted automata if
and only if the semiring used is locally finite [KM18]. However, for many interesting semirings
such as the rational numbers, weighted alternating automata are strictly more expressive
than weighted automata. While we have a fruitful framework for weighted automata, woven
by results like the Nivat theorem for weighted automata [DK21], the equivalence of weighted
automata and weighted rational expressions [Sch61] and weighted restricted MSO logic
[DG07], or the decidability of equality due to minimization if weights are taken from a
field [Sch61] and many more, no such results are known for weighted alternating automata.
In this paper we will extend the results on weighted alternating automata by connecting
them to known formalisms and thereby establishing further characterizations of quantitative
languages recognized by weighted alternating automata. From there on, we will use these
connections to prove interesting properties for weighted alternating automata and vice versa
to translate known results for weighted alternating automata into other settings.

After a brief recollection of basic notions and notations in Section 2, Section 3 will
establish several normal forms for weighted alternating automata (Lemma 3.1, Lemma 3.2)
that are used as the basis of later proofs. Section 4 includes our core result (Theorem
4.5), a characterization of weighted alternating automata by the concatenation of weighted
finite tree automata (WFTA) together with certain homomorphisms. More precisely, we
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consider word-to-tree homomorphisms that translate words viewed as trees into trees over
some arbitrary ranked alphabet. We can show that a quantitative language is recognized by a
weighted alternating automaton if, and only if there exists word-to-tree homomorphism and
a weighted tree automaton such that the evaluation of the weighted alternating automata on
any given word is the same as the evaluation of the weighted tree automaton on the image of
the homomorphism of this word.

In Section 5 we will use this result to prove that the class of quantitative languages
recognized by weighted alternating automata is closed under inverses of homomorphisms
(Corollary 5.2). However, we can prove the same is not true for homomorphisms in general
(Lemma 5.3). Since the closure under homomorphisms plays a key part in the proof of
the Nivat theorem for weighted automata this prohibits a one-to-one translation of the
Nivat theorem for weighted automata into the setting of weighted alternating automata.
Nonetheless, we will utilize the connection between weighted alternating automata and
weighted tree automata, as well as a Nivat theorem for weighted tree automata, to prove an
adequate result for weighted alternating automata (Theorem 5.7). This will lead us directly
into a logical characterization of quantitative languages recognized by weighted alternating
automata with the help of weighted restricted MSO logic for weighted tree automata (Section
6 Theorem 6.2). It is well known that recognizable tree languages are closed under inverses of
tree homomorphisms. However, the same does not hold in the weighted setting for arbitrary
commutative semirings. Section 7 gives a precise characterization of the class of semirings
for which the respective class of recognizable weighted tree languages is closed under inverses
of homomorphisms (Theorem 7.1). For this purpose, we will use our core theorem, and a
result form [KM18].

Lastly, in Section 8, we investigate the connection between weighted alternating automata
and recently introduced polynomial automata [BTSW17] to prove the decidability of the
ZERONESS and EQUALITY problems for weighted alternating automata if weights are
taken from the rational numbers (Corollary 8.2).

2. Preliminaries

Let N = {0, 1, 2, . . .} denote the set of non-negative integers. For sets M,N we denote the
cardinality of M by |M |, the set of subsets of M by P(M), the Cartesian product of M and
N by M ×N , and the set of mappings from M to N by NM = {f | f : M → N}. If M is
finite and non-empty, it is also called an alphabet.

For the remainder of this paper, let Σ,Γ and Λ denote alphabets. The set of all (finite)
words over Σ is denoted by Σ∗. Let |w| denote the length of a word w and Σk = {w ∈
Σ∗ | |w| = k}. The unique word in Σ0 is called the empty word and denoted by ε. The
concatenation of words u, v is denoted by u · v or just uv. A mapping h : Λ∗ → Σ∗ is called
a homomorphism if h(u · v) = h(u) · h(v) and h is non-deleting if h(a) ̸= ε for all a ∈ Λ.

A monoid is an algebraic structure (M, ·, 1), where · is a binary associative internal
operation and m ·1 = m = 1 ·m for all m ∈M . A monoid is commutative if · is commutative.

A semiring is an algebraic structure (S,+, ·, 0, 1), where (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, s · 0 = 0 = 0 · s for all s ∈ S, and s3 · (s1 + s2) = s3 · s1 + s3 · s2
and (s1 + s2) · s3 = s1 · s3 + s2 · s3 for all s1, s2, s3 ∈ S. A semiring is commutative if (S, ·, 1)
is commutative.

For the remainder of this paper, let S denote a commutative semiring.
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For any set M , we denote SM by S⟨⟨M⟩⟩. Furthermore, for L ⊆ M we define the
characteristic function 1L ∈ S⟨⟨M⟩⟩ by 1L(w) = 1 if w ∈ L and 1L(w) = 0 otherwise for
all w ∈M . An element s ∈ S⟨⟨Σ∗⟩⟩ is called a S-weighted Σ-language (for short: weighted
language).

Let Xn always denote a linearly ordered set with |Xn| = n ∈ N, we refer to the i-th
element of Xn by xi. Let S [Xn] denote the semiring of polynomials with coefficients in S and
commuting indeterminates x1, . . . , xn. We say m ∈ S [Xn] is a monomial if m = s·xk11 ·. . .·xknn
for some s ∈ S and k1, . . . , kn ∈ N. The degree of m is

∑n
i=1 ki. A monomial m is a proper

monomial if it has a non-zero degree. Each polynomial that can be written as a sum of
proper monomials is called a polynomial without constants and the set of all polynomials
without constants is denoted by S [Xn]const=0. For p, p1, . . . , pn ∈ S [Xn] let p⟨p1, . . . , pn⟩
denote the polynomial gained from the simultaneous substitution of xi by pi in p for all
1 ≤ i ≤ n.

Next, we give a concise collection of definitions from the topic of ranked trees that are
needed in this paper. For a more detailed introduction to trees and tree automata, we
recommend [CDG+08].

A ranked alphabet is an ordered pair (Γ,Rank), where Rank : Γ → N is a mapping.
Without loss of generality, we assume Xn∩Γ = ∅. Moreover, let Γ(r) = {γ ∈ Γ | Rank(γ) = r}
and Rank(Γ) = max{Rank(γ) | γ ∈ Γ}.

The set of Γ-terms over Xn is the smallest set TΓ[Xn] such that Γ(0) ∪Xn ⊆ TΓ[Xn];
and g(t1, . . . , tRank(g)) ∈ TΓ[Xn] for all g ∈ Γ and all t1, . . . , tRank(g) ∈ TΓ[Xn]. We denote
TΓ(X0) = TΓ(∅) by TΓ. We extend Rank by putting Rank(xi) = 0 for all i ∈ N. If Rank
is clear from the context, we just write g(t1, . . . , tk). Moreover, we identify g and g() for
g ∈ Γ(0) ∪ Xn. Hence, all terms t ∈ TΓ[Xn] are of the form t = g(t1, . . . , tk) for some
g ∈ Γ ∪Xn and t1, . . . , tk ∈ TΓ[Xn].

We define Pos : TΓ[Xn] → P(N∗) : g(t1, . . . , tk) 7→ {ε} ∪
⋃k

i=1{i} · Pos(ti). Let t =
g(t1, . . . , tk). The mapping Labelt : Pos(t) → Γ ∪ Xn is defined by Labelt(ε) = g; and
Labelt(w) = Labelti(v) if w = iv ∈ Pos(t). We will identify t and the mapping Labelt:
We write t(w) to denote Labelt(w) and refer to terms as trees. Consequently, we have
t−1(g) = {w ∈ Pos(t) | Labelt(w) = g} for all g ∈ TΓ[Xn]. This coincides with the definition
of a tree as a directed graph in the following way: The set of vertices is Pos(t), the root is ε,
and for u, v ∈ Pos(t) we have a (u, v)-edge iff v = ui for some i ∈ N.

For t = g(t1, . . . , tk), t
′ ∈ TΓ[Xn], and w ∈ Pos(t), the subtree of t at w, denoted by

t|w and the substitution of t′ in t at w, denoted by t⟨w ← t′⟩ are defined by t|ε = t and
t⟨ε← t′⟩ = t′ if w = ε; and t|w = ti|v and t⟨w ← t′⟩ = g(t1, . . . , ti−1, ti⟨v ← t′⟩, ti+1, . . . , tk)
for w = iv ∈ Pos(t). Moreover, let M ⊆ Pos(t) and |M | = l. We define t⟨M ← (t′1, . . . , t

′
l)⟩ =

t⟨ml ← t′l⟩ · · · ⟨m1 ← t′1⟩, where mi is the i-th element of M with regard to the lexicographical
order on N∗. In case t′1 = . . . = t′l = t′, we abbreviate t⟨M ← (t′1, . . . , t

′
l)⟩ by t⟨M ← t′⟩.

If M = t−1(xi), we write t⟨xi ← (t′1, . . . , t
′
l)⟩ to denote t⟨M ← (t′1, . . . , t

′
l)⟩. Finally, let

t⟨t′1, . . . , t′n⟩ = t⟨t−1(x1) ← t′1⟩ · · · ⟨t−1(xn) ← t′n⟩ denote the simultaneous substitution in
trees.

We say a tree t is non-deleting in l variables if it contains at least one symbol from Γ and
each of the variables x1, . . . , xl occurs at least once in t. We say t is linear in l variables if it
is non-deleting in l variables and each of the variables occurs at most once in t. Moreover, let
r(t) =

∑n
i=1 |t−1(xi)| denote the number of nodes of t labeled by variables. For any r ∈ N
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let T
(r)
Γ (Xn) = {t ∈ TΓ(Xn) | r(t) = r} be the set of Γ-trees with exactly r positions labeled

by variables.
A tree homomorphism h : TΓ → TΛ is a mapping such that for all g ∈ Γ(r) there exists

tg ∈ TΛ[Xr] with h(g(t1, . . . , tr)) = tg⟨h(t1), . . . , h(tr)⟩ for all t1, . . . , tr ∈ TΓ. We will denote
tg by h(g), even though tg is not necessarily in TΛ. A tree homomorphism is non-deleting
(resp. linear) if each h(g) is non-deleting (resp. linear) in Rank(g) variables. For more
information on tree homomorphisms consider Paragraph 1.4 in [CDG+08].

3. Weighted alternating finite automata

This section introduces weighted alternating finite automata (WAFA) and shows how to
achieve desirable normal forms of WAFA (Lemma 3.1, Lemma 3.2). We will follow the
definitions of [KM18].

A weighted alternating finite automaton (WAFA) is a 5-tuple A = (Q,Σ, δ, P0, τ), where
Q = {q1, . . . , qn} is a finite set of states, Σ is an alphabet, δ : Q× Σ→ S [Q] is a transition
function, P0 ∈ S [Q] an initial polynomial, and τ : Q→ S a final weight function.

Let A = (Q,Σ, δ, P0, τ) be a WAFA. Its state behavior [A] : Q×Σ∗ → S is the mapping
defined by

[A](q, w) =

{
τ(q) if w = ε,

δ(q, a)
〈
[A](q1, v), . . . , [A](qn, v)

〉
if w = av for a ∈ Σ .

Usually, we will write [A]q(w) instead of [A](q, w). Now, the behavior of A is the weighted
language [[A]] : Σ∗ → S defined by

[[A]](w) = P0

〈
[A]q1(w), . . . , [A]qn(w)

〉
.

A weighted language s is recognized by A if and only if [[A]] = s. Two WAFA are said to be
equivalent if they recognize the same weighted language.

Within the scope of this paper, we define a weighted finite automaton as follows: A
weighted finite automaton (WFA) is a WAFA A = ({q1, . . . , qn},Σ, δ, P0, τ) where P0 =∑n

j=1 sj · qj and δ(qi, a) =
∑n

j=1 s
a
ij · qj for all 1 ≤ i ≤ n, a ∈ Σ. This definition coincides

with the well known definition cf. [DG09],[DG07]. For example P0 = q1 + 3 · q4 corresponds
to initial weight 1 in q1, initial weight 3 in q4, and initial weight 0 in all other states; or
δ(q2, a) = 3 · q2 + 4 · q3 corresponds to a situation where state q2 has an a-loop with weight 3
and an a-transition to state q3 with weight 4 (and vice versa). Lastly, τ(q2) = 2 means state
q2 has final weight 2.

Let A be a WAFA with weights taken from S. We define M(q,a) as the set of monomials
that appear in δ(q, a) and M0 as the set of monomials that appear in P0. An element s ∈ S
is called a coefficient in A if s is the coefficient of a monomial in M0, or the coefficient
of a monomial in M(q,a) for some q ∈ Q, a ∈ Σ. Similarly, s is called a constant in A if
P0(0, . . . , 0) = s, or δ(q, a)(0, . . . , 0) = s for some q ∈ Q, a ∈ Σ.

We say A is nice if it has the following properties:
(i) δ(q, a) is a finite sum of pairwise distinct monomials of the form s · qk11 · . . . · qknn for all

q ∈ Q, a ∈ Σ,
(ii) all monomials in P0 and δ are proper,
(iii) P0 = q1.

Moreover, we say that A is purely polynomial if:
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(iv) all monomials (in P0 and δ) have coefficient 1.
We want to show that we can always assume a WAFA to be nice and purely polynomial.

Lemma 3.1. For each WAFA A there exists an equivalent WAFA A′ such that (i)-(iv) hold
for A′. The construction of A′ is effective.

Proof. Let A = (Q,Σ, δ, P0, τ) be a WAFA.
(i) Since · is distributive and commutative in S [Q] there exists an equivalent WAFA A′

such that (i) holds.
(ii) Assume (i) holds for A = (Q,Σ, δ, P0, τ). We define a WAFA A′ = (Q′,Σ, δ′, P ′

0, τ
′)

which includes a new state qc for each constant c in A. Furthermore, δ′ and P ′
0 are

as δ and P0, respectively, but each occurrence of each constant c is replaced by qc.
Moreover, δ′(qc, a) = qc for all a ∈ Σ and τ ′(qc) = c. There is a finite number of
constants in A. Thus, A′ is a WAFA. It is easy to see that A and A′ are equivalent
and that (i)-(ii) hold for A′.

(iii) Assume (i)-(ii) hold for A. Due to Lemma 6.3 of [KM18], there exists an equiva-
lent WAFA A′ such that (i)-(iii) hold for A′. The construction of A′ is straight-
forward: we add a new state q to A with δ(q, a) = P0⟨δ(q1, a), . . . , δ(qn, a)⟩ and
τ(q) = P0⟨t(q1), . . . , τ(qn)⟩. We rename the states of A such that q becomes the new
q1. Lastly, we set P0 = q1.

(iv) Assume that (i)-(iii) hold for A. We define

Q′ = Q ∪ {qs | s is a coefficient in A}.

We may assume that the two sets forming this union are disjoint. Furthermore, let δ′

be defined by

δ′(q, a) =


∑

s·q1k1 ...qnkn∈M(q,a)

q1
k1 . . . qn

kn · qs if q ∈ Q and

q otherwise

for all q ∈ Q′, a ∈ Σ. Moreover, let τ ′ be defined by

τ ′(q) =

{
τ(q) if q ∈ Q and
s if q = qs

for all q ∈ Q′. Consider the WAFA A′ = (Q′,Σ, P0, δ
′, τ ′). It is easy to see that

[[A]] = [[A′]] and that every monomial in A′ has 1 as coefficient.
If the appropriate order on Q′ is chosen, properties (i)-(iii) hold for A′, too.

We would like to point out: while the construction described in the proof of Property
(iv) also works for WFA the resulting automaton does not have to be a WFA.

In [KM18] the transition function and the initial polynomial are not allowed to contain
constants. This corresponds to the property that runs are not allowed to terminate before
the entire word is read. Since it will help with several constructions, we allowed constants
in our definition. Nevertheless, as Lemma 3.1 (ii) shows, the introduction of constants
does not increase expressiveness since it is possible to simulate terminating transitions by
“deadlock”-states.

We say a WAFA (Q,Σ, δ, P0, τ) is equalized if all monomials occurring in δ have the
same degree.
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Lemma 3.2. For each WAFA A there exists an equivalent, equalized and niceWAFA A′.
The construction of A′ is effective.

Proof. Let A = (Q,Σ, δ, q1, τ) be a nice WAFA and d the maximum degree of monomials
occurring in δ. Let qn+1 be a new state and

δ′(q, a) =


∑

sq1k1 ...qnkn∈M(q,a)

s · q1k1 . . . qnkn · q
d−

∑n
u=1 ku

n+1 if q ∈ Q and

qdn+1 otherwise

for all q ∈ Q′, a ∈ Σ. As well as,

τ ′(q) =

{
τ(q) if q ∈ Q and
1 if q = qn+1

for all q ∈ Q′. Clearly, A′ = (Q ∪ {qn+1},Σ, δ′, q1, τ ′) is equalized. Also, A and A′ are
equivalent and A′ is nice.

Due to the form of the constructed polynomials and since the initial polynomial remains
unchanged, we may assume that A′ is nice. Moreover, we didn’t change the coefficients, thus
A′ is purely polynomial, if A was purely polynomial.

Nice WAFA can be represented in the following way: As usual we depict each state by a
circle. Then, each monomial s · qk11 . . . qknn in δ(qi, a) is represented by a multi-arrow which is
labeled by a : s, begins in qi, and has kj heads in qj for all 1 ≤ j ≤ n, respectively. In case
a multi-arrow has more than one head, we join these heads by a . If s = 1, we omit the
s-label. If s = 0, we omit the complete multi-arrow. The initial polynomial is represented
analogously. The final weights are represented as usual. Note that the multi-arrows can be
viewed as a parallel or simultaneous transitions and that this representation coincides with
the usual representation if the automaton is a WFA. Consider the following example:

Example 3.3. Let S = (N,+, ·, 0, 1), Σ = {a, b}, and s the weighted language

s : Σ∗ → S :

w 7→

{
(2j)

2i if w = aibj ,

0 otherwise.

We consider the WAFA A = ({q, p},Σ, P0, δ, τ), defined by:

P0 = q δ(q, a) = q2 δ(q, b) = p
τ(q) = 1 τ(p) = 2 δ(p, a) = 0 δ(p, b) = 2 · p

A depiction of this automaton can be seen in Figure 1. One can check that [[A]] = s, for
example:

[[A]](aabb) = q
〈
[A]q(aabb), [A]p(aabb)

〉
= [A]q(aabb) = q2

〈
[A]q(aabb), [A]p(aabb)

〉
=

(
[A]q(abb)

)2
=

(
[A]q(bb)

)2·2
=

(
[A]p(b)

)2·2
=

(
2 · [A]p(ε)

)2·2
=

(
2 · τ(p)

)2·2
= (22)

22

Two-mode alternating automata are a subclass of alternating automata. In the weighted
setting two-mode alternating automata are defined as follows (cf. [KM18]): each state q is
either existential (δ(q, a) =

∑n
i=1 s

a
i · qi for all a ∈ Σ) or universal (δ(q, a) = sa · qk11 · . . . · qknn
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q

1

p 2
ba

b:2

Figure 1: Representation of A

q

1

p 2

h1

1

ba

Σ b:2

Figure 2: Representation of equalized, nice A

for all a ∈ Σ). In [KM18] run semantics were defined for two-mode alternating automata.
However, they can be defined for alternating automata with mixed states, in an analogue
fashion. Here, we give the definition of runs for nice WAFA. For one, as seen above, we can
transform every WAFA into a nice one. For another, it is only a technicality to define runs
for arbitrary WAFA, based on the definition below.

The idea of reading monomials as multi-transitions was already introduced above. Having
this in mind, a run tree is a tree labeled by states such that: (i) Our run begins in the initial
state, (ii) if a vertex at depth k is q labeled, then the labels of its children fit the states of
an ak labeled multi-transition beginning in state q, and (iii) our run halts after n steps.

More formally, if A = (Q,Σ, δ, q1, τ) is a nice WAFA, we define the ranked alphabet
ΓA = {(q, x) ∈ Q× S [Q] | x = τ(q) or x ∈ M(q,a) for some a ∈ Σ} where Rank(q, x) is the
rank of x as a polynomial. A run over w = a1 . . . an in A is a ΓA-tree tR with the following
properties:

(i) If |p| = 0, then tR(p) = (q1, x), for some x.
(ii) If |p| < n and tR(p) = (q, s · qk11 · . . . · qknn ), then s · qk11 · . . . · qknn ∈ M(q,a|p|+1) and for

all
∑l−1

u=1 ku ≤ i <
∑l

u=1 ku we have tR(pi) = (ql, x) for some x.
(iii) If |p| = n, then Rank(tR(p)) = 0.

The weight of a run tree tR is defined by

Weight(tR) =
∏

(q,s·qk11 ·...·qknn )∈tR(Pos(tR))

s .

Note that the final weights are accounted for, since they are the labels of the leaves of our
run tree.

And as usual we have (Theorem 5.15 & Theorem 5.17 in [KM18]):

[[A]](w) =
∑

tR run over w

Weight(tR) .

Example 3.4. Later we will use the connection between WAFA and trees heavily. For a
better understanding of this connection we want to point out the following:

First off, let us observe that |M(q,a)| = 1 if δ(q, a) is a monomial. Consequently, if δ(q, a)
is a monomial for all q ∈ Q, a ∈ Σ, then every word has a unique run. We call a WAFA with
this property universal. A two-mode WAFA where every state is universal is universal and
vice versa. Universality for WAFA is as determinism for finite automata. However, in general
universal WAFA and WFA are incomparable it terms of expressive power (cf. Corollary 3 in
[AK11]).
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Figure 3: A non-universal WAFA
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(p, 2) (p, 2)

(q, p)

(p, q)

(q, q)

(q, 1)

(q, p)

(p, q)

(q, p)

(q, 2)

Figure 4: Runs of WAFA from Figure 3 on aba

Second, we consider the non-universal automaton from Figure 3. This automaton is not
universal since δ(q, a) = q + p. As a consequence, we may have several runs, whenever the
letter a is to be processed in state q we can choose one of two possible children in our tree.
Figure 4 shows these run-trees for the input aba. This connection becomes more clear, if we
observe the behavior of the automaton on aba:

q
a→ q + p

b→ (q · p) + (q)
a→ ((q + p) · p) + (q + p) = q · p+ p · p+ q + p

Clearly, every monomial in the final polynomial corresponds to one of the run-trees. Moreover,
the weight of a run-tree is the product of the coefficients in its nodes and its leaves correspond
to the final weights of their state. Thus, we get that the sum of all run-weights is the behavior
of the automaton.

Due to the bound on the growth of series recognized by WFA, we can see that s from
Example 3.3 is not recognizable by a WFA. Thus, WAFA are more expressive than WFA
when weights are taken from the non-negative integers. However, this is not the case for every
semiring. A semiring S is locally finite if for every finite X ⊆ S the generated subsemiring
⟨X⟩ is finite. The following result characterizes semirings on which WAFA and WFA are
equally expressive:

Theorem 3.5 [KM18, Theorem 7.1]. The class of S-weighted Σ-languages recognizable by
WAFA and the class of S-weighted Σ-languages recognizable by WFA are equal if and only if
S is locally finite.

4. A characterization of WAFA via weighted finite tree automata

Our central result Theorem 4.5 is included in this section, as well as the definition of weighted
finite tree automata.

The connection between alternating automata and trees was utilized before: Already
in the non-weighted settings trees were used to define runs of alternating automata. As
seen above, this is possible for WAFA too. We want to strengthen this connection by the
use of tree automata and tree homomorphisms. In order to do so, we need some additional
definitions.

An element r ∈ S⟨⟨TΓ⟩⟩ is called a (S-weighted) tree language. A weighted finite tree
automaton (WFTA) is a 4-tuple A = (Q,Γ, δ, λ), where Q = {q1, . . . , qn} is a finite set of
states, Γ is a ranked alphabet, δ = (δk | 1 ≤ k ≤ Rank(Γ)) is a family of transition functions
δk : Γ(k) → SQk×Q, and λ : Q→ S a root weight function.

If k is clear from the context, we will denote tuples (p1, . . . , pk) by p. Moreover, since k
in δk(g) is clear from g, we will denote δk(g) by δg.
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Let A = (Q,Γ, δ, λ) be a WFTA. Its state behavior [A] : Q × TΓ → S is the mapping
defined by

[A]
(
q, g(t1, . . . , tk)

)
=

∑
p∈Qk

δg(p, q) ·
k∏

i=1

[A](pi, ti) .

Usually, we will write [A]q(t) instead of [A](q, t). Now, the behavior of A is the weighted
tree language [[A]] : TΓ → S defined by

[[A]](t) =
n∑

i=1

λ(qi) · [A]qi(t) .

A weighted tree language s is recognized by A if and only if [[A]] = s.
It is well known that a word over Σ can be represented as a 1-ary tree: Each letter

of Σ is given rank one and a new end-symbol # of rank zero is added. Then w0w1 . . . wn

translates to the tree w0(w1(. . . wn(#) . . .)). Here, we want to represent words as full r-ary
trees for any arbitary r ∈ N. Given an alphabet Σ and r ≥ 1, we define the ranked alphabet
Σr

# = Σ ∪ {#} with Rank(#) = 0 and Rank(a) = r for all a ∈ Σ. For all w ∈ Σ∗ the
tree trw ∈ TΣr

#
is defined by trε = #; and trw = a(trv, . . . , t

r
v) if w = av with a ∈ Σ. We call

hr : Σ∗ → TΣr
#
: w 7→ trw the generic tree homomorphism (of rank r). The case r = 1 is

special since for all t ∈ TΣ1
#

there exists w ∈ Σ∗ such that t = t1w. Therefore, if clear from
the context, we will identify Σ and Σ1

#, Σ∗ and TΣ1
#
, as well as w and t1w. It is well known

that a weighted Σ language is recognizable by a WFA over Σ if and only if it is recognizable
by a WFTA over Σ1

#.
The key observation is that the behavior of a WAFA A on w can be characterized by

the behavior of a WFTA on trw where r is the degree of polynomials in an equalized version
of A. Even more, the behavior of a WFTA on h(w) (where h is a tree homomorphism) can
be characterized by the behavior of a WAFA on w.

Lemma 4.1. If s ∈ S⟨⟨Σ∗⟩⟩ is recognized by a WAFA, then s = [[B]] ◦ hr for some WFTA B
and the generic homomorphism hr for some r ∈ N.

Proof. Assume s is recognized by a WAFA. Due to Lemma 3.1 and Lemma 3.2, we may
assume that s is recognized by a nice and equalized WAFA A = (Q,Σ, α, P0, τ). Let r be
the unique degree of monomials in A. Our goal is to define a WFTA B with [[A]] = [[B]] ◦ hr.
To this purpose, we observe that the equalized A can be viewed as a WFTA over a ranked
alphabet where each letter has rank r and where each multi-arrow in the representation of A
corresponds to one transition in B. Formally, we define the WFTA B = (Q,Σr

#, β, λ) with:

λ = 1{q1}
β#(ε, q) = τ(q) ,

βa(p, q) =


s if p1 ≤ . . . ≤ pr according to the order on Q and

s · p1 · . . . · pr ∈M(q,a) , and
0 otherwise ,

for all q ∈ Q and p ∈ Qr.
Note that the order of the p1, . . . , pr needs to be fixed, otherwise many runs of the

WFTA may correspond to one run of the WAFA.
Now, we will show that [A]q(w) = [B]q(trw) for all q ∈ Q and w ∈ Σ∗ by induction on

|w| ∈ N. If |w| = 0, then w = ε. Thus, [A]q(w) = τ(q) = β#(ε, q) = [B]q(trw) for all q ∈ Q.
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Figure 5: Run of translated WFTA on t2ab

Assume there exists l ∈ N such that the claim holds for all w′ ∈ Σl and all q ∈ Q. For the
induction step let w = aw′ ∈ Σ · Σl. For p ∈ Qk let ki(p) denote the number of qi’s in p.
Then, we get

[A]q(w)
= α(q, a)⟨[A]q1(w′), . . . , [A]qn(w′)⟩

(IH)
= α(q, a)⟨[B]q1(trw′), . . . , [B]qn(trw′)⟩

=
∑

s·qk11 ...qknn ∈M(q,a)

s ·
n∏

i=1

(
[B]qi(trw′)

)ki
=

∑
s·qk11 ...qknn ∈M(q,a)

βa(

∑
ki=r times︷ ︸︸ ︷

q1, . . . , q1︸ ︷︷ ︸
k1 times

, . . . , qn, . . . , qn︸ ︷︷ ︸
kn times

, q) ·
n∏

i=1

(
[B]qi(trw′)

)ki
=

∑
p∈Qr

βa(p, q) ·
n∏

i=1

(
[B]qi(trw′)

)ki(p)
= [B]q

(
a(trw′ , . . . , trw′︸ ︷︷ ︸

r times

)
)

= [B]q(trw)

for all q ∈ Q. Which completes our induction.
Since A is nice and thus P0 = q1, we consequently have

[[A]](w) = [A]q1(w) = [B]q1(trw) =
n∑

i=1

λ(qi) · [B]qi(trw) = [[B]](trw)

for all w ∈ Σ∗. Since hr(w) = trw, this finishes our proof.

The following example illustrates this connection between WAFA and WFTA.

Example 4.2. We consider the automaton A from Example 3.3. It is easy to construct the
corresponding WFTA B = (Q,Γ, β, λ) from the equalized version A′ (Figure 2). First, we
copy the set of states (in order) Q = {q, p, h1}. Since the maximum degree of polynomials in
A was 2 we get Γ = {a(2), b(2),#(0)}. The root weight function corresponds to the initial
weights. However, A′ is nice and thus λ = 1{q}. The transition weight functions βa and βb
can be defined using the multi arrows in Figure 2. For example, the b-labeled multi arrow in
the middle corresponds to βb(ph1, q) = 1. Finally, the final weights in A′ are captured by
β#(ε, q) = 1, β#(ε, h1) = 1, and β#(ε, p) = 2. The only non-zero run on t2ab can be seen in
Figure 5.
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Lemma 4.3. Let B = (Q,Γ, δ, λ) a WFTA and h : Σ∗ → TΓ a tree homomorphism. Then
[[B]] ◦ h is recognized by a WAFA.

Proof. Assume s = [[B]] ◦ h ∈ S⟨⟨Σ∗⟩⟩, where B = (Q,Γ, δ, λ) is a WFTA with |Q| = n and
h : Σ∗ → TΓ a tree homomorphism. We want to construct a WAFA A such that [[A]] = s.

If h is the generic homomorphism, we can define δ′(q, a) =
∑

p∈Qr δa(p, q) and use
the same proof as in the first direction. However, we want to prove this for arbitrary
homomorphisms. To achieve this, we give some additional definitions.

Under h, each letter becomes a tree. Nonetheless, we are not interested in the structure of
h(a), but want to handle it as if it is a ranked letter. Therefore, we use h(a)⟨x1 ← (p1, . . . , pr)⟩
to disambiguate its r = r(h(a)) variables. Furthermore, we extend the family of transition
functions (δk)0≤k≤RankΓ into a family (δ′k)k∈N with δ′k : T

(k)
Γ ({x1}) → SQk×Q. We use the

same notations for δ′ as for δ and define δ′k recursively as follows.

(1) For all g ∈ Γ(0) let δ′g(ε, q) = δg(ε, q) for all q ∈ Q,
(2) δ′x1

(p, q) = 1{q}(p) for all (p, q) ∈ Q×Q, and
(3) if t = g(t1, . . . , tk) for some g ∈ Γ(k), we define

δ′t(p1, . . . , pk, q) =
∑

p′∈Qk

δg(p
′, q) ·

k∏
i=1

δ′ti(pi, p
′
i)

for all (p1, . . . , pk, q) ∈ Qr(t1) × . . .×Qr(tk) ×Q.
Please note, for t ∈ TΓ we have δ′t(ε, q) = [A]q(t) by definition.

Now, we are well-equipped to define the WAFA A = (Q,Σ, α, P0, τ). Let P0 =∑n
i=1 λ(qi) · qi, τ(qi) = δ′h(#)(ε, qi) for all 1 ≤ i ≤ n, and

α(q, a) =
∑

p∈Qr(h(a)) δ′h(a)(p, q) ·
∏r(h(a))

i=1 pi for all q ∈ Q, a ∈ Σ.
Next, we show [B]q(h(w)) = [A]q(w) for all q ∈ Q, w ∈ Σ∗. Again, by induction on

|w| ∈ N. Before we can do so, we have to prove the following auxiliary claim about δ′.

Claim 4.4. Let A = (Q,Γ, δ, λ) be a WFTA, t ∈ TΓ, t̂ ∈ TΓ∪{x1}, and t1, . . . , tk ∈ TΓ such
that t = t̂⟨x1 ← (t1, . . . , tk)⟩. Then

[A]q(t) =
∑
p∈Qk

δ′
t̂
(p, q) ·

k∏
i=1

[A]pi(ti)

for all q ∈ Q.

Proof. We prove this claim via induction on the depth of t̂. The claim is clear if k = 0.
Therefore, we assume k > 0. If t̂ = x1, we know t = t1 and get

[A]q(t)
=

∑
p∈Q 1{q}(p) · [A]p(t1)

=
∑

p∈Q δ′x1
(p, q) · [A]p(t1) .

Now, assume the claim holds for all t̂ ∈ TΓ with depth ≤ n for some n ∈ N. Assume t̂ has
depth n+1 and t̂ = g(t̂1, . . . , t̂r) for some g ∈ Γ(r) and t̂1, . . . , t̂r ∈ TΓ∪{x1}. Of the k trees only
the first r(t̂1) will be substituted in t̂1, only the second r(t̂2) will be substituted in t̂1, and so on.
To mark this, let k(i) =

∑i
l=1 r(t̂l), ti = (tk(i−1)+1, . . . , tk(i)), and pi = (pk(i−1)+1, . . . , pk(i))
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for all 1 ≤ i ≤ r. We get:

[A]q(t)

=
∑

p′∈Qr

δg(p
′, q) ·

r∏
i=1

[A]p′i(t̂i⟨x1 ← ti⟩)

(IH)
=

∑
p′∈Qr

δg(p
′, q) ·

r∏
i=1

∑
pi∈Qr(t̂i)

δ′
t̂i
(pi, p

′
i) ·

r(i)∏
j=r(i−1)+1

[A]pj (tj)

=
∑

p′∈Qr

δg(p
′, q) ·

∑
(p1,...,pr)∈Qk

r∏
i=1

(
δ′
t̂i
(pi, p

′
i)
)
·

k∏
j=1

[A]pj (tj)

=
∑

(p1,...,pr)∈Qk

∑
p′∈Qr

(
δg(p

′, q) ·
r∏

i=1

(
δ′
t̂i
(pi, p

′
i)
)
·

k∏
j=1

[A]pj (tj)
)

=
∑

(p1,...,pr)∈Qk

∑
p′∈Qr

(
δg(p

′, q) ·
r∏

i=1

(
δ′
t̂i
(pi, p

′
i)
))
·

k∏
j=1

[A]pj (tj)

=
∑

(p1,...,pr)∈Qk

δ′
t̂
(p1, . . . , pr, q) ·

k∏
j=1

[A]pj (tj)

=
∑

p∈Qk

δ′
t̂
(p, q) ·

k∏
j=1

[A]pj (tj)

This finishes the proof of our claim.

We return to our main proof. If |w| = 0, then w = ε. Therefore, [B]q(w) = τ(q) =

δ′h(#)(ε, q)
∗
= [A]q(h(w)). Here ∗ holds due to Claim 4.4 with k = 0 and t̂ = t = h(#).

Assume there exists some l ∈ N such that [B]q(h(w)) = [A]q(w) for all q ∈ Q, w ∈ Σl. For
the induction step let w = aw′ ∈ Σ · Σl and k = r(h(a)). Similar to the first direction, we
have

[A]q(aw′)

=
∑

p∈Qk

δ′h(a)(p, q)
k∏

i=1
[A]pi(w′)

(IH)
=

∑
p∈Qk

δ′h(a)(p, q)
k∏

i=1
[B]pi(h(w′))

C.4.4
= [B]q(h(a)⟨h(w′)⟩)
= [B]q(h(w))

for all q ∈ Q. Via induction, this finishes our proof of the second direction.
Finally, for all w ∈ Σ∗ we get:

[[B]](h(w)) =
n∑

i=1

λ(qi) · [B]qi(h(w)) =
n∑

i=1

λ(qi) · [A]qi(w)

= P0⟨[B′]q1(w), . . . , [A]qn(w)⟩ = [[A]](w)

This leads us to our main result.

Theorem 4.5. A weighted language s ∈ S⟨⟨Σ∗⟩⟩ is recognized by a WAFA if and only if there
exists a ranked alphabet Γ, a tree homomorphism h : Σ∗ → TΓ, and a WFTA A = (Q,Γ, δ, λ)
such that s = [[A]] ◦ h.
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Proof. This is an immediate consequence of Lemma 4.1 and Lemma 4.3.

This result allows us to transfer results from WFTA to WAFA. Moreover, additional
observations in the proofs show that one can give a weight preserving, bijective mapping
between the runs of A and B. This allows us to translate results about runs of WFTA into
results about runs of WAFA. To see how to do this, we first revisit a well known result for
non-weighted WAFA.

Corollary 4.6. Non-weighted alternating automata and finite automata are equally expressive.

This result goes back to [CKS81] and deals with non-weighted automata. It is well
known that the non-weighted setting corresponds to the weighted setting, if weights are
taken from the Boolean semiring. Thus, we may still investigate the non-weighted setting
with our methods. Therefore, we can reproduce this result by using the Boolean semiring.
In doing so, we will get a better understanding of the translation of WAFA into WFA. In
particular, we are able to identify cases, in which this translation is efficient.

Clearly, every WFA is a WAFA, hence we only have to concern ourselves with one
direction. First, we observe that 1L ◦ h = 1h−1(L) for any tree language L ⊆ TΛ and tree
homomorphism h : TΓ → TΛ. Assume 1L is recognized by a WAFA. By Lemma 4.1, we get
1L = 1L′ ◦ h = 1h−1(L′) with h = hr for some r ∈ N and L′ ⊆ TΣr

#
regular. Since regular tree

languages are closed under inverses of homomorphisms, we know L = h−1(L′) is a regular
Σ1

# tree language. It is also known that WFA and WFTA are equally expressive over Σ1
#,

thus 1L is recognized by a WFA. The authors in [CKS81] also show that the translation of
an alternating finite automaton into an equivalent deterministic finite automaton leads to a
(worst case) doubly exponential blowup in states. By our proof we get a better understanding
of where this blowup comes from. Constructing B (from the Proof of Lemma 4.1) is linear
in states. However, to construct the tree automaton B′ recognizing h−1(L), we get an
exponential blowup in states. Next, B′ viewed as a WFA is non-deteministic (even if B′ was
bottom up deterministic). Thus, another exponent is needed to determinize B′. Immediately,
we see that the translation of an alaternating automaton into a non-deterministic finite
automaton is only exponential. Moreover, the first exponent is only needed, if B is not
(bottom up) deterministic. If a nice Boolean WAFA has only one non-zero final weight and
for every pair of states p, q we have M(q,a) ∩M(p,a) = ∅ for all a ∈ Σ, then B is bottom up
deterministic. Consequently, the translation of alternating automata with this property into
a non-deterministic finite automaton is linear in states.

5. A Nivat theorem for WAFA

This section leads to the Nivat-like characterization of WAFA (Theorem 5.7), but first
we will prove that weighted languages recognized by WAFA are closed under inverses of
homomorphisms (Corollary 5.2), but not under homomorphisms (Lemma 5.3).

Let s1 ⊙ s2 denote the Hadamard product (pointwise product) of two weighted languages
s1, s2 ∈ S⟨⟨Σ∗⟩⟩. Furthermore, a word homomorphism h : Γ∗ → Σ∗ is called non-deleting
if and only if h(a) ̸= ε for all a ∈ Σ. Let r ∈ S⟨⟨Γ∗⟩⟩. For h : Γ∗ → Σ∗ a non-deleting
homomorphism, we define h(r) ∈ S⟨⟨Σ∗⟩⟩ by h(r)(w) =

∑
v∈h−1(w) r(v) for all w ∈ Σ∗. This

sum is always finite since h is non-deleting. For h : Σ∗ → Γ∗ we define h−1(r) ∈ S⟨⟨Σ∗⟩⟩ by
h−1(r)(w) = r(h(w)) for all w ∈ Σ∗. In the boolean setting, we have h(1L)(w) = 1 if and
only if there exists v ∈ Γ∗ with h(v) = w and v ∈ L. Thus, h(1L) = 1h(L). Analogously, we
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get h−1(1L) = 1h−1(L). Hence, h(r) corresponds to the application of a homomorphism, while
h−1(r) corresponds to the application of the inverse of a homomorphism in the non-weighted
setting.

The original Nivat Theorem [Niv68] characterizes word-to-word transducers. A general-
ized version for WFA over arbitrary semirings (Theorem 6.3 in [DK21]) can be stated in the
following way:

Theorem 5.1 (Nivat-like theorem for WFA [DK21]). A weighted language s ∈ S⟨⟨Σ∗⟩⟩ is
recognized by a WFA if and only if there exist an alphabet Γ, a non-deleting homomorphism
h : Γ∗ → Σ∗, a regular language L ⊆ Γ∗, and a WFA Aw with exactly one state such that:

s = h([[Aw]]⊙ 1L) .

Please note, Aw does not depend on any input and is called Aw since it is responsible
for the application of weights. Our goal is to generalize this result to WAFA. This Nivat-like
theorem is strongly connected to the closure of weighted languages recognized by WFA under
(inverses) of homomorphisms. Thus, we will investigate these properties for WAFA.

5.1. Closure properties. A class K of S-weighted languages is said to be closed under
homomorphisms if s ∈ S⟨⟨Γ∗⟩⟩ ∩K and h : Γ∗ → Σ∗ a non-deleting homomorphism implies
h(s) ∈ S⟨⟨Σ∗⟩⟩∩K. Moreover, K is closed under inverses of homomorphisms if s′ ∈ S⟨⟨Γ∗⟩⟩∩K
and h : Σ∗ → Γ∗ a homomorphism implies h−1(s′) ∈ S⟨⟨Σ∗⟩⟩ ∩K. The same notions are used
for weighted tree languages.

The class of weighted languages recognized by WFA is closed under (inverses of) homo-
morphisms (Lemma 6.2 in [DK21]). WAFA are also closed under inverses of homomorphisms.
In fact, this is an easy corollary of Lemma 4.1 and Lemma 4.3.

Corollary 5.2. The class of weighted languages recognized by WAFA is closed under inverses
of homomorphisms.

Proof. Let h′ : Λ∗ → Σ∗ be a homomorphism and s ∈ S⟨⟨Σ∗⟩⟩ recognized by a WAFA. Due
to Lemma 4.1, we get s = [[B]] ◦ hr for the generic homomorphism hr : Σ∗ → Σr

# and some
weighted Σr

#-WFTA B. Since homomorphisms are closed under composition, hr ◦ h′ : Λ∗ →
Σr
# is a tree homomorphism. Thus, due to Lemma 4.3, h′−1(s) = ([[B]]◦hr)◦h′ = [[B]]◦(hr ◦h′)

is recognized by a WAFA.

However, the same is not true for the closure under homomorphisms.

Lemma 5.3. The class of weighted languages recognized by WAFA is not closed under
homomorphisms.

Proof. Let Σ = {a, b,#}, B the Boolean semiring, and B[x] the semiring of polynomials in
one indeterminate. Consider

rB : Σ∗ → B[x] : w 7→


j∑

k=0

xki if w = ai#bj ,

0 otherwise.

Due to Lemma 8.3 from [KM18], we know rB is not recognized by a WAFA. Let Γ =
{a, c, d,#}, h : Γ∗ → Σ∗ the non-deleting homomorphism induced by h(a) = a, h(#) =
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#, h(c) = h(d) = b, and

rR : Γ∗ → B[x] : w 7→

{
xki if w = ai#ckdl ,

0 otherwise.

Then

h(rR)(w) =
∑

v∈h−1(w)

rR(v)

=


∑

v∈h−1(w)

rR(v) if w = ai#bj

0 otherwise
=


j∑

k=0

rR(a
i#ckdj−k) if w = ai#bj

0 otherwise

=


j∑

k=0

xki if w = ai#bj

0 otherwise
= rB(w)

for all w ∈ Σ∗. Thus, h(rR) is not recognized by a WAFA. The weighted language rR is
recognized by the WAFA AR = ({qι, q1, qa, qc, qd}, {a,#, c, d}, δR, qι, τR) with δR and τR
defined by:

qι q1 qa qc qd
δR(∗, a) qιqa 0 qa 0 0
δR(∗,#) q1 0 qc 0 0
δR(∗, c) 0 q1 0 x · qc 0
δR(∗, d) 0 qd 0 qd qd
τR(∗) 0 1 0 1 1

A depiction of AR can be seen below. This completes our proof.

qι

q1

qa qc qd

#

a

# d

a c:x d

c

d

Nonetheless, the proof of the second direction of Theorem 5.1 relies on the closure under
homomorphisms. Thus, due to Lemma 5.3, a one to one translation of Theorem 5.1 into
the framework of alternating automata is prohibited. Moreover, in the proof of the first
direction of Theorem 5.1, L is defined as a language of runs of A. As mentioned above, runs
of WAFA are trees. Therefore, we will utilize a Nivat-like theorem for WFTA to prove the
corresponding result for WAFA.

5.2. A Nivat-like characterization of WFTA. Nivat-like characterizations for weighted
tree languages have been investigated in the past. Unranked trees were considered in
[DG17], while a very general result for graphs can be found in [DD15]. Here, for the readers
convenience, we want to restate a more restricted version for ranked trees.
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Let h : TΓ → TΛ be a non-deleting tree homomorphism, s ∈ S⟨⟨TΛ⟩⟩. In analogy to
words, we define h(s) ∈ S⟨⟨TΓ⟩⟩ by h(s)(t) =

∑
t′∈h−1(t) s(t

′) for all t ∈ TΓ. For linear
homomorphisms the following is known:

Lemma 5.4 [FV09, Theorem 3.8]. The class of weighted tree languages recognized by WFTA
is closed under linear homomorphisms.

Based on this, it is easy to prove the following result:

Theorem 5.5 (Nivat-like theorem for WFTA [DG17, Theorem 12]). A weighted tree language
s ∈ S⟨⟨TΓ⟩⟩ is recognized by a WFTA if and only if there exist a ranked alphabet Λ, a linear
tree homomorphism h : TΛ → TΓ, a regular tree language L ⊆ TΛ, and a WFTA Aw with
exactly one state such that:

s = h([[Aw]]⊙ 1L) .

Proof. A proof can be found in [DG17]. There, the ⇒-direction is proved based on a WFTA
A recognizing s. The components Λ, h, L, and Aw are chosen to be the set of transitions
in A, the mapping assigning each transition (p, γ, q) to the corresponding letter γ ∈ Γ, the
tree language of runs in A, and an automaton adding weights to the transitions, respectively.
This yields the desired equation. Here, for the convenience of the reader, we want to give a
precise construction, as well as a proof of correctness for the second direction of the proof of
Theorem 5.5.

Let s be recognized by a WFTA A = (Q,Γ, α, λ). First, we define Λ. Let P =
Q ∪Qfin where Qfin is a disjoint copy of Q including an element qfin for each q ∈ Q. Now,
Λ =

⋃Rank(Γ)
i=0 Qi × Γ(i) × P . For reasons of readability, we sometimes abbreviate a letter(

(q1, . . . , qRank(g)), g, p
)
∈ Λ by [q, g, p]. We define Rank([q, g, p]) = Rank(g). Let h be

the tree homomorphism induced by h
(
[q, g, p](x1, . . . , xk)

)
= g(x1, . . . , xk) for all g ∈ Γ(k).

Clearly, h is linear and non-deleting.
Next, we consider the WFTA B with weights taken from the Boolean semiring B. Let

B = (P,Λ, β, 1Qfin) with β defined by

β[q,g,p](q
′, p′) =

{
1 if [q′, g, p′] = [q, g, p] ,

0 otherwise

for all [q, g, p] ∈ Λ, (q′, p′) ∈ Qk+1. Clearly, [[B]] = 1L, for some tree language L ⊆ TΛ. It
is well known, that the support of a recognizable B-weighted weighted tree language is a
recognizable tree language (cf. Lemma 3.11 & Theorem 3.12 in [FV09]). Hence, L is a
recognizable tree language.

Finally, we define the WFTA Aw = ({qw},Λ, ω,1{qw}) with

ω[q,g,p]

(
( qw, . . . , qw︸ ︷︷ ︸
Rank(g) times

), qw
)
=

{
αg(q, q

′) if p = q′ ∈ Q

αg(q, q
′) · λ(q′) if p = q′fin ∈ Qfin

for all [q, g, p] ∈ Λ. Please note that [[Aw]] = [Aw]qw . Thus, we will not distinguish between
those two semantics.

To prove that
[[A]] = h−1 ◦ ([[Aw]]⊙ 1L)

holds for this construction, we will prove the following claim first.
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Claim 5.6. For all q ∈ Q it holds [A]q(t) =
(
h−1 ◦ ([[Aw]]⊙ [B]q)

)
(t) for all t ∈ TΓ.

Proof. The proof is by induction on the depth of t. If t = g for some g ∈ Γ(0), we get

[A]q(t)
= αg(ε, q) + 0
=

∑
p∈Q

(
αg(ε, p) · 1{q}(p)

)
+

∑
pfin∈Qfin

(
αg(ε, p) · λ(p) · 1{q}(pfin)

)
=

∑
[ε,g,p]∈Λ(0)

[[A]]w([ε, g, p]) · [B]q([ε, g, p])

=
∑

t′∈h−1(g)

(
[[A]]w ⊙ [B]q

)
(t′)

=
(
h−1 ◦ ([[Aw]]⊙ [B]q)

)
(g)

for all q ∈ Q.
Assume the claim holds for all t ∈ TΓ of depth lower or equal to n for some n ∈ N.
We consider some t ∈ TΓ of depth n+ 1. There exist g ∈ Γ(k) and t1, . . . , tk ∈ TΓ such

that t = g(t1, . . . , tk). Clearly, ti has a depth lower or equal to n for all 1 ≤ i ≤ k. Let us
denote the tuple (t1, . . . , tk) by t and h−1(t1)× . . .× h−1(tk) by h−1(t). First, we observe

t′ ∈ h−1(t)⇔ t′ = [p, g, q](t′)

for some q ∈ P , p ∈ Qk, and t′ ∈ h−1(t). Moreover, we have

[B]q
(
[p, g, q′](t′)

)
= 1⇔ q = q′ ∧ ∀1 ≤ i ≤ k.

(
[B]pi(t′i) = 1

)
.

Therefore, ∑
t′∈h−1(t)

r ⊙ [B]q(t′) =
∑
p∈Qk

∑
t′∈h−1(t)

r ⊙ [B]q
(
[p, g, q](t′)

)
(5.1)

holds for all r ∈ S⟨⟨TΛ⟩⟩.
By this, we get

[A]q(t)

=
∑

p∈Qk

αg(p, q)
k∏

i=1
[A]pi(ti)

(IH)
=

∑
p∈Qk

αg(p, q)
k∏

i=1

(
h−1 ◦ ([[Aw]]⊙ [B]pi)

)
(ti)

=
∑

p∈Qk

αg(p, q)
k∏

i=1

( ∑
t′i∈h−1(ti)

[[Aw]]⊙ [B]pi(t′i)
)

=
∑

p∈Qk

αg(p, q)
∑

t′∈h−1(t)

k∏
i=1

[[Aw]]⊙ [B]pi(t′i)

=
∑

p∈Qk

∑
t′∈h−1(t)

(
αg(p, q) ·

k∏
i=1

[[Aw]](t
′
i)
)
·
(
1 ·

k∏
i=1

[B]pi(t′i)
)

=
∑

p∈Qk

∑
t′∈h−1(t)

[[Aw]]
(
[p, g, q](t′)

)
· [B]q

(
[p, g, q](t′)

)
5.1
=

∑
t′∈h−1(t)

[[Aw]]⊙ [B]q(t′)

= h−1 ◦
(
[[Aw]]⊙ [B]q

)
(t)

This finishes the proof of the claim.
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We return to our main proof, it remains to show that we are able to apply the final
weights. We consider some t ∈ TΓ. There exists g ∈ Γ(k) and t ∈ T k

Γ (we use the same
notation as above) with t = g(t). First, we make a similar observation as in the proof of our
claim. Namely,

[[B]]
(
[q, g, p](t′)

)
= 1⇔ p ∈ Qfin ∧ ∀1 ≤ i ≤ k.

(
[B]qi(t′i) = 1

)
for all t′ ∈ h−1(t). Thus,∑

t′∈h−1(t)

r ⊙ [[B]](t′) =
∑
p∈Q

∑
q∈Qk

∑
t′∈h−1(t)

r ⊙ [[B]]
(
[q, g, pfin](t′)

)
(5.2)

for all r ∈ S⟨⟨TΛ⟩⟩. Finally, analogously to the proof of Claim 5.6, we are able to deduce

[[A]](t)
=

∑
p∈Q

λ(p) · [A]p(t)

=
∑
p∈Q

∑
q∈Qk

λ(p) · αg(p, q) ·
k∏

i=1
[A]qi(ti)

C. 5.6
=

∑
p∈Q

∑
q∈Qk

λ(p) · αg(p, q) ·
k∏

i=1
h−1

(
[[Aw]]⊙ [B]qi

)
(ti)

=
∑
p∈Q

∑
q∈Qk

λ(p) · αg(p, q) ·
k∏

i=1

∑
t′i∈h−1(ti)

[[Aw]]⊙ [B]qi(t′i)

=
∑
p∈Q

∑
q∈Qk

∑
t′∈h−1(t)

(
λ(p) · αg(p, q) ·

k∏
i=1

[[Aw]](t
′
i)
)
·
(
1 ·

k∏
i=1

[B]qi(t′i)
)

=
∑
p∈Q

∑
q∈Qk

∑
t′∈h−1(t)

(
ω[q,g,pfin](qw, (qw, . . . , qw)) ·

k∏
i=1

[[Aw]](t
′
i)
)
· [[B]]

(
[q, g, pfin](t′)

)
=

∑
p∈Q

∑
q∈Qk

∑
t′∈h−1(t)

[[Aw]]
(
[q, g, pfin](t′)

)
· [[B]]

(
[q, g, pfin](t′)

)
=

∑
p∈Q

∑
q∈Qk

∑
t′∈h−1(t)

[[Aw]]⊙ [[B]]
(
[q, g, pfin](t′)

)
5.2
=

∑
t′∈h−1(t)

[[Aw]]⊙ [[B]](t′)

= h−1
(
[[Aw]]⊙ [[B]]

)
(t) = h−1

(
[[Aw]]⊙ 1L

)
(t) .

Since t was arbitrary, this completes our proof.

Based on this result and Theorem 4.5 a characterization of WAFA via a Nivat-like
Theorem is immediate.

Theorem 5.7 (Nivat-like theorem for WAFA). A weighted language s ∈ S⟨⟨Σ⟩⟩ is recognized
by a WAFA if and only if there exist a rank r ∈ N, a ranked alphabet Λ, a linear tree
homomorphism h : TΛ → TΣr

#
, a regular tree language L ⊆ TΛ, and a WFTA Aw with exactly

one state such that for all w ∈ Σ∗, it holds:

s(w) = h([[Aw]]⊙ 1L)(t
r
w) .

Proof. ⇒: Let A be a nice, equalized WAFA such that [[A]] = s. Due to Lemma 4.1, r ∈ N
and a WFTA B exist such that s(w) = ([[B]] ◦ hr)(w) = [[B]](trw). Applying Theorem 5.5 to
[[B]] gives us the desired result.
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⇐: By Theorem 5.5, there exists a WFTA B such that [[B]] = h([[Aw]] ⊙ 1L). Let
hr : Σ∗ → TΣr

#
be the generic homomorphism. In consequence of Theorem 4.5, a WAFA A

exists such that [[A]](w) = [[B]](hr(w)) = h([[Aw]] ⊙ 1L)(h
r(w)) = h([[Aw]] ⊙ 1L)(t

r
w) for all

w ∈ Σ. This finishes our proof.

6. A logical characterization of WAFA

Based on Theorem 4.5 we are able to give a logical characterization of WAFA (Theorem 6.2).
For this purpose, we will use the logical characterization by weighted MSO logic for trees
which was introduced in [DV06].

Weighted MSO logic over trees is an extension of MSO logic over trees. It allows for
the use of usual MSO formulas, but also incorporates quantitative aspects such as semiring
elements and operations, as well as weighted quantifiers. In the end, every weighted MSO
formula defines a weighted tree language. More precisely, let Γ be a ranked alphabet, each
weighted MSO formula φ ∈ MSO(Γ, S) defines a weighted tree language [[φ]] : TΓ → S.
Weighted MSO logic is strictly more expressive than WFTA. Nevertheless, it is possible
to restrict the syntax of weighted MSO in such a way that it characterizes weighted tree
languages recognized by WFTA. This fragment is called weighted syntactically restricted
MSO (srMSO). Since it is not needed to understand the following proofs, we have omitted
the formal definition of srMSO. We will use syntax and semantics of weighted srMSO without
any changes and refer the interested reader to [FV09] or [DV11]. Our characterization of
WAFA will be fully based on the following characterization theorem for WFTA:

Theorem 6.1 [FV09, Theorem 3.49 (A)]. A weighted tree language s ∈ S⟨⟨TΓ⟩⟩ is recognized
by a WFTA if and only if there exist φ ∈ srMSO(Γ, S) such that s = [[φ]].

However, we still have to handle the homomorphism used in Theorem 4.5. This will be
done by choosing an appropriate way of representing words as relational structures.

By definition [[φ]] ∈ S⟨⟨TΓ⟩⟩ for all φ ∈ srMSO(Γ, S). However, we want to use weighted
srMSO on trees to define weighted languages on words. To this end, we define [[φ]]Σ ∈ S⟨⟨TΓ⟩⟩
by [[φ]]Σ(w) = [[φ]](t

Rank(Γ)
w ) for all φ ∈ srMSO(Γ, S), w ∈ Σ∗. Since srMSO(Γ, S) ⊆

srMSO(Γ∪ΣRank(Γ)
# , S), we can assume without loss of generality φ ∈ srMSO(Γ∪ΣRank(Γ)

# , S).
Hence, [[φ]]Σ is well defined for all Σ. It is easy to see that [[φ]]Σ = [[φ]] ◦ h where h : Σ →
Σ
Rank(Γ)
# ∪ Γ is the generic homomorphism.

Theorem 6.2. A weighted language s ∈ S⟨⟨Σ⟩⟩ is recognized by a WAFA if and only if there
exist a ranked alphabet Γ and φ ∈ srMSO(Γ, S) such that s = [[φ]]Σ.

Proof. ⇒: Assume s ∈ S⟨⟨Σ⟩⟩ is recognized by a WAFA. By 4.1, there exists r ∈ N and
a WFTA B such that s = [[B]] ◦ hr. By Theorem 6.1, φ ∈ srMSO(Σr

#, S) exists such that
[[B]] = [[φ]]. Thus s = [[B]] ◦ hr = [[φ]] ◦ hr = [[φ]]Σ.
⇐: If s = [[φ]]Σ for some φ ∈ srMSO(Γ ∪ Σ

Rank(Γ)
# , S), we get s = [[φ]] ◦ hRank(Γ). By

Theorem 6.1, a WFTA B exists such that [[φ]] = [[B]]. Therefore, s = [[B]] ◦ hRank(Γ). Since
B is a WFTA and hRank(Γ) a homomorphism, a WAFA A with s = [[A]] exists by Lemma
4.3.

While mirroring the branching behavior of WAFA in the logic gives a natural characteri-
zation of WAFA, the question arises how WAFA relate to the weighted MSO logic for words.
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It is well known that WFTA are not capable of characterizing the entirety of weighted MSO
logic for words, simply because MSO logic can define series which grow doubly exponential
in the size of the input. While WAFA have this ability (cf. Example 3.3), they still are
incapable of capturing the entirety of weighted MSO. It can be shown that the series rB
from the proof of Lemma 5.3 can be defined in weighted MSO logic for words, while it is not
recognized by WAFA. If it is possible to characterize WAFA by a fragment of weighted MSO
logic for words remains open.

7. Closure of WFTA under inverses of homomorphisms

It is well known (cf. Theorem 1.4.4 in [CDG+08]) that regular tree languages are closed
under inverses of homomorphisms. Sadly, this is not true in the weighted case, at least not
for arbitrary semirings. This raises the question if it is possible to give a precise description
of the class of semirings for which recognizable weighted tree languages are closed under
inverses of homomorphisms. This question will be answered by Theorem 7.1.

Theorem 5.7 and Theorem 6.1 used Theorem 4.5 to apply known results for WFTA to
WAFA. Vice versa, we can use Theorem 4.5 and Theorem 3.5 to characterize the semirings
for which the class of recognizable S-weighted tree languages is closed under inverses of
homomorphisms.

Theorem 7.1. The class of S-weighted tree languages recognized by WFTA is closed under
inverses of homomorphisms if and only if S is locally finite.

To prove this result we will use the notion of recognizable step functions : A weighted tree
language r ∈ S⟨⟨TΓ⟩⟩ is a recognizable step function if there exist recognizable tree languages
L1, . . . , Lk and values l1, . . . , lk ∈ S such that r =

∑k
i=1 li · 1Li . Due to [DV06], we know the

following about recognizable step functions:

Lemma 7.2 [DV06, Lemma 3.1]. If r ∈ S⟨⟨TΓ⟩⟩ is a recognizable step function, then a
partition L1, . . . , Lk of TΓ exits such that r =

∑k
i=1 li · 1Li for some l1, . . . , lk ∈ S.

Note, this lemma is not redundant since the definition of recognizable step functions
does not demand that the recognizable tree languages are pairwise disjoint. Due to Lemma
7.2, we know that a weighted tree language is a recognizable step function if and only if
it has a finite image and each preimage is a recognizable tree language. The next Lemma
characterizes recognizable weighted tree languages over locally finite semirings.

Lemma 7.3 [DV06, Lemma 3.3 & Lemma 6.1]. Let S be locally finite. A weighted tree
language r ∈ S⟨⟨TΓ⟩⟩ is recognizable if and only if r is a recognizable step function.

Finally, we can proceed with the proof of Theorem 7.1.

Proof of Theorem 7.1. ⇒: Assume the class of S-weighted tree languages recognized by
WFTA is closed under inverses of homomorphisms.

Claim 7.4. The class of S-weighted Σ languages recognizable by WAFA and the class of
S-weighted Σ languages recognizable by WFA are equal.

Clearly every WFA is a WAFA. Thus, for the proof of the claim, it remains to show
that every weighted language which is recognized by a WAFA is recognized by a WFA. For
this purpose, assume s ∈ S⟨⟨Σ∗⟩⟩ is recognized by a WAFA A. Due to Theorem 4.5, there
exists a WFTA B and a homomorphism h : Σ∗ → TΓ such that [[A]] = [[B]] ◦ h. However, by
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our assumption there exists a WFTA C over Σ1
# such that [[C]] = [[B]] ◦ h and hence a WFA

C′ over Σ such that [[A]] = [[B]] ◦ h = [[C]] = [[C′]]. Thereby, s is recognized by a WFA. This
proves our claim.

By Claim 7.4 and Theorem 3.5 it follows that S is locally finite. This finishes the proof
of the first direction.
⇐: Assume S is locally finite. Let r ∈ S⟨⟨TΓ⟩⟩ be recognizable and h : TΛ → TΓ a

homomorphism. Due to Lemma 7.2 and Lemma 7.3, we have r =
∑k

i=1 li · 1Li for some
partition L1, . . . , Lk of TΓ and values l1, . . . , lk ∈ S. We claim r ◦ h =

∑k
i=1 li · 1h−1(Li). To

prove this, consider some arbitrary t ∈ TΛ. Since the Li form a partition of TΓ there exists a
unique j ∈ {1, . . . , k} such that h(t) ∈ Li. Therefore, we have

(r ◦ h)(t)
=

∑k
i=1 li · 1Li(h(t)) = lj

= lj · 1h−1(Lj)(t)
lj unique

=
∑k

i=1 li · 1h−1(Li)(t) .

Since recognizable tree languages are closed under inverses of homomorphisms, we know
that h−1(L1), . . . , h

−1(Lk) ⊆ TΛ are recognizable. Thus, r ◦ h is a recognizable step function.
Again, by Lemma 7.3, we get r ◦ h is recognizable. This completes our proof.

8. WAFA and polynomial automata

We will use known results for polynomial automata, to prove the decidability of the Zeroness
Problem for WAFA if weights are taken from the rationals (Lemma 8.2).

Informally a polynomial automaton is a set of registers which get updated by polyno-
mial funcions according to some input. Historically this principle was studied from many
perspectives. For example: [Sén07] studies it in the form of “polynomial recurrent relations”,
or the “cost register automata” from [ADD+13] which allow for a very broad class of updates
and weight structures. We will follow the terminology and definitions of [BTSW17] where
“polynomial automata” were considered as a generalization of both vector addition systems
and weighted automata. Polynomial automata are quite similar to WAFA, the authors
of [BTSW17] even prove that the characteristic function of the reversal of each language
recognized by a non-weighted alternating automaton is recognized by a polynomial automaton
of the same size. We want to strengthen this connection. In [BTSW17] polynomial automata
are defined over the rational numbers. However, it is easy to give a more general definition
of arbitrary commutative semirings.

A polynomial automaton (PA) is a 5-tuple A = (n,Σ, α, p, γ), where n ∈ N is the number
of states, Σ is an alphabet, α ∈ Sn is an initial weight vector, p : Σ→ S [Xn]

n the transition
function, and γ ∈ S [Xn] an output polynomial. We denote the i-th entry of p(a) by pi(a).

Let A = (n,Σ, α, p, γ) be a PA. Its state behavior [A] : {1, . . . , n} × Σ∗ → S is the
mapping defined by

[A](i, w) =

{
αi if w = ε,

pi
〈
[A](1, v), . . . , [A](n, v)

〉
if w = va for a ∈ Σ.
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Usually we will denote [A](i, w) by [A]i(w). Now, the behavior of A is the weighted language
[[A]] : Σ∗ → S defined by

[[A]](w) = γ
(
[A]1(w), . . . , [A]n(w)

)
.

It is easy to check that this definition is a reformulation of the definition found in
[BTSW17].

Let the reversal of a weighted language s ∈ S⟨⟨Σ⟩⟩ be defined by sR(w) = s(wR) for all
w = w1 . . . wn with w1, . . . , wn ∈ Σ, where wR = wn . . . w1. Comparing the definition of
state behavior for WAFA and PA already yields the following lemma:

Lemma 8.1. A weighted language s ∈ S⟨⟨Σ⟩⟩ is recognized by a WAFA if and only if sR is
recognized by a PA.

Proof. Assume s is recognized by A = (Q,Σ, δ, P0, τ).
Let B = (|Q|,Σ,

(
τ(q1), . . . , τ(qn)

)
, p, P0) be a PA with pi(a) = δ(qi, a) for all 1 ≤ i ≤

|Q|, a ∈ Σ. Then, a straightforward induction on |w| shows [[A]](w) = [[B]](wR) for all w ∈ Σ.
The second direction is proven analogously to the first one.

Let A,A′ be two WAFA. We observe [[A]](w) = 0 for all w ∈ Σ∗ if and only if [[A]](wR) = 0
for all w ∈ Σ∗. Moreover, we have [[A]](w) = [[A′]](w) for all w ∈ Σ∗ if and only if
[[A]](wR) = [[A′]](wR) for all w ∈ Σ∗. This allows us to derive the following corollary from
Lemma 8.1:

Corollary 8.2. The Zeroness Problem and the Equivalence Problem for WAFA with weights
taken from the rationals are in the complexity class ACKERMANN and hard for the complexity
class ACKERMANN.

Proof. Using the respective results for polynomial automata (Theorem 1, Theorem 4, and
Corollary 1 in [BTSW17]) together with Lemma 8.1 yields this result.

In general, weighted languages recognized by WAFA are not closed under reversal
(Theorem 8.4 in [KM18]). Thus, the class of weighted languages recognized by WAFA and
the class of languages recognized by PA differ. Moreover, series recognized by polynomial
automata are (in general) not close under reversal. However, if weights are taken from a
commutative semiring, series recognized by WFA are closed under reversal, this would allow
for a direct translation of Theorem 3.5 into the setting of PA.

9. Conclusion

We were able to connect WAFA to a variety of formalisms, giving a better understanding
of their expressive power and characterizing the class of quantitative languages recognized
by WAFA. From here, there are various routes to take. It could be of great practical use
to find a logical characterization of WAFA via a linear formalism such as a weighted linear
logic, or weighted rational expressions tailored to the expressive power of WAFA, or a fitting
fragment of weighted MSO logic for words.

Similar to the work in [BTSW17], one could investigate subclasses of WAFA allowing
for more efficient decision procedures. An interesting candidate is strictly alternating WAFA
who have a bounded number of alternations within any run. While these use the ability to
recognize very fast growing series, they still add in expressive power due to the ability to
multiply over subruns.
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A different direction would aim to use the expressive power added by alternation to
achieve an automata model which is as expressive weighted MSO for words. While WAFA
can not fulfill this role a generalization of WAFA might be. After all, the use of product and
sum within runs is very similar, to the use of product- and sum-quantifiers in weighted MSO
for words.

Alternatively, one could approach the concept of alternation in weighted automata dealing
with more complex structures than words, such as weighted alternating tree automata. And
of course, having the universal interpretation of nondeterminism in mind, one may take
several of these routes at once!
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