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Abstract

Circumscription is one of the main approaches for defining
non-monotonic description logics (DLs) and the decidability
and complexity of traditional reasoning tasks, such as sat-
isfiability of circumscribed DL knowledge bases (KBs), are
well understood. For evaluating conjunctive queries (CQs)
and unions thereof (UCQs), in contrast, not even decidabil-
ity has been established. In this paper, we prove decidability
of (U)CQ evaluation on circumscribed DL KBs and obtain a
rather complete picture of both the combined complexity and
the data complexity for DLs ranging from ALCHIO via EL
to various versions of DL-Lite. We also study the much sim-
pler atomic queries (AQs).

1 Introduction
While standard description logics (DLs), such as those un-
derlying the OWL 2 ontology language, do not support non-
monotonic reasoning, it is generally acknowledged that ex-
tending DLs with non-monotonic features is very useful.
Concrete examples of applications include ontological mod-
eling in the biomedical domain (Rector 2004; Stevens et al.
2007) and the formulation of access control policies (Bon-
atti and Samarati 2003). Circumscription is one of the tra-
ditional AI approaches to non-monotonicity, and it provides
an important way to define non-monotonic DLs. In con-
trast to other approaches, such as default rules, it does not
require the adoption of strong syntactic restrictions to pre-
serve decidability. DLs with circumscription are closely
related to several other approaches to non-monotonic DLs,
in particular to DLs with defeasible inclusions and typical-
ity operators (Bonatti, Faella, and Sauro 2011; Casini and
Straccia 2013; Giordano et al. 2013; Bonatti et al. 2015b;
Pensel and Turhan 2018).

The main feature of circumscription is that selected pred-
icate symbols can be minimized, that is, the extension of
these predicates must be minimal regarding set inclusion.
Other predicates may vary freely or be declared fixed. In
addition, a preference order can be declared on the mini-
mized predicates. In DLs, minimizing or fixing role names
causes undecidability of reasoning, and consequently, only
concept names may be minimized or fixed (Bonatti, Lutz,
and Wolter 2009). The traditional AI use of circumscription
is to introduce and minimize abnormality predicates such as
AbnormalBird, which makes it possible to formulate defea-

sible implications such as ‘birds fly, unless they are abnor-
mal, which shouldn’t be assumed unless there is a reason to
do so.’ Circumscription is also closely related to the clo-
sure of predicates symbols as studied, for instance, in (Lutz,
Seylan, and Wolter 2013; Ngo, Ortiz, and Simkus 2016;
Lutz, Seylan, and Wolter 2019); in fact, this observation
goes back to (Reiter 1977; Lifschitz 1985). While DLs usu-
ally assume open-world semantics and represent incomplete
knowledge, such closed predicates are interpreted under a
closed-world assumption, reflecting that complete knowl-
edge is available regarding those predicates. Circumscrip-
tion may then be viewed as a soft form of closing concept
names: there are no other instances of a minimized con-
cept name except the explicitly asserted ones unless we are
forced to introduce (a minimal set of) additional instances to
avoid inconsistency.

A primary application of DLs is ontology-mediated
querying, where an ontology is used to enrich data with
domain knowledge. Surprisingly, little is known about
ontology-mediated querying with DLs that support circum-
scription. For the important conjunctive queries (CQs) and
unions of CQs (UCQs), in fact, not even decidability has
been established. This paper aims to close this gap by study-
ing the decidability and precise complexity of ontology-
mediated querying for DLs with circumscription, both w.r.t.
combined complexity and data complexity. We consider the
expressive DL ALCHIO, the tractable (without circum-
scription) DL EL, and several members of tge DL-Lite fam-
ily. These may be viewed as logical cores of the profiles
OWL 2 DL, OWL 2 EL, and OWL 2 QL of the OWL 2 on-
tology language (Motik et al. 2009).

One of our main results is that UCQ evaluation is decid-
able in all these DLs when circumscription is added. It is
2EXP-complete in ALCHIO w.r.t. combined complexity,
and thus not harder than query evaluation without circum-
scription. W.r.t. data complexity, however, there is a signif-
icant increase from CONP- to ΠP

2-completeness. For EL,
the combined and data complexity turns out to be identi-
cal to that of ALCHIO. This improves lower bounds from
(Bonatti, Faella, and Sauro 2011). All these lower bounds
already hold for CQs. Remarkably, the ΠP

2 lower bound for
data complexity already holds when there is only a single
minimized concept name (and thus no preference relation)
and without fixed predicates. The complexities for DL-Lite
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are lower, though still high. A summary can be found in Ta-
ble 1. Evaluation is ‘only’ CONP-complete w.r.t. data com-
plexity for all considered versions of DL-Lite, except when
role disjointness constraints are added (this case is not in the
table). The combined complexity remains at 2EXP when
role inclusions are present and drops to CONEXP without
them. The lower bounds already apply to very basic ver-
sions of DL-Lite that are positive in the sense that they do
not provide concept disjointness constraints, and the upper
bounds apply to expressive versions that include all Boolean
operators.

We also study the evaluation of the basic yet important
atomic queries (AQs), conjunctive queries of the form A(x)
with A a concept name. Also here, we obtain a rather
complete picture of the complexity landscape. It is known
from (Bonatti, Lutz, and Wolter 2009) that AQ evaluation
in ALCHIO is CONEXPNP-complete w.r.t. combined com-
plexity. We show that the lower bound holds already for EL.
Moreover, our ΠP

2-lower bound for the data complexity of
(U)CQ-evaluation in EL mentioned above only requires an
AQ, and thus AQ evaluation in both ALCHIO and EL are
ΠP

2-complete w.r.t. data complexity. For DL-Lite, the data
complexity drops to PTIME in all considered versions, and
the combined complexity ranges from CONEXP-complete
to ΠP

2-complete, depending on which Boolean operators are
admitted. A summary can be found in Table 2.

An appendix with full proofs can be found in the long
version of this paper, see (Lutz, Manière, and Nolte 2023).

Related Work. A foundational paper on description log-
ics with circumscription is (Bonatti, Lutz, and Wolter 2009),
which studies concept satisfiability and knowledge base con-
sistency in the ALCHIO family of DLs; these problems are
interreducible with AQ evaluation in polynomial time (up to
complementation). The same problems have been consid-
ered in (Bonatti, Faella, and Sauro 2011) for EL and DL-Lite
and in (Bonatti et al. 2015a) for DLs without the finite model
property, including a version of DL-Lite. The recent (Bon-
atti 2021) is the only work we are aware of that considers
ontology-mediated querying in the context of circumscrip-
tion. It provides lower bounds for EL and DL-Lite, which
are both improved in the current paper, but no decidability
results / upper bounds. A relaxed version of circumscription
that enjoys lower complexity has recently been studied in
(Stefano, Ortiz, and Simkus 2022). We have already men-
tioned connections to DLs with defeasible inclusions and
typicality operators, see above for references. A connection
between circumscription and the complexity class ΠP

2 was
first observed in (Eiter and Gottlob 1993), and this complex-
ity shows up in our data complexity results. Our proofs,
however, are quite different.

2 Preliminaries
Let NC, NR, and NI be countably infinite sets of concept
names, role names, and individual names. An inverse role
takes the form r− with r a role name, and a role is a role
name or an inverse role. If r = s− is an inverse role, then
r− denotes s. An ALCIO concept C is built according to
the rule C,D ::= ⊤ | A | {a} | ¬C | C ⊓D | ∃r.D where

A ranges over concept names, a over individual names, and
r over roles. A concept of the form {a} is called a nominal.
We write ⊥ as abbreviation for ¬⊤, C⊔D for ¬(¬C⊓¬D),
and ∀r.C for ¬∃r.¬C. An ALCI concept is a nominal-free
ALCIO concept. An EL concept is an ALCI concept that
uses neither negation nor inverse roles.

An ALCHIO TBox is a finite set of concept inclusions
(CIs) C ⊑ D, where C,D are ALCIO concepts, and role
inclusions (RIs) r ⊑ s, where r, s are roles. In an EL TBox,
only EL concepts may be used in CIs, and RIs are disal-
lowed. An ABox is a finite set of concept assertions A(a)
and role assertions r(a, b) where A is a concept name, r a
role name, and a, b are individual names. We use ind(A) to
denote the set of individual names used in A. An ALCHIO
knowledge base (KB) takes the form K = (T ,A) with T an
ALCHIO TBox and A an ABox. ALCHI TBoxes and
KBs are defined analogously but may not use nominals.

The semantics is defined as usual in terms of interpreta-
tions I = (∆I , ·I) with ∆I the (non-empty) domain and ·I
the interpretation function, we refer to (Baader et al. 2017)
for full details. An interpretation satisfies a CI C ⊑ D if
CI ⊆ DI and likewise for RIs. It satisfies an assertion
A(a) if a ∈ AI and r(a, b) if (a, b) ∈ rI ; we thus make the
standard names assumption. An interpretation I is a model
of a TBox T , written I |= T , if it satisfies all inclusions
in it. Models of ABoxes and KBs are defined likewise. For
an interpretation I and ∆ ⊆ ∆I , we use I|∆ to denote the
restriction of I to subdomain ∆.

A signature is a set of concept and role names referred to
as symbols. For any syntactic object O such as a TBox or an
ABox, we use sig(O) to denote the symbols used in O and
|O| to denote the size of O, meaning the encoding of O as a
word over a suitable alphabet.

We next introduce several more restricted DLs of the DL-
Lite family. A basic concept is of the form A or ∃r.⊤.
A DL-LiteHcore TBox is a finite set of concept inclusions
C ⊑ D, (concept) disjointness assertions C ⊑ ¬D, and
role inclusions r ⊑ s where C,D are basic concepts and r, s
roles. We drop superscript ·H if no role inclusions are admit-
ted, use subscript ·horn to indicate that the concepts C,D in
concept inclusions may be conjunctions of basic concepts,
and subscript ·bool to indicate that C,D may be Boolean
combinations of basic concepts, that is, built from basic con-
cepts using ¬, ⊓, ⊔.

A circumscription pattern is a tuple CP = (≺,M,F,V),
where ≺ is a strict partial order on M called the preference
relation, and M, F and V are a partition of NC. The elements
of M, F and V are the minimized, fixed and varying con-
cept names. Role names always vary to avoid undecidability
(Bonatti, Lutz, and Wolter 2009). The preference relation ≺
on M induces a preference relation <CP on interpretations
by setting J <CP I if the following conditions hold:

1. ∆J = ∆I ,
2. for all A ∈ F, AJ = AI ,
3. for all A ∈ M with AJ ̸⊆ AI , there is a B ∈ M, B ≺ A,

such that BJ ⊊ BI ,
4. there exists an A ∈ M such that AJ ⊊ AI and for all

B ∈ M, B ≺ A implies BJ = BI .
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EL, ALCHIO DL-LiteHcore, DL-LiteHbool DL-Litebool DL-Litecore, DL-Litehorn

Combined complexity 2EXP-c.(Thm. 1, 2) 2EXP-c.(†) (Thm. 1, 5) CONEXP-c.(Thm. 6, 13) CONEXP-c.(†) (Thm. 6, 7)

Data complexity ΠP
2-c.(Thm. 3, 4) CONP-c.(Thm. 8, 9) CONP-c.(Thm. 8, 9) CONP-c.(Thm. 8, 9)

Table 1: Complexity of (U)CQ evaluation on circumscribed KBs. ·(†) indicates that UCQs are needed for lower bound.

A circumscribed KB (cKB) takes the form CircCP(K) where
K is a KB and CP a circumscription pattern. A model I of
K is a model of CircCP(K), denoted I |= CircCP(K), if no
J <CP I is a model of K. A cKB CircCP(K) is satisfiable
if it has a model.

A conjunctive query (CQ) takes the form q(x̄) =
∃ȳ φ(x̄, ȳ) where x̄ and ȳ are tuples of variables and φ is
a conjunction of atoms A(z) and r(z, z′), with A ∈ NC,
r ∈ NR, and z, z′ variables from x̄∪ȳ. The variables in x̄ are
the answer variables, and var(q) denotes x̄∪ ȳ. We take the
liberty to view q as a set of atoms, writing, e.g., α ∈ q to in-
dicate that α is an atom in q. We may also write r−(x, y) ∈ q
in place of r(y, x) ∈ q. A CQ q gives rise to an interpreta-
tion Iq with ∆Iq = var(q), AIq = {x | A(x) ∈ q}, and
rIq = {(x, y) | r(x, y) ∈ q} for all A ∈ NC and r ∈ NR. A
union of conjunctive queries (UCQ) q(x̄) is a disjunction of
CQs that all have the same answer variables x̄. The arity of
q is the length of x̄, and q is Boolean if it is of arity zero. An
atomic query (AQ) is a CQ of the simple form A(x), with A
a concept name.

With a homomorphism from a CQ q to an interpretation I,
we mean a homomorphism from Iq to I (defined as usual).
A tuple d̄ ∈ (∆I)|x̄| is an answer to a UCQ q(x̄) on an inter-
pretation I, written I |= q(d̄), if there is a homomorphism
h from a CQ p in q to I with h(x̄) = d̄. A tuple ā ∈ ind(A)
is an answer to q on a cKB CircCP(K) with K = (T ,A),
written CircCP(K) |= q(ā), if I |= q(ā) for all models I of
CircCP(K).
Example 1. Consider a database about universities. The
TBox contains domain knowledge such as

University ⊑ Organization

Organization ⊑ Public ⊔ Private

Public ⊓ Private ⊑ ⊥.

Circumscription can be used to express defeasible inclu-
sions. For example, from a European perspective, univer-
sities are usually public:

University ⊑ Public ⊔ AbU

where AbU is a fresh ‘abnormality’ concept name that is
minimized. If the ABox contains

University(leipzigu),University(mit),Private(mit)

and we pose the CQ q(x) = Organization(x) ∧ Public(x),
then the answer is leipzigu.

We may also use circumscription to implement a soft
closed-world assumption, similar in spirit to soft constraints
in constraint satisfaction. Assume that the ABox addition-
ally contains a database of nonprofit corporations:

NPC(greenpeace) NPC(wwf)

and that this database is essentially complete, expressed by
minimizing NPC. If we also know that

IvyLeagueU ⊑ ∃ownedBy.(NPC ⊓ Rich)

DonationBased ⊑ ¬Rich
DonationBased(greenpeace) DonationBased(wwf)

IvyLeagueU(harvard)

then we are forced to infer that our list of NPCs was not
actually complete as all explicitly known NPCs are not rich,
but a rich NPC must exist. A strict closed-world assumption
would instead result in an inconsistency.

Let L be a description logic such as ALCHIO or EL and
let Q be a query language such as UCQ, CQ, or AQ. With Q
evaluation on circumscribed L KBs, we mean the problem
to decide, given an L cKB CircCP(K) with K = (T ,A),
a query q(x̄) from Q, and a tuple ā ∈ ind(A)|x̄|, whether
CircCP(K) |= q(ā). When studying the combined complex-
ity of this problem, all of CircCP(K), q, and ā are treated as
inputs. For data complexity, in contrast, we assume q, T ,
and CP to be fixed and thus of constant size.

3 Between ALCHIO and EL
We study the complexity of query evaluation on circum-
scribed KBs for DLs between ALCHIO and EL. In fact,
we prove 2EXP-completeness in combined complexity and
ΠP

2-completeness in data complexity for all these DLs.

3.1 Fundamental Observations
We start with some fundamental observations that underlie
the subsequent proofs, first observing a reduction from UCQ
evaluation on circumscribed ALCHIO KBs to UCQ evalu-
ation on circumscribed ALCHI KBs. Note that a nominal
may be viewed as a (strictly) closed concept name with a
single instance. This reduction is a simple version of a re-
duction from query evaluation with closed concept names to
query evaluation on cKBs in the proof of Theorem 2 below.

Proposition 1. UCQ evaluation on circumscribed
ALCHIO KBs can be reduced in polynomial time to
UCQ evaluation on circumscribed ALCHI KBs.

Proof. Let CircCP(K) be an ALCHIO cKB, with K =
(T ,A), and let q(x̄) be a UCQ. Let N be the set of indi-
vidual names a such that the nominal {a} is used in T . In-
troduce fresh concept names Aa, Ba, Da for every a ∈ N .
We obtain T ′ from T by replacing every a ∈ N with Aa and
adding the CI Aa⊓¬Ba ⊑ Da, A′ from A by adding Aa(a)
and Ba(a) for every a ∈ N , and q′ from q by adding the dis-
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junct ∃y Da(y) for every a ∈ N .1 Set K′ = (T ′,A′). The
circumscription pattern CP′ is obtained from CP by mini-
mizing the concept names Ba with higher preference than
any other concept name (and with no preferences between
them). We show in the appendix that CircCP(K) |= q(ā) iff
CircCP′(K′) |= q′(ā) for all ā ∈ ind(A)|x̄|.

We are thus left with ALCHI KBs. We generally assume
that TBoxes are in normal form, meaning that every concept
inclusion in T has one of the following shapes:

⊤ ⊑ A A ⊑ ∃r.B ∃r.B ⊑ A

A1 ⊓A2 ⊑ A A ⊑ ¬B ¬B ⊑ A

where A,A1, A2, B range over NC and r ranges over roles.
The set of concept names in T is denoted NC(T ).
Lemma 1. Every ALCHI TBox T can be transformed
in linear time into an ALCHI TBox T ′ in normal form
such that for all cKBs CircCP(T ,A), UCQs q(x̄) that do
not use symbols from sig(T ′) \ sig(T ), and ā ∈ ind(A)|x̄|:
CircCP(T ,A) |= q(ā) iff CircCP(T ′,A) |= q(ā).

Let CircCP(K) be a cKB with K = (T ,A). A type is a set
of concept names t ⊆ NC(T ). For an interpretation I and
d ∈ ∆I , we define tpI(d) := {A ∈ NC(T ) | d ∈ AI}. For
a subset ∆ ⊆ ∆I , we set tpI(∆) = {tpI(d) | d ∈ ∆}. We
further write TP(I) for tpI(∆

I). Finally, we set

TP(T ) :=
⋃

I model of T
TP(I).

For a role r, we write t⇝r t′ if for all A,B ∈ NC:
• B ∈ t′ and T |= ∃r.B ⊑ A implies A ∈ t and
• B ∈ t and T |= ∃r−.B ⊑ A implies A ∈ t′.
We next show how to identify a ‘core’ part of a model I
of K. These cores will play an important role in dealing
with circumscription in our upper bound proofs.
Definition 1. Let I be a model of K. We use TPcore(I) to
denote the set of all types t ∈ TP(I) such that

|{d ∈ ∆I \ ind(A) | tpI(d) = t}| < |TP(T )|

and set TPcore(I) = TP(I) \ TPcore(I) and

∆I
core = {d ∈ ∆I | tpI(d) ∈ TPcore(I)}.

So the core consists of all elements whose types are real-
ized not too often, except possibly in the ABox. A good way
of thinking about cores is that if a model I of K is minimal
w.r.t. <CP, then all instances of minimized concept names
are in the core. This is, however not strictly true since we
may have A ⊑ B where A is ⊤ or fixed, and B is mini-
mized.

The following crucial lemma provides a sufficient condi-
tion for a model J of K to be minimal w.r.t. <CP, relative to
a model I of K that is known to be minimal w.r.t. <CP.

1Strictly speaking, we need to adjust ∃y Da(y) so that it has
the same answer variables as the other CQs in q. This is easy by
adding to T ′ a CI ⊤ ⊑ T for a fresh concept name T and extending
∃y Da(y) with atom T (x) for every answer variable x.

Lemma 2 (Core Lemma). Let I be a model of CircCP(K)
and let J be a model of K with ∆I

core ⊆ ∆J . If
1. tpI(d) = tpJ (d) for all d ∈ ∆I

core and
2. tpJ (∆J \∆I

core) = TPcore(I),
then J is a model of CircCP(K).

We give a sketch of the proof of (the contrapositive of)
Lemma 2. Assume that J is not a model of CircCP(K).
Then there must be a model J ′ of K with J ′ <CP J and
to obtain a contradiction it suffices to construct from J ′ a
model I ′ of K with I ′ <CP I. Note that I and J may have
domains of different sizes. The elements of ∆I

core receive
the same type in I ′ as in J ′. For each non-core type t in I,
we consider the set St of types in J ′ of those elements that
have type t in J . Since t is realized in I at least |TP(T )|
many times, we have enough room to realize in I ′ exactly
the types from St among those elements that had type t in I,
that is, within (tpI)

−1(t). It is easy to see that I ′ is a model
of K: it satisfies T as it realizes the same types as J ′ and it
satisfies A since I ′|ind(A) = J ′|ind(A). By construction and
since J ′ <CP J , it further satisfies I ′ <CP I.

We next use the core lemma to show that if CircCP(K) ̸|=
q(ā) for any CQ q and ā ∈ ind(A)|x̄|, then this is witnessed
by a countermodel I that has a regular shape. Here and in
what follows, a countermodel is a model I of CircCP(K)
with I ̸|= q(ā). By regular shape, we mean that there is a
‘base part’ that contains the ABox, the core of I, as well
as some additional elements; all other parts of I are tree-
shaped with their root in the base part, and potentially with
edges that go back to the core (but not to other parts of the
base!). We next make this precise.

Let I be a model of CircCP(K). Set Ω = {rA | B ⊑
∃r.A ∈ T } and fix a function f that chooses, for every d ∈
∆I and rA ∈ Ω with d ∈ (∃r.A)I , an element f(d, rA) =
e ∈ AI such that (d, e) ∈ rI . Further choose, for every
t ∈ TPcore(I), a representative et ∈ ∆I with tpI(et) = t.
We inductively define the set P of paths through I along
with a mapping h assigning to each p ∈ P an element of ∆I :
• each element d of the set

∆I
base := ind(A) ∪∆I

core ∪ {et | t ∈ TPcore(I)}

is a path in P and h(d) = d;
• if p ∈ P with h(p) = d and rA ∈ Ω with f(d, rA)

defined and not from ∆I
core, then p′ = prA is a path in P

and h(p′) = f(d, rA).
For every role r, define

Rr = {(a, b) | a, b ∈ ind(A), r(a, b) ∈ A}∪
{(d, e) | d, e ∈ ∆I

core, (d, e) ∈ rI}∪
{(p, p′) | p′ = prA ∈ P}∪
{(p, e) | e = f(h(p), rA) ∈ ∆I

core}.

Now the unraveling of I is defined by setting

∆I′
= P AI′

= {p ∈ P | h(p) ∈ AI}
rI

′
=

⋃
T |=s⊑r

(Rs ∪ {(e, d) | (d, e) ∈ Rs−})
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for all concept names A and role names r. It is easy to verify
that h is a homomorphism from I ′ to I. This version of
unraveling is inspired by constructions from (Manière 2022)
where the resulting model is called an interlacing.
Lemma 3. Let q(x̄) be a UCQ and ā ∈ ind(A). If I is
a countermodel against CircCP(K) |= q(ā), then so is its
unraveling I ′.

For some of our upper bound proofs, it will be important
that the reference model I in the core lemma is finite and
sufficiently small. The following lemma shows that we can
always achieve this.
Lemma 4. Let I be a model of CircCP(K). There exists
a model J of CircCP(K) such that |∆J | ≤ |A| + 22|T |,
I|∆I

core
= J |∆J

core
, and TPcore(I) = TPcore(J ).

In the proof of Lemma 4, we construct the desired
model J by starting from I|ind(A)∪∆I

core
and adding exactly

m = |TP(T )| instances of each type from TPcore(I).

3.2 Combined Complexity
We show that in any DL between EL and ALCHIO, the
evaluation of CQs and UCQs on cKBs is 2EXP-complete
w.r.t. combined complexity, starting with the upper bound.
Theorem 1. UCQ evaluation on circumscribed ALCHIO
KBs is in 2EXP w.r.t. combined complexity.

By Proposition 1, it suffices to consider ALCHI . Assume
that we are given as an input an ALCHI cKB CircCP(K)
with K = (T ,A), a UCQ q(x̄), and a tuple ā ∈ ind(A)|x̄|.
We have to decide whether or not there is a countermodel I
against CircCP(K) |= q(ā).

Fix a set ∆ of size |ind(A)| + 22|T |+1 such that
ind(A) ⊆ ∆. Note that ∆ is sufficiently large so that we
may assume the base domain ∆I

base of unraveled interpreta-
tions to be a subset of ∆. In an outer loop, our algorithm
iterates over all triples (Ibase,∆core, Tcore) such that the fol-
lowing conditions are satisfied:
• Ibase is a model of A with ∆core ⊆ ∆Ibase ⊆ ∆;
• tpIbase

(∆Ibase \∆core) = Tcore;

• tpIbase
(∆core) ∩ Tcore = ∅.

For each triple (Ibase,∆core, Tcore), we then check whether
the following additional conditions are satisfied:
(I) Ibase can be extended to a model I of T such that
(a) I|∆Ibase = Ibase,
(b) tpI(∆

I \∆Ibase) ⊆ Tcore, and
(c) I ̸|= q(ā);

(II) there exists a model J of CircCP(K) such that
J |∆J

core
= Ibase|∆core and TPcore(J ) = Tcore.

We return ‘yes’ if all triples fail the check and ‘no’ other-
wise.

If the checks succeed, then the model I of K from Con-
dition (I) is a countermodel against CircCP(K) |= q(ā). In
particular, we may apply Lemma 2, using the model J from
Condition (II) as the reference model, to show that I is min-
imal w.r.t. <CP. Conversely, any countermodel I0 against

CircCP(K) |= q(ā) can be unraveled into a countermodel
I from which we can read off a triple (Ibase,∆core, Tcore)
in the obvious way, and then I witnesses Condition (I) and
choosing J = I witnesses Condition (II).

Of course, we have to prove that Conditions (I) and (II)
can be verified in 2EXP. This is easy for Condition (II): by
Lemma 4, it suffices to consider models J of size at most
|A| + 22|T | and thus we can iterate over all candidate in-
terpretations J up to this size, check whether J is a model
of K with J |∆J

core
= Ibase|∆core and TPcore(J ) = Tcore, and

then iterate over all models J ′ of K with ∆J ′
= ∆J to

check that J is minimal w.r.t. <CP.
Condition (I) requires more work. We use a mosaic ap-

proach, that is, we attempt to assemble the interpretation I
from Condition (I) by combining small pieces called mo-
saics. Each mosaic contains the base part of I and at most
two additional elements e∗1, e

∗
2. We trace partial homomor-

phisms from CQs in q through the mosaics, as follows.
Fix a triple (Ibase,∆core, Tcore). A match triple for an in-

terpretation J takes the form (p, p̂, h) such that p is a CQ
in q, p̂ ⊆ p, and h is a partial map from var(p̂) to ∆J

that is a homomorphism from p̂|dom(h) to J . Intuitively, J
is a mosaic and the triple (p, p̂, h) expresses that a homo-
morphism from p̂ to I exists, with the variables in dom(h)
being mapped to the current piece J and the variables in
var(p̂) \ dom(h) mapped to other mosaics. A match triple
is complete if p̂ = p and incomplete otherwise. To make I
a countermodel, we must avoid complete match triples. A
specification for J is a set S of match triples for J and we
call S saturated if the following conditions are satisfied:
• if p is a CQ in q, p̂ ⊆ p, and h is a homomorphism from p̂

to J , then (p, p̂, h) ∈ S;
• if (p, p̂, h), (p, p̂′, h′) ∈ S and h(x) = h′(x) is defined

for all x ∈ var(p̂) ∩ var(p̂′), then (p, p̂ ∪ p̂′, h ∪ h′) ∈ S.
Definition 2. A mosaic for (Ibase,∆core, Tcore) is a tuple
M = (J , S) where
• J is an interpretation such that

1. ∆Ibase ⊆ ∆J ⊆ ∆Ibase ⊎ {e∗1, e∗2};
2. J |∆Ibase = Ibase;
3. tpJ (e∗i ) ∈ Tcore if e∗i ∈ ∆J , for i ∈ {1, 2};
4. J satisfies all ∃r.A ⊑ B ∈ T and all r ⊑ s ∈ T .

• S is a saturated specification for J that contains only
incomplete match triples.

We use JM to refer to J and SM to refer to S.
Let M be a set of mosaics for (Ibase,∆core, Tcore). We say
that M ∈ M is good in M if for every e ∈ ∆JM and every
A ⊑ ∃r.B ∈ T with e ∈ (A⊓¬∃r.B)JM , we find a mosaic
M ′ ∈ M such that the following conditions are satisfied:

1. tpJM
(e) = tpJM′ (e);

2. e ∈ (∃r.B)JM′ ;
3. if (p, p̂, h′) ∈ SM ′ , then (p, p̂, h) ∈ SM where h is the

restriction of h′ to range ∆Ibase ∪ {e}.
If M is not good in M, then it is bad. To verify Cond. (I),
we start with the set of all mosaics for (Ibase,∆core, Tcore)
and repeatedly and exhaustively eliminate bad mosaics.
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Lemma 5. Ibase can be extended to a model I of T that
satisfies Conditions (a) to (c) iff at least one mosaic survives
the elimination process.

We provide a matching lower bound for Theorem 1. It is
rather strong as it already applies to CQs, to EL KBs, and
uses a single minimized concept name (and consequently no
preferences) and no fixed concept names. It is proved by a
subtle reduction from CQ evaluation on EL KBs with closed
concept names, that is, with KBs (T ,A) enriched with a set
Σ of closed concept names A that have to be interpreted as
AI = {a | A(a) ∈ A} in all models I. This problem was
proved to be 2EXP-hard in (Ngo, Ortiz, and Simkus 2016).
The reduction also sheds some light on the connection be-
tween circumscription and closing concept names.
Theorem 2. CQ evaluation on circumscribed EL KBs is
2EXP-hard w.r.t. combined complexity. This holds even
with a single minimized concept name and no fixed concept
names.

3.3 Data Complexity
We show that in any DL between EL and ALCHIO, the
evaluation of CQs and UCQs on cKBs is ΠP

2-complete w.r.t.
data complexity. We start with the upper bound.
Theorem 3. UCQ evaluation on circumscribed ALCHIO
KBs is in ΠP

2 w.r.t. data complexity.

We may again limit our attention to ALCHI . To prove
Theorem 3, we show that if a countermodel exists, then there
is one of polynomial size (with TBox and query of constant
size). Note that this is not a consequence of Lemma 4 since
there is no guarantee that, if the model I from that lemma
is a countermodel, then so is J . Once the size bound is in
place, we obtain the ΠP

2 upper bound by a straightforward
guess-and-check procedure.
Lemma 6. Let CircCP(K) be an ALCHI cKB, K = (T ,A),
q(x̄) a UCQ, and ā ∈ ind(A)|x̄|. If CircCP(K) ̸|= q(ā), then
there exists a countermodel I with |∆I | ≤ (|A|+2|T |)|T ||q| .

To prove Lemma 6, let CircCP(K) be an ALCHI cKB,
K = (T ,A), and let I be a model of CircCP(K) with I ̸|=
q(ā). We construct a small countermodel by starting from
the unraveling I ′ of I and applying a quotient construction.
The latter is based on a suitable equivalence relation on ∆I′

which we define next. Recall that I ′ consists of a base part
∆I

base and a tree-part with backedges to ∆I
base.

For n ≥ 0 and d ∈ ∆I′ \∆I
base, we use Nn(d) to denote

the n-neighborhood of d in I ′ up to ∆I
base, that is, the set of

all elements e ∈ ∆I′ \∆I
base such that the undirected graph

GI′ = (∆I′
, {{d, e} | (d, e) ∈ rI

′
for some r ∈ NR})

contains a path d0, . . . , dk with d0 = d, d0, . . . , dk−1 /∈
∆I

base, and dk = e, 0 ≤ k ≤ n.
Recall that the elements of ∆I′

are paths through I,
sequences p = d0r1A1 · · · rnAn with d0 ∈ ∆I

base and
riAi ∈ Ω; the length of p, denoted by |p|, is n. By def-
inition of I ′ and of neighborhoods, for every n ≥ 0 and
d ∈ ∆I′ \∆I

base, there is a unique path pd,n ∈ Nn(d) that is

a prefix of all paths in Nn(d), that is, all e ∈ Nn(d) \∆I
base

take the form pd,nr1A1 · · · rkAk.
For n ≥ 0, the equivalence relation ∼n on ∆I′

is defined
by setting d1 ∼n d2 if d1 = d2 ∈ ∆I

base or d1, d2 /∈ ∆I
base

and the following conditions are satisfied:
1. d1 = pd1,nw and d2 = pd2,nw for some w ∈ Ω∗;
2. for every w = r1A1 · · · rkAk ∈ Ω∗:

pd1,nw ∈ Nn(d1) iff pd2,nw ∈ Nn(d2)

and if pd1,nw ∈ Nn(d1), then
(a) tpI′(pd1,nw) = tpI′(pd2,nw);
(b) (pd1,nw, e) ∈ rI

′
iff (pd2,nw, e) ∈ rI

′
for all roles r

and e ∈ ∆I
base.

3. |d1| ≡ |d2| mod 2|q|+ 3.

For an element d ∈ ∆I′
, we use d to denote the equiva-

lence class of d w.r.t. ∼|q|+1. The quotient I ′/∼|q|+1 of I ′

is the interpretation whose domain is the set of all equiva-
lence classes of ∼|q|+1 and where

AI′/∼|q|+1 = {d | d ∈ AI′}
rI

′/∼|q|+1 = {(d, e) | (d, e) ∈ rI
′}

for all concept names A and role names r. It can be verified
that |∆I′/∼|q|+1 | ≤ (|A|+ 2|T |)|T ||q| , as desired.

Lemma 7. Let q(x̄) be a UCQ and ā ∈ ind(A)|x̄|. If I
is a countermodel against CircCP(K) |= q(ā), then so is
I ′/∼|q|+1.

It is in fact straightforward to show that I ′/∼|q|+1 is
a model of K. Minimality w.r.t. <CP is proved using
Lemma 2. The most subtle part of the proof of Lemma 7
is showing that I ′/∼|q|+1 ̸|= q(ā). This is done by exhibit-
ing suitable ‘local’ homomorphisms from I ′/∼|q|+1 back
to I ′ so that from any homomorphism from a CQ p in q to
I ′/∼|q|+1 with h(x̄) = ā, we obtain a homomorphism from
p to I with the same property by composition. This finishes
the proof of Lemmas 7 and 6 and of Theorem 3.

We next provide a matching lower bound for Theorem 3.
It already applies to AQs and EL KBs, and when there
is a single minimized concept name and no fixed concept
name. It is proved by a subtle reduction from the validity of
∀∃3SAT sentences. Several non-obvious technical tricks are
needed to make the reduction work with a single minimized
concept name. Our result improves upon a known CONP
lower bound from (Bonatti 2021).
Theorem 4. AQ evaluation on circumscribed EL KBs is ΠP

2-
hard. This holds even with a single minimized concept name
and no fixed concept names.

4 DL-Lite
We consider the DL-Lite family of DLs. Without circum-
scription, these DLs enjoy low complexity of query evalu-
ation, typically NP-complete in combined complexity and
in AC0 in data complexity (depending on the dialect). With
circumscription, the complexity tends to still be very high,
though in some relevant cases it is lower than in ALCHIO.
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4.1 Combined Complexity
Our first result shows that, when role inclusions are admit-
ted, nothing is gained from transitioning from ALCHIO to
DL-Lite. The proof is a variation of that of Theorem 2, but
technically much simpler.

Theorem 5. UCQ evaluation on circumscribed DL-LiteHcore
KBs is 2EXP-hard w.r.t. combined complexity. This holds
even with a single minimized concept name, no fixed concept
names, and no disjointness constraints.

We now move to DL-Litebool as a very expressive DL-Lite
dialect without role inclusions and observe that the com-
bined complexity decreases.

Theorem 6. UCQ evaluation on circumscribed DL-Litebool
KBs is in CONEXP w.r.t. combined complexity.

To prove Theorem 6, we first observe that we can refine
the unraveling of countermodels I from Section 3.1 such
that each element outside of the base part ∆I

base has at most
one successor per role. This property allows us to simplify
the notion of a neighborhood in the quotient construction in
Section 3.3. This, in turn, yields the following result. Note
that in contrast to Lemma 6, there is no double exponential
dependence on |q|.
Lemma 8. Let CircCP(K) be a DL-Litebool cKB with K =
(T ,A), q(x̄) a UCQ, and ā ∈ ind(A)|x̄|. If CircCP(K) ̸|=
q(ā), then there exists a countermodel I with |∆I | ≤ (|A|+
2|T |)|q|

2(|T |+1).

Lemma 8 yields a CONEXPNP upper bound by a straight-
forward guess-and-check procedure: guess a model I of K
with I ̸|= q(ā) and |∆I | bounded as in Lemma 8, and use
an oracle to check that I is minimal w.r.t. <CP where the
oracle decides, given a cKB CircCP(K) and a model I of
CircCP(K), whether I is non-minimal w.r.t. <CP by guess-
ing a model J <CP I of K; such an approach was used also
in (Bonatti, Lutz, and Wolter 2009).

To obtain a CONEXP upper bound as desired, we replace
the oracle with a more efficient method to check whether a
given model I of K is minimal w.r.t. <CP. The crucial obser-
vation is that instead of guessing a model J <CP I of K, it
suffices to consider certain interpretations I ′ of polynomial
size, derived from sub-interpretations of I, and guess mod-
els J ′ <CP I ′ of K. Intuitively, we decompose an expen-
sive ‘global’ test into exponentially many inexpensive ‘lo-
cal’ tests. This even works in the presence of role inclusions,
that is, in DL-LiteHbool, which shall be useful in Section 5.

Let CircCP(K) be a DL-LiteHbool cKB with K = (T ,A)
and I a model of K. For each role r used in T such that
rI ̸= ∅, we choose a witness wr ∈ (∃r−)I . Every P ⊆ ∆I

gives rise to an interpretation IP as follows:

∆IP = P ∪ ind(A) ∪ {wr | r used in T , rI ̸= ∅}
AIP = AI ∩∆IP

rIP = rI ∩ (ind(A)× ind(A))

∪{(e, ws) | e ∈ (∃s)I ∩∆IP , T |= s ⊑ r}
∪ {(ws, e) | e ∈ (∃s)I ∩∆IP , T |= s ⊑ r−}.

Note that IP is derived from the subinterpretation
I|P∪ind(A) by ‘rerouting’ some role edges to elements wr.
We have |IP | ≤ |A|+ |T |+ |P| and will only consider sets
P with |P| ≤ 2|T |+1. It is not difficult to show that IP is a
model of K, for all P ⊆ ∆I . The next lemma characterizes
the (non)-minimality of I in terms of the (non)-minimality
of the interpretations IP .

Lemma 9. The following are equivalent:

1. There exists a model I of K with J <CP I;
2. There exist a P ⊆ ∆I with |P| ≤ 2|T | + 1 and a family

(Je)e∈∆I of models of K such that Je <CP IP∪{e} and
Je|∆IP = Je′ |∆IP for all e, e′ ∈ ∆I .

It should now be clear that we have established Theo-
rem 5. After guessing the model I of K with I ̸|= q(ā),
we check the complement of Point 2 of Lemma 9 in a brute-
force way. More precisely, we first iterate over all P ⊆ ∆I

with |P| ≤ 2|T | + 1, then over all interpretations J0 with
∆J0 = ∆IP (as candidates for the common restriction of
the models (Je)e∈∆I to ∆IP ), then over all e ∈ ∆I , and
finally over all models Je of K with Je|∆IP = J0, and test
whether Je <CP IP∪{e}. We accept if for every P and J0,
there is an e such that for all Je the final check fails. Overall,
we obtain a CONEXP algorithm.

We provide a matching lower bound that holds even for
DL-Litecore cKBs. It is proved by reduction from the com-
plement of Succinct3COL, which is known to be NEXP-
complete (Papadimitriou and Yannakakis 1986).

Theorem 7. UCQ answering on circumscribed DL-Litecore
KBs is CONEXP-hard w.r.t. combined complexity. This holds
even with a single minimized concept name, no fixed concept
names, and no disjointness constraints.

4.2 Data Complexity
We now consider data complexity, where the landscape is
less diverse. Indeed, we obtain CONP-completeness for
all DLs between DL-LiteHbool and DL-Litecore, and both for
UCQs and CQs.

Theorem 8. UCQ evaluation on circumscribed DL-LiteHbool
KBs is in CONP w.r.t. data complexity.

To prove Theorem 8, we again guess a model I of K with
I ̸|= q(ā) and |∆I | bounded as in Theorem 8, and then
verify that I is minimal w.r.t. <CP. For the latter, we in-
troduce a variation of Lemma 9. The original version of
Lemma 9 is not helpful because its Point 2 involves decid-
ing whether, given an interpretation IP∪{e}, there is a model
Je <CP IP∪{e} of K, and given that ind(A) ⊆ IP∪{e} there
is no reason to believe that this can be done in polynomial
time in data complexity. We actually conjecture this prob-
lem to be CONP-complete. In the following, we vary the
definition of the interpretations IP so that their size is inde-
pendent of that of A.

Let CircCP(K) be a DL-LiteHbool cKB with K = (T ,A)
and I a model of K. We assume T to be in normal form.
For an element e ∈ ∆I , we define its ABox type to be

tpA(e) = {A | A ∈ NC,K |= A(e)}.
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Note that tpA(e) actually needs not be a proper type as
defined in Section 3 due to the presence of disjunction in
DL-LiteHbool. If e /∈ ind(A), which is permitted, then tpA(e)
is simply the set of all concepts names A with K |= ⊤ ⊑ A.

For each pair (t1, t2) such that tpA(e) = t1 and tpI(e) =
t2 for some e ∈ ∆I , we choose such an element et1,t2 ; we
use E to denote the set of all elements chosen in this way.
For each role r used in T such that rI ̸= ∅, we choose an
element wr ∈ (∃r−)I . Now define, for every P ⊆ ∆I , the
interpretation IP as follows:

∆IP = P ∪ E ∪ {wr | r used in T , rI ̸= ∅}
AIP = AI ∩∆IP

rIP = {(e, ws) | e ∈ (∃s)I ∩∆IP , T |= s ⊑ r}
∪ {(ws, e) | e ∈ (∃s)I ∩∆IP , T |= s ⊑ r−}

Note that |IP | ≤ 4|T | + |T |+ |P|. We also define an ABox

AP = {A(a) | a ∈ ind(A) ∩∆IP , A ∈ tpA(a)}
and set KP = (T ,AP). The ABoxes AP act as a decom-
position of the ABox A, similarly to how the interpretations
IP act as a decomposition of the interpretation I. Note that⋃

P AP does not contain role assertions. This is compen-
sated by the use of tpA(a) in the definition of AP and the
fact that, since T is in normal form, all relevant endpoints
of role assertions are ‘visible’ in the ABox types. Note that
this fails in the case of EL where dropping role assertions
could result in CIs ∃r.B ⊑ A to be left unsatisfied, and such
CIs are crucial for proving ΠP

2-hardness in that case, see the
proof of Theorem 4.

The following is the announced variation of Lemma 9.
Lemma 10. The following are equivalent:

1. I |= CircCP(K);
2. IP |= CircCP(KP) for all P ⊆ ∆I with |P| ≤ 2|T |+ 1.

In the “1 ⇒ 2” direction we use the witnesses et1,t2 to
extend a potential model J ′ <CP IP of some KP to a model
J <CP I of K, obtaining a contradiction. In the “2 ⇒ 1”
direction, for a potential model J <CP I of K, we can find
a P with |P| ≤ 2|T |+ 1 so that we can construct from J a
model J ′ <CP IP of KP .

To establish Theorem 8, it thus suffices to argue that
checking Point 2 of Lemma 10 can be implemented in time
polynomial in |A|. We iterate over all polynomially many
sets P with |P| ≤ 2|T |+1 (recall that T is fixed) and check
whether IP |= CircCP(KP) in a brute force way. To ver-
ify the minimality of IP , we iterate over all models J of
KP with ∆J = ∆IP (of which there are only polynomially
many, thanks to the modified definition of ∆IP ), and make
sure that J ̸<CP IP for any such J . Overall, we obtain a
CONP algorithm.

The CONP upper bound turns out to be tight, even for
DL-Litecore cKBs and CQs, and with very restricted circum-
scription patterns. We reduce from 3-colorability.
Theorem 9. CQ evaluation on circumscribed DL-Litecore
KBs is CONP-hard w.r.t. data complexity. This holds even
with a single minimized concept name, no fixed concept
names, and no disjointness constraints.

5 Atomic Queries
We study the evaluation of atomic queries on circumscribed
KBs, which is closely related to concept satisfiability w.r.t.
such KBs. In fact, the two problems are mutually re-
ducible in polynomial time. Our results from this sec-
tion, summarized in Table 2, can thus also be viewed as
completing the complexity landscape for concept satisfi-
ability, first studied in (Bonatti, Lutz, and Wolter 2006;
Bonatti, Faella, and Sauro 2011).

5.1 Between ALCHIO and EL
Concept satisfiability w.r.t. circumscribed ALCIO KBs was
proved to be CONEXPNP-complete in (Bonatti, Lutz, and
Wolter 2009). The proof of the upper bound can easily be
extended to cover also role inclusions. We thus obtain:
Theorem 10. (Bonatti, Lutz, and Wolter 2009) AQ eval-
uation on circumscribed ALCHIO KBs is in CONEXPNP

w.r.t. combined complexity.

An alternative way to obtain Theorem 10 for ALCHI is
to use Lemma 6, which yields the existence of single expo-
nentially large countermodels in the special case where the
query q is of constant size (here |q| = 1), and a straightfor-
ward guess-and-check procedure as sketched in Section 4.1.
This can be lifted to ALCHIO by a variation of (the proof
of) Proposition 1 tailored to AQs.

We next prove a matching lower bound for EL, improving
on an EXP lower bound from (Bonatti, Faella, and Sauro
2011).
Theorem 11. AQ evaluation on circumscribed EL KBs is
CONEXPNP-hard w.r.t. combined complexity. This holds
even without fixed concept names and with an empty pref-
erence order.

This is proved by a reduction from AQ evaluation on
ALC cKBs, which is known to be CONEXPNP-hard (Bon-
atti, Lutz, and Wolter 2009).

Regarding data complexity, it suffices to recall that Theo-
rem 4 applies even to AQs and EL cKBs.

5.2 DL-Lite
Recall that in Section 4.1, we have proved that UCQ evalu-
ation over DL-Litebool cKBs is in CONEXP w.r.t. combined
complexity. We started with a guess-and-check procedure
that gives a CONEXPNP upper bound, relying on counter-
models of single exponential size as per Lemma 8, and then
improved to CONEXP using Lemma 9. Here, we use the
same algorithm. The only difference in the correctness proof
is that Lemma 8 is replaced with Lemma 6 as the former
does not support role inclusions and the latter delivers a sin-
gle exponential upper bound for queries of constant size.

Theorem 12. AQ evaluation on circumscribed DL-LiteHbool
KBs is in CONEXP w.r.t. combined complexity.

We match this upper bound even in the absence of role in-
clusions, demonstrating that evaluating AQs and UCQs over
DL-Litebool cKBs is equally difficult.
Theorem 13. AQ evaluation on circumscribed DL-Litebool
KBs is CONEXP-hard w.r.t. combined complexity.
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EL, ALCHIO DL-Litebool, DL-LiteHbool DL-Litecore, DL-LiteHhorn
Combined complexity CONEXPNP-c.(†) (Thm. 10, 11) CONEXP-c.(Thm. 12, 13) ΠP

2-c.(‡) (Thm. 14)

Data complexity ΠP
2-c.(Thm. 3, 4) in PTIME (Thm. 15) in PTIME (Thm. 15)

Table 2: Complexity of AQ evaluation on circumscribed KBs. (†): completeness already known for ALC(IO). (‡): hardness already known.

The proof is by reduction from the complement of the
NEXP-complete problem Succinct-3COL and relies on fixed
concept names.

The situation is more favorable if we restrict our attention
to DL-LiteHhorn cKBs, which is still a very expressive dialect
of the DL-Lite family. For DL-LiteHhorn, we prove that if
there is a countermodel, then there is one of linear size, in
drastic contrast to the DL-Litebool case where the proof of
Theorem 13 shows that exponentially large countermodels
cannot be avoided.

Theorem 14. AQ evaluation on circumscribed DL-LiteHhorn
KBs is in ΠP

2 w.r.t. combined complexity.

A matching lower bound for DL-Litecore cKBs can be
found in (Bonatti, Faella, and Sauro 2011).

We now move to data complexity, where we obtain
tractability even for the maximally expressive DL-LiteHbool
dialect of DL-Lite.

Theorem 15. AQ evaluation on circumscribed DL-LiteHbool
KBs is in PTIME w.r.t. data complexity.

We sketch the proof of Theorem 15. Let CircCP(K) be
a DL-LiteHbool cKB with K = (T ,A), A0(x) an AQ, and
a0 ∈ Ind(A). We construct an ABox A′ whose size is inde-
pendent of that of A and which can replace A when deciding
whether a0 is an answer to A0. The construction of A′ may
be viewed as a variation of the constructions that we have
used in the proofs of Theorems 6 and 8 to avoid an NP or-
acle. In particular, it reuses the notion of ABox types from
the latter. However, the construction employed here works
directly with ABoxes rather than with countermodels.

Let TP(A) denote the set of all ABox types t realized
in A, that is, all t such that tpA(a) = t for some a ∈ Ind(A).
For every t ∈ TP(A), set

mt = min(|{a ∈ ind(A) | tpA(a) = t}|, 4|T |)

and choose mt individuals at,1, . . . , at,mt
∈ ind(A) such

that tpA(at,i) = t for 1 ≤ i ≤ mt. We assume that the
individual a0 of interest is among the chosen ones. Let W
be the set of all chosen individuals, that is, W = {at,i | t ∈
TP(A), 1 ≤ i ≤ mt}. Now define an ABox

A′ = {A(a) | a ∈ W,A ∈ tpA(a)}

and set K′ = (T ,A′). Note that |ind(A′)| ≤ 8|T |, and thus
the size of A′ depends only on the TBox T , but not on the
original ABox A. Also, note that, just like the ABoxes AP
from the proof of Theorem 8, A′ no longer contains role
assertions.

Lemma 11. CircCP(K) |= A0(a0)iff CircCP(K′) |= A0(a0).

It is important for the ‘only if’ direction of Lemma 11
that we keep at least 4|T | individuals of each ABox type t
(if existent). In fact, this allows us to convert a model I ′

of CircCP(K′) into a model of K that is minimal w.r.t. <CP,
using arguments similar to those in the proof of Lemma 2. A
crucial point is that if a ∈ ind(A)\ ind(A′) and t = tpA(a),
then mt = 4|T | which implies that there is a regular type
t′ such that the combination (t, t′) is realized at least 2|T |

many times in I ′ among the individuals from A′.
Lemma 11 gives PTIME membership as the size of A′ is

bounded by a constant. We compute K′ in polynomial time
and check whether CircCP(K′) |= A0(a0), which can be de-
cided in 2EXP by Theorem 1, that is, in constant time w.r.t.
data complexity. The correctness of this procedure immedi-
ately follows from Lemma 11.

5.3 Negative Role Inclusions
DL-Lite is often defined to additionally include negative role
inclusions of the form r ⊑ ¬s, with the obvious semantics.
It is known that these sometimes lead to increased compu-
tational complexity; see, for example, (Manière 2022). We
close by observing that this is also the case for circumscrip-
tion. While querying circumscribed DL-Lite KBs (in all
considered dialects) is CONP-complete w.r.t. data complex-
ity for (U)CQs and in PTIME for AQs, adding negative role
inclusions results in a jump back to ΠP

2. We prove this by
reduction from ∀∃3SAT. Some ideas are shared with the
proof of Theorem 4, but the general strategy of the reduc-
tion is different.
Theorem 16. AQ evaluation on circumscribed DL-LiteHcore
KBs with negative role inclusions is ΠP

2-hard. This holds
even without fixed concept names and with a single negative
role inclusion.

6 Conclusion
We have provided a rather complete picture of the complex-
ity of query evaluation on circumscribed KBs. Some cases,
however, remain open. For example, the lower bounds in
combined complexity for UCQ evaluation on DL-Lite cKBs
given in Theorems 5 and 7 cannot be improved in an obvious
way to CQs, for which the complexity remains open. Also,
the lower bounds provided in Theorems 13, 16 and the ΠP

2
one from (Bonatti, Faella, and Sauro 2011) rely on the pref-
erence relation in circumscription patterns, and it remains
open whether the complexity decreases when the preference
relation is forced to be empty. Finally, it would be interest-
ing to study query evaluation under ontologies that are sets
of existential rules or formulated in the guarded (negation)
fragment of first-order logic, extended with circumscription.
We believe that these problems are still decidable.
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