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Abstract

We study the enumeration of answers to ontology-mediated
queries when the ontology is formulated in a description logic
that supports functional roles and the query is a CQ. In par-
ticular, we show that enumeration is possible with linear pre-
processing and constant delay when a certain extension of the
CQ (pertaining to functional roles) is acyclic and free-connex
acyclic. This holds both for complete answers and for par-
tial answers. We provide matching lower bounds for the case
where the query is self-join free.

1 Introduction
In ontology-mediated querying, a query is combined with
an ontology to inject domain knowledge and to facilitate ac-
cess to incomplete and heterogeneous data (Bienvenu et al.
2014; Calvanese et al. 2009; Calı̀, Gottlob, and Lukasiewicz
2012). Intense research has been carried out on the complex-
ity of ontology-mediated querying, often focussing on con-
junctive queries (CQs) and on description logics and existen-
tial rules as ontology languages. Most of the existing stud-
ies have concentrated on the basic problem of single-testing
which means to decide, given an ontology-mediated query
(OMQ) Q, a database D, and a candidate answer ā, whether
ā is indeed an answer to Q on D. From the viewpoint of
many practical applications, however, the assumption that a
candidate answer is provided is hardly realistic and it seems
much more relevant to enumerate, given an OMQ Q and a
database D, all answers to Q on D.

The investigation of answer enumeration for OMQs has
recently been initiated in (Lutz and Przybylko 2022b) which
also introduces useful new notions of minimal partial an-
swers; such answers may contain wildcards to represent ob-
jects that are known to exist, but whose exact identity is un-
known. If, for example, the ontology stipulates that

Researcher v ∃worksFor.University
Unversity v Academia

and the database D is {Researcher(mary)}, then there are
no complete answers to the CQ

q(x, y) = worksFor(x, y) ∧ Academia(y),
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but (mary, ∗) is a minimal partial answer that conveys in-
formation which is otherwise lost. The ontologies in (Lutz
and Przybylko 2022b) are sets of guarded existential rules
which generalize well-known description logics such as EL
and ELIH. An important feature of description logics that
is not captured by guarded rules are functionality assertions
on roles, which make it possible to declare that some binary
relation symbols must be interpreted as partial functions.

The purpose of this paper is to study the enumeration of
answers to OMQs that combine a CQ with an ontology for-
mulated in a description logic with functional roles, in par-
ticular ELIHF and its fragments. We consider both the tra-
ditional complete answers and two versions of minimal par-
tial answers that differ in which kind of wildcards are admit-
ted. In one version, there is only a single wildcard symbol ‘∗’
while in the other version, multiple wildcards ‘∗1’, ‘∗2’, etc
are admitted and multiple occurrences of the same wildcard
represent the same unknown constant.

We study enumeration algorithms with a preprocessing
phase that takes time linear in the size ofD and with constant
delay, that is, in the enumeration phase the delay between
two answers must be independent of D. Note that we as-
sume the OMQ Q to be fixed and of constant size, as in data
complexity. If such an algorithm exists, then enumeration
belongs to the complexity class DelayClin. If in addition the
algorithm writes in the enumeration phase only a constant
amount of memory, then it belons to the class CD◦Lin. Enu-
meration algorithms with these properties have been studied
intensely, see (Berkholz, Gerhardt, and Schweikardt 2020;
Segoufin 2015) for an overview. It is not known whether
DelayClin and CD◦Lin coincide (Kazana 2013).

It is an important result for CQs q without ontologies that
enumeration is possible in CD◦Lin if q is acyclic and free-
connex acyclic (Bagan, Durand, and Grandjean 2007), the
latter meaning that q is acyclic after adding an atom that
covers all answer variables. If these conditions are not met
and q is self-join free (i.e., no relation symbol occurs more
than once), then enumeration is not possible in DelayClin un-
less certain algorithmic assumptions fail that pertain to the
triangle conjecture, the hyperclique conjecture, and Boolean
matrix multiplication (Bagan, Durand, and Grandjean 2007;
Brault-Baron 2013). In the presence of functional depen-
dencies, which in their unary version are identical to func-
tionality assertions in description logic, the characteriza-



tion changes: enumeration is in CD◦Lin if a certain ex-
tension q+ of q guided by the functional dependencies is
acyclic and free-connex acyclic (Carmeli and Kröll 2020).
Notably, adding functional dependencies may result in adi-
tional queries to become enumerable in CD◦Lin.

The main results presented in this paper are as follows. We
consider OMQs Q where the ontology O is formulated in
the description logic ELIHF and the query q is a CQ, and
show that enumerating answers to Q is possible in CD◦Lin
if q+ is acyclic and free-connex acyclic. For complete an-
swers, this is achieved by using carefully defined universal
models and showing that they can be constructed in linear
time via an encoding as a propositional Horn formula. For
minimal partial answers (with single or multiple wildcards),
we additionally make use of an enumeration algorithm that
was given in (Lutz and Przybylko 2022b). Here, we only at-
tain enumeration in DelayClin.

We also prove corresponding lower bounds for self-
join free queries, paralleling those in (Bagan, Durand, and
Grandjean 2007; Brault-Baron 2013) and (Carmeli and Kröll
2020). They concern only ontologies formulated in the frag-
ment ELIF of ELIHF that disallows role inclusions. The
reason is that lower bounds for OMQs with role inclusions
entail a characterization of enumerability in CD◦Lin for CQs
with self-joins, a major open problem even without ontolo-
gies. The lower bounds apply to complete and (both versions
of) minimal partial answers and are conditional on the same
algorithmic assumptions as in the case without ontologies.
Our constructions and correctness proofs are more challeng-
ing than the existing ones in the literature since, unlike in
the upper bounds, we cannot directly use the query q+. This
is because the transition from q to q+ changes the signature,
extending the arity of relation symbols beyond two, and it is
unclear how this can be reflected in the ontology.

We also study the combined complexity of single-testing
for minimal partial answers, concentrating on the descrip-
tion logics EL and ELH which bear special importance be-
cause single-testing complete answers to OMQs based on
acyclic CQs and ontologies formulated in these languages is
in PTIME. It turns out that this property extends to the sin-
gle wildcard version of minimal partial answers, but not to
the multi-wildcard version. For unrestricted CQs, the com-
plexity raises from NP-complete for complete answers to
DP-complete for both versions of minimal partial answers.

Detailed proofs are in the appendix of the extended ver-
sion, made available at (Lutz and Przybylko 2022a).

2 Preliminaries
Let C, R, and K be countably infinite sets of concept names,
role names, and constants. A role R is a role name r ∈ R or
an inverse role r− with r a role name. If R = r−, then
R− = r. An ELI-concept is built according to the rule
C,D ::= A | C u D | ∃R.C where A ranges over con-
cept names and R over roles. An ELIHF-ontology is a fi-
nite set of concept inclusions (CIs) C v D role inclusions
(RIs) R v S, and functionality assertions func(R) where
(here and in what follows) C,D range over ELI concepts
and R,S over roles. An ELIF-ontology is an ELIHF-
ontology that does not use RIs.

A database is a finite set of facts of the form A(c) or
r(c, c′) where A is a concept name or >, r is a role name,
and c, c′ ∈ K. We use adom(D) to denote the set of con-
stants used in database D, also called its active domain. We
may write r−(a, b) ∈ D to mean r(b, a) ∈ D.

A signature is a set of concept and role names, uniformly
referred to as relation symbols. For a syntactic objectO such
as a concept or an ontology, we use sig(O) to denote the set
of relation symbols used in it and ||O|| to denote its size, that
is, the number of symbols needed to write it as a word using
a suitable encoding.

The semantics is given in terms of interpretations I =
(∆I , ·I) where ∆I is a non-empty set called the domain and
·I is the interpretation function, see (Baader et al. 2017) for
details. We take the liberty to identify interpretations with
non-empty and potentially infinite databases. The interpre-
tation function ·I is then defined as AI = {c | A(c) ∈ I}
for concept names A and rI = {(c, c′) | r(c, c′) ∈ I} for
role names r. An interpretation I satisfies a CI C v D if
CI ⊆ DI , a fact A(c) if c ∈ AI , and a fact r(c, c′) if
(c, c′) ∈ rI . We thus make the standard names assumption,
that is, we interpret constants as themselves. An interpreta-
tion I is a model of an ontology (resp. database) if it satisfies
all inclusions and assertions (resp. facts) in it.

A database D is satisfiable w.r.t. an ontology O if there is
a model I of O and D. Note that functionality assertions in
an ontology O can result in databases that are unsatisfiable
w.r.t. O. We write O |= func(R) if every model of O satis-
fies the functionality assertion func(R). In ELIHF , this is
decidable and EXPTIME-complete; see appendix.

Queries. A conjunctive query (CQ) is of the form q(x̄) =
∃ȳ ϕ(x̄, ȳ), where x̄ and ȳ are tuples of variables and ϕ(x̄, ȳ)
is a conjunction of concept atoms A(x) and role atoms
r(x, y), withA a concept name, r a role name, and x, y vari-
ables from x̄∪ ȳ. We call the variables in x̄ the answer vari-
ables of q, and use var(q) to denote x̄ ∪ ȳ. We may write
α ∈ q to indicate that α is an atom in q. For V ⊆ var(q),
we use q|V to denote the restriction of q to the atoms that
use only variables in V . A homomorphism from q to an in-
terpretation I is a function h : var(q) → ∆I such that
A(x) ∈ q implies A(h(x)) ∈ I and r(x, y) ∈ q implies
r(h(x), h(y)) ∈ I. A tuple d̄ ∈ (∆I)|x̄|, where |x̄| denotes
the length of the tuple x̄, is an answer to q on interpretation
I if there is a homomorphism h from q to I with h(x̄) = d̄.

Every CQ q is associated with a canonical database Dq

obtained from q by viewing variables as constants and atoms
as facts. We associate every database, and via Dq also every
CQ q, with an undirected graph GD = (adom(D), {{a, b} |
R(a, b) ∈ D for some role R}. It is thus clear what we mean
by a path c0, . . . , ck in a database and a path x0, . . . , xk in a
CQ. A CQ q is self-join free if every relation symbol occurs
in at most one atom in q.

Ontology-Mediated Queries. An ontology-mediated
query (OMQ) is a pair Q = (O,Σ, q) with O an ontology,
Σ ⊆ sig(O) ∪ sig(q) a finite signature called the data
schema, and q a query. We write Q(x̄) to indicate that the
answer variables of q are x̄. The signature Σ expresses the
promise that Q is only evaluated on Σ-databases. Let D be



such a database. A tuple ā ∈ adom(D)|x̄| is an answer to
Q(x̄) on D, written D |= Q(ā), if I |= q(ā) for all models
I of O and D. We might alternatively write D,O |= q(ā).
With Q(D) we denote the set of all answers to Q on D.
An OMQ Q = (O,Σ, q) is empty if Q(D) = ∅ for every
Σ-database D that is satisfiable w.r.t. O.

We may assume w.l.o.g. that ELIHF ontologies used in
OMQs are in normal form, that is, all CIs in it are of one of
the following forms:
> v A, A1 uA2 v A, A1 v ∃R.A2, ∃R.A1 v A2

where A1, A2, A range over concept names. Every
ELIHF-ontology O can be converted into this form in lin-
ear time without affecting the answers to OMQs (Baader
et al. 2017).

With (L,Q), we denote the OMQ language that contains
all OMQs Q in which O is formulated in DL L and q in
query language Q, such as in (ELIHF ,CQ).

Partial Answers. Fix a wildcard symbol ‘∗’ that is not
in K. A wildcard tuple for a database D takes the form
(c1, . . . , cn) ∈ (adom(D) ∪ {∗})n, n ≥ 0. For wildcard tu-
ples c̄ = (c1, . . . , cn) and c̄′ = (c′1, . . . , c

′
n), we write c̄ � c̄′

if c′i ∈ {ci, ∗} for 1 ≤ i ≤ n. Moreover, c̄ ≺ c̄′ if c̄ � c̄′ and
c̄ 6= c̄′. For example, (a, b) ≺ (a, ∗) and (a, ∗) ≺ (∗, ∗)
while (a, ∗) and (∗, b) are incomparable w.r.t. ‘≺’. Infor-
mally, c̄ ≺ c̄′ expresses that tuple c̄ is preferred over tuple c̄′
as it carries more information.

A partial answer to OMQ Q(x̄) = (O,Σ, q) on an S-
database D is a wildcard tuple c̄ for D of length |x̄| such
that for each model I of D and O, there is a c̄′ ∈ q(I) such
that c̄′ � c̄. Note that some positions in c̄′ may contain con-
stants from adom(I)\adom(D), and that the corresponding
position in c̄ must then have a wildcard. A partial answer
c̄ to Q on a Σ-database D is a minimal partial answer if
there is no partial answer c̄′ to Q on D with c̄′ ≺ c̄. We use
Q(D)∗ to denote the set of all minimal partial answers to Q
on D. An example is provided in the introduction. Note that
Q(D) ⊆ Q(D)∗. To distinguish them from partial answers,
we also refer to the answers in Q(D) as complete answers.

We also define a second version of minimal partial an-
swers where multiple wildcards are admitted, from a count-
ably infinite set W = {∗1, ∗2, . . . } disjoint from K. Mul-
tiple occurrences of the same wildcard then represent the
same unknown constant while different wildcards may or
may not represent different constants. We useQ(D)W to de-
note the set of minimal partial answers with multiple wild-
cards. A precise definition is provided in the appendix, here
we only give an example.
Example 1. Let Q(x, y, z) = (O,Σ, q) where O contains

Company v ∃hasEmployee.Person

TechCompany v Company, CarCompany v Company,

TechFactory v ∃hasOwner.TechCompany

CarFactory v ∃hasOwner.CarCompany

and func(hasOwner), Σ contains all symbols from O, and
q(x, y, z) = Person(x)∧

hasEmployee(y, x) ∧ TechCompany(y)∧
hasEmployee(z, x) ∧ CarCompany(z).

Further consider the database D with facts

CarFactory(gigafactory1),TechFactory(gigafactory1).

Then QW(D) = {(∗1, ∗2, ∗2)}. If we extend D
with hasOwner(gigafactory1, tesla), then this changes to
QW(D) = {(∗1, tesla, tesla)}.

Enumeration. We are interested in enumerating the com-
plete and minimal partial answers to a given OMQ Q(x̄) =
(O,Σ, q) ∈ (L,Q) on a given Σ-database D. An enumer-
ation algorithm has a preprocessing phase where it may
produce data structures, but no output. In the subsequent
enumeration phase, it enumerates all tuples from Q(D),
without repetition. Answer enumeration for an OMQ lan-
guage (L,Q) is possible with linear preprocessing and con-
stant delay, or in DelayClin, if there is an enumeration algo-
rithm for (L,Q) in which preprocessing takes time f(||Q||)·
O(||D||), f a computable function, while the delay between
the output of two consecutive answers depends only on ||Q||,
but not on ||D||. Enumeration in CD◦Lin is defined likewise,
except that the total amount of additional memory used in
the enumeration phase must be independent of ||D||.

The above definition only becomes precise when we fix a
concrete machine model. We use RAMs under a uniform
cost measure (Cook and Reckhow 1973), see (Grandjean
1996) for a formalization. A RAM has a one-way read-only
input tape, a write-only output tape, and an unbounded num-
ber of registers that store non-negative integers of O(log n)
bits, n the input size. In this model, which is standard in the
DelayClin context, sorting is possible in linear time and we
can access in constant time lookup tables indexed by con-
stants from adom(D) (Grandjean 1996).

We also consider single-testing which means to decide,
given an OMQ Q(x̄) = (O,Σ, q), a Σ-database D, and an
answer candidate c̄ ∈ adom(D)|x̄|, whether c̄ ∈ Q(D).

Acyclic CQs. Let q(x̄) = ∃ȳ ϕ(x̄, ȳ) be a CQ. A join
tree for q(x̄) is an undirected tree T = (V,E) where V
is the set of atoms in ϕ and for each x ∈ var(q), the set
{α ∈ V | x occurs in α} is a connected subtree of T .
A CQ q(x̄) is acyclic if it has a join tree. If q contains
only unary and binary relations (which shall not always be
the case), then q being acyclic is equivalent to GDq

being
a tree, potentially with multi-edges and self-loops. A CQ
q(x̄) is free-connex acyclic if adding a head atom H(x̄) that
‘guards’ the answer variables, where H is a fresh relation
symbol of arity |x̄|, results in an acyclic CQ. Acyclicity and
free-connex acyclicity are independent properties, that is,
neither of them implies the other.

3 Upper Bounds
We identify cases that admit answer enumeration in CD◦Lin
and DelayClin, considering both complete answers and mini-
mal partial answers. From now on, we also use relation sym-
bols of arity exceeding two, identifying concept names and
role names with relations symbols of arity one and two.

We start with some preliminaries. Let Q(x̄) =
(O,Σ, q) ∈ (ELIHF ,CQ). Fix a linear order on the
variables in q. A path y0, . . . , yk in q is functional if for
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Figure 1: Illustration of Example 2

0 ≤ i < k, there is an atom R(yi, yi+1) ∈ q such that
O |= func(R). For a tuple x̄ of variables, we use x̄+ to
denote the tuple x̄ȳ where ȳ consists of all variables y, in
the fixed order, that are reachable from a variable in x̄ on a
functional path in q and that are not part of x̄.

The FA-extension of q is the CQ q+(x̄+) that contains
an atom R′(ȳ+) for every atom R(ȳ) in q, where R′ is a
fresh relation symbol of arity |ȳ+|. Note that q and q+ are
over different signatures. Moreover, q+ may contain sym-
bols of high arity and is self-join free. We also consider the
CQ q+(x̄) with a non-extended set of answer variables. Our
FA-extensions are a variation of the notion of FD-extension
used in (Carmeli and Kröll 2020).
Example 2. Let O={func(R−2 ), func(R−3 ), func(R4)} and
q(x, t)=R1(x, y) ∧ R2(y, z) ∧ R3(z, x) ∧ R4(t, y). Fix the
variable order x < y < z < t. Then the CQ q+((x, t)+) is

q+(x, t, y, z) = R′1(x, y, z), R′2(y, z), R′3(z, x, y), R′4(t, y),

which is acyclic and free-connex acyclic while q is neither.
See Figure 1 for a graphical representation.

In contrast, the version of q+ that has a non-extended
set of answer variables {x, t} (but is otherwise identical)
is acyclic, but not free-connex acyclic.

We state our upper bound for complete answers.
Theorem 1. Let Q(x̄) = (O,Σ, q) ∈ (ELIHF ,CQ) such
that q+(x̄+) is acyclic and free-connex acyclic. Then the
complete answers to Q can be enumerated in CD◦Lin.

The proof of Theorem 1 relies on the following.
Proposition 1. Given an OMQ Q(x̄) = (O,Σ, q) ∈
(ELIHF ,CQ) and a Σ-database D that is satisfiable
w.r.t. O, one can compute in time 2poly(||Q||) · O(||D||) a
database UD,Q ⊇ D that satisfies all functionality asser-
tions in O and such that Q(D) = q(UD,Q) ∩ adom(D)|x̄|.

The database UD,Q from Proposition 1 should be thought
of as a univeral model for the ontology O and database D
that is tailored specifically towards the query q. Such ‘query-
directed’ universal models originate from (Bienvenu et al.
2013). We compute UD,Q in time 2poly(||Q||) · O(||D||) by
constructing a suitable propositional Horn logic formula θ,
computing a minimal model for θ in linear time (Dowl-
ing and Gallier 1984), and then reading off UD,Q from that
model. Details are provided in the appendix.

To prove Theorem 1, let Q(x̄) = (O,Σ, q) ∈
(ELIHF ,CQ) with q+(x̄+) acyclic and free-connex, and
let D be a Σ-database. We first replace q by the CQ q0 that
is obtained from q by choosing a fresh concept name D and

adding D(x) for every answer variable x. We also replace
D by the database D0 = UD,Q from Proposition 1 extended
with D(c) for all c ∈ adom(D). Clearly, Q(D) = q0(D0)
and thus it suffices to enumerate the latter.

We next replace q0(x̄) by q+
0 (x̄+) and D0 by a database

D+
0 that reflects the change in signature which comes with

the transition from q0 to q+
0 . More precisely if atom R(ȳ)

is replaced with R′(ȳ+) in the construction of q+
0 and h is

a homomorphism from q0|ȳ+ to D0, then D+
0 contains the

fact R′(h(ȳ+)). The following implies that q0(D0) is the
projection of q+

0 (D+
0 ) to the first |x̄| components.

Lemma 1. Every homomorphism from q0 to D0 is also a
homomorphism from q+

0 to D+
0 and vice versa. Moreover,

D+
0 can be constructed in time linear in ||D||.
To enumerate q0(D0), we may thus enumerate q+(D+

0 )
and project to the first |x̄| components. The former can be
done in CD◦Lin: since q+(x̄+) is acyclic and free-connex,
so is q+

0 (x̄+), and thus we may apply the CD◦Lin enumer-
ation procedure from (Bagan, Durand, and Grandjean 2007;
Berkholz, Gerhardt, and Schweikardt 2020). Clearly, projec-
tion can be implemented in constant time. To argue that the
resulting algorithm produces no duplicates, it remains to ob-
serve that the answers to q0(D0) and to q+(D+

0 ) are in a
one-to-one correspondence, that is, every c̄ ∈ q0(D0) ex-
tends in a unique way to a c̄′ ∈ q+(D+

0 ). This, however, is
an immediate consequence of Lemma 1, the definition of q+

0
and the fact that D0 saties all functionality assertions in O.

We now turn to minimal partial answers. Here, we can-
not expect a result as general as Theorem 1, a counterexam-
ple is presented in Section 4. We thus resort to the stronger
condition that q+(x̄) rather than q+(x̄+) is acyclic and free-
connex acyclic. The difference between the two conditions
is related to the interplay of answer variables and func-
tional roles. In particular, q+(x̄) and q+(x̄+) are identical
for OMQs Q = (O,Σ, q) such that answer variables have
no functional edges to quantified variables, that is, for ev-
ery atom R(x, y) in q, if O |= func(R) and x is an answer
variable, then y is also an answer variable.
Theorem 2. Let Q(x̄) = (O,Σ, q) ∈ (ELIHF ,CQ) such
that q+(x̄) is acyclic and free-connex acyclic. Then the min-
imal partial answers to Q can be enumerated in DelayClin,
both with multi-wildcards and with a single wildcard.

To prove Theorem 2, we make use of a recent result re-
garding OMQs in which the ontologies are sets of guarded
existential rules. We refer to the class of such ontologies
as G. It was shown in (Lutz and Przybylko 2022b) that min-
imal partial answers to OMQs Q = (O,Σ, q) ∈ (G,CQ)
can be enumerated in DelayClin if q is acyclic and free-
connex acyclic, both with multi-wildcards and with a sin-
gle wildcard. The enumeration algorithms presented in (Lutz
and Przybylko 2022b) are non-trivial and we use them as a
blackbox. To achieve this, we need a slightly more ‘low-
level’ formulation of the results from (Lutz and Przybylko
2022b). In what follows, we restrict our attention to minimal
partial answers with a single wildcard. The multi-wildcard
case is analogous, details are in the appendix.



Fix a countably infinite set N of nulls that is disjoint from
K and does not contain the wildcard symbol ‘∗’. In what
follows, we assume that databases may use nulls in place of
constants. LetD be a database and q(x̄) a CQ. For an answer
ā ∈ q(D), we use ā∗N to denote the unique wildcard tuple for
D obtained from ā by replacing all nulls with ‘∗’. We call ā∗N
a partial answer to q on D and say that it is minimal if there
is no b̄ ∈ q(D) with b̄∗N ≺ ā∗N. With q(D)∗N, we denote the
set of minimal partial answers to q on D.

A database E is chase-like if there are databases
D1, . . . ,Dn such that
1. E = D1 ∪ · · · ∪ Dn,
2. Di contains exactly one fact that uses no nulls, and that

fact contains all constants in adom(Di) \N,
3. adom(Di) ∩ adom(Dj) ∩N = ∅ for 1 ≤ i < j ≤ n.
We call D1, . . . ,Dn a witness for E being chase-like. The
term ‘chase-like’ refers to the chase, a well-known proce-
dure for constructing universal models (Johnson and Klug
1982). The query-directed universal models UD,Q from
Proposition 1 are chase-like when the elements of N =
adom(UD,Q) \ adom(D) are viewed as nulls. A witness
D1, . . . ,Dn is obtained by removing from UD,Q all atoms
r(a, b) with a, b ∈ adom(D) and taking the resulting maxi-
mally connected components. The domain sizes |adom(D′i)|
then only depend on Q, but not on D. The following is
Proposition E.1 in (Lutz and Przybylko 2022c).
Theorem 3. For every CQ q(x̄) that is acyclic and free-con-
nex ayclic, enumerating the answers q(D)∗N is in DelayClin
for databases D and sets of nulls N ⊆ adom(D) such that
D is chase-like with witness D1, . . . ,Dn where |adom(Di)|
does not depend on D for 1 ≤ i ≤ n.

The strategy for proving Theorem 2 is now similar to
the case of complete answers. Let Q(x̄) = (O,Σ, q) ∈
(ELIHF ,CQ) with q+(x̄) acyclic and free-connex acyclic,
and let D be a Σ-database. It is shown in the appendix that
the query-directed universal model UD,Q is also universal
for partial answers with a single wildcard in the sense that
Q(D)∗ = q(UD,Q)∗N. We thus first replace D with UD,Q,
aiming to enumerate Q(D)∗ = q(UD,Q)∗N. We next replace
q(x̄) with q+(x̄) and D0 = UD,Q with D+

0 . It follows from
Lemma 1 that q(D0)∗N = q+(D+

0 )∗N. Note that no projection
is needed since q+ has answer variables x̄ here, in contrast
to answer variables x̄+ in the case of complete answers. It
remains to invoke Theorem 3.

4 Lower Bounds
The main aim of this section is to establish lower bounds
that (partially) match the upper bounds stated in Theorems 1
and 2. First, however, we show that Theorem 2 cannot be
strengthened by using q+(x̄+) in place of q+(x̄). All results
presented in this section are conditional on algorithmic con-
jectures and assumptions. One of the conditions concerns
Boolean matrix multiplication.

A Boolean n× n matrix is a function M : [n]2 → {0, 1}
where [n] denotes the set {1, . . . , n}. The product of two
Boolean n × n matrices M1,M2 is the Boolean n × n ma-
trix M1M2 :=

∑n
c=1M1(a, c) · M2(c, b) where sum and

product are interpreted over the Boolean semiring. In (non-
sparse) Boolean matrix multiplication (BMM), one wants
to compute M1M2 given M1 and M2 as n × n arrays.
In sparse Boolean matrix multiplication (spBMM), input
and output matrices M are represented as lists of pairs
(a, b) with M(a, b) = 1. The currently best known algo-
rithm for BMM achieves running time n2.37 (Alman and
Williams 2021) and it is open whether running time n2 can
be achieved; this would require dramatic advances in algo-
rithm theory. Regarding spBMM, it is open whether running
timeO(|M1|+|M2|+|M1M2|) can be attained, that is, time
linear in the size of the input and the output (represented as
lists). This clearly implies BMM in time n2, but the converse
is not known.

The following implies that Theorem 2 cannot be strength-
ened by using q+(x̄+) in place of q+(x̄).
Theorem 4. There is an OMQ Q(x̄) = (O,Σ, q) ∈
(ELIF ,CQ) such that q+(x̄+) is acyclic and free-connex
acyclic, but the minimal partial answers to Q cannot be
enumerated in DelayClin unless spBMM is possible in time
O(|M1|+ |M2|+ |M1M2|). This holds both for single wild-
cards and multi-wildcards.

Proof. Let Q(x̄) = (O,Σ, q) where

O = {A v ∃f−.>, func(f)}
Σ = {A, r1, r2, f}

q(x, z, y) = r1(x, u1) ∧ f(z, u1) ∧ f(z, u2) ∧ r2(u2, y).

It is easy to see that q+(x̄+) is just q, except that now all
variables are answer variables. Thus, q+(x̄+) is acyclic and
free-connex acyclic, as required.

Assume to the contrary of what is to be shown that there is
an algorithm that given a database D, enumerates Q(D)∗ in
DelayClin (the case of multi-wildcards is identical). Then this
algorithm can be used, given two Boolean matrices M1M2

in list representation, to compute M1M2 in time O(|M1| +
|M2|+ |M1M2|). This is done as follows.

Given M1 and M2, we construct a database D by
adding facts r1(a, c) and A(c) for every (a, c) with
M1(a, c) = 1 and facts r2(c, b) and A(c) for every (c, b)
with M2(c, b) = 1. It is easy to verify that Q(D)∗ =
{(a, ∗, b) | (a, b) ∈ M1M2}. We may thus construct a
list representation of M1M2 by enumerating Q(D)∗. Since
|D| = |M1|+ |M2| and we can enumerate in DelayClin, the
overall time spent is O(|M1|+ |M2|+ |M1M2|).

We now consider lower bounds for Theorems 1 and 2.
Here, we need two additional algorithmic conjectures that
are closely related, both from fine-grained complexity the-
ory. Recall that a k-regular hypergraph is a pairH = (V,E)
where V is a finite set of vertices and E ⊆ 2V contains only
sets of cardinality k. Consider the following problems:
• The triangle detection problem is to decide, given an

undirected graph G = (V,E) as a list of edges, whether
G contains a 3-clique (a “triangle”).

• The (k + 1, k)-hyperclique problem, for k ≥ 3, is to de-
cide whether a given k-uniform hypergraphH contains a
hyperclique of size k + 1, that is, a set of k + 1 vertices
such that each subset of size k forms a hyperedge in H .



The triangle conjecture states that there is no algorithm
for triangle detection that runs in linear time (Abboud
and Williams 2014) and the hyperclique conjecture states
that every algorithm that solves the (k + 1, k)-hyperclique
problem, for some k ≥ 3, requires running time at least
nk+1−o(1) with n the number of vertices (Lincoln, Williams,
and Williams 2018). Note that triangle detection is the same
as (k + 1, k)-hyperclique for k = 2, but the formulation of
the two conjectures differs in that the former refers to the
number of edges and the latter to the number of nodes. The
following theorem summarizes our lower bounds.

Theorem 5. Let Q(x̄) = (O,Σ, q) ∈ (ELIF ,CQ) be non-
empty with q self-join free and connected.

1. If q+ is not acyclic, then enumerating complete answers
to Q is not in DelayClin unless the triangle conjecture
fails or the hyperclique conjecture fails.

2. If q+(x̄+) is acyclic, but not free-connex acyclic, then
enumerating complete answers to Q is not in DelayClin
unless spBMM is possible in time O(|M1| + |M2| +
|M1M2|).

The same is true for least partial answers, both with a single
wildcard and with multi-wildcards.

Recall that we use different versions of q+, namely
q+(x̄+) and q+(x̄) in Theorems 1 and 2. The difference is
moot for Point 1 of Theorem 2 as q+(x̄+) is acyclic if and
only if q+(x̄) is.

The proof of Theorem 5 is inspired by proofs from
(Bagan, Durand, and Grandjean 2007; Brault-Baron 2013;
Carmeli and Kröll 2020) and uses similar ideas. However,
the presence of ontologies and the fact that we want to cap-
ture minimal partial answers makes our proofs much more
subtle. In particular, the constructions in (Carmeli and Kröll
2020) first transition from q to q+ and then work purely
on q+, but we cannot do this due to the presence of the on-
tology, which is formulated in the signature of q, not of q+.
We (partially) present the proof of Point 1 and refer to the
appendix for full detail.

The proof of Point 1 of Theorem 5 splits into two cases.
Recall that the Gaifman graph of a CQ q is the undirected
graph that has the atoms of q as its nodes and an edge be-
tween any two nodes/atoms that share a variable. It is known
that if q is not acyclic, then its Gaifman graph is not chordal
or not conformal (Beeri et al. 1983). Here, chordal means
that every cycle of length at least 4 has a chord and con-
formal means that for every clique C in the Gaifman graph,
there is an atom in q that contains all variables inC. The first
case of the proof of Point 1 of Theorem 5 is as follows.

Lemma 2. Let Q(x̄) = (O,Σ, q) ∈ (ELIF ,CQ) be non-
empty such that q is self-join free and connected and the hy-
pergraph of q+ is not chordal. Then enumerating complete
answers to Q is not in DelayClin unless the triangle conjec-
ture fails. The same is true for least partial answers, both
with a single wildcard and with multi-wildcards.

The second case is formulated similarly, but refers to non-
conformality and the hyperclique conjecture. We give the
proof of Lemma 2.

Let Q(x̄) = (O,Σ, q) ∈ (ELIF ,CQ) be as in Lemma 2,
and let y0, . . . , yk be a chordless cycle in the Gaifman graph
of q+ that has length at least 4. Let Y = {y0, . . . , yk} and
for easier reference let yk+1 = y0. For every variable x in q,
we use Yx to denote the set of variables y ∈ Y such that q
contains a functional (possibly empty) path from x to y.

Let G = (V,E) be an undirected graph. We may assume
w.l.o.g. that G does not contain isolated vertices. Our aim
is to construct a database D, in time linear in |E|, such that
G contains a triangle if and only if Q(D) 6= ∅. Clearly, a
DelayClin enumeration algorithm for Q lets us decide the
latter in linear time and thus we have found an algorithm
for triangle detection that runs in time linear in |E|, refuting
the triangle conjecture.

The construction proceeds in two steps. In the first step,
we define a database D0 that encodes the graph G. The con-
stants in D0 are pairs 〈x, f〉 with x ∈ var(q) and f a par-
tial function from Y to V . For every variable x in q and
word w = a0 . . . ak ∈ V ∗ we use fwx denote the function
that maps each variable yi ∈ Yx to ai and is undefined on all
other variables. We may treatE as a symmetric (directed) re-
lation, writing e.g. (a, b) ∈ E and (b, a) ∈ E if {a, b} ∈ E.
For every atom r(x, y) in q with r ∈ Σ, add the following
facts to D0:

1. if y0 ∈ Yx∪Yy: r(〈x, fabkx 〉, 〈y, fabky 〉) for all (a, b) ∈ E,

2. if yk ∈ Yx∪Yy: r(〈x, fakb
x 〉, 〈y, fakb

y 〉) for all (a, b) ∈ E,

3. if neither is true: r(〈x, f bk+1

x 〉, 〈y, f bk+1

y 〉) for all a ∈ V .

In addition, we add the fact A(c) for every concept name
A ∈ Σ and every constant c introduced above.

To provide an intuition for the reduction, let us start with a
description that is relatively simple, but inaccurate. Consider
a homomorphism h from q to D0. It can be shown that h
must map every variable yi to a constant of the form 〈yi, fyi

〉
and that the domain of the function fyi

is {yi}. Since fyi
(yi)

is a node from G, the homomorphism h thus identifies a
sequence of nodes a0, . . . , ak from G, with ai = fyi

(yi).
The construction of D0 ensures that a1 = · · · = ak−1 and
a0, a1, ak forms a triangle in G. Conversely, every triangle
in G gives rise to a homomorphism from q to D0 of the de-
scribed form. For other variables x from q, the use of the
function fx in constants 〈x, fx〉 serves the purpose of ensur-
ing that all functionality assertions in O are satisfied in D0.
A concrete example for the construction of D0 is provided
in the appendix.

The above description is inaccurate for several reasons.
First, instead of homomorphisms into D0, we need to con-
sider homomorphisms into the universal model UD0,O (de-
fined in the appendix). Then variables yi need not be mapped
to a constant 〈yi, fyi〉, but can also be mapped to elements
outside of adom(D0). This does not break the reduction but
complicates the correctness proof. Another difficulty arises
from the fact that O and q may use symbols that do not oc-
cur in Σ and and we need these to be derived by O at the
relevant points in D0. This is achieved in the second step of
the construction of D0, described next.

Informally, we want O to derive, at every constant c ∈
adom(D0), anything that it could possibly derive at any con-



stant in any database. This is achieved by attaching certain
tree-shaped databases to every constant inD0. We next make
this precise. LetRΣ be the set of all role names from Σ and
their inverses. The infinite tree-shaped Σ-database Dω has
as its active domain adom(Dω) the set of all (finite) words
over alphabetRΣ and contains the following facts:

• A(w) for all w ∈ adom(Dω) and concept names A ∈ Σ;
• r(w,w′) for all w,w′ ∈ adom(Dω) with w′ = wr;
• r(w′, w) for all w,w′ ∈ adom(Dω) with w′ = wr−.

We cannot directly use Dω in the construction of D since it
is infinite. Consider all concept names A such thatDω,O |=
A(ε). We prove in the appendix that these are precisely the
concept names A that are non-empty, that is, D,O |= A(c)
for some database D and some c ∈ adom(D). Clearly the
number of such concept names A is finite. By compact-
ness, there is thus a finite database Dtree ⊆ Dω such that
Dtree,O |= A(ε) for all non-empty concept names A. We
may w.l.o.g. assume that Dtree is the initial piece of Dω of
some finite depth k ≥ 1.

In principle, we would like to attach a copy of Dtree at
every constant inD0. This, however, might violate function-
ality assertions in O and thus we have to be a bit more care-
ful. For a role R ∈ {r, r−} with r ∈ Σ, let DR ⊆ Dtree be
the database that consists of the fact R(ε,R) and the sub-
tree in Dtree rooted at R. Now, the final database D used
in the reduction is obtained from D0 as follows: for every
c ∈ adom(D0) and every role R ∈ {r, r−} with r ∈ Σ such
that there is no fact R(c, c′) ∈ D0, add a disjoint copy of
DR, glueing the copy of ε to c.

It is easy to see that D can be computed in time O(||E||).
In particular, the database Dtree can be constructed (in time
independent of D) by generating initial pieces of Dω of in-
creasing depth and checking whether all non-empty concept
names are implied at ε. In the appendix, we show that D
satisfies all functionality assertions in O and is derivation
complete at adom(D0). We then use a rather subtle analysis
to prove the following.

Lemma 3.
TD1 If there is a minimal partial answer to Q on D (with a

single wildcard or with multiple wildcards), then there is
a triangle in G.

TD2 If there is a triangle in G then there is a complete an-
swer to Q on D.

5 Combined Complexity of Single-Testing
The results on enumeration provide a (mild) indication that
partial answers can be computationally more challenging
than complete ones: the condition used in Theorem 1 is
weaker than that in Theorem 2, and Theorem 1 achieves
CD◦Lin while Theorem 2 achieves only DelayClin. Other
cases in point may be found in (Lutz and Przybylko 2022b).
This situation prompts us to study the effect of answer par-
tiality on the combined complexity of single-testing.

We concentrate on the fragments EL and ELH of
ELIHF that do not admit inverse roles and functionality
assertions and, in the case of EL, also no role inclusions.

These DLs bear special importance as single-testing com-
plete answers to OMQs Q = (O,Σ, q) ∈ (ELH,CQ) is
in PTIME if q is acyclic and NP-complete otherwise, both
in combined complexity, and thus no harder than without
ontologies (Krötzsch, Rudolph, and Hitzler 2007; Bienvenu
et al. 2013). We show that making answers partial may have
an adverse effect on these complexities, starting, however,
with a positive result. It is proved by a Turing-reduction to
single-testing complete answers.

Theorem 6. For OMQs Q = (O,Σ, q) ∈ (ELH,CQ)
with q acyclic, single-testing minimal partial answers with a
single-wildcard is in PTIME in combined complexity.

Partial answers with multi-wildcards are less well-
behaved. The lower bound in the next result is proved by
a reduction from 1-in-3-SAT and only needs a very simple
ontology that consists of a single CI of the form A v ∃r.>.

Theorem 7. For OMQs Q = (O,Σ, q) ∈ (EL,CQ)
with q acyclic, single-testing minimal partial answers with
multi-wildcards is NP-complete in combined complexity.
The same is true in (ELH,CQ)

We now move from acyclic to unrestricted CQs. This
makes the complexity increase further, and the difference
between single and multi-wildcards vanishes.

Theorem 8. For OMQs Q = (O,Σ, q) ∈ (EL,CQ) single-
testing minimal partial answers is DP-complete in combined
complexity. This is true both for single wildcards and multi-
wildcards, and the same holds also in (ELH,CQ).

For most other OMQ languages, we do not expect a dif-
ference in complexity between single-testing complete an-
swers and single-testing partial answers. As an example, we
consider ELIHF where single-testing complete answers is
EXPTIME-complete (Eiter et al. 2008).

Theorem 9. In (ELIHF ,CQ), single-testing minimal par-
tial answers is EXPTIME-complete in combined complexity,
both with single wildcards and multi-wildcards.

We remark that the data complexity of single-testing min-
imal partial answers in (ELIHF ,CQ) is in PTIME, both
with a single wildcard and with multi-wildcards. This can
be shown by using essentially the same arguments as in the
proof of Theorem 6.

6 Conclusion
It would be interesting to extend our results to ELIHF with
local functionality assertions, that is, with concepts of the
form (6 1 R) or even (6 1 R C). This is non-trivial as it is
unclear how to define the CQ extension q+. It would also be
interesting and non-trivial to get rid of self-join freeness in
the lower bounds, see (Berkholz, Gerhardt, and Schweikardt
2020; Carmeli and Segoufin 2022). Another natural question
is whether answers can be enumerated in some given order,
see e.g. (Carmeli et al. 2021). Note that it was observed in
(Lutz and Przybylko 2022b) that when enumerating Q(D)∗

or Q(D)W , it is possible to enumerate the complete answers
before the truely partial ones.
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