
A Complete Classification of the Complexity and
Rewritability of Ontology-Mediated Queries based on

the Description Logic EL

Carsten Lutz and Leif Sabellek

Department of Computer Science, University of Bremen, Germany

Abstract

We provide a fine-grained analysis of the data complexity and rewritability of
ontology-mediated queries (OMQs) based on an EL ontology and a conjunctive
query (CQ). Our main results are that every such OMQ is in AC0, NL-complete,
or PTime-complete and that containment in NL coincides with rewritability
into linear Datalog (whereas containment in AC0 coincides with rewritability
into first-order logic). We establish natural characterizations of the three cases in
terms of bounded depth and (un)bounded pathwidth of certain minimal ABoxes
on which the OMQ yields an answer. We also show that each of the associated
meta problems such as deciding whether a given OMQ is rewritable into linear
Datalog is ExpTime-complete. We also give a way to construct linear Datalog
rewritings when they exist and prove that there is no constant bound on the
arity of IDB relations in linear Datalog rewritings.

Keywords: description logic, ontology-mediated querying, complexity
classification, rewritability, linear datalog

1. Introduction

An important application of ontologies is to enrich data with a semantics
and with domain knowledge while also extending the vocabulary that is available
for query formulation beyond the relation symbols that occur in the database
[1, 2, 3, 4]. In a medical application, for example, a database could record the
concrete diseases of patients such as asthma while the ontology enriches the
vocabulary by adding general categories of diseases such as respiratory disease
and cardiovascular disease, as well as the knowledge that asthma is a respiratory
disease. This would then enable to query for all patients with a respiratory
disease despite the fact that general categories such as ‘respiratory disease’ do
not occur in the vocabulary of the database.

In this context, it is common to view the combination of an ontology and
a database query as a compound query, commonly referred to as an ontology-
mediated query (OMQ) [3]. An OMQ language (L,Q) is then constituted by an

Preprint submitted to Elsevier February 6, 2023

ontology language L and a query language Q. Prominent choices for L include
many description logics (DLs) such as EL, Horn-SHIQ, and ALC [5] while
the most common choices for Q are conjunctive queries (CQs), unions thereof
(UCQs), and the simple atomic queries (AQs) which are of the form A(x) with
A a monadic relation symbol. Substantial research efforts have been invested
into understanding the properties of the resulting OMQ languages, with two
important topics being

1. the data complexity of OMQ evaluation, where data complexity means
that only the data is considered to be the input while the OMQ is fixed
[6, 7, 8, 9, 3], and

2. the rewritability of OMQs into more traditional database query languages
such as SQL (which in this context is often equated with first-order logic)
and Datalog [10, 11, 3, 12, 13, 14].

Note that both topics are connected to practical concerns. It is considered to be
a necessary condition for efficient query evaluation in practice that the data com-
plexity is in PTime, preferably even lower. Moreover, most database systems are
unaware of ontologies, and thus rewriting OMQs into standard database query
languages provides an important avenue for implementing OMQ execution in
practical applications [1, 15, 16, 17]. Data complexity and rewritability are
thoroughly intertwined since rewritability into first-order logic (FO) is closely
related to AC0 data complexity while rewritability into Datalog is closely re-
lated to PTime data complexity. We remark that FO-rewritability of an OMQ
implies rewritability into a UCQ and thus into Datalog [3]. From now on, when
speaking about complexity we always mean data complexity.

Regarding compexity and rewritability, modern DLs can roughly be divided
into two families: ‘expressive DLs’ such as ALC and SHIQ that result in OMQ
languages with coNP complexity and where rewritability is guaranteed neither
into FO nor into Datalog [3, 17, 14], and ‘Horn DLs’ such as EL and Horn-
SHIQ that typically result in OMQ languages with PTime complexity and
where rewritability into (monadic) Datalog is guaranteed, but FO-rewritability
is not [11, 15, 18]. From a practical perspective, however, it does not seem
necessary to guarantee that all OMQs formulated in the OMQ language used
have good properties regarding complexity and rewritability. Instead, it is much
more relevant to understand whether the concrete ontologies and OMQs that
are of interest for the application are well-behaved. This potentially makes
a difference given that ontology engineers tend to use ‘potentially expensive’
language features, but might well use them in a ‘computationally harmless’
way. Initiated in [19, 3], this perspective has led to studies of data complexity
and rewritability that are much more fine-grained than the analysis of entire
ontology languages. The ultimate aim is to understand, for relevant OMQ
languages (L,Q), the exact complexity and rewritability status of every OMQ
from (L,Q).

The aim of this paper is to carry out such an ultimately fine-grained analysis
of the data complexity and rewritability of OMQs from the languages (EL,CQ)

2

and (EL,AQ) where EL is a fundamental and widely known Horn DL for which
standard reasoning problems such as subsumption can be solved in PTime and
that is at the core of the OWL EL profile of the OWL 2 ontology language [20].
In fact, we completely settle the complexity and rewritability status of each
OMQ from (EL,CQ). Our first main result is a trichotomy for data complexity:
Every OMQ from (EL,CQ) is in AC0, NL-complete, or PTime-complete, and
all three complexities actually occur already in (EL,AQ). We consider this a
remarkable sparseness of complexities. Let us illustrate the trichotomy using an
example. In description logics, a TBox is used to formulate an ontology while
an ABox plays the role of the database. An OMQ from (EL,CQ) is then a triple
(T ,Σ, q) with T an EL TBox that represents the ontology, q a CQ, and Σ an
ABox signature, that is, a set of concept and role names that can occur in the
data.

Example 1. Consider an ontology that represents knowledge about genes. A
person carries Gene1 if both parents carry Gene1, and a person carries Gene2 if
at least one parent carries Gene2 (dominant and recessive inheritance, respec-
tively). We use the TBox

T = { ∃hasFather.Gene1Carrier u ∃hasMother.Gene1Carrier v Gene1Carrier
∃hasFather.Gene2Carrier v Gene2Carrier
∃hasMother.Gene2Carrier v Gene2Carrier }.

For Σ = {Gene1Carrier,Gene2Carrier, hasMother, hasFather}, the OMQ Q1 =
(T ,Σ,Gene1Carrier(x)) is PTime-complete and not rewritable into linear Dat-
alog, while Q2 = (T ,Σ,Gene2Carrier(x)) is NL-complete and rewritable into
linear Datalog. Intuitively, Q2 is easier than Q1 because yes-instances are wit-
nessed by a path to an ancestor who is a Gene2Carrier, whereas for Q1, a yes-
instance is witnessed by a tree of ancestors where every ancestor on a leaf of
the tree is a Gene1Carrier. Now consider Q3 = (T ,Σ,∃y hasMother(x, y)). This
OMQ is even rewritable into first-order logic and can be evaluated in AC0, since
it does not rely on any predicate that is propagated recursively.

Our second main result is that for OMQs from (EL,CQ), evaluation in NL
coincides with rewritability into linear Datalog. It is known that evaluation in
AC0 coincides with FO-rewritability [18] and thus each of the three occurring
complexities coincides with rewritability into a well-known database language:
AC0 corresponds to FO, NL to linear Datalog, and PTime to monadic Datalog.
We also show that there is no constant bound on the arity of IDB relations in
linear Datalog rewritings, that is, we find a sequence of OMQs from (EL,CQ)
(and in fact, even from (EL,AQ)) that are all rewritable into linear Datalog,
but require higher and higher arities of IDB relations.1

We remark that rewritability into linear Datalog might also be interesting
from a practical perspective. In fact, the equation “SQL = FO” often adopted in

1In Datalog, the relations in the database are called EDB or extensional while the relations
that occur in rule heads are called IDB or intensional.

3

ontology-mediated querying ignores the fact that SQL contains linear recursion
from its version 3 published in 1999 on, which exceeds the expressive power of
FO. We believe that, in the context of OMQs, linear Datalog provides a natural
abstraction of SQL that includes linear recursion, despite the fact that it does
not contain full FO. Indeed, the fact that all OMQs from (EL,CQ) that are
FO-rewritable are also UCQ-rewritable indicates that the expressive power of
FO that lies outside of linear Datalog is not useful when using SQL as a target
language for OMQ rewriting.

The second main result is proved using a characterization of linear Datalog
rewritability in terms of bounded pathwidth that may be of independent in-
terest. It is easiest to state for (EL,AQ): an OMQ Q is rewritable into linear
Datalog (equivalently: can be evaluated in NL) if the classMQ of the following
ABoxes A has bounded pathwidth: A is tree-shaped, delivers the root as an
answer to Q, and is minimal w.r.t. set inclusion regarding the latter property.
For (EL,CQ), we have to replace inMQ tree-shaped ABoxes with pseudo tree-
shaped ones in which the root is an ABox that can have any relational structure,
but whose size is bounded by the size of the actual query in q. These results
are closely related to results on bounded pathwidth obstructions of CSPs, see
for example [21, 22, 23].

Finally, we consider the meta problems associated to the studied proper-
ties of OMQs, such as whether a given OMQ is rewritable into linear Datalog,
whether it is NL-hard, PTime-hard, etc. Each of these problems turns out to
be ExpTime-complete, both in (EL,CQ) and in (EL,AQ). In the case of lin-
ear Datalog rewritability, our results provide a way of constructing a concrete
rewriting when it exists.

The paper is organized as follows. We introduce preliminaries in Section 2
and then start with considering the OMQ language (EL, conCQ) where conCQ
refers to the class of CQs that are connected when viewed as a graph; these CQs
might have any arity, including 0.

In Section 3, we show that (EL, conCQ) enjoys a dichotomy between AC0 and
NL, using a notion of bounded depth that was introduced in [18]. In particular,
it was shown in [18] that when the ABoxes in MQ have bounded depth, then
Q can be evaluated in AC0. We prove that otherwise, we find certain gadget
ABoxes (we say that Q has the ability to simulate reach) that allow us to
reduce the reachability problem in directed graphs, thus showing NL-hardness.

In Section 4, we prove a dichotomy between NL and PTime for (EL, conCQ).
We first show that if MQ has unbounded pathwidth, then we can find certain
gadget ABoxes (we say that Q has the ability to simulate psa) that allow us
to reduce the path accessibility problem, thus showing PTime-hardness. This
result is similar to, but substantially more difficult than the NL-hardness result
in Section 3. We then proceed by showing that ifMQ has bounded pathwidth,
then we can construct a two-way alternating word automaton that accepts suit-
able representations of pairs (A,a) where A is an ABox of low pathwidth and
a and answer to Q on A. We further show how to convert this automaton into
a linear Datalog rewriting, which yields NL complexity.

Section 5 is concerned with extending both of our dichotomies to potentially

4

disconnected CQs. In Section 6, we prove that there is a sequence of OMQs
that are linear Datalog rewritable but for which the width of IDB relations in
linear Datalog rewritings is not bounded by a constant. This strengthens a
result by [22] who establish an analogous statement for CSPs. In Section 7,
we prove decidability and ExpTime-completeness of the meta problems. The
upper bounds are established using the ability to simulate psa from Section 4
and alternating tree automata.

Related Work. Going back at least to [24], studying the data complexity of
OMQs based on description logic ontologies has a long history. While it was
observed in [24] that expressive DLs have coNP data complexity, a serious
consideration of Horn DLs and their PTime data complexity seems to have
started only later with [6]. Other relevant publications on the subject of data
complexity include [7, 8, 9], the survey [4] has more references. The interest
in FO-rewritability started with the proposal of the DL-Lite family of descrip-
tion logics [25], designed so that every OMQ with a DL-Lite ontology is FO-
rewritable. For almost all other DLs, FO-rewritability is not guaranteed. This
has led to the study of FO-rewritability as a decision problem, for Horn DLs in
[11, 15, 18, 26] and for expressive DLs in [3, 14]. Rewritability into Datalog has
also received considerable attention. For Horn DLs, it is guaranteed and has
been used for efficient implementation of query evaluation [10, 16, 17] and for
expressive DLs, it has been considered as a decision problem [14, 27]. Other au-
thors have considered fragments of expressive DLs for which rewritability into
Datalog is guaranteed [12] and rewritability into extensions of Datalog with
disjunction and negation as failure [13]. We remark that FO-rewritability of
OMQs based on Horn DLs is closely related to boundedness of monadic datalog
programs, see [28, 29, 30].

As already noted, the classification of the complexity and rewritability of
individual OMQs started with [19, 3]. For expressive DLs, this question turned
out to be closely related to the complexity classification of constraint satisfaction
problems (CSPs) with a fixed template [31]. Very important progress has been
made in this area with the proof that CSPs enjoy a dichotomy between PTime
and NP [32, 33]. Via the results in [3], this implies that OMQ evaluation in
languages such as (ALC,UCQ) enjoys a dichotomy between PTime and coNP.
However, the picture is still far from being fully understood. For example,
neither in CSP nor in expressive OMQ languages it is known whether there is a
dichotomy between NL and PTime, and whether containment in NL coincides
with rewritability into linear Datalog. In [34], a tetrachotomy between AC0,
NL, PTime, and coNP is obtained for the very restricted (yet technically non-
trivial) case of (non-Horn) ontologies of the form {A v F t T, F u T v ⊥}
and for Boolean CQs that are directed paths. A related problem is studied in
[35]. Finally, a complexity classification has been undertaken for extensions of
DL-Lite and EL in which predicates can be declared to be closed (which brings
in a form of disjunction, thus is a non-Horn setup), again exhibiting connections
to (variants of) CSPs [36, 37, 38].

This paper is an extended version of [39]. The main differences are that [39]

5

only treats atomic queries but no conjunctive queries, does not provide charac-
terizations in terms of bounded pathwidth, and achieves less optimal bounds on
the width of IDB relations in constructed linear Datalog programs. To support
readability, many proofs have been moved to the appendix.

2. Preliminaries

We introduce description logics, ontology-mediated queries, central technical
notions such as universal models and the pathwidth of ABoxes, as well as linear
Datalog and a fundamental glueing construction for ABoxes. We refer to [5] for
more extensive information on description logics and to [40] for background in
database theory.

TBoxes and Concepts. In description logic, an ontology is formalized as a
TBox. Let NC, NR, and NI be disjoint countably infinite sets of concept names,
role names, and individual names. Concept names should be viewed as unary
relations in the sense of first-order logic while role names correspond to binary
relations and individual names to constants.

An EL-concept is built according to the syntax rule C,D ::= > | A | C uD |
∃r.C whereA ranges over concept names and r over role names. While this paper
focuses on EL, there are some places where we also consider the extension ELI
of EL with inverse roles. An ELI-concept is built according to the syntax rule
C,D ::= > | A | C uD | ∃r.C | ∃r−.C, the symbol ranges being as in the case
of EL-concepts. An expression of the form r− is an inverse role. An EL-TBox
(ELI-TBox, resp.) is a finite set of concept inclusions (CIs) of the form C v D,
C and D EL-concepts (ELI-concepts, resp.).

The TBox in Example 1 in the introduction is an EL-TBox. It uses concept
names Gene1Carrier and Gene2Carrier and role names hasMother and hasFather.
We could use inverse roles, for example, to express that every female par-
ent is the mother of someone using the concept inclusion Female u Parent v
∃hasMother−.>. Adding this CI yields an ELI-TBox.

The size of a TBox, a concept, or any other syntactic object O, denoted |O|,
is the number of symbols needed to write O, with each concept and role name
counting as one symbol.

ABoxes. An ABox is the DL way to store data. Formally, it is defined as
a finite set of concept assertions A(a) and role assertions r(a, b) where A is a
concept name, r is a role name, and a, b are individual names. Every ABox A
is associated with a directed graph GA with nodes ind(A) and edges {(a, b) |
r(a, b) ∈ A}. Two example ABoxes are

A1 = {hasMother(a, b), hasFather(a, c), hasMother(b, d), hasFather(b, e)
Gene2Carrier(e)}

A2 = {hasMother(a, c), hasFather(a, d), hasMother(b, c), hasFather(b, d)
Gene1Carrier(b),Gene2Carrier(d)}.

Their graphs are shown in Figure 1.

6

a

b c

d e Gene2Carrier

a b

c d Gene2Carrier

Gene1CarrierA1: A2:

hasMother hasFather

hasMother hasFather

hasMother

hasFather

hasMother

hasFather

Figure 1: Visual representation of two ABoxes. The ABox A1 is tree-shaped, while A2 is not.

We use ind(A) to denote the set of individuals of the ABox A. A signature is
a set of concept and role names. We often assume that the ABox is formulated
in a prescribed signature, which we call the ABox signature. An ABox that
only uses concept and role names from a signature Σ is called a Σ-ABox. We
remark that the ABox signature plays the same role as a schema in the database
literature [40]. Let A be an ABox and a, b ∈ ind(A). A path in A from a to
b of length k is a sequence of assertions r0(a0, a1), . . . , rk−1(ak−1, ak) ∈ A with
a = a0 and b = ak. For S ⊆ ind(A), we use A|S to denote the restriction of
A to the assertions that only use individual names from S. A homomorphism
from an ABox A1 to an ABox A2 is a function h : ind(A1)→ ind(A2) such that
A(a) ∈ A1 implies A(h(a)) ∈ A2 and r(a, b) ∈ A1 implies r(h(a), h(b)) ∈ A2.

A directed graph G is a tree if it is connected, every node has indegree at
most 1, and there is a unique node with indegree 0, which is then called the root
of G. An ABox A is tree-shaped if GA is a tree and there are no multi-edges, that
is, r(a, b) ∈ A implies s(a, b) /∈ A for all s 6= r. The root of a tree-shaped ABox
A is the root of GA and we call an individual b a descendant of an individual
a if a 6= b and the unique path from the root to b contains a. For example, the
above ABox A1 is tree-shaped while A2 is not.

Semantics. An interpretation is a tuple I = (∆I , ·I), where ∆I is a non-empty
set, called the domain of I, and ·I is a function that assigns to every concept
name A a set AI ⊆ ∆I and to every role name r a binary relation rI ⊆ ∆I×∆I .
The function ·I can be inductively extended to assign to every ELI concept C
a set CI ⊆ ∆I in the following way.

>I = ∆I

(C1 u C2)I = CI1 ∩ CI2
(∃r.C1)I = {d ∈ ∆I | ∃ e ∈ ∆I : r(d, e) ∧ C1(e)}

(∃r−.C1)I = {e ∈ ∆I | ∃ d ∈ ∆I : r(d, e) ∧ C1(d)}

An interpretation I satisfies a CI C v D if CI ⊆ DI , a concept asser-
tion A(a) if a ∈ AI , and a role assertion r(a, b) if (a, b) ∈ rI . Note that we
adopt the standard names assumption here, meaning that individual names are
directly treated as constants rather than being interpreted by I. This is the

7

most common semantics in the context of ontology-mediated querying. It im-
plies the unique name assumption which requires distinct individual name to
be interpreted as distinct elements in interpretations.

An interpretation is a model of a TBox T if it satisfies all CIs in it and a
model of an ABox A if it satisfies all assertions in it. For an interpretation I
and ∆ ⊆ ∆I , we use I|∆ to denote the restriction of I to the elements in ∆.

Conjunctive queries. A conjunctive query (CQ) is of the form q = ∃yφ(x,y),
φ a conjunction of relational atoms, that uses only unary and binary relations
that must be from NC and NR, respectively. An example for a CQ is

∃y Gene1Carrier(x) ∧ hasFather(x, y) ∧ Gene1Carrier(y).

A CQ with equality atoms is a CQ where additionally, atoms of the form x = y
are allowed. The variables in x are called answer variables whereas the variables
in y are called quantified variables. We set var(q) = x ∪ y. We also interpret q
as the set of its atoms. Every CQ q can be viewed as an ABox Aq by viewing
(answer and quantified) variables as individual names. A CQ is connected if
GAq is connected and rooted if every connected component of GAq contains at
least one answer variable. A CQ is tree-shaped if Aq is. The CQ displayed
above is tree-shaped. If q is a CQ and V ⊆ var(q), then we use q|V to denote
the restriction of q to the atoms that only use variables from V (this may drop
answer variables from q). An atomic query (AQ) is a CQ of the form A(x).

A union of conjunctive queries (UCQ) q is a disjunction of CQs that have
the same answer variables x. We write q(x) to emphasize that x are the answer
variables in q. The arity of a (U)CQ q, denoted ar(q), is the number of its
answer variables. We say that q is Boolean if ar(q) = 0. Slightly overloading
notation, we write CQ to denote the set of all CQs, CQ= to denote the set of
all CQs where equality atoms are allowed, conCQ for the set of all connected
CQs, AQ for the set of all AQs, and UCQ for the set of all UCQs.

Let q(x) be a CQ and I an interpretation. A tuple a ∈ (∆I)ar(q) is an
answer to q on I, denoted I |= q(a), if there is a homomorphism h from q to I
with h(x) = a, that is, a function h : var(q) → ∆I such that A(x) ∈ q implies
h(x) ∈ AI and r(x, y) ∈ q implies (h(x), h(y)) ∈ rI . If q is a UCQ, then a is an
answer to q on I if it is an answer to some CQ in q on I.

Ontology-mediated queries. An ontology-mediated query (OMQ) is a triple
Q = (T ,Σ, q) that consists of a TBox T , an ABox signature Σ and a query q
such as a CQ or a UCQ. Let A be a Σ-ABox and a ∈ ind(A)ar(q). We say that
a is an answer to Q on A, denoted A |= Q(a), if for every common model I of
A and T , a is an answer to q on I. We may also write A, T |= q(a) instead of
A |= Q(a). For an ontology language L and query language Q, we use (L,Q) to
denote the OMQ language in which TBoxes are formulated in L and the actual
queries are from Q; we also identify this language with the set of all OMQs
that it admits. In this paper, we mainly concentrate on the OMQ languages
(EL,CQ) and (EL,AQ). Three examples of OMQs are given in Example 1. The
OMQs Q1 and Q2 given there are from (EL,AQ) while the OMQ Q3 is from
(EL,CQ). Considering the ABox A1 from Figure 1, we have A1 |= Q2(a).

8

For an OMQ Q = (T ,Σ, q), we use eval(Q) to denote the following problem:
given a Σ-ABox A and a tuple a ∈ ind(A)ar(q), decide whether A |= Q(a).

TBox normal form. Throughout the paper, we generally and without further
notice assume TBoxes to be in normal form, that is, to contain only concept
inclusions of the form ∃r.A1 v A2, > v A1, A1 u A2 v A3, A1 v ∃r.A2, where
all Ai are concept names and r is a role name or, in the case of ELI-TBoxes,
an inverse role. Every TBox T can be converted into a TBox T ′ in normal form
in linear time [41], introducing fresh concept names; the resulting TBox T ′ is
a conservative extension of T , that is, every model of T ′ is a model of T and,
conversely, every model of T can be extended to a model of T ′ by interpreting
the fresh concept names. Consequently, all OMQs of the form Q = (T ,Σ, q)
and Q′ = (T ′,Σ, q) are equivalent in the sense that they give the same answers
on all Σ-ABoxes. Thus, conversion of the TBox in an OMQ into normal form
does not impact its data complexity nor rewritability into linear Datalog (or
any other language). The TBox from Example 1 is not in normal form. It could
be converted into normal form by replacing

∃hasFather.Gene1Carrier u ∃hasMother.Gene1Carrier v Gene1Carrier

by the three CIs

∃hasFather.Gene1Carrier v A, ∃hasMother.Gene1Carrier v B, AuB v Gene1Carrier,

where A and B are fresh concept names.

First order Rewritability. When speaking about first-order (FO) formulas,
we mean formulas without function symbols and constants that use relation
symbols of arity one and two only, drawing unary relation symbols from NC and
binary relation symbols from NR. Equality is admitted. Let Q = (T ,Σ, q) ∈
(EL,CQ) be an OMQ. We say that Q is FO-rewritable if there exists an FO
formula ϕ(x) such that for every ABox A and every tuple a of individuals from
ind(A), we have A |= Q(a) if and only if A |= ϕ(a) where A is interpreted as
a relational structure over Σ. We call ϕ(x) an FO-rewriting. As an example,
consider the OMQ (T ,Σ, B(x)) where T = {∃r.A v B} and Σ = {r,A,B}.
This OMQ is FO-rewritable with ϕ(x) = B(x) ∨ (∃y r(x, y) ∧ A(y)) being an
FO-rewriting. Also, the OMQ Q3 from Example 1 is FO-rewritable with FO-
rewriting ϕ(x) = ∃y hasMother(x, y).

Linear Datalog Rewritability. A Datalog rule ρ has the form S(x) ←
R1(y1) ∧ · · · ∧ Rn(yn), n > 0, where S,R1, . . . , Rn are relation symbols of any
arity and x,yi denote tuples of variables that match the arity of the relation
symbol that they are used with. We refer to S(x) as the head of ρ and to
R1(y1) ∧ · · · ∧ Rn(yn) as the body. Every variable that occurs in the head of a
rule is required to also occur in its body. A Datalog program Π is a finite set
of Datalog rules with a selected goal relation goal that does not occur in rule
bodies. The arity of Π, denoted ar(Π), is the arity of the goal relation. Relation
symbols that occur in the head of at least one rule of Π are intensional (IDB)
relations, and all remaining relation symbols in Π are extensional (EDB) rela-
tions. In our context, EDB relations must be unary or binary and are identified

9

with concept names and role names. Note that, by definition, goal is an IDB
relation. A Datalog program is linear if each rule body contains at most one
IDB relation. The width of a Datalog program is the maximum arity of non-goal
IDB relations used in it and its diameter is the maximum number of variables
that occur in a rule in Π.

For an ABoxA that uses no IDB relations from Π and a tuple a ∈ ind(A)ar(Π),
we write A |= Π(a) if a is an answer to Π on A, defined in the usual way [40]:
A |= Π(a) if goal(a) is a logical consequence of A∪Π viewed as a set of first-order
sentences (all variables in rules quantified universally).

We also admit body atoms of the form >(x) that are vacuously true. This
is just syntactic sugar since any rule with body atom >(x) can equivalently be
replaced by a set of rules obtained by replacing >(x) in all possible ways with
an atom R(x1, . . . , xn) where R is an EDB relation and where xi = x for some
i and all other xi are fresh variables.

A Datalog program Π over EDB signature Σ is a rewriting of an OMQ Q =
(T ,Σ, q) if A |= Q(a) iff A |= Π(a) for all Σ-ABoxes A and all a ∈ ind(A). We
say that Q is (linear) Datalog-rewritable if there is a (linear) Datalog program
that is a rewriting of Q. It is well known that all OMQs from (EL,CQ) are
Datalog-rewritable. It follows from the results in this paper that there are rather
simple OMQs Q = (T ,Σ, q) that are not linear Datalog-rewritable, for example
Q1 from Example 1. On the other hand, Q2 is linear Datalog-rewritable, using
two unary IDBs G and goal and the following rules:

G(x)← Gene2Carrier(x)

G(x)← hasMother(x, y) ∧G(y)

G(x)← hasFather(x, y) ∧G(y)

goal(x)← G(x).

Types. Let T be a TBox in normal form. A T -type t is a set of concept names
from T that is closed under T -consequence, that is, if T |=u t v A, then A ∈ t.
For an ABox A and a ∈ ind(A), we use tpA,T (a) to denote the set of concept
names A from T such that A, T |= A(a), which is a T -type. If t is a T -type
and a an individual name, we may use t(a) we denote the ABox {A(a) | A ∈ t}.
Universal models. It is well known [42] that for every ELI-TBox T and
ABox A there is a universal model UA,T with certain nice properties. These are
summarized in the following lemma. Homomorphisms between interpretations
are defined in the expected way, ignoring individual names.

Lemma 2. Let T be an ELI-TBox in normal form and A an ABox. Then
there is an interpretation UA,T such that

1. UA,T is a model of A and T ;

2. for every model I of A and T , there is a homomorphism from UA,T to I
that is the identity on ind(A);

3. for all CQs q and a ∈ ind(A)ar(q), A, T |= q(a) iff UA,T |= q(a).

10

It follows e.g. from results in [43] that UA,T can be constructed using a
standard chase procedure, as described next. We define a sequence of ABoxes
A0,A1, . . . by setting A0 = A and then letting Ai+1 be Ai extended as follows:

(i) If ∃r.B v A ∈ T and r(a, b), B(b) ∈ Ai, then add A(a) to Ai+1;

(ii) If ∃r−.A v B ∈ T and r(a, b), A(a) ∈ Ai, then add B(b) to Ai+1;

(iii) if > v A ∈ T and a ∈ ind(Ai), then add A(a) to Ai+1;

(iv) if B1 uB2 v A ∈ T and B1(a), B2(a) ∈ Ai, then add A(a) to Ai+1;

(v) if A v ∃r.B ∈ T , A(a) ∈ Ai and there is no b ∈ ind(Ai) such that r(a, b)
and B(b), then take a fresh individual b and add r(a, b) and B(b) to Ai+1;

(vi) if B v ∃r−.A ∈ T , B(b) ∈ Ai and there is no a ∈ ind(Ai) such that r(a, b)
and A(a), then take a fresh individual a and add r(a, b) and A(a) to Ai+1.

Let Aω =
⋃
i≥0Ai. We define UA,T to be the interpretation that corresponds

to Aω. The properties in Lemma 2 are standard to prove, see for example
[43, 44].

Note that UA,T can be infinite and that its shape is basically the shape
of A, but with a (potentially infinite) tree attached to every individual in A.
The domain elements in these trees are introduced by Rules (v) and (vi), and
we refer to them as anonymous elements. It should thus also be clear what
we mean when speaking about the anonymous elements in UA,T below some
a ∈ ind(A): the restriction of UA,T to a and those anonymous individuals
that can be reached from a without passing through an ABox individual. The
following is an immediate consequence of the definition of universal models. We
omit a formal proof.

Lemma 3. Let T be a TBox in normal form and let A1 and A2 be ABoxes and
ai ∈ ind(Ai) for i ∈ {1, 2}. If tpA1,T (a1) = tpA2,T (a2), then the restriction of
UA1,T to a1 and the anonymous elements below it is homomorphically equivalent
to the restriction of UA2,T to a2 and the anonymous elements below it.

Pathwidth. A path decomposition of a (directed or undirected) graph G =
(V,E) is a sequence V1, . . . , Vn of subsets of V , such that

• Vi ∩ Vk ⊆ Vj for 1 ≤ i ≤ j ≤ k ≤ n and

• for every edge e ∈ E there exists an i such that e ⊆ Vi.

A path decomposition V1, . . . , Vn is an (`, k)-path decomposition if ` = max{|Vi∩
Vi+1| | 1 ≤ i < n} and k = max{|Vi| | 1 ≤ i ≤ n}. The pathwidth of G, denoted
pw(G), is the smallest integer k, such that G has a (`, k+1)-path decomposition
for some `. For an ABox A, a sequence V1, . . . , Vn of subsets of ind(A) is a path
decomposition of A if V1, . . . , Vn is a path decomposition of GA. We assign a
pathwidth to A by setting pw(A) := pw(GA).

11

A B

B

q:

r r r r

s s t

r s

A, B

B

qtree:
r

s t

r s

Figure 2: Treeifiable CQ q and tree-shaped CQ qtree resulting from fork elimination. The
latter can be viewed as the EL-concept Cqtree = ∃r.(A uB u ∃t.> u ∃s.(∃r.> u ∃s.B)).

Treeifying CQs. A Boolean CQ q is treeifiable if there exists a homomorphism
from q into a tree-shaped interpretation. With every treeifiable Boolean CQ q,
we associate a tree-shaped CQ qtree that is obtained by starting with q and then
exhaustively eliminating forks, that is, identifying x1 and x2 whenever there are
atoms r(x1, y) and r(x2, y). Informally, one should think of qtree as the least
constrained treeification of q. It is known that a Boolean CQ q is treeifiable
if and only if the result of exhaustively eliminating forks is tree-shaped [45].
Consequently, it can be decided in polynomial time whether a Boolean CQ
is treeifiable. Treeification is useful because every tree-shaped Boolean CQ q
can be viewed as an EL-concept Cq in a straightforward way. Figure 2 shows
a treeifiable CQ, the tree-shaped CQ resulting from fork elimination, and the
corresponding EL-concept.

A pair of variables (x, y) from a CQ q is guarded if q contains an atom of the
form r(x, y). For every guarded pair (x, y) and every i ≥ 0, define reachi(x, y)
to be the smallest set such that

1. x ∈ reach0(x, y) and y ∈ reach1(x, y);

2. if z ∈ reachi(x, y), i > 0, and r(z, u) ∈ q, then u ∈ reachi+1(x, y);

3. if u ∈ reachi+1(x, y), i > 0 and r(z, u) ∈ q, then z ∈ reachi(x, y).

Moreover, reach(x, y) =
⋃
i reach

i(x, y). We use trees(q) to denote the set of all
(tree-shaped) CQs ptree such that p = q|reach(x,y) for some guarded pair (x, y)
with p treeifiable.

It is easy to verify that the number of CQs in trees(q) is linear in |q|. We
briefly argue that trees(q) can be computed in polynomial time. The number
of guarded pairs is linear in |q|. For each guarded pair (x, y), reach(x, y) can
clearly be computed in polynomial time. Moreover, exhaustively eliminating
forks on p = q|reach(x,y) takes only polynomial time, which tells us whether p is
treeifiable and constructs ptree if this is the case.

Pseudo tree-shaped ABoxes. Throughout the paper, we often concentrate
on ABoxes that take a restricted, almost tree-shaped form. These are called
pseudo tree-shaped ABoxes, first introduced in [18]. An ABox A is pseudo tree-
shaped with core individuals I ⊆ ind(A) if removing from A all role assertions

12

r,s s r s,t
rs

r

s r

s

r s s

s r

r

Figure 3: A pseudo tree-shaped ABox with core size 5 and 2 trees. Inside the core (highlighted
in gray), cycles, multi-edges and self-loops are allowed. In the trees, there are no multi-edges,
no self-loops and all roles are directed away from the core.

that only use individuals from I yields a disjoint union of tree-shaped ABoxes.
We refer to these as the trees of A, to A|I as the core of A, and to the number
of individuals in I as the core size of A. Note that every tree-shaped ABox is
pseudo tree-shaped with core size 1 and a single tree, I is then the root of the
tree. Figure 3 shows a pseudo tree-shaped ABox. Also note that every ABox A
is pseudo tree-shaped with core individuals ind(A), but we are usually interested
in the case where I is a proper subset of ind(A).

We introduce some succinct notation for removing parts of pseudo tree-
shaped ABox that is used throughout the paper. For every pseudo tree-shaped
ABox A and a non-core individual a ∈ ind(A), we use Aa to denote the tree-
shaped ABox rooted at a. Moreover, we useAa to denote the pseudo tree-shaped
ABox A \ Aa, that is, the ABox obtained from A by removing all assertions
that involve descendants of a (making a a leaf) and all assertions of the form
A(a). We also combine these notations, writing for example Aabc for ((Aa)b)c.

The following lemma describes the central property of pseudo tree-shaped
ABoxes. It essentially says that if a is an answer to an OMQ Q based on a
connected CQ q on an ABox A, then one can unravel A into a pseudo tree-
shaped ABox A′ of core size at most |q| that homomorphically maps to A and
such that a is an answer to Q on A′, witnessed by a homomorphism from q to
UA′,T that satisfies the additional property of being within or at least ‘close to’
the core of A′.

Lemma 4. Let Q = (T ,Σ, q) ∈ (EL, conCQ), A a Σ-ABox and a ∈ ind(A)ar(q)

such that A |= Q(a). Then there is a pseudo tree-shaped Σ-ABox A′ of core size
at most |q| and with a in its core that satisfies the following conditions:

1. there is a homomorphism from A′ to A that is the identity on a;

2. A′ |= Q(a), witnessed by a homomorphism from q to UA′,T whose range
consists solely of core individuals and of anonymous elements in a tree
rooted in a core individual.

13

We shall often be interested in pseudo tree-shaped ABoxes A that give an
answer a to an OMQ Q and that are minimal with this property regarding set
inclusion, that is, no strict subset of A supports a as an answer to Q. We
introduce some convenient notation for this. Let Q = (T ,Σ, q) ∈ (EL,CQ). We
useMQ to denote the set of all pseudo tree-shaped Σ-ABoxes A of core size at
most |q| such that for some tuple a in the core of A, A |= Q(a) while A′ 6|= Q(a)
for any A′ (A.

Finally, we note that when the TBox is formulated in EL, then the concept
names derived at some non-core individual a of a pseudo tree-shaped ABox only
depend on Aa.2 The proof is by a straightforward analysis of the construction
of universal models.

Lemma 5. Let T be an EL-TBox, A an pseudo tree-shaped ABox, and a ∈
ind(A) a non-core individual. Then A, T |= B(a) if and only if Aa, T |= B(a)
for every concept name B ∈ NC.

Fundamental ABox Manipulations. The degree of an ABox A is the max-
imum number of successors of any individual in A. The following lemma of-
ten allows us to concentrate on ABoxes of small degree. We state it only for
(EL,AQ), since we only use it for this OMQ language. The proof is by a care-
ful removal of role assertions that are not required for the construction of the
universal model.

Lemma 6. Let Q = (T ,Σ, A(x)) ∈ (EL,AQ) be an OMQ and A a Σ-ABox
such that A |= Q(a). Then there exists A′ ⊆ A of degree at most |T | such that
A′ |= Q(a).

We next introduce a fundamental construction for merging ABoxes. Let T
be an ELI-TBox. The following lemma allows us to glue together ABoxes under
certain conditions or to replace a subset of an ABox by another ABox without
changing the types that are derived. The proof is by careful manipulation of
models.

Lemma 7. Let A1,A2 be Σ-ABoxes and T an ELI-TBox such that tpA1,T (a) =
tpA2,T (a) for all a ∈ ind(A1) ∩ ind(A2). Then tpA1∪A2,T (a) = tpAi,T (a) for all
a ∈ ind(Ai), i ∈ {1, 2}.

Throughout the paper, we shall often replace a part of an ABox by a different
ABox. Let A be a pseudo tree-shaped ABox, b ∈ ind(A) a non-core individual
and A′ a tree-shaped ABox with root b and ind(A) ∩ ind(A′) = {b}. When
we speak about the ABox obtained from A by replacing the subtree below b by
A′, we mean the ABox that can be obtained as follows: Remove all concept
assertions of the form A(b) and all assertions that involve a descendant of b
from A, and then take the ABox A ∪ A′. The following corollary allows us to
replace parts of pseudo tree-shaped ABoxes.

2The result generalizes to ABoxes that are not pseudo tree-shaped, but for our purposes
the given formulation suffices.

14

Corollary 8. Let T be an ELI-TBox, A a pseudo tree-shaped ABox, b ∈ ind(A)
not in the core of A, and A′ a tree-shaped ABox with root b such that ind(A) ∩
ind(A′) = {b} and tpA′,T (b) = tpA,T (b). If A′′ is the ABox obtained from A
by replacing the subtree rooted at b by A′, then tpA,T (a) = tpA′′,T (a) for all
a ∈ ind(A) ∩ ind(A′′).

3. AC0 versus NL for Connected CQs

We prove a dichotomy between AC0 and NL for (EL, conCQ) and show that
for OMQs from this language, evaluation in AC0 coincides with FO rewritability.
The dichotomy does not depend on assumptions from complexity theory since
it is known that AC0 6= NL [46]. We generalize the results obtained here to
potentially disconnected CQs in Section 5.

FO-rewritability of OMQs in (EL,CQ) has been characterized in [18] by a
property called bounded depth. Informally, an OMQ Q has bounded depth if
it looks only boundedly far into the ABox. To obtain our results, we show that
unbounded depth implies NL-hardness. Formally, bounded depth is defined as
follows. The depth of a tree-shaped ABox A is the largest number k such that
there exists a path of length k starting from the root in GA. The depth of a
pseudo tree-shaped ABox is the maximum depth of its trees. We say that an
OMQ Q ∈ (EL,CQ) has bounded depth if there is a k such that every A ∈MQ

has depth at most k. If there is no such k, then Q has unbounded depth.
In Example 1, the OMQ Q3 has bounded depth, while Q1 and Q2 have

unbounded depth. Unbounded depth of Q2 is witnessed by the ABoxes

Ak = {hasMother(ai, ai+1) | 0 ≤ i < k} ∪ {Gene2Carrier(ak)}

with k ≥ 1. It is not hard to verify that Ak ∈ MQ2 for every k ≥ 1 and that
the depth of Ak is k. The following is the main result of this section.

Theorem 9. Let Q ∈ (EL, conCQ). The following are equivalent:

(i) Q has bounded depth.

(ii) Q is FO-rewritable.

(iii) eval(Q) is in AC0.

If these conditions do not hold, then eval(Q) is NL-hard under FO reductions.

The equivalence (ii)⇔ (iii) is closely related to a result in CSP. In fact, every
OMQ of the form (T ,Σ,∃xA(x)) with A a concept name and T formulated in
ELI is equivalent to the complement of a CSP [3] and it is a known result in CSP
that FO-rewritability coincides with AC0 [47]. Conjunctive queries, however,
go beyond the expressive power of (complements of) CSPs and thus we cannot
derive (ii) ⇔ (iii) from the CSP connection.

The equivalence (i) ⇔ (ii) follows from Theorem 9 in [18]. Further, the
implication (ii) ⇒ (iii) is clear because first order formulas can be evaluated in

15

AC0. It thus suffices to show the implication (iii) ⇒ (i) and the last sentence
of the theorem. We prove that unbounded depth implies NL-hardness, which
establishes both since AC0 6= NL.

We first give a rough sketch of the proof. Let Q = (T ,Σ, q) ∈ (EL, conCQ)
be an OMQ of unbounded depth. We reduce reach, the reachability problem
in directed graphs, to eval(Q). Note that reach is NL-complete under FO
reductions [48]. An input to reach is a tuple G = (V,E, s, t) where (V,E) is a
directed graph, s ∈ V a source node and t ∈ V a target node. Such a tuple is a
yes-instance if there exists a path from s to t in the graph (V,E). To simplify
the reduction, we further assume w.l.o.g. that s 6= t, that the indegree of s and
the outdegree of t are both 0, and that there are no nodes without incident
edges.

The reduction has to translate a tuple G = (V,E, s, t) into a Σ-ABox AG
and a tuple a such that AG |= Q(a) if and only if there is a path in G from s
to t. We show that any ABox from MQ of sufficiently large depth can be used
to construct ABoxes Asource, Aedge and Atarget that can serve as gadgets in the
reduction. More precisely, the ABox AG has (among others) one individual av
for every node v ∈ V , the edges of (V,E) will be represented using copies of
Aedge, and the source and target nodes will be marked using the ABoxes Asource

and Atarget, respectively. The bottom half of Figure 5 illustrates how AG is
constructed from G using the gadgets. As part of the reduction, we identify
two T -types t0 and t1 such that for every node v ∈ V , tpAG,T (av) = t1 if v
is reachable from s in G and tpAG,T (av) = t0 otherwise. The tuple a is then
chosen such that AG, T |= q(a) if and only if tpAG,T (at) = t1. The purpose of
Asource is to produce the type t1, the purpose of Aedge is to propagate the type
further, and the purpose of Atarget is to make the query true whenever it receives
t1 as ‘input’.

We next define a property of Q, called the ability to simulate reach, that
makes the properties of Asource, Aedge, and Atarget precise, as well as those of
the T -types t0 and t1. We then show that Q having unbounded depth implies
the ability to simulate reach and that this, in turn, implies NL-hardness of
eval(Q) via a reduction from reach.

For the rest of this section, we assume w.l.o.g. that in any OMQ Q =
(T ,Σ, q) ∈ (EL, conCQ), the TBox T has been modified as follows: for every
p ∈ trees(q), introduce a fresh concept name Ap and add the concept inclu-
sion Cp v Ap to T where Cp is p viewed as an EL-concept. Then normalize
T again. It is easy to see that the OMQ resulting from this modification is
equivalent to the original OMQ Q. The extension is still useful since its types
are more informative, now potentially containing also the freshly introduced
concept names.

In the reduction, Boolean queries require some special care since they can be
made true by homomorphisms to anywhere in the universal model of AG and T ,
rather than only to the neighborhood of the answer tuple a (recall that we work
with connected CQs). To address this issue, we make use of what we call core
close homomorphisms. Let A be a pseudo tree-shaped Σ-ABox and a a tuple
from ind(A). We call a homomorphism h from q to UA,T core close if there is

16

some variable x in q such that h(x) is a core individual or an anonymous element
in a tree that the chase has generated below a core individual. If ar(q) > 0 and
a is from the core of A, then every homomorphism from q to UA,T must be core
close. Boolean CQs q, in contrast, may admit homomorphisms to UA,T that are
not core close. However, the following lemma shows that this cannot happen
when A ∈MQ.

Lemma 10. Let Q = (T ,Σ, q) ∈ (EL, conCQ) be Boolean and A ∈MQ. Then
every homomorphism from q to UA,T is core close.

Proof. Since A ∈ MQ, A is minimal with the property that A |= Q. Assume
that there is a homomorphism h from q to UA,T that is not core close. Then
there is no path in UA,T from any element in the range of h to any individual
in the core of A (though a path in the converse direction might exist). By
Lemma 5, we can remove all assertions in A that involve a core individual and
the resulting ABox A′ satisfies A′ |= Q, contradicting the minimality of A.

If M is a set of concept names (such as a type), then M(a) denotes the ABox
{A(a) | A ∈ M}. We write A, T |= M(a) to mean that A, T |= A(a) for all
A ∈M . We are now ready to define formally the ability to simulate reach.

Definition 11. An OMQ Q = (T ,Σ, q) ∈ (EL, conCQ) has the ability to sim-
ulate reach if there exist

• a pseudo tree-shaped Σ-ABox A of core size at most |q|,

• a tuple a of individuals from the core of A of length ar(q),

• a tree Ai of A with two distinguished individuals b, c such that b has
distance at least |q| from the core and c is a descendant of b that has
distance at least |q| from b and

• T -types t0 (t1

such that

1. A |= Q(a),

2. t1 = tpA,T (b) = tpA,T (c),

3. tpAc∪t0(c),T (b) = t0,

4. Ab ∪ t0(b) 6|= Q(a) and

5. if q is Boolean, then every homomorphism h from q to UA,T is core close.

We define Atarget = Ab, Aedge = Abc, and Asource = Ac.

17

A

a

A′B′B

b

A′B′B

c

B
A

A A

s r r s

r r

Figure 4: The ABox A displayed in black witnesses that the OMQ from Example 12 has the
ability to simulate reach. The assertions in red are derived from A using T , showing that
t1 = tpA,T (b) = tpA,T (c).

To understand the essence of Definition 11, it is worthwhile to consider the
special case where q is an AQ A(x). In this case, Q has the ability to simulate
reach if there is a tree-shaped Σ-ABox A with root a = a, two distinguished
non-root individuals b, c ∈ ind(A), c a descendant of b, and T -types t0 (t1
such that Conditions (1)-(4) of Definition 11 are satisfied. All remaining parts
of Definition 11 should be thought of as technical complications induced by
replacing AQs with CQs. Conditions (1)-(4) make sure that the gadgets Asource,
Aedge and Atarget behave in the expected way. In particular, Condition (2) says
that Asource produces the type t1 and that Aedge propagates that type further.
Condition (3) says that if the ‘input’ for Aedge is t0, then the ‘output’ will also
be t0. Condition (4) says that the type t0 as input for Atarget is not sufficient
to imply the query. The top half of Figure 5 shows schematically how the
ABoxes Asource, Aedge and Atarget are defined from an ABox that has the ability
to simulate reach. In the following example, we give a concrete OMQ that has
the ability to simulate reach and an ABox witnessing this.

Example 12. Let

T = {∃s.A v B, ∃r.A v A′,∃r.B v B′, A′ uB′ v B, ∃s.B v A}

and Σ = {r, s, A}. Figure 4 shows a tree-shaped ABox that witnesses that the
OMQ (T ,Σ, A(x)) has the ability to simulate reach, via types t1 = {A′, B′, B}
and t0 = {A′}, and with a = a.

In Proposition 13 below, we show that unbounded depth implies the ability
to simulate reach and in Proposition 14 we show that the ability to simulate
reach enables a reduction from the reachability problem for directed graphs.

Proposition 13. Let Q ∈ (EL, conCQ). If Q has unbounded depth, then Q has
the ability to simulate reach.

Proof. We use a pumping argument. Let Q = (T ,Σ, q) ∈ (EL, conCQ) have
unbounded depth. There must be a pseudo tree-shaped ABox A ∈ MQ and a
tuple a from its core such that A |= Q(a) and such that one of its trees, say Ai,
has depth at least k := (|q|+1) ·3|T |+ |q|+1. Consider a path of length at least
k from the root of Ai to a leaf. Let A′ denote the ABox obtained from A by

18

s

u v

w t

a

As
source

As,u
edge As,v

edge

Av,w
edge Av,t

edge

At
target

as

au
av

aw
at

b t1

c t1

Core

a

≥ |q|

≥ |q|

Atarget

Aedge

Asource

b

c

a

Figure 5: Top left: Schematically, an ABox that has the ability to simulate reach. Top right:
The same ABox, divided into Asource, Aedge and Atarget. Bottom: In the reduction, an instance
G for reach (bottom left) is translated into the ABox AG (bottom right).

19

removing all assertions that involve the leaf in this path. Since A is minimal,
A′ 6|= Q(a). Now, every individual b on the remaining path that has distance
at least |q| from the core is colored with the pair (t′b, tb) where t′b = tpA′,T (b)

and tb = tpA,T (b). Observing t′b ⊆ tb, we obtain 3|T | as an upper bound for the
number of different colors (t′b, tb) that may occur on the path. But the number
of individuals on this path with distance at least |q| from the core is at least
k−|q| = (|q|+1) ·3|T |+1, so by the pigeonhole principle there is one color (t′, t)
that appears at least |q| + 1 times on the path. Then there must be distinct
individuals b and c that have distance at least |q| from each other and such that
(t′b, tb) = (t′c, tc). W.l.o.g. let c be a descendant of b. We set t0 = t′b and t1 = tb.

For this choice of A, a, b, c, t0 and t1, Conditions 1 and 2 from Definition 11
are immediately clear. With Corollary 8, we can replace Ac in A′ by t0(c),
so Condition 3 holds. Furthermore, we have A′ 6|= Q(a) and tpA′,T (b) = t0,

so again by Corollary 8, if we replace Ab with t0(b), the types derived in the
remaining ABox do not change, thus Condition 4 holds. Condition 5 follows
from Lemma 10.

Now for the reduction from reach to eval(Q) when Q has the ability to
simulate reach.

Proposition 14. Let Q ∈ (EL, conCQ). If Q has the ability to simulate reach,
then eval(Q) is NL-hard under FO reductions.

To prove Proposition 14, let Q = (T ,Σ, q) ∈ (EL, conCQ) have the ability
to simulate reach. Then there is a pseudo tree-shaped ABox A, a tuple a in
its core, distinguished individuals b and c, and types t0 (t1 as in Definition 11.
Fix such A, a, b, c, t0, and t1 for what follows. This gives rise to ABoxes Asource,
Atarget, and Aedge as in Definition 11. We reduce reach to eval(Q).

Let G = (V,E, s, t) be an input tuple for reach. We use (copies of) Asource,
Atarget, andAedge as building blocks to construct a Σ-ABoxAG with a designated
tuple of individual names a such that AG |= Q(a) if and only if there is a path
in G from s to t. We reserve an individual av for every node v ∈ V , to be used
in AG along with additional individuals. We define

AG := Assource ∪ Attarget ∪
⋃

(u,v)∈E

Au,vedge

where

• Assource is a copy ofAsource where c is renamed to as and all other individuals
are fresh;

• Attarget is a copy of Atarget where b is renamed to at, all individuals from a
retain their original name, and all other individuals are fresh;3

3As a consequence, all individuals from a are part of AG.

20

• for every (u, v) ∈ E, Au,vedge is a copy of Aedge where c is renamed to au, b
is renamed to av and all other individuals are fresh.

The bottom half of Figure 5 visualizes this construction.
It can be verified that AG can be constructed from G using an FO reduction.

For such a reduction one views both AG and G as an FO structure and then
constructs AG from G using one FO query to define the domain and one FO
query for each relation symbol to define the extension of that symbol; see [48]
for more information. It is very tedious to describe FO reductions in full formal
detail, so we avoid that here. We note, however, that the kind of reduction that
we use here, where edges in some graph are replaced with gadgets of constant
size, are a standard example of FO reductions. We refer the interested reader
to Example 2.19 in [48] where an FO reduction of SAT to CLIQUE is presented
in full detail.

It remains to show the correctness of the reduction.

Lemma 15. t is reachable from s in G if and only if AG |= Q(a).

The proof of Lemma 15 relies on various technical properties of the ABoxes
Asource, Atarget, and Aedge that we summarize next.

Lemma 16. Let Q = (T ,Σ, q) ∈ (EL, conCQ) have the ability to simulate
reach and let A, a, b, c, t0, t1, Asource, Aedge and Atarget be as in Definition 11.
Then

1. tpAsource,T (c) = t1;

2. tpAedge∪t1(c),T (b) = t1;

3. Atarget ∪ t1(b), T |= Q(a).

4. tpAsource∪t1(c),T (c) = t1;

5. tpAedge∪ti(b)∪tj(c),T (c) = tj for all i, j ∈ {0, 1};

6. tpAedge∪ti(b)∪tj(c),T (b) = tmax{i,j} for all i, j ∈ {0, 1};

7. tpAtarget∪t0(b),T (b) = t0;

8. tpAsource∪t1(c),T (a) = tpA,T (a) for all a ∈ ind(Asource);

9. tpAedge∪t1(b)∪t1(c),T (a) = tpA,T (a) for all a ∈ ind(Aedge);

10. tpAtarget∪t1(b),T (a) = tpA,T (a) for all a ∈ ind(Atarget).

With Lemma 16 at our disposal, we can now prove Lemma 15.

Proof of Lemma 15. For the more straightforward “⇒” direction, let t be reach-
able from s. Then there is a path s = v0, . . . , vn = t in G. Since Assource ⊆ AG,

21

Point 1 of Lemma 16 and monotonicity4 yield t1 ⊆ tpAG,T (as). This pro-
vides the induction start for showing that t1 ⊆ tpAG,T (avi) for 0 ≤ i ≤ n,
by induction on i. For the induction step, assume that t1 ⊆ tpAG,T (avi) with

0 ≤ i < n. Since Avi,vi+1

edge ⊆ AG, Point 2 of Lemma 16 and monotonicity yield

t1 ⊆ tpAG,T (avi+1). Finally, since Attarget ⊆ AG, Point 3 of Lemma 16 and
monotonicity yield AG |= Q(a).

The “⇐” direction is more laborious. Assume that t is not reachable from s.
We define an extension A′G ⊇ AG and then show that A′G 6|= Q(a), which
implies AG 6|= Q(a) as desired. The reason for working with A′G in place of
AG is that the former lends itself better towards inductive proofs. Note that
we could not have used A′G to define the reduction since it uses symbols that
are not in Σ and cannot be constructed by an FO-reduction since this requires
deciding reachability in directed graphs.

For all v ∈ V , let reach(v) = 1 if v is reachable from s in G and reach(v) = 0
otherwise. Further let (u1, v1), . . . , (um, vm) be an enumeration of all edges in E.
We inductively define a sequence of ABoxes A0,A1, . . . ,Am as follows:

A0 = Assource ∪ t1(as) ∪ Attarget ∪ t0(at)

and if Ai−1 has already been defined, let

Ai = Ai−1 ∪ Aui,vi
edge ∪ treach(ui)(aui

) ∪ treach(vi)(avi).

Finally, we define A′G = Am. It is straightforward to verify that

A′G = AG ∪ {t0(av) | v ∈ V is not reachable from s}
∪ {t1(av) | v ∈ V is reachable from s}.

Set indV = {av | v ∈ V }. With the components of A′G, we mean the ABoxes
A+

source := Assource ∪ t1(as), A+
target := Attarget ∪ t0(at), and A+

u,v := Au,vedge ∪
treach(u)(au) ∪ treach(v)(av) for all (u, v) ∈ E. By Points 4 to 7 of Lemma 16,
the following types are realized in components:

• tpA+
source,T (as) = t1 = treach(s),

• tpA+
target,T

(at) = t0 = treach(t),

• tpA+
u,v,T (au) = treach(u), and tpA+

u,v,T (av) = treach(v).

We next show the following.

Claim. Let 0 ≤ i ≤ m. Then tpAi,T (a) = tpC,T (a) for every component C of
A′G with C ⊆ Ai and all a ∈ ind(C).

We prove the claim by induction on i. For i = 0, the only relevant components C

4We mean that if A ⊆ A′ then T ,A |= q(a) implies T ,A′ |= q(a) for all T , q, and a.

22

are A+
source and A+

target. Note that they are disjoint since s 6= t, and thus the
statement is clearly satisfied.

For the induction step, assume that the statement has already been proven
for some i ≥ 0. There is a component Ci = A+

u,v such that Ai+1 = Ai ∪ Ci. Note
thatAi and Ci might only share the individuals au and av. We have tpCi,T (au) =
treach(u) and tpCi,T (av) = treach(v). By induction hypothesis, tpAi,T (au) =
treach(u) if au is shared and tpAi,T (av) = treach(v) if av is shared. The state-
ment thus follows from Lemma 7 for C = Ci, and from Lemma 7 and induction
hypothesis for all C 6= Ci. This finishes the proof of the claim. Since A′G = Am,
we may use the claim with A′G in place of Ai.

We now use the claim to show that A′G, T 6|= q(a). Assume to the contrary
that A′G, T |= q(a), that is, there is a homomorphism h from q(x) to UA′G,T such
that h(x) = a. Note that any two distinct individuals from indV have distance
at least |q| in A′G since the same is true for individuals b and c in Aedge. Since
q is connected, there can thus be at most one such individual in the range of h.

If no individual from indV is in the range of h, then q being connected implies
that there is a single component C of A′G such that the range of h contains only
individuals from C and anonymous elements below them.

First assume that C is A+
target. We can construct a homomorphism h′ from q

to UA+
target,T

by setting h′(x) = h(x) if h(x) ∈ ind(A′G) and using the claim and

Lemma 3 to define h′(x) if h(x) is an anonymous element. Thus A+
target, T |=

q(a), in contradiction to Condition (4) of Definition 11.
Now assume that C is A+

source or A+
u,v. We only treat the former as the latter

is completely analogous. Since the constants from a are not in A+
source, q is

Boolean. We can construct a homomorphism h′ from q to UA+
source,T as in the

previous case. We can further construct a homomorphism h′′ from UA+
source,T to

UA,T by starting with the obvious homomorphism from A+
source to A (map every

a ∈ ind(A+
source) to the individual in A that a is a copy of) and using Points 8

to 10 of Lemma 16 and Lemma 3 to define h′′(d) for anonymous elements d.
The composition g of h′ with h′′ is a homomorphism from q to UA,T that is not
core close since its range falls in the subtree of UA,T rooted at c and the distance
of c from the core is at least |q|. This contradicts Condition 5 of Definition 11.

Now assume that the range of h contains the individual av. Let X0 = {x ∈
var(q) | h(x) = av} and let X↓ be the set of x ∈ var(q) such that h(x) is
some a ∈ ind(A′G) or in an anonymous tree below such an a such that there
exists a path of length at least one and at most |q| from av to a in A′G. Let
X↑ = var(q) \ (X0 ∪X↓). We distinguish three cases.

Case 1: v = t, the target node. Since we assume that t has outdegree 0
in G and s 6= t, h(X↑) contains only individuals from A+

target and anonymous

elements below them while h(X↓) contains only individuals from (potentially
multiple) components A+

u,v and anonymous elements below them. There is then
an obvious homomorphism from A′G|h(var(q)) to A, and consequently we can
construct a homomorphism g from q to UA,T as above. Then b is in the range
of g since av is a copy of b. Since the distance of b from the core of A is at least
|q|, g is not core close, contradicting Condition 5 of Definition 11.

23

Case 2: v = s, the source node. Since we assume that s has indegree 0 in G
and s 6= t, h(X↓) contains only individuals from A+

source or anonymous elements
below them and h(X↑) contains only individuals from (potentially multiple)
components A+

u,v and anonymous elements below them. We can proceed as
in the previous case to obtain a homomorphism from q to UA,T whose range
contains c, contradicting Condition 5 of Definition 11.

Case 3: v /∈ {s, t}. Then the range of h contains only individuals from
(potentially multiple) components A+

u,v and anonymous elements below them.
Note that unlike in the previous two case, there is no obvious homomorphism
from A′G|h(var(q)) to A, and thus we need a more refined argument. We can
construct a homomorphism g from q|X↑∪X0

to UA,T as above that maps every
x ∈ var(q) with h(x) ∈ ind(A′G) to the individual in A that h(x) is a copy of.
Then g(x) = c for all x ∈ X0. It remains to extend g to all of q. Let q′ be
obtained from q by identifying x1, x2 ∈ var(q) whenever r(x1, y), r(x2, y) ∈ q
and x1, x2 ∈ X0 ∪X↓. By construction, the restriction of A′G to the individuals
between av and {h(x) | x ∈ X↓} is a directed tree. Consequently and since
the anonymous elements in the universal model also form directed trees, h is a
homomorphism from q′ to UA′G,T . Moreover, q′ \ q|X↑∪X0

is the union of tree-
shaped CQs q1, . . . , qn that all share the same root x0 and are otherwise variable
disjoint. Each qi can be viewed as an EL-concept ∃r.C. By the extension of
T carried out initially, ∃r.C v A∃r.C ∈ T . Consequently A∃r.C ∈ tpA′G,T (av)

which by the claim is identical to tpC,T (av) in some component C = A+
u,v,

and thus A∃r.C ∈ t1 since tpC,T (av) ⊆ t1. By Condition 2 of Definition 11,
A∃r.C ∈ tpA,T (c). We thus find a homomorphism from qi to UA,T that maps x0

to c, for 1 ≤ i ≤ n. Combining all these homomorphisms allows us to extend g
to q′, thus to q. Again, g is not core close and thus we obtain a contradiction
to Condition 5 of Lemma 11.

Together, Propositions 13 and 14 show if an OMQ Q ∈ (EL, conCQ) has
unbounded depth, then eval(Q) is NL-hard. This finishes the proof of Theo-
rem 9.

4. NL versus PTime for Connected CQs

We prove a dichotomy between NL and PTime for (EL, conCQ) and show
that for OMQs from this language, evaluation in NL coincides with rewritability
into linear Datalog. We also show that the latter two properties coincide with
the OMQ having bounded pathwidth, as defined below. We generalize our
results to potentially disconnected CQs in Section 5.

Let Q = (T ,Σ, q) ∈ (EL,CQ). We say that Q has pathwidth at most k
if for every Σ-ABox A and tuple a with A |= Q(a), there is a Σ-ABox A′ of
pathwidth at most k such that A′ |= Q(a) and a homomorphism from A′ to
A that is the identity on a. Now Q has bounded pathwidth if it has pathwidth
at most k for some k. If this is the case, we use pw(Q) to denote the smallest
k such that Q has pathwidth at most k. The OMQ Q2 from Example 1 has
bounded pathwidth since every ABox from MQ2

takes the form of a path and

24

every path has pathwidth 1. On the other hand, Q1 has unbounded pathwidth.
To see this, one may consider as witnesses the ABoxes that take the form of
full binary trees of increasing depth where the left successor is connected via
role name hasMother, the right successor via role name hasFather, and for all
leafs a there is a concept assertion Gene1Carrier(a). It is well known that the
pathwidth of the full binary tree of depth k is dk2 e, so the pathwidth of these
ABoxes is not bounded [49]. The following is the main result of this section.

Theorem 17 (NL/PTime dichotomy). Let Q ∈ (EL, conCQ). The following
are equivalent (assuming NL 6= PTime):

(i) Q has bounded pathwidth.

(ii) Q is rewritable into linear Datalog.

(iii) eval(Q) is in NL.

If these conditions do not hold, then eval(Q) is PTime-hard under FO reduc-
tions.

Remark. Without the assumption NL 6= PTime, Conditions (i) and (ii) are still
equivalent to each other and they still imply (iii).

The equivalence (i) ⇔ (ii) is closely related to a result in CSP. In fact, it
is proved in [21] that a CSP has an obstruction set of bounded pathwidth if
and only if its complement is expressible in linear Datalog. From the viewpoint
of the connection between OMQs and CSPs [3], obstructions correspond to
homomorphic preimages of ABoxes and thus the result in [21] implies (i) ⇔ (ii)
for OMQs of the form (T ,Σ,∃xA(x)), T formulated in ELI. We give a direct
proof of (i) ⇔ (ii) in Section 4.2 to capture also CQs of more complex shape.

The implication (ii)⇒ (iii) is clear since every linear Datalog program can be
evaluated in NL. It thus remains to prove the converse and the last sentence of
the theorem. Since we assume NL 6= PTime, we may achieve both by showing
that unbounded pathwidth implies PTime-hardness. This is achieved in the
subsequent section.

4.1. Unbounded Pathwidth Implies PTime-hardness

We reduce from the well-known PTime-complete problem path systems ac-
cessibility (psa) [48], closely related to alternating reachability on directed
graphs and to the evaluation of Boolean circuits. The structure of the proof
is similar to the one for the dichotomy between AC0 and NL in Section 3, but
more sophisticated. An instance of psa takes the form G = (V,E, S, t) where
V is a finite set of nodes, E is a ternary relation on V , S ⊆ V is a set of source
nodes, and t ∈ V is a target node. A node v ∈ V is accessible if v ∈ S or there are
accessible nodes u,w with (u,w, v) ∈ E. G is a yes-instance if the target node
t is accessible. We assume w.l.o.g. that t does not appear in the first or second
component of a triple in E, that no s ∈ S appears in the third component of a
triple in E, and that t /∈ S.

25

The main difference to the NL-hardness proof in Section 3 is that instead
of a gadget Aedge that transports a selected type t1 from its input individual
to its output individual, we now need a gadget A∧ with two input individuals
and one output individual that behaves like a logical AND-gate when type t1 is
interpreted as ‘true’ and type t0 as ‘false’. Similar to the NL-hardness proof, the
reduction translates a tuple G = (V,E, S, t) into a Σ-ABox AG and a tuple a
such that AG |= Q(a) if and only if t is accessible in G. But instead of replacing
binary edges by a copy of Aedge, we replace the ternary tuples from E by a copy
of A∧. Below, we formalize the existence of suitable gadgets as the ability to
simulate psa.

Instead of proving directly that unbounded pathwidth of an OMQ Q implies
that Q has the ability to simulate psa, we consider it more convenient to use an
intermediate condition, namely that Q has unbounded branching. This means
that for any depth bound k, there is a pseudo tree-shaped ABox in MQ that
contains the full binary tree of depth k as a minor. We show that for any OMQ
Q from (EL,CQ),

1. Q has unbounded pathwidth if and only if Q has unbounded branching;

2. Q has unbounded branching if and only if Q has the ability to simu-
late PSA;

3. if Q has the ability to simular PSA, then eval(Q) is PTime-hard.

While the ‘only if’ directions of Points 1 and 2 are not required to establish
Theorem 17, they are useful for the complexity analysis of the meta problems
carried out in Section 7.

We define unbounded branching more formally. Let A be a tree-shaped
ABox. The full binary tree of depth k is the directed graph G = (V,E) with
V = {w ∈ {1, 2}∗ | 0 ≤ |w| ≤ k} and (v, w) ∈ E if w = v1 or w = v2. A has the
full binary tree of depth k as a minor if there is a mapping f from the nodes of
the full binary tree of depth k to ind(A) such that if (v, w) ∈ E, then f(w) is
a descendant of f(v). We usually do not make the mapping f explicit but only
say which individuals lie in the range of f .5

We are mostly interested in the largest k such that A has the full binary tree
of depth k as a minor. This number, which we call the branching number of A,
denoted by br(A), can be easily computed by the following algorithm. Label
every leaf of A with 0 and then inductively label the inner nodes as follows:
If a is an inner node whose children have already been labeled and m is the
maximum label of its children, label a with m if at most one child of a is labeled
with m and label a with m+ 1 if at least two children of a are labeled with m.
It can be easily proved by induction on the co-depth of individuals a that the
label of a is equal to br(Aa). In particular, br(A) is the label of the root of A.

5The standard definition of a minor says that graph H is a minor of graph G if H can be
obtained from a subgraph of G by edge contraction. This is equivalent to our definition.

26

We say that Q ∈ (EL,CQ) is boundedly branching if there exists a k such that
for every pseudo tree-shaped ABox A ∈ MQ and every tree Ai in A, we have
br(Ai) ≤ k. In that case, we define br(Q) to be the smallest such k. Otherwise,
we call Q unboundedly branching.

Proposition 18. Let Q ∈ (EL,CQ). Then Q has unbounded pathwidth iff Q is
unboundedly branching.

The “⇐” direction follows from the facts that the full binary tree of depth
k has pathwidth dk2 e and that the pathwidth of a graph cannot be smaller than
the pathwidth of its minors. For the “⇒” direction, we show that the branching
number of an OMQ gives rise to an upper bound on its pathwidth. This is done
by induction on the depth of tree-shaped ABoxes and then lifted to pseudo
tree-shaped ABoxes.

Our next goal is to identify suitable gadgets for the reduction from psa. To
achieve this, it is convenient to extend the TBox of the OMQ Q = (T ,Σ, q)
involved in the reduction. Recall that we have also used such an extension in
the NL-hardness proof in Section 3 and that it has helped us to avoid unin-
tended homomorphisms from the CQ to the (universal model of the) reduction
ABox AG, in case that the CQ is Boolean. Avoiding such homomorphisms is
more complicated in the reduction of psa which leads us to a different TBox
extension that introduces inverse roles and thus results in an ELI-TBox. This
is unproblematic since, as in Section 3, the OMQ based on the extended TBox
is equivalent to the original OMQ.

First assume that q is Boolean and treeifiable. A role path between variables
x and y in q is a sequence of role names r1 · · · rn such that for distinct variables
x = x0, . . . , xn = y, q contains the atoms r1(x1, x2), . . . , rn(xn−1, xn). If q is
treeifiable, then there are only polynomially many role paths in qtree: the paths
that occur in qtree, the least constrained treeification of q defined in Section 2.
Let Cq denote the set of ELI-concepts of the form ∃r−n . · · · .∃r−1 .C where r1 · · · rn
is a (potentially empty) role path in qtree and C is > or a concept name from
q or a CQ from trees(q) viewed as an EL-concept. Extend T with C v AC ,
AC a fresh concept name, for all C ∈ Cq. Finally, normalize again. Clearly, the
number of concept inclusions added to T is polynomial in |q| and the resulting
OMQ is equivalent to the original one.

Now assume that q is not Boolean and treeifiable. Then unintended homo-
morphisms are ruled out automatically. To prepare for the complexity analysis
of the meta problems carried out in Section 7, however, we still carry out the
same modification that we have also used in Section 3: For every p ∈ trees(q),
view p as an EL-concept C and extend T with C v AC , AC a fresh concept
name.

The following lemma prepares for the use of the concepts Cq later on and
gives an idea of why we use this particular set of concepts.

Lemma 19. Let q ∈ conCQ be Boolean and treeifiable, I1, I2 tree-shaped inter-
pretations, and di ∈ ∆Ii for i ∈ {1, 2} such that d1 ∈ CI1 implies d2 ∈ CI2 for

27

all C ∈ Cq. If there is a homomorphism from q to I1 with d1 in its range, then
there is a homomorphism from q to I2 with d2 in its range.

If A is a pseudo tree-shaped ABox and b ∈ ind(A) has distance at least n
from the core, we define the ancestor path of b up to length n to be the unique
sequence r1r2 . . . rn of role names such that r1(b1, b2), r2(b2, b3), . . . rn(bn, b) ∈ A.

Definition 20. Let Q = (T ,Σ, q) ∈ (EL, conCQ). We say that Q has the ability
to simulate psa if there exist

• a pseudo tree-shaped Σ-ABox A of core size |q|,

• a tuple a from the core of A of length ar(q),

• a tree Ai in A with three distinguished non-core individuals b, c and d
from ind(Ai) where c and d are incomparable descendants of b and such
that b has distance at least |q| from the core and the individuals b, c and
d have pairwise distance at least |q| from each other and

• T -types t0 (t1,

such that

1. A, T |= q(a);

2. t1 = tpA,T (b) = tpA,T (c) = tpA,T (d);

3. Ab ∪ t0(b), T 6|= q(a);

4. tpAc∪t0(c),T (b) = tpAd∪t0(d),T (b) = t0,

5. if q is Boolean, then every homomorphism from q to UA,T is core close
and

6. if q is Boolean, then b, c and d have the same ancestor path up to length |q|.

We define Atarget := Ab, A∧ := Abcd and Asource := Ac.

With c and d being ‘incomparable’ descendants of b, we mean that neither d
is a descendant of c nor vice versa. To understand the essence of Definition 20,
it is worthwhile to consider the special case where q is an AQ A(x). In this
case, Q has the ability to simulate psa if there is a tree-shaped Σ-ABox A with
root a = a, three distinguished non-root individuals b, c, d ∈ ind(A), c and d
incomparable descendants of b, and T -types t0 (t1 such that Conditions (1)-
(4) of Definition 20 are satisfied. Condition (2) expresses that Asource produces
the type t1 and also that A∧ propagates this type further to its ‘output’ (b)
if both of its ‘inputs’ (c and d) receive the type t1. Condition (4) says that
replacing one of the inputs by t0 will change the output to t0, just as expected
in a logical AND-gate. Condition (3) says that the type t0 as input for Ttarget
is not sufficient to make the query true. All remaining parts of Definition 20
should be thought of as technical complications induced by replacing AQs with
CQs.

28

a

b

c

A
r

A
s

r d

A
r

A
s

s

r
A

s

r
A

s

A,B,B′

A,B,B′

A,B,B′

A,B,B′ A,B,B′

Figure 6: The ABox A displayed in black witnesses that the OMQ from Example 21 has
the ability to simulate PSA. The assertions in red are derived from A using T , showing that
t1 = tpA,T (b) = tpA,T (c) = tpA,T (d).

Example 21. Consider the OMQ Q = (T ,Σ, A(x)) where

T = {∃r.A v B, ∃s.A v B′, B uB′ v A} and Σ = {r, s, A}.

Figure 6 shows an ABox A that witnesses that Q has the ability to simulate
PSA, via the types t1 = {A,B,B′} and t0 = {B′}, and with a = a.

We next show that the ability to simulate psa is equivalent to unbounded
branching. As a preliminary, we give the following combinatorial lemma.

Lemma 22. Let T be a full binary tree of depth n ·k ·d whose nodes are colored
with n colors, k ≥ 0 and n, d ≥ 1. Then T has as a minor a monochromatic
full binary tree of depth k such that any two distinct nodes of the minor have
distance at least d from each other in T .

Now for the announced equivalence.

Proposition 23. Let Q ∈ (EL, conCQ). Then Q has the ability to simulate
psa iff Q is unboundedly branching.

Proof. We present the proof of the “⇐” direction here as this is the important
direction for showing that unbounded pathwidth implies PTime-hardness, the
main aim of this section. The proof of the“⇒” direction is in the appendix.

Assume that Q = (T ,Σ, q) ∈ (EL, conCQ) is not boundedly branching. Let
TP denote the set of all T -types and set m = 2|T |. Clearly, |TP| ≤ m. Set
k = m · 2m · |T ||q| · (mm + 1) · |q|. Since Q is not boundedly branching, we find
a Σ-ABox A ∈MQ and a tuple a from its core such that A, T |= q(a) and one
the trees Ai of A has the full binary tree of depth k as a minor. We show that
A and a can serve as the ABox and tuple in Definition 20, that is, as a witness
for Q having the ability to simulate psa.

To identify the distinguished individuals b, c, d, we use a suitable coloring of
the individuals of Ai and Lemma 22. In fact, we color every a ∈ ind(Ai) with
the color (tpA,T (a), Sa, r

a
1r
a
2 . . . r

a
|q|) where Sa = {t ∈ TP | Aa ∪ t(a), T |= q(a)}

and where ra1r
a
2 . . . r

a
|q| is the ancestor path of a up to length |q|. There are no

29

more than m·2m ·|T ||q| colors, so from Lemma 22 we know that A has as a minor
a monochromatic full binary tree T of depth mm+ 1 whose nodes have distance
at least |q| from each other. Let b be a child of the root of T (to make sure that
b has depth at least |q| from the core) and T ′ ⊆ T the subtree of T rooted at b,
so T ′ is a full binary tree of depth mm. We color every c ∈ T ′ with the function
fc : TP → TP that is defined by fc(t) = tpAc∪t(c),T (b). There are at most mm

such functions, so again by Lemma 22, there will be the monochromatic binary
tree of depth 1 as a minor. In particular, we find two incomparable individuals
c and d in T ′ that are colored with the same function. We show that we can find
types t1 and t0 such that with the distinguished nodes b, c, d, A and a satisfy
Conditions 1-6 from Definition 20.

Condition 1 is true by choice of A. Set t1 := tpA,T (b). Then Condition 2
is satisfied because b, c and d were colored with the same color by the first
coloring. For the same reason, Conditon 6 is fulfilled. Condition 5 follows from
Lemma 10.

To find t0, we define a sequence t′0, t
′
1, . . . of T -types where t′0 = ∅ and

t′i+1 = tpAc∪t′i(c),T (b). It is clear that t′i ⊆ t′i+1 for all i. Let t0 be the limit
of the sequence. Since c and d were colored with the same function fc = fd,
Condition 4 holds. It thus remains to argue that Condition 3 holds.

We show by induction on i that Ac ∪ t′i(c), T 6|= q(a) for all i ≥ 0. It is clear
that Ac ∪ t′0(c), T 6|= q(a) since A is minimal with A, T |= q(a). Now assume
that Ac∪t′i(c), T 6|= q(a) for some i. Then Ac∪t′i+1(b), T 6|= q(a). Since Sb = Sc
has been assured by the first coloring, we obtain Ac ∪ t′i+1(c), T 6|= q(a) which
completes the induction.

Thus Ac ∪ t0(c), T 6|= q(a) and using again that Sb = Sc, we obtain Condi-
tion 3.

To establish that unbounded pathwidth implies PTime-hardness, it remains
to show that the ability to simulate psa implies PTime-hardness.

Proposition 24. If Q ∈ (EL, conCQ) has the ability to simulate psa, then
eval(Q) is PTime-hard under FO reductions.

To prove Proposition 24, let Q = (T ,Σ, q) ∈ (EL, conCQ) have the ability
to simulate psa. Then there is a pseudo tree-shaped Σ-ABox A, a tuple a in its
core, distinguished individuals b, c and d, and types t0 (t1 as in Definition 20.
Fix such A,a, b, c, d, t0 and t1 for what follows. This gives rise to ABoxes Asource,
A∧ and Atarget as in Definition 20. We reduce psa to eval(Q).

Let G = (V,E, S, t) be an input for psa. We use (copies of) Asource, A∧ and
Atarget as building blocks to construct a Σ-ABox AG with a designated tuple
of individual names a such that AG |= Q(a) if and only if t is accessible in G.
We reserve an individual av for every node v ∈ V , to be used in AG along with
additional individuals. Define

AG :=
⋃
s∈S
Assource ∪

⋃
(u,v,w)∈E

Au,v,w∧ ∪ Attarget

where

30

• for every s ∈ S, Assource is a copy of Asource where c is renamed to as and
all other individuals are fresh;

• for every (u, v, w) ∈ E, Au,v,w∧ is a copy of A∧ where c is renamed to au,
d is renamed to av, b is renamed to aw and all other individuals are fresh;

• Attarget is a copy of Atarget where b is renamed to at, all individuals from a
retain their original name, and all other individuals are fresh.6

It can be verified that AG can be constructed from G using an FO-query,
see the comments given in Section 3. It thus remains to show the correctness of
the reduction.

Lemma 25. t is accessible in G iff AG |= Q(a).

The proof of Lemma 25 is similar to that of Lemma 15. We only give an
overview here and present details in the appendix. As for Lemma 15, the “⇒”
direction is relatively simply, relying only on monotonicity and three technical
properties of the component ABoxes Asource, A∧ and Atarget, made precise in
Lemma 46 in the appendix.

The heart of the proof is the “⇐” direction. As in the proof of Lemma 15,
we assume that t is not accessible in G, consider an ABox A′G ⊇ AG, and
prove that A′G 6|= Q(a). More precisely, A′G is assembled in a step-by-step
way by taking isomorphic copies of the ABoxes A+

s := Assource ∪ t1(as) for all
s ∈ S, A+

target := Attarget ∪ t0(at), and A+
u,v,w := Au,v,w∧ ∪ tacc(u)(au)∪ tacc(v)(av)∪

tacc(w)(aw) for all (u, v, w) ∈ E. We call these the components of A′G. We then
prove that each individual a in A′G realizes the same type as the individual
in the original component that it is a copy of, which essentially enables us to
apply the conditions from the ability to simulate PSA to the ABox A′G. We
then assume to the contrary of what is to be shown that A′G |= Q(ā) and take
a witnessing homomorphism h. Set indV = {av | v ∈ V }. Any two distinct
individuals from indV have distance at least |q| in A′G since the same is true for
the individuals b, c, d in A∧. Since q is connected, there can thus be at most
one such individual in the range of h. If there is no individual in the range
of h, than the range of h must fall within a single copy of a component. This
can be used to derive a contradiction against Condition 3 and 5 of the ability
to simulate PSA. It remains to deal with the case that the range of h contains
some av ∈ indV . We first show that, then, q is Boolean an treeifiable. We then
use h to construct a homomorphism h′ from q to UA,T with h(x̄) = ā, again
contradicting Condition 5 of the ability to simulate PSA. The construction of h′

is subtle and relies on the extension of T with inverse roles and on Condition 6
of the ability to simulate PSA.

4.2. Bounded Pathwidth Implies Linear Datalog Rewritability

We prove the equivalence (i) ⇔ (ii) from Theorem 17. Our proof works
even for OMQs from (ELI,CQ), that is, when inverse role are admitted in the

6As a consequence, all individuals from a are part of AG.

31

TBox and when the conjunctive queries are not necessarily connected. We thus
establish our result for this more general class of OMQs right away.

Proposition 26. Let Q = (T ,Σ, q) ∈ (ELI,CQ). Then Q has bounded path-
width if and only if Q is rewritable into linear Datalog. In the positive case,
there exists a linear Datalog program of width pw(Q) + ar(q).

Before proving Proposition 26, we give some additional preliminaries about
Datalog. Let Π be a Datalog program, A an ABox and a a tuple from ind(A).
A derivation of Π(a) in A is a labelled directed tree (V,E, `) where

1. `(x0) = goal(a) for x0 the root node;

2. for each x ∈ V with children y1, . . . , yk, k > 0, there is a rule S(y)← p(x)
in Π and a substitution σ of variables by individuals from A such that
`(x) = S(σy) and `(y1), . . . , `(yk) are exactly the facts in p(σx);

3. if x is a leaf, then `(x) ∈ A.

It is well known that A |= Π(a) iff there is a derivation of Π(a) in A.
We associate with each derivation D = (V,E, `) of Π(a) in A an ABox AD.

In fact, we first associate an instance Ax with every x ∈ V and then set AD :=
Ax0 for x0 the root of D. If x ∈ V is a leaf, then `(x) ∈ A and we set
Ax = {`(x)}. If x ∈ V has children y1, . . . , yk, k > 0, such that y1, . . . , y` are
non-leafs and y`+1, . . . , yk are leafs, then Ax is obtained by starting with the
assertions from `(y`+1), . . . , `(yk) and then adding a copy ofAyi , for 1 ≤ i ≤ `, in
which all individuals except those in `(x) are substituted with fresh individuals.

The following lemma is well known [40] and easy to verify.

Lemma 27. Let Π be a linear Datalog program and let D be a derivation of
Π(a) in A and Π of diameter d. Then

1. AD |= Π(a);

2. there is a homomorphism h from AD to A with h(a) = a;

3. AD has pathwidth at most d.

With this lemma, the “⇐” direction of Proposition 26 is easy to prove.
Assume that Q ∈ (ELI,CQ) is rewritable into a linear Datalog program Π.
Then pw(Q) is bounded from above by the diameter d of Π. In fact, take any
pair (A,a) such that A |= Q(a). Since Π is a linear Datalog rewriting of Q,
there exists a derivation of Π(a) in A. By Lemma 27, there exists an ABox AD
of pathwidth at most d such that AD |= Q(a) and a homomorphism from AD
to A that is the identity on a. Hence, Q has pathwidth at most d.

The rest of this section is concerned with proving the “⇒” direction of
Proposition 26. Assume that Q has bounded pathwidth, say pw(Q) = k. We
obtain a linear Datalog program in the following way. We encode pairs (A,a)
of an ABox A of pathwidth at most k and a tuple a from A as words over

32

a finite alphabet, where one symbol of the word encodes one bag of the path
decomposition of A. We then construct an alternating two-way automaton on
finite words that accepts precisely those words that encode a pair (A,a) such
thatA |= Q(a). Such an automaton can be transformed into a deterministic one-
way automaton that accepts the same language [50]. From the latter automaton,
we then construct the linear Datalog program that is equivalent to Q.

Derivation trees for AQs. It is well known that in ELI, entailment of AQs
can be characterized in terms of derivation trees [11]. Let T be an ELI-TBox
in normal form, A an ABox, a0 ∈ ind(A) and A0 ∈ NC. A derivation tree for
A0(a0) is a finite ind(A)× NC-labeled tree (T, `) such that

• `(ε) = (a0, A0);

• if `(x) = (a,A) and either A(a) ∈ A or > v A ∈ T , then x is a leaf;

• if `(x) = (a,A) and neither A(a) ∈ A or > v A ∈ T , then one of the
following holds:

– x has successors y1, . . . , yn with n ≥ 1 and `(yi) = (a,Ai) such that
T |= A1 u . . . uAn v A;

– x has a single successor y with `(y) = (b, B) such that T |= ∃r.B v A
and r(a, b) ∈ A, where r is a (possibly inverse) role.

For proving the correctness of the constructed automaton later on, we need
the following lemma, which is a special case of Lemma 29 in [11].

Lemma 28. Let T be an ELI-TBox in normal form, A an ABox, a ∈ ind(A)
and A ∈ NC. Then A, T |= A(a) if and only if there exists a derivation tree for
A(a).

Two-way alternating finite state automata. We introduce two-way alter-
nating finite state automata (2AFAs). For any set X, let B+(X) denote the
set of all positive Boolean formulas over X, i.e., formulas built using conjunc-
tion and disjunction over the elements of X used as propositional variables,
and where the special formulas true and false are admitted as well. A 2AFA is
a tuple A = (S,Γ, δ, s0), where S is a finite set of states, Γ a finite alphabet,
δ : S×(Γ∪{`,a})→ B+({left, right, stay}×S) the transition function and s0 ∈ S
the initial state. The two symbols ` and a are used as the left end marker and
right end marker, respectively, and it is required that δ(s,`) ∈ B+({right} × S)
and δ(s,a) ∈ B+({left} × S) for all s ∈ S so that the 2AFA can never leave the
space of the input word.

For an input word w = w1 . . . wn ∈ Γn, define w0 = ` and wn+1 = a. A
configuration is a pair (i, s) ∈ {0, . . . , n+ 1} × S. An accepting run of a 2AFA
A = (S,Γ, δ, s0) on w is a pair (T, r) that consists of a finite tree T and a labeling
r that assigns a configuration to every node in T such that

1. r(ε) = (1, s0), where ε is the root of T and

33

2. if m ∈ T , r(m) = (i, s), and δ(s, wi) = ϕ, then there is a (possibly
empty) set V ⊆ {left, right, stay}×S such that V (viewed as a propositional
valuation) satisfies ϕ and for every (left, s′) ∈ V there is a successor of m
in T labeled with (i − 1, s′), for every (right, s′) ∈ V there is a successor
of m in T labeled with (i + 1, s′) and for every (stay, s′) ∈ V there is a
successor of m in T labeled with (i, s′).

The language accepted by a 2AFA A, denoted by L(A), is the set of all words
w ∈ Γ∗ such that there is an accepting run of A on w. Note that there is no
set of final states, acceptance is implicit via the transition function δ by using
the formulas true and false. In particular, if there is a leaf labeled (i, s) in an
accepting run, then δ(s, wi) = true.

Construction of the 2AFA. Let Q = (T ,Σ, q) ∈ (ELI,CQ) with pw(Q) = k,
and let x = x1 · · ·xar(q) be the answer variables in q. We encode pairs (A,a)

with A a Σ-ABox of pathwidth at most k and a ∈ ind(A)ar(q) as words over a
suitable finite alphabet Γ. Reserve a set N ⊆ NI of 2k + 2 individual names.
Then Γ consists of all tuples (b,B, c, f), where

• B is a Σ-ABox with |ind(B)| ≤ k + 1 and ind(B) ⊆ N,

• b and c are tuples over ind(B) of arity at most k, and

• f is a partial function from x to ind(B).

Let (A,a) be a pair as described above with a = a1 · · · aar(q) and let V1, . . . , Vn be
a (j, k+1) path decomposition of A. We encode (A,a) by a word (b1,B1, c1, f1)
· · · (bn,Bn, cn, fn) from Γn, as follows:

• As B1, we use a copy of A|V1
that uses only individual names from N.

• For 1 < i ≤ n, Bi is a copy of A|Vi that uses the same individual names as
Bi−1 on ind(A|Vi−1

)∩ ind(A|Vi
) and otherwise only individual names from

N \ ind(Bi−1). Since bags have size at most k + 1, |N| = 2k + 2 individual
names suffice.

• b1 = cn is the empty tuple.

• For 1 < i ≤ n, bi−1 = ci is the tuple that contains every individual from
ind(Bi−1) ∩ ind(Bi) exactly once, ascending in some fixed order on N.

• For 1 ≤ i ≤ n, fi is defined as follows. If Vi contains a copy a′j of aj , then
fi(xj) = a′j ; otherwise fi(xj) is undefined.

It is easy to see that (A,a) can be recovered from w, and in particular a from f .
Note that different words over Γ might encode the same pair (A,a), for example
because we can choose different path decompositions, and there are words over
Γ that do not properly encode a pair (A,a). Neither of this is problematic for
the remaining proof.

We now construct a 2AFA A that accepts a word that encodes a pair (A,a)
if and only if A |= Q(a). The idea is that an accepting run of the automaton has

34

one main path on which it traverses the word from left to right, while guessing
a homomorphism h from q to UA,T with h(x) = a in a stepwise fashion. The
truth of all concept memberships in UA,T that are necessary to realize this
homomorphism is then checked by partial runs that branch off from the main
path.

We now describe the set S of states of A. For the main path, we use states
sgV,W where V ⊆ var(q), g : V → N is a partial function, and W is a subset

of the binary atoms in q. Informally, the meaning of the state sgV,W is that
the variables from V have already been mapped to individuals in bags seen
before, the binary atoms from W are already satisfied via this mapping, and g
describes how variables are mapped to individuals that are in the intersection
of the previous and the current bag. The initial state of A is sg∅,∅ with g the
empty map. We also use states saA that make sure that the concept name A can
be derived at a ∈ N.

We have to take care of the fact that a homomorphism from q to UA,T can
map existentially quantified variables to anonymous individuals, which are not
explicitly represented in the input word. Let B be a Σ-ABox. A partial q-
match in B is a partial function h : var(q)→ ind(B)×{named, anon} such that if
x, y ∈ dom(h), r(x, y) ∈ q and h2(x) = h2(y) = named, then r(h1(x), h1(y)) ∈ B,
where h1 and h2 are the projections of h to the first and second component,
respectively. Informally, a partial q-match h partially describes a homomor-
phism g from q to UB,T where h(x) = (a, named) means that g(x) = a and
h(x) = (a, anon) means that g(x) is some element in the subtree below a gen-
erated by the chase. Whether a part of the query can map into the anonymous
part below some individual a only depends on the type realized at a. Define
a relation R ⊆ TP × 2var(q) × 2var(q) by putting (t, V1, V2) ∈ R if and only if
V1 ⊆ V2, V2 ∩ x ⊆ V1 and there is a homomorphism from q|V2

to the universal
model of the ABox {A(a) | A ∈ t} and T that maps precisely the variables from
V1 to the root of the (tree-shaped) universal model.

An explanation set for a partial q-match h : var(q)→ ind(B)×{named, anon}
is a set Z of concept assertions that uses only individuals from ind(B) and
satisfies the following conditions:

1. if h(x) = (a, named), then B ∪ Z, T |= A(h(x)) for all A(x) ∈ q and

2. if h(x) = (a, anon), then ({A | A(a) ∈ Z}, h−1(a, named), h−1
1 (a)) ∈ R.

Next, we describe the transition function δ. The following transitions are used
for the main branch of automata runs:

δ(sgV,W , (b,B, c, f)) =
∨
h∈H

(right, sghVh,Wh
) ∧

∨
Z∈Zh

 ∧
A(a)∈Z

(stay, saA)

where H is the set of all partial q-matches h for B such that dom(g) ⊆ dom(h),
h1 and g agree on the intersection of their domains, and so do h1 and f , and
where

35

• gh is h1 restricted to answer variables xi with h1(xi) in c,

• Vh = V ∪ dom(h),

• V ∩ dom(h) = dom(g),

• Wh is the union of W and all binary atoms from q that only use variables
from h, and

• Zh is the set of all explanation sets for h.

When the automaton reads the right end marker a and is in a state signifying
that a complete homomorphism from q to UA,T has been found, then we accept
the input using the transition δ(sgV,W ,a) = true where V = var(q), W is the set
of all binary atoms of q, and g is the empty map.

The following transitions are used to verify the required concept member-
ships by checking for the existence of a suitable derivation tree (Lemma 28).
Consider a state saA and a symbol (b,B, c, f) such that a ∈ ind(B). If A(a) ∈ B,
we set δ(saA, (b,B, c, f)) = true. If a appears neither in b nor in c:

δ(saA, (b,B, c, f)) =
∨
Z

B∪Z,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

If a appears in b but not in c:

δ(saA, (b,B, c, f)) = (left, saA) ∨
∨
Z

B∪Z,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

If a appears in c but not in b:

δ(saA, (b,B, c, f)) = (right, saA) ∨
∨
Z

B∪Z,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

If i appears in both b and c:

δ(saA, (b,B, c, f)) = (left, saA) ∨ (right, saA) ∨
∨
Z

B∪Z,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

Set δ(·, ·) = false for all pairs from S × Γ that were not mentioned.

The automaton is now defined as A = (S,Γ, δ, s0).

Lemma 29. Let A be an ABox of pathwidth at most k, a ∈ ind(A)ar(q), and
w ∈ Γ∗ a word that encodes (A,a). Then A |= Q(a) if and only if w ∈ L(A).

Construction of the linear Datalog program. Since every 2AFA can
be transformed into an equivalent deterministic finite automaton (DFA) [50],
Lemma 29 also ensures the existence of a DFA A = (Q,Σ, δ, s0, F) that accepts

36

a word that encodes a pair (A,a) if and only if A |= Q(a). We use A to construct
the desired linear Datalog rewriting of Q.

The idea for the program is to guess a tuple a ∈ ind(A)ar(q) up front and
then verify that A |= Q(a) by simulating A. The program uses the states of A
as IDBs. Each of these IDBs can appear in any arity between ar(q) and ar(q)+k
with k the pathwidth of Q—technically, this means that we have k+ 1 different
IDBs for every state, but we use the same symbol for all of them since the arity
will always be clear from the context. The first ar(q) components of each IDB
are used to store the tuple a while the other components are used to store the
individuals that occur in both of two consecutive bags of a path decomposition
of A.

Start rules: Given the ABox A, the program starts by guessing a tuple a ∈
ind(A)ar(q) using the following rule:

s0(x1, . . . , xn)← >(x1) ∧ >(x2) ∧ · · · ∧ >(xn).

Transition rules: Consider any transition δ(s1, (b,B, c, f)) = s2. Let ϕB be B
viewed as a conjunction of atoms with individual names viewed as variables
and let x′ be obtained from x by replacing every variable xi ∈ dom(f) by the
individual name f(xi) ∈ ind(B), also here viewed as a variable. We then include
the following rule:

s2(x′, c)← s1(x′,b) ∧ ϕB.

This rule says that if the DFA is in state s1, the intersection between the last
bag and the current bag is b, and we see a homomorphic image of B, then the
DFA can transition into state s2 and remember the tuple c. Applying such a
rule leaves the tuple a stored in the first ar(q) components unchanged, but some
of the variables in x′ can appear in ϕB to enforce that a is compatible with
the mapping of the answer variables that is prescribed by f and used in the
simulated run of A.

Goal rules: If s ∈ F , then include the following rule:

goal(x)← s(x).

Lemma 30. Π is a rewriting of Q.

Proof. Let A be a Σ-ABox and let a ∈ ind(A)ar(q). First assume that A |=
Q(a). Since Q is of pathwidth k, there must be a Σ-ABox A′ of pathwidth at
most k such that A′ |= Q(a) and there is a homomorphism from A′ to A that
is the identity on a. Let w = w1 . . . wn ∈ Γ∗ encode the pair (A′,a) where
wi = (bi,Bi, ci, fi). By Lemma 29, w ∈ L(A), so there is an accepting run of
A on w and thus we find states s0, . . . , sn of A such that δ(si, wi) = si+1 for
0 ≤ i < n and sn is an accepting state. This yields a derivation of Π(a) in A′,
as follows. First, use the start rule to derive s0(a). For the next n steps, use
the rule introduced for the transitions δ(si, wi) = si+1. In this way, we derive
sn(a) since the individuals in the first ar(q) components do not change when
using the transition rules. Because sn ∈ F , a goal rule can be applied to derive

37

goal(a) and thus A′ |= Π(a). It is well known that answers to Datalog programs
are preserved under ABox homomorphisms [40] and there is a homomorphism
from A′ to A that is the identity on a, we obtain A |= Π(a) as desired.

For the converse direction, assume thatA |= Π(a). Then there is a derivation
D of Π(a) in A. Since Π is of diameter at most k, AD has pathwidth at
most k. Consider the encoding of (AD,a) as a word w ∈ Γ∗, based on the
path decomposition induced by D in the obvious way. By construction of Π,
D must use a start rule for a, then a number of transition rules, and then a
goal rule. Using the way in which these rules are constructed, it can be verified
that this yields an accepting run of A on w. Thus AD |= Q(a). It remains
to recall that there is a homomorphism from AD to A that is the identity
on a, and that answers to OMQs from (ELI,CQ) are preserved under ABox
homomorphisms [3].

5. The Trichotomy for Disconnected CQs

We now lift the trichotomy result that is provided by Theorems 9 and 17
from connected CQs to unrestricted CQs. To achieve this, we show that the
complexity of an OMQ Q = (T ,Σ, q) with q a disconnected CQ is precisely
the complexity of the hardest OMQ (T ,Σ, q′) with q′ a maximal connected
component (MCC) of q, provided that we first have removed redundant MCCs
from q.

Let Q = (T ,Σ, q) ∈ (EL,CQ). We say that Q is empty if A 6|= Q(a) for all
Σ-ABoxes A and tuples a. Every empty OMQ is trivially FO-rewritable. An
MCC of q is Boolean if it contains no answer variables. We call Q redundant if
there is a Boolean MCC of q such that the OMQ obtained from Q by dropping
that MCC from q is equivalent to Q. For proving the intended trichotomy result,
it is clearly sufficient to consider OMQs that are non-empty and non-redundant.
We first lift the dichotomy between AC0 and NL.

Theorem 31. Let Q ∈ (EL,CQ). Then either

1. Q is FO-rewritable and thus eval(Q) is in AC0 or

2. Q is not FO-rewritable and eval(Q) is NL-hard under FO reductions.

Proof. Let Q = (T ,Σ, q) ∈ (EL,CQ) be non-redundant and non-empty and let
q1(x1), . . . , qn(xn) be the MCCs of q(x).

If every OMQ Qi = (T ,Σ, qi) is FO-rewritable, then the conjunction of
all these FO-rewritings is an FO-rewriting of Q. It thus suffices to show that
otherwise, Q is NL-hard. Thus assume that some Qi is not FO-rewritable. Since
qi is connected, eval(Qi) is NL-hard under FO reductions by Theorem 9. We
prove that eval(Q) is NL-hard under FO reductions by giving an FO reduction
from eval(Qi). Let Ai be a Σ-ABox and ai a tuple from ind(Ai)ar(qi). Since Q
is non-empty and non-redundant, for every j 6= i we find a Σ-ABox Aj and a
tuple aj such that

38

1. Aj , T |= qj(aj) and

2. if qi is Boolean, then Aj , T 6|= qi.

Define A to be the disjoint union of A1, . . . ,An and a = a1 · · ·an. Clearly, A
and a can be defined by an FO-query, so this is an FO reduction.

We have to show that Ai |= Qi(ai) iff A |= Q(a). The “⇒” direction is clear
by construction of A and a. For “⇐”, assume that A |= Q(a). This implies
A |= Qi(ai), so there is a homomorphism h from qi to UA,T with h(xi) = ai.
The universal model UA,T is the disjoint union of the universal models UAj ,T ,
1 ≤ j ≤ n. Since qi is connected, the range of h lies completely inside one of
the UAj ,T . In fact, it must lie in UAi,T . If qi is not Boolean, this is the case
because h(xi) = ai is a tuple from Ai. If qi is Boolean, then this follows from
Aj , T 6|= qi which implies UAj ,T 6|= qi. We have thus shown that UAi,T |= qi(ai),
implying Ai |= Qi(ai) by Lemma 2, as desired. We have shown that (T ,Σ, q)
is NL-hard. It follows that (T ,Σ, q) is not FO-rewritable [46].

To lift the dichotomy between NL and PTime including the equivalence of
NL and linear Datalog rewritability, we first give a helpful lemma about linear
Datalog programs.

Lemma 32. Let Π1, . . . ,Πn be linear Datalog programs. Then there exists a
linear Datalog program Π of arity Σni=1ar(Πi) such that for all ABoxes A and
tuples a1, . . . ,an,

A |= Πi(ai) for 1 ≤ i ≤ n iff A |= Π(a1, . . . ,an) .

Proof. It suffices to give a construction for the case n = 2 as the general case
then follows by repeatedly applying the construction. So let Π1, Π2 be linear
Datalog programs. We assume w.l.o.g. that Π1 and Π2 use disjoint sets of
variables. The idea to define Π is to use IDB relations (S1, S2), with Si an IDB
relation from Πi for i ∈ {1, 2}, where the arity of (S1, S2) is the sum of the arities
of S1 and S2. Π is then built so that a derivation of Π simulates derivations
of both Π1 and Π2 by doing the first derivation step simultaneously and then
alternating between the two derivations. While doing a step of one derivation,
the ‘state’ of the other derivation is stored in the extended IDB relations. More
precisely, we define program Π to contain the following rules:

• for all rule Si(xi) ← ϕi(xi,yi) ∈ Πi, i ∈ {1, 2}, such that neither ϕ1 not
ϕ2 contains an IDB relation, the rule

(S1, S2)(x1,x2)← ϕ1(x1,y1) ∧ ϕ2(x2,y2);

• for each rule S1(x1)← ϕ(x1,y1) ∈ Π1 where ϕ contains IDB atom S′1(z1)
and each IDB relation S2 from Π2, the rule

(S1, S2)(x1, z2)← ϕ′(x1,y1, z2)

where x2 is a tuple of fresh variables and ϕ′ can be obtained from ϕ
by replacing atom S′1(z1) with atom (S′1, S2)(z1, z2), z2 a tuple of fresh
variables;

39

• the same rules as in the previous item, with the roles of Π1 and Π2

swapped;

• the rule
goal(x1,x2)← (goal, goal)(x1,x2).

It can be verified that A |= Π(a1,a2) iff both A |= Π1(a1) and A |= Π2(a2), for
all Σ-ABoxes A and tuples a1, a2.

Theorem 33. Let Q ∈ (EL,CQ). The following are equivalent (assuming
NL 6= PTime):

1. Q has bounded pathwidth;

2. Q is linear Datalog rewritable;

3. eval(Q) is in NL.

If these conditions do not hold, then eval(Q) is PTime-hard under FO reduc-
tions.

Proof. The equivalence of (1) and (2) has been shown in Proposition 26 and the
implication (2) ⇒ (3) is clear. To finish the proof, we show that if (2) does not
hold, then eval(Q) is PTime-hard, proving the implication (3) ⇒ (2) as well
as the last sentence of the theorem.

Let Q = (T ,Σ, q) ∈ (EL,CQ) and assume that Q is not rewritable into linear
Datalog. As before, we can assume Q to be non-empty non-redundant. Let
q1(x1), . . . , qn(xn) be the connected components of q(x). By Theorem 17, every
OMQ Qi = (T ,Σ, qi) is either rewritable into linear Datalog or PTime-hard.
By Lemma 32, every (T ,Σ, qi) being rewritable into linear Datalog implies that
also (T ,Σ, q) is linear Datalog rewritable. Since this is not the case, there must
be some Qi that is not rewritable into linear Datalog and thus PTime-hard.

It is now possible to show PTime-hardness of eval(Q) by an FO reduction
from eval(Qi), exactly as in the proof of Theorem 31.

Remark. Recall that we are working with CQs that do not admit equality
throughout this paper. However, the trichotomy result established in this
section can easily be generalized to (EL,CQ=) where CQ= denotes the class
of CQs with equality. This is due to the observation that for every OMQ
Q ∈ (EL,CQ=), there is an OMQ Q′ ∈ (EL,CQ) such that there is an FO reduc-
tion from eval(Q) to eval(Q′) and vice versa. Let Q = (T ,Σ, q) ∈ (EL,CQ=).
To construct Q′, we simply eliminate the equality atoms in q by identifying vari-
ables, ending up with a CQ q′ without equality atoms that might have lower
arity than q. It is easy to see that the required FO reductions exist, which es-
sentially consist of dropping resp. duplicating components from answer tuples.

40

6. Width Hierarchy for Linear Datalog Rewritability

The width of the linear Datalog rewritings constructed in Section 4 depends
on pw(Q), so if Q has high pathwidth, then we end up with a linear Datalog
rewriting of high width. We aim to show that this is unavoidable, that is, there
is no constant bound on the width of linear Datalog rewritings of OMQs from
(EL,CQ) and in fact not even from (EL,AQ). It is interesting to contrast this
with the fact that every OMQ from (EL,CQ) can be rewritten into a monadic
(non-linear) Datalog program [5]. Our result strengthens a result by [22] who
establish an analogous statement for CSPs. This does not imply our result:
While every OMQ from (EL,AQ) is equivalent to a CSP up to complementa-
tion [3], the converse is false and indeed the CSPs used by Dalmau and Krokhin
are not equivalent to an OMQ from (EL,AQ). Our main aim is to prove the
following.

Theorem 34. For every k > 0, there is an OMQ Qk ∈ (EL,AQ) that is
rewritable into linear Datalog, but not into a linear Datalog program of width k.

When constructing the OMQs Q1, Q2, . . . for Theorem 34, we would like
the ABoxes in MQk

to contain more and more branching for increasing values
of k. Note that since we only work with (EL,AQ),MQk

consists of tree-shaped
ABoxes rather than of pseudo tree-shaped ones. Intuitively, if the ABoxes from
MQk

branch a lot, then a linear Datalog rewriting of Qk needs large width to
simultaneously collect information about many different branches. However, we
want Qk to be linear Datalog rewritable so by Proposition 18 there must be
a constant upper bound on the branching of the ABoxes from MQk

, for each
k ≥ 1. We thus construct Qk such that the branching number br(A) of A is at
least k for all A ∈MQk

while for every n ≥ k,MQk
contains an ABox Ank that

takes the form of a tree of outdegree 2 and of depth n such that br(Ank) = k
and Ank has the maximum number of leaves that any such ABox can have. To
make the latter more precise, let `kd(n) denote the maximum number of leaves
in any tree that has degree d, depth n, and does not have the full binary tree
of depth k + 1 as a minor, d, k, n ≥ 0. We then want Ank to have exactly `k2(n)
leaves, which ensures that it is maximally branching.

We now construct Qk. For every k ≥ 1, let Qk = (Tk,Σ, Ak(x)) where
Σ = {r, s, t, u} and

Tk = {> v A0}∪
{∃x.Ai v Bx,i | x ∈ {r, s, t, u}, 0 ≤ i ≤ k − 1}∪
{∃x.Bx,i v Bx,i | x ∈ {r, s, t, u}, 0 ≤ i ≤ k − 1}∪
{Br,i uBs,i v Ai+1 | 0 ≤ i ≤ k − 1}∪
{Bt,i uBu,i+1 v Ai+1 | 0 ≤ i ≤ k − 1}.

Each concept name Ai represents the existence of a full binary tree of depth i,
that is, if Ai is derived at the root of a tree-shaped Σ-ABox A, then A contains
the full binary tree of depth i as a minor. The concept inclusions ∃x.Bx,i v Bx,i

41

r s

r

r s

s

u

r s

u t

t

u

r s

u t

u t

t

Figure 7: The ABox A4
2, which has depth 4, branching number 2 and lies in MQ2

. Since
4 > 2, A4

2 is composed of one copy of A3
2 and one copy of A3

1 and a new tu-individual as root.
This ABox has 11 leaves, which is the largest number of leaves that a binary tree of depth 4
can have, unless it contains the full binary tree of depth 3 as a minor.

in Tk ensure that Qk is closed under subdivisions of ABoxes, that is, if A ∈MQk

and A′ is obtained from A by subdividing an edge into a path (using the same
role name as the original edge), then A |= Qk(a) if and only if A′ |= Qk(a)
for all a ∈ ind(A). Informally spoken, subdivision will allow us to assume that
every (connected) rule body in a linear Datalog rewriting can only ‘see’ a single
branching.

To provide a better understanding of the four role names used, we now ex-
plicitly define the ABoxes Ank mentioned above. We refer to non-leaf individuals
by the combination of role names of their outgoing edges, e.g. an rs-individual
is an individual that has one outgoing r-edge, one outgoing s-edge and no other
outgoing edges. Let 1 ≤ k ≤ n.

• If k = n, then Ank is the full binary tree of depth n, where every non-leaf
is an rs-individual.

• If k < n, then Ank consists of a root that is a tu-individual where the
t-successor is the root of a copy of An−1

k−1 and the u-successor is the root

of a copy of An−1
k . Here, for consistency, we define An0 := ∅.

As an example, Figure 7 shows A4
2.

The following lemma states some basic properties of the ABoxes Ank and the
OMQs Qk. All three points are proved by induction on n.

Lemma 35. For all 1 ≤ k ≤ n,

1. Ank ∈MQk
;

2. br(Ank) = k;

3. Ank has exactly `k2(n) leaves.

The following lemma establishes the first part of Theorem 34.

Lemma 36. For every k ≥ 1, Qk is rewritable into linear Datalog.

42

To prove Lemma 36, we show that br(Qk) = k, which by Proposition 18
implies that Qk has bounded pathwidth which by Theorem 17 implies that Qk
is rewritable into linear Datalog. The proof that br(Qk) = k relies on a careful
analysis of the types tpA,Tk(a) for ABoxesA ∈MQk

. Note that Tk |= Ai v Ai−1

and Tk |= Bx,i v Bx,i−1 for 1 ≤ i ≤ k and all x ∈ {r, s, t, u}. An important
obervation is that for all a ∈ ind(A), br(Aa) = i if and only if i is the largest
integer such that Ai ∈ tpA,Tk(a).

The proof of the second part of Theorem 34 relies on an estimate of `kd(n),
namely on the fact that `kd(n) as a function of n grows like a polynomial of
degree k. This is established by the following lemma.

Lemma 37. (d− 1)k(n− k)k ≤ `kd(n) ≤ (k + 1)(d− 1)knk for all d, k ≥ 0 and
n ≥ 2k.

To show that linear Datalog rewritings of the family of OMQs Qk require
unbounded width, we first show that they require unbounded diameter and
then proceed by proving that the width of rewritings cannot be significantly
smaller than the required diameter. More precisely, we show the former on an
infinite family C0,C1, . . . of classes of ABoxes of restricted shape. Trivially, if
linear Datalog rewritings require unbounded diameter on any restricted class of
ABoxes, then they also require unbounded diameter on the class of all ABoxes.
For all m ≥ 0, we choose Cm to be the class of all forest-shaped Σ-ABoxes in
which the distance between any two branching individuals exceeds m, where a
forest is a disjoint union of trees and a branching individual is one that has at
least two successors. Since the queries Qk are closed under subdivisions of edges
in ABoxes and by Point 1 of Lemma 35, for all m,n, k ≥ 1 with k ≤ n we can
find an ABox inMQk

∩Cm that can be obtained from Ank by subdividing edges.
The concrete choice of C0,C1, . . . helps to achieve the second step that relates
the width and diameter of linear Datalog rewritings. We give more details later
on.

The idea for proving that any linear Datalog rewriting of Qk requires high
diameter is then as follows. We assume to the contrary that there is a constant
c such that for every OMQ Qk, there is a linear Datalog rewriting Πk of Qk
of diameter c. Then consider the derivation D of Πk(a) in some ABox Ank
with root a, where n and k > c are chosen to be sufficently large. Recall from
Section 4.2 that each derivation D gives rise to an ABox AD, and that the
pathwidth of AD is bounded by the diameter c of Π. We use a careful analysis
to show that then AD contains as a subset a tree-shaped ABox of depth n that
has as many leaves as Ank and thus by Lemma 37 contains as a minor a full
binary tree of depth k when n is chosen sufficiently large. When k is chosen
large enough, this implies that AD has pathwidth larger then c, which is a
contradiction.

Proposition 38. Let m ≥ 0. For all k ≥ 1, Q2k+3 is not rewritable into a
linear Datalog program of diameter k on the class of ABoxes Cm.

We are now ready to show that the width of linear Datalog rewritings of the
OMQs Qk must increase with k. The idea is as follows. Assume to the contrary

43

that there is a constant c such that for every OMQ Qk, there is a linear Datalog
rewriting Πk of Qk of width c. Choose k large enough and consider Πk as a
rewriting of Qk on the class of ABoxes Cm, m the diameter of Πk. Since the
distance between any two branching individuals in Cm exceeds the diameter
of Πk, every connected component of a rule body in Πk can ‘see’ only a single
branching individual in every ABox from Cm. This allows us to modify Πk

into a linear Datalog rewriting Π′k of Qk on Cm (but not on the class of all Σ-
ABoxes) that has a small diameter and thus contradicts Proposition 38. Each
rule body being able to see only a single branching individual is crucial here
since branching forces us to increase the width when making the diameter of
rule bodies smaller. The modification is in three steps. In the first step, we
normalize the shape of rule bodies so that they take the form of a forest with
at most one branching point (exploiting that we work on Cm). In the second
step, we bound the number of disconnected components in the rule body, and
in the third step we actually bound the diameter by replacing each rule with
a collection of rules. Note that the class Cm consists of ABoxes that take the
shape of forests rather than trees to deal with disconnected rule bodies in Πk.
Clearly, the following implies the second part of Theorem 34.

Proposition 39. Let ` ≥ 1. Q8`+13 is not rewritable into a linear Datalog
program of width `.

7. Decidability and Complexity

We study the meta problems that emerge from the results in the previous
sections such as deciding whether a given OMQ is in NL, PTime-hard, or
rewritable into linear Datalog. We show that all these problems are ExpTime-
complete. Apart from applying and adapting known lower and upper bounds,
the central ingredient is giving a single exponential time decision procedure for
deciding whether an OMQ from (EL, conCQ) has the ability to simulate psa.
We start with lower bounds, which hold already for (EL,AQ).

Theorem 40. The following problems are ExpTime-hard: given an OMQ Q ∈
(EL,AQ),

(1) is Q FO-rewritable?

(2) is Q rewritable into linear Datalog?

(3) is eval(Q) ∈ AC0?

(4) is eval(Q) ∈ NL? (unless NL = PTime)

(5) is eval(Q) NL-hard?

(6) is eval(Q) PTime-hard?

44

Proof. ExpTime-hardness of (1) is proved in (the appendix of) [11]. By our
Theorem 31, (1) and (3) are equivalent, so (3) is also ExpTime-hard.

For (2), (4), (5) and (6), we analyse the mentioned hardness proof from [11] a
little closer. The proof is by a reduction from the word problem of a polynomially
space bounded alternating Turing machine (ATM) M that solves an ExpTime-
complete problem. The reduction exhibits a polynomial time algorithm that
constructs, given an input w to M , an OMQ Q = (T ,Σ, B(x)) ∈ (EL,AQ) such
that Q is not FO-rewritable if and only if M accepts w. A careful inspection of
the construction of Q and of the “⇐” part of the proof reveals that

(∗) if M accepts w, then Q is unboundedly branching, thus (by Proposition 18
and Theorem 33) not linear Datalog rewritable, PTime-hard, NL-hard
and not in NL (unless NL = PTime).

If M does not accept w, then FO-rewritability of Q implies that Q is

• in AC0 and thus in NL and neither NL-hard nor PTime-hard;

• linear Datalog rewritable (since every FO-rewritable OMQ from (EL,AQ)
is rewritable into a UCQ [11]).

The stated hardness results for (2), (4), (5) and (6) follow.

The following theorem summarizes the corresponding upper bounds.

Theorem 41. The following problems can be decided in ExpTime: given an
OMQ Q ∈ (EL,CQ),

(1) is Q FO-rewritable?

(2) is Q rewritable into linear Datalog?

(3) is eval(Q) ∈ AC0?

(4) is eval(Q) ∈ NL? (unless NL = PTime)

(5) is eval(Q) NL-hard?

(6) is eval(Q) PTime-hard? (unless NL = PTime)

In [18], it was shown that (1) is in ExpTime. By Theorem 31, the same
algorithm decides (3) and (5). By Theorem 33, the remaining (2), (4) and (6)
come down to a single decision problem. We may thus choose to concentrate
on deciding (6). We first argue that it suffices to decide (6) for OMQs from
(EL, conCQ), that is, to restrict our attention to connected CQs.

Let Q = (T ,Σ, q) ∈ (EL,CQ). To decide whether eval(Q) is PTime-hard
(unless NL = PTime), we can first check whether Q is empty. This can be done
in ExpTime [18] and an empty OMQ is clearly not PTime-hard. Otherwise,
we make Q non-redundant (see Section 5) by exhaustively removing Boolean
MCCs that cause non-redundancy. This can also be done in exponential time
since containment of OMQs from (EL,CQ) is in ExpTime [18]. The resulting

45

OMQ Q′ = (T ,Σ, q′) is equivalent to Q and as seen in the proof of Theorem 33,
eval(Q′) is PTime-hard if and only if there is an MCC q′i of q′ such that
(T ,Σ, q′i) ∈ (EL, conCQ) is PTime-hard.

It thus remains to show how (6) can be decided in ExpTime for OMQs
Q ∈ (EL, conCQ). For such Q, it follows from Propositions 18, 23, 24, and 26
and Theorem 17 that (6) is equivalent to deciding whether Q has the ability to
simulate psa.

In the remainder of this section, we reduce the question whether a given
OMQ Q ∈ (EL, conCQ) has the ability to simulate psa to the (non-)emptiness
problem of two-way alternating parity tree automata (TWAPA), which is Ex-
pTime-complete. In fact, we construct a TWAPA that accepts precisely those
(encodings of) pseudo tree-shaped ABoxes that witness the ability to simulate
psa and then check non-emptiness.

Two-way alternating parity tree automata (TWAPA). A tree is a non-
empty (and potentially infinite) set T ⊆ N∗ closed under prefixes. We say that
T is m-ary if T ⊆ {1, . . . ,m}∗. For an alphabet Γ, a Γ-labeled tree is a pair
(T, L) with T a tree and L : T → Γ a node labeling function.

For any set X, let B+(X) denote the set of all positive Boolean formulas
over X, i.e., formulas built using conjunction and disjunction over the elements
of X used as propositional variables, and where the special formulas true and
false are allowed as well. An infinite path P of a tree T is a prefix-closed set
P ⊆ T such that for every i ≥ 0, there is a unique x ∈ P with |x| = i.

Definition 42 (TWAPA). A two-way alternating parity automaton (TWAPA)
on finite m-ary trees is a tuple A = (S,Γ, δ, s0, c) where S is a finite set of states,
Γ is a finite alphabet, δ : S × Γ → B+(tran(A)) is the transition function with
tran(A) = {〈i〉s, [i]s | −1 ≤ i ≤ m and s ∈ S} the set of transitions of A, s0 ∈ S
is the initial state, and c : S → N is the parity condition that assigns to each
state a priority.

A TWAPA with alphabet Γ accepts a set of Γ-labeled trees. Intuitively, a
transition 〈i〉s with i > 0 means that a copy of the automaton in state s is sent to
the i-th successor of the current node, which is then required to exist. Similarly,
〈0〉s means that the automaton stays at the current node and switches to state
s, and 〈−1〉s indicates moving to the predecessor of the current node, which is
then required to exist. Transitions [i]s mean that a copy of the automaton in
state s is sent on the relevant successor if that successor exists (which is not
required).

Definition 43 (Run, Acceptance). Let A = (S,Γ, δ, s0, c) be a TWAPA and
(T, L) a finite Γ-labeled tree. A configuration is a pair from T × S. A run of A
on (T, L) from the configuration γ is a T × S-labeled tree (Tr, r) such that the
following conditions are satisfied:

1. r(ε) = γ;

2. if y ∈ Tr, r(y) = (x, s), and δ(s, L(x)) = ϕ, then there is a (possibly
empty) set S ⊆ tran(A) such that S (viewed as a propositional valuation)
satisfies ϕ as well as the following conditions:

46

(a) if 〈i〉s′ ∈ S, then x · i ∈ T and there is a node y · j ∈ Tr such that
r(y · j) = (x · i, s′);

(b) if [i]s′ ∈ S and x · i ∈ T , then there is a node y · j ∈ Tr such that
r(y · j) = (x · i, s′).

We say that (Tr, r) is accepting if on all infinite paths of Tr, the maximum
priority that appears infinitely often on this path is even. A finite Γ-labeled
tree (T, L) is accepted by A if there is an accepting run of A on (T, L) from the
configuration (ε, s0). We use L(A) to denote the set of all finite Γ-labeled tree
accepted by A.

It is known (and easy to see) that TWAPAs are closed under complemen-
tation and intersection, and that these constructions involve only a polynomial
blowup [51]. In particular, complementation boils down to dualizing the transi-
tions and increasing all priorities by one. It is also known that their emptiness
problem can be solved in time single exponential in the number of states and
highest occurring priority, and polynomial in all other components of the au-
tomaton [52]. In what follows, we shall generally only explicitly analyze the
number of states of a TWAPA, but only implicitly take care that all other com-
ponents are of the allowed size for the complexity result that we aim to obtain.

Encoding pseudo tree-shaped ABoxes. To check the ability to simulate
psa using TWAPAs, we build one TWAPA At0,t1 for every pair (t0, t1) of T -
types. An input tree for the TWAPA encodes a tuple (A,a, b, c, d) of a pseudo
tree-shaped ABox A of core size at most |q|, a tuple a from the core and three
distinguished individuals b, c and d. The TWAPA At0,t1 should accept a tree
that encodes (A,a, b, c, d) if and only if t0, t1,A,a, b, c and d witness the ability
to simulate psa according to Definition 20. The ExpTime decision procedure
is obtained by checking whether at least one of the (exponentially many) At0,t1
accepts a non-empty language.

We encode tuples (A,a, b, c, d) as finite (|T | · |q|)-ary Γε ∪ ΓN -labeled trees,
where Γε is the alphabet used for labeling the root node and ΓN is for non-
root nodes. These alphabets are different because the root of a tree encodes the
entire core of a pseudo tree-shaped ABox whereas each non-root node represents
a single non-core individual.

Let Ccore ⊆ NI be a fixed set of size |q|. Define Γε to be the set of all tuples
(B,a), where B is a Σ-ABox that only uses individual names from Ccore and a
a tuple of length ar(q) from ind(B). Let ROL be the set of roles that appear in
T or Σ and let CN be the set of all concept names that appear in T or Σ. Let
S = ROL∪CN∪Ccore ∪ {b, c, d}. The alphabet ΓN is defined to be the set of all
subsets of S that contain exactly one element from ROL, at most one element
from Ccore and at most one element of {b, c, d}. We call a (Γε ∪ΓN)-labeled tree
(T, L) proper if

• L(ε) ∈ Γε and L(x) ∈ ΓN for all x 6= ε,

• L(x) contains an element of Ccore if and only if x is a child of ε; moreover,
any such element must occur in ind(L(ε));

47

• there is exactly one node xb ∈ T with b ∈ L(xb), exactly one node xc ∈ T
with c ∈ L(xc) and exactly one node xd ∈ T with d ∈ L(xd),

• the nodes xc and xd are incomparable descendants of xb,

• the nodes ε, xb, xc and xd have pairwise distance more than |q| from each
other.

A proper tree (T, L) encodes a tuple (A,a, b, c, d) in the following way. If L(ε) =
(B,a), then

A = B ∪ {A(x) | A ∈ L(x), x 6= ε}
∪ {r(a, x) | {a, r} ⊆ L(x) with a ∈ Ccore}
∪ {r(x, y) | r ∈ L(y), y is a child of x, x 6= ε}

with xb replaced with b, xc with c, and xd with d. Note that a ∈ L(x) ∈ ΓN
indicates that x is a successor of core individual a ∈ ind(L(ε)). It is easy to see
that there is a TWAPA Aproper that accepts a (Γε ∪ΓN)-labeled tree if and only
if it is proper. Details are omitted.

From now on, let t0 and t1 be fixed. We construct the TWAPA At0,t1 as the
intersection of Aproper and TWAPAs A1, . . . ,A6 where each Ak accepts a proper
input tree (T, L) if and only if the tuple (A,a, b, c, d) encoded by (T, L) satisfies
Condition (k) from Definition 20. We make sure that all Ak can be constructed
in exponential time and have only polynomially many states in the size of Q.

Derivation of concept names. We start with describing a capability of
TWAPAs that most of the Ak will make use of, namely to check whether a
concept name is derived by T at an individual of the ABox encoded by the
input tree. We construct a TWAPA Aderive that is capable of performing such
a check and that we will use as a building block for defining the TWAPAs
A1, . . . ,A6.

Recall from Section 4.1 that in the context of the ability to simulate PSA,
we had generally assumed that the EL-TBox T has been extended by certain
ELI-concept inclusions. We thus consider ELI-TBoxes in the construction of
Aderive. The set of states of Aderive includes among others

{dA | A ∈ CN} ∪ {daA | A ∈ CN ∧ a ∈ Ccore}

and Aderive is built such that the following holds:

• if Aderive is started on a proper input tree encoding (A,a, b, c, d) from a
configuration (a, dA), then it accepts if and only if A, T |= A(a);

• if Aderive is started on a proper input tree encoding (A,a, b, c, d) from a
configuration (ε, daA), then it accepts if and only if A, T |= A(a).

Note that the two cases correspond to the treatment of non-core individuals and
core individuals, respectively. The exact construction of Aderive is given in the
appendix. It makes use of Lemma 28, which states that A, T |= A(a) if and

48

only if there is a derivation tree for A(a). In fact, we construct the transitions
of Aderive in a straightforward way so as to check the existence of a derivation
tree.

Construction of A1. This TWAPA checks whether A |= Q(a). Due to Condi-
tion 5 of the ability to simulate psa, we only need to check whether A |= Q(a)
via a core close homomorphism. The existence of such a homomorphism, in
turn, depends only on the core of A and on the concept names that are derived
at core individuals. We next make this precise. Recall that T contains the CI
C v AC for every CQ C ∈ trees(q) viewed as an EL-concept. Let (B,a) ∈ Σε. A
completion of B is a set M of assertions A(a) with A ∈ CN and a ∈ Ccore. Every
completion M of B gives rise to an extension BM of B obtained as follows:

• add every concept assertion from M ;

• if AC(a) ∈ M with C ∈ trees(q), then add a disjoint copy of AC , glueing
the root to a.

We say that M is matching if BM |= q(a) and use MComp(B) to denote the
set of all matching completions of B. Clearly, there are exponentially many
completions for every B and given B and a completion M of B, it can be decided
in exponential time (actually in NP) whether M is matching. We next observe
the following.

Lemma 44. Let A be a pseudo tree-shaped Σ-ABox with core B, ind(B) ⊆ Ccore,
and a a tuple from ind(B). Then

1. if A |= Q(a) via a core close homomorphism, then the following is a
matching completion of B: {A(a) | a ∈ ind(B) and A, T |= A(a)};

2. if there exists a matching completion M of B such that A, T |= A(a) for
all A(a) ∈M , then A |= Q(a).

The strategy of TWAPA A1 = (Sderive ∪ {s0},Γε ∪ ΓN , δ, s0, c) is now as
follows. If (B,a) ∈ Γε is the label of the root of the input tree, then guess a
matching completion M for B and use Aderive to check whether all A(a) ∈ M
can be derived in A. The transition function δ for states in Sderive is thus defined
as before, and additionally for all (B,a) ∈ Σε we set

δ(s0, (B,a)) =
∨

M∈MComp(B)

∧
A(a)∈M

daA.

Construction of A2. This TWAPA checks that t1 = tpA,T (b) = tpA,T (c) =
tpA,T (d). Using Aderive and its dualization, this is straightforward: send a copy
to the nodes in the input tree that are marked with b, c, and d, and then use
Aderive to make sure that all A ∈ t1 are derived there and the dual of Aderive to
make sure that no A /∈ t1 is derived there.

49

Construction of A3. This TWAPA checks that Ab ∪ t0(b), T 6|= q(a). We
have to prevent homomorphisms from q to UA,T that are core close as well as
homomorphisms that are not core close. The latter is only possible if q is Boolean
and treeifiable, as every homomorphism from a CQ that is not treeifiable into
UA,T hits the core. A3 thus contains two sub-TWAPAs with disjoint sets of
states, and the initial state of A3 is associated with a transition s1 ∧ s2, si the
starting state of the i-th sub-TWAPA.

The first sub-TWAPA is constructed in the same way as A1 except that it
uses a modified version of Aderive that checks derivations on Ab ∪ t0(b) instead
of A, by making sure that all concept names from t0 are assumed to be true at
the node of the input tree marked with b and disregarding the subtree below.
In addition, we dualize the constructed sub-TWAPA at the end.

The second sub-TWAPA works as follows. If q is not Boolean or not treeifi-
able, then it accepts every input. Otherwise, q viewed as an EL-concept Cq is in
trees(q) and Cq v ACq

∈ T . Thus it suffices for A5 to check that ACq
is neither

derived at any non-core individual a nor at an anonymous individual below a
non-core individual. Let MQ be the set of all T -types t with t(a), T |= ∃xCq(x),
which can be computed in exponential time using the fact that CQ evaluation
in (ELI,CQ) is in ExpTime [53]. The TWAPA makes sure that no type from
MQ is realized at a non-core individual, using Aderive and its dualization. Here,
we again mean the modified version of Aderive also used by the first sub-TWAPA.

Construction of A4. A4 checks that tpAc∪t0(c),T (b) = tpAd∪t0(d),T (b) = t0. It
is constructed similarly to A2.

Construction of A5. This TWAPA checks that every homomorphism from q
to UA,T is core close. It is only required if q is Boolean. The construction is
the same as for the second sub-TWAPA of A3, except that we work with the
original version of Aderive.

Construction of A6. This TWAPA checks that b, c and d all have the same
ancestor path up to length |q|. It is only required if q is Boolean. The idea is to
guess an ancestor path r1r2 . . . r|q| up front and then verify that b, c and d all
have this ancestor path. To achieve this using only polynomially many states,
the guessed path is not stored in a single state. Instead, we use |q| copies of
the automaton, the i-th copy guessing states of the form si,r which stands for
ri = r. This copy then further spawns into three copies that visit the nodes
labeled b, c, and d, travels upwards from there n− i steps, and checks that the
node label there contains r.

8. Conclusion

We have established a complexity trichotomy between AC0, NL, and PTime
for OMQs from (EL,CQ). We have also proved that linear Datalog rewritability
coincides with OMQ evaluation in NL and that deciding all these (and related)
properties is ExpTime complete with the lower bounds applying already to
(EL,AQ).

50

B

r

L

s

r

L

r

L

s

s

r

L

r

L

s

r

L

r

E

s

s

s

Figure 8: An ABox A with A |= Q(a), a the root of A and Q the OMQ from Example 45.

There are several natural directions in which our results can be generalized.
One direction is to transition from CQs to unions of CQs (UCQs), that is,
to consider the OMQ language (EL,UCQ). We conjecture that the complex-
ity trichotomy and the established equivalences between complexity classes and
rewritability generalize to this case without significant additional technical dif-
ficulties. We refrained from studying this generalization in detail since it makes
the proofs even more technical and distracts from the main ideas.

An important direction for future work is to extend our analysis to ELI, that
is, to add inverse roles. Even the case of (ELI,AQ) appears to be challenging.
In fact, it can be seen that a complexity classification of (ELI,AQ) is equivalent
to a complexity classification of all CSPs that have tree obstructions. In the
following, we elaborate on this extension.

With inverse roles, there are OMQs (T ,Σ, A(x)) that are L-complete, ob-
tained for example by setting T = {∃r.A v A, ∃r−.A v A} and Σ = {r,A}.
Using a variation of the techniques from Section 3 and the technique of transfer
sequences from [18], it should not be too hard to establish a dichotomy between
AC0 and L in (ELI,CQ). We conjecture that AC0, L, NL, and PTime are the
only complexities that occur. We also conjecture that L-completeness coincides
with rewritability into symmetric Datalog [54].

Lifting our dichotomy between NL and PTime to (ELI,AQ) is non-trivial.
In fact, we give below an example which shows that unbounded branching no
longer coincides with unbounded pathwidth and thus our proof strategy, which
uses unbounded branching in central places, has to be revised. Moreover, it
seems difficult to approach the dichotomy between NL and PTime without
first solving the L versus NL case. In this context, it is interesting to point
out that for CSPs, the following conditional result is known [55]: if rewritability
into linear Datalog coincides with NL, then rewritability into symmetric Datalog
coincides with L.

Example 45. Consider the OMQ Q = (T ,Σ, A(x)) ∈ (ELI,AQ) with Σ =
{r, s, B,E, L} and

T = {B vM1,∃s.M1 vM1,∃rM1 vM ′1,∃s−M ′1 vM2,

∃r−M2 vM2,M2 u L vM1,M2 u E v A,∃s.A v A} .

51

Q is unboundedly branching, as witnessed by the ABox in Figure 8 and gener-
alizations thereof to arbitrary depth. A derivation of the query starts at B, the
beginning marker, then it uses markers M1 and M2 to visit all the leafs from left
to right in sequence, until it reaches E, the end marker, to derive the queried
concept name A.

At the same time, Q is rewritable into linear Datalog and thus in NL, show-
ing that unbounded branching and PTime-hardness no longer coincide.

Acknowledgements. This research was supported by ERC consolidator grant
647289 CODA. We express our gratitude to the reviewers of a previous version
of this article for their careful comments.

References

References

[1] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, R. Rosati, Ontologies and databases: The DL-Lite
approach, in: Proc. of Reasoning Web, 2009, pp. 255–356.

[2] R. Kontchakov, M. Rodriguez-Muro, M. Zakharyaschev, Ontology-based
data access with databases: A short course, in: Proc. of Reasoning Web,
2013, pp. 194–229.

[3] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MMSNP, ACM Trans.
Database Syst. 39 (4) (2014) 33:1–33:44.

[4] M. Bienvenu, M. Ortiz, Ontology-mediated query answering with data-
tractable description logics, in: Proc. of Reasoning Web, Vol. 9203 of LNCS,
Springer, 2015, pp. 218–307.

[5] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description
Logics, Cambride University Press, 2017.

[6] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very
expressive description logics, in: Proc. of IJCAI, Professional Book Center,
2005, pp. 466–471.

[7] A. Krisnadhi, C. Lutz, Data complexity in the EL family of description
logics, in: Proc. of LPAR, Vol. 4790 of LNAI, Springer, 2007, pp. 333–347.

[8] R. Rosati, The limits of querying ontologies, in: Proc. of ICDT, Vol. 4353
of LNCS, Springer, 2007, pp. 164–178.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data
complexity of query answering in description logics, Artif. Intell. 195 (2013)
335–360.

52

[10] T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao, Query rewriting for
Horn-SHIQ plus rules, in: Proc. of AAAI, AAAI Press, 2012.

[11] M. Bienvenu, C. Lutz, F. Wolter, First order-rewritability of atomic queries
in horn description logics, in: Proc. of IJCAI, IJCAI/AAAI, 2013, pp. 754–
760.

[12] M. Kaminski, Y. Nenov, B. C. Grau, Datalog rewritability of disjunctive
datalog programs and its applications to ontology reasoning, in: Proc. of
AAAI, AAAI Press, 2014, pp. 1077–1083.

[13] S. Ahmetaj, M. Ortiz, M. Simkus, Polynomial datalog rewritings for ex-
pressive description logics with closed predicates, in: Proc. of IJCAI, IJ-
CAI/AAAI Press, 2016, pp. 878–885.

[14] C. Feier, A. Kuusisto, C. Lutz, Rewritability in monadic disjunctive data-
log, MMSNP, and expressive description logics, Logical Methods in Com-
puter Science To appear (2019).

[15] P. Hansen, C. Lutz, İnanç Seylan, F. Wolter, Efficient query rewriting in
the description logic EL and beyond, in: Proc. of IJCAI, AAAI Press, 2015,
pp. 3034–3040.

[16] H. Pérez-Urbina, B. Motik, I. Horrocks, Tractable query answering and
rewriting under description logic constraints, Journal of Applied Logic 8 (2)
(2010) 186–209.

[17] D. Trivela, G. Stoilos, A. Chortaras, G. B. Stamou, Optimising resolution-
based rewriting algorithms for OWL ontologies, J. Web Sem. 33 (2015)
30–49.

[18] M. Bienvenu, P. Hansen, C. Lutz, F. Wolter, First order-rewritability and
containment of conjunctive queries in Horn description logics, in: Proc. of
IJCAI, IJCAI/AAAI Press, 2016, pp. 965–971.

[19] C. Lutz, F. Wolter, Non-uniform data complexity of query answering in
description logics, in: Proc. of KR, AAAI Press, 2012.

[20] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz (Eds.), OWL
2 Web Ontology Language Profiles (Second Edition), W3C Recommenda-
tion, 2009, available at https://www.w3.org/TR/owl2-profiles/.

[21] V. Dalmau, Linear datalog and bounded path duality of relational struc-
tures, Logical Methods in Computer Science 1 (1) (2005).

[22] V. Dalmau, A. A. Krokhin, Majority constraints have bounded pathwidth
duality, Eur. J. Comb. 29 (4) (2008) 821–837.

[23] C. Carvalho, V. Dalmau, A. A. Krokhin, CSP duality and trees of bounded
pathwidth, Theor. Comput. Sci. 411 (34-36) (2010) 3188–3208.

53

https://www.w3.org/TR/owl2-profiles/

[24] A. Schaerf, On the complexity of the instance checking problem in concept
languages with existential quantification, J. Intell. Inf. Syst. 2 (3) (1993)
265–278.

[25] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable
reasoning and efficient query answering in description logics: The DL-Lite
family, J. Autom. Reason. 39 (3) (2007) 385–429.

[26] P. Hansen, C. Lutz, Computing fo-rewritings in EL in practice: From
atomic to conjunctive queries, in: Proc. of ISWC, Vol. 10587 of LNCS,
Springer, 2017, pp. 347–363.

[27] A. Mottet, T. Nagy, M. Pinsker, M. Wrona, Smooth approximations and
relational width collapses, in: Proc. of ICALP, Vol. 198 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 138:1–138:20.

[28] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, M. Y. Vardi, Decidable
optimization problems for database logic programs (preliminary report),
in: Proc. of STOC, ACM, 1988, pp. 477–490.

[29] R. van der Meyden, Predicate boundedness of linear monadic datalog is in
PSPACE, Int. J. Found. Comput. Sci. 11 (4) (2000) 591–612.

[30] M. Benedikt, B. ten Cate, T. Colcombet, M. Vanden Boom, The complexity
of boundedness for guarded logics, in: Proc. of LICS, IEEE Computer
Society, 2015, pp. 293–304.

[31] T. Feder, M. Y. Vardi, The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group the-
ory, SIAM J. Comput. 28 (1) (1998) 57–104.

[32] A. A. Bulatov, A dichotomy theorem for nonuniform CSPs, in: Proc. of
FOCS, 2017, pp. 319–330.

[33] D. Zhuk, A proof of CSP dichotomy conjecture, in: Proc. of FOCS, 2017,
pp. 331–342.

[34] O. Gerasimova, S. Kikot, A. Kurucz, V. V. Podolskii, M. Zakharyaschev,
A data complexity and rewritability tetrachotomy of ontology-mediated
queries with a covering axiom, in: Proc. of KR, 2020, pp. 403–413.

[35] S. Kikot, A. Kurucz, V. V. Podolskii, M. Zakharyaschev, Deciding bound-
edness of monadic sirups, in: Proc. of PODS, ACM, 2021, pp. 370–387.

[36] C. Lutz, I. Seylan, F. Wolter, Ontology-based data access with closed
predicates is inherently intractable(sometimes), in: Proc. of IJCAI, IJ-
CAI/AAAI, 2013, pp. 1024–1030.

[37] C. Lutz, I. Seylan, F. Wolter, Ontology-mediated queries with closed pred-
icates, in: Proc. of IJCAI, AAAI Press, 2015, pp. 3120–3126.

54

[38] C. Lutz, I. Seylan, F. Wolter, The data complexity of ontology-mediated
queries with closed predicates, Log. Methods Comput. Sci. 15 (3) (2019).

[39] C. Lutz, L. Sabellek, Ontology-mediated querying with the description logic
el: Trichotomy and linear datalog rewritability, in: Proc. of IJCAI, ijcai.org,
2017, pp. 1181–1187.

[40] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[41] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proc. of
IJCAI, 2005, pp. 364–369.

[42] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in
the description logic EL, J. Symb. Comput. 45 (2) (2010) 194–228.

[43] A. Cal̀ı, G. Gottlob, M. Kifer, Taming the infinite chase: Query answering
under expressive relational constraints, J. Artif. Intell. Res. 48 (2013) 115–
174.

[44] M. Bienvenu, M. Ortiz, Ontology-mediated query answering with data-
tractable description logics, in: Proc. of Reasoning Web, 2015, pp. 218–307.

[45] C. Lutz, The complexity of conjunctive query answering in expressive de-
scription logics, in: Proc. of IJCAR, Vol. 5195 of LNCS, Springer, 2008,
pp. 179–193.

[46] M. L. Furst, J. B. Saxe, M. Sipser, Parity, circuits, and the polynomial-time
hierarchy, in: Proc. of FOCS, 1981, pp. 260–270.

[47] A. A. Bulatov, A. A. Krokhin, B. Larose, Dualities for constraint satisfac-
tion problems, in: Complexity of Constraints - An Overview of Current
Research Themes [Result of a Dagstuhl Seminar]., Vol. 5250 of LNCS,
Springer, 2008, pp. 93–124.

[48] N. Immerman, Descriptive complexity, Graduate texts in computer science,
Springer, 1999.

[49] P. Scheffler, Die Baumweite von Graphen als ein Mass für die
Kompliziertheit algorithmischer Probleme, Report (Karl-Weierstrass-
Institut für Mathematik), Akademie der Wissenschaften der DDR, Karl-
Weierstrass-Institut für Mathematik, 1989.

[50] V. Geffert, A. Okhotin, Transforming two-way alternating finite automata
to one-way nondeterministic automata, in: Proc. of MFCS, 2014, pp. 291–
302.

[51] D. E. Muller, P. E. Schupp, Alternating automata on infinite trees, Theor.
Comput. Sci. 54 (1987) 267–276.

55

[52] M. Y. Vardi, Reasoning about the past with two-way automata, in: Proc.
of ICALP, Vol. 1443 of LNCS, Springer, 1998, pp. 628–641.

[53] T. Eiter, G. Gottlob, M. Ortiz, M. Simkus, Query answering in the descrip-
tion logic horn-, in: Proc. of JELIA, Vol. 5293 of LNCS, Springer, 2008,
pp. 166–179.

[54] L. Egri, B. Larose, P. Tesson, Symmetric datalog and constraint satis-
faction problems in LogSpace, Electronic Colloquium on Computational
Complexity (ECCC) 14 (024) (2007) 1.

[55] A. Kazda, n-permutability and linear datalog implies symmetric datalog,
Logical Methods in Computer Science 14 (2) (2018) 1–24.

56

Appendix A. Proofs for Section 2

Lemma 4. Let Q = (T ,Σ, q) ∈ (EL, conCQ), A a Σ-ABox and a ∈ ind(A)ar(q)

such that A |= Q(a). Then there is a pseudo tree-shaped Σ-ABox A′ of core size
at most |q| and with a in its core that satisfies the following conditions:

1. there is a homomorphism from A′ to A that is the identity on a;

2. A′ |= Q(a), witnessed by a homomorphism from q to UA′,T whose range
consists solely of core individuals and of anonymous elements in a tree
rooted in a core individual.

Proof. (sketch) Assume that A |= Q(a) and let h be a homomorphism from q(x)
to UA,T . Let I ⊆ ind(A) be the set of all individuals b that are either in the range
of h or such that an anonymous element in the chase-generated tree below b is
in the range of h. We unravel A into a potentially infinite pseudo tree-shaped
ABoxA0 with core I, see also [18]. A trace is a sequence t = a0r0a1r1 · · · rn−1an,
n ≥ 0, such that a0 ∈ I and ri(ai, ai+1) ∈ A for 0 ≤ i < n. We use tail(t) to
denote an. Then A0 consists of the following assertions:

• all assertions r(a, b) ∈ A with a, b ∈ I;

• A(t) for all traces t such that A(tail(t)) ∈ A;

• r(t, t′) for all traces t, t′ such that t′ = tra for some a.

It is not hard to prove that

(∗) for every trace t, the tree in UA0,T below t is isomorphic to the tree in
UA,T below tail(t).

In fact, this can be shown by observing that a chase sequence A0,A1, . . . for
constructing UA,T can be converted into a chase sequence A′0,A′1, . . . for con-
structing UA0,T by replacing in any rule application the individuals a ∈ ind(A)
with all possible traces t with tail(t) = a.

Since A |= Q(a), there is a homomorphism h from q to UA,T with h(x) = a.
Due to the choice of I in the construction of A0 and (∗), it is clear that h can
be converted into a homomorphism g from q to UA0,T such that h(x) = g(x) if
h(x) ∈ ind(A). Thus, A0 |= Q(a) and the homomorphism g is as required by
Condition (2) of Lemma 4.

It remains to deal with the fact that A0 needs not be finite. By the com-
pactness theorem of first order logic, there exists a finite subset A1 ⊆ A0 such
that A1 |= Q(a). Let A′ be the restriction of A1 to those individuals that
are reachable in GA1

from an individual in I. It can be verified that A′ is as
required.

Lemma 5. Let T be an EL-TBox, A an pseudo tree-shaped ABox, and a ∈
ind(A) a non-core individual. Then A, T |= B(a) if and only if Aa, T |= B(a)
for every concept name B ∈ NC.

57

Proof. Let A0,A1, . . . be the sequence of ABoxes from the construction of UA,T ,
and likewise for B0,B1, . . . and UAa,T . It can be shown by induction on i that
B(b) ∈ Ai if and only if B(b) ∈ Bi for all elements b ∈ ∆UAa,T and all concept
names B ∈ NC (assuming a canonical naming scheme for introducing fresh
individual names). For the induction step, notice that rules (ii) and (vi) will
never be applied, since T is an EL-TBox. Overall, this yields an isomorphism
between UAa,T and (UA,T)a that is the identity on ind(Aa). Here, (UA,T)a

refers to UA,T restricted to elements b such that there is a path from a to b.
The statement then follows from Point 3 of Lemma 2.

Lemma 6. Let Q = (T ,Σ, A(x)) ∈ (EL,AQ) be an OMQ and A a Σ-ABox
such that A |= Q(a). Then there exists A′ ⊆ A of degree at most |T | such that
A′ |= Q(a).

Proof. (sketch) Assume that A |= Q(a) and let A0,A1, . . . be the sequence
of ABoxes produced by chasing A with T as described in the construction of
the universal model UA,T . Let Aω be the ABox obtained in the limit. Since
A |= Q(a), by Lemma 2, A(a) ∈ Aω. Let A′ be obtained from A as follows:
For each a ∈ A and ∃r.A v B ∈ T such that there is some r(a, b) ∈ A with
A(b) ∈ Aω, choose some such r(a, b) such that for i minimal with A(b) ∈ Ai,
there is no j < i and r(a, b′) ∈ A with A(b′) ∈ Aj . Now let A′ be obtained
from A by removing all role assertions that have not been chosen. It is clear
that the degree of A′ is at most |T |. Moreover, it is easy to verify that the
role applications that led to the sequence A0,A1, . . . can be reproduced in A′.
Thus, the result A′ω of chasing A′ with T is such that A(a) ∈ A′ω.

Lemma 7. Let A1,A2 be Σ-ABoxes and T an ELI-TBox such that tpA1,T (a) =
tpA2,T (a) for all a ∈ ind(A1) ∩ ind(A2). Then tpA1∪A2,T (a) = tpAi,T (a) for all
a ∈ ind(Ai), i ∈ {1, 2}.

Proof. Let A1, A2, and T be as in the lemma. It clearly suffices to show
that tpA1∪A2,T (a) ⊆ tpAi,T (a) for all a ∈ ind(Ai), i ∈ {1, 2}. Assume that
Ai, T 6|= A(a) for some i ∈ {1, 2}, concept name A, and a ∈ ind(Ai). We have
to show that A1 ∪ A2, T 6|= A(a). For each j ∈ {1, 2}, let Ij be the universal
model of T and Aj . We can assume w.l.o.g. that ∆I1∩∆I2 = ind(A1)∩ ind(A2).
By assumption and since tpA1,T (a) = tpA2,T (a), we must have a /∈ AI1 and a /∈
AI2 . Consider the (non-disjoint) union I of I1 and I2, that is, ∆I = ∆I1 ∪∆I2 ,
AI = AI1 ∪AI2 for all concept names A, and rI = rI1 ∪ rI2 for all role names
r. Clearly, I is a model of A1 ∪ A2 and a /∈ AI . To show A1 ∪ A2, T 6|= A(a),
it thus remains to prove that I is a model of T . To do this, we argue that all
concept inclusions from T are satisfied:

• Consider ∃r.A1 v A2 ∈ T and a, b ∈ ∆I such that (a, b) ∈ rI and b ∈ AI1 .

Then there exist i, j ∈ {1, 2} such that (a, b) ∈ rIi and b ∈ AIj1 . If i = j,
then a ∈ AI2 , since Ii is a model of T . Otherwise b ∈ ∆I1 ∩ ∆I2 =
ind(A1) ∩ ind(A2), so by assumption, tpA1,T (b) = tpA2,T (b). It follows

that A1 ∈ tpAi,T (b) and thus, b ∈ AIi1 . Together with (a, b) ∈ rIi and

58

because Ii is a model of T , it follows that a ∈ AIi2 ⊆ AI2 . Thus, the
inclusion ∃r.A1 v A2 is satisfied in I.

• Consider > v A1 ∈ T and a ∈ ∆I . Then a ∈ ∆Ii for some i ∈ {1, 2}.
Since Ii is a model of T , we have a ∈ AIi1 , so a ∈ AI1 and the inclusion
> v A1 is satisfied in I.

• Consider A1 uA2 v A3 ∈ T and a ∈ AI1 ∩AI2 . Then there are i, j ∈ {1, 2}
such that a ∈ AIi1 and a ∈ AIj2 . If i = j, then a ∈ AI3 follows, since Ii
is a model of T . Otherwise a ∈ ∆I1 ∩ ∆I2 = ind(A1) ∩ ind(A2), so by
assumption, tpA1,T (a) = tpA2,T (a). We must have A1, A2 ∈ tpA1,T (a), so

a ∈ AI11 ∩ A
I1
2 and since I1 is a model of T , we conclude a ∈ AI13 ⊆ AI3 .

Thus the inclusion A1 uA2 v A3 is satisfied in I.

• Consider A1 v ∃r.A2 ∈ T and a ∈ AI1 . Then a ∈ AIi1 for some i ∈ {1, 2}.
Since Ii is a model of T , we have b ∈ ∆Ii and (a, b) ∈ rIi , hence also
b ∈ ∆I and (a, b) ∈ rI and thus, A1 v ∃r.A2 is satisfied in I.

Corollary 8. Let T be an ELI-TBox, A a pseudo tree-shaped ABox, b ∈ ind(A)
not in the core of A, and A′ a tree-shaped ABox with root b such that ind(A) ∩
ind(A′) = {b} and tpA′,T (b) = tpA,T (b). If A′′ is the ABox obtained from A
by replacing the subtree rooted at b by A′, then tpA,T (a) = tpA′′,T (a) for all
a ∈ ind(A) ∩ ind(A′′).

Proof. The procedure of replacing the subtree rooted at b by A′ can be imple-
mented by the following four steps, none of which changes the types derived at
individuals from ind(A) ∩ ind(A′′).

• Let t = tpA,T (b) and define B1 := A ∪ t(b). By Lemma 7, tpA,T (a) =
tpB1,T (a) for all a ∈ ind(A).

• Let B2 := Ab ∪ t(b), so B1 = B2 ∪ (Ab ∪ t(b)). Lemma 7 yields tpB1,T (a) =
tpB2,T (a) for all a ∈ ind(B1).

• Let B3 := B2∪A′. By Lemma 7, tpB2,T (a) = tpB3,T (a) for all a ∈ ind(B2).

• Observe that B3 = A′′ ∪ t(b), so Lemma 7 yields tpB3,T (a) = tpA′′,T (a)
for all a ∈ ind(A′′).

Overall, we have tpA,T (a) = tpB1,T (a) = tpB2,T (a) = tpB3,T (a) = tpA′′,T (a) for
all a ∈ ind(A) ∩ ind(A′′).

Appendix B. Proofs for Section 3

Lemma 16. Let Q = (T ,Σ, q) ∈ (EL, conCQ) have the ability to simulate
reach and let A, a, b, c, t0, t1, Asource, Aedge and Atarget be as in Definition 11.
Then

59

1. tpAsource,T (c) = t1;

2. tpAedge∪t1(c),T (b) = t1;

3. Atarget ∪ t1(b), T |= Q(a).

4. tpAsource∪t1(c),T (c) = t1;

5. tpAedge∪ti(b)∪tj(c),T (c) = tj for all i, j ∈ {0, 1};

6. tpAedge∪ti(b)∪tj(c),T (b) = tmax{i,j} for all i, j ∈ {0, 1};

7. tpAtarget∪t0(b),T (b) = t0;

8. tpAsource∪t1(c),T (a) = tpA,T (a) for all a ∈ ind(Asource);

9. tpAedge∪t1(b)∪t1(c),T (a) = tpA,T (a) for all a ∈ ind(Aedge);

10. tpAtarget∪t1(b),T (a) = tpA,T (a) for all a ∈ ind(Atarget).

Proof. Point 1: tpA,T (c) = t1, but by Lemma 5, A can be replaced by Asource.

Point 2: tpA,T (b) = t1, but by Lemma 5, A can be replaced by Ab. Further-

more, by Corollary 8, Ab can be replaced by Aedge ∪ t1(c).
Point 3: A = Atarget ∪ Ab. Since tpAb,T (b) = t1, Corollary 8 yields that

tpAtarget∪Ab,T (a) = tpAtarget∪t1(b),T (a) for all a ∈ Atarget. As a consequence and
due to Lemma 3, UAtarget∪t1(b),T and the restriction of UA,T to the individu-
als in ind(Atarget) and the anonymous elements below them are homomorphi-
cally equivalent via homomorphisms that are the identity on ind(Atarget). Since
A |= Q(a), q is connected, and b has distance at least |q| from the core, there
is a homomorphism h from q to the restriction of UA,T to the individuals in
ind(Atarget) and the anonymous elements below them such that h(x) = a. It
follows that Atarget ∪ t1(b), T |= Q(a).

Point 4 follows immediately from Point 1 and Lemma 7.
Point 5 is similar to Point 2, since c is a leaf in Aedge.
Point 6: For the cases (i, j) ∈ {(1, 0), (1, 1), (0, 1)}, the statement follows

from Point 2 and monotonicity. If i = j = 0, then it follows from Point 3 of
Definition 11 and Lemma 5.

Point 7: Since b is a leaf in Atarget and by Lemma 5, tpAtarget∪t0(b),T (b) =
tp(Atarget)b∪t0(b),T (b) = t0.

Point 8: If a = c, this follows from Point 1. If a 6= c, then a is a de-
scendant of c, since c is the root of Asource. Applying Lemma 5 twice yields
tpAsource∪t1(c),T (a) = tp(Asource)a,T (a) = tpA,T (a).

Point 9: For a ∈ {b, c}, this follows from Points 5 and 6. If a /∈ {b, c}, then a
is a descendant of b, since b is the root ofAedge. By Lemma 5, tpAedge∪t1(b)∪t1(c),T (a) =
tp(Aedge)a∪t1(c),T (a). By Corollary 8 and Point 1, the latter is equal to tp(Aedge)a∪Asource,T (a).
Again by Lemma 5, this is equal to tpA,T (a).

Point 10: By Point 2 of Definition 11 and Lemma 5, tpAb,T (b) = t1. Thus, we

can replace Atarget∪t1(b) by Atarget∪Ab using Corollary 8. Since A = Atarget∪Ab,
the statement follows.

60

Appendix C. Proofs for Section 4.1

Proposition 18. Let Q ∈ (EL,CQ). Then Q has unbounded pathwidth iff Q is
unboundedly branching.

Proof. The “⇐” direction is clear since the full binary tree of depth k has
pathwidth dk2 e and pathwidth of a graph cannot be smaller than that of its
minors. For the “⇒” direction, we start by showing that for tree-shaped ABoxes,
the branching number gives an upper bound on the pathwidth.

Claim. Let A be a tree-shaped ABox. Then there exists a (j, k)-path decom-
position V1, . . . , Vn of A with k ≤ br(A) + 2 and j ≤ k− 1 such that the root of
A is an element of Vn.

We prove the claim by induction on the depth of A. If A has depth 0, then A has
only one individual, br(A) = 0, and there is a trivial (0, 1)-path decomposition.
If A has depth 1, then the root a of A has children a1, . . . , an with n ≥ 1.
We have br(A) ≤ 1 and there is a (1, 2)-path decomposition V1, . . . , Vn, where
Vi = {a, ai}.

If A has depth at least 2, let the root of A be called a and its children
a1, . . . , am. Let V i1 , . . . , V

i
ni

be the path decomposition of Aai that exists by
induction hypothesis, for 1 ≤ i ≤ m. We distinguish two cases:

• If br(A) = max{br(Aai) | 1 ≤ i ≤ m}, then by definition of br, there
is precisely one child ai of a with br(Aai) = br(A). W.l.o.g. assume
that ai = a1. Then V 1

1 , . . . , V
1
n1
, {a, a1}, {a} ∪ V 2

1 , . . . , {a} ∪ V 2
n2
, {a} ∪

V 3
1 , . . . , {a}∪V 3

n3
, . . . , {a}∪V m1 , . . . , {a}∪V mnm

is a path decomposition of
A that fulfils the condition from the claim.

• If br(A) = 1+max{br(Aai) | 1 ≤ i ≤ m}, then {a}∪V 1
1 , . . . , {a}∪V 1

n1
, {a}∪

V 2
1 , . . . , {a}∪V 2

n2
, . . . , {a}∪V m1 , . . . , {a}∪V mnm

is a path decomposition of
A that fulfils the condition from the claim.

This finishes the proof of the claim.
We next show that for every OMQ Q = (T ,Σ, q) ∈ (EL,CQ), br(Q) = k

implies pw(Q) ≤ k + 2 + |q|. Let Q be such an OMQ. Take a Σ-ABox A and
a ∈ ind(A) with A |= Q(a). We have to show that there is a Σ-ABox A′ of
pathwidth at most k+2+|q| such that A′ |= Q(a) and there is a homomorphism
from A′ to A that is the identity on a. By Lemma 4, we obtain from A a pseudo
tree-shaped Σ-ABox A′ such that there is a homomorphism from A′ to A that
is the identity on a. Clearly, MQ contains a subset A′′ of A′. We show that
A′′ is as required, that is, the pathwidth of A′′ is at most k. From br(Q) = k,
A′′ |= Q(a), and A′′ ∈MQ, it follows that br(A′′) ≤ k. Let A′ have core C and
trees A1, . . . ,Am. By the claim, every Ai has a (j, k + 2)-path decomposition
V i1 , . . . , V

i
ni

. Then we find a (j + |q|, k + 2 + |q|)-path decomposition of A′:
ind(C) ∪ V 1

1 , . . . , ind(C) ∪ V 1
n1
, . . . , ind(C) ∪ V m1 , . . . , ind(C) ∪ V mnm

.

Lemma 19. Let q ∈ conCQ be Boolean and treeifiable, I1, I2 tree-shaped inter-
pretations, and di ∈ ∆Ii for i ∈ {1, 2} such that d1 ∈ CI1 implies d2 ∈ CI2 for

61

all C ∈ Cq. If there is a homomorphism from q to I1 with d1 in its range, then
there is a homomorphism from q to I2 with d2 in its range.

Proof. Assume that there is a homomorphism h1 from q to I1 with d1 in its
range. Since I1 is tree-shaped, this homomorphism factors into h1 = g1 ◦ hq,
where hq is the obvious homomorphism from q to qtree and g1 is a homomorphism
from qtree to I1. It clearly suffices to show that there is a homomorphism g2

from qtree to I2 with d2 in its range.
Let X0 = g−1

1 (d1). In a first step, we set g2(x) = d2 for all x ∈ X0 and
extend g2 upwards as follows. Whenever g2(y) is already defined and there is
an atom r(x, y) in qtree, define g2(x) to be the (unique) predecessor of g2(y)
in I2. We show that g2 is a homomorphism from qtree|dom(g2) to I2, dom(g2) the
domain of g2. If r(x, y) ∈ qtree with g2(x), g2(y) defined, then qtree contains a
role path r1 · · · rn from x1 to xn ∈ X0 with r1 = r. Thus, there is a concept
C = ∃r−n . . . ∃r−1 .> ∈ Cq such that d1 ∈ CI1 . It follows that d2 ∈ CI2 and since
I2 is tree-shaped and by construction of g2, this yields (g2(x), g2(y)) ∈ rI2 . The
argument for atoms A(x) ∈ qtree where g2 has been defined on x is similar, using
concepts of the form C = ∃r−n . . . ∃r−1 .A ∈ Cq.

In a second step, we define g2 on all the remaining variables. Whenever g2(z)
is still undefined for some z ∈ var(qtree), there must be some r(x, y) ∈ qtree such
that g2(x) is already defined, g2(y) is not yet defined, and z is in qtree|reach(x,y).
Since q is connected, there must be a (potentially empty) role path r1 · · · rn in
qtree from x to a variable x0 ∈ X0. Thus, Cq contains C = ∃r−n . · · · ∃r−1 .D ∈ Cq
where D is the EL concept that corresponds to qtree|reach(x,y) and since g1(x0) =
d1, we have d1 ∈ CI1 . Consequently, d2 ∈ CI2 . Since I2 is tree-shaped, this
implies g2(x) ∈ DI2 and thus there is a homomorphism from q|reach(x,y) to I2

that maps x to g2(x). We use this homomorphism to extend g2 to all variables
in reach(x, y).

Lemma 22. Let T be a full binary tree of depth n ·k ·d whose nodes are colored
with n colors, k ≥ 0 and n, d ≥ 1. Then T has as a minor a monochromatic
full binary tree of depth k such that any two distinct nodes of the minor have
distance at least d from each other in T .

Proof. Let T be a full binary tree of depth k whose nodes are colored with n
colors. We associate T with a tuple (m1, . . . ,mn) by letting, for 1 ≤ i ≤ m, mi

be the minimum integer such that T does not have the color i monochromatic
full binary tree of depth mi as a minor. We prove the following.

Claim.
∑n
i=1mi ≥ k + 1.

We prove the claim by induction on k. For k = 0, there is only one node, say
of color i. Then clearly

∑n
i=1mi = 1 ≥ 1 = k + 1.

Now assume that the claim holds for k and consider a tree T of depth k+ 1,
with associated tuple (m1, . . . ,mn). Let a be the root of T and let the children
of a root the subtrees T1 and T2, (mj

1, . . . ,m
j
n) the tuple associated with Tj for

j ∈ {1, 2}. We distinguish two cases.

62

First assume that there exists a color j such that m1
j 6= m2

j . W.l.o.g. let

m1
j < m2

j . Then mj = max{m1
j ,m

2
j} > m1

j and mi ≥ m1
i for all i 6= j. By the

claim,
∑n
i=1m

1
i ≥ k + 1. It follows that

∑n
i=1mi ≥ k + 2, as required.

Now assume that there is no such color j. Let i0 be the color of a. From
m1
i0

= m2
i0

, it follows that mi0 > m1
i0

and thus we can proceed as before with
i0 in place of j. This finishes the proof of the claim.

The statement of the lemma now follows easily for d = 1: Let T be a full
binary tree of depth n · k whose nodes are colored with n different colors. If
there is no full monochromatic binary tree of depth k as a minor in T , then
mi ≤ k for all colors i, in contradiction to

∑n
i=1mi ≥ n · k + 1.

Now consider the case where d > 1. From the case d = 1, T contains as a
minor a full monochromatic binary tree T ′ of depth d · k. To obtain the desired
full monochromatic binary tree T ′′ of depth k whose nodes have distance at
least d from each other, we choose appropriate nodes from T ′. Recall that the
nodes of T ′ are V = {1, 2}k. Then T ′′ can be constructed by choosing the nodes
V ∩ {1d, 2d}∗. Clearly, T ′′ is as required.

Proposition 23. Let Q ∈ (EL, conCQ). Then Q has the ability to simulate
psa iff Q is unboundedly branching.

Proof. We prove the missing “⇒” direction. Assume that Q = (T ,Σ, q) ∈
(EL, conCQ) has the ability to simulate psa. Then there are A,a, b, c, d, t0, and
t1 as in Definition 20. Let k ≥ 1. We have to show that there is a pseudo
tree-shaped Σ-ABox A ∈ MQ that has a tree Ai that has the full binary tree
of depth k as a minor. We start with constructing an ABox A0 built up from
the following set of ABoxes:

• one copy of Atarget, where b is renamed to bε and all other individuals
retain their original name;

• for every w ∈
⋃k−1
i=0 {0, 1}i, one copy A∧,w of A∧, where b is renamed to

bw, c is renamed to bw0 and d is renamed to bw1, and all other individuals
are fresh;

• for every w ∈ {0, 1}k, one copy Asource,w of Asource, where b is renamed to
bw and all other individuals are fresh.

Since all A∧ and Asource are tree-shaped, the resulting ABox is A0 pseudo tree-
shaped with the same core as Atarget.

It is clear that A0 has the full binary tree of depth k as a minor, formed by
the individuals bw, w ∈ {0, 1}≤k.

Claim: A0 |= Q(a).

First, we show by induction on k− |w| that tp(A0)bw ,T (bw) = t1. If k− |w| = 0,

then |w| = k, so (A0)bw is a copy of Asource. Thus, the statement to show is
tpAsource,T (c) = t1, which is Point 1 of Lemma 46. Now let k − |w| = ` > 0
and assume the statement has been shown for k − |w| = ` − 1. The ABox
(A0)bw can be regarded as the union of three ABoxes, which are first, a copy

63

of A∧ where b is renamed to bw, c is renamed to bw0 and d is renamed to bw1,
secondly, (A0)bw0 , and third, (A0)bw1 . By induction hypothesis and Corollary 8,
in (A0)bw , we can replace (A0)bw0 by t1(bw0) and (A0)bw1 by t1(bw1). Thus,
tp(A0)bw ,T (bw) = tpA∧∪t1(c)∪t1(d),T (b). By Point 2 of Lemma 46, the latter is
equal to t1. This finishes the induction and thus, tp(A0)bε ,T (bw) = t1. By
Corollary 8, tpA0,T (a) = tp(A0)bε∪t1(bε),T (a) for every individual a in the copy
of Atarget. Now it follows from Point 3 of Lemma 46 that A0 |= Q(a), which
finishes the proof of the claim.

The claim yields A0 |= Q(a), but there is no guarantee that A0 is minimal
with this property, thusA0 need not be fromMQ. LetA0, . . .A` be the sequence
of ABoxes obtained by starting with A0 and exhaustively removing assertions
such that Ai |= Q(a) still holds. We argue that the resulting ABox still has the
full binary tree of depth k as a minor.

It suffices to show that role assertions connecting two individuals that lie on
the same path from the core to a bw, w ∈ {0, 1}k are never removed. Assume
to the contrary that such a role assertion is removed when transitioning from
Ai to Ai+1. We distinguish three cases:

• The removed role assertion lies in A∧,w, for some w ∈ {0, 1}i, 0 ≤ i < k,
on the path from bw to bw0. This disconnects bw from bw0 (and from the
whole subtree rooted at bw0). Since the type derived at an individual only
depends on its connected component, and by monotonicity, tpAi+1,T (bw) ⊆
tp(A0)bw0

,T (bw). By Lemma 5, tp(A0)bw0
,T (bw) = tp(A0)bwbw0

,T (bw). By the

claim above, monotonicity, and Corollary 8,

tp(A0)bwbw0
,T (bw) ⊆ tp(A0)bwbw0bw1

∪t1(bw1),T (bw).

By construction of A0, the latter is equal to tpA∧∪t1(d),T (b). By Point 5
of Lemma 46 and monotonicity, tpA∧∪t1(d),T (b) ⊆ t0. Overall, this yields
tpAi+1,T (bw) ⊆ t0. A similar induction as in the claim yields tpAi+1,T (bε) ⊆
t0. Now it follows from Conditions 3 and 5 from Definition 20 and from
Corollary 8 that Ai+1 6|= Q(a), a contradiction.

• The removed role assertion lies in A∧,w, for some w ∈ {0, 1}k, on the path
from bw to bw1. This case is analogous.

• The removed role assertion lies in Atarget on the path from the core to bε.
This disconnects a superset of (A0)b0 from the core, so by the first case
and monotonicity, Ai+1 6|= Q(a), a contradiction.

The following lemma lists some properties that follow from the ability to
simulate psa. It will be important for the proof of Lemma 25 below.

Lemma 46. Let Q = (T ,Σ, q) ∈ (EL, conCQ) have the ability to simulate psa
and let A,a, b, c, d, t0, t1,Asource,A∧ and Atarget be as in Definition 20. Then

64

1. tpAsource,T (c) = t1;

2. tpA∧∪t1(c)∪t1(d),T (b) = t1;

3. Atarget ∪ t1(b), T |= Q(a);

4. tpAsource∪t1(c),T (c) = t1;

5. for i, j, k ∈ {0, 1},

tpA∧∪ti(c)∪tj(d)∪tk(b),T (b) =

{
t1 if k = 1 or i = j = 1

t0 otherwise

6. for i, j, k ∈ {0, 1}, tpA∧∪ti(c)∪tj(d)∪tk(b),T (c) = ti;

7. for i, j, k ∈ {0, 1}, tpA∧∪ti(c)∪tj(d)∪tk(b),T (d) = tj;

8. tpAtarget∪t0(b),T (b) = t0;

9. tpAsource∪t1(c),T (a) = tpA,T (a) for all a ∈ ind(Asource);

10. tpA∧∪t1(b)∪t1(c)∪t1(d),T (a) = tpA,T (a) for all a ∈ ind(A∧).

Proof. The proof is very similar to the proof of Lemma 16. We only prove some
points.

Point 2. By Point 2 of Definition 20, tpA,T (b) = t1. We manipulate the
ABox without changing the type derived at b. By Lemma 5, A can be replaced
by Ab. By Point 2 of Definition 20 and Corollary 8, we can replace Ab by
A∧ ∪ t1(c) ∪ t1(d), and the statement follows.

Point 5. If k = 1 or i = j = 1, the statement follows from Point 2 and
monotonicity. Otherwise, we have k = 0 and not i = j = 1. We only consider
the case i = 0 and j = 1, the other cases are similar. We have to show that
tpA∧∪t0(c)∪t1(d)∪t0(b),T (b) = t0. By Point 4 of Definition 20, tpAc∪t0(c),T (b) =
t0. We manipulate the ABox without changing the type derived at b. By
Lemma 5, we can replace Ac ∪ t0(c) by Abc ∪ t0(c). By Point 2 of Definition 20
and Lemma 5, tpAd,T (d) = t1. Thus, by Corollary 8, we can replace Abc ∪ t0(c)

by Abcd ∪ t0(c) ∪ t1(d), the statement follows.
Point 10. For a ∈ {b, c, d}, the statement follows from Points 5 to 7. Other-

wise, consider tpA∧∪t1(b)∪t1(c)∪t1(d),T (a). We manipulate the ABox so that the
type derived at a does not change. By Lemma 7, we can replace the ABox by
A∧∪t1(c)∪t1(d). By Point 1 and by Corollary 8, we can replace A∧∪t1(c)∪t1(d)
by A∧∪Ac∪ t1(d). From Point 2 of Definition 20 and Lemma 5, tpAd,T (d) = t1.

Thus, by Corollary 8, we can replace A∧ ∪ Ac ∪ t1(d) by A∧ ∪ Ac ∪ Ad. Again
by Lemma 5, we can replace the ABox by A and the statement follows.

Lemma 25. t is accessible in G iff AG |= Q(a).

65

Proof. For the “⇒” direction, assume that t is accessible in G. Define a sequence
S = S0 ⊆ S1 ⊆ · · · ⊆ V by setting

Si+1 = Si ∪ {w ∈ V | there is a (u, v, w) ∈ E such that u, v ∈ Si}

and let the sequence stabilize at Sn. Clearly, the elements of Sn are exactly the
accessible nodes. It can be shown by induction on i that whenever v ∈ Si, then
t1 ⊆ tpAG,T (av). In fact, the induction start follows from Point 1 of Lemma 46
and monotonicity, and the induction step follows from Point 2 and monotonicity.
Since t is accessible, this yields t1 ⊆ tpAG,T (at). It follows then from Point 3 of
Lemma 46 and monotonicity that AG |= Q(a), as required.

The “⇐” direction is more laborious. Assume that t is not accessible in G.
We define an extension A′G ⊇ AG and then show that A′G 6|= Q(a), which implies
AG 6|= Q(a) as desired.

For all v ∈ V , let acc(v) = 1 if v is accessible in G and acc(v) = 0 otherwise.
Further let (u1, v1, w1), . . . , (um, vm, wm) be an enumeration of all triples in E.
We inductively define a sequence of ABoxes A0,A1, . . . ,Am as follows:

A0 =
⋃
s∈S

(Assource ∪ t1(as)) ∪ Attarget ∪ t0(at)

and if Ai−1 has already been defined, let

Ai = Ai−1 ∪ Aui,vi,wi
∧ ∪ tacc(ui)(aui) ∪ tacc(vi)(avi) ∪ tacc(wi)(awi).

Finally, define A′G = Am. It is straightforward to verify that

A′G = AG ∪ {t1(av) | v ∈ V is accessible in G}
∪ {t0(av) | v ∈ V is not accessible in G}.

Set indV = {av | v ∈ V }. With the components of A′G, we mean the ABoxes
A+
s := Assource ∪ t1(as) for all s ∈ S, A+

target := Attarget ∪ t0(at), and A+
u,v,w :=

Au,v,w∧ ∪ tacc(u)(au) ∪ tacc(v)(av) ∪ tacc(w)(aw) for all (u, v, w) ∈ E. By Points 4
to 8 of Lemma 46, the following types are realized in components:

1. tpA+
s ,T (as) = t1 = tacc(s) for every s ∈ S,

2. tpA+
target,T

(at) = t0 = tacc(t),

3. tpA+
u,v,w,T (au) = tacc(u), tpA+

u,v,w,T (av) = tacc(v) and tpA+
u,v,w,T (aw) =

tacc(w).

Claim 1. Let 0 ≤ i ≤ m. Then tpAi,T (a) = tpC,T (a) for every component
C of A′G with C ⊆ Ai and all a ∈ ind(C).

We prove Claim 1 by induction on i. For i = 0, the only relevant components
are A+

target and the A+
s for s ∈ S. Since t /∈ S, all such components are disjoint

from each other, so the statement is true.

66

For the induction step, assume that the statement has already been proven
for some i ≥ 0. There is a component Ci = A+

u,v,w such that Ai+1 = A ∪ Ci.
Note that Ai and Ci might share only individuals au, av and aw. We have
tpCi,T (au) = tacc(u), tpCi,T (av) = tacc(v) and tpCi,T (aw) = tacc(w). By induction
hypothesis, tpAi,T (au) = tacc(u) if au is shared, tpAi,T (av) = tacc(v) if av is
shared, and tpAi,T (aw) = tacc(w) if aw is shared. The statement thus follows
from Lemma 7 for C = Ci, and from Lemma 7 and the induction hypothesis for
all C 6= Ci. This finishes the proof of Claim 1. Since A′G = Am, we may use
Claim 1 with A′G in place of Ai.

We now use Claim 1 to show that A′G, T 6|= q(a). Assume to the contrary
that A′G, T |= q(a), that is, there is a homomorphism h from q(x) to UA′G,T such
that h(x) = a. Note that any two distinct individuals from indV have distance
at least |q| in A′G, since the same is true for the individuals b, c, d in A∧. Since
q is connected, there can thus be at most one such individual in the range of h.

If no individual from indV is in the range of h, then q being connected implies
that there is a single component C of A′G such that the range of h contains only
individuals from C and anonymous elements below them.

First assume that C is A+
target. We can construct a homomorphism h′ from

q to UA+
target,T

by setting h′(x) = h(x) if h(x) ∈ ind(A′G) and using Claim 1 and

Lemma 3 if h(x) is an anonymous element. Thus, A+
target, T |= q(a), contradict-

ing Condition 3 of Definition 20.
Now, assume that C is A+

s or A+
u,v,w for some s ∈ S or (u, v, w) ∈ E. We only

treat the former, since the latter is completely analogous. Since the constants
from a are not in A+

s , q is Boolean. We can construct a homomorphism h′ from
q to UA+

s ,T as in the previous case. We can further construct a homomorphism

h′′ from UA+
s ,T to UA,T by mapping every a ∈ ind(A+

s) to the individual in A
that a is a copy of and using Points 9 and 10 from Lemma 46 and Lemma 3
to define h′′(d) for anonymous elements d. The composition g of h′ and h′′ is a
homomorphism from q to UA,T that is not core close since its range falls in the
subtree of UA,T rooted at c and the distance of c from the core is at least |q|.
This contradicts Condition 5 of Definition 20.

Next, assume that the range of h contains av for some v ∈ indV . We ar-
gue that q is Boolean and treeifiable. Since q is connected and the distance
between the core in Attarget and av is at least |q|, q is Boolean. To show that
q is treeifiable, consider the restriction U of UA′G,T to all elements within dis-
tance less than |q| from av. Then U is almost tree-shaped in the sense that
av is the only element that can have multiple predecessors, namely one prede-
cessor for every triple in E where v appears in the first two components, and
potentially one more predecessor if v = t, the target node. By Condition 6 of
Definition 20, there is a unique sequence of roles rn · · · r1 such that in each path
dmsm · · · d2s2d1s1av in U , sm · · · s1 is a postfix of rn · · · r1. We can thus obtain a
tree-shaped interpretation U ′ from U by exhaustively identifying elements d1, d2

whenever (d1, e), (d2, e) ∈ rI for some e and r. The construction of U ′ yields a
homomorphism g from U to U ′ in an obvious way. The composition g ◦ h is a
homomorphism from q to U ′. Consequently, q is treeifiable and the TBox has

67

been extended with C v AC for all C ∈ Cq.
Claim 2. av ∈ CU

′
iff av ∈ CU for all C ∈ Cq.

The “⇐” direction is immediate, since there is a homomorphism from U to U ′.
For the “⇒” direction let C = ∃r−n . · · · ∃r−1 .D where r1 · · · rn is a (potentially
empty) role path in qtree and D is > or a concept name from q or a CQ from
trees(q) viewed as an EL-concept. We prove the statement by induction on n,
the length of the role path in C. If n = 0, then C = D and C is an EL-concept.
By construction of U ′, it is clear that av ∈ CU

′
implies av ∈ CU . Now assume

the statement has been proven for n − 1 and consider C = ∃r−n . · · · ∃r−1 .D. If
D is > or a concept name, the statement again follows from the construction of
U ′. What remains is the case where D = ∃r.E for some EL-concept E. Since
av ∈ CU

′
, there is a path d1r1d2 · · · rn−1dn−1rnav in U ′ and d1 ∈ (∃r.E)U

′
. If

there is an e 6= d2 with (d1, e) ∈ rU
′

and e ∈ EU
′
, then again av ∈ CU by

construction of U ′. Assume that this is not the case, that is, d1 ∈ (∃r.E)U
′

is
true only because r1 = r and d2 ∈ EU

′
. Then av ∈ (∃r−n . · · · ∃r−2 .E)U

′
. Let

E = A1 u · · · u An1
u ∃s1.E1 · · · u ∃sn2

.En2
and define Γ to be the set of all

concepts of the form ∃r−n . · · · ∃r−2 .Ai or ∃r−n . · · · ∃r−2 .Ej for any relevant i and
j. Since Γ ⊆ Cq and since the role path in every concept from Γ has length
n− 1, we can apply the induction hypothesis, so av ∈ GU for every G ∈ Γ. By
Claim 1, we have tpA′G,T (av) ∈ {t0, t1}. Let

B =

{
A if tpA′G,T (av) = t1

Ac ∪ t0(c) if tpA′G,T (av) = t0,

so it follows from tpB,T (b) = tpA′G,T (av) that av ∈ A
UA′

G
,T

C′ iff b ∈ AUB,TC′ for all

C ′ ∈ Cq. Since both UA′G,T and UB,T are universal models and by construction

of T , av ∈ C ′
UA′

G
,T iff b ∈ C ′UB,T for all C ′ ∈ Cq. By choice of U , the same is

true when UA′G,T is replaced with U . Thus, b ∈ GUB,T for all G ∈ Γ, as well as

for all G of the form ∃r−n . · · · ∃r−1 .>. Since in UB,T , b has a unique ancestor path
up to length n, b ∈ CUB,T . Consequently, av ∈ CU as desired. This finishes the
proof of Claim 2.

To reach a contradiction, we now show that there is a homomorphism from
q to UA,T with b in its range. This is sufficient since b has distance at least |q|
from the core and q is connected, so such a homomorphism is not core close,
contradicting Condition 5 of Definition 20. Recall that av is in the range of
homomorphism h. By Claim 1, we have tpA′G,T (av) ∈ {t0, t1}, so tpA′G,T (av) ⊆
t1 = tpA,T (b). It thus follows from Claim 2 that av ∈ CU

′
implies b ∈ CUA,T

for all C ∈ Cq. The same is true if we replace UA,T with its restriction U ′′ to
all elements that have distance at most |q| from b. Note that U ′′ is tree-shaped
and recall that g ◦h is a homomorphism from q to U ′. We can apply Lemma 19
to this homomorphism, with U ′, av in place of I1, d1 and U ′′, b in place of I2, d2,
obtaining a homomorphism from q to UA,T with b in its range, as desired.

68

Appendix D. Proofs for Section 4.2

Lemma 29. Let A be an ABox of pathwidth at most k, a ∈ ind(A)ar(q), and
w ∈ Γ∗ a word that encodes (A,a). Then A |= Q(a) if and only if w ∈ L(A).

Proof. We start by proving that the states of the form saA, used for checking the
existence of a derivation for A(a), work as intended.

Claim. Let a ∈ Vi and a′ the name of its copy in the Bi. Then there exists a
successful run starting from the configuration (sa

′

A , i) if and only if A, T |= A(a).

First, assume that A, T |= A(a). We have to construct a successful run starting
from the configuration (i, sa

′

A). By Lemma 28, there exists a derivation tree for
A(a). The statement can be proved by induction on the minimal number k
such that A(a) has a derivation tree of depth k. If k = 0, then A(a) ∈ A, so
A(a′) ∈ Bi, and in this case we have δ(saA, (bi,Bi, ci, fi)) = true, which means
the run is successful. Now let k > 0 and consider a derivation tree for A(a) of
depth k.

• If the children of the root are of the form B1(a), . . . , Bn(a) such that
T |= B1 u . . . u Bn v A, then choose the set Z = {B1(a′), . . . , Bn(a′)}
in the transition, so in the run, we add the children labeled with (i, sa

′

Bj
)

for all 1 ≤ j ≤ n. By induction hypothesis, from all these configurations
there exists a successful run, so these runs can be combined to obtain a
successful run for (i, sa

′

A).

• If the root has one child labeled B(b) and we have T |= ∃r.B v A,
then there exist b ∈ ind(A) and r(a, b) ∈ A. This individual b does not
necessarily lie in Bi, but by the properties of a path decomposition, there
exists a bag Vj such that a, b ∈ Vj and, since a ∈ Vi, we also have a ∈ Vk
for all k between i and j. We extend the run as follows: If j < i, then use
the transition (left, sa

′

A) for i − j times. If j > i, then use the transition

(right, sa
′

A) for j−i times. Then we are in the configuration (j, sa
′

A) and if we
choose Z = {B(b′)}, we can extend the run successfully by the induction
hypothesis.

For the other direction, assume that there is a successful run starting from
the configuration (i, sa

′

A). We have to argue that A, T |= A(a). The proof is by
induction on the depth of the run. If the run has depth 0, i.e. the configuration
(i, sa

′

A) does not have any successors, then we must have δ(sa
′

A , (bi,Bi, ci, fi)) =
true. This is only the case if A(a′) ∈ Bi, so A(a) ∈ A and clearly, A, T |= A(a).
Now assume the run has depth k > 0. If the root node has a successor labeled
(i − 1, sa

′

A) or (i + 1, sa
′

A), by induction hypothesis we have A, T |= A(a). If
the root node does not have a successor of this kind, then there exists a set Z
and successors (i, sb

′

B) for all B(b′) ∈ Z such that B ∪ Z |= A(a′). By induction
hypothesis, we have A, T |= B(b) for all B(b′) ∈ Z. Together, this gives A, T |=
A(a). This finishes the proof of the claim.

Now we are ready to prove the lemma.

69

“⇒”. Let A |= Q(a) and let (b1,B1, c1, f1) . . . (bn,Bn, cn, fn) be an encod-
ing of (A,a) based on some (j, k+1) path decomposition V1, . . . , Vn of A. There
exists a homomorphism h0 from q to UA,T that maps the answer variables to
a. We use h0 to guide the accepting run of A on the word encoding (A,a). In
the i-th step of the main branch of the run, always choose the partial q-match
h ∈ H according to h0, i.e. if h0(x) = a ∈ ind(A) ∩ Vi then h(x) = (a′, named),
and if h0(x) = b for some anonymous individual b that lies in the subtree below
some c ∈ ind(A) then h(x) = (c′, anon). As the explanation set for h we can
just choose Zh = {A(a′) | a ∈ Vi and A, T |= A(a)}.

We argue that following these choices, the main path will be successful, i.e.
the leaf of the main branch is labeled with (sgV,W ,a) such that V = var(q),
W is the set of all binary atoms of q and g the empty map. Let x ∈ var(q).
Then either h0(x) ∈ ind(A) or h0(x) is an anonymous individual below some
b ∈ ind(A). If h0(x) ∈ ind(A), then let Vi be the first bag such that h0(x) ∈ Vi
and thus there is a copy of h0(x) in ind(Bi). Thus, in the i-th step of the main
branch, x is added to V . Similarly, if h0(x) is an anonymous individual below
some b ∈ ind(A), then let Vi be the first bag such that b ∈ Vi. Again, one can
conclude that x is added to V in the i-th step of the main branch. Overall,
it follows that V = var(q). Now, let r(x, y) be a binary atom from q. If both
h0(x) and h0(y) are in ind(A), then, since V1, . . . , Vn is a path decomposition
of A, there exists a bag Vi such that h0(x), h0(y) ∈ Vi, so there exists a copy of
r(h0(x), h0(y)) in Bi and in the i-th step of the main branch, r(x, y) is added
to W . If at least one of h0(x) and h0(y) is not in ind(A), but is an anonymous
individual below some b ∈ ind(A), then either both h0(x) and h0(y) are mapped
to anonymous individuals below b or one of them is mapped to b. In any case,
r(x, y) is added to W in the i-th step of the main branch. Overall, it follows
that W is the set of all binary atoms of q. Finally, g must be the empty map,
since cn = ∅.

It follows immediately from the claim above that the other paths will be
successful as well, i.e. whenever A, T |= A(a) for some a ∈ Vi, then there is
a successful run that starts at (sa

′

A , i). This concludes the proof of the first
direction.

“⇐”. Assume that there is a successful run of A on the input word w =
(b1,B1, c1, f1) . . . (bn,Bn, cn, fn). The run must have one main path with states
of the form sgV,W . In every step of the main path, one partial q-match h together
with an explanation set Zh is chosen. From these partial q-matches we can
construct a map h0 from var(q) to the universal model of A and T in the
following way: Whenever a partial q-match h maps a variable x to (a, named),
we set h0(x) = a. Whenever a partial q-match h maps a variable x to (a, anon),
then consider the explanation set Zh. By the definition of the explanation
set, we have ({B | B(a) ∈ Zh}, h−1(a, named), h−1

1 (a)) ∈ R, so there exists
a homomorphism from h−1

1 (a) to the canonical model of {B | B(a) ∈ Zh}
that maps precisely the variables from h−1(a, named) to the root, which is the
homomorphism we use to build h0. From the condition V ∩dom(h) = dom(g) it
follows that a partial q-match chosen later in the run will not assign a different
image to a variable that has appeared earlier in the domain of a partial q-match,

70

so h0 is well defined.
We show that h0 is indeed a homomorphism from q to UA,T with q(x) = a.

Since the main branch ends in a configuration (sgV,W ,a), where V = var(q), we
know that dom(h0) = var(q). We argue that every atom of q is satisfied by h0.

• Let A(x) be a unary atom from q such that h0(x) ∈ ind(A). Let h be
the partial q-match that determined h0(x), so h(x) = (a′, named) for some
a′ ∈ ind(B), and let Zh be the explanation set chosen in the run, so the
configuration has children labeled (i, sbB) for every B(b) ∈ Zh. Since the
run is successful and we know from the claim above that a partial run
starting from the configuration (i, sb

′

B) is successful if and only if A, T |=
B(b), we have A, T |= B(b) for all B(b′) ∈ Zh and thus, A, T |= A(a).

• Let r(x, y) be a binary atom from q such that both h0(x) and h0(y) are
in ind(A). Since the main branch ends in the state sgV,W , where W is the
set of all binary atoms from q, there must be one step in the main branch,
where r(x, y) has been added to W , say the i-th step. This means that
both x and y lie in dom(h), where h is the partial q-match chosen in the
i-th step. Since h respects role atoms, we have r(h0(x), h0(y)) ∈ A.

• Let A(x) be a unary atom from q such that h0(x) is an anonymous individ-
ual below some a ∈ ind(A). Let h be the partial q-match that determined
h0(x), so h(x) = (a′, anon), and let Zh be the explanation set chosen in the
run. By definition of an explanation set, there is a partial homomorphism
from q with x in its domain to the universal model of {B(a) | B(a) ∈ Zh},
which was used to define h0 on x, so we have A, T |= A(h0(x)).

• Let r(x, y) be a binary atom from q such that at least one of h0(x) and
h0(y) is an anonymous individual. Then the argument is similar to the
previous case.

Appendix E. Proofs for Section 6

Lemma 35. For all 1 ≤ k ≤ n,

1. Ank ∈MQk
;

2. br(Ank) = k;

3. Ank has exactly `k2(n) leaves.

Proof. Let k ≥ 1. We say that an individual a in an ABox A has type i if i
is the largest number such that {A0, A1, . . . , Ai} ⊆ tpA,Tk(a). We prove the
following statement by induction on n:

(*) For 1 ≤ k ≤ n, the root of Ank has type k.

71

If n = 1, it is easy to check that the root of A1
1 has type 1. Now, let n > 1

and k ≤ n. We distinguish two cases. If k = n, then Ank with root a contains
assertions r(a, ar), s(a, as) and each of ar, as is the root of a copy of An−1

k−1 .
By induction hypothesis and Lemma 5, ar and as are of type k − 1. By the
construction of Tk, a has type k. If k < n, then Ank with root a contains
assertions t(a, at), u(a, au), and at is the root of a copy of An−1

k−1 and au is the

root of a copy of An−1
k . By induction hypothesis and Lemma 5, at has type

k − 1 and au has type k. By the construction of Tk, a has type k. This finishes
the proof of (*).

Now we prove point 1. By (*), the root of Ank is an answer to Qk. We prove
by induction on n that Ank is minimal. If n = 1, it is easy to check that removing
any assertion from A1

1 makes Q1 false at the root. If n > 1 and k = n, then Ank
with root a contains assertions r(a, ar), s(a, as) and each of ar, as is the root of
a copy of An−1

k−1 . By (*) and Lemma 5 ar and as are both of type k − 1. By
induction hypothesis, removing any assertion in one of the subtrees rooted at
ar or as reduces the type of ar or as, which implies that the type of a is less
than k. Similarly, if any of the assertions r(a, ar) and s(a, as) is removed, the
type of a becomes k − 1. Thus, removing any assertion from Ank reduces the
type of the root, so Ank is minimal. The case where k < n is similar.

We now prove Point 2 by induction on n. If n = 1, then k = 1, and it is
easy to see that br(A1

1) = 1. Now, let n > 1 and 1 ≤ k ≤ n. We distinguish
two cases. If k = n, then Ank with root a contains assertions r(a, ar), s(a, as)
and each of ar, as is the root of a copy of An−1

k−1 . By induction hypothesis,
br(Aar) = br(Aas) = k − 1. By the algorithm that computes the branching
number given in Section 4, br(Ank) = (k − 1) + 1 = k. If k < n, then Ank with
root a contains assertions t(a, at), u(a, au), and at is the root of a copy of An−1

k−1

and au is the root of a copy of An−1
k . By induction hypothesis, br(Aat) = k− 1

and br(Aau) = k. Thus, br(Ank) = max(k, k − 1) = k.
Now we prove Point 3 by induction on n. If n = 1, then k = 1, and A1

1 has
two leaves. Since the full binary tree of depth one does not have the full binary
tree of depth two as a minor, two is also the largest number of leaves that a
binary tree of depth one can have if a full binary tree of depth two as a minor
is avoided. If n > 1 and k = n, then Ank takes the form of the full binary tree
of depth n, so it has 2n leaves. This is clearly the largest number of leaves that
a binary tree of depth n can have that avoids a binary tree of depth n + 1 as
a minor, since it is the largest number of leaves that any binary tree of depth
n can have. Now let n > 1 and k < n. We have to argue that Ank has `k2(n)
leaves. Let T be a binary tree of depth n that avoids the full binary tree of
depth k+ 1 as a minor, and such that T has the maximum number of leaves, so
T has `k2(n) leaves. The root of T needs to have two successors, since otherwise,
adding another successor to the root would increase the number of leaves by
one, and adding another successor to the root can not lead to the existence of
a full binary tree of depth k + 1 as a minor. Now consider the two subtrees T1

and T2 rooted at the two successors of the root of T . If none of them had the
full binary tree of depth k as a minor, we could increase the number of leaves

72

by replacing T1 by the tree that has `k2(n− 1) leaves, using the fact that `k2(n)
is monotone in both n and k. So we can assume that one of T1 and T2 has the
full binary tree of depth k as a minor. Thus, the other one can not have the full
binary tree of depth k as a minor, since then T would have the binary tree of
depth k+ 1 as a minor. Again, by monotonicity of `k2(n), we can conclude that
one of T1 and T2 has `k2(n− 1) leaves and the other one has `k−1

2 (n− 1) leaves.
By induction hypothesis, An−1

k has `k2(n− 1) leaves and An−1
k−1 has `k−1

2 (n− 1)
leaves. Thus, the number of leaves of Ank is equal to the number of leaves of T ,
which is `k2(n).

Lemma 36. For every k ≥ 1, Qk is rewritable into linear Datalog.

Proof. We show that br(Qk) = k, which by Proposition 18 implies that Qk has
bounded pathwidth which by Theorem 17 implies that Qk is rewritable into
linear Datalog.

Let A ∈ MQk
. We show that br(A) = k. First, let us analyse the types

tpA,Tk(a), a ∈ ind(A), and the structure of A. Since > v A0 ∈ Tk, none of
the types tpA,Tk(a) is empty. It is easy to verify that Tk |= Ai v Ai−1 and
Tk |= Bx,i v Bx,i−1 for 1 ≤ i ≤ k and x ∈ {r, s, t, u}. We say that a is of type i
if i is the largest integer such that Ai ∈ tpA,Tk(a) and that a is of x-type jx if
jx is the largest integer such that Bx,jx ∈ tpA,Tk(a).

Claim 1. Every individual in A has degree at most two and every individual
of degree two is an rs-individual or a tu-individual.

We first argue that every individual has at most one x-successor for every x ∈
{r, s, t, u}. Assume to the contrary that there are distinct individuals a, b, c and
assertions x(a, b), x(a, c) ∈ A for some x ∈ {r, s, t, u}. Let b have type j and
x-type ` and c have type m and x-type n. Then Bx,j , Bx,`, Bx,m and Bx,n are
derived at a, but since Tk |= Bx,i v Bx,i−1 for 1 ≤ i ≤ k, these four concept
names are already implied by Bx,max{j,`,m,n}. Thus one of the individuals b, c
can be removed without altering the result of the query.

Now we argue that every individual with degree greater than one is either
an rs-individual or a tu-individual. All other combinations do not appear due
to the minimality of A. For example, assume that there is an rst-node a. Then
some Br,j , Bs,`, Bt,m are derived at a, assume that j, `,m are maximal with this
property. If a is the root of A, then the t-edge can be removed. If a is not
the root, it must be connected to its parent by a t-edge, since otherwise, the
t-edge below a can be removed. So assume, a is a t-successor of its parent. If
now m ≤ min(j, `), the t-edge below a can be removed. If m > min(j, `), but
then both the r-edge and the s-edge can be removed. In either case, A is not
minimal. This finishes the proof of Claim 1.

Using minimality of A, it can be argued that for every x-individual a (an
individual with only one outgoing edge) with x ∈ {r, s, t, u}, there is some
b ∈ ind(A) with x(b, a) ∈ A and it follows that a path from one branching point
to the next is always a chain of the same role.

Claim 2. a is of type i iff br(Aa) = i for all a ∈ ind(A) that are leaves or of

73

degree two.

We prove the claim by induction on the number n of leaves in Aa. If n = 1,
then a is a leaf itself, thus of type 0, and the statement follows. Now let n > 1
and let a be an individual of degree two with n leaves below it. We only argue
the ‘if’ direction, the ‘only if’ direction can be argued similarly. So assume that
br(Aa) = i for some i ≥ 1. Then by Claim 1, a has two outgoing paths that
both reach two nodes b and c that are a leaf or of degree two. Let j = br(Ab)
and ` = br(Ac) and w.l.o.g. assume j ≥ `. By induction hypothesis, b is of type
j and c is of type `. There are two possibilities: Either j = `, which implies
i = j + 1 = ` + 1, or j > `, which implies i = j. In case j = `, a must be
an rs-individual. In fact, assuming a was a tu-individual, then Ai(a) would be
derived using Bt,i−1 u Bu,i v Ai, so a full binary tree of depth i below the t-
successor of a is not needed and one could remove any leaf below the t-successor
of a (contradicting minimality of A), decreasing the depth of the largest binary
tree minor by at most one. So since a is an rs-individual, Br,i−1 uBs,i−1 v Ai
applies and a has type i. In case j > `, one can argue in a similar way that a
must be a tu-individual and j = ` + 1, and it follows that a has type i. This
finishes the proof of Claim 2.

Since A |= Qk(a) for the root a of A, we know that a is of type k, so Claim 2
says that br(A) = k.

Lemma 37. (d− 1)k(n− k)k ≤ `kd(n) ≤ (k + 1)(d− 1)knk for all d, k ≥ 0 and
n ≥ 2k.

Proof. We aim to show that for all d, k ≥ 0 and n ≥ 2k,

`kd(n) =

k∑
i=0

(d− 1)i
(
n

i

)
(∗)

From (∗), the lower bound stated in the lemma is obtained by considering only
the summand for i = k and the upper bound is obtained by replacing every
summand with the largest summand, which is the one for i = k if n ≥ 2k.

Towards proving (∗), we first observe that for all n ≥ 1 and k ≥ 1:

`kd(n) = `kd(n− 1) + (d− 1)`k−1
d (n− 1) (∗∗)

Let T be a tree with degree d and depth n that does not contain the full binary
tree of depth k+1 as a minor and that has the largest possible number of leaves.
It can easily be seen that the root of T has degree d and that T contains the
full binary tree of depth k as a minor. Consider the subtrees T1, . . . , Td whose
roots are the children of the root of T . There must be one of them that also
has the full binary tree of depth k as a minor and all of them must have the full
binary tree of depth k−1 as a minor, otherwise T would not have the maximum
number of leaves. Moreover, there cannot be two subtrees that both have the
full binary tree of depth k as a minor, since then T would have a minor of depth

74

k + 1. Since the number of leaves of T is the sum of the leaves of all Tj , (∗∗)
follows.

Now we prove (∗) by induction on n. First observe that `kd(0) = `0d(n) = 1
for all d, k, n, thus (∗) holds for all cases where k = 0 or n = 0. Now let k ≥ 1
and n ≥ 1 and assume that (∗) holds for `kd(n) and for `k−1

d (n). We show that
it also holds for `kd(n+ 1):

`kd(n+ 1) = `kd(n) + (d− 1) · `k−1
d (n)

=

k∑
i=0

(d− 1)i
(
n

i

)
+ (d− 1)

k−1∑
i=0

(d− 1)i
(
n

i

)

=

k∑
i=0

(d− 1)i
(
n

i

)
+

k∑
i=1

(d− 1)i
(

n

i− 1

)

= 1 +

k∑
i=1

(d− 1)i
(
n+ 1

i

)

=

k∑
i=0

(d− 1)i
(
n+ 1

i

)

Proposition 38. Let m ≥ 0. For all k ≥ 1, Q2k+3 is not rewritable into a
linear Datalog program of diameter k on the class of ABoxes Cm.

Proof. Let m ≥ 0. For the sake of contradiction, assume that there is a k ≥ 1,
such that Q2k+3 is rewritable into a linear Datalog program Π of diameter k on
the class Cm. Choose n very large (we will make this precise later) and consider
the ABox A that can be obtained from An2k+3 by subdividing every edge into a
path of length m + 1 of the same role. Using Lemma 35, it is easy to see that
A ∈MQ2k+3

and that A has `2k+3
2 (n) leaves, so from Lemma 37 it follows that

A has at least (n− (2k + 3))2k+3 leaves.
Let a0 be the root of A. From A ∈ MQ2k+3

, it follows that A, T |= Π(a0)
and thus there is a derivation D of Π(a0) in A. Consider the ABox AD induced
by derivation D. By Lemma 27, we have the following:

1. AD |= Π(a0);

2. there is a homomorphism from AD to A that is the identity on a0;

3. AD has pathwidth at most k.

We manipulate AD as follows:

• restrict the degree to |T | by taking a subset according to Lemma 6;

• remove all assertions that involve an individual a that is not reachable
from a0 in GA by a path, this is possible according to Lemma 5.

75

We use B to denote the resulting ABox. It can be verified that Conditions 1 to 3
still hold when AD is replaced with B. In particular, this is true for Condition 1
since AD |= Π(a0) iff AD |= Qk(a0) iff B |= Qk(a0) iff B |= Π(a0).

Choose a homomorphism h from B to A that is the identity on a0. Then h
must be surjective since otherwise, the restriction A− of A to the individuals
in the range of h would satisfy A−, T |= A0(a0), contradicting A ∈ MQ2k+3

.
Let a1, . . . , aw be the leaves of A, w ≥ (n− 2k − 3)2k+3. For each ai, choose a
bi with h(bi) = ai. All individuals in b1, . . . , bw must be distinct since h has a
different value for each of them.

By construction, B is connected. Since there is a homomorphism from B
to A, B must be a DAG (directed acyclic graph). We proceed to exhaustively
remove assertions from B as follows: whenever r(c1, c), r(c2, c) ∈ B with c1 6= c2,
then choose and remove one of these two assertions. Using the fact that every
individual in B is reachable from a0, it can be proved by induction on the number
of edge removals that the obtained ABoxes

(i) remain connected and

(ii) contain the same individuals as B, that is, edge removal never results in
the removal of an individual.

Point (i) and the fact that we start from a DAG-shaped ABox means that
the ABox Bt ultimately obtained by this manipulation is tree-shaped. By con-
struction of Bt, h is still a homomorphism from Bt to A, Bt has pathwidth at
most k, and the individuals b1, . . . , bw are leaves in Bt (and thus Bt has at least
(n− 2k − 3)2k+3 leaves). From the former, it follows that the depth of Bt is at
most n(m+ 1).

Assume that Bt does not contain the full binary tree of depth 2k + 3 as a
minor. Then by Lemma 37, the number of leaves of Bt is at most

(2k + 3)(|T | − 1)2k+2(n(m+ 1))2k+2,

which is a polynomial in n of degree 2k + 2. So if we choose n such that

(n− 2k − 3)2k+3 > (2k + 3)(|T | − 1)2k+2(n(m+ 1))2k+2

in the beginning, this leads to a contradiction. Hence, Bt must contain as a
minor the full binary tree of depth at least 2k + 3. But it is well known that
any such tree has pathwidth at least k + 1 [49], in contradiction to Bt having
pathwidth at most k.

Proposition 39. Let ` ≥ 1. Q8`+13 is not rewritable into a linear Datalog
program of width `.

Proof. Assume to the contrary of what we have to show that Q8`+13 is rewritable
into a linear Datalog program Π0 of width `. Let k be the diameter of Π0.
Clearly, Π0 is also a rewriting of Q8`+13 on the class of ABoxes Ck. We show
that Π0 can be rewritten into a linear Datalog rewriting Π′ of Q8`+13 of diameter
4`+ 5, in contradiction to Proposition 38.

76

We carry out a sequence of three rewriting steps. Informally, in the first
rewriting we normalize the shape of rule bodies, in the second one we control
the number of disconnected components in the rule body (or rather its restriction
to the EDB relations), and in the third one we actually bound the diameter to
4`+ 5 by replacing each rule with a collection of rules.

In the first step, let Π1 be obtained from Π0 by replacing every rule S(x)←
q(y) in Π0 with the set of all rules S(x′) ← q(y′) that can be obtained from
the original rule by consistently identifying variables in the rule body and head
such that the restriction of q(y′) to EDB relations (that is, concept and role
names in Σ) takes the form of a forest in which every tree branches at most
once. This step preserves equivalence on Ck since every homomorphism from
the body of a rule in Π into an ABox from Ck (and also to the extension of such
an ABox with IDB relations) induces a variable identification that identifies a
corresponding rule produced in the rewriting.

In the next step, we rewrite Π1 into a linear Datalog program Π2, as follows.
Let S(x) ← q(y) be a rule in Π1 and call a variable in q(y) special if it occurs
in x or in the IDB atom in q(y), if existent. Since Π1 has width `, there are at
most 2` special variables in each rule. We obtain a new rule body q′(y′) from
q(y) in the following way:

1. remove the IDB atom (if existent), obtaining a forest-shaped rule body;

2. remove all trees that do not contain a special variable;

3. re-add the IDB atom (if existent).

In Π2, we replace S(x)← q(y) with S(x)← q′(y′).
We argue that, on the class of ABoxes Ck, Π2 is equivalent to Π1. Thus,

let A be an ABox from Ck and a ∈ ind(A) such that A |= Π2(a). We have
to show that A |= Π1(a). Let q1(x1), . . . , qm(xm) be all trees that have been
removed from a rule body during the construction of Π2. Let Ai be qi(xi)
viewed as a Σ-ABox, 1 ≤ i ≤ m. Note that each Ai must be in Ck. Let B be
the disjoint union of the ABoxes A,A1, . . . ,Am, assuming that these ABoxes
do not share any individual names, and note that B is in Ck. Since A |= Π2(a),
we must have B |= Π2(a). By construction of B, this clearly implies B |= Π1(a).
Consequently, B |= Q8`+13(a). Since answers to OMQs from (EL,AQ) depend
only on the reachable part of ABoxes, we obtain that A |= Q8`+13(a), thus
A |= Π1(a) as required.

At this point, let us sum up the most important properties of the linear
Datalog program Π2: it is a rewriting of Q8`+13 on Ck, has width at most ` and
diameter at most k, and

(∗) the restriction of the rule body to EDB relations is a forest that consists
of at most 2` trees.

Note that the upper bound of 2` is a consequence of the fact that, by construc-
tion of Π2, each of the relevant trees contains at least one special variable.

77

Figure E.9: The body q(y) of a rule from Π2 consists of one or several such trees, where at
most one variable is branching. The branching variable and special variables are circled and
they divide the body into five paths qi(yi).

We now rewrite Π2 into a final linear Datalog program Π3 that is equivalent
to Π2, has width at most 4` + 2, and diameter at most 4` + 5. Thus Π3 is
a rewriting of Q8`+13 on Ck of diameter 4` + 5, which is a contradiction to
Proposition 38.

It thus remains to give the construction of Π3. Let ρ = S(x) ← q(y) be
a rule in Π2 and let y′ ⊆ y be the set of variables x that are special or a
branching variable where the latter means that q(y) contains atoms of the form
r(x, y1), s(x, y2) with y1 6= y2. Due to (∗), y′ contains at most 4` variables (at
most 2` special variables and at most 2` branching variables). Let q′(y′) be the
restriction of q(y) to the variables in y′; we can assume that each variable y
from y′ occurs in q′(y′) since if this is not the case, we can add an atom >(y).
By construction of Π2, it can be verified that q(y) is the union of q′(y′) and
path-shaped q1(y1), . . . , qn(yn) such that for 1 ≤ i ≤ n

• qi(yi) contains only EDB atoms,

• each qi(yi) contains at most two variables from y′ and each such variable
is an end point of the path, and

• the queries q1(y1), . . . , qn(yn) only share variables from y′.

The structure of q(y) is illustrated in Figure E.9. We thus find linear Datalog
programs Γ1, . . . ,Γn that are at most binary, of width at most two and diameter
at most three such that for any Σ-ABox A and a ⊆ ind(A), A |= Γi(a) if and
only if there is a homomorphism hi from qi(yi) to A such that hi(yi) = a.
Let the goal relations of Γ1, . . . ,Γn be G1, . . . , Gn and assume that Gi occurs
in Γi only once, in a rule head Gi(xi). We assume w.l.o.g. that the programs
Γ1, . . . ,Γn do not share variables or IDB relations, and neither do they share
variables or IDB relations with Π2. In Π3, we replace ρ = S(x) ← q(y) with
the following rules:

• for any rule P (w)← p(z) in Γ1 where p(z) contains only EDB atoms, the
rule XP

ρ (y′,w)← q′(y′) ∧ p(z);

• for any rule P (w) ← p(z) in Γi, 1 ≤ i ≤ n, where p(z) contains the IDB
atom R(u), the rule XP

ρ (y′,w)← XR
ρ (y′,u) ∧ p(z);

• for any rule P (w)← p(z) in Γi, 1 < i ≤ n, where p(z) contains only EDB

atoms, the rule XP
ρ (y′,w)← X

Gi−1
ρ (y′,xi−1) ∧ p(z);

78

• the rule S(x)← XGn
ρ (y′,xn),

where the goal relations of Γ1, . . . ,Γn become standard (non-goal) IDB relations.
It can be verified that Π3 is as required.

Appendix F. Proofs for Section 7

We describe the construction of Aderive. By Lemma 28, A, T |= A(a) if and
only if there is a derivation tree for A(a). We may thus construct Aderive so
that it checks for the existence of a suitable derivation tree. The set of states of
Aderive is

Sderive = {dA | A ∈ CN} ∪ {daA | A ∈ CN ∧ a ∈ Ccore}∪
{dr | r ∈ ROL} ∪ {da | a ∈ Ccore}.

For brevity, let ` = |T | · |q| denote the outdegree of trees. First consider states
of the form dA and alphabet symbols σ ∈ ΓN that do not contain an element
of Ccore. If A ∈ σ or > v A ∈ T , set δ(dA, σ) = true. Otherwise, set

δ(dA, σ) =
(∨
T |=A1u...uAnvA

n∧
i=1

〈0〉dAi

)
∨
(∨
∃r.BvA∈T

∨̀
i=1

〈i〉(dB ∧ dr)
)

∨
(∨
∃r−.BvA

(dr ∧ 〈−1〉dB)
)

Now let σ ∈ ΓN contain a ∈ Ccore. If A ∈ σ or > v A ∈ T , set δ(dA, σ) = true.
Otherwise, set

δ(dA, σ) =
(∨
T |=A1u...uAnvA

n∧
i=1

〈0〉dAi

)
∨
(∨
∃r.BvA∈T

∨̀
i=1

〈i〉(dB ∧ dr)
)

∨
(∨
∃r−.BvA

(dr ∧ 〈−1〉daB)
)

Next, consider states of the form daA and alphabet symbols σ = (B,a) ∈ Γε. If
A(a) ∈ B or > v A ∈ T , set δ(daA, σ) = true. Otherwise, set

δ(daA, σ) =
(∨
T |=A1u...uAnvA

n∧
i=1

〈0〉daAi

)
∨
(∨
∃r.BvA∈T

∨̀
i=1

〈i〉(dB ∧ dr ∧ da)
)

∨
(∨
∃r.BvA,r(a,b)∈B

〈0〉dbB
)
∨
(∨
∃r−.BvA,r(b,a)∈B

〈0〉dbB
)

Finally, consider states of the form dr and da and alphabet symbols σ ∈ ΓN .
Set δ(dr, σ) = true if r ∈ σ and δ(da, σ) = true if a ∈ σ. For all remaining
combinations of states and alphabet symbols, δ(·, ·) is set to false.

79

Lemma 44. Let A be a pseudo tree-shaped Σ-ABox with core B, ind(B) ⊆ Ccore,
and a a tuple from ind(B). Then

1. if A |= Q(a) via a core close homomorphism, then the following is a
matching completion of B: {A(a) | a ∈ ind(B) and A, T |= A(a)};

2. if there exists a matching completion M of B such that A, T |= A(a) for
all A(a) ∈M , then A |= Q(a).

Proof. Assume that A |= Q(a) via a core close homomorphism, that is, there is
a core close homomorphism h from q to UA,T with h(x) = a. Set M = {A(a) |
a ∈ ind(B) and A, T |= A(a)}. Clearly, M is a completion of B. It remains
to argue that it is matching. Since h is core close, its range contains a core
individual or an anonymous element that the chase has generated below a core
individual.

We start with the former case. Let p be obtained from q by first identifying
any two (quantified) variables x1, x2 such that h(x1) = h(x2) is a non-core
individual or an anonymous element, and then dropping all atoms that contain
a variable x with h(x) a core individual. Since UA,T takes the form of B with
a directed tree attached to each individual, p must be a disjoint union of tree-
shaped CQs. Let q1, . . . , qn be these CQs and for 1 ≤ i ≤ n let q′i be obtained
from qi by reading the unique atom r(x, y) ∈ p with h(x) a core individual and
y the root of qi. Such an r(x, y) must exist since the range of h contains a
core individual and q is connected. Finally let C1, . . . , Cn be q′1, . . . , q

′
n viewed

as EL-concepts. It is not hard to verify that C1, . . . , Cn ∈ trees(q) and thus T
contains the CI Ci v ACi

for 1 ≤ i ≤ n. This implies that ACi
(bi) ∈ M for

1 ≤ i ≤ n, where bi is such that h(y) = bi, y the root of q′i. We are now in
the position to describe a homomorphism h′ that shows BM |= q(a). Start with
setting h′(x) = h(x) whenever h(x) is a core individual. Then take any Ci. By
construction, BM contains a disjoint copy of ACi

whose root is glued to bi. We
can thus extend h′ to the variables in q′i in a straightforward way.

Now for the case that the range of h contains no core individual, but an
anonymous element that the chase has generated below a core individual b.
Since q is connected, h then maps all variables in q to the subtree of anonymous
elements that the chase has generated below b. From the definition of M and
Lemma 3, it follows that the subtree of anonymous elements below b in UA,T
is isomorphic to the tree that is generated below b in UBM ,T . Consequently, we
can find a homomorphism h′ from q to the latter tree, showing that BM , T |= q.

Now assume that there exists a matching completion M of B such that
A, T |= A(a) for all A(a) ∈M . We argue that there is a homomorphism h from
BM to UA,T that is the identity on B. We construct h using the following set
of homomorphisms. First, the identity on ind(B), and second, for every copy of
some AC that was glued to some a ∈ ind(B), the homomorphism hAC ,a defined

as follows: Since UA,T is a model of A and T , and since a ∈ A
UA,T
C , UA,T

contains a homomorphic image of AC where the root is mapped to a. Let hAC ,a

be this homomorphism from AC to UA,T . It can be checked that this gives a

80

well-defined homomorphism h. In particular, the different homomorphism used
to construct h are compatible, since the intersection of the domains of two such
homomorphisms is either empty or consist of a single element a, but in the
latter case hAC ,a(a) = a, so it is compatible with the identity homomorphism
and with every other homomorphism of the form hA′C ,a.

Since M is matching, BM |= q(a). Due to the homomorphism h from BM to
UA,T we constructed, this implies A |= Q(a).

81

	Introduction
	Preliminaries
	AC 0 versus NL for Connected CQs
	NL versus PTime for Connected CQs
	Unbounded Pathwidth Implies PTime-hardness
	Bounded Pathwidth Implies Linear Datalog Rewritability

	The Trichotomy for Disconnected CQs
	Width Hierarchy for Linear Datalog Rewritability
	Decidability and Complexity
	Conclusion
	Proofs for Section 2
	Proofs for Section 3
	Proofs for Section 4.1
	Proofs for Section 4.2
	Proofs for Section 6
	Proofs for Section 7

