
Efficiently Enumerating Answers to Ontology-MediatedQueries
Carsten Lutz

Institute of Computer Science

University of Leipzig

Leipzig, Germany

clu@informatik.uni-leipzig.de

Marcin Przybyłko

Institute of Computer Science

University of Leipzig

Leipzig, Germany

przybyl@informatik.uni-leipzig.de

ABSTRACT
We study the enumeration of answers to ontology-mediated queries

(OMQs) where the ontology is a set of guarded TGDs or formu-

lated in the description logic ELI and the query is a conjunctive

query (CQ). In addition to the traditional notion of an answer, we

propose and study two novel notions of partial answers that can

take into account nulls generated by existential quantifiers in the

ontology. Our main result is that enumeration of the traditional

complete answers and of both kinds of partial answers is possible

with linear-time preprocessing and constant delay for OMQs that

are both acyclic and free-connex acyclic. We also provide partially

matching lower bounds. Similar results are obtained for the related

problems of testing a single answer in linear time and of testing

multiple answers in constant time after linear time preprocessing.

In both cases, the border between tractability and intractability is

characterized by similar, but slightly different acyclicity properties.

CCS CONCEPTS
• Theory of computation→ Database query processing and
optimization (theory); Incomplete, inconsistent, and uncer-
tain databases.

KEYWORDS
ontology-mediated queries; tuple generating dependencies; descrip-

tion logic; enumeration; constant delay; partial answers

ACM Reference Format:
Carsten Lutz and Marcin Przybyłko. 2022. Efficiently Enumerating Answers

to Ontology-Mediated Queries. In Proceedings of the 41st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3517804.3524166

1 INTRODUCTION
In knowledge representation, ontologies are an important means

for injecting domain knowledge into an application. In the context

of databases, they give rise to ontology-mediated queries (OMQs)

which enrich a traditional database query such as a conjunctive

query (CQ) with an ontology. OMQs aim at querying incomplete

data, using the domain knowledge provided by the ontology to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9260-0/22/06. . . $15.00

https://doi.org/10.1145/3517804.3524166

derive additional answers. In addition, they may enrich the vocab-

ulary available for query formulation with relation symbols that

are not used explicitly in the data. Popular choices for the ontology

language include (restricted forms of) tuple-generating dependen-

cies (TDGs), also dubbed existential rules [5] and Datalog
±
[18], as

well as various description logics [3].

The complexity of evaluating OMQs has been the subject of in-

tense study, with a focus on single-testing as the mode of query eval-

uation: given an ontology-mediated query (OMQ) Q , a database D,
and a candidate answer ā, decide whether ā ∈ Q(D) [2, 6, 12, 14].
In many applications, however, it is not realistic to assume that a

candidate answer is available. This has led database theoreticians

and practitioners to investigate more relevant modes of query eval-

uation such as enumeration: givenQ and D, generate all answers in
Q(D), one after the other and without repetition.

The first main aim of this paper is to initiate a study of efficiently

enumerating answers to OMQs. We consider enumeration algo-

rithms that have a preprocessing phase in which data structures

are built that are used in the subsequent enumeration phase to pro-

duce the actual output. With ‘efficient enumeration’, we mean that

preprocessing may only take time linear inO(| |D | |) while the delay
between two answers must be constant, that is, independent of D.
One may impose the additional requirement that, in the enumera-

tion phase, the algorithm may consume only a constant amount of

memory on top of the data structures computed in the preprocess-

ing phase. We follow [21, 35] and refer to the resulting enumeration

complexity classes as DelayClin and CD◦Lin, the former admitting

unrestricted (polynomial) memory consumption. Without ontolo-

gies, answer enumeration in CD◦Lin and in DelayClin has received

significant attention [4, 11, 15, 20–22, 25, 26, 35], see also the sur-

vey [10]. A landmark result is that a CQ q(x̄) admits enumeration

in CD◦Lin if it is acyclic and free-connex acyclic where the former

means that q has a join tree and the latter that the extension of q
with an atom R(x̄) that ‘guards’ the answer variables is acyclic [4].
Partially matching lower bounds pertain to self-join free CQs [4, 16].

The second aim of this paper is to introduce a novel notion of

partial answers to OMQs. In the traditional certain answers, ā ∈
Q(D) if and only if ā is a tuple of constants from D such that ā ∈
Q(I) for every model I of D and the ontology O used in Q . In
contrast, a partial answer may contain, apart from constants fromD,
also the wildcard symbol ‘∗’ to indicate a constant that we know

must exists, but whose identity is unknown. Such labeled nulls
may be introduced by existential quantifiers in the ontology O. To

avoid redundancy as in the partial answers (a, ∗) and (a,b), we are
interested in minimal partial answers that cannot be ‘improved’ by

replacing a wildcard with a constant from D while still remaining

a partial answer. The following example illustrates that minimal

https://doi.org/10.1145/3517804.3524166
https://doi.org/10.1145/3517804.3524166

partial answers provide useful information that is not conveyed by

the traditional answers, from now called complete answers.

Example 1.1. Consider the ontology O that contains

Researcher(x) → ∃yHasOffice(x ,y)
HasOffice(x ,y) → Office(y)

Office(x) → ∃y InBuilding(x ,y),
and the CQ q(x1,x2,x3) = HasOffice(x1,x2) ∧ InBuilding(x2,x3)

giving rise to the OMQQ(x1,x2,x3). Take the following databaseD:

Researcher(mary) Researcher(john) Researcher(mike)
HasOffice(mary, room1) HasOffice(john, room4)

InBuilding(room1,main1)

The minimal partial answers to Q on D are

(mary, room1,main1) (john, room4, ∗) (mike, ∗, ∗).

We also introduce and study minimal partial answers with multi-
ple wildcards ∗1, ∗2, Distinct occurences of the same wildcard

in an answer indicate the same null, while different wildcards may

or may not correspond to different nulls. Multiple wildcards may

thus be viewed as adding equality on wildcards, but not inequal-

ity. We note that there are certain similarities between minimal

partial answer to OMQs and answers to SPARQL queries with the

‘optional’ operator [9, 32], but also many dissimilarities.

The third aim of this paper is to study two problems for OMQs

that are closely related to constant delay enumeration: single-testing

in linear time (in data complexity) and all-testing in CD◦Lin or

DelayClin. Note that for Boolean queries, single-testing in linear

time coincides with enumeration in CD◦Lin and in DelayClin. An

all-testing algorithm has a prepocessing phase followed by a testing

phase where it repeatedly receives candidate answers ā and returns

‘yes’ or ’no’ depending on whether ā ∈ Q(D) [10]. All-testing in

DelayClin grants preprocessing time O(| |D | |) while the time spent

per test must be independent of D, and all-testing in CD◦Lin is

defined accordingly.

An ontology-mediated query takes the form Q(x̄) = (O, S,q)
where O is an ontology, S a schema for the databases on whichQ is

evaluated, and q(x̄) a conjunctive query. In this paper, we consider

ontologies that are sets of guarded tuple-generating dependencies

(TGDs) or formulated in the description logic ELI. We remind

the reader that a TGD takes the form ∀x̄∀ȳ (
ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄))

where ϕ and ψ are CQs, and that it is guarded if ϕ has an atom

that mentions all variables from x̄ and ȳ. Up to normalization, an

ELI-ontology may be viewed as a finite set of guarded TGDs of a

restricted form, using in particular only unary and binary relation

symbols. Both guarded TGDs and ELI are natural and popular

choices for the ontology language [3, 17, 19]. We use (G,CQ) to
denote the language of all OMQs that use a set of guarded TGDs

as the ontology and a CQ as the actual query, and likewise for

(ELI,CQ) and ELI-ontologies.
We next summarize our results. In Section 3, we start with show-

ing that in (G,CQ), single-testing complete answers is in linear

time for OMQs that are weakly acyclic. A CQ is weakly acyclic if it
is acyclic after replacing the answer variables with constants and

an OMQ is weakly acyclic if the CQ in it is; in what follows, we lift

other properties of CQs to OMQs in the same way without further

notice. Our proof relies on the construction of a ‘query-directed’

fragment of the chase and a reduction to the generation of minimal

models of propositional Horn formulas. We also give a lower bound

for OMQs from (ELI,CQ) that are self-join free: every such OMQ

that admits single-testing in linear time is weakly acyclic unless the

triangle conjecture from fine-grained complexity theory fails. This

generalizes a result for the case of CQs without ontologies [16].

We observe that it is not easily possible to replace ELI by G in our

lower bound as this would allow us to remove also ‘self-join free’

while it is open whether this is possible even in the case without on-

tologies. We also show that single-testing minimal partial answers

with a single wildcard is in linear time for OMQs from (G,CQ) that
are acyclic and that the same is true for multiple wildcards and

acyclic OMQs from (ELI,CQ). We also observe that these (stronger)

requirements cannot easily be relaxed.

In Section 4, we turn to enumeration and all-testing of complete

answers. We first show that in (G,CQ), enumerating complete

answers is in CD◦Lin for OMQs that are acyclic and free-connex

acyclic while all-testing complete answers is in CD◦Lin for OMQs

that are free-connex acyclic (but not necessarily acyclic). The proof

again uses the careful chase construction and a reduction to the case

without ontologies. The lower bound for single testing conditional

on the triangle conjecture can be adapted to enumeration, with

‘not weakly acyclic’ replaced by ‘not acyclic’. For enumeration,

it thus remains to consider OMQs that are acyclic, but not free-

connex acyclic. We show that for every self-join free OMQ from

(ELI,CQ) that is acyclic, connected, and admits enumeration in

CD◦Lin, the query is free-connex acyclic, unless sparse Boolean

matrix multiplication (BMM) is possible in time linear in the size of

the input plus the size of the ouput; this would imply a considerable

advance in algorithm theory and currently seems to be out of reach.

We also show that it is not possible to drop the requirement that

the query is connected, which is not present in the corresponding

lower bound for the case without ontologies [4, 10]. We prove a

similar lower bound for all-testing complete answers, subject to a

condition regarding non-sparse BMM. All mentioned lower bounds

also apply to both kinds of partial answers.

In Section 5, we then prove that enumerating minimal partial an-

swers with a single wildcard is inDelayClin for OMQs from (G,CQ)
that are acyclic and free-connex acyclic. This is one of the main

results of this paper, based on a non-trivial enumeration algorithm.

Here, we only highlight two of its features. First, the algorithm

precomputes certain data structures that describe ‘excursions’ that

a homomorphism from q into the chase of D with O may make into

the parts of the chase that has been generated by the existential

quantifiers in the ontology. And second, it involves subtle sorting

and pruning techniques to ensure that only minimal partial an-
swers are output. We also observe that all-testing minimal partial

answers is less well-behaved than enumeration as there is an OMQ

Q ∈ (ELI,CQ) that is acyclic and free-connex acyclic, but for which
all-testing is not in CD◦Lin unless the triangle conjecture fails.

Finally, Section 6 extends the upper bound from Section 5 to min-

imal partial answers with multiple wildcards. We first show that

all-testing (not necessarily minimal!) partial answers with multiple

wildcards is inDelayClin for OMQs that are acyclic and free-connex

acyclic and then reduce enumeration of minimal partial answers

with multiple wildcards to this, combined with the enumeration al-

gorithm of minimal partial answers with a single wildcard obtained

in the previous section.

Most proof details are deferred to the long version [33].

2 PRELIMINARIES
Relational Databases. Fix countably infinite and disjoint sets

of constants C and N. We refer to the constants in N as nulls.
A schema S is a set of relation symbols R with associated arity

ar(R) ≥ 0. An S-fact is an expression of the form R(c̄), where R ∈ S
and c̄ is an ar(R)-tuple of constants from C ∪ N. An S-instance is a
set of S-facts and an S-database is a finite S-instance that uses only
constants from C. We write adom(I) for the set of constants used
in instance I . For a set S ⊆ C ∪N, I |S denotes the restriction of I to
facts that mention only constants from S . A homomorphism from

I to an instance J is a function h : adom(I) → adom(J) such that

R(h(c̄)) ∈ J for every R(c̄) ∈ I . A set S ⊆ adom(I) is a guarded set
in I if there is a fact R(c̄) ∈ I such that all constants from S are in c̄ .
The Gaifman graph of a database D is the undirected graph with

vertices adom(D) and an edge {c1, c2} whenever c1, c2 co-occur in

a fact in D.

Conjunctive Queries. A term is a variable or a constant fromC.
A conjunctive query (CQ) q(x̄) over a schema S takes the form

q(x̄) ← ϕ(x̄ , ȳ)where x̄ and ȳ are tuples of variables, ϕ is a conjunc-

tion of relational atoms Ri (t̄i) with Ri ∈ S and t̄i a tuple of terms of

length ar(Ri). The variables in x̄ are the answer variables of q and

the variables in ȳ the quantified variables. With var(q), we denote
the set of all variables in q and with con(q) the set of constants.
Whenever convenient, we identify a conjunction of atoms with a

set of atoms. The arity of q is defined as the number of its answer

variables and q is Boolean if it is of arity 0. When we do not want to

make ϕ(x̄ , ȳ) explicit, we may denote q(x̄) ← ϕ(x̄ , ȳ) simply with

q(x̄). We say that q(x̄) is self-join free if no relation symbol occurs

in more than one atom in it. We write CQ for the class of CQs.

Every CQ q(x̄) can be naturally seen as a database Dq , known

as the canonical database of q, obtained by viewing variables as

constants from C. The Gaifman graph of q is that of Dq . A homo-
morphism h from q to an instance I is a homomorphism from Dq
to I that is the identity on all constants that appear in q. A tuple

c̄ ∈ adom(I) |x̄ | is an answer to q on I if there is a homomorphism h
from q to I with h(x̄) = c̄ . The evaluation of q(x̄) on I , denoted q(I),
is the set of all answers to q on I .

For a CQ q, but also for any other syntactic object q, we use | |q | |
to denote the number of symbols needed to write q as a word over

a suitable alphabet.

Acyclic CQs. Let q(x̄) ← ϕ(x̄ , ȳ) be a CQ. A join tree for q(x̄)
is an undirected tree T = (V ,E) where V is the set of atoms in ϕ
and for each variable x ∈ var(q), the set {α ∈ V | x occurs in α } is
a connected subtree of T . Then q(x̄) is acyclic if it has a join tree.

Note that constants need not satisfy the connectedness condition

imposed on variables.We say thatq(x̄) isweakly acyclic ifq becomes

acyclic after consistently replacing all answer variables with fresh

constants. A CQ q(x̄) is free-connex acyclic if adding an atom R(x̄)
that ‘guards’ the answer variables, where R is a relation symbol of

arity |x̄ |, results in an acyclic CQ. Note that other authors have called

ac fc wac ac fc wac ac fc wac ac fc wac ac fc wac

Figure 1: Different forms of acyclicity

a CQ q free-connex acyclic (or even just free-connex) if q is both

acyclic and (in our sense) free-connex acyclic [10]. Acyclicity and

free-connex acyclicity are independent properties, that is, neither of

them implies the other. Each of them implies weak acyclicity while

the converse is false. Figure 1 shows (the Gaifman graphs of) simple

example CQs that illustrate the differences. Hollow nodes indicate

quantified variables, ac stands for acyclic, fc for free-connex acyclic,
and wac for weakly acyclic.

TGDs, Guardedness, Chase. A tuple-generating dependency
(TGD)T over S is a first-order sentence ∀x̄∀ȳ (

ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄))
such that qϕ (x̄) ← ϕ(x̄ , ȳ) and qψ (x̄) ← ψ (x̄ , z̄) are CQs that do not
contain constants. We call ϕ andψ the body and head ofT . The body
may be the empty conjunction, i.e. logical truth, denoted by true.
The variables in x̄ are the frontier variables. For simplicity, we write

T as ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄). An instance I over S satisfies T , denoted
I |= T , if qϕ (I) ⊆ qψ (I). It satisfies a set of TGDs O, denoted I |= O,
if I |= T for each T ∈ O. We then also say that I is a model of O. A
TGDT is guarded if its body is true or contains a guard atom α that

contains all variables in the body [17]. We write TGD to denote the

class of all TGDs and G for the class of guarded TGDs.

The well-known chase procedure makes explicit in an instance

the consequences of a set of TGDs [17, 28, 30, 34]. Let I be an in-

stance andO be a set of TGDs. A TGDT = ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄) ∈ O
is applicable to a tuple (c̄, c̄ ′) of constants in I if ϕ(c̄, c̄ ′) ⊆ I . In
this case, the result of applying T in I at (c̄, c̄ ′) is the instance

I ∪ {ψ (c̄, c̄ ′′)} where c̄ ′′ is the tuple obtained from z̄ by simul-

taneously replacing each variable z with a fresh distinct null that

does not occur in I . We refer to such an application as a chase step.
A chase sequence for I with O is a sequence of instances I0, I1, . . .
such that I0 = I and each Ii+1 is the result of applying some TGD

from O at some tuple (c̄, c̄ ′) of constants in Ii . The result of this
chase sequence is the instance J =

⋃
i≥0

Ii . The chase sequence is
fair if whenever a TGDT ∈ O is applicable to a tuple (c̄, c̄ ′) in some

Ii , then this application is a chase step in the sequence. Fair chase

sequences are oblivious in that a TGD is eventually applied when-

ever its body is satisfied, even if also its head is already satisfied. As

a consequence, every fair chase sequence for I with O leads to the

same result, up to isomorphism. We denote this result with chO(I).

Ontology-Mediated Query, Description Logic. An ontology
is a finite set of TGDs. An ontology-mediated query (OMQ) takes
the form Q = (O, S,q) where O is an ontology, S is a finite schema

called the data schema, and q is a CQ. Both O and q can use sym-

bols from S, but also additional symbols, and in particular O can

‘introduce’ symbols to enrich the vocabulary available for querying.

We assume w.l.o.g. that S contains only relation symbols that occur

in O or q. The arity of Q is defined as the arity of q. We write Q(x̄)
to emphasize that the answer variables of q are x̄ and say that Q
is acyclic if q is and likewise for weakly acyclic, free-connex acyclic,
self-join free, and so on.

A tuple c̄ ∈ adom(D) |x̄ | is a (certain) answer toQ on D if c̄ ∈ q(I)
for every model I of O with I ⊇ D. The evaluation of Q(x̄) over D,
denoted Q(D), is the set of all answers to Q over D. Importantly,

Q(D) = q(chO(D)) for every OMQ Q = (O, S,q) and S-database D.
When convenient, we may write D ∪O |= q(c̄) in place of c̄ ∈ Q(D).
We say that Q is empty if Q(D) = ∅ for all S-databases D.

Let us remark that a CQq can be semantically acyclic in the sense

that it is equivalent to an acyclic CQ, but not acyclic itself [8, 24].

It is known that this is the case if and only if the homomorphism

core of q is acyclic. An OMQ can be semantically acyclic (in the

same sense) even if the homomorphism core of the CQ in it is not

acyclic, that is, the ontology has an impact on semantic acyclicity;

see [6, 7] for very similar effects that pertain to bounded treewidth.

Since we are concerned with data complexity in this article, we can

simply replace an OMQ with any equivalent one and thus w.l.o.g.

refrain from considering semantic acyclicity.

We next introduce the widely known description logic ELI [3].

Traditionally, description logics come with their own variable-free

syntax. Here, we introduce ELI using TGD syntax. A guarded

TGD ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄) is an ELI TGD if it uses only unary and

binary relation symbols, has only a single frontier variable, contains

no reflexive loops and multi-edges in body or head, and has a head

that is acyclic and connected. Note that the original definition of

ELI is more liberal in that it restricts the body in the same way

as the head in our definition, thus encompassing also unguarded

TGDs. However, the restricted form used here can be attained by

syntactic normalization [3]. Since the normalization of an ontology

inside an OMQ does not affect query answers, all results in this

paper apply also to the more liberal definition of ELI. We use

ELI to denote the set of all ELI TGDs.

An OMQ language is a class of OMQs. For a class of TGDs C and

a class of CQs Q, we write (C,Q) to denote the OMQ language that

consists of all OMQs (O, S,q) where O is a set of TGDs from C and

q ∈ Q. For example, we may write (G,CQ) and (ELI,CQ).
Let Qi (x̄) = (Oi , S,qi) for i ∈ {1, 2}. Then OMQ Q1 is con-

tained in OMQ Q2, written Q1 ⊆ Q2, if Q1(D) ⊆ Q2(D) for every
S-database D. Moreover,Q1 andQ2 are equivalent, writtenQ1 ≡ Q2,

if Q1 ⊆ Q2 and Q2 ⊆ Q1.

Machine Model. As our computational model, we use RAMs

under the uniform cost model [23], see [29] for a formalization. Such

a RAM has a one-way read-only input tape, a write-only output

tape, and an unbounded number of registers that store non-negative

integers of O(logn) bits, n the input size; this is called a DRAM in

[29], used there to define the complexity class DLINEAR. Adding,

subtracting, and comparing the values of two registers as well as

bit shift takes time O(1). On a DRAM, sorting is possible in linear

time and we can use and access lookup tables indexed by constants

from adom(D) or by tuples of constants of length O(1) [29]. This
model is standard in the context of constant delay enumeration,

see [4, 10, 20, 35] and the long version for more details.

Modes of Query Evaluation. Single-testing means to decide,

given an OMQQ(x̄) = (O, S,q), an S-databaseD, and an answer can-
didate c̄ ∈ adom(D) |x̄ | , whether c̄ ∈ Q(D). We generally consider

data complexity, where the OMQ Q is fixed and thus of constant

size and the only remaining inputs are D and c̄ .

An enumeration algorithm for a class of OMQs C is given as

inputs an OMQ Q(x̄) = (O, S,q) ∈ C and an S-database D. In the

preprocessing phase, it may produce data structures, but no output.

In the subsequent enumeration phase, it enumerates all tuples from

Q(D), without repetition, followed by an end of enumeration signal.

An all-testing algorithm for C is defined similarly. It takes the same

two inputs, and has the same preprocessing phase, followed by a

testing phase where it repeatedly receives tuples ā ∈ adom(D) |x̄ |

and returns ‘yes’ or ’no’ depending on whether ā ∈ Q(D).
Let (L,Q) be an OMQ language. We say that answer enumeration

for (L,Q) is possible with linear preprocessing and constant delay,
or in DelayClin for short, if there is an enumeration algorithm for

(L,Q) in which preprocessing takes time f (| |Q | |) · O(| |D | |), f a

computable function, while the delay between the output of two

consecutive answers depends only on | |Q | |, but not on | |D | |. Enu-
meration in CD◦Lin is defined likewise, except that in the enumer-

ation phase, the algorithm may consume only a constant amount of

memory. Accessing the data structures computed in the preprocess-

ing phase does not count as memory usage. It is not clear whether

DelayClin and CD◦Lin coincide or not, see e.g. [31]. The definition

of DelayClin and CD◦Lin for all-testing is analogous, except that

the enumeration delay is replaced with the time needed for testing.

Partial Answers. We first introduce partial answers with a

single wildcard symbol ‘∗’ (that is not in C ∪ N). A wildcard tuple
for an instance I takes the form (c1, . . . , cn) ∈ (adom(I) ∪ {∗})n ,
n ≥ 0. For wildcard tuples c̄ = (c1, . . . , cn) and c̄

′ = (c ′
1
, . . . , c ′n), we

write c̄ ⪯ c̄ ′ if c ′i ∈ {ci , ∗} for 1 ≤ i ≤ n. Moreover, c̄ ≺ c̄ ′ if c̄ ⪯ c̄ ′

and c̄ , c̄ ′. For example, (a,b) ≺ (a, ∗) and (a, ∗) ≺ (∗, ∗). Informally,

c̄ ≺ c̄ ′ expresses that tuple c̄ is preferred over tuple c̄ ′ as it carries
more information. A partial answer to OMQ Q(x̄) = (O, S,q) on
S-database D is a wildcard tuple c̄ for D of length |x̄ | such that

for each model I of O with I ⊇ D, there is a c̄ ′ ∈ q(I) such that

c̄ ′ ⪯ c̄ . Note that some positions in c̄ ′ may contain constants from

adom(I) \ adom(D), and that the corresponding position in c̄ must

then have a wildcard. A partial answer c̄ to Q on S-database D
is a minimal partial answer if there is no partial answer c̄ ′ to Q
on D with c̄ ′ ≺ c̄ . The partial evaluation of Q(x̄) on D, denoted
Q(D)∗, is the set of all minimal partial answers toQ on D. Note that
Q(D) ⊆ Q(D)∗. An illustrating example is provided in Section 1.

Minimal partial answers may provide valuable information not

captured by complete answers. However, one might argue that

complete answers are more important than minimal partial answers

that contain a wildcard, and should thus be output first by an

enumeration algorithm. We observe that this is always possible if

we are interested in DelayClin (whereas it is not clear whether an

analogous statement for CD◦Lin holds).

Proposition 2.1. LetQ ∈ (TGD,CQ). If minimal partial answers
toQ can be enumerated inDelayClin and the same is true for complete
answers, then there is aDelayClin enumeration algorithm for minimal
partial answers to Q that produces the complete answers first.

We next introduce partial answers with multiple wildcards. Fix

a countably infinite set of wildcardsW = {∗1, ∗2, . . . } (that are

not in C ∪ N). A multi-wildcard tuple for an instance I is a tu-

ple (c1, . . . , cn) ∈ (adom(I) ∪ W)n , n ≥ 0, such that if ci = ∗j
with j > 1, then there is an i ′ < i with ci′ = ∗j−1. Examples for

multi-wildcard tuples are (∗1, ∗2) and (a, ∗1,b,a, ∗2, ∗1, ∗2) and a

non-example is (∗2, ∗1). Occurrences of the samewildcard represent

occurrences of the same null while different wildcards represent

nulls that may or may not be different. For multi-wildcard tuples

c̄ = (c1, . . . , cn) and c̄
′ = (c ′

1
, . . . , c ′n), we write c̄ ⪯ c̄ ′ if

(1) ci = c
′
i orW = ci , c

′
i ∈ W for 1 ≤ i ≤ n and

(2) c ′i = c
′
j implies ci = c j for 1 ≤ i, j ≤ n.

Moreover, c̄ ≺ c̄ ′ if c̄ ⪯ c̄ ′ and c̄ , c̄ ′. For example, (∗1,a) ≺
(∗1, ∗2) and (a, ∗1, ∗2, ∗1) ≺ (a, ∗1, ∗2, ∗3). Partial answers withmulti-
wildcards and minimal partial answers with multi-wildcards are de-
fined in exact analogy with (minimal) partial answers, but using

multi-wildcard tuples in place of wildcard tuples. The partial evalu-
ation ofQ(x̄) with multi-wildcards on D, denotedQ(D)W , is the set

of all minimal partial answers with multi-wildcards to Q on D.

Example 2.2. Reconsider the ontology OMQ Q = (O, S,q) and
database D from Example 1.1. Then Q(D)W contains the tuples

(mary, room1,main1) (john, room4, ∗1) (mike, ∗1, ∗2).

Let the ontology O′ be obtained from O by adding

Prof(x) ∧ HasOffice(x ,y) → LargeOffice(y)

and S′ from S by adding LargeOffice, consider the CQ

q′(x1,x2,x3,x4) = HasOffice(x1,x2) ∧ LargeOffice(x2) ∧

HasOffice(x1,x3) ∧ InBuilding(x3,x4),

and let Q ′ = (O′, S′,q′). Moreover, let D ′ be D extended with fact

Prof(mike).

ThenQ ′(D ′)W contains, e.g., the tuple (mike, ∗1, ∗1, ∗2), but not the
tuple (mike, ∗1, ∗2, ∗3) which is a partial answer, but not minimal.

Finally, let the ontology O′′ be obtained from O by adding

OfficeMate(x ,y) → ∃zHasOffice(x , z) ∧ HasOffice(y, z)
and S′′ from S by adding OfficeMate, consider the CQ

q′′(x1,x2,x3,x4) = ∃yHasoffice(x1,x3) ∧ Hasoffice(x2,x4) ∧

InBuilding(x3,y) ∧ InBuilding(x4,y),

and set Q ′′(x1,x2,x3,x4) = (O
′′, S′′,q′′). Moreover, let D ′′ be D

extended with fact

OfficeMate(mary,mike).

Q ′′(D ′′)W contains, e.g., the tuple (mary,mike, ∗1, ∗1).

Minimal partial answers can equivalently be defined in terms of

the chase. Let q(x̄) be a CQ and I an instance, possibly containing

nulls. For an answer ā ∈ q(I), we use ā∗N to denote the unique

wildcard tuple for I obtained from ā by replacing all nulls with ‘∗’.

We call such an ā∗N a partial answer to q on I and say that it is a

minimal partial answer if there is no ¯b ∈ q(I) with ¯b∗N ≺ ā∗N. We

use q(I)∗N to denote the set of minimal partial answers to q on I .

Similarly, we use āWN to denote the unique multi-wildcard tuple for

I obtained by consistently replacing all nulls with wildcards from

W = {∗1, ∗2, . . . }. We then define minimal partial answer with
multi-wildcards to q on I , denoted q(D)WN , in the expected way.

Lemma 2.3. Let Q(x̄) = (O, S,q) ∈ (TGD,CQ) and D be an S-
database. Then Q(D)∗ = q(chO(D))∗N and Q(D)W = q(chO(D))WN .

3 SINGLE-TESTING
We consider the limits of single-testing in linear time for the OMQ

languages (G,CQ) and (ELI,CQ). For complete answers, we estab-

lish a close link to weak acyclicity while minimal partial answers

with a single wildcard are linked (in a more loose way) to acyclicity.

The latter is also achieved for minimal partial answers with multi-

wildcards, but only when the ontology is from ELI. To the best

of our knowledge, these are the first results on linear time single-

testing for ontology-mediated queries. Existing algorithms from the

literature seem to require at least quadratic time (although authors

typically do not analyse the degree of the polynomial explicitly).

Theorem 3.1. Single-testing is in linear time for
(1) weakly acyclic OMQs from (G,CQ) in the case of complete

answers;
(2) acyclic OMQs from (G,CQ) in the case of minimal partial

answers with single wildcards;
(3) acyclic OMQs from (ELI,CQ) in the case of minimal partial

answers with multi-wildcards.

To prove Theorem 3.1, we first show that for every OMQQ(x̄) =
(O, S,q) ∈ (G,CQ) and S-database D, one can compute in time

linear in | |D | | a (finite!) database chq
O
(D) that enjoys all properties

of the chase chO(D) which are important for enumerating answers

to Q , both complete and partial. Informally, chq
O
(D) contains only

those parts of chO(D) that are ‘relevant to q’. We refer to chq
O
(D)

as the query-directed chase, similar constructions have been used

e.g. in [6, 13].

Let cl(Q) denote the set of CQs that are connected and use only

relation symbols that occur in O, no constants, and only variables

from a fixed set V whose cardinality is the maximum of |var(q)|
and the arities of relation symbols in O. Note that the CQs in cl(Q)
may have any arity, including zero, and that the number of CQs in

cl(Q) is independent of D. The database chq
O
(D) is obtained from

D by adding, for every CQ p(ȳ) ∈ cl(Q) and every c̄ ∈ adom(D) |ȳ |

such that D ∪ O |= p(c̄) and the constants in c̄ constitute a guarded
set in D, a copy of Dp that uses the constants in c̄ in place of the

answer variables ȳ of p and only fresh constants otherwise.

Lemma 3.2. Let Q(x̄) = (O, S,q) ∈ (G,CQ) and D be an S-data-
base. ThenQ(D) = q(chq

O
(D)) ∩ adom(D) |x̄ | ,Q(D)∗ = q(chq

O
(D))∗N,

and Q(D)W = q(chq
O
(D))WN .

As announced, the query-directed chase can be computed in

linear time. Q is not required to be acyclic for this to hold.

Proposition 3.3. Let Q(x̄) = (O, S,q) ∈ (G,CQ) and let D be
an S-database. Then chq

O
(D) can be computed in time linear in | |D | |,

more precisely in time 2
2
O (| |Q | |2)

·| |D | |.

To prove Proposition 3.3, we derive from D and Q a satisfiable

Horn formula θ , make use of the fact that a minimal model of θ can

be computed in linear time [27], and then read off chq
O
(D) from the

minimal model. We are not aware that such an approach has been

used before.

For Point (1) of Theorem 3.1, we have to check whether c̄ ∈ Q(D)
which can now be done in linear time a straightforward way. First

compute chq
O
(D). Then replace the answer variables in q by the

constants from c̄ , turning the weakly acyclic q into an acyclic CQ.

Finally, use an existing procedure such as Yannakakis’ algorithm to

single-test the resulting CQ in linear time [36]. Points (2) and (3)

of Theorem 3.1 are proved by a (Turing) reduction to the case of

complete answers. Details are provided in the long version.

We next prove a lower bound that partially matches Theorem 3.1.

As in the case without ontologies, we do not obtain a full dichotomy

as the lower bound only applies to queries that are self-join free. In

addition (and related to this), it only applies to OMQs where the

ontology is formulated in the subclass ELI of G. The lower bound
is conditional on the triangle conjecture, which we formulate next.

Triangle detection is the problem to decide, given an undirected

graph G = (V ,E) as a list of edges, whether G contains a 3-clique.

The triangle conjecture from fine-grained complexity theory [1]

states that triangle detection cannot be solved in linear time.

Theorem 3.4. Let Q ∈ (ELI,CQ) be non-empty and self-join free.
If Q is not weakly acyclic, single-testing complete answers to Q is not
in linear time unless the triangle conjecture fails. The same is true for
minimal partial answers and minimal partial answers with multiple
wildcards.

The proof of Theorem 3.4 is an adaptation of the construction

given in [10, 16] where no ontologies are considered. The challenge

is to deal with the ontology and the fact that the ontology may

contain relation symbols that are not admitted in the database. We

address this bymodifying the database construction from [10, 16] so

that every constant c comes with fact A(c) for every unary relation

symbol A ∈ S and has an incoming and an outgoing R-edge for
every binary relation symbol R ∈ S. Informally, this ensures that

everything that could possibly be implied by the ontology is indeed

implied. Self-join freeness is important for this approach to work.

While it would be desirable to replace ELIwithG in Theorem 3.4,

this seems hard to achieve as it would also allow us to remove ‘self-

join free’ from that theorem. Even in the case without ontologies,

it is currently not known whether this is possible.

Example 3.5. LetQ(x̄) = (O, S,q) ∈ (G,CQ) and letQ ′ = (O′, S,q′)
be the OMQ that can be obtained fromQ as follows: consider every

atom R(z̄) in q, replace it with Rz̄ (z̄) where Rz̄ is a fresh relation

symbol of the same arity as R, and add to O the TGDs

R(x̄) → Rz̄ (x̄) and Rz̄ (x̄) → R(x̄)

where x̄ is a tuple of ar(R) distinct variables. Then Q ≡ Q ′, and Q ′

is self-join free. Moreover, Q ′ is weakly acyclic if and only if Q is.

More examples regarding Theorem 3.4 are given in the long

version. We close with noting that the prerequisites given in The-

orem 3.1 for the case of minimal partial answers cannot easily be

relaxed.

Theorem 3.6. (1) There is a weakly acyclic OMQ Q ∈ (ELI,CQ)
for which single-testing minimal partial answers is not in linear
time unless the triangle conjecture fails and (2) an acyclic OMQ Q ∈
(G,CQ) for which single-testing minimal partial answers with multi-
wildcards is not in linear time unless the triangle conjecture fails.

4 ENUMERATION AND ALL-TESTING:
COMPLETE ANSWERS

We consider the limits of enumeration and all-testing of complete

answers with constant delay for the OMQ languages (G,CQ) and
(ELI,CQ). While enumeration is linked to the combination of

acyclicity and free-connex acyclicity, we link all-testing to free-con-

nex acyclicity only. In the lower bounds, we also consider minimal

partial answers and minimal partial answers with multiple wild-

cards. We start with the upper bounds.

Theorem 4.1. In (G,CQ),
(1) enumerating complete answers is in CD◦Lin for OMQs that

are acyclic and free-connex acyclic;
(2) all-testing complete answers is in CD◦Lin for OMQs that are

free-connex acyclic.

Recall that for a CQ q to be free-connex acyclic, we do not re-
quire q to be acyclic. Thus, the requirement for all-testing in The-

orem 4.1 is significantly weaker than that for enumeration and

embraces, for example, every OMQ in which the CQ is full, that is,

has no quantified variables. The proof of Point (1) of Theorem 4.1

uses the query-directed chase also employed in Section 3 and a re-

duction to the CD◦Lin enumeration of answers to CQs (without

ontologies) that are acyclic and free-connex acyclic [4]. Point (2)

can be proved in the same way using the following observation

which, to our knowledge, is novel.

Proposition 4.2. For CQs (without ontologies) that are free-connex
acyclic, all-testing is in CD◦Lin.

To prove Proposition 4.2, we decompose the given CQ into CQs

that are acyclic and free-connex acyclic, and then use CD◦Lin all-

testing algorithms for those component CQs in parallel. In the long

version, we give a matching lower bound for self-join free CQs.

We next give lower bounds that partially match Theorem 4.1,

starting with the requirement in Point (1) of Theorem 4.1 that OMQs

must be acyclic. The following is a consequence of Theorem 3.4.

Theorem 4.3. LetQ ∈ (ELI,CQ) be non-empty, and self-join free.
If Q is not acyclic, then enumerating complete answers to Q is not
in DelayClin unless the triangle conjecture fails. The same is true
for minimal partial answers and for minimal partial answers with
multiple wildcards.

In Theorem 4.3 and all other lower bounds stated in this section,

ELI cannot easily be replaced by G, see Example 3.5.

Staying with the requirements of Point (1) of Theorem 4.2, we

next consider queries that are acyclic, but not free-connex acyclic.

The lower bound that we establish is conditional on an assumption

regarding the problem of Sparse Boolean matrix multiplication. A

Boolean n × n matrix is a function M : [n]2 → {0, 1} where [n]
denotes the set {1, . . . ,n}. The product of two Booleann×nmatrices

M1,M2 is the Booleann×nmatrixM1M2 :=
∑n
c=1

M1(a, c)·M2(c,b)
where sum and product are interpreted over the Boolean semiring.

In (non-sparse) Boolean matrix multiplication (BMM), one wants to
computeM1M2 givenM1 andM2 as n × n arrays. In sparse Boolean
matrix multiplication (spBMM), input and output matrices M are

represented as lists of pairs (a,b)withM(a,b) = 1. Our lower bound

is conditional on the assumption that spBMM is not possible in

time O(|M1 | + |M2 | + |M1M2 |), that is, in time linear in the size of

the input and the output (represented as lists). While it is not ruled

out that such a running time can be achieved, this would require

dramatic progress in algorithm theory. Informally, the conditioning

on spBMM should be read as ‘currently out of reach’.

Theorem 4.4. LetQ = (O, S,q) ∈ (ELI,CQ) be acyclic, non-empty,
self-join free, and connected. If Q is not free-connex acyclic, then enu-
merating complete answers to Q is not in DelayClin unless spBMM is
possible in timeO(|M1 | + |M2 | + |M1M2 |). The same is true for mini-
mal partial answers and for minimal partial answers with multiple
wildcards.

There is a corresponding lower bound for CQs without ontolo-

gies, first proved conditional on the assumption that Boolean n × n
matrices cannot be multiplied in time O(n2) [4] and then improved

to the condition on spBMM used in Theorem 4.4 in [10]. To prove

Theorem 4.4, we again have to deal with the fact that the ontology

may contain relation symbols that are not admitted in the database.

Here, this is done by first manipulating the input matricesM1 and

M2 in a suitable way. Note that we requireQ to be connected while

this is not a precondition in the case without ontologies [10]. The

following proposition shows that we cannot drop connectedness.

Proposition 4.5. There is an OMQQ ∈ (ELI,CQ) that is acyclic,
non-empty, self-join free, but neither free-connex acyclic nor connected,
such that complete answers to Q can be enumerated in DelayClin.

We next address the requirement in Point (2) of Theorem 4.2

that OMQs must be free-connex acyclic.

Theorem 4.6. Let Q ∈ (ELI,CQ) be non-empty and self-join free.
If Q is not free-connex acyclic, then all-testing complete answers for
Q is not in linear time unless the triangle conjecture fails or Boolean
n × n matrices can be multiplied in time O(n2). The same is true for
minimal partial answers and minimal partial answers with multiple
wildcards.

Note that Theorem 4.6 refers to the non-sparse version of BMM

and that spBMM in timeO(|M1 | + |M2 | + |M1M2 |) implies BMM in

time O(n2) while the converse is unknown.

5 ENUMERATIONWITH SINGLE WILDCARD
The main aim of this section is to prove that it is possible to enu-

merate in DelayClin the minimal partial answers with a single

wildcard to OMQs from (G,CQ) that are acyclic and free-connex

acyclic. Thus, minimal partial answers are almost as well-behaved

as complete answers, except that for the former it remains open

whether enumeration is also possible in CD◦Lin. We start, however,

with observing that all-testing of minimal partial answers is less

well-behaved. The following should be contrasted with Point (2) of

Theorem 4.1.

Theorem 5.1. There is an OMQQ ∈ (ELI,CQ) that is acyclic and
free-connex acyclic such that all-testing minimal partial answers to
Q is not in DelayClin unless the triangle conjecture fails. The same is
true for minimal partial answers with multiple wildcards.

Intuitively, all-testing of minimal partial answers is difficult be-

cause a single positive test for an answer that contains wildcards

may imply a negative test for polynomially many complete answers.

This is not a problem in enumeration where the ‘problematic’ wild-

card answers will be output late and thus cannot be tested in linear

time.

We now turn to the main result of this section.

Theorem 5.2. Enumeratingminimal partial answers is inDelayClin
for OMQs from (G,CQ) that are acyclic and free-connex acyclic.

In the rest of this section, we prove Theorem 5.2 by developing

an enumeration algorithm. We provide an example that illustrates

important aspects of our algorithm in Appendix C. Fix an OMQ

Q(x̄) = (O, S,q0) ∈ (G,CQ)with q0 acyclic and free-connex acyclic,

and let an S-database D be given as input.

Preprocessing phase. Recall from Section 3 that the query-

directed chase chq0

O
(D) can be constructed in time linear in | |D | |.

This is the first step of the preprocessing phase. By Lemmas 2.3

and 3.2, we may enumerate q0(ch
q0

O
(D))∗N in place of Q(D)∗. For

brevity, set D0 := chq0

O
(D).

We can assume w.l.o.g. that the tuple x̄ has no repeated variables

and that q0 contains no constants and is connected. For connected-

ness, see Appendix A, for the other properties see the long version.

As part of the preprocessing phase, we preprocess q0 and D0 in a

way that resembles the first phase of the Yannakakis algorithm in

which a join tree is traversed in a bottom-up fashion, computing a

semi-join in each step [36]. The result is a CQ q1(x̄) and database

D1 that satisfy the following conditions:

(i) q1 is self-join free, connected (since q0 is), acyclic, and has no

quantified variables (thus is free-connex acyclic); it therefore

has a join treeT1 = (V1,E1); we choose a root inT1 allowing

us to speak about predecessors and successors in T1;

(ii) adom(D1) ⊆ adom(D0) and for every fact R(ā) ∈ D1, there

is a fact S(¯b) ∈ D0 such that ā and ¯b contain exactly the same

(database and null) constants;

(iii) q0(D0) = q1(D1), and thus q0(D0)
∗
N = q1(D1)

∗
N;

(iv) for all v = R(ȳ) ∈ V1, facts R(ā) ∈ D1, and successors v ′ =
S(z̄) of v in T1, D1 contains a fact S(¯b) such that if position i
of ȳ has the same variable as position j of z̄, then position i
of ā has the same constant as position j of ¯b.

We refer to Condition (iv) as the progress condition. Informally,

it makes sure that an enumeration algorithm that traverses T1 in

a pre-order tree walk never gets ‘stuck’ in the sense that it can

always extend the partial answer produced so far to a full answer.

The construction of q1 and D1 is possible in time linear in | |D0 | |. It

has been used many times in the context of enumerating answers

to conjunctive queries (without ontologies) with constant delay.

We give an outline in the long version and refer to [10] for a very

clear exposition of the full details. The construction of q1 and D1

also tells us whether q0(D0) = ∅. If this is the case, we stop without

entering the enumeration phase.

We also use the preprocessing phase to compute data structures

that are used in the enumeration phase. We start with some pre-

liminaries. With a predecessor variable in an atom v ∈ V1, we mean

a variable that v shares with its predecessor in T1. By definition,

the root of T1 does not have any predecessor variables. A CQ q is

a subtree of q1 if there is a subset Vq ⊆ V1 such that the subgraph

Tq = (Vq ,E1 |Vq×Vq) of T1 induced by Vq is connected. Note that q

must be connected since q1 is and that Tq is a join tree for q. We

assume that Tq inherits the direction imposed on T1 and thus, for

instance, may speak about its root.

A progress tree is a pair (q,д) with q a subtree of q1 and д :

var(q) → (adom(D1) \ N) ∪ {∗} a map such that the following

conditions are satisfied:

(1) д(x) , ∗ for every predecessor variable x in the root of Tq ;
(2) if v ∈ Vq and v ′ is a successor of v inT1, then v

′ ∈ Vq if and

only if д(x) = ∗ for some predecessor variable x in v ′;
(3) there is a homomorphism h from q to D1 such that for all

x ∈ var(q), h(x) ∈ N if д(x) = ∗ and h(x) = д(x) otherwise;
(4) the constants in the range of д form a guarded set in D1.

To explain the intuition of progress trees, consider a homomorphism

h from q1 to D1 and an atom v = R(ȳ) ∈ V1 with predecessor

variables z̄. If h(ȳ) ∩ N = ∅, then (v,д) is a (single atom) progress

tree, д the restriction of h to the variables in ȳ. More interesting is

the case where h(z̄) ∩ N = ∅, but h(ȳ) ∩ N , ∅. Informally, under

homomorphism h such an atom v ‘crosses the boundary’ between

the ‘database part’ of D1 and the ‘null part’ of D1. Let Vq ⊆ V1 be

the smallest set that contains v and such that if u ∈ Vq and u ′ is a
successor of u in T1 such that h(x) ∈ N for at least one predecessor

variable in u ′, then u ′ ∈ Vq . This defines a subtree q of q1 and (q,д)
is then a progress tree, whereд is the restriction ofh to the variables

in q with constants from N replaced by ∗. Informally, (q,д) thus
describes an ‘excursion’ of the part q of q1 into the ‘null part’ of D1

and it turns out that properly dealing with such excursions is key

to enumerating minimal partial answers. Note that the constants

in the range of д form a guarded set in D1, as required. This relies

on q1 being connected as otherwise, it would be possible to cross

the boundary to the null part of D1 at some guarded set, but return

to the database part at a different guarded set.

Consider an atom v in q1 with predecessor variables z̄. A prede-
cessor map for v is a function h : z̄ → adom(D1) \ N that extends

to a homomorphism from v to D1. We call such v and h relevant.
For all relevant v and h, we compute a linked list trees(v,h) of
all progress trees (q,д) with root v such that д(z̄) = h(z̄). We sort

the list trees(v,h) so that it is in database-preferring order. This
means that progress tree (q,д) is before progress tree (q′,д′) when-
ever (q,д) ≺db (q

′,д′), which is the case if q and q′ have the same

root and Vq ⊊ Vq′ , or the following conditions are satisfied for all

x ∈ var(q):
(a) Vq = Vq′ ;
(b) д(x) = ∗ implies д′(x) = ∗;
(c) д(x) , ∗ implies д′(x) ∈ {д(x), ∗};
(d) for some x ∈ var(q), д′(x) = ∗ while д(x) , ∗.

The algorithm uses these lists as a global data structure that is both

accessed and modified. We show in the long version that the lists

trees(v,h) can indeed be computed in linear time on a RAM.

Lemma 5.3. The lists trees(v,h), for all relevant v and h, can be
computed in overall time linear in | |D1 | |. All these lists are non-empty.

Let v0, . . . ,vk be the ordering of the atoms in V1 generated by a

pre-order traversal of T1. For vi ∈ {v0, . . . ,vk } and a partial map

h : var(q1) → (adom(D1) \ N) ∪ {∗}, we use nextath (vi) to denote

vj with j > i smallest such that h(x) is undefined for some variable

x in vj , if such j exists, and the special symbol eoa (end of atoms)

Algorithm 1 Enumeration of minimal partial answers.

h0 = ∅;

enum(nextath0
(v0),h0);

function enum(v,h)
if v = eoa then

5: output h(x̄); % x̄ the variables in q1

prune(h);
return

let v = R(ȳ) with predecessor variables z̄;
for all (q,д) ∈ trees(v,h |z̄) do

10: h′ = h ∪ д;
enum(nextath′(v),h

′);

return
function prune(h)

for all subtrees q of q1 do
15: let v be the root of q with predecessor variables z̄;

for all progress trees (q,д) ≻db (q,h |var(q)) do
remove (q,д) from trees(v,h |z̄)

return

otherwise. Clearly, computing nextat is independent of | |D1 | | and

can thus be done in constant time.

Enumeration Phase. The enumeration phase of the algorithm

is presented in Figure 1. In the forall loop in Line 10, we follow the

database-preferring order imposed on the trees lists. It is straightfor-
ward to show that when a call enum(v,h) is made, then v,h |z̄ used

in Line 12 is relevant. The following is an important observation.

Lemma 5.4. None of the lists trees(v,h), with v,h relevant, ever
becomes empty.

Lemma 5.4 is important to achieve constant delay because it

implies that that in each call enum(v,h), the forall loop in Line 10

makes at least one iteration and thus at least one recursive call

in Line 12. Consequently, while traversing q1 we never backtrack

without producing an output. Note that given v and h |z̄ , we need
to find the (first element of the) list trees(v,h |z̄) in constant time.

On a RAM, this can be achieved by a straightforward lookup table.

In the prune subprocedure, there are only constantly many

progress trees (q,д) with (q,д) ≻db (q,h |var(q)) and these can be

found in constant time by starting with д = h |var(q) and then choos-

ing one or more variables x ∈ var(q) with д(x) , ∗ and setting

д(x) = ∗. Note that (q,h |var(q)) is neither required nor guaranteed

to be a progress tree. To remove (q′,д′) from trees(v,h |z̄), we can-
not iterate over all progress trees in trees(v,h |z̄) in search of (q′,д′)
as the length of the list is linear. This problem is also solved by a

lookup table. When generating the trees lists in the preprocessing

phase, we generate a lookup table that takes as argument a progress

tree and yields the memory location (register) where that tree is

stored as part of a list trees(v,h). Note that every progress tree

occurs in at most one such list. If the list is bidirectionally linked, it

is then easy to locate and remove the tree in constant time.

In the long version, we prove the following.

Proposition 5.5. The algorithm outputs exactly the minimal
partial answers to q1 on D1, without repetition.

6 ENUMERATIONWITHMULTI-WILDCARDS
We show that Theorem 5.2 lifts from the case of a single wildcard

to the case of multi-wildcards.

Theorem 6.1. Enumerating minimal partial answers with multi-
wildcards is in DelayClin for OMQs from (G,CQ) that are acyclic
and free-connex acyclic.

Fix an OMQ Q(x̄) = (O, S,q0) ∈ (G,CQ) with q0 acyclic and

free-connex acyclic and let an S-database D be given as input. By

Lemmas 2.3 and 3.2, we may enumerate q0(ch
q0

O
(D))WN in place

of Q(D)W . For brevity, we from now on use D to denote chq0

O
(D)

(and we will never refer back to the original D).

Our general approach to enumerating QW (D) is to combine the

enumeration algorithm from Theorem 5.2, here called A1, with a

DelayClin algorithm for all-testing (not necessarily minimal) partial

answers withmulti-wildcards. In fact, we develop such an algorithm

A2 in Appendix B, which is non-trivial. With the algorithm in

place, a first (incomplete) implementation of the general approach

could then be as follows. Use A1 to enumerate Q∗(D). For each
obtained answer ā∗, construct the multi-wildcard ball of ā∗, that is,
the set BW (ā∗) of multi-wildcard tuples āW such that replacing all

occurrences of wildcards fromW in āW by the single-wildcard ‘∗’

results in ā∗. Note that as the length of ā∗ is bounded by a constant,

so is the cardinality of BW (ā∗). Discard from BW (ā∗) those tuples
that are not partial answers usingA2, and then output those among

the remaining tuples that are minimal w.r.t. ‘≺’.

Example 6.2. Let Q = (O, S,q0) where

O = {A(x) → ∃y1∃y2 R(x ,y1) ∧T (x ,y1) ∧ S(x ,y2)},

S contains all relation symbols in Q, and

q0(x0,x1,x2,x3) = R(x0,x1) ∧ S(x0,x2) ∧T (x0,x3).

Further let D = {A(c),R(c, c ′)}. Then Q∗(D) = {(c, c ′, ∗, ∗)} and

QW (D) = {(c, c ′, ∗1, ∗2), (c, ∗1, ∗2, ∗1)}. But we never consider (and
thus do not output) the multi-wildcard tuple (c, ∗1, ∗2, ∗1).

The solution involves replacing the multi-wildcard ball BW (ā∗)
with the multi-wildcard cone

coneW (ā∗) =
⋃

¯b∗:ā∗⪯ ¯b∗
BW (¯b∗).

Clearly, also the cardinality of coneW (ā∗) is bounded by a constant.
Regarding Example 6.2, note that (c, ∗1, ∗2, ∗1) < B

W (c, c ′, ∗, ∗), but

(c, ∗1, ∗2, ∗1) ∈ coneW (c, c ′, ∗, ∗). However, the cones of different
tuples ā∗, ¯b∗ ∈ Q∗(D) might overlap and thus for some ā∗ ∈ Q∗(D),

there might be no tuple in coneW (ā∗) that we haven’t yet output,
compromising constant delay. We address these issues by using a

careful combination of balls, cones, and pruning.

The preprocessing phase consists of running the preprocessing

phases of A1 and A2. The enumeration phase is shown in Figure 2.

With L, we denote a bidirectionally linked list in which we store

multi-wildcard tuples and that is initialized as the empty list. In the

forall loop in Line 2, we use algorithmA1 to iterate over all minimal

partial answers in q(D)∗N. With q(D)W,⊀
N , we denote the set of (not

necessarily minimal) partial answers with multi-wildcards to CQ q

on database D. The intersections with q(D)W,⊀
N in Line 3 and 7 can

Algorithm 2 Enumeration of minimal partial answers with multi-

wildcards.

L = [];
for all ā∗ ∈ q(D)∗N do

3: for all āW ∈ coneW (ā∗) ∩ q(D)W,⊀
N with F (āW) = 0 do

F (āW) = 1;

append āW to L;

6: prune(āW)

choose āW ∈ min
≺(BW (ā∗) ∩ q(D)W,⊀

N);

output āW ;

9: remove āW from L;

output all tuples in L;
return

12: function prune(āW)

for all multi-wildcard tuples
¯bW such that āW ≺ ¯bW do

F (¯bW) = 1;

15: remove
¯bW from L;

return

be computed in constant time using algorithm A2. F is a lookup

table that stores a Boolean value for every multi-wildcard tuple

of length |x̄ |, initialized with 0 (all memory is initialized with 0

in our machine model). Informally, F (āW) is set to 1 if āW has

already been added to the list L or is not in q(D)WN (and thus does

not need to be added to L). For a set of multi-wildcard tuples S , we
use min≺(S) to denote the tuples in S that are minimal w.r.t. ‘≺’.

To remove multi-wildcard tuples from L in constant time, we use

a lookup table that stores, for every multi-wildcard tuple āW on

the list L, the memory location of the list node representing āW .

Since L is bidirectionally linked, this allows us to remove āW from

L in constant time. Since the arity of relation symbols is (implicitly)

bounded by a constant, so is the number of iterations of the forall
loop in Line 13. In summary, the preprocessing phase runs in linear

time while the enumeration phase has only constant delay. In the

long version we prove the following.

Lemma 6.3. The algorithm outputs exactly the minimal partial
answers with multi-wildcards to q on D, without repetition.

7 CONCLUSIONS
As future work, it would be interesting to consider as the ontol-

ogy language also description logics with functional roles such

as ELIF ; there should be a close connection to enumeration of

answers to CQs in the presence of functional dependencies [20].

A much more daring extension would be to (G,UCQ) or even
to (FG, (U)CQ) where UCQ denotes unions of CQs and FG de-

notes frontier-guarded TGDs. Note, however, that enumeration in

CD◦Lin of answers to UCQs is not fully understood even in the case
without ontologies [21]. Another interesting question is whether

the enumeration problems placed in DelayClin in the current paper

actually fall withinCD◦Lin, that is, whether the use of a polynomial

amount of memory in the enumeration phase can be avoided.

Acknowledgement.We acknowledge support by the DFG project

LU 1417/3-1 ‘QTEC’.

REFERENCES
[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply

strong lower bounds for dynamic problems. In Proceedings of FOCS 2014, pages
434–443. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.53.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. URL: http://webdam.inria.fr/Alice/.

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduc-
tion to Description Logic. Cambridge University Press, 2017. doi:10.1017/
9781139025355.

[4] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunc-

tive queries and constant delay enumeration. In Proceedings of CSL 2007, volume

4646, pages 208–222, 2007. doi:10.1007/978-3-540-74915-8_18.
[5] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël

Thomazo. Walking the complexity lines for generalized guarded existential

rules. In Proceedings of IJCAI 2011, pages 712–717. IJCAI/AAAI, 2011. doi:
10.5591/978-1-57735-516-8/IJCAI11-126.

[6] Pablo Barceló, Victor Dalmau, Cristina Feier, Carsten Lutz, and Andreas Pieris.

The limits of efficiency for open- and closed-world query evaluation under

guarded TGDs. In Proceedings of PODS 2020, pages 259–270, 2020. doi:10.1145/
3375395.3387653.

[7] Pablo Barceló, Cristina Feier, Carsten Lutz, and Andreas Pieris. When is ontology-

mediated querying efficient? In Proceedings of LICS 2019, pages 1–13, 2019.
doi:10.1109/LICS.2019.8785823.

[8] Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris. Semantic

optimization of conjunctive queries. J. ACM, 67(6):34:1–34:60, 2020. doi:10.
1145/3424908.

[9] Pablo Barceló, Reinhard Pichler, and Sebastian Skritek. Efficient evaluation and

approximation of well-designed pattern trees. In Proceedings of PODS 2015, pages
131–144. ACM, 2015. doi:10.1145/2745754.2745767.

[10] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. Constant delay

enumeration for conjunctive queries: a tutorial. ACM SIGLOG News, 7(1):4–33,
2020. doi:10.1145/3385634.3385636.

[11] Christoph Berkholz and Nicole Schweikardt. Constant delay enumeration with

fpt-preprocessing for conjunctive queries of bounded submodular width. In

Proceedings of MFCS 2019, pages 58:1–58:15, 2019. doi:10.4230/LIPIcs.MFCS.
2019.58.

[12] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering

with data-tractable description logics. In Proceedings of Reasoning Web, pages
218–307, 2015. doi:10.1007/978-3-319-21768-0_9.

[13] Meghyn Bienvenu, Magdalena Ortiz, Mantas Simkus, and Guohui Xiao. Tractable

queries for lightweight description logics. In Proceedings of IJCAI 2013, pages
768–774. IJCAI/AAAI, 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/

IJCAI13/paper/view/6908.

[14] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-

based data access: A study through disjunctive datalog, CSP, and MMSNP. ACM
Trans. Database Syst., 39(4):33:1–33:44, 2014. doi:10.1145/2661643.

[15] Endre Boros, Benny Kimelfeld, Reinhard Pichler, and Nicole Schweikardt. Enu-

meration in data management (Dagstuhl seminar 19211). Dagstuhl Reports,
9(5):89–109, 2019. doi:10.4230/DagRep.9.5.89.

[16] Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques
propositionnelle et du premier ordre. (On the relevance of enumeration: complexity
of propositional and first-order logic). PhD thesis, University of Caen Normandy,

France, 2013. URL: https://tel.archives-ouvertes.fr/tel-01081392.

[17] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query

answering under expressive relational constraints. J. Artif. Intell. Res., 48:115–174,
2013. doi:10.1613/jair.3873.

[18] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based

framework for tractable query answering over ontologies. J. Web Semant., 14:57–
83, 2012. doi:10.1016/j.websem.2012.03.001.

[19] Andrea Calì, Georg Gottlob, and Andreas Pieris. Towards more expressive

ontology languages: The query answering problem. Artif. Intell., 193:87–128,
2012. doi:10.1016/j.artint.2012.08.002.

[20] Nofar Carmeli and Markus Kröll. Enumeration complexity of conjunctive queries

with functional dependencies. Theory Comput. Syst., 64(5):828–860, 2020. doi:
10.1007/s00224-019-09937-9.

[21] Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions

of conjunctive queries. ACM Trans. Database Syst., 46(2):5:1–5:41, 2021. doi:
10.1145/3450263.

[22] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole

Schweikardt. Answering (unions of) conjunctive queries using random access

and random-order enumeration. In Proceedings of PODS 2020, pages 393–409,
2020. doi:10.1145/3375395.3387662.

[23] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines.

J. Comput. Syst. Sci., 7(4):354–375, 1973. doi:10.1016/S0022-0000(73)80029-
7.

[24] Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction,

bounded treewidth, and finite-variable logics. In Proceedings of Principles and
Practice of Constraint Programming - CP 2002, pages 310–326, 2002. doi:10.
1007/3-540-46135-3_21.

[25] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Enumeration algorithms for

conjunctive queries with projection. In Proceedings of ICDT 2021, pages 14:1–14:17,
2021. doi:10.4230/LIPIcs.ICDT.2021.14.

[26] Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive query

results. In Proceedings of ICDT 2021, pages 5:1–5:19, 2021. doi:10.4230/LIPIcs.
ICDT.2021.5.

[27] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the

satisfiability of propositional horn formulae. The Journal of Logic Programming,
1(3):267–284, 1984. doi:10.1016/0743-1066(84)90014-1.

[28] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-

change: semantics and query answering. J. Theor. Comput. Sci., 336(1):89–124,
2005. doi:10.1016/j.tcs.2004.10.033.

[29] Etienne Grandjean. Sorting, linear time and the satisfiability problem. An-
nals of Mathematics and Artificial Intelligence, 16:183–236, 1996. doi:10.1007/
BF02127798.

[30] David S. Johnson and Anthony C. Klug. Testing containment of conjunctive

queries under functional and inclusion dependencies. J. Comput. Syst. Sci.,
28(1):167–189, 1984. doi:10.1016/0022-0000(84)90081-3.

[31] Wojciech Kazana. Query evaluation with constant delay. (L’évaluation de requêtes
avec un délai constant). PhD thesis, École normale supérieure de Cachan, Paris,

France, 2013. URL: https://tel.archives-ouvertes.fr/tel-00919786.

[32] Markus Kröll, Reinhard Pichler, and Sebastian Skritek. On the complexity of

enumerating the answers to well-designed pattern trees. In Proceedings of ICDT
2016, pages 22:1–22:18, 2016. doi:10.4230/LIPIcs.ICDT.2016.22.

[33] Carsten Lutz andMarcin Przybyłko. Efficiently enumerating answers to ontology-

mediated queries. CoRR, abs/2203.09288, 2022. doi:10.48550/arXiv.2203.
09288.

[34] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications

of data dependencies. ACM Trans. Database Syst., pages 455–469, 1979. doi:
10.1145/320107.320115.

[35] Luc Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD
Rec., 44(1):10–17, 2015. doi:10.1145/2783888.2783894.

[36] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of
the Seventh International Conference on Very Large Data Bases - Volume 7, pages
82–94, 1981.

http://dx.doi.org/10.1109/FOCS.2014.53
http://webdam.inria.fr/Alice/
http://dx.doi.org/10.1017/9781139025355
http://dx.doi.org/10.1017/9781139025355
http://dx.doi.org/10.1007/978-3-540-74915-8_18
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-126
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-126
http://dx.doi.org/10.1145/3375395.3387653
http://dx.doi.org/10.1145/3375395.3387653
http://dx.doi.org/10.1109/LICS.2019.8785823
http://dx.doi.org/10.1145/3424908
http://dx.doi.org/10.1145/3424908
http://dx.doi.org/10.1145/2745754.2745767
http://dx.doi.org/10.1145/3385634.3385636
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.58
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.58
http://dx.doi.org/10.1007/978-3-319-21768-0_9
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6908
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6908
http://dx.doi.org/10.1145/2661643
http://dx.doi.org/10.4230/DagRep.9.5.89
https://tel.archives-ouvertes.fr/tel-01081392
http://dx.doi.org/10.1613/jair.3873
http://dx.doi.org/10.1016/j.websem.2012.03.001
http://dx.doi.org/10.1016/j.artint.2012.08.002
http://dx.doi.org/10.1007/s00224-019-09937-9
http://dx.doi.org/10.1007/s00224-019-09937-9
http://dx.doi.org/10.1145/3450263
http://dx.doi.org/10.1145/3450263
http://dx.doi.org/10.1145/3375395.3387662
http://dx.doi.org/10.1016/S0022-0000(73)80029-7
http://dx.doi.org/10.1016/S0022-0000(73)80029-7
http://dx.doi.org/10.1007/3-540-46135-3_21
http://dx.doi.org/10.1007/3-540-46135-3_21
http://dx.doi.org/10.4230/LIPIcs.ICDT.2021.14
http://dx.doi.org/10.4230/LIPIcs.ICDT.2021.5
http://dx.doi.org/10.4230/LIPIcs.ICDT.2021.5
http://dx.doi.org/10.1016/0743-1066(84)90014-1
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1007/BF02127798
http://dx.doi.org/10.1007/BF02127798
http://dx.doi.org/10.1016/0022-0000(84)90081-3
https://tel.archives-ouvertes.fr/tel-00919786
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.22
http://dx.doi.org/10.48550/arXiv.2203.09288
http://dx.doi.org/10.48550/arXiv.2203.09288
http://dx.doi.org/10.1145/320107.320115
http://dx.doi.org/10.1145/320107.320115
http://dx.doi.org/10.1145/2783888.2783894

This is the appendix of the conference version of the paper, which

is subject to space restrictions. Full proofs can be found in [33].

A CONNECTED QUERIES IN SECTION 5
We argue that, when enumerating minimal partial answers with a

single wildcard, we can indeed assume the query to be connected.

For assume that we have found an enumeration algorithm for

connected CQs that runs in DelayClin. We can then enumerate

q0(D0)
∗
N in DelayClin when q0 has maximal connected components

p0, . . . ,pk , k > 0, in the following way. We first do preprocessing

for all p0, . . . ,pk . We then start an algorithm that enumerates the

answers to p0. After the first answer was found, it calls the enu-

meration algorithm for p1, which upon finding an answer calls the

enumeration algorithm for p2, and so on. Only when the innermost

algorithm found an answer to pk , the answers are combined and

output as an answer to Q . Note the algorithms for p1, . . . ,pk have

to start from scratch multiple times which is problematic since the

data structures computed in the preprocessing phase are modified

in the enumeration phase and we cannot repeat preprocessing be-

cause that would introduce a linear time delay into the enumeration

phase. An easy solution is as follows. When first enumerating the

answers topk , we store all of them in the form of a linked list. When

we need to enumerate the answers to pk again, we can just use that

list without any preprocessing. We do the same for the subqueries

pk−1
∪pk , pk−2

∪pk−1
∪pk , and so on, which fixes the problem. The

above argument requires a polynomial amount of memory during

the enumeration phase. There is, however, an alternative approach

that avoids this. Our algorithm is such that the data structure S
computed in the preprocessing phase is modified in the enumer-

ation phase, resulting in a data structure S ′. However, S ′ is such
that it could have been used in place of S after the preprocessing

phase without affecting the output of enumeration. This means

that the preprocessing can simply be skipped before restarting the

enumeration algorithm for a connected subquery.

B ALL-TESTING PARTIAL ANSWERS WITH
MULTI-WILDCARDS

The algorithm for enumerating minimal partial answers with multi-

wildcards presented in Section 6 relies on a DelayClin algorithm

for all-testing (not necessarily minimal) partial answers with multi-

wildcards. In this section, we develop such an algorithm.

Proposition B.1. For every CQ q(x̄) that is acyclic and free-con-
nex acyclic, all-testing of the answers q(D)W,⊀

N is in DelayClin for
databases D of the form chq

O
(D0) and sets of nulls N = adom(D) \

adom(D0).

To prove Proposition B.1, fix a CQ q(x̄) over schema S that is

acyclic and free-connex acyclic, and let D be an S-database and

N a set of nulls satisfying the conditions from Proposition B.1.

In time linear in | |D | | we can convert q and D into a CQ q′(x̄)
without quantified variables and a database D ′ such that D and D ′

have the same Gaifman graph and q(D) = q′(D ′), and thus also

q(D)W,⊀
N = q′(D ′)W,⊀

N . Note that we achieve this as part of the

preprocessing carried out in Section 5. We may substitute q with

q′ and D with D ′, in effect simply assuming that q contains no

quantified variables.

Let Tq = (Vq ,Eq) be a join tree for q. A multi-progress tree is
a pair (q′,д) with q′ a subtree of q (as defined in Section 5) and

д : var(q) → (adom(D) \ N) ∪W a map such that the following

conditions are satisfied:

(1) д(x) <W for every predecessor variable x in the root ofTq′ ;
(2) if v ∈ Vq′ and v

′
is a successor of v in Tq , then v

′ ∈ Vq′ if
and only if д(x) ∈ W for some predecessor variable x in v ′;

(3) the constants in the range of д form a guarded set in D.

Let D1, . . . ,Dn be the tree-like structures in D generated by the

chase. A set S = {(q1,д1), . . . , (qℓ ,дℓ)} of multi-progress trees is

valid if there is a homomorphism h from q1 ∪ · · · ∪ qℓ to some

database Di , with 1 ≤ i ≤ n, that is compatible with д, that is, for
all x ,y ∈ var(q1) ∪ · · · ∪ var(qℓ),

(a) h(x) ∈ N if д(x) ∈ W and h(x) = д(x) otherwise;
(b) д(x) = д(y) implies h(x) = h(y).

Our DelayClin algorithm for all-testing q(D)W,⊀
N uses as a black

box a DelayClin algorithm Aq′ for all-testing of q′(D), for every
subquery q′(x̄ ′) of q(x̄), that is, for every CQ q′(x̄ ′) that can be

obtained from q by dropping atoms. Note that all of these q′ contain
no quantified variables and are thus free-connex acyclic, implying

that all-testing q′(D) is possible in DelayClin by Proposition 4.2.

There are clearly only constantly many such subqueries.

In the preprocessing phase, we run the preprocessing phases of

all the algorithms Aq′ , q
′
a subquery of q. In addition, we precom-

pute a lookup table nullhom that stores a Boolean value for all sets

S of multi-progress trees that contain at most |var(q)| such trees.

Let S = {(q1,д1), . . . , (qℓ ,дℓ)}. The stored value is 1 if S is valid

and 0 otherwise. Such a lookup table can be accessed and updated

inO(1) time on a RAM. The proof of the following is similar to that

of Lemma 5.3.

Lemma B.2. The lookup table nullhom can be computed in time
linear in | |D | |.

We now describe the testing phase of our algorithm. Assume

that a multi-wildcard tuple āW of length |x̄ | is to be tested. We may

first check whether wildcards are used in the required way and

answer ‘no’ if this is not the case. More precisely, we check that the

wildcards in āW are a prefix of the ordered setW = {∗1, ∗2, . . . }

and that multiple occurrences of the same variable in x̄ are matched

by multiple occurrences of the same wildcard in āW . If this is the

case, we may view āW as a map hāW : var(q) → (adom(D) \ N) ∪
W in the obvious way. We may then check that the wildcards

in āW respect the order of the answer variables in x̄ , that is, if
the first occurrence of x is before the first occurrence of x ′ in x̄ ,
hāW (x) = ∗i , and hāW (x

′) = ∗j , then i < j.

We say that a multi-progress tree (q′,д) is realized in āW if

hāW (x) = д(x) for all x ∈ var(q′). Let T be the set of all multi-

progress trees realized in āW and let ∼ be the smallest equivalence

relation on T such that (q1,д1) ∼ (q2,д2) if there are variables

x1 ∈ var(q1) and x2 ∈ var(q2) such that д1(x1) = д2(x2) ∈ W. We

consider each equivalence class S ⊆ T of ‘∼’ and check whether S
is valid by testing if nullhom(S) = 1. If any of the checks fails, we

answer ‘no’. Since at most |var(q)| (and thus only constantly many)

multi-progress trees may be realized in āW , the required checks

can be done in constant time.

a

b

c

d e
A, E E

B,C

B

database D

a

b

c

d e

n1

n2

n3n4

n5

n6 n7 n8

A, E E

B,C

B

C

C

C

database D0

Figure 3: Database D and query-directed chase D0. All edges
represent relation R and every constant has an L-self-loop
that is not shown.

C

R

L

R R

R

L
x1

y1

x2

x3

x4

x5

y5

a) CQ q

C1(x1)

L(y1, x1)

R(x1, x2)

R(x2, x3)

R(x4, x3)

R(x5, x4)

L(y5, x5)

b) join tree of q

Figure 2: CQ q and its join tree.

We then do one last check. Let q′ be the subquery of q that con-

sists of all atoms α such that for all variables x in α , hāW (x) <W.

Further let ā be the tuple over adom(D) \ N obtained from āW =

(aW
1
, . . . ,aW

|x̄ |) by dropping aWi whenever the i-th position in x̄ is

an answer variable that is not in var(q′). We then use algorithm

Aq′ to test whether ā ∈ q′(D) and return the result. The following

lemma asserts that the returned answer is correct, which finishes

the proof of Proposition 4.2.

Lemma B.3. āW ∈ q(D)WN iff the testing phase returns ‘yes’.

C ILLUSTRATING THE ALGORITHM
We give examples that showcase important aspects of the enumer-

ation algorithm for minimal partial answers with a single wildcard

presented in Section 5.

Assume that the enumeration algorithm is started on the OMQ

Q(x̄) = (O, S,q) ∈ (G,CQ) where O consists of the TGDs

A(x) → ∃y1∃y2 R(y1,y2) ∧ R(y2,x) ∧C(y2)

B(x) → ∃y1∃y2 R(y1,x) ∧ R(y2,x) ∧C(y1)

E(x) → ∃y1 R(x ,y1)

R(x ,y) → L(x ,x) ∧ L(y,y),

the schema S is {A,B,C,E,R}, and where q is the CQ

q(x̄) ← ∃y1∃y5 L(y1,x1),R(x1,x2),R(x2,x3),

R(x4,x3),R(x5,x4),L(y5,x5),C(x1).

with x̄ = (x1,x2,x3,x4,x5). The CQ q is displayed in Figure 2. It

is acyclic and free-connex acyclic, as witnessed by the join trees

for q and its extension q̂ with the atom R̂(x1, . . . ,x5). The join tree

for q is given in Figure 2. Note that the atoms that contain only

answer variables constitute a connected prefix of the join tree of q.
This can (almost

1
) always be achieved for CQs that are acyclic and

free-connex acyclic and is exploited in the preprocessing phase.

Assume that the input database D is as depicted on the left-hand

side of Figure 3, where all edges represent the relation symbol R.

Preprocessing. In the preprocessing phase, we modify the query

q and database D to obtain the CQ q2 and database D2 that are

used in the enumeration phase. This is done in several steps. In the

very first step, we set q0 = q and replace D with the query-directed

chase D0 = chq
O
(D), displayed on the right-hand side of Figure 3.

The next step is to construct from q0 and D0 a self-join free CQ

q1 without quantified and a database D1 that has been adjusted

1
It can always be achieved when using a generalized hypertree decomposition of

width 1 in place of a join tree, see [10].

accordingly. It is this step that exploits the special shape of the join

tree of q0 mentioned above. In our case, q1 is

q1(x̄) ← R1(x1,x2),R2(x2,x3),R4(x4,x3),R5(x5,x4),C1(x1).

Informally, q1 was obtained from q by renaming relation symbols

to achieve self-join freeness and dropping atoms that involve a

quantified variable. The join tree of q1 is the join tree of q except

that relation symbols in atoms change and nodes/atoms that contain

any of the variables y1,y5 are removed.

The databaseD1 is shown in Figure 3where, for better readability,

we only show the index i of edge labelsRi . Observe that the constant
n8 was removed and that edges are now multi-edges. To get an

intuition of the construction of D1, consider the fact R(n2,n1) in

D0. In principle, any of the four R-atoms in q0 can map to it, and in

q1 the relation symbol R in those atoms has been renamed to R1,

R2, R4, and R5, respectively. Thus, we should be prepared to include

in D1 the fact Ri (n2,n1) for all i ∈ {1, 2, 4, 5}. However, a closer

inspection shows that the atom R(x2,x3) in q0 cannot map to the

fact R(n2,n1) in D0 since then x1 would have to be mapped to an

R-predecessor of n2, which does not exist. A similar observation

holds for the atom R(x4,x3) in q0 and thus we only include in D1

the facts R1(n2,n1) and R5(n2,n1). The ‘right’ facts to include are

identified during a bottom-up walk over the join-tree of q0. Note

that the relation symbols A, B, have been dropped since they do

not occur in q0.

Lists of progress trees. The last step of the preprocessing phase is

to create the lists trees(v,h) of progress trees for each atom v in q2

and each predecessor map h forv . Recall that by the latter we mean

a function h : z̄ → adom(D2) \ N whose range is a guarded set

in D2, and where z̄ are the predecessor variables in v . For brevity,
we represent h in the form z1 · · · zn 7→ c1 · · · cn when z1, . . . , zn
are the variables in z̄ and h(zi) = ci for 1 ≤ i ≤ n; this becomes

ε 7→ ε when z̄ is the empty tuple. For the join tree of q1 with marked

predecessor variables, see Figure 5.

Also recall that a progress tree is a pair (q,д)with CQ q a subtree

of q2 and д a function from var(q) to (adom(D2) \ N) ∪ {∗} that
must satisfy Conditions (1)-(4) given in Section 5. We represent

Answer ∗babc Answer ∗∗abc

∗b

ba

ba

cb∗

b a

b∗

∗∗

∗a

ba

cb∗

∗ a

b∗

Figure 6: Three least partial answers, inside join tree of q2.

a

b

1,2,4,5

c

5

d
1,2,4,5

e
5

n1

2,4

n2

1,5

n3

1,5

n4

5

n5

1,5

n6

5

n7

2,4

C1

C1

C1

C1

Figure 4: Database D1. Edges are labeled with indices of the
relation symbols R1,R2,R4,R5 that constitute the edge.

R1(x1, x2)

R2(x2, x3)

R4(x4, x3)

R5(x5, x4)C1(x1)

x3 x3

x4x1

Figure 5: Join tree of q2. The predecessor variables of each
atom are shown on the incoming edge of the atom.

the function д in the same way as predecessor maps. Examples of

progress trees include

(R1(x1,x2),x1x1x2 7→ ba)

and

(R2(x2,x3) ∧ R1(x1,x2) ∧C1(x1),x1x2x3 7→ ∗∗a).

The reader is invited to verify that the relevant Conditions (1)-(4)

are all satisfied for these progress trees. Intuitively, the second

progress tree (q,д) above describes an ‘excursion’ of the part q of

q2 into the ‘null part’ of D2. This excursion consists of mapping x1

to n2, x2 to n1, and x3 to a.
Let us review two non-examples progress trees, starting with

(R4(x4,x3) ∧ R5(x5,x4),x3x4x5 7→ abc)

which is not a progress tree as the predecessor variable x4 of atom

R5(x5,x4) is mapped to ‘∗’ and thus Condition (2) is violated. Next

consider

(R4(x4,x3) ∧ R5(x5,x4),x3x4x5 7→ a∗c)

which is not a progress tree because there is no guarded set in D2

that contains a and c , and thus Condition (4) is violated.

We now give all the lists trees(v,h) that are computed in the

preprocessing phase. For brevity, we represent progress trees (q,д)
as the CQ q in which every variable x was replaced with д(x). List
items are separated by ‘;’. The lists are:

• atom v = R1(x1,x2) with a predecessor variable x2

– trees(v,x2 7→ a) = [R1(b,a);R1(d,a)]
– trees(v,x2 7→ b) = [R1(∗,b) ∧C1(∗)]

– trees(v,x2 7→ c) = []
– trees(v,x2 7→ d) = [R1(∗,d) ∧C1(∗)]

– trees(v,x2 7→ e) = []
• atom v = R2(x2,x3) no predecessor variables

– trees(v, ∅ 7→ ∅) = [R2(b,a);R2(d,a);
R2(∗,a) ∧ R1(∗, ∗) ∧C1(∗);R2(a, ∗) ∧ R4(a, ∗)]

• atom v = R4(x4,x3) with a predecessor variable x3

– trees(v,x3 7→ β) = [] for β ∈ {b, c,d, e}
– trees(v,x3 7→ c0a) = [R4(b,a);R4(d,a);
R4(∗,a) ∧ R5(∗, ∗)]

• atom v = R5(x5,x4) with a predecessor variable x4

– trees(v,x2 7→ c) = []
– trees(v,x2 7→ a) = [R5(b,a);R5(d,a);R5(e,a)]
– trees(v,x2 7→ b) = [R5(c,b);R5(∗,b)]
– trees(v,x2 7→ d) = [R5(∗,d)]
– trees(v,x2 7→ e) = []
• atom v = C1(x1) with a predecessor variable x1

– trees(v,x1 7→ β) = [] for β ∈ {a, c,d, e}
– trees(v,x1 7→ b) = [C1(b)]

All the remaining lists are empty. The lists above are sorted in

database preferring order, as required, and thus we are ready for

the enumeration phase.

Enumeration and pruning. In the enumeration phase, we traverse

the join tree of q1 in a depth-first fashion, assembling a minimal

partial answer toq1 onD1. Once such an answer is found, we output

it and execute pruning, then backtrack in a systematic way and

re-start answer assemblage to produce the next answer, and so on.

In our example, there are no complete answers. The first partial

answer generated is c̄∗ = ∗babc . The answer c̄∗ is displayed on the

left-hand side of Figure 6, inside the join tree for q1. The blue boxes

indicate the progress trees that have been used in assembling the

answer c̄∗.
Let us now consider pruning with c̄∗. Informally, we consider

all progress trees (q,д) such that q is some subtree of q2 and д
can be obtained by starting with x̄ 7→ c̄∗, then restricting to the

variables in var(q), and then switching at least one variable from a

non-wildcard to a wildcard. One example of such a progress tree is

R2(∗,a) ∧ R1(∗, ∗) ∧C1(∗).

Pruning removes this tree from trees(R2(x2,x3), ∅ 7→ ∅). One con-

sequence of this pruning that the partial answer ∗∗abc displayed
on the right of Figure 6, which is not a minimal partial answer, is

not output in the enumeration phase.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Single-Testing
	4 Enumeration and All-Testing: Complete Answers
	5 Enumeration with Single Wildcard
	6 Enumeration With Multi-Wildcards
	7 Conclusions
	References
	A Connected Queries in Section 5
	B All-Testing Partial Answers with Multi-Wildcards
	C Illustrating the Algorithm

