# Conservative Extensions for Existential Rules 

Jean Christoph Jung ${ }^{1}$, Carsten Lutz ${ }^{2}$, Jerzy Marcinkowski ${ }^{3}$<br>${ }^{1}$ Institute of Computer Science, University of Hildesheim, Germany<br>${ }^{2}$ Institute of Computer Science, Leipzig University, Germany<br>${ }^{3}$ Institute of Computer Science, University of Wrocław, Poland<br>jungj@uni-hildesheim.de, clu@informatik.uni-leipzig.de, jma@cs.uni.wroc.pl


#### Abstract

We study the problem to decide, given sets $T_{1}, T_{2}$ of tuplegenerating dependencies (TGDs), also called existential rules, whether $T_{2}$ is a conservative extension of $T_{1}$. We consider two natural notions of conservative extension, one pertaining to answers to conjunctive queries over databases and one to homomorphisms between chased databases. Our main results are that these problems are undecidable for linear TGDs, undecidable for guarded TGDs even when $T_{1}$ is empty, and decidable for frontier-one TGDs.


## 1 Introduction

Tuple-generating dependencies (TGDs) are an expressive constraint language that emerged in database theory, where it has various important applications (Abiteboul, Hull, and Vianu 1995). In knowledge representation, TGDs are used as an ontology language under the names of existential rules and Datalog ${ }^{ \pm}$(Baget et al. 2011; Calì et al. 2010). For the purposes of this paper, however, we stick with the name of 'TGDs'. A major application of TGDs in KR is ontology-mediated querying where a database query is enriched with an ontology, aiming to deliver more complete answers and to extend the vocabulary available for query formulation (Bienvenu et al. 2014; Bienvenu and Ortiz 2015; Calvanese et al. 2009). The semantics of ontology-mediated querying can be given in terms of homomorphisms and the widely known chase procedure that makes explicit the logical consequences of a set of TGDs and a database.

As the use of unrestricted TGDs makes the evaluation of ontology-mediated queries undecidable, various computationally more well-behaved fragments have been identified. We consider linear TGDs, guarded TGDs, and frontier-one TGDs (Calì, Gottlob, and Lukasiewicz 2012; Baget et al. 2011; Calì, Gottlob, and Kifer 2013). For all of these, ontologymediated query evaluation is decidable. Deferring a formal definition to Section 2 of this paper, we remark that guarded generalizes linear, and that frontier-one is orthogonal to both linear and guarded. Moreover, linear TGDs generalize description logics (DLs) of the DL-Lite family (Artale et al. 2009), while both guarded and frontier-one TGDs generalize DLs of the $\mathcal{E L} \mathcal{I}$ family (Baader et al. 2017).

On top of bare-bones query evaluation, there are other natural problems that are suggested by the framework of ontologymediated querying. Consider the following: given sets of

TGDs $T_{1}$ and $T_{2}$ (formulated in any, potentially different schemas), a database schema $\Sigma_{D}$, and a query schema $\Sigma_{Q}$, decide whether $T_{2}$ is a $\Sigma_{D}, \Sigma_{Q}$-CQ-conservative extension of $T_{1}$, that is, whether for all $\Sigma_{D}$-databases $D$ and conjunctive queries (CQ) $q(\bar{x})$ in schema $\Sigma_{Q}$, every tuple $\bar{c}$ that is an answer to $q$ on $D$ given $T_{1}$ is also an answer to $q$ on $D$ given $T_{2}$ (Botoeva et al. 2016). Note that this is a very relevant problem. If, for instance, $T_{2}$ is a $\Sigma_{D}, \Sigma_{Q^{-}}$ CQ-conservative extension of $T_{1}$ and vice versa, then we can safely replace $T_{1}$ with $T_{2}$ in any application where databases are formulated in schema $\Sigma_{D}$ and queries in schema $\Sigma_{Q}$. CQ-conservative extensions have been studied for various DLs and are decidable for many members of the DL-Lite and $\mathcal{E L I}$ families (Konev et al. 2011; Jung et al. 2020). In this paper, we address the naturally emerging question whether decidability extends to the more general settings of linear, guarded, and frontier-one TGDs.

A natural problem related to CQ-conservative extensions is $\Sigma_{D}, \Sigma_{Q}$-hom-conservative extension which asks whether for every $\Sigma_{D}$-database, there is a $\Sigma_{Q}$-homomorphism ${ }^{1}$ from the chase chase $T_{2}(D)$ of $D$ with $T_{2}$ to chase $T_{1}(D)$ that is the identity on all constants in $D$. In fact, this problem corresponds to CQ-conservative extensions when CQs may be infinitary, and it is known that these two problems do not coincide even in the case of DLs (Botoeva et al. 2016). We study hom-conservative extensions along with CQ-conservative extensions. In addition, we consider the variant of CQ/homconservative extensions where the set of TGDs $T_{1}$ is required to be empty. We refer to this as $\Sigma_{D}, \Sigma_{Q^{-}}$CQ/homtriviality. Note that triviality is also a very natural problem as it asks whether the given set of TGDs $T_{2}$ says anything at all about $\Sigma_{D}$-databases as far as conjunctive queries and homomorphisms over schema $\Sigma_{Q}$ are concerned. We observe that $\Sigma_{D}, \Sigma_{Q}$-CQ-triviality and $\Sigma_{D}, \Sigma_{Q}$-hom-triviality coincide even for unrestricted TGDs, and thus we only speak of $\Sigma_{D}, \Sigma_{Q}$-triviality. Our main results are as follows.

1. For linear TGDs, CQ- and hom-conservative extensions are undecidable, but triviality is decidable.
2. For guarded TGDs, triviality is undecidable.
3. For frontier-one TGDs, CQ- and hom-conservative extensions are decidable.
[^0]We consider it remarkable that undecidability already appears for a class as restricted as linear TGDs. Regarding Point 1, we also determine the exact complexity of triviality for linear TGDs as being PSPACE-complete, and coNPcomplete when the arity of relation symbols is bounded by a constant. Regarding Point 3, our algorithms yield 3EXPTIME upper bounds, while 2EXPTIME lower bounds can be imported from the DL $\mathcal{E L} \mathcal{L}$, a fragment of frontierone TGDs (Gutiérrez-Basulto, Jung, and Sabellek 2018; Jung et al. 2020). The exact complexity remains open.

Our undecidability results are proved by reductions from a convergence problem that concerns Conway functions (Conway 1972). In a database theory context, such a technique has been used in (Gogacz and Marcinkowski 2014). As the reader shall see, the reductions take place in the setting of Pyramus and Thisbe (Ovid 2008), a mythological couple that could only communicate through a crack in the wall and whose fate it was to never meet again in person. Bring some popcorn. The decidability result for hom-conservative extensions for frontier-one TGDs rests on the observation that whenever there is a database that witnesses non-conservativity, then there is such a database of bounded treewidth. This enables a decision procedure based on alternating tree automata. The case of CQ-conservative extensions is more intricate as it requires the use of homomorphism limits, that is, families of homomorphisms that can only look $n$ steps 'into the model', for any $n$. It is not clear how the existence of homomorphism limits can be verified by tree automata. Our solution generalizes the approach to CQ-conservative extensions in $\mathcal{E L} \mathcal{I}$ pursued in (Jung et al. 2020). In short, the idea is to push the use of homomorphism limits to parts of the chase that are $\Sigma_{Q}$-disconnected from the database and regular in shape, and to then characterize homomorphism limits from/into such regular (infinite) databases in terms of unbounded homomorphisms.

Related Work. We already mentioned the work on DLs from the DL-Lite and $\mathcal{E L I}$ families (Konev et al. 2011; Jung et al. 2020). For description logics such as $\mathcal{A L C}$ that support negation and disjunction, CQ- and hom-conservative extensions are undecidable (Botoeva et al. 2019). A different kind of conservative extension is obtained by replacing databases and query answers with logical consequences formulated in the ontology language (Ghilardi, Lutz, and Wolter 2006). While such conservative extensions are decidable in $\mathcal{A L C}$ (Ghilardi, Lutz, and Wolter 2006; Lutz, Walther, and Wolter 2007), they are undecidable in the guarded fragment and in the two-variable fragment of first-order logic (Jung et al. 2017). For existential rule languages, the difference between this version of conservative extensions and CQ-conservative extensions tends to be small (depending on the class of rules considered).

## 2 Preliminaries

Relational Databases. Fix countably infinite and pairwise disjoint sets of constants $\mathbf{C}$ and $\mathbf{N}$ and variables $\mathbf{V}$. We refer to the constants in $\mathbf{N}$ as nulls. A schema $\Sigma$ is a set of relation symbols $R$ with associated arity $\operatorname{ar}(R) \geq 1$. A $\Sigma$-fact is an expression of the form $R(\bar{c})$ with $R \in \Sigma$ and $\bar{c}$ is
an $\operatorname{ar}(R)$-tuple of constants from $\mathbf{C} \cup \mathbf{N}$. A $\Sigma$-instance is a possibly infinite set of $\Sigma$-facts, and a $\Sigma$-database is a finite $\Sigma$ instance that uses only constants from $\mathbf{C}$. We write adom $(I)$ for the set of constants from $\mathbf{C} \cup \mathbf{N}$ used in instance $I$. For an instance $I$ and a schema $\Sigma,\left.I\right|_{\Sigma}$ denotes the restriction of $I$ to $\Sigma$, that is, the set of all facts in $I$ that use a relation symbol from $\Sigma$. We say that $I$ is connected (resp., $\Sigma$-connected) if the Gaifman graph of $I$ (resp., $\left.I\right|_{\Sigma}$ ) is connected and that $I$ is of finite degree if the Gaifman graph of $I$ has finite degree.

For a schema $\Sigma$, a $\Sigma$-homomorphism from instance $I$ to instance $J$ is a function $h: \operatorname{adom}(I) \rightarrow \operatorname{adom}(J)$ such that $R(h(\bar{c})) \in J$ for every $R(\bar{c}) \in I$ with $R \in \Sigma$. We say that $h$ is database-preserving if it is the identity on all constants from $\mathbf{C}$ (but not necessarily from $\mathbf{N}$ ) and write $I \rightarrow_{\Sigma} J$ if there is a database-preserving $\Sigma$-homomorphism from $I$ to $J$.
Conjunctive Queries. A conjunctive query (CQ) over a schema $\Sigma$ takes the form $\exists \bar{y} \phi(\bar{x}, \bar{y})$ where $\bar{x}$ and $\bar{y}$ are tuples of variables from $\mathbf{V}, \phi$ is a set of atoms $R(\bar{z})$ with $R \in \Sigma$ and $\bar{z}$ a tuple of variables of length $\operatorname{ar}(R)$. We refer to the variables in $\bar{x}$ as the answer variables of $q$ and denote a CQ with $q(\bar{x})$ to emphasize that it has answer variables $\bar{x}$. The arity of $q$ is the length $|\bar{x}|$ of $\bar{x}$, and $q$ is Boolean if it is of arity 0 .

Every CQ $q(\bar{x})$ gives rise to a database $D_{q}$, known as the canonical database of $q$, by viewing variables as constants and atoms as facts. A $\Sigma$-homomorphism $h$ from $q$ to an instance $I$ is a $\Sigma$-homomorphism from $D_{q}$ to $I$. A tuple $\bar{c} \in$ adom $(I)^{|\bar{x}|}$ is an answer to $q$ on $I$ if there is a homomorphism $h$ from $q$ to $I$ with $h(\bar{x})=\bar{c}$. The evaluation of $q(\bar{x})$ on $I$, denoted $q(I)$, is the set of all answers to $q$ on $I$.

For a CQ $q$, but also for any other syntactic object $q$, we use $\|q\|$ to denote the number of symbols needed to write $q$ encoded as a word over a suitable alphabet.
TGDs. A tuple-generating dependency (TGD) $\vartheta$ is a firstorder sentence $\forall \bar{x} \forall \bar{y}(\phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z}))$ such that $q_{\varphi}=$ $\exists \bar{y} \phi(\bar{x}, \bar{y})$ and $q_{\psi}=\exists \bar{z} \psi(\bar{x}, \bar{z})$ are CQs. We call $\phi$ and $\psi$ the body and head of $\vartheta$. The body may be the empty conjunction, that is, logical truth. The variables in $\bar{x}$ are the frontier variables. We may write $\vartheta$ as $\phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z})$. An instance $I$ satisfies $\vartheta$, denoted $I \models \vartheta$, if $q_{\phi}(I) \subseteq q_{\psi}(I)$. It satisfies a set of TGDs $T$ if $I \models \vartheta$ for each $\vartheta \in T$. We then also say that $I$ is a model of $T$.

A TGD $\vartheta$ is frontier-one if it has exactly one frontier variable (Baget et al. 2011). It is guarded if its body is empty or contains a guard atom $\alpha$ that contains all variables in the body (Calì, Gottlob, and Kifer 2013). A TGD is linear if its body contains at most one atom. Clearly, every linear TGD is guarded. The body width of a set $T$ of TGDs is the maximum number of variables in a rule body of a TGD in $T$, and the head width is defined accordingly.

Throughout this paper, we are going to make use of the well-known chase procedure for making explicit the consequences of a set of TGDs (Johnson and Klug 1984; Fagin et al. 2005; Calì, Gottlob, and Kifer 2013). Let $I$ be an instance and $T$ a set of TGDs. A TGD $\phi(\bar{x}, \bar{y}) \rightarrow$ $\exists \bar{z} \psi(\bar{x}, \bar{z}) \in T$ is applicable at a tuple $\bar{c}$ of constants in $I$ if $\phi\left(\bar{c}, \bar{c}^{\prime}\right) \subseteq I$ for some $\bar{c}^{\prime}$ and there is no homomorphism $h$ from $\psi(\bar{x}, \bar{z})$ to $I$ such that $h(\bar{x})=\bar{c}$. In this case, the result
of applying the $T G D$ in $I$ at $\bar{c}$ is the instance $I \cup\left\{\psi\left(\bar{c}, \bar{c}^{\prime \prime}\right)\right\}$ where $\bar{c}^{\prime \prime}$ is the tuple obtained from $\bar{z}$ by replacing each variable $z$ with a fresh null, that is, a null that does not occur in $I$. We also refer to such an application as a chase step.

A chase sequence for $I$ with $T$ is a sequence of instances $I_{0}, I_{1}, \ldots$ such that $I_{0}=I$ and each $I_{i+1}$ is the result of a chase step from $I_{i}$. The result of the chase sequence is the instance $J=\bigcup_{i \geq 0} I_{i}$. The chase sequence is fair if whenever a TGD from $\bar{T}$ is applicable to a tuple $\bar{c}$ in some $I_{i}$, then this application is a chase step in the sequence. Every fair chase sequence for $I$ with $T$ has the same result, up to homomorphic equivalence. Since for our purposes all results are equally useful, we use chase ${ }_{T}(I)$ to denote the result of an arbitrary, but fixed chase sequence for $I$ with $T$ and call chase $_{T}(I)$ the result of chasing I with $T$. This version of the chase is often called the restricted chase and it ensures that chase $_{T}(D)$ has finite degree, which shall be important for our proofs.

Lemma 1. Let $T$ be a set of TGDs and I an instance. Then for every model $J$ of $T$ with $I \subseteq J$, there is a homomorphism $h$ from chase ${ }_{T}(I)$ to $J$ that is the identity on adom $(I)$.

Note that if $T$ is a set of frontier-one TGDs, then for any database $D$ the instance chase ${ }_{T}(D)$ can be obtained from $D$ by 'glueing' a (potentially infinite) instance onto each constant $c \in \operatorname{adom}(D)$. We denote this instance with chase $\left.{ }_{T}(D)\right|_{c} ^{\downarrow}$. A precise definition is given in the appendix.

Let $T$ be a set of TGDs, $q(\bar{x})$ a CQ and $D$ a database. A tuple $\bar{c} \in \operatorname{adom}(D)^{|\bar{x}|}$ is an answer to $q$ on $D$ w.r.t. $T$, written $D, T \models q(\bar{c})$, if $q(\bar{c})$ is logically follows from $D \cup T$ or, equivalently, if there is a homomorphism $h$ from $q$ to chase $_{T}(D)$ with $h(\bar{x})=\bar{c}$. The evaluation of $q$ on $D$ w.r.t. $T$, denoted $q_{T}(D)$, is the set of all answers to $q$ on $D$ w.r.t. $T$.

## 3 Conservative Extensions

We introduce the notions of conservative extension that are studied in this paper and the associated decision problems.
Definition 1. Let $T_{1}, T_{2}$ be sets of $T G D s$ and let $\Sigma_{D}, \Sigma_{Q}$ be schemas called the data schema and query schema. Then

- $T_{2}$ is $\Sigma_{D}, \Sigma_{Q}$-hom-conservative over $T_{1}$, written $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{h o m} T_{2}$, if there is a database-preserving $\Sigma_{Q^{-}}$ homomorphism from chase $T_{2}(D)$ to chase $T_{1}(D)$ for all $\Sigma_{D}$-databases D;
- $T_{2}$ is $\Sigma_{D}, \Sigma_{Q}$-CQ-conservative over $T_{1}$, written $T_{1} \models_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$, if $q_{T_{2}}(D) \subseteq q_{T_{1}}(D)$ for all $\Sigma_{D^{-}}$ databases $D$ and all CQs $q$ over schema $\Sigma_{Q}$.
- $T_{1}$ is $\Sigma_{D}, \Sigma_{Q}$-hom-trivial if $T_{1}$ is $\Sigma_{D}, \Sigma_{Q}$-homconservative over the empty set of TGDs, and likewise for $\Sigma_{D}, \Sigma_{Q}$-CQ-triviality.

It is easy to see that logical entailment $T_{1} \models T_{2}$ implies $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{\text {hom }} T_{2}$ for all schemas $\Sigma_{D}$ and $\Sigma_{Q}$, and that $\Sigma_{D}, \Sigma_{Q}$-hom-conservativity implies $\Sigma_{D}, \Sigma_{Q}$-CQconservativity. The following example from (Botoeva et al. 2016) shows that the converse fails.

Example 1. Consider the following sets of TGDs that are both linear and frontier-one:

$$
\begin{aligned}
T_{1}=\{A(x) & \rightarrow \exists y S(x, y), B(y) \\
B(x) & \rightarrow \exists y R(x, y), B(y)\} \\
T_{2}=\{A(x) & \rightarrow \exists y S(x, y), B(y) \\
B(x) & \rightarrow \exists y R(y, x), B(y)\} .
\end{aligned}
$$

Let $\Sigma_{D}=\{A\}$ and $\Sigma_{Q}=\{R\}$. We recommend to the reader to verify that $T_{2}$ is not $\Sigma_{D}, \Sigma_{Q}$-hom-conservative over $T_{1}$ by trying to find a database-preserving homomorphism from chase $T_{2}(D)$ to chase $T_{1}(D)$, and that it is $\Sigma_{D}, \Sigma_{Q^{-}}$-CQconservative.

However, $\Sigma_{D}, \Sigma_{Q}$-hom-conservativity is equivalent to $\Sigma_{D}, \Sigma_{Q}$-CQ-conservativity with infinitary CQs. We refrain from making this precise and instead consider the converse, that is, $\Sigma_{D}, \Sigma_{Q^{-}}$CQ-conservativity is equivalent to $\Sigma_{D}, \Sigma_{Q^{-}}$ hom-conservativity when the latter is defined in terms of a finitary version of homomorphisms that we introduce next.

Let $I_{1}, I_{2}$ be instances and $n \geq 0$, and let $\Sigma$ be a schema. We write $I_{1} \rightarrow{ }_{\Sigma}^{n} I_{2}$ if for every induced subinstance $I$ of $I_{1}$ with $|\operatorname{adom}(I)| \leq n$, there is a database-preserving $\Sigma$ homomorphism from $I$ to $I_{2}$. We further write $I_{1} \rightarrow \lim _{\Sigma} I_{2}$ if $I_{1} \rightarrow_{\Sigma}^{n} I_{2}$ for all $n \geq 1$.
Theorem 1. Let $T_{1}$ and $T_{2}$ be sets of TGDs and $\Sigma_{D}, \Sigma_{Q}$ schemas. Then $T_{1} \models_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$ iff chase $T_{2}(D) \rightarrow \Sigma_{\Sigma_{Q}}^{\lim _{Q}}$ chase $_{T_{1}}(D)$.

For triviality, the hom- and CQ-version coincide.
Lemma 2. Let $T_{1}, T_{2}$ be sets of $T G D s$ and $\Sigma_{D}, \Sigma_{Q}$ schemas. Then $T_{1}$ and $T_{2}$ are $\Sigma_{D}, \Sigma_{Q}$-hom-trivial if and only if they are $\Sigma_{D}, \Sigma_{Q}$-CQ-trivial.

Because of Lemma 2, we from now on disregard $\Sigma_{D}, \Sigma_{Q^{-}}$ CQ-triviality and refer to $\Sigma_{D}, \Sigma_{Q}$-hom-triviality simply as $\Sigma_{D}, \Sigma_{Q}$-triviality. We thus obtain the three decision problems hom-conservativity, CQ-conservativity, and triviality, defined in the obvious way. For instance, hom-conservativity means to decide, given finite sets of TGDs $T_{1}, T_{2}$ and finite schemas $\Sigma_{D}, \Sigma_{Q}$, whether $T_{2}$ is $\Sigma_{D}, \Sigma_{Q}$-hom-conservative over $T_{1}$.

We note that Lemma 2 is an immediate consequence of Theorem 1 and the following observation.
Lemma 3. Let $I_{1}, I_{2}$ be instances such that $I_{1}$ is countable and $I_{2}$ is finite, and let $\Sigma$ be a schema. If $I_{1} \rightarrow \lim _{\Sigma} I_{2}$, then $I_{1} \rightarrow_{\Sigma} I_{2}$.

We sketch the proof of Lemma 3, details are in the appendix. If $I_{1} \rightarrow{ }_{\Sigma}^{\lim } I_{2}$, then we find database-preserving $\Sigma$-homomorphisms $h_{1}, h_{2}, \ldots$ from finite subinstances $J_{1} \subseteq J_{2} \subseteq \ldots$ of $I_{1}$ to $I_{2}$ such that $I_{1}=\bigcup_{i \geq 1} J_{i}$. If $h_{1}, h_{2}, \ldots$ are compatible in the sense that $h_{i}(c)=h_{j}(c)$ whenever $h_{i}(c), h_{j}(c)$ are both defined, then $\bigcup_{i \geq 1} h_{i}$ is a $\Sigma$-homomorphism that witnesses $I_{1} \rightarrow_{\Sigma} I_{2}$. If this is not the case, however, we can still manipulate $h_{1}, h_{2}, \ldots$ into a compatible sequence $g_{1}, g_{2}, \ldots$ by 'skipping homomorphisms', which is used in several proofs in this paper. We start with $h_{1}$ and observe that since $J_{1}$ and $I_{2}$ are finite, there are only


Figure 1: Chase generated by $T_{\text {myth }}$.
finitely many homomorphisms $h$ from $J_{1}$ to $I_{2}$. Some such homomorphism must occur infinitely often in the restrictions of $h_{1}, h_{2}, \ldots$ to adom $\left(J_{1}\right)$ and thus we find a subsequence $h_{1}^{\prime}, h_{2}^{\prime}, \ldots$ of $h_{1}, h_{2}, \ldots$ in which $h_{1}^{\prime}$ is compatible with all of $h_{2}^{\prime}, h_{3}^{\prime}, \ldots$ We proceed in the same way for $h_{2}^{\prime}$, then for $h_{3}^{\prime}$, ad infinitum, finding the desired sequence $g_{1}, g_{2}, \ldots$

## 4 Undecidability

The aim of this section is to prove the following results.
Theorem 2. The following problems are undecidable:

1. hom-conservativity for linear TGDs;
2. CQ-conservativity for linear TGDs;
3. triviality for guarded TGDs.

We give a single proof that establishes Points 1 and 2. Attaining Point 3 requires a non-trivial modification of the proof. We start with the former, first highlighting the main mechanism that we use in our reduction.

### 4.1 The Main Mechanism

Consider the set of rules $T_{\text {myth }}$. It comprises three TGDs:

$$
\begin{aligned}
\text { Encounter }(p, t) \rightarrow & \exists p^{\prime}, c, t^{\prime} M\left(p, p^{\prime}, c, t^{\prime}, t\right) \\
M\left(p, p^{\prime}, c, t^{\prime}, t\right) \rightarrow & \exists p^{\prime \prime}, c^{\prime}, t^{\prime \prime} M\left(p^{\prime}, p^{\prime \prime}, c^{\prime}, t^{\prime \prime}, t^{\prime}\right) \\
M\left(p, p^{\prime}, c, t^{\prime}, t\right) \rightarrow & \operatorname{Pyramus}\left(p, p^{\prime}\right), \text { Thisbe }\left(t, t^{\prime}\right), \\
& \text { Channel }\left(c, p^{\prime}\right), \text { Channel }\left(c, t^{\prime}\right) .
\end{aligned}
$$

Now consider the database $D=\left\{\right.$ Encounter $\left.\left(c_{0}, c_{0}^{\prime}\right)\right\}$. The instance chase $T_{\text {myth }}(D)$, shown in Figure 1, will play an important role. Its intuitive meaning is that 'after an initial brief encounter, Pyramus and Thisbe have never met again, but forever remained able to connect via an (indirect) channel.' Notice that we do not explicitly show relation $M$ in Figure 1 as $M$ is only a construction aid, needed to ensure that the TGDs in $T_{\text {myth }}$ are linear. As $\Sigma_{Q}$, we will use the set of relation symbols in $T_{\text {myth }}$ except $M$, plus a unary relation symbol Mouth. We advise the reader to not worry about the schema $\Sigma_{D}$ at this point (it will actually be empty).

Let $\kappa=\left\langle\left[p_{1}, \ldots, p_{n}\right],\left[t_{1}, \ldots, t_{n}\right]\right\rangle$ be a pair of sequences of positive integers of the same length $n$. By River ${ }_{\kappa}$, we mean the database that contains the following facts, an example being displayed in Figure 2:


Figure 2: The database River $_{\kappa}$ for $\kappa=\langle[4,7,7,1],[7,4,6,2]\rangle$.

- There are 3 kinds of constants. The eternities are $e_{1}$ and $e_{2}$. The channel is $c$, not shown in the picture. All remaining constants are called worldly.
- For $1 \leq i \leq n$ there is a Pyramus path of length $p_{i}$ from $b_{i}$ to $b_{i-1}$ as well as a Thisbe path of length $t_{i}$ from $b_{i}$ to $b_{i-1}$. Constants $b_{i}$ are called bridges.
- There is Thisbe $\left(a, e_{1}\right)$ for each non-bridge constant $a$ on each of the Thisbe-paths and there is Pyramus $\left(a, e_{2}\right)$ for each non-bridge constant $a$ on each of the Pyramus-paths. There are also Thisbe $\left(a, e_{2}\right)$ and $\operatorname{Pyramus}\left(a, e_{1}\right)$ for each bridge constant $a$. In addition (and not in Figure 2), there are Pyramus $\left(e_{i}, e_{i}\right)$ and Thisbe $\left(e_{i}, e_{i}\right)$ for $i \in\{1,2\}$.
- For each worldly constant $a$, there is Channel $(c, a)$. Moreover, there are facts Channel $\left(e_{i}, e_{i}\right)$, for $i \in\{1,2\}$. These facts are not shown in Figure 2.
- There are Encounter $\left(b_{n}, b_{n-1}\right)$ and $\operatorname{Mouth}\left(b_{0}\right)$.

It is easy to see that chase $T_{T_{\text {myth }}}$ ( River $\left._{\kappa}\right)$ is obtained from River $_{\kappa}$ by adding a copy of the instance shown in Figure 1, glueing the Encounter fact to the Encounter fact in River ${ }_{\kappa}$ (and adding some $M$-facts that are not important here). Now, let us leave to our readers the pleasure to notice that:
Observation 1. There is a database-preserving $\Sigma_{Q^{-}}$ homomorphism from chase $T_{\text {myth }}\left(\right.$ River $\left._{\kappa}\right)$ to River $_{\kappa}$ if and only if there exists $m \in\{1, \ldots, n-1\}$ such that $t_{m} \neq p_{m+1}$.
Hint: As long as Pyramus and Thisbe walk down their respective river banks they are connected via the constant $c$. But for their union to last forever they need, at some point, to enter one of the eternities. Since eternity has no channel with the worldly constants (and the two eternities are not connected by a channel either), Pyramus and Thisbe both need to enter the same eternity, and they need to do it simultaneously. But this can only happen when one of them is in a bridge constant and the other in a non-bridge.
That's nice, isn't it? But where could undecidability be lurking here?

### 4.2 Conway Functions

Let $\gamma, \alpha_{0}, \beta_{0}, \ldots, \alpha_{\gamma-1}, \beta_{\gamma-1}$ be positive integers such that $\beta_{k} \mid \gamma$ and $\beta_{k} \mid k \alpha_{k}$ for $0 \leq k<\gamma$ where as usual '|' denotes divisibility without remainder. For a positive integer $n$, define $\digamma(n)$ by setting $\digamma(n)=n \alpha_{k} / \beta_{k}$ for $k=n \bmod \gamma$. Thus, the remainder of $n$ when dividing by $\gamma$ determines the pair $\left(\alpha_{k}, \beta_{k}\right)$ used to compute the value $\digamma(n)$. Note that due to the two divisibility conditions, the range of $\digamma$ contains only positive integers.

The function $\digamma$ is called the Conway function defined by $\gamma, \alpha_{0}, \beta_{0}, \ldots, \alpha_{\gamma-1}, \beta_{\gamma-1}$. We say that $\digamma$ stops if there exists an $n \in \mathbb{N}$ such that $\digamma^{n}(2)=1$, where $\digamma^{n}$ is $\digamma$ composed with itself, $n$ times. There is no special meaning to the numbers 1 and 2 used here, we could choose otherwise. The following is well-known, see also (Gogacz and Marcinkowski 2014).

Theorem 3. It is undecidable whether the Conway function defined by a given sequence $\gamma, \alpha_{0}, \beta_{0}, \ldots, \alpha_{\gamma-1}, \beta_{\gamma-1}$ stops.

Take a sequence $\gamma, \alpha_{0}, \beta_{0}, \ldots, \alpha_{\gamma-1}, \beta_{\gamma-1}$ defining a Conway function $\digamma$. We prove Points 1 and 2 of Theorem 2 by showing how to compute, given the sequence, sets $T_{1}$ and $T_{2}$ of linear TGDs along with schemas $\Sigma_{D}, \Sigma_{Q}$ such that $\digamma$ does not stop if and only if $T_{2}$ is $\Sigma_{D}, \Sigma_{Q}$-hom-conservative over $T_{1}$ if and only if $T_{2}$ is $\Sigma_{D}, \Sigma_{Q}$-CQ-conservative over $T_{1}$. We assume without loss of generality that $\digamma(1)=1$ and $\digamma(2)=3$.

### 4.3 The Reduction

We say that $\kappa=\left\langle\left[p_{1}, \ldots, p_{n}\right],\left[t_{1}, \ldots, t_{n}\right]\right\rangle$ (or River ${ }_{\kappa}$ ) is

- locally correct if the following conditions hold:

1. $p_{1}=2$ and $p_{n}=1$;
2. $\digamma\left(p_{i}\right)=t_{i}$ for $1 \leq i<n$;

- correct if it is locally correct and $t_{i}=p_{i+1}$ for $1 \leq i<n$.

The database River ${ }_{\kappa}$ shown in Figure 2 is not locally correct because $p_{1} \neq 2$ and $t_{n} \neq 1$ (which must be the case as we assume $\digamma(1)=1)$.

Clearly, $\digamma$ does not stop if and only if every locally correct River ${ }_{\kappa}$ is incorrect, and by Observation 1 this is the case if and only if for each locally correct sequence $\kappa$ there exists a database-preserving $\Sigma_{Q}$-homomorphism from chase $T_{T_{\text {myth }}}\left(\right.$ River $\left._{\kappa}\right)$ to River $_{\kappa}$.

Now the plan is as follows. Take $\Sigma_{D}=\emptyset$. We define $T_{1}$ such that chase $T_{1}(\emptyset)$ is the 'disjoint union' of all locally correct databases River ${ }_{\kappa}$. Our $T_{2}$ will be the union of $T_{1}$ and $T_{\text {myth }}$. A careful reader can notice that if this plan succeeds, then the proof of Point 1 of Theorem 2 will be completed. And it will indeed succeed, but not without one little nuance. This is the reason why we used quotations mark around the term 'disjoint union’ above.

The set of TGDs $T_{1}$ is the union of two sets of linear TGDs $T_{\text {rec }}$ and $T_{\text {proj }}$. As intended, $T_{1}$ generates the union of all locally correct databases River ${ }_{\kappa}$. The mentioned nuance is that the union is not disjoint, but massively overlapping. However, this does not compromise correctness of the reduction.

The rules of $T_{\text {rec }}$ will not mention symbols from $\Sigma_{Q}$. They instead use a schema $\Sigma_{\digamma}$ that consists of high arity relation
symbols used as construction aids. We later use $T_{\text {proj }}$ to relate these symbols to those in $\Sigma_{Q}$. More precisely, $\Sigma_{\digamma}$ contains relation symbols Start of arity 8, End of arity 5, Bridge of arity $4, \mathrm{WH}_{k}^{i}$ (for WorkHorse) of arity $\alpha_{k}+\beta_{k}+5$ for $0 \leq k, i<\gamma$, and $\mathrm{BH}_{k}$ (for BridgeHead) of arity $\alpha_{k}+\beta_{k}+5$ for $0 \leq k<\gamma$. In what follows, we use $\dagger$ to denote the list of variables ' $c, e_{1}, e_{2}$ '. With $+_{\gamma}$ and $-_{\gamma}$, we denote addition and subtraction in the ring $\mathbb{Z}_{\gamma}$.

Since $\Sigma_{D}=\emptyset$, first of all we need a rule that will create something out of nothing:

$$
\rightarrow \quad \exists \dagger, b_{0}, x_{1}, y_{1}, y_{2}, b_{1} \operatorname{Start}\left(\dagger, b_{0}, x_{1}, y_{1}, y_{2}, b_{1}\right)
$$

Later, $T_{\text {proj }}$ will generate a Pyramus-path from $b_{1}$ via $x_{1}$ to $b_{0}$ and a Thisbe-path from $b_{1}$ via $y_{2}$ and $y_{1}$ to $b_{0}$, determining the lengths $p_{1}=2$ and $t_{1}=3$ of the river. Recall that local correctness prescribes $p_{1}=2$ and we assume $\digamma(2)=3$. We need to know that $b_{1}$ is a bridge:

$$
\operatorname{Start}\left(\dagger, b_{0}, x_{1}, y_{1}, y_{2}, b_{1}\right) \rightarrow \operatorname{Bridge}\left(\dagger, b_{1}\right)
$$

We now put our horses to work by adding, for $0 \leq k<\gamma$ :

$$
\begin{aligned}
\operatorname{Bridge}(\dagger, b) \rightarrow & \exists x_{1}, \ldots, x_{\beta_{i}}, y_{1}, \ldots, y_{\alpha_{i}} \\
& \mathrm{WH}_{k}^{\beta_{k}}\left(\dagger, b, x_{1}, \ldots, x_{\beta_{k}}, b, y_{1}, \ldots, y_{\alpha_{k}}\right)
\end{aligned}
$$

and for $0 \leq k, i<\gamma$ :

$$
\begin{aligned}
& \mathrm{WH}_{k}^{i}\left(\dagger, x_{0}, x_{1}, \ldots, x_{\beta_{k}}, y_{0}, y_{1}, \ldots, y_{\alpha_{k}}\right) \rightarrow \\
& \quad \exists z_{1}, \ldots, z_{\beta_{k}}, u_{1}, \ldots, u_{\alpha_{k}} \\
& \quad \mathrm{WH}_{k}^{i+\beta_{k}}\left(\dagger, x_{\beta_{k}}, z_{1}, \ldots, z_{\beta_{k}}, y_{\alpha_{k}}, u_{1}, \ldots, u_{\alpha_{k}}\right) .
\end{aligned}
$$

$\mathrm{WH}_{k}^{i}\left(\dagger, c_{0}, c_{1}, \ldots, x_{\beta_{k}}, y_{0}, y_{1}, \ldots, y_{\alpha_{k}}\right)$ promises to generate, via $T_{\text {proj }}$, a Pyramus-path of length $\beta_{k}$ from $x_{\beta_{k}}$ to $x_{0}$ and a Thisbe-path of length $\alpha_{k}$ from $y_{\alpha_{k}}$ to $y_{0}$. The above two rules thus patiently produce Pyramus- and Thisbe-paths that lead to $b$. The superscript.$^{i}$ remembers how many Pyramusedges have been produced since the last bridge, modulo $\gamma$, and the subscript ${ }_{k}$ chooses a remainder class, that is, it expresses the promise that the Pyramus-path between the two bridges is of length $n$, for some number $n$ with $n \bmod \gamma=k$.

Then, at some point, the next bridge can be reached:

$$
\begin{aligned}
& \mathrm{WH}_{k}^{k-\gamma_{\gamma} \beta_{k}}\left(\dagger, x_{0}, x_{1}, \ldots, x_{\beta_{k}}, y_{0}, y_{1}, \ldots, y_{\alpha_{k}}\right) \rightarrow \\
& \quad \exists z_{1}, \ldots, z_{\beta_{k}-1}, u_{1}, \ldots, u_{\alpha_{k}-1}, b \\
& \quad \mathrm{BH}_{k}\left(\dagger, x_{\beta_{k}}, z_{1}, \ldots, z_{\beta_{k}-1}, b, y_{\alpha_{k}}, u_{1}, \ldots, u_{\alpha_{k}-1}, b\right) \\
& \mathrm{BH}_{k}\left(\dagger, x_{\beta_{k}}, z_{1}, \ldots, z_{\beta_{k}-1}, b, y_{\alpha_{k}}, u_{1}, \ldots, u_{\alpha_{k}-1}, b\right) \rightarrow \\
& \quad \operatorname{Bridge}(\dagger, b) .
\end{aligned}
$$

In the first rule above, relation $\mathrm{WH}_{k}^{k-{ }_{\gamma} \beta_{k}}$ indicates that we have seen $m$ Pyramus-edges, for some $m$ with $m$ mod $\gamma=$ $k{ }_{\gamma} \beta_{k}$, and that $\mathrm{BH}_{k}$ will generate $\beta_{k}$ more Pyramus-edges, thus arriving at the promised remainder of $k$. It is also easy to see that if the chosen remainder class was $k$ and the length of the Pyramus-path between two bridges produced by the above rules is $n$, then the length of the Thisbe-path is $\digamma(n)=$ $n \alpha_{k} / \beta_{k}$. Thus, Point 2 of local correctness is satisfied.

Finally, we want to produce the last ${ }^{2}$ segment of the river:

$$
\text { Bridge }(\dagger, b) \rightarrow \exists b^{\prime} \operatorname{End}\left(\dagger, b, b^{\prime}\right)
$$

[^1]This will generate direct Pyramus- and Thisbe-edges from $b^{\prime}$ to $b$ (recall that $\digamma(1)=1$ ).

The TGDs in $T_{\text {rec }}$ generate the actual rivers as projections of the template produced by $T_{\text {rec }}$. We start at the mouth:

```
\(\operatorname{Start}\left(\dagger, b_{0}, x_{1}, y_{1}, y_{2}, b_{1}\right) \rightarrow\)
    Mouth \(\left(b_{0}\right)\),
    \(\operatorname{Pyramus}\left(x_{1}, b_{0}\right), \operatorname{Pyramus}\left(b_{1}, x_{1}\right), \operatorname{Pyramus}\left(x_{1}, e_{2}\right)\),
    Thisbe \(\left(y_{1}, b_{0}\right)\), Thisbe \(\left(y_{2}, y_{1}\right)\), Thisbe \(\left(b_{1}, y_{2}\right)\),
    Thisbe \(\left(y_{1}, e_{1}\right)\), Thisbe \(\left(y_{2}, e_{1}\right)\),
    Channel \(\left(c, x_{1}\right)\), Channel \(\left(c, y_{1}\right)\), Channel \(\left(c, y_{2}\right)\),
    Channel \(\left(e_{1}, e_{1}\right)\), Pyramus \(\left(e_{1}, e_{1}\right)\), Thisbe \(\left(e_{1}, e_{1}\right)\)
    Channel \(\left(e_{2}, e_{2}\right)\), Pyramus \(\left(e_{2}, e_{2}\right)\), Thisbe \(\left(e_{2}, e_{2}\right)\).
```

The rules for $\mathrm{WH}_{k}^{i}$ are then as expected:

$$
\begin{aligned}
& \mathrm{WH}_{k}^{i}\left(\dagger, x_{0}, x_{1}, \ldots, x_{\beta_{k}}, y_{0}, y_{1}, \ldots, y_{\alpha_{k}}\right) \rightarrow \\
& \quad \text { Pyramus }\left(x_{1}, x_{0}\right), \ldots, \operatorname{Pyramus}\left(x_{\beta_{k}}, x_{\beta_{k}-1}\right), \\
& \quad \operatorname{Pyramus}\left(x_{1}, e_{2}\right), \ldots, \operatorname{Pyramus}\left(x_{\beta_{k}}, e_{2}\right), \\
& \quad \text { Thisbe }\left(y_{1}, y_{0}\right), \ldots, \text { Thisbe }\left(y_{\alpha_{k}}, y_{\alpha_{k}-1}\right), \\
& \\
& \text { Thisbe }\left(y_{1}, e_{1}\right), \ldots, \operatorname{Thisbe}\left(y_{\alpha_{k}}, e_{1}\right) \\
& \\
& \quad \text { Channel }\left(c, x_{1}\right), \ldots, \operatorname{Channel}\left(c, x_{\beta_{k}}\right), \\
& \\
& \quad \text { Channel }\left(c, y_{1}\right), \ldots, \operatorname{Channel}\left(c, y_{\alpha_{k}}\right) .
\end{aligned}
$$

Rules for the relations $\mathrm{BH}_{i}$ are analogous, so we skip them. There are also rules for projecting relations Bridge and End:

Bridge $(\dagger, b) \rightarrow$ Channel $(c, b)$, Pyramus $\left(b, e_{1}\right)$, Thisbe $\left(b, e_{2}\right)$ $\operatorname{End}\left(\dagger, b, b^{\prime}\right) \rightarrow \operatorname{Pyramus}\left(b^{\prime}, b\right)$, Thisbe $\left(b^{\prime}, b\right)$, Encounter $\left(b, b^{\prime}\right)$.

In the appendix, we show that:
Lemma 4. $\digamma$ does not stop iff $T_{2}=T_{1} \cup T_{\text {myth }}$ is $\Sigma_{Q}, \Sigma_{D^{-}}$ hom-conservative over $T_{1}=T_{\text {rec }} \cup T_{\text {proj }}$.

This establishes Point 1 of Theorem 2. For the "if" direction, one shows that if chase $T_{2}(\emptyset) \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(\emptyset)$, then every locally correct river is incorrect, and thus $\digamma$ stops. Since rivers may be long, but are finite, it actually suffices that chase $T_{T_{2}}(\emptyset) \rightarrow \sum_{\Sigma_{Q}}$ chase $T_{T_{1}}(\emptyset)$ for $\digamma$ to stop, which by Theorem 1 gives Point 2 of Theorem 2.

For Point 3 of Theorem 2, we again want to use the toolkit above, in particular $T_{\text {myth }}$ and Observation 1. But the situation is a bit different now. In the above reduction, we had at our disposal $T_{1}$ which was able to produce, from nothing, all the rivers we needed. So we could afford to have $\Sigma_{D}=\emptyset$. Now, however, we no longer have $T_{1}$, but only $T_{2}$, and our strategy is as follows. Recall that $\digamma$ stops if and only if there is a locally correct River ${ }_{\kappa}$ that is correct, and that River ${ }_{\kappa}$ is correct if there is no database-preserving $\Sigma_{Q}$-homomorphism from chase $T_{\text {myth }^{\prime}}\left(\right.$ River $\left._{\kappa}\right)$ to River $_{\kappa}$. We use the database $D$ to guess a River ${ }_{\kappa}$ that admits no such homomorphism. More precisely, we design $T_{2}$ so that it verifies the existence of a (single) locally correct river in $D$ and only if successful generates a chase with $T_{\text {myth }}$ at the Encounter fact of that river. Details are in the appendix.

## 5 Triviality for Linear TGDs

We show that for linear TGDs, $\Sigma_{D}, \Sigma_{Q}$-triviality is decidable and PSPACE-complete, while it is only CONP-complete when the arity of relation symbols is bounded by a constant. The upper bounds crucially rely on the observation that nontriviality is always witnessed by a singleton database, that is, a database that contains at most one fact. This was first noted (for CQ-conservative extensions) in the context of the decription logic DL-Lite (Konev et al. 2011).
Lemma 5. Let $T$ be a set of linear TGDs and $\Sigma_{D}, \Sigma_{Q}$ schemas. Then $T$ is $\Sigma_{D}, \Sigma_{Q}$-trivial iff chase ${ }_{T}(D)$ 淐 $D$ for all singleton $\Sigma_{D}$-databases $D$.

So an important part of deciding triviality is to decide, given a set of TGDs $T$ and a singleton database $D$, whether chase $_{T}(D) \not{\nrightarrow \Sigma_{Q}} D$. The basis for this is the subsequent lemma.
Lemma 6. Let $T$ be a set of linear TGDs and $D$ a singleton database. Then chase ${ }_{T}(D) \not \boldsymbol{\Sigma}_{Q} D$ implies that there is a connected database $C \subseteq$ chase $_{T}(D)$ that contains at most two facts and such that $C \nrightarrow \Sigma_{Q} D$.

Lemmas 5 and 6 provide us with a decision procedure for triviality for linear TGDs. Given a finite set of linear TGDs $T$ and finite schemas $\Sigma_{D}$ and $\Sigma_{Q}$, all we have to do is iterate over all singleton $\Sigma_{D}$-databases $D$ and over all $C \subseteq$ chase $_{T}(D)$ that contain at most two facts and check (in polynomial time) whether $C \rightarrow \Sigma_{Q} D$. To identify the sets $C$, we can iterate over all exponentially many candidates and check for each of them whether $D, T \models q_{C}$, where $q_{C}$ is $C$ viewed as a Boolean CQ. This entailment check is possible in PSPACE (Gottlob, Manna, and Pieris 2015). This yields the PSPACE upper bound in the following result.
Theorem 4. For linear TGDs, triviality is PSPACE-complete. It is CONP-complete if the arity of relation symbols is bounded by a constant.

To obtain the coNP upper bound, we recall that when the arity of relation symbols is bounded by a constant, then the entailment check ' $D, T \models q_{C}$ ' is in NP (Gottlob et al. 2014). To decide non-triviality, we may thus guess $D$ and $C$ and verify in polynomial time that $C \nrightarrow \Sigma_{Q} D$ and in NP that $D, T \models q_{C}$. For the lower bounds, we reduce entailments of the form $D, T \models \exists x A(x)$, with $T$ a set of linear TGDs, to non-triviality for linear TGDs. This problem is PSPACE-hard in general (Casanova, Fagin, and Papadimitriou 1984) and it is common knowledge that it is NP-hard when the arity of relation symbols is bounded by a constant. The reduction goes as follows. Let $D, T$, and $\exists x A(x)$ be given. Introduce a fresh binary relation symbol $R$, set $\Sigma_{D}=\Sigma_{Q}=\{R\}$, and let $T^{\prime}$ be the extension of $T$ with the TGDs

$$
\begin{aligned}
& \rightarrow q_{D} \\
A(u) & \rightarrow \exists x \exists y \exists z R(x, y), R(y, z)
\end{aligned}
$$

where $q_{D}$ is $D$ viewed as a Boolean CQ. Note that there is no homomorphism from $R(x, y), R(y, z)$ into the singleton $\Sigma_{D}$-database $\left\{R\left(c, c^{\prime}\right)\right\}$. Based on this, it is easy to verify that $T^{\prime}$ is $\Sigma_{D}, \Sigma_{Q}$-trivial iff $D, T \not \vDash \exists x A(x)$.

## 6 Frontier-One TGDs

The purpose of this section is to show the following.
Theorem 5. For frontier-one TGDs, CQ-conservativity and hom-conservativity are decidable in 3ExpTIME (and 2ExpTime-hard).

2ExpTIME lower bounds carry over from the description logic $\mathcal{E L} \mathcal{L}$, see (Gutiérrez-Basulto, Jung, and Sabellek 2018) for hom-conservativity and (Jung et al. 2020) for CQconservativity. They already apply when only unary and binary relation symbols are admitted. In the remainder of the section, we thus concentrate on the upper bounds.

Both in the case of hom-conservativity and CQconservativity, we first provide a suitable model-theoretic characterization and then use it to find a decision procedure based on tree automata. The case of CQ-conservativity is significantly more challenging because of the appearance of homomorphism limits.

### 6.1 Deciding Hom-Conservativity

We show that to decide hom-conservativity, it suffices to consider databases of bounded treewidth. Instead of using the standard notion of a tree decomposition, however, it is more convenient for us to work with so-called tree-like databases. Variations of these have been used for instance in (Benedikt, Bourhis, and Senellart 2012; Jung et al. 2018).

A $\Sigma$-instance tree is a triple $\mathcal{T}=(V, E, B)$ with $(V, E)$ a directed tree and $B$ a function that assigns a $\Sigma$-database $B(v)$ to every $v \in V$ such that the following conditions hold:

1. for every $a \in \bigcup_{v \in V}$ adom $(B(v))$, the restriction of $(V, E)$ to the nodes $v \in V$ such that $a \in \operatorname{adom}(B(v))$ is a tree of depth at most one;
2. for every $(u, v) \in E,|\operatorname{adom}(B(u)) \cap \operatorname{adom}(B(v))| \leq 1$.

The width of the instance tree is the supremum of the cardinalities of adom $(B(v)), v \in V$. A $\Sigma$-instance tree $\mathcal{T}$ defines an associated instance $I_{\mathcal{T}}=\bigcup_{v \in V} B(v)$. A $\Sigma$-instance $I$ is tree-like of width $k$ if there is a $\Sigma$-instance tree $\mathcal{T}$ of width $k$ with $I=I_{\mathcal{T}}$.

Instance trees of width $k$ are closely related to tree decompositions of width $k$ in which the bags overlap in at most one constant. Condition 1, however, strengthens the usual connectedness condition to trees of depth 1 . This strengthening is crucial for our constructions and not possible for other classes of TGDs such as guarded TGDs.
Theorem 6. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, and $\Sigma_{D}$ and $\Sigma_{Q}$ schemas. Let $k$ be the body width of $T_{1}$. Then the following are equivalent:

1. $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{\text {hom }} T_{2}$;
2. chase $T_{2}(D) \rightarrow_{\Sigma_{Q}}$ chase $T_{T_{1}}(D)$, for all tree-like $\Sigma_{D^{-}}$ databases $D$ of width at most $k$.
The " $1 \Rightarrow 2$ "-direction is a direct consequence of the definition of hom-conservativity. For the " $2 \Rightarrow 1$ "-direction, let $D$ be a $\Sigma_{D}$-database witnessing $T_{1} \not \vDash \sum_{\Sigma_{D}, \Sigma_{Q}}^{\text {hom }} T_{2}$, that is, chase $T_{T_{2}}(D) \nrightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(D)$. We show in the appendix that the unraveling $U$ of $D$ into a (potentially infinite) treelike $\Sigma_{D}$-instance of width $k$ also satisfies chase $T_{2}(U) \nrightarrow \Sigma_{Q}$
chase $T_{1}(U)$. Compactness then yields a finite subset $U^{\prime}$ of $U$ that still satisfies chase $T_{T_{2}}\left(U^{\prime}\right) \not \overbrace{\Sigma_{Q}}$ chase $T_{T_{1}}\left(U^{\prime}\right)$.

We show in the appendix how Theorem 6 can be used to reduce $\Sigma_{D}, \Sigma_{Q}$-hom-conservativity to the ExpTimE-complete emptiness problem of two-way alternating tree automata (2ATAs) and in this way obtain a 3EXPTIME upper bound. Here, we only give a sketch. Let $T_{1}$ and $T_{2}$ be sets of frontierone TGDs, $\Sigma_{D}$ and $\Sigma_{Q}$ schemas, $k$ the body width of $T_{1}$, and $\ell$ the head width of $T_{1}$.

The 2ATA works on input trees that encode a tree-like database $D$ of width at most $k$ along with a tree-like model $I_{0}$ of $D$ and $T_{1}$ of width at most $\max \{k, \ell\}$. It verifies that chase $T_{T_{2}}(D) \nrightarrow_{\Sigma_{Q}} I_{0}$. If such an $I_{0}$ is found, then chase $_{T_{2}}(D) \nrightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$ because chase $T_{1}(D) \rightarrow I_{0}$. The converse is also true since chase $T_{1}(D)$ is tree-like of width $\max \{k, \ell\}$. In fact, the instance chase $\left.T_{1}(D)\right|_{c} ^{\downarrow}$ that the chase generates below each $c \in \operatorname{adom}(D)$ (see Section 2) is tree-like of width $\ell$.

Since our homomorphisms are database-preserving and $T_{2}$ is a set of frontier-one TGDs, chase $T_{2}(D) \not \overbrace{\Sigma_{Q}} I_{0}$ if and only if there is a $c \in \operatorname{adom}(D)$ such that chase $\left.T_{2}(D)\right|_{c} ^{\downarrow} \nrightarrow_{\Sigma_{Q}} I_{0}$. The 2ATA may thus check this latter condition, which it does by relying on the notion of a type. Since types also play a role in the subsequent sections, we make this precise.

Let $T$ be a set of frontier-one TGDs. We use bodyCQ $(T)$ to denote the set of unary or Boolean CQs that can be obtained by starting with the Boolean CQ $\exists y \exists \bar{z} \phi(y, \bar{z})$ with $\phi(y, \bar{z})$ the body of some TGD in $T$, then dropping any number of atoms, and then identifying variables. Finally, we may choose a variable as the answer variable and rename it to the fixed variable $x$ (or stick with a Boolean CQ). A T-type is a subset $t \subseteq \operatorname{bodyCQ}(T)$ such that for some instance $I$ that is a model of $T$ and some $c \in \operatorname{adom}(I)$,

1. $q(x) \in t$ iff $c \in q(I)$ for all unary $q(x) \in \operatorname{bodyCQ}(T)$ and 2. $q \in t$ iff $I \models q$ for all Boolean $q \in \operatorname{bodyCQ}(T)$.

We then also use $\operatorname{tp}_{T}(I, c)$ to denote $t$. We assume that every type contains the additional formula $\operatorname{true}(x)$ (so that $x$ is guaranteed to occur free in $t$ ). We may then view $t$ as a unary CQ with free variable $x$ and thus as a (canonical) database. For brevity, we use $t$ also to denote both of these. TP $(T)$ is the set of all $T$-types. Note that the number of types is double exponential in $\|T\|$. The type $\operatorname{tp}_{T}\left(\operatorname{chase}_{T}(D), c\right)$ tells us everything we need to know about $c$ in the chase of a database $D$ with $T$, as follows.
Lemma 7. Let $T$ be a set offrontier-one TGDs, I an instance, and $c \in \operatorname{adom}(I)$. Then chase $\left.T_{T}(I)\right|_{c} ^{\downarrow}$ and chase $\left.{ }_{T}(J)\right|_{c} ^{\downarrow}$ are homomorphically equivalent, where $J$ is obtained from $\operatorname{tp}_{T}\left(\operatorname{chase}_{T}(I), c\right)$ by replacing the free variable $x$ with $c$.

The proof of Lemma 7 is straightforward by reproducing chase steps from the construction of chase ${ }_{T}(I)$ in chase $_{T}(J)$ and vice versa. Details are omitted.

So to verify that chase $T_{2}(D) \not \overbrace{\Sigma_{Q}} I_{0}$, a 2ATA may guess a constant $c$ in the database $D$ represented by the input tree, and it may also guess the type $\mathrm{tp}_{T_{2}}\left(\operatorname{chase}_{T_{2}}(D), c\right)$. It then goes on to verify that $\operatorname{tp}_{T_{2}}$ (chase $T_{2}(D), c$ ) was guessed correctly (which is not entirely trivial as chase $T_{2}(D)$ is not encoded in the input). Exploiting Lemma 7, it then starts from
type $\operatorname{tp}_{T_{2}}\left(\operatorname{chase}_{T_{2}}(D), c\right)$ to construct 'in its states' the instance chase $\left.T_{2}(D)\right|_{c} ^{\downarrow}$, simultaneously walking through the instance $I_{0}$ encoded by the input tree to verify that, as desired, chase $\left.T_{T_{2}}(D)\right|_{c} ^{\downarrow} \nrightarrow_{\Sigma_{Q}} I_{0}$ (we actually build a 2ATA for verifying chase $\left.T_{T_{2}}(D)\right|_{c} ^{\downarrow} \rightarrow \Sigma_{Q} I_{0}$ and then complement).

### 6.2 Deciding CQ-Conservativity

We start with showing that, also for deciding CQconservativity, it suffices to consider tree-like databases. In addition, it suffices to consider CQs $q$ of arity 0 or 1.
Theorem 7. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, and $\Sigma_{D}$ and $\Sigma_{Q}$ schemas. Let $k$ be the body width of $T_{1}$. Then the following are equivalent:

1. $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$;
2. $q_{T_{2}}(D) \subseteq q_{T_{1}}(D)$, for all tree-like $\Sigma_{D}$-databases $D$ of width at most $k$ and connected $\Sigma_{Q^{-}}$-CQs $q$ of arity 0 or 1 .
The proof of Theorem 7 first concentrates on restricting the shape of the database, using unraveling and compactness as in the proof of Theorem 6. In a second step, it is then not difficult to restrict also the shape of the CQ.

The following refinement of Theorem 1 is a straightforward consequence of Theorem 7.
Theorem 8. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, $\Sigma_{D}$ and $\Sigma_{Q}$ schemas, and $k$ the body width of $T_{1}$. Then the following are equivalent:

1. $T_{1} \models_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$;
2. chase $T_{2}(D) \rightarrow \lim _{Q}$ chase $_{T_{1}}(D)$, for all tree-like $\Sigma_{D^{-}}$ databases $D$ of width at most $k$.
Although Theorem 8 looks very similar to Theorem 6, it does not directly suggest a decision procedure. In particular, it is not clear how tree automata can deal with homomorphism limits. We next work towards a more operative characterization that pushes the use of homomorphism limits to parts of the chase that are $\Sigma_{Q}$-disconnected from the database and regular in shape. As we shall see, this allows us to get to grips with homomorphism limits.

For a database $D$, with chase $\left.{ }_{T}(D)\right|_{\Sigma} ^{\text {con }}$ we denote the union of all maximally $\Sigma$-connected components of chase $T(D)$ that contain at least one constant from adom $(D)$.
Theorem 9. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, $\Sigma_{D}$ and $\Sigma_{Q}$ schemas, and $k$ the body width of $T_{1}$. Then $T_{1} \models \Sigma_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$ iff for all tree-like $\Sigma_{D}$-databases $D$ of width at most $k$, the following holds:

1. chase $\left.T_{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$;
2. for all maximally $\Sigma_{Q}$-connected components $I$ of chase $_{T_{2}}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$, one of the following holds:
(a) $I \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$;
(b) $I \rightarrow{ }_{\Sigma_{Q}}^{\lim _{Q}}$ chase $\left._{T_{1}}(D)\right|_{c} ^{\downarrow}$ for some $c \in \operatorname{adom}(D)$.

The subsequent example illustrates the theorem.
Example 2. Consider the sets of $T G D s T_{1}, T_{2}$ and the schemas $\Sigma_{D}, \Sigma_{Q}$ from Example 1. Recall that $T_{2}$ is $\Sigma_{D}, \Sigma_{Q^{-}}$ CQ-conservative over $T_{1}$. Since $\Sigma_{D}$ contains only the unary
relation $A$, we may w.l.o.g. concentrate on the $\Sigma_{D}$-database $D=\{A(c)\}$. Clearly, Point 1 of Theorem 9 is satisfied.

For Point 2, observe that chase $T_{2}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$ contains only one maximally $\Sigma_{Q}$-connected component, which is of the form

$$
I=\left\{R\left(c_{1}, c_{0}\right), R\left(c_{2}, c_{1}\right), \ldots\right\}
$$

Moreover, $I \rightarrow \lim _{\Sigma_{Q}}$ chase $\left.T_{T_{1}}(D)\right|_{c} ^{\downarrow}$ and thus Point $2(b)$ is satisfied. Point 2(a) is not satisfied since $I \not \overbrace{\Sigma_{Q}}$ chase $_{T_{1}}(D)$.

The easier 'if' direction of the proof of Theorem 9 relies on the fact that, as per Theorem 7, we can concentrate on connected CQs of arity 0 or 1 . The interesting direction is 'only if', distinguishing several cases and using several 'skipping homomorphism' arguments (see Lemma 3).

Points 1 and 2(a) of Theorem 9 are amenable to the same tree automata techniques that we have used for homconservativity. Point 2(b) achieves the desired expulsion of homomorphism limits, away from the database $D$ to instances of regular shape. In fact, the number of possible $T_{1}$-types is independent of $D$ and thus by Lemma 7 the number of distinct instances chase $\left.T_{1}(D)\right|_{c} ^{\downarrow}$ in Point 2(b) that have to be considered is also independent of $D$. Moreover, these instances are purely chase-generated and thus regular in shape. The same is true for the instances $I$ in Point 2. We next take a closer look at the latter.

Let $T$ be a set of frontier-one TGDs. A $T$-labeled database is a pair $A=(D, \mu)$ with $D$ a database and $\mu: \operatorname{adom}(D) \rightarrow$ $\operatorname{TP}(T)$. We associate $A$ with a database $D_{A}$ that is obtained by starting with $D$ and then adding, for each $c \in \operatorname{adom}(D)$, a disjoint copy $D^{\prime}$ of the type $\mu(c)$ viewed as a database and glueing the copy of $x$ in $D^{\prime}$ to $c$ in $D_{A}$. We use $T$-labeled databases to describe fragments of chase-generated instances, and thus assume that $D_{A}$ contains only null constants. We also associate $A$ with a Boolean CQ $q_{A}$, obtained by viewing $D_{A}$ as such a CQ.

A labeled $\Sigma$-head fragment of $T_{2}$ is a $T_{2}$-labeled database $(F, \mu)$ such that $F$ can be obtained by choosing a TGD $\phi(x, \bar{y}) \rightarrow \exists \bar{z} \psi(x, \bar{z}) \in T_{2}$ and taking a maximally $\Sigma$ connected component of $\psi$ that does not contain the frontier variable. The following lemma follows from an easy analysis of the chase procedure. Proof details are omitted.
Lemma 8. Let I be a maximally $\Sigma_{Q}$-connected component of chase $T_{T_{2}}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$, as in Point 2 of Theorem 9. Then for some labeled $\Sigma_{Q}$-head fragment $A=(F, \mu)$ of $T_{2}$, 1. chase $T_{T_{2}}(D) \models q_{A}$, and
2. I is homomorphically equivalent to chase $\left.{ }_{T}\left(D_{A}\right)\right|_{\Sigma_{Q}}{ }^{\circ}$.

Clearly, the number of labeled $\Sigma$-head fragments of $T_{2}$ is independent of $D$, just like the number of $T_{1}$-types. It thus follows from Lemma 8 and what was said before it that the number of checks ' $I \rightarrow{ }_{\Sigma_{Q}} \lim$ chase $\left._{T_{1}}(D)\right|_{c} ^{\downarrow}$ ' in Point 2(b) of Theorem 9 does not depend on $D$ : there is at most one such check for every labeled $\Sigma$-head fragment of $T_{2}$ and every $T_{1}$-type. We can do all these checks in a preprocessing step, before starting to build 2ATAs for CQ-conservativity that implement the characterization provided by Theorem 9. Whenever the 2ATA needs to carry out a check ' $I \rightarrow{ }_{\Sigma_{Q}}^{\lim }$
chase $\left.T_{T_{1}}(D)\right|_{c} ^{\perp}$, to verify Point 2(b), we can simply look up the precomputed result and let the 2ATA reject immediately if it is negative. Thus, the automata are completely freed from dealing with homomorphism limits.

### 6.3 Precomputing Homomorphism Limits

It remains to show how to actually achieve the precomputation of the tests ' $I \rightarrow \lim _{\Sigma_{Q}}$ chase $\left._{T_{1}}(D)\right|_{c} ^{\downarrow}$ ' in Point 2(b) of Theorem 9 . This is where we finally deal with homomorphism limits. The following theorem makes precise the problem that we actually have to decide.
Theorem 10. Given two sets of frontier-one TGDs $T_{1}$ and $T_{2}$, a schema $\Sigma$, a labeled $\Sigma$-head fragment $A=(D, \mu)$ for $T_{2}$, and a $T_{1}$-type $\widehat{t}$, it can be decided in time triple exponential in $\left\|T_{1}\right\|+\left\|T_{2}\right\|$ whether chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma} ^{\text {con }} \rightarrow \lim _{\Sigma}$ chase $_{T_{1}}(\widehat{t})$.

We invite the reader to compare the decision problem formulated in Theorem 10 with Point 2(b) of Theorem 9 in the light of Lemmas 7 and 8. The decision procedure used to prove Theorem 10 is again based on tree automata. To enable their use, however, we first rephrase the decision problem in Theorem 10 in a way that replaces homomorphism limits with unbounded homomorphisms.

Let $T_{1}, T_{2}, \Sigma, A=(D, \mu)$, and $\widehat{t}$ be as in Theorem 10 . Recall that $A$ is associated with a database $D_{A}$ and a Boolean $\mathrm{CQ} q_{A}$. Here, we additionally use unary CQs $q_{A}^{c}$, for every $c \in \operatorname{adom}(D)$, which are defined exactly like $q_{A}$ except that $c$ is now the answer variable.

The main idea for proving Theorem 10 is to replace homomorphism limits into chase $T_{1}(\widehat{t})$ with homomorphisms into a class of instances $\mathcal{R}\left(T_{1}, \widehat{t}\right)$ whose disjoint union should be viewed as a relaxation of chase $T_{1}(\widehat{t})$. In particular, this relaxation admits a homomorphism limit to chase $T_{1}(\hat{t})$, but not a homomorphism. Let us make this precise.

We again use instance trees. This time, however, they are not based on directed trees, but on directed pseudo-trees, that is, finite or infinite directed graphs $G=(V, E)$ such that every node $v \in V$ has at most one incoming edge and $G$ is connected and contains no cycle. ${ }^{3}$ Note that infinite directed pseudo-trees need not have a root. For example, a two-way infinite path qualifies as a directed pseudo-tree.

A $T_{1}$-labeled instance tree has the form $\mathcal{T}=(V, E, B, \mu)$ with $\mathcal{T}^{\prime}=(V, E, B)$ an instance tree (based on a directed pseudo-tree) and $\mu: \operatorname{adom}\left(I_{\mathcal{T}^{\prime}}\right) \rightarrow \mathrm{TP}\left(T_{1}\right)$ a function that assigns a $T_{1}$-type to every element in $I_{\mathcal{T}^{\prime}}$. For $v \in V$, we use $\mu_{v}$ to denote the restriction of $\mu$ to adom $(B(v))$. Moreover, we set $I_{\mathcal{T}}=I_{\mathcal{T}^{\prime}}$. We say that $\mathcal{T}$ is $\widehat{t}$-proper if the following conditions are satisfied:

1. for every $v \in V$, one of the following holds:
(a) $v$ is the root of $(V, E), B(v)$ has the form $\left\{\operatorname{true}\left(c_{0}\right)\right\}$, and $\mu\left(c_{0}\right)=\widehat{t}$;
(b) there is a TGD $\vartheta$ in $T_{1}$ such that $B(v)$ is isomorphic to the head of $\vartheta$ and $\widehat{t}, T_{1}=q_{\left(B(v), \mu_{v}\right)}$;

[^2]2. for every $(u, v) \in E$ such that $B(u) \cap B(v)$ contains a (single) constant $c$, we have $\mu_{u}(c), T_{1} \models q_{\left(B(v), \mu_{v}\right)}^{c}(x)$. That is: the constant $x$ from the type $\mu_{u}(c)$ viewed as a database is an answer to the unary CQ $q_{\left(B(v), \mu_{v}\right)}^{c}$ w.r.t. $T_{1}$.
The announced class $\mathcal{R}\left(T_{1}, \widehat{t}\right)$ consists of all instances $I$ such that $I=I_{\mathcal{T}}$ for some $\widehat{t}$-proper $T_{1}$-labeled instance tree $\mathcal{T}$. It is easy to see that chase $T_{1}(\widehat{t}) \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$ as there is a $\widehat{t}$-proper $T_{1}$-labeled instance tree $\mathcal{T}$ such that $I_{\mathcal{T}}=$ chase $T_{1}(\hat{t})$. However, there are also instances $I \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$ that do not admit a homomorphism to chase $\left(\widehat{t}, T_{1}\right)$. The following example illustrates their importance.
Example 3. Consider $T_{1}, T_{2}, \Sigma_{D}, \Sigma_{Q}$ from Example 1 and $I, D$, from Example 2. Let $\widehat{t}=\operatorname{tp}_{T_{1}}\left(\operatorname{chase}_{T_{1}}(D), c\right)$, that is, $\widehat{t}=\{A(x), \exists x A(x), \exists x B(x)\}$. Then $I \nrightarrow$ chase $_{T_{2}}(\widehat{t})$. However, we find a $\widehat{t}$-proper $T_{1}$-labeled instance tree $\mathcal{T}=$ $(V, E, B, \mu)$ such that $I \rightarrow I_{\mathcal{T}}$.

We may construct $\mathcal{T}$ by starting with a single node $v_{0}$, $B\left(v_{0}\right)=\left\{R\left(c_{1}, c_{0}\right)\right\}$, and

$$
\mu\left(c_{0}\right)=\mu\left(c_{1}\right)=\{B(x), \exists x A(x), \exists x B(x)\}
$$

Then repeatedly add a predecessor $v_{i+1}$ of $v_{i}$, with $B\left(v_{i+1}\right)=\left\{R\left(c_{i+1}, c_{i}\right)\right\}$ and $\mu\left(c_{i+1}\right)=\mu\left(c_{0}\right)$, ad infinitum. The resulting tree $\mathcal{T}$ is $\widehat{t}$-proper and satisfies $I_{\mathcal{T}}=I$. Note that it does not have a root.

The next lemma is the core ingredient to the proof of Theorem 10. Informally, it states that when replacing chase $T_{1}(\widehat{t})$ with instances from $\mathcal{R}\left(T_{1}, \widehat{t}\right)$, we may also replace homomorphism limits with homomorphisms.
Lemma 9. Let I be a countable $\Sigma$-connected instance such that adom $(I)$ contains only nulls. Then $I \rightarrow{ }_{\Sigma}^{\lim }$ chase $_{T_{1}}(\widehat{t})$ iff there is an $\widehat{I} \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$ with $I \rightarrow \widehat{I}$.

In the proof of Lemma 9, the laborious direction is 'only if', where one assumes that $I \rightarrow{ }_{\Sigma}^{\lim }$ chase $_{T_{1}}(\widehat{t})$ and then uses finite subinstances $J_{1} \subseteq J_{2} \subseteq \cdots$ of $I$ with $I=\bigcup_{i \geq 1} J_{i}$ and homomorphisms $h_{i}$ from $J_{i}$ to chase $T_{1}(\widehat{t}), i \geq 1$, to identify the desired instance $\widehat{I} \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$. This again involves several 'skipping homomorphisms' type of arguments.

Using Lemma 9, we give a decision procedure based on 2ATAs that establishes Theorem 10. The 2ATA accepts input trees encoding an instance $I \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$ that admits a $\Sigma$ homomorphism from chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma} ^{\text {con }}$.

## 7 Future Work

It would be interesting to determine the exact complexity of hom- and CQ-conservativity for frontier-one TGDs. We tend to think that these problems are 3ExpTimE-complete. Note that in the description logic $\mathcal{E} \mathcal{L}$, they are 2ExpTimecomplete (Jung et al. 2020).

It would also be interesting to study conservative extensions and triviality for other classes of TGDs that have been proposed in the literature. Of course, it would be of particular interest to identify decidable cases. Classes for which undecidability does not follow from the results in this paper include acyclic and sticky TGDs, which exist in several forms, see for instance (Calì, Gottlob, and Pieris 2010).

## Acknowledgements

Carsten Lutz was supported by the DFG project LU 1417/3-1 QTEC and Jery Marcinkowski by the Polish National Science Centre (NCN) grant 2016/23/B/ST6/01438.

## References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Zakharyaschev, M. 2009. The DL-Lite family and relations. J. Artif. Intell. Res. 36:1-69.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An Introduction to Description Logic. Cambridge University Press.
Baget, J.; Mugnier, M.; Rudolph, S.; and Thomazo, M. 2011. Walking the complexity lines for generalized guarded existential rules. In Proc. of IJCAI, 712-717.
Benedikt, M.; Bourhis, P.; and Senellart, P. 2012. Monadic datalog containment. In Proc. of ICALP, volume 7392 of LNCS, 79-91. Springer.
Bienvenu, M., and Ortiz, M. 2015. Ontology-mediated query answering with data-tractable description logics. In Reasoning Web, 218-307.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014. Ontology-based data access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Transactions on Database Systems 39(4):33:1-33:44.
Botoeva, E.; Konev, B.; Lutz, C.; Ryzhikov, V.; Wolter, F.; and Zakharyaschev, M. 2016. Inseparability and conservative extensions of description logic ontologies: A survey. In Proc. of Reasoning Web, volume 9885 of LNCS, 27-89. Springer.
Botoeva, E.; Lutz, C.; Ryzhikov, V.; Wolter, F.; and Zakharyaschev, M. 2019. Query inseparability for $\mathcal{A L C}$ ontologies. Artif. Intell. 272:1-51.
Calì, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and Pieris, A. 2010. Datalog+/-: A family of logical knowledge representation and query languages for new applications. In Proc. of LICS, 228-242. IEEE Computer Society.
Calì, A.; Gottlob, G.; and Kifer, M. 2013. Taming the infinite chase: Query answering under expressive relational constraints. J. Artif. Intell. Res. 48:115-174.
Calì, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14:57-83.
Calì, A.; Gottlob, G.; and Pieris, A. 2010. Advanced processing for ontological queries. Proc. VLDB Endow. 3(1):554565.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; Poggi, A.; Rodriguez-Muro, M.; and Rosati, R. 2009. Ontologies and databases: The DL-Lite approach. In Reasoning Web, volume 5689 of LNCS, 255-356.
Casanova, M. A.; Fagin, R.; and Papadimitriou, C. H. 1984. Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1):29-59.

Comon, H.; Dauchet, M.; Gilleron, R.; Löding, C.; Jacquemard, F.; Lugiez, D.; Tison, S.; and Tommasi, M. 2007. Tree automata techniques and applications. Available at http://www.grappa.univ-lille3.fr/tata. October, 12th 2007.
Conway, J. 1972. Unpredictable iterations. In Proc. of 1972 Number Theory Conference, 49-52.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005. Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1):89-124.
Ghilardi, S.; Lutz, C.; and Wolter, F. 2006. Did I damage my ontology? A case for conservative extensions in description logics. In Proc. of KR, 187-197. AAAI Press.
Gogacz, T., and Marcinkowski, J. 2014. All-instances termination of chase is undecidable. In Proc. of ICALP, volume 8573 of LNCS, 293-304. Springer.
Gottlob, G.; Kikot, S.; Kontchakov, R.; Podolskii, V. V.; Schwentick, T.; and Zakharyaschev, M. 2014. The price of query rewriting in ontology-based data access. Artif. Intell. 213:42-59.
Gottlob, G.; Manna, M.; and Pieris, A. 2015. Polynomial rewritings for linear existential rules. In Proc. of IJCAI, 2992-2998. AAAI Press.
Grädel, E., and Walukiewicz, I. 1999. Guarded fixed point logic. In Proc. of LICS, 45-54.
Gutiérrez-Basulto, V.; Jung, J. C.; and Sabellek, L. 2018. Reverse engineering queries in ontology-enriched systems: The case of expressive horn description logic ontologies. In Proc. of IJCAI, 1847-1853. ijcai.org.
Johnson, D. S., and Klug, A. C. 1984. Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1):167-189.
Jung, J. C.; Lutz, C.; Martel, M.; Schneider, T.; and Wolter, F. 2017. Conservative extensions in guarded and two-variable fragments. In Proc. of ICALP, LIPIcs, 108:1-108:14.
Jung, J. C.; Lutz, C.; Martel, M.; and Schneider, T. 2018. Querying the unary negation fragment with regular path expressions. In Proc. of ICDT, volume 98 of LIPIcs, 15:1-15:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Jung, J. C.; Lutz, C.; Martel, M.; and Schneider, T. 2020. Conservative extensions in horn description logics with inverse roles. J. Artif. Intell. Res. 68:365-411.
Jung, J. C.; Lutz, C.; and Marcinkowski, J. 2022. Conservative extensions for existential rules. CoRR abs/2202.05689.
Konev, B.; Kontchakov, R.; Ludwig, M.; Schneider, T.; Wolter, F.; and Zakharyaschev, M. 2011. Conjunctive query inseparability of OWL 2 QL TBoxes. In Proc. of AAAI. AAAI Press.
Lutz, C.; Walther, D.; and Wolter, F. 2007. Conservative extensions in expressive description logics. In Proc. of IJCAI, 453-458.
Ovid. 2008. Metamorphoses, first edition 8 AD, Translated by A. D. Melville. Introduction and notes by Edward John Kenney. Oxford University Press.
Vardi, M. Y. 1998. Reasoning about the past with two-way automata. In Proc. of ICALP, 628-641.

## A Proofs for Section 3

Theorem 1. Let $T_{1}$ and $T_{2}$ be sets of $T G D s$ and $\Sigma_{D}, \Sigma_{Q}$ schemas. Then $T_{1} \neq{ }_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$ iff chase $_{T_{2}}(D) \rightarrow \lim _{Q}$ chase $_{T_{1}}(D)$.

Proof. The 'if' direction should be clear. For the 'only if' direction, take a $\Sigma_{D}$-database $D$ and any finite induced subinstance $I$ of chase $T_{2}(D)$. We may view $I$ as a CQ $q$ with the constants from $\mathbf{C}$ as answer variables and those from $\mathbf{N}$ as quantified variables. The identity is a homomorphism from $q$ to $I$, giving rise to an answer $\bar{a}$ to $q$ on $D$ w.r.t. $T_{2}$ that consists of the constants in $I$ that are from C. Since $T_{1} \models_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$, $\bar{a}$ is an answer to $q$ on $D$ w.r.t. $T_{1}$, and this gives the desired homomorphism from $I$ (which is $q$ ) to chase $T_{1}(D)$.

Lemma 3. Let $I_{1}, I_{2}$ be instances such that $I_{1}$ is countable and $I_{2}$ is finite, and let $\Sigma$ be a schema. If $I_{1} \rightarrow \lim _{\Sigma} I_{2}$, then $I_{1} \rightarrow_{\Sigma} I_{2}$.

Proof. Assume that $I_{1} \rightarrow \lim _{\Sigma} I_{2}$. We need to find a database-preserving $\Sigma$-homomorphism $h$ from $I_{1}$ to $I_{2}$. Let $\operatorname{adom}\left(I_{1}\right)=\left\{c_{1}, c_{2}, \ldots\right\}$ (finite or infinite) and for $i \geq 1$, let $A_{i}$ be the set of the first $\min \left\{i, \mid\right.$ adom $\left.\left(I_{1}\right) \mid\right\}$ constants from the sequence $c_{1}, c_{2}, \ldots$. Since $I_{1} \rightarrow_{\Sigma}^{\lim } I_{2}$, we find for each $i \geq 0$ a database-preserving $\Sigma$-homomorphism $h_{i}$ from $\left.I_{1}\right|_{A_{i}}$ to $I_{2}$. For $A \subseteq A_{i}$, we use $\left.h_{i}\right|_{A}$ to denote the restriction of $h_{i}$ to domain $A$. We would be done if we knew that the sequence $h_{1}, h_{2}, \ldots$ satisfied the following uniformity condition:
$\left.(*) h_{j}\right|_{A_{i}}=h_{i}$ for $j>i>0$,
as then we could simply take $h=\bigcup_{i \geq 1} h_{i}$. We show how to extract from $h_{1}, h_{2}, \ldots$ a sequence $g_{1}, g_{2}, \ldots$ that satisfies Condition (*), and then define $h=\bigcup_{i \geq 1} g_{i}$. During the construction of the sequence $g_{1}, g_{2}, \ldots$, we shall take care that for every $g_{i}$, there are infinitely many $j>i$ with $\left.h_{j}\right|_{A_{i}}=$ $g_{i}$.

To start, we need a homomorphism from $\left.I_{1}\right|_{A_{1}}$ to $I_{2}$. Since $A_{1}$ and $I_{2}$ are finite, there are only finitely many mappings $f: A_{1} \rightarrow \operatorname{adom}\left(I_{2}\right)$ and thus there must be such a mapping $f$ such that $\left.h_{i}\right|_{A_{1}}=f$ for infinitely many $i \geq 1$. Set $g_{1}=f$.

Now assume that $g_{1}, \ldots, g_{n}$ have already been defined. Then there is an infinite set $\Gamma$ of indices $j>i$ such that for all $j \in \Gamma,\left.h_{j}\right|_{A_{n}}=g_{n}$. Since $I_{2}$ is finite, there are only finitely many extensions $f: A_{n+1} \rightarrow \operatorname{adom}\left(I_{2}\right)$ of $g_{n}$ an thus there must be such an extension $f$ such that $\left.h_{j}\right|_{A_{n+1}}=f$ for infinitely many $j \in \Gamma$. Set $g_{n+1}=f$.

The resulting sequence clearly satisfies ( $*$ ) and thus the proof is done.

## B Proofs for Section 4

## B. 1 Proof of Lemma 4

Before proving Lemma 4, we analyse chase $T_{1}(\emptyset)$ and chase $_{T_{2}}(\emptyset)$. Recall that $T_{1}=T_{\text {rec }} \cup T_{\text {proj }}$ and $T_{2}=T_{1} \cup T_{\text {myth }}$. It is easy to notice that:
Lemma 10. chase $_{T_{2}}(\emptyset)=\operatorname{chase}_{T_{\text {myth }}}\left(\operatorname{chase}_{T_{1}}(\emptyset)\right)$.

Proof. The claim follows since all the facts $T_{\text {myth }}$ can possibly produce are from $\Sigma_{Q}$. And all the facts in all the bodies of rules from $T_{1}$ are from $\Sigma_{\digamma}$.

Now we are going to study $\Sigma_{Q}$-homomorphisms from chase $T_{T_{2}}(\emptyset)$ to chase $T_{T_{1}}(\emptyset)$. First of all notice that:
Lemma 11. Identity is the only $\Sigma_{Q}$-homomorphism from chase $_{T_{1}}(\emptyset)$ to chase $T_{1}(\emptyset)$.

Proof. Suppose $h$ is a $\Sigma_{Q}$-homomorphism from chase $T_{1}(\emptyset)$ to chase $T_{1}(\emptyset)$. It is easy to notice that $h(x)=x$ if
(i) $x$ is one of the constants introduced by the initial 'something out of nothing' rule for the existentially quantified variables $c, e_{1}, e_{2}$ or
(ii) Mouth $(x)$ holds.

We may use (i) to prove that $x$ is a bridge if and only if $h(x)$ is a bridge or, in other words, that
(iii) $h$ maps bridges to bridges and non-bridges to nonbridges.

As the next step, imagine two bridges $b$ and $b^{\prime}$, such that there is a Pyramus path from $b^{\prime}$ to $b$ that does not visit any other bridge. For such $b$ and $b^{\prime}$, define $\operatorname{dist}\left(b^{\prime}, b\right)$ to be the length of this Pyramus path. Now it follows from the construction of $T_{1}$ that if for bridges $b, b^{\prime}, b^{\prime \prime}$ it holds that $\operatorname{dist}\left(b^{\prime}, b\right)=$ $\operatorname{dist}\left(b^{\prime \prime}, b\right)$ then $b^{\prime}=b^{\prime \prime}$. Since distance is preserved by homomorphisms, this implies that
(iv) if $x$ is a bridge then $h(x)=x$

The detailed proof would be by induction, with (ii) serving as induction basis and (iii) used in the induction step.

It then easily follows from (iv) that the lemma also holds true for the non-bridge constants.

Let $\mathcal{C}$ denote the chase of $\left\{\operatorname{Encounter}\left(\mathrm{c}_{0}, \mathrm{c}_{0}^{\prime}\right)\right\}$ shown in Figure 1. For an instance $I$ and a fact $F=$ Encounter $\left(\mathrm{c}, \mathrm{c}^{\prime}\right) \in I$, we denote with $I \cup_{F} \mathcal{C}$ the instance obtained from $I$ by adding a disjoint copy of $\mathcal{C}$ to $I$ and identifying $c_{0}$ with $c$ and $c_{0}^{\prime}$ with $c^{\prime}$. It is easy to see that:
Lemma 12. Let $E=\left.\operatorname{chase}_{T_{1}}(\emptyset)\right|_{\{\text {Encounter }\}}$ be the set of all facts for the relation symbol Encounter in chase ${ }_{T_{1}}$. Then:

$$
\operatorname{chase}_{T_{2}}(\emptyset)=\bigcup_{F \in E} \operatorname{chase}_{T_{1}}(\emptyset) \cup_{F} \mathcal{C}
$$

Informally, the lemma says that chase $T_{T_{2}}(\emptyset)$ is chase $T_{T_{1}}(\emptyset)$ with one new copy of the chase $\mathcal{C}$ from Figure 1, attached to every fact $F$ of the relation Encounter in chase $T_{1}(\emptyset)$.

It follows easily from Lemma 12 and Lemma 11 that:
Lemma 13. The following two conditions are equivalent:
(i) There exists a $\Sigma_{Q}$-homomorphism $h$ from chase $_{T_{2}}(\emptyset)$ to chase $_{T_{1}}(\emptyset)$.
(ii) For each fact $F$ of the relation Encounter in chase $T_{T_{1}}(\emptyset)$ there exists a $\Sigma_{Q}$-homomorphism $h_{F}$ from chase $T_{1}(\emptyset) \cup_{F}$ $\mathcal{C}$ to chase $T_{1}(\emptyset)$.

Proof. The (i) $\Rightarrow$ (ii) direction is trivial. For the opposite direction, assume (ii), consider all the homomorphisms $h_{F}$ and notice that (by Lemma 11) they all agree on chase $T_{1}(\emptyset)$. Now take $h$ as the union of all $h_{F}$.

Let us now analyze the structure of chase $T_{1}(\emptyset)$. Notice that for each ${ }^{4}$ fact $F_{1}$ of chase $\left.T_{1}(\emptyset)\right|_{\Sigma_{\digamma}}$, there exists exactly one parent of $F_{1}$, a fact $F_{0}$ of chase $\left.T_{1}(\emptyset)\right|_{\Sigma_{F}}$ such that $F_{1}$ was created directly from $F_{0}$ by an application of a TGD from $T_{\text {rec }}$. We write $F_{0} \rightarrow F_{1}$ to say that $F_{0}$ is a parent of $F_{1}$. By $\xrightarrow{*}$, we denote the reflexive and transitive closure of $\rightarrow$. Notice that if $F$ is a fact of relation End, then $F \rightarrow G$ is never true.

For a fact $F \in$ chase $\left._{T_{1}}(\emptyset)\right|_{\Sigma_{\digamma}}$, define:

$$
\text { Ancestors }(F)=\left\{\left.G \in \operatorname{chase}_{T_{1}}(\emptyset)\right|_{\Sigma_{\digamma}}: G \xrightarrow{*} F\right\}
$$

In natural language, Ancestors $(F)$ comprises all the facts of chase $\left.T_{T_{1}}(\emptyset)\right|_{\Sigma_{\digamma}}$ which were necessary to produce $F$ (with fact $F$ included).

Finally, let Ancestors $\Sigma_{Q}(F)$ be the set of all $\Sigma_{Q}$-facts that can be produced from some fact in Ancestors $(F)$ by using a rule from $T_{\text {proj }}$.

Now, it follows from the construction of $T_{1}$ that:
Lemma 14. chase $T_{1}(\emptyset)$ satisfies the following:
(i) For a fact $F \in$ chase $\left._{T_{1}}(\emptyset)\right|_{\digamma}$ the database Ancestors $\Sigma_{Q}(F)$ is a locally correct river if and only if $F$ is an fact of the relation End.
(ii) For each locally correct sequence $\kappa$ there exists a fact $F \in$ chase $_{T_{1}}(\emptyset)$ (of the relation End) such that Ancestors $\Sigma_{Q}(F)$ is (isomorphic to) River ${ }_{\kappa}$.
We are now in the position to prove Lemma 4, restated here for convenience:
Lemma 4. $\digamma$ does not stop iff $T_{2}=T_{1} \cup T_{\text {myth }}$ is $\Sigma_{Q}, \Sigma_{D^{-}}$ hom-conservative over $T_{1}=T_{\mathrm{rec}} \cup T_{\text {proj }}$.

The " $\Rightarrow$ "-direction of this equivalence is now easy to show. If $\digamma$ does not stop then every locally correct river is incorrect. This means (using Lemma 14 (i) and Observation 1) that for each fact $G$ of relation Encounter in chase $T_{1}(\emptyset)$, which was created by projecting some fact $F$ of the relation End, the instance chase $T_{1}(\emptyset) \cup_{G} \mathcal{C}$ (connected to chase $T_{1}(\emptyset)$ via $G$ ) can be homomorphically embedded in Ancestors $\Sigma_{Q}(F)$. So, by Lemma 13, there exists a $\Sigma_{Q}$-homomorphism $h$ from chase $_{T_{2}}(\emptyset)$ to chase $T_{T_{1}}(\emptyset)$.

What about the " $\Leftarrow$ "-direction? Suppose $\digamma$ stops. Then there is an $n$ such that $\digamma^{n}(2)=1$. Let $\kappa=$ $\left\langle\left[p_{1}, \ldots, p_{n}\right],\left[t_{1}, \ldots, t_{n}\right]\right\rangle$ with $p_{1}=2, t_{n}=1$, and $p_{i+1}=$ $\digamma\left(p_{i}\right)$ as well as $t_{i}=p_{i+1}$ for $1 \leq i<n$. It is easy to see that $\kappa$ is correct. We know, from Lemma 14 (ii), that there is an $F$ in chase $T_{T_{1}}(\emptyset)$ such that Ancestors $\Sigma_{Q}(F)$ is River $_{\kappa}$. Hence (using Observation 1 once again) we know that there is no homomorphism from Ancestors ${ }_{\Sigma_{Q}}(F) \cup_{G} \mathcal{C}$ to Ancestors $\Sigma_{Q}(F)$ (where again, $G$ is a fact of relation Encounter resulting from projecting $F$ ). By Lemma 13, it suffices to prove is that there is no homomorphism

[^3]from chase ${ }_{T_{1}}(\emptyset) \cup_{G} \mathcal{C}$ to chase $T_{1}(\emptyset)$. Now, observe that chase $T_{1}(\emptyset)$ is a union of all possible locally correct instances River $_{\kappa}$ but it is not a disjoint union: they all share the mouth, and there is a lot of overlap between them. So maybe it is possible that one could homomorphically embed, in chase $T_{1}(\emptyset)$, the copy of $\mathcal{C}$ attached to $G$, using facts of chase $T_{1}(\emptyset)$ which are not in Ancestors $\Sigma_{Q}(F)$ ?

Our last lemma says that there is no such embedding:
Lemma 15. If there exists a homomorphism from Ancestors $\Sigma_{Q}(F) \cup_{G} \mathcal{C}$ to chase ${ }_{T_{1}}(\emptyset)$ then there exists a homomorphism from Ancestors $\Sigma_{Q}(F) \cup_{G} \mathcal{C}$ to Ancestors $\Sigma_{Q}(F)$.

Proof. Note that the homomorphism of $\mathcal{C}$ into chase $T_{1}(\emptyset)$ starts at some fact of relation Encounter, and then follows essentially facts Pyramus $\left(c, c^{\prime}\right)$ or Thisbe $\left(c, c^{\prime}\right)$ in this direction. So it remains to observe that sets Ancestors $\Sigma_{Q}(F)$ are closed under taking successors along relations Pyramus and Thisbe, by construction of $T_{1}$.

More precisely, suppose $x$ is a constant of Ancestors $\Sigma_{\Sigma_{Q}}(F)$ and $y$ is a constant of chase $T_{T_{1}}(\emptyset)$. Suppose also that the fact $\operatorname{Pyramus}(x, y)$ or the fact $\operatorname{Thisbe}(x, y)$ is in chase $T_{1}(\emptyset)$. Then $y$ is a constant of Ancestors ${ }_{\Sigma_{Q}}(F)$.

In consequence, the " $\Leftarrow$ "-direction of Lemma 4 also holds, and Point 1 of Theorem 2 is proven.

## B. 2 Proof of Point 2 of Theorem 2

In order to prove Point 2 of Theorem 2 let us just notice that we can simply reuse the proof of Point 1 from the previous section.

Clearly, if $\digamma$ does not stop then $T_{2}$ is $\Sigma_{D}, \Sigma_{Q}$-homconservative over $T_{1}$ so it is also $\Sigma_{D}, \Sigma_{Q}$-CQ-conservative. We need to notice that if $\digamma$ stops then $T_{2}$ is not $\Sigma_{D}, \Sigma_{Q^{-}}$ CQ-conservative over $T_{1}$. To this end, it will be enough to find a finite subinstance $Q$ of chase $T_{2}(\emptyset)$ which cannot be homomorphically embedded in chase $T_{1}(\emptyset)$.

So suppose $\digamma$ stops. Then there is an $n$ such that $\digamma^{n}(2)=$ 1. Let $\kappa=\left\langle\left[p_{1}, \ldots, p_{n}\right],\left[t_{1}, \ldots, t_{n}\right]\right\rangle$ with $p_{1}=2, t_{n}=1$, and $p_{i+1}=\digamma\left(p_{i}\right)$ as well as $t_{i}=p_{i+1}$ for $1 \leq i<n$. Let $m \in \mathbb{N}$ be any natural number bigger than the longest Thisbe or Pyramus path in River ${ }_{\kappa}$ that does not visit an eternity.

Let $\mathcal{C}_{m}$ be the fragment of the chase $\mathcal{C}$ resulting from $m$ applications of existential TGDs in $T_{\text {myth }}$, (and then using the datalog projections) ${ }^{5}$. Let also River ${ }_{\kappa} \cup_{G} \mathcal{C}_{m}$ be the union of the two instances, with the only fact of the Encounter relation in River ${ }_{\kappa}$ identified with the only Encounter fact in $\mathcal{C}_{m}$.

We can use the arguments that were used in the proof of the " $\Leftarrow$ "-direction in the previous section to show that River ${ }_{\kappa} \cup_{G} \mathcal{C}_{m}$ is the $Q$ we need.

## B. 3 Proof of Point 3 of Theorem 2

We use the same schema $\Sigma_{Q}$ as before, except that Encounter is not in $\Sigma_{Q}$. We will define $\Sigma_{D}$ so that $\Sigma_{Q} \subseteq \Sigma_{D}$. Also, Start is now in $\Sigma_{D}$. And for each rule $\mathcal{R}$ from $T_{\text {rec }}$ of the form

$$
P(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} Q(\bar{y}, \bar{z})
$$

[^4]$\Sigma_{D}$ contains a new relation symbol $\mathcal{S}_{\mathcal{R}}$ of arity $|\bar{x}|+|\bar{y}|+|\bar{z}|$ in $\Sigma_{D}$.

We now define a set of TGDs $T_{0}$ whose triviality we are interested in. $T_{0}$ contains all rules from $T_{\text {myth }}$ as well as the new rule
$\operatorname{End}\left(\dagger, b, b^{\prime}\right)$, Pyramus $\left(b^{\prime}, b\right)$, Thisbe $\left(b^{\prime}, b\right) \rightarrow \operatorname{Encounter}\left(b, b^{\prime}\right)$.
Finally, for each rule $\mathcal{R}$ from $T_{\text {rec }}$, as above, $T_{0}$ contains the following rule:
$(\boldsymbol{\&}) \mathcal{S}_{\mathcal{R}}(\bar{x}, \bar{y}, \bar{z}), P(\bar{x}, \bar{y})$, chase $_{T_{\text {proj }}}(\{P(\bar{x}, \bar{y})\}) \rightarrow Q(\bar{y}, \bar{z})$.
Notice that this rule is indeed guarded. This is because chase $_{T_{\text {proj }}}(\{P(\bar{x}, \bar{y})\})$ is finite ${ }^{6}$ and contains only variables from $\bar{x} \cup \bar{y}$.

Notice that the only $\Sigma_{Q}$-facts created when chasing with $T_{0}$ are the ones created by $T_{\text {myth }}$ and, in order for them to be created, some Encounter fact Encounter $\left(c, c^{\prime}\right)$ must be produced first. It is now easy to see that:
Lemma 16. Let $D$ be a $\Sigma_{D}$-database and suppose that for each fact $F=\operatorname{Encounter}\left(c, c^{\prime}\right)$ in chase $T_{0}(D)$, there exists a database-preserving $\Sigma_{Q}$-homomorphism $h$ from $T_{\text {myth }}(\{F\})$ to $D$, such that $h(c)=c$ and $h\left(c^{\prime}\right)=c^{\prime}$. Then there exists a database-preserving $\Sigma_{Q}$-homomorphism from chase $T_{\text {myth }}(D)$ to $D$.

To establish Point 3 of Theorem 2, we need to prove the following.
Lemma 17. $\digamma$ does not stop if and only if $T$ is $\Sigma_{D}, \Sigma_{Q^{-}}$ trivial.

So assume first that $\digamma$ stops. Then there is an $n$ such that $\digamma^{n}(2)=1$. Let $\kappa=\left\langle\left[p_{1}, \ldots, p_{n}\right],\left[t_{1}, \ldots, t_{n}\right]\right\rangle$ with $p_{1}=2, t_{n}=1$, and $p_{i+1}=\digamma\left(p_{i}\right)$ as well as $t_{i}=p_{i+1}$ for $1 \leq i<n$. We need to produce a database $D$ such that chase $T_{T_{0}}(D)$ has no database-preserving $\Sigma_{Q}$-homomorphism to $D$.

We know, from Lemma 14(ii) that there exists a fact $F \in$ chase $_{T_{1}}(\emptyset)$ (of the relation End) such that Ancestors $\Sigma_{Q}(F)=$ River $_{\kappa}$. Let $D$ be the database that consists of the following:

- all facts of Ancestors $\Sigma_{Q}(F)$, with the exception of the Encounter fact, which is not in $\Sigma_{D}$ (so we almost have the entire River ${ }_{\kappa}$ in $D$, just the Encounter fact is missing);
- the (only) fact of the relation Start from chase $T_{1}(\emptyset)$;
- for any two facts $G=P\left(\bar{a}, \overline{a^{\prime}}\right)$ and $G^{\prime}=Q\left(\overline{a^{\prime}}, \overline{a^{\prime \prime}}\right)$ from Ancestors $(F)$ such that $G \rightarrow G^{\prime}$ and $G^{\prime}$ was created from $G$ using the rule $\mathcal{R}$ of $T_{\text {rec }}$, the fact $\mathcal{S}_{\mathcal{R}}\left(\bar{a}, \overline{a^{\prime}}, \bar{a}^{\prime \prime}\right)$.
Now let us try to imagine what facts will be produced by chase $T_{0}(D)$. There is the Start fact in $D$, and it will match with the $P$ of one of the rules of the form ( $\boldsymbol{\&})$ in $T_{0}$, producing a next fact in Ancestors $(F)$, which will again match with the $P$ of some other ( $\boldsymbol{\&}$ ) rule, and so on. All the facts of Ancestors $(F)$ will be produced in this way, with $F$ as the last one. But $F$ is a fact that uses the relation End, so we have a rule in $T_{0}$ that will now use $F$ to produce the missing

[^5]Encounter fact of River ${ }_{\kappa}$. At this point $T_{\text {myth }}$ will fire, producing the chase $\mathcal{C}$, which (by Observation 1 , since $\kappa$ is correct) will not have a database-preserving $\Sigma_{Q}$-homomorphism to $D$.

For the converse direction, assume that $\digamma$ does not stop and let $D$ be any $\Sigma_{D}$-database.

The next lemma says that if any Encounter fact is created in chase $T_{0}(D)$ then $D$ must contain (a homomorphic image of) an entire partially correct river:

## Lemma 18.

(i) If $F \in$ chase $_{T_{0}}(D)$ is a $\Sigma_{\digamma}$-fact, then there is a fact $F_{0} \in$ chase $T_{T_{1}}(\emptyset)$ of the same relation such that there exists a homomorphism $h$ from Ancestors $\left(F_{0}\right) \cup$ Ancestors $_{\Sigma_{Q}}\left(F_{0}\right)$ to chase $T_{0}(D)$ with $h\left(F_{0}\right)=F$.
(ii) If $G \in$ chase $_{T_{0}}(D)$ is a fact of the relation Encounter, then there exists a partially correct river River $_{\kappa}$ and a homomorphism $h$ from River $_{\kappa}$ to chase $T_{0}(D)$ such that $h\left(G_{0}\right)=G$, where $G_{0}$ is the Encounter fact of River ${ }_{k}$.

Proof. (i) By induction of the number of steps of the chase needed to create $F$. If it is zero, meaning that $F \in D$, then $F$ must be a fact of the relation Start (which is the only relation from $\Sigma_{\digamma}$ which is also in $\Sigma_{D}$ ), and the claim holds true. If it is greater than zero, then $F$ was created by chase using one of the (\%) rules. This required the fact $P$ in the body of the rule to be created first. Now apply the induction hypothesis to $P$.
(ii) $G$ can only be created in chase $T_{0}(D)$ from some fact $F$ of relation End. Now apply Claim (i) to this $F$.

Now recall that, in order to finish the proof, we only need to prove that there is a database-preserving $\Sigma_{Q}$-homomorphism from chase $T_{0}(D)$ to $D$. By Lemma 16, it is enough to show that for each fact $G=\operatorname{Encounter}\left(c, c^{\prime}\right)$ in chase $T_{0}(D)$, there exists a $\Sigma_{Q}$-homomorphism $h$ from $T_{\text {myth }}(\{G\})$ to $D$, such that $h(c)=c$ and $h\left(c^{\prime}\right)=c^{\prime}$. But this easily follows from Point (ii) of Lemma 18, from the assumption that $\digamma$ does not stop (and hence no partially correct river is correct) and from Observation 1.

## C Proofs for Section 5

For the proofs in this section, we need some knowledge about the structure of the chase of a database with a set of linear TGDs.

Let $T$ be a set of linear TGDs and $I$ an instance. With every fact $\alpha \in$ adom $\left(\operatorname{chase}_{T}(I)\right)$, we associate a unique fact $\operatorname{src}(\alpha) \in I$ that $\alpha$ was 'derived from', as follows:

- if $\alpha \in I$, then $\operatorname{src}(\alpha)=\alpha$;
- if $\alpha$ was introduced by applying a TGD from $T$, mapping the body of $T$ to a fact $\beta \in \operatorname{chase}_{T}(I)$, then $\operatorname{src}(\alpha)=$ $\operatorname{src}(\beta)$.
We further associate, with every fact $\alpha \in \operatorname{adom}(I)$, the subinstance chase $\left.{ }_{T}(I)\right|_{\alpha} ^{\downarrow}$ of chase ${ }_{T}(I)$ that consists of all facts $\beta$ with $\operatorname{src}(\beta)=\alpha$. One should think of chase $\left.{ }_{T}(I)\right|_{\alpha} ^{\downarrow}$ as the 'tree-like instance' that the chase of $I$ with $T$ generates 'below $\alpha$ '. The following lemma essentially says that the
shape of chase $\left.{ }_{T}(I)\right|_{\alpha} ^{\downarrow}$ only depends on $\alpha$, but not on any other facts in $I$.
Lemma 19. Let I be an instance, $T$ a set of linear TGDs, and $\alpha \in I$. Then there is a homomorphism from chase $\left._{T}(I)\right|_{\alpha} ^{\downarrow}$ to chase $_{T}(\{\alpha\})$ that is the identity on all constants in $\alpha$.

To prove Lemma 19, one considers a chase sequence $I_{0}, I_{1}, \ldots$ a for $I$ with $T$ and shows by induction on $i$ that for all $i \geq 0$, there is a homorphism $h$ from $\left.I_{i}\right|_{\alpha} ^{\downarrow}$ to chase ${ }_{T}(\{\alpha\})$ that is the identity on all constants in $\alpha$. This is done by replicating the application of the TGD that generated $I_{i}$ from $I_{i-1}$ in $\operatorname{chase}_{T}(\{\alpha\})$. The homomorphism obtained in the limit is as desired. Details are omitted.
Lemma 5. Let $T$ be a set of linear TGDs and $\Sigma_{D}, \Sigma_{Q}$ schemas. Then $T$ is $\Sigma_{D}, \Sigma_{Q}$-trivial iff chase ${ }_{T}(D) \rightarrow_{\Sigma_{Q}} D$ for all singleton $\Sigma_{D}$-databases $D$.

Proof. Since hom triviality and CQ triviality are equivalent, we may choose to work with hom triviality. The 'only if' direction is immediate, so concentrate on the (contrapositive of the) 'if' direction.

Assume that $T$ is not $\Sigma_{D}, \Sigma_{Q}$-trivial. Then there is a $\Sigma_{D}$-database $D$ such that chase ${ }_{T}(D) \nrightarrow \Sigma_{Q} D$. If $D$ is empty, then we are done. To establish Point 2 it suffices to show that otherwise, there is a fact $\alpha \in D$ such that chase $_{T}(\{\alpha\}) \nrightarrow_{\Sigma_{Q}}\{\alpha\}$.

Assume to the contrary that there is no such $\alpha \in D$. Then for every $\alpha \in D$, there is a $\Sigma_{Q}$-homomorphism $h_{\alpha}$ from chase ${ }_{T}(\{\alpha\})$ to $\{\alpha\}$ that is the identity on all constants in $\alpha$. By Lemma 19, there is a database-preserving homomorphism $g_{\alpha}$ from chase $\left.{ }_{T}(D)\right|_{\alpha} ^{\downarrow}$ to chase $_{T}(\{\alpha\})$. Then $h=\bigcup_{\alpha \in D} h_{\alpha} \circ g_{\alpha}$ is a database-preserving $\Sigma_{Q^{-}}$ homomorphism from chase ${ }_{T}(D)$ to $D$, in contradiction to $\operatorname{chase}_{T}(D) \not{\nrightarrow \Sigma_{Q}} D$.

Lemma 6. Let $T$ be a set of linear TGDs and $D$ a singleton database. Then chase ${ }_{T}(D) \nrightarrow_{\Sigma_{Q}} D$ implies that there is a connected database $C \subseteq$ chase $_{T}(D)$ that contains at most two facts and such that $\bar{C} \not \overbrace{\Sigma_{Q}} D$.

Proof. Let $D=\{R(\bar{c})\}$. If chase ${ }_{T}(D)$ contains a fact $S(\bar{d})$ with $R \neq S \in \Sigma_{Q}$, then we may choose $C=\{S(\bar{d})\}$. Thus assume that the only relation symbol from $\Sigma_{Q}$ that occurs in chase ${ }_{T}(D)$ is $R$. Assume that for every connected database $C \subseteq$ chase $_{T}(D)$ that contains at most two facts, $C \rightarrow \Sigma_{Q} D$. We show that chase ${ }_{T}(D) \rightarrow \Sigma_{Q} D$, that is, we have to construct a database-preserving $\Sigma_{Q}$-homomorphism $h$ from $I$ to $D$.

Since we can clearly ignore facts in $I$ that use a relation symbol from outside of $\Sigma_{Q}$, we only need to consider facts that use the relation symbol $R$. For each fact $\alpha=R(\bar{d}) \in I$, we have $\{\alpha\} \rightarrow_{\Sigma_{Q}} D$ and thus find a database-preserving homomorphism $h_{\alpha}$ from $\{\alpha\}$ to $D$. We set $h=\bigcup_{\alpha \in I} h_{\alpha}$. To show that $h$ is the desired databasepreserving $\Sigma_{Q}$-homomorphism $h$ from $I$ to $D$, it suffices to show that $h$ is a function, that is, if $\alpha=R(\bar{d}) \in I$, $\beta=R(\bar{e}) \in I$, and $\bar{d}$ and $\bar{e}$ share a constant $c$, then $h_{\alpha}(c)=h_{\beta}(c)$. We know that $\{\alpha, \beta\} \rightarrow_{\Sigma_{Q}} D$. Take a witnessing homomorphism $h_{\alpha, \beta}$. Since every $R$-fact homomorphically maps in at most one way into the single $R$-fact in
$D$, the restriction of $h_{\alpha, \beta}$ to the variables in $\bar{d}$ is identical to $h_{\alpha}$, and likewise for $h_{\beta}$ and the variables in $\bar{e}$. Consequently, $h_{\alpha}(c)=h_{\beta}(c)$ as desired.

## D Proofs for Section 6: Model Theory

In this section, we provide the proofs of all model-theoretic results from Section 6, that is, Theorem 6, Theorem 7, Theorem 9, and Lemma 9. The complexity upper bounds in Theorems 5 and 10 follow from the automata constructions in the subsequent Section F. We start with giving some auxiliary results.

We first make explicit the structure of the chase for the case that $T$ is a set of frontier-one TGDs, in terms of tree-like databases. Note that when a frontier-one TGD is applicable to a tuple $\bar{c}$, then $\bar{c}$ is in fact a single constant. With every $c \in$ $\operatorname{adom}\left(\operatorname{chase}_{T}(I)\right)$, we associate a unique constant $\operatorname{src}(c) \in$ adom $(I)$ that $c$ was 'derived from', as follows:

- $\operatorname{src}(c)=c$ for all $c \in \operatorname{adom}(I)$;
- if $c$ is a null that was introduced by applying a TGD from $T$ at $d$ then $\operatorname{src}(c)=\operatorname{src}(d)$.
We further associate, with every $c \in \operatorname{adom}(I)$, the subinstance chase $\left.{ }_{T}(I)\right|_{a} ^{\downarrow}$ of chase ${ }_{T}(I)$ that is the restriction of $I$ to constants $\left\{d \in \operatorname{adom}\left(\operatorname{chase}_{T}(I)\right) \mid \operatorname{src}(d)=c\right\}$.

Lemma 20. Let $T$ be a set of frontier-one TGDs of head width $\ell$. Then for every $c \in \operatorname{adom}(I)$, chase $\left._{T}(I)\right|_{c} ^{\downarrow}$ is a rooted tree-like instance of width at most $\ell$.

Informally, we can think of chase ${ }_{T}(I)$ as $I$ with rooted tree-like instances of width at most $\ell$ attached to each constant. We next define the unraveling of a database $D$ into a rooted tree-like instance $U$ of width $k \geq 1$. A $k$-sequence takes the form

$$
v=S_{0}, c_{0}, S_{1}, c_{1}, S_{2}, \ldots, S_{n-1}, c_{n-1}, S_{n}
$$

where each $S_{i} \subseteq \operatorname{adom}(D)$ satisfies $\left|S_{i}\right| \leq k$ and $c_{i} \in$ $S_{i} \cap S_{i+1}$ for $0 \leq i<n$. The empty $k$-sequence is denoted by $\varepsilon$. For every $c \in \operatorname{adom}(D)$, reserve a countably infinite set of fresh constants that we refer to as copies of $c$.

Now let $(V, E)$ be the infinite directed tree with $V$ the set of all $k$-sequences and $E$ the prefix order on $V$. We choose a database $B(v)$ for every $v=S_{0} \cdots S_{n} \in V$, proceeding by induction on $n$ :

1. $B(\varepsilon)=\emptyset$;
2. if $v=S_{0}$, then $B(v)$ is obtained from $\left.D\right|_{S_{0}}$ by replacing every constant $c$ with a fresh copy of $c$;
3. if $v=S_{0} c_{0} \cdots c_{n-1} S_{n}$ with $n>0$, then $B(v)$ is obtained from $\left.D\right|_{S_{0}}$ by replacing

- $c_{n-1}$ with the copy of $c_{n-1}$ used in $B\left(v^{\prime}\right)$ where $v^{\prime}=$ $S_{0} \cdots S_{n-1}$ is the predecessor of $v$ in $(V, E)$;
- every constant $c \neq c_{n-1}$ with a fresh copy of $c$.

Set $\mathcal{T}=(V, E, B)$ and $U=I_{\mathcal{T}}$. It is easy to see that the 'uncopying' map is a homomorphism from $U$ to $D$.

We next observe some properties of unraveled databases.

Lemma 21. Let $D$ be a database and $U$ its $k$-unraveling, $k \geq 1$, and let $T$ be a set of frontier-one TGDs with body width bounded by $k$. Then for every $c \in \operatorname{adom}(D)$ and copy $c^{\prime}$ of $c$ in $U$, there is a homomorphism $h$ from chase $\left.{ }_{T}(D)\right|_{c} ^{\downarrow}$ to chase ${ }_{T}(U)$ with $h(c)=c^{\prime}$.

Proof. Let $D, U, k$, and $T$ be as in the lemma. Let $I_{0}, I_{1}, \ldots$ be a chase sequence for $D$ with $T$. The definition of src extends to the instances $I_{0}, I_{1}, \ldots$ in an obvious way and thus it is also clear what we mean by $\left.I_{i}\right|_{c} ^{\downarrow}$, for $i \geq 0$ and $c \in \operatorname{adom}(D)$.

For all $i \geq 0, c \in \operatorname{adom}(D)$, and copies $c^{\prime}$ of $c$ in $U$, we construct homomorphisms $h_{i, c, c^{\prime}}$ from $\left.I_{i}\right|_{c} ^{\downarrow}$ to chase ${ }_{T}(U)$ with $h_{i, c, c^{\prime}}(c)=c^{\prime}$. Clearly, this suffices to prove the lemma because we obtain the desired homomorphism $h$ in the limit.

The construction of the homomorphisms $h_{i, c, c^{\prime}}$ proceeds by induction on $i$. The induction start is trivial as we may simply set $h_{i, c, c^{\prime}}(c)=c^{\prime}$ for every $c \in \operatorname{adom}(D)$ and copy $c^{\prime}$ of $c$ in $U$. Now assume that $I_{i+1}$ was obtained from $I_{i}$ by applying a TGD $\vartheta=\phi(x, \bar{y}) \rightarrow \exists \bar{z} \psi(x, \bar{z})$ from $T$ at some $d \in \operatorname{adom}\left(I_{i}\right)$. Let $\operatorname{src}(d)=c$. Then $\left.I_{i+1}\right|_{e} ^{\downarrow}=\left.I_{i}\right|_{e} ^{\downarrow}$ for all $e \in \operatorname{adom}(D) \backslash\{c\}$, and thus the only homomorphisms that we need to take care of are $h_{i+1, c, c^{\prime}}$ with $c^{\prime}$ a copy of $c$ in $U$. Take any such $c^{\prime}$.

To apply $\vartheta$ at $d$, there must be a homomorphism $g$ from $\phi$ to $I_{i}$ with $g(x)=d$. Let $d^{\prime}=h_{i, c, c^{\prime}}(d)$. We argue that there is also a homomorphism $g^{\prime}$ from $\phi$ to chase ${ }_{T}(U)$ with $g^{\prime}(x)=d^{\prime}$. Let $S=(\operatorname{ran}(g) \cap \operatorname{adom}(D))$. By construction of $U$ and since $k$ is not smaller than then number of variables in $\phi$, we find an $S^{\prime} \subseteq \operatorname{adom}(U)$ and an isomorphism $\iota$ from $\left.D\right|_{S}$ to $\left.U\right|_{S^{\prime}}$ such that $\iota(c)=c^{\prime}$ if $c \in S$. Moreover, the non-reflexive ${ }^{7}$ non-unary facts in $\left.D\right|_{S}$ are identical to those in $\left.I_{i}\right|_{S}$ because applying a frontier-one TGD can never add such facts. It follows that we can assemble the desired homomorphism $g^{\prime}$ from $\iota$ and the homomorphisms $h_{i, e, e^{\prime}}$ with $e \in S$ and $\iota(e)=e^{\prime}$.

We have just shown that $\vartheta$ is applicable in chase ${ }_{T}(U)$ at $d^{\prime}$ or there is (already) a homomorphism $\widehat{g}$ from $\psi$ to chase ${ }_{T}(U)$ with $\widehat{g}(x)=d^{\prime}$. In either case, we can extend $h_{i, c, c^{\prime}}$ to the desired homomorphism $h_{i+1, c, c^{\prime}}$ from $\left.I_{i+1}\right|_{c} ^{\downarrow}$ to chase ${ }_{T}(U)$ with $h_{i, c, c^{\prime}}(c)=c^{\prime}$ in an obvious way.

Theorem 6. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, and $\Sigma_{D}$ and $\Sigma_{Q}$ schemas. Let $k$ be the body width of $T_{1}$. Then the following are equivalent:

1. $T_{1} \xlongequal[\Sigma_{D}, \Sigma_{Q}]{\text { hom }} T_{2}$;
2. chase $T_{T_{2}}(D) \rightarrow_{\Sigma_{Q}}$ chase $T_{T_{1}}(D)$, for all tree-like $\Sigma_{D^{-}}$ databases $D$ of width at most $k$.

Proof. The "only if"-direction is immediate from the definition of hom-conservativity.

For "if", assume that $T_{1} \not \mathcal{Z}_{\Sigma_{D}, \Sigma_{Q}}^{\text {hom }} T_{2}$. Then there is a $\Sigma_{D}$-database $D$ such that chase $T_{T_{2}}(D) \not \overbrace{\Sigma_{Q}}$ chase $T_{T_{1}}(D)$. It suffices to show that chase $T_{T_{2}}(U) \nRightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(U), U$ the unraveling of $D$ of width $k$. We prove the contrapositive.

[^6]Thus assume that chase $T_{2}(U) \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(U)$. We have to show that chase $T_{2}(D) \rightarrow_{\Sigma_{Q}}$ chase $T_{T_{1}}(D)$. We start with noting that, since $T_{2}$ is a set of frontier-one TGDs,

$$
\operatorname{chase}_{T_{2}}(D)=\left.D \cup \bigcup_{c \in \operatorname{adom}\left(D^{\prime}\right)} \operatorname{chase}_{T_{2}}(D)\right|_{c} ^{\downarrow}
$$

As a consequence, it suffices to prove that chase $\left._{T_{2}}(D)\right|_{c} ^{\downarrow} \rightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(D)$ for all $c \in \operatorname{adom}(D)$.

Let $c \in \operatorname{adom}(D)$ and choose any copy $c^{\prime}$ of $c$ in $U$. By Lemma 21, there is a homomorphism $h$ from chase $\left.T_{T_{2}}(D)\right|_{c} ^{\downarrow}$ to chase $T_{2}(U)$ with $h(c)=c^{\prime}$. Together with chase $T_{2}(U) \rightarrow_{\Sigma_{Q}}$ chase $T_{1}(U)$, this implies that there is a $\Sigma_{Q}$-homomorphism $h^{\prime}$ from chase $\left.T_{2}(D)\right|_{c} ^{\downarrow}$ to chase $T_{T_{1}}(U)$ with $h^{\prime}(c)=c^{\prime}$. By construction of $U$, there is a homomorphism from $U$ to $D$ that maps $c^{\prime}$ to $c$. It is easy to extend this homomorphism to a homomorphism from chase $T_{1}(U)$ to chase $T_{1}(D)$ by following the application of chase rules. Thus chase $\left.T_{2}(D)\right|_{c} ^{\downarrow} \rightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(D)$, as desired.

It remains to show that there is a finite $U^{\prime} \subseteq U$ with chase $T_{2}\left(U^{\prime}\right) \nrightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}\left(U^{\prime}\right)$. Since the TGDs in $T_{2}$ are frontier-one TGDs, an easy analysis of the chase procedure shows that chase $T_{2}(U) \not \overbrace{\Sigma_{Q}}$ chase $_{T_{1}}(U)$ implies that, for some $c \in \operatorname{adom}(U)$, chase $\left._{T_{2}}(U)\right|_{c} ^{\downarrow} \nrightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(U)$. It follows from Lemma 7 that chase $\left.T_{T_{2}}\left(U^{\prime}\right)\right|_{c} ^{\downarrow} \not \not_{\Sigma_{Q}}$ chase $T_{T_{1}}(U)$ for any $U^{\prime} \subseteq U$ with $\operatorname{tp}_{T_{2}}(U, c)=\operatorname{tp}_{T_{2}}\left(U^{\prime}, c\right)$. By compactness of first-order logic, there is a finite such $U^{\prime}$, as required.

Theorem 7. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, and $\Sigma_{D}$ and $\Sigma_{Q}$ schemas. Let $k$ be the body width of $T_{1}$. Then the following are equivalent:

1. $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$;
2. $q_{T_{2}}(D) \subseteq q_{T_{1}}(D)$, for all tree-like $\Sigma_{D}$-databases $D$ of width at most $k$ and connected $\Sigma_{Q}$-CQs $q$ of arity 0 or 1 .

Proof. The "only if"-direction is immediate from the definition of CQ-conservativity.

For "if", assume that $T_{1} \not \models_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$. Then there is a $\Sigma_{D^{-}}$ database $D$ and a $\Sigma_{Q}$ - $\mathrm{CQ} q(\bar{x})$ such that $q_{T_{2}}(D) \nsubseteq q_{T_{1}}(D)$. We first manipulate $q$ so that it has arity 0 or 1 .

We may assume w.l.o.g. that $q$ is connected because if it is not, then $p_{T_{2}}(D) \nsubseteq p_{T_{1}}(D)$ for some maximal connected component $p$ of $q$ and we can replace $q$ by $p$. Choose some $\bar{c} \in q_{T_{2}}(D) \backslash q_{T_{1}}(D)$ and let $h$ be a homomorphism from $q$ to chase $T_{2}(D)$ such that $h(\bar{x})=\bar{c}$. Let $q^{\prime}\left(\bar{x}^{\prime}\right)$ be obtained from $q(\bar{x})$ in the following way:

- identify all variables $x_{1}, x_{2} \in \operatorname{var}(q)$ in $q$ such that $h\left(x_{1}\right)=h\left(x_{2}\right)$;
- if $h(y) \in \operatorname{adom}(D)$ for some quantified variable $y$ in $q$, then make $y$ an answer variable.
It is easy to see that $q_{T_{2}}^{\prime}(D) \nsubseteq q_{T_{1}}^{\prime}(D)$ and in fact $\bar{c}^{\prime}:=$ $h\left(\bar{x}^{\prime}\right) \in q_{T_{2}}^{\prime}(D) \backslash q_{T_{1}}^{\prime}(D)$. Also note that $h$ is an injective homomorphism from $q^{\prime}$ to chase $T_{2}(D)$.

Let $C=\left\{c \in \operatorname{adom}(D) \mid \exists x \in \operatorname{var}\left(q^{\prime}\right): \operatorname{src}(h(x))=c\right\}$. For $c \in C$, let $q^{c}\left(\bar{x}^{c}\right)$ denote the restriction of $q$ to those
variables $x$ such that $\operatorname{src}(h(x))=c$. The arity of each $q^{c}$ is 0 or 1 because $h$ maps all answers variables in $q^{c}$ to $c$ and thus all such answer variables have been identified during the construction of $q^{\prime}$. By the following claim, we thus obtain a $\mathrm{CQ} q$ of the required form by choosing one of the queries $q^{c}$.
Claim. There is a $c \in C$ such that $q_{T_{2}}^{c}(D) \nsubseteq q_{T_{1}}^{c}(D)$.
To prove the claim, assume to the contrary that $q_{T_{2}}^{c}(D) \subseteq$ $q_{T_{1}}^{c}(D)$ for all $c \in C$. Let $c \in C$. Since $h$ is a homomorphism from $q^{c}$ to chase $T_{2}(D), h\left(\bar{x}^{c}\right) \in q_{T_{2}}^{c}(D)$ and thus $h\left(\bar{x}^{c}\right) \in q_{T_{1}}^{c}(D)$. Consequently, there is a homomorphism $h_{c}$ from $q^{c}$ to chase $T_{1}(D)$ with $h_{c}\left(\bar{x}^{c}\right)=h\left(\bar{x}^{c}\right)$. Set $h^{\prime}=\bigcup_{c \in C} h_{c}$ and note that $h^{\prime}$ is functional since the queries $q^{c}$ do not share any variables (this is because $h$ is an injective homomorphism from $q^{\prime}$ to chase $\left.T_{2}(D)\right|_{c} ^{\downarrow}$ and by construction of the queries $q^{c}$ ). By construction of $h^{\prime}$, we have $h^{\prime}(\bar{x})=h(\bar{x})=\bar{c}$. It thus remains to argue that $h^{\prime}$ is a homomorphism from $q^{\prime}$ to chase $T_{T_{1}}(D)$ as this contradicts $\bar{c} \notin q_{T_{1}}(D)$. Let $R(\bar{z})$ be an atom in $q^{\prime}$. First assume that there is a $c \in C$ such that $\operatorname{src}(h(z))=c$ for all $z \in \bar{z}$. Then $h^{\prime}(\bar{z})=h_{c}(\bar{z})$ and thus $R(h(\bar{z})) \in$ chase $_{T_{1}}(D)$ by definition of $h^{\prime}$. Now assume that there are $z_{1}, z_{2}$ in $\bar{z}$ with $\operatorname{src}\left(h\left(z_{1}\right)\right) \neq \operatorname{src}\left(h\left(z_{2}\right)\right)$. Since the TGDs in $T$ are frontierone, an easy analysis of the chase shows that this implies $R(h(\bar{z})) \in D$, that is, the fact $R(h(\bar{z}))$ was in the original database as no such fact is ever added by the chase. Thus $h(z) \in \operatorname{adom}(D)$ for all variables $z$ in $\bar{z}$. By construction of $q^{\prime}$, it follows that $\bar{z}$ consists only of answer variables. This implies $h^{\prime}(\bar{z})=h(\bar{z})$ by definition of $h^{\prime}$, and thus $R\left(h^{\prime}(\bar{z})\right) \in D \subseteq \operatorname{chase}_{T_{1}}(D)$.

At this point, we know that $q$ is connected and of arity 0 or 1 . We next argue that the database $D$ can be replaced by its $k$-unraveling $U$. We concentrate on the case that $q$ is unary. The Boolean case is very similar. We have to show that there is some $c^{\prime} \in \operatorname{adom}(U)$ such that $c^{\prime} \in q_{T_{2}}(U)$, but $c^{\prime} \notin q_{T_{1}}(U)$.

By choice of $q$, there is a $c \in \operatorname{adom}(D)$ and a homomorphism $h$ from $q(x)$ to chase $\left.T_{2}(D)\right|_{c} ^{\downarrow}$ such that $h(x)=c$. Choose any copy $c^{\prime}$ of $c$ in $U$. By Lemma 21, there is a homomorphism $g$ from chase $\left.T_{2}(D)\right|_{c} ^{\downarrow}$ to chase $T_{T_{2}}(U)$ with $g(c)=c^{\prime}$. Composing $h$ and $g$, we obtain a homomorphism $h^{\prime}$ from $q(x)$ to chase $T_{2}(U)$ with $h^{\prime}(x)=c^{\prime}$ and thus $c^{\prime} \in q_{T_{2}}(U)$. It remains to show that $c^{\prime} \notin q_{T_{1}}(U)$. But this follows from the facts that $c \notin q_{T_{1}}(D)$ and that there is a homomorphism from $U$ to $D$ that maps $c^{\prime}$ to $c$, which easily extends to a homomorphism from chase $T_{T_{1}}(U)$ to chase $T_{1}(D)$.

We may now finish the proof by argueing that for some finite $U^{\prime} \subseteq U$, we have $q_{T_{2}}\left(U^{\prime}\right) \nsubseteq q_{T_{1}}\left(U^{\prime}\right)$. This, however, is a direct consequence of the compactness of first-order logic.

For $c \in \operatorname{adom}(I)$ and $i \geq 0$, we use $\left.I\right|_{i} ^{c}$ to denote the restriction of $I$ to the constants that are reachable from $c$ in the Gaifman graph of $I$ on a path of length at most $i$. Note that when we chase a finite database with a set of frontier-one TGDs, then the resulting instance has finite degree. This fails when frontier-one TGDs are replaced with guarded TGDs.

Lemma 22. Let $I_{1}, I_{2}$ be instances of finite degree with $I_{1}$ $\Sigma$-connected, for a schema $\Sigma$. If there are $a_{0} \in \operatorname{adom}\left(I_{1}\right)$ and $b_{0} \in \operatorname{adom}\left(I_{2}\right)$ such that for each $i \geq 0$ there is a database-preserving $\Sigma$-homomorphism $h_{i}$ from $\left.I_{1}\right|_{i} ^{a_{0}}$ to $I_{2}$ with $h_{i}\left(a_{0}\right)=b_{0}$, then $I_{1} \rightarrow_{\Sigma} I_{2}$.

Proof. We are going to construct a database-preserving $\Sigma$ homomorphism $h$ from $I_{1}$ to $I_{2}$ step by step, obtaining in the limit a homomorphism that shows $I_{1} \rightarrow_{\Sigma} I_{2}$. We will take care that, at all times, the domain of $h$ is finite and
(*) there is a sequence $h_{0}, h_{1}, \ldots$ with $h_{i}$ a databasepreserving $\Sigma$-homomorphism from $\left.I_{1}\right|_{i} ^{a_{0}}$ to $I_{2}$ such that whenever $h(c)$ is already defined, then $h_{i}(c)=h(c)$ for all $i \geq 0$.

Start with setting $h\left(a_{0}\right)=b_{0}$. The original sequence of homomorphisms $h_{0}, h_{1}, \ldots$ from the lemma witnesses ( $*$ ). Now consider the set $\Lambda$ that consists of all constants $c \in \operatorname{adom}\left(I_{1}\right)$ with $h(c)$ is undefined and such that there is a $d \in \operatorname{adom}\left(I_{1}\right)$ with $h(d)$ defined and that co-occurs with $c$ in some $\Sigma$-fact in $I_{1}$. Since the domain of $h$ is finite and $I_{1}$ has finite degree, $\Lambda$ is finite. By $(*)$ and since $I_{2}$ has finite degree, for each $c \in \Lambda$, there are only finitely many $c^{\prime}$ such that $h_{i}(c)=c^{\prime}$ for some $i$. Thus, there must be a function $\delta: \Lambda \rightarrow \operatorname{adom}\left(I_{2}\right)$ such that, for infinitely many $i$, we have $h_{i}(c)=\delta(c)$ for all $c \in \Lambda$. Extend $h$ accordingly, that is, set $h(c)=\delta(c)$ for all $c \in \Lambda$. Clearly, the sequence $h_{0}, h_{1}, \ldots$ from ( $*$ ) before the extension is no longer sufficient to witness $(*)$ after the extension. We fix this by skipping homomorphisms that do not respect $\delta$, that is, define a new sequence $h_{0}^{\prime}, h_{1}^{\prime}, \ldots$ by using as $h_{i}^{\prime}$ the restriction of $h_{j}$ to the domain of $\left.I_{1}\right|_{i} ^{a_{0}}$ where $j \geq i$ is smallest such that $h_{j}(c)=\delta(d)$ for all $c \in \Lambda$. This finishes the construction. The lemma follows from the fact that, due to the $\Sigma$-connectedness of $I_{1}$, every element is eventually reached. Note that $h$ is database-preserving since all the homomorphisms in the original sequence $h_{0}, h_{1}, \ldots$ are.

Theorem 9. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, $\Sigma_{D}$ and $\Sigma_{Q}$ schemas, and $k$ the body width of $T_{1}$. Then $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$ iff for all tree-like $\Sigma_{D}$-databases $D$ of width at most $k$, the following holds:

1. chase $\left.T_{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {©on }} \rightarrow_{\Sigma_{Q}} \operatorname{chase}_{T_{1}}(D)$;
2. for all maximally $\Sigma_{Q}$-connected components $I$ of chase $_{T_{2}}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$, one of the following holds:
(a) $I \rightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(D)$;
(b) $I \rightarrow \lim _{\Sigma_{Q}}$ chase $\left._{T_{1}}(D)\right|_{c} ^{\downarrow}$ for some $c \in \operatorname{adom}(D)$.

Proof. " $\Leftarrow$ ". Assume that $T_{1} \not \vDash_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$. By Theorem 7 there is a tree-like $\Sigma_{D}$-databases $D$ of width at most $k$ and a connected $\Sigma_{Q}$-CQ $q$ of arity 0 or 1 such that $q_{T_{2}}(D) \nsubseteq$ $q_{T_{1}}(D)$.

First assume that $q(x)$ is of arity 1 . Then there is a constant $c \in \operatorname{adom}(D)$ such that $a \in q_{T_{2}}(D) \backslash q_{T_{1}}(D)$. Take a homomorphism $h$ from $q$ to chase $T_{2}(D)$ such that $h(x)=$ a. Since $q$ is connected and uses only symbols from $\Sigma_{Q}$, $h$ is actually a homomorphism from $q$ to chase $\left.T_{2}(D)\right|_{\Sigma_{Q}} ^{\mathrm{con}_{Q}}$.

We show that chase $\left.T_{2}(D)\right|_{\Sigma_{Q}} ^{\text {on }} \nrightarrow \Sigma_{\Sigma_{Q}}$ chase $_{T_{1}}(D)$ and thus Point 1 of Theorem 9 is violated．Assume to the contrary that chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$ and take a witnessing $\Sigma_{Q}$－homomorphism $g$ ．Then $g \circ h$ is a homomorphism from $q$ to chase ${ }_{T_{1}}(D)$ that maps $x$ to $a$ ，implying $a \in q_{T_{1}}(D)$ and thus a contradiction．

Now assume that $q(\emptyset)$ is of arity 0 and take a homo－ morphism from $q$ to chase $T_{2}(D)$ ．If the range of $h$ falls within chase $\left.T_{2}(D)\right|_{\Sigma_{Q} \text { on }}$ ，then we can argue as above that Point 1 of Theorem 9 is violated．Thus assume that this is not the case．Then the connectedness of $q$ implies that the range of $h$ does not overlap with chase $\left.T_{2}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$ ．Moreover， there must be a maximally $\Sigma_{Q}$－connected component $I$ of chase $T_{T_{2}}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$ such that the range of $h$ falls within $I$ ．We may again argue as above to show that $I \nrightarrow ⿱ 丶 万 ⿱ ⿰ ㇒ 一 乂, ~_{n}^{n}$ chase $T_{1}(D)$ ，with $n$ the number of variables in $q$ ，as other－ wise we find a homomorphism from $q$ to chase $T_{1}(D)$ ．This implies $I \nrightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$ and $I \nrightarrow \lim _{\Sigma_{Q}}$ chase $\left._{T_{1}}(D, c)\right|_{c} ^{\downarrow}$ for all $c \in \operatorname{adom}(D)$ ．Thus Point 2 of Theorem 9 is violated．
＂$\Rightarrow$＂．Assume that $T_{1} \models_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$ and let $D$ be a tree－ like $\Sigma_{D}$－database of width at most $k$ ．We have to show that Points 1 and 2 of Theorem 9 hold．

We start with Point 1．By Theorem 8，$T_{1} \neq_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$ implies chase $T_{T_{2}}(D) \rightarrow \lim _{\Sigma_{Q}}$ chase $_{T_{1}}(D)$ ．Let $I_{1}, \ldots, I_{k}$ be the maximally connected components of chase $\left.T_{2}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$ ．It suffices to show that $I_{i} \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$ for $1 \leq i \leq k$ ． Fix such an $i$ ．By definition of chase $T_{T_{2}}(D)| |_{\Sigma_{Q}}^{\text {con }}, I_{i}$ must con－ tain some constant $c \in \operatorname{adom}(D)$ ．Since chase $T_{2}(D) \rightarrow \lim _{Q}$ chase $T_{1}(D)$ ，we find a sequence $h_{0}, h_{1}, \ldots$ where $h_{\ell}$ is a database－preserving $\Sigma_{Q}$－homomorphism from $\left.I_{i}\right|_{\ell} ^{c}$ to chase $T_{1}(D)$ ．In particular，$h_{\ell}(c)=c$ for all $\ell$ ．Thus， Lemma 22 yields $I_{i} \rightarrow_{\Sigma_{Q}}$ chase $T_{T_{1}}(D)$ ．In summary，as required we obtain chase $T_{T_{2}}(D) \mid \Sigma_{\Sigma_{Q}}^{\text {con }} \rightarrow \Sigma_{Q}$ chase $_{T_{1}}(D)$ ．

Now for Point 2．Let $I$ be a maximally $\Sigma_{Q}$－connected com－ ponent of chase $T_{T_{2}}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$ ．Theorem 8 yields $I \rightarrow \lim _{\Sigma_{Q}}$ chase $_{T_{1}}(D)$ ．Consequently，we find a sequence $h_{0}, h_{1}, \ldots$ where $h_{i}$ is a $\Sigma_{Q}$－homomorphism from $\left.I\right|_{i} ^{c_{0}}$ to chase $T_{1}(D)$ ，for some $c_{0} \in \operatorname{adom}(I)$ ．We distinguish two cases．

First assume that there is a $d_{0} \in \operatorname{adom}\left(\operatorname{chase}_{T_{1}}(D)\right)$ such that $h_{i}\left(c_{0}\right)=d_{0}$ for infinitely many $i$ ．Construct a new se－ quence $h_{0}^{\prime}, h_{1}^{\prime}, \ldots$ with $h_{i}^{\prime}$ a $\Sigma_{Q}$－homomorphism from $\left.I\right|_{i} ^{c_{0}}$ to chase $T_{1}(D)$ by skipping homomorphisms that do not map $c_{0}$ to $d_{0}$ ，that is，$h_{i}^{\prime}$ is the restriction of $h_{j}$ to the domain of $\left.I\right|_{i} ^{c_{0}}$ where $j \geq i$ is smallest such that $h_{j}\left(c_{0}\right)=d_{0}$ ．Lemma 22 yields $I \rightarrow_{\Sigma_{Q}}$ chase $T_{1}(D)$ and thus Point 2 a is satisfied．

Otherwise，there is no $d_{0} \in \operatorname{adom}\left(\operatorname{chase}_{T_{1}}(D)\right)$ such that $h_{i}\left(c_{0}\right)=d_{0}$ for infinitely many $i$ ．We can assume that there is an $a_{0} \in \operatorname{adom}(D)$ such that $\operatorname{src}\left(h_{i}\left(c_{0}\right)\right)=a_{0}$ for all $i$ ； in fact，there must be an $a_{0}$ such that $\operatorname{src}\left(h_{i}\left(c_{0}\right)\right)=a_{0}$ for infinitely many $i$ and we can again skip homomorphisms to achieve this for all $i$ ．For brevity，let $J=$ chase $\left._{T_{1}}(D)\right|_{a_{0}} ^{\downarrow}$ ．By Lemma 20，$J$ is tree－like of width $\ell$ ，where $\ell$ is the head width of $T_{1}$ ．Thus，there is a rooted instance tree $\mathcal{T}=(V, E, B)$ of width $k$ that is finitely branching and satisfies $I_{\mathcal{T}}=J$ ．Since
there is no $d_{0} \in \operatorname{adom}\left(\operatorname{chase}_{T_{1}}(D)\right)$ such that $h_{i}\left(c_{0}\right)=d_{0}$ for infinitely many $i$ ，it follows that for all $i, n \geq 0$ we must find a $j \geq i$ such that $h_{j}\left(c_{0}\right)$ is a domain element whose dis－ tance from $a_{0}$ in the Gaifman graph of $J$ exceeds $n$ ．Based on this observation，we construct a sequence of homomor－ phisms $h_{0}^{\prime}, h_{1}^{\prime}, \ldots$ as follows．For all $i \geq 0$ ，let $h_{i}^{\prime}$ be the restriction of $h_{j}^{\prime}$ to the domain of $\left.I\right|_{i} ^{c_{0}}$ where $j \geq i$ is smallest such that the distance of $h_{j}\left(c_{0}\right)$ from $a_{0}$ exceeds $i$ ．Note that each $h_{i}^{\prime}$ is a $\Sigma_{Q}$－homomorphism from $\left.I\right|_{i} ^{c_{0}}$ to $J$ ．Since $I$ is connected，it is not hard to verify that this implies $I \rightarrow \lim _{\Sigma_{Q}} J$ ． Thus Point 2b is satisfied．

The proof of the following lemma is somewhat technical． We recommend to read it with Example 1 in mind．

Lemma 9．Let I be a countable $\Sigma$－connected instance such that adom $(I)$ contains only nulls．Then $I \rightarrow{ }_{\Sigma}^{\lim }$ chase $_{T_{1}}(\widehat{t})$ iff there is an $\widehat{I} \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$ with $I \rightarrow \widehat{I}$ ．

Proof．$(\Leftarrow)$ Assume that $I \rightarrow_{\Sigma} \widehat{I}$ for some $\widehat{I} \in \mathcal{R}\left(T_{1}, \widehat{t}\right)$ ， that is，$I \rightarrow_{\Sigma} I_{\mathcal{T}}$ for some $\widehat{t}$－proper $T_{1}$－labeled instance tree $\mathcal{T}=(V, E, B, \mu)$ ．To show that $I \rightarrow_{\Sigma}^{\lim }$ chase $_{T_{1}}(\widehat{t})$ ，it clearly suffices to prove that $I_{\mathcal{T}} \rightarrow{ }^{\text {lim }}$ chase $_{T_{1}}(\widehat{t})$ ．

Let $n \geq 1$ and $I^{\prime}$ an induced subinstance of $I_{\mathcal{T}}$ with $\left|\operatorname{adom}\left(I^{\prime}\right)\right| \leq n$ ．We have to show that $I^{\prime} \rightarrow$ chase $_{T_{1}}(\widehat{t})$ ．Let $V^{\prime}$ be the minimal subset of $V$ such that $v \in V^{\prime}$ whenever $\operatorname{adom}(B(v)) \cap \operatorname{adom}\left(I^{\prime}\right) \neq \emptyset$ and for $E^{\prime}=E \cap\left(V^{\prime} \times V^{\prime}\right)$ ， the graph $\left(V^{\prime}, E^{\prime}\right)$ is connected（and thus a tree）．Let $\mathcal{T}^{\prime}=$ （ $V^{\prime}, E^{\prime}, B^{\prime}$ ）with $B^{\prime}$ the restriction of $B$ to $V^{\prime}$ ．It is enough to prove that $I_{\mathcal{T}^{\prime}} \rightarrow$ chase $_{T_{1}}(\widehat{t})$ ．

We start to construct a homomorphism $h$ from $I_{\mathcal{T}}$ ，to chase $T_{1}(\widehat{t})$ as follows．Let $v$ be the root of $\left(V^{\prime}, E^{\prime}\right)$ or a non－root such that adom $(B(v)) \cap \operatorname{adom}\left(B\left(v^{\prime}\right)\right)=\emptyset, v^{\prime}$ the predecessor of $v$ ．We know from Condition 1 of properness that $B(v)$ has the form $\left\{\operatorname{true}\left(c_{0}\right)\right\}$ and $\mu\left(c_{0}\right)=\widehat{t}$ or there is a TGD $\vartheta$ in $T_{1}$ such that $B(v)$ is isomorphic to the head of $\vartheta$ and $\widehat{t}, T_{1} \models q_{\left(B(v), \mu_{v}\right)}$ ．In both cases，we find a homomor－ phism $h_{v}$ from $D_{\left(B(v), \mu_{v}\right)}$ to chase $T_{1}(\widehat{t})$ ．The initial $h$ is the union of all the homomorphisms $h_{v}$ ．

We now extend $h$ in a step－wise fashion．Let $\left(v, v^{\prime}\right) \in$ $E^{\prime}$ such that $h$ already covers adom $\left(B^{\prime}(v)\right)$ ，but not adom $\left(B^{\prime}\left(v^{\prime}\right)\right)$ ．Then $h$ is a homomorphism from $D_{\left(B(v), \mu_{v}\right)}$ to chase $T_{1}(\widehat{t})$ ．Since $h$ does not yet cover adom $\left(B^{\prime}\left(v^{\prime}\right)\right)$ ， adom $(B(v)) \cap$ adom $\left(B\left(v^{\prime}\right)\right) \neq \emptyset$ ．By Condition 2 of proper－ ness and because chase $T_{1}(\widehat{t})$ is a model of $T_{1}$ ，we can extend $h$ to $\operatorname{adom}\left(D_{\left(B\left(v^{\prime}\right), \mu_{v^{\prime}}\right)}\right)$ ．
$(\Rightarrow)$ Let $I$ be a countable $\Sigma$－connected instance such that $I \rightarrow \lim _{\Sigma}$ chase $_{T_{1}}(\widehat{t})$ ，and let $\alpha_{0}, \alpha_{1}, \ldots$ be a（finite or infinite） enumeration of the non－unary facts in $I$（we assume that there is at least one such fact）．Consider the（finite or infinite） sequence of instances

$$
I_{0} \subseteq I_{1} \subseteq \cdots
$$

with $I_{i}$ the restriction of $I$ to the constants in $\left\{\alpha_{0}, \ldots, \alpha_{i}\right\}$ ． Since $I$ is $\Sigma$－connected，we may clearly choose $\alpha_{0}, \alpha_{1}, \ldots$ ． so that $I_{i}$ is $\Sigma$－connected for all $i \geq 0$ ．Once more since $I$
is $\Sigma$-connected (and thus there are no isolated unary facts), $\bigcup_{i \geq 0} I_{i}=I$.

$$
\begin{gathered}
\text { Since } I \rightarrow \lim _{\Sigma}^{\lim } \text { chase }_{T_{1}}(\widehat{t}) \text { there is a sequence } \\
\qquad h_{0}, h_{1}, \ldots
\end{gathered}
$$

with $h_{i}$ a homomorphism from $I_{i}$ to chase ${T_{1}}(\widehat{t})$ for all $i \geq 0$. We have to identify a $\widehat{t}$-proper $T_{1}$-labeled instance tree $\widehat{\mathcal{T}}$ with $I \rightarrow I_{\widehat{\mathcal{T}}}$. We do this by identifying a sequence

$$
\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots \text { with } \mathcal{T}_{i}=\left(V_{i}, E_{i}, B_{i}, \mu_{i}\right)
$$

of finite $\widehat{t}$-proper $T_{1}$-labeled instance trees that are monotonically growing in the sense that for all $i \geq 0, V_{i} \subseteq V_{i+1}, E_{i} \subseteq$ $E_{i+1}$, and $B_{i}(v)=B_{i+1}(v)$ as well as $\mu_{i}(v)=\mu_{i+1}(v)$ for all $v \in V_{i}$. The desired instance tree $\widehat{\mathcal{T}}$ is then obtained in the limit. In particular, each $\mathcal{T}_{i}$ is constructed such that $I_{i} \rightarrow I_{\mathcal{T}_{i}}$ and along with the construction of the trees $\mathcal{T}_{i}$ we construct a sequence of homomorphisms

$$
g_{0}, g_{1}, \ldots
$$

witnessing this. Also this sequence is monotonically growing in the sense that $g_{0} \subseteq g_{1} \subseteq \cdots$ and we obtain the desired homomorphism $g$ from $I$ to $I_{\widehat{\mathcal{T}}}$ in the limit.

As a 'guide' for the construction of the two sequences $\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots$ and $g_{0}, g_{1}, \ldots$, we use the homomorphisms $h_{i}$ from $I_{i}$ to chase $T_{1}(\hat{t})$. During the process, we also uniformize the sequence $h_{0}, h_{1}, \ldots$ be removing 'unsuitable' homomorphisms from it, similar to what has been done in the proof of Lemma 22. For the construction, we make more precise the synchronization between the sequence $\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots$ and the sequence $h_{0}, h_{1}, \ldots$ As described after the definition of $T_{1}$-labeled instance trees, the construction of chase $T_{1}(\widehat{t})$ gives rise to a ( $\widehat{t}$-proper) $T_{1}$-labeled instance tree $\mathcal{T}=(V, E, B, \mu)$ such that $I_{\mathcal{T}}=$ chase $_{T_{1}}(\widehat{t})$. Moreover, the width of $\mathcal{T}$ is bounded by the head width of TGDs in $T_{1}$. An embedding of a $T_{1}$-labeled instance tree $\mathcal{T}_{i}$ into $\mathcal{T}$ is a pair of mappings $f: V_{i} \rightarrow V, \iota: \operatorname{adom}\left(I_{\mathcal{T}_{i}}\right) \rightarrow \operatorname{adom}\left(I_{\mathcal{T}}\right)$ such that $f$ is an injective homomorphism from $\left(V_{i}, E_{i}\right)$ to $(V, E)$ and $\iota$ satisfies the following conditions:

1. for every $v \in V_{i}$, the restriction of $\iota$ to adom $\left(B_{i}(v)\right)$ is an isomorphism from $B_{i}(v)$ to $B(f(v))$;
2. for every $c \in \operatorname{adom}\left(I_{\mathcal{T}_{i}}\right)$, we have $\mu_{i}(c)=\mu(\iota(c))$.

We remark for further use that actually
3. $\iota$ is an isomorphism from $I_{\mathcal{T}_{i}}$ to $\bigcup_{u \in \operatorname{ran}} B(u)$.

This is easy to show using the injectivity of $f$ and the definition of instance trees.

Now, along with the sequences $\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots$ and $g_{0}, g_{1}, \ldots$, we also construct embeddings

$$
f_{i, j}, \iota_{i, j} \text { with } 0 \leq i \leq j
$$

where each $f_{i, j}, \iota_{i, j}$ is an embedding of $\mathcal{T}_{i}$ into $\mathcal{T}$. Note that there are infinitely many embeddings $f_{i, j}, \iota_{i, j}$ for each $i$ instead of only a single one. The reason is that these embeddings achieve a synchronization of each $\mathcal{T}_{i}$ with the entire sequence $h_{i}, h_{i+1}, \ldots$ in the sense that, for $0 \leq i \leq j$, we shall take care that
$(\dagger) h_{j}(c)=\iota_{i, j} \circ g_{i}(c)$ for all $c \in \operatorname{adom}\left(I_{i}\right)$.
Informally, $(\dagger)$ states that all homomorphisms $h_{j}, j \geq i$, map $I_{i}$ into chase $T_{1}(\widehat{t})$ in the same way as $g_{i}$ maps $I_{i}$ into $\mathcal{T}_{i}$.

Now for the actual construction. To define $\mathcal{T}_{0}$ and $g_{0}$, choose for every $k \geq 0$ a node $u_{k} \in V$ from $\mathcal{T}$ such that $h_{k}\left(I_{0}\right) \subseteq B\left(u_{k}\right)$. Such a $u_{k}$ must exist since all constants in $I_{0}$ co-occur in a single fact in $I_{0}$. Consider the sequence

$$
\left(B_{0}, \lambda_{0}, \bar{d}_{0}\right),\left(B_{1}, \lambda_{1}, \bar{d}_{1}\right), \ldots
$$

with $\left(B_{i}, \lambda_{i}, \bar{d}_{i}\right)=\left(B\left(u_{k}\right), \mu\left(u_{k}\right), h_{k}(\bar{c})\right)$. Since the width of $\mathcal{T}$ is bounded, there are only finitely many isomorphism types of these triples, where $\left(B_{i}, \lambda_{i}, \bar{d}_{i}\right)$ and $\left(B_{j}, \lambda_{j}, \bar{d}_{k}\right)$ are isomorphic if there is an isomorphism $\iota$ from $B_{i}$ to $B_{j}$ with $\iota\left(\bar{d}_{i}\right)=\bar{d}_{j}$ and $\lambda_{i}(c)=\lambda_{j} \circ \iota(c)$ for all $c \in \operatorname{adom}\left(B_{i}\right)$. Thus we may choose an isomorphism type that occurs infinitely often. We skip all homomorphisms $h_{i}$ such that $\left(B_{i}, \lambda_{i}, \bar{d}_{i}\right)$ is not of that type, that is, we replace each $h_{i}$ with $h_{j}$ where $j \geq i$ is minimal such that $\left(B_{j}, \lambda_{j}, \bar{d}_{j}\right)$ is of the chosen isomorphism type. Now define $\mathcal{T}_{0}$ by taking

$$
V_{0}=\left\{v_{0}\right\}, \quad E_{0}=\emptyset, \quad B_{0}\left(v_{0}\right)=B_{0}, \quad \mu_{0}=\lambda_{0}
$$

and set $g_{0}(c)=h_{0}(c)$ for all constants $c \in \operatorname{adom}\left(I_{0}\right)$ and $f_{0, j}\left(v_{0}\right)=u_{k}$ for all $j \geq 0$. As $\iota_{0, j}$, we use the isomorphism that witness that $\left(B_{0}, \lambda_{0}, \bar{d}_{0}\right)$ and $\left(B_{j}, \lambda_{j}, \bar{d}_{j}\right)$ have the same isomorphism type. Based on this choice, it can be verified that $(\dagger)$ is satisfied.

For the inductive step, assume that we have already constructed $\mathcal{T}_{i}, g_{i}$, as well as the embeddings $f_{i, j}, \iota_{i, j}$ for all $j \geq i$. We obtain $\mathcal{T}_{i+1}, g_{i+1}$ from $\mathcal{T}_{i}, g_{i}$ by starting with $\mathcal{T}_{i+1}=\mathcal{T}_{i}$ and $g_{i+1}=g_{i}$ and then extending as follows.

By construction of $I_{i+1}$, there is a non-unary fact $R(\bar{c}) \in$ $I_{i+1}$ such that $I_{i+1}$ is the restriction of $I$ to adom $\left(I_{i}\right) \cup \bar{c}$. For every $k>i$, there is thus a $u_{k} \in V$ with $R\left(h_{k}(\bar{c})\right) \in B(u)$. In fact, each $u_{k}$ is unique by definition of instance trees. By skipping homomorphisms from $h_{i+1}, h_{i+2}, \ldots$ along with the associated functions $f_{i, i+1}, f_{i, i+2}, \ldots$ and isomorphisms $\iota_{i, i+1}, \iota_{i, i+2}, \ldots$, we can achieve that one of the following two cases applies:

1. $u_{k}$ is in the range of $f_{i, k}$ for all $k>i$, or
2. $u_{k}$ is not in the range of $f_{i, k}$ for all $k>i$.

In Case 1, since $V_{i}$ is finite we can once more skip homomorphisms and achieve that there is some $v \in V_{i}$ such that $f_{i, k}(v)=u_{k}$, for all $k>i$. For every $k>i$, by Property 3 of embeddings we may define

$$
\bar{d}_{k}=\iota_{i, k}^{-}\left(h_{k}(\bar{c})\right) .
$$

The choice of $v$ and Property 1 of embeddings yield $\bar{d}_{k} \subseteq$ $\operatorname{adom}\left(B_{i}(v)\right)$ for all $k>i$. Since adom $\left(B_{i}(v)\right)$ is finite, there are only finitely many possible choices for the $\bar{d}_{k}$. By skipping homomorphism, we may thus achieve that they are all identical. Extend $g_{i+1}$ by setting $g_{i+1}(c)=\iota_{i, k}^{-}\left(h_{k}(c)\right)$ for some (equivalently: all) $k>i$, for every $c \in \bar{c}$ such that $g_{i+1}(c)$ is not yet defined. Define $f_{i+1, j}=f_{i, j}$ and $\iota_{i+1, j}=\iota_{i, j}$ for all $j>i$. One may verify that $(\dagger)$ is satisfied.

We argue that, as required, $g_{i+1}$ is a homomorphism from $I_{i+1}$ to $I_{\mathcal{T}_{i+1}}$. Take any fact $S(\bar{e}) \in I_{i+1}$. The definition of
$g_{i+1}$ and $(\dagger)$ yield $g_{i+1}(c)=\iota_{i, i+1}^{-}\left(h_{i+1}(c)\right)$ for all $c \in \bar{e}$. It remains to note that $h_{i+1}$ is a homomorphism from $I_{i+1}$ to chase $T_{1}(\widehat{t})$, thus $S\left(h_{i+1}\right) \in \operatorname{chase}_{T_{1}}(\widehat{t})$, and $\iota_{i, i+1}^{-}$is an isomorphism.

We consider now Case 2, that is, $u_{k}$ is not in the range of $f_{i, k}$, for all $k>i$. Now, observe that since $I_{i+1}$ is connected, there is some $d \in \bar{c} \cap \operatorname{adom}\left(I_{i}\right)$, and thus $g_{i}(d)$ is already defined. Choose $v \in V_{i}$ with $g_{i}(d) \in \operatorname{adom}(B(v))$ and consider the sequence

$$
w_{k}=f_{i, k}(v), \quad k>i
$$

Since $u_{k}$ is not in the range of $f_{i, k}$, we have $u_{k} \neq w_{k}$, for all $k$. However, $h_{k}(d) \in \operatorname{adom}\left(B\left(w_{k}\right)\right) \cap \operatorname{adom}\left(B\left(u_{k}\right)\right)$. Due to Property 1 from the definition of instance trees, we can skip homomorphisms to reach one of the following situations:
(a) $u_{k}$ is the predecessor of $w_{k}$, for all $k>i$,
(b) $u_{k}$ is a successor of $w_{k}$, for all $k>i$, or
(c) $u_{k}, w_{k}$ are siblings, for all $k>i$.

In all cases, we start as follows. Similarly to the induction start, consider the sequence

$$
\left(B_{i+1}, \lambda_{i+1}, \bar{d}_{i+1}\right),\left(B_{i+2}, \lambda_{i+2}, \bar{d}_{i+2}\right), \ldots
$$

with $\left(B_{k}, \lambda_{k}, \bar{d}_{k}\right)=\left(B\left(u_{k}\right), \mu\left(u_{k}\right), h_{k}(\bar{c})\right)$, for all $k>i$. Since the width of $\mathcal{T}$ is bounded, there are only finitely many isomorphism types of these triples. Thus we may choose an isomorphism type that occurs infinitely often. By skipping homomorphisms, we can achieve that all $\left(B_{k}, \lambda_{k}, \bar{d}_{k}\right)$ are of the same type. We further select a triple $(B, \lambda, \bar{d})$ that is of the same isomorphism type to be used as a bag in the tree $\mathcal{T}_{i+1}$. We make this choice such that $g_{i}(d) \in \operatorname{adom}(B)$ and adom $(B) \backslash\left\{g_{i}(d)\right\}$ consists only of fresh constants, that is, constants not used in $I_{\mathcal{T}_{i}}$. Define $\tau_{k}$ to be an isomorphism that witnesses that $(B, \lambda, \bar{d})$ and $\left(B_{k}, \lambda_{k}, \bar{d}_{k}\right)$ have the same isomorphism type, for all $k>i$.

We now extend $\mathcal{T}_{i+1}, g_{i+1}$ distinguishing Cases (a)-(c).
In Case (a), let us first argue that $v$ is the root of $\mathcal{T}_{i}$. If not, then $f_{i, k}$ maps the predecessor $v^{\prime}$ to $u_{k}$, for all $k>i$, in contradiction to the fact that $u_{k}$ is not in the range of $f_{i, k}$. Then, add a predecessor $v^{\prime}$ of $v$ to $\mathcal{T}_{i+1}$, set

$$
B_{i+1}\left(v^{\prime}\right)=B, \quad \mu_{i+1}=\mu_{i+1} \cup \lambda
$$

and set, for all $c \in \operatorname{adom}\left(I_{i+1}\right)$ such that $g_{i+1}(c)$ is not yet defined, $g_{i+1}(c)=\iota_{i+1, k}^{-}\left(h_{k}(c)\right)$, for some (equivalently: all) $k>i$. It can be verified that setting, for all $j>i$,

$$
\begin{aligned}
f_{i+1, j} & =f_{i, j} \cup\left\{\left(v^{\prime}, u_{j}\right)\right\}, \text { and } \\
\iota_{i+1, j} & =\iota_{i, j} \cup \tau_{j}
\end{aligned}
$$

witnesses $(\dagger)$ for $i+1$.
In Case (b), we do exactly the same as in Case (a) with $v^{\prime}$ a fresh successor of $v$ (instead of predecessor).

In Case (c), we make a final case distinction. If $v$ has a predecessor $v_{0}$ in $\mathcal{T}_{i}$, then proceed exactly as in Case (a), but make $v^{\prime}$ a fresh successor of $v_{0}$. Otherwise, let $u_{k}^{\prime}$ be the predecessor of $u_{k}$, for all $k>i$, and consider the sequence

$$
\left(B_{i+1}^{\prime}, \lambda_{i+1}^{\prime}, d_{i+1}\right),\left(B_{i+2}^{\prime}, \lambda_{i+2}^{\prime}, d_{i+2}\right), \ldots
$$

with $\left(B_{k}^{\prime}, \lambda_{k}^{\prime}, d_{k}\right)=\left(B\left(u_{k}^{\prime}\right), \mu\left(u_{k}^{\prime}\right), h_{k}(d)\right)$, for all $k>i$ (recall that we fixed $d$ in the beginning of Case 2). We can again skip homomorphisms and achieve that all the $\left(B_{k}^{\prime}, \lambda_{k}^{\prime}, d_{k}\right)$ are of the same isomorphism type. We further select a triple $\left(B^{\prime}, \lambda^{\prime}, d^{\prime}\right)$ that is of the same isomorphism type to be used as a bag in the tree $\mathcal{T}_{i+1}$. We make this choice such that $g_{i}(d) \in \operatorname{adom}\left(B^{\prime}\right)$ and adom $\left(B^{\prime}\right) \backslash\left\{g_{i}(d)\right\}$ consists only of fresh constants, that is, constants not used in $I_{\mathcal{T}_{i}}$. Define $\tau_{k}^{\prime}$ to be an isomorphism that witnesses that $\left(B^{\prime}, \lambda^{\prime}, d^{\prime}\right)$ and $\left(B_{k}^{\prime}, \lambda_{k}^{\prime}, d_{k}\right)$ have the same isomorphism type, for all $k>i$. Then, add a predecessor $v^{\prime}$ of $v$ and a fresh successor $v^{\prime \prime}$ of $v^{\prime}$ to $\mathcal{T}_{i+1}$, set
$B_{i+1}\left(v^{\prime}\right)=B^{\prime}, \quad B_{i+1}\left(v^{\prime \prime}\right)=B, \quad \mu_{i+1}=\mu_{i+1} \cup \lambda \cup \lambda^{\prime}$, and set, for all $c \in \operatorname{adom}\left(I_{i+1}\right)$ such that $g_{i+1}(c)$ is not yet defined, $g_{i+1}(c)=\iota_{i+1, k}^{-}\left(h_{k}(c)\right)$, for some (equivalently: all) $k>i$. It can be verified that setting, for all $j>i$,

$$
\begin{aligned}
f_{i+1, j} & =f_{i, j} \cup\left\{\left(v^{\prime}, u_{j}^{\prime}\right),\left(v^{\prime \prime}, u_{j}\right)\right\}, \text { and } \\
\iota_{i+1, j} & =\iota_{i, j} \cup \tau_{j} \cup \tau_{j}^{\prime}
\end{aligned}
$$

witnesses $(\dagger)$ for $i+1$.
This finishes the construction of the sequences $\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots$ and $g_{0}, g_{1}, \ldots$ Recall that both the $\mathcal{T}_{i}$ and the $g_{i}$ are monotonically growing and that we are interested in the limits $\widehat{\mathcal{T}}$ and $g$ of the sequences, that is,

$$
\widehat{\mathcal{T}}=\left(\bigcup_{i \geq 0} V_{i}, \bigcup_{i \geq 0} E_{i}, \bigcup_{i \geq 0} B_{i}, \bigcup_{i \geq 0} \mu_{i}\right)
$$

and

$$
g=\bigcup_{i \geq 0} g_{i}
$$

Since each $g_{i}$ is a homomorphism from $I_{i}$ to $I_{\mathcal{T}_{i}}$, it is clear that $g$ is a homomorphism from $I$ to $I_{\widehat{\mathcal{T}}}$. Moreover, $\widehat{\mathcal{T}}$ is $\widehat{t}$-proper since each $\mathcal{T}_{i}$ is.

## E Proofs for Section 6: Decision Procedures

We prove the decidability results from Section 6 using the characterizations provided in that section and tree automata. More precisely, to prove the 3ExpTime upper bounds for hom-conservativity and CQ-conservativity in Theorem 5, we show how to construct, given sets $T_{1}, T_{2}$ of frontier-one TGDs and signatures $\Sigma_{D}$ and $\Sigma_{Q}$, a tree automaton $\mathfrak{A}$ such that $L(\mathfrak{A}) \neq \emptyset$ iff $T_{1} \not \not \models_{\Sigma_{D}, \Sigma_{Q}}^{\text {hom }} T_{2}$ resp. $T_{1} \not \vDash_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$. The use of tree automata is sanctioned by the characterizations of hom-conservativity and CQ-conservativity in terms of treeshaped witnesses provided by Theorem 6 and Theorem 9 .

We start with giving the necessary details on tree automata.

## E. 1 Tree Automata

A tree is a non-empty (and potentially infinite) set of words $W \subseteq(\mathbb{N} \backslash 0)^{*}$ closed under prefixes. We assume that trees are finitely branching, that is, for every $w \in W$, the set $\{i>0 \mid w \cdot i \in W\}$ is finite. For $w \in(\mathbb{N} \backslash 0)^{*}$, set $w \cdot 0:=w$. For $w=n_{0} n_{1} \cdots n_{k}, k>0$, set $w \cdot-1:=n_{0} \cdots n_{k-1}$, and
call $w$ a successor of $w \cdot-1$ and $w \cdot-1$ a predecessor of $w$. For an alphabet $\Theta$, a $\Theta$-labeled tree is a pair $(W, L)$ with $W$ a tree and $L: W \rightarrow \Theta$ a node labeling function.

A two-way alternating tree automaton (2ATA) is a tuple $\mathfrak{A}=\left(Q, \Theta, q_{0}, \delta, \Theta\right)$ where $Q$ is a finite set of states, $\Theta$ is the input alphabet, $q_{0} \in Q$ is the initial state, $\delta$ is a transition function, and $\Theta: Q \rightarrow \mathbb{N}$ is a priority function. The transition function $\delta$ maps every state $q$ and input letter $a \in \Theta$ to a positive Boolean formula $\delta(q, a)$ over the truth constants true and false and transition atoms of the form $q, \diamond^{-} q, \square^{-} q, \diamond q$ and $\square q$. A transition $q$ expresses that a copy of $\mathfrak{A}$ is sent to the current node in state $q ; \diamond^{-} q$ means that a copy is sent in state $q$ to the predecessor node, which is required to exist; $\square^{-} q$ means the same except that the predecessor node is not required to exist; $\diamond q$ means that a copy of $q$ is sent to some successor and $\square q$ means that a copy of $q$ is sent to all successors. The semantics of 2ATA is given in terms of runs as usual.

Let $(W, L)$ be a $\Theta$-labeled tree and $\mathfrak{A}=\left(Q, \Theta, q_{0}, \delta, \Omega\right)$ a 2ATA. A run of $\mathfrak{A}$ over $(W, L)$ is a $W \times Q$-labeled tree $\left(W_{r}, r\right)$ such that $\varepsilon \in W_{r}, r(\varepsilon)=\left(\varepsilon, q_{0}\right)$, and for all $y \in$ $W_{r}$ with $r(y)=(x, q)$ and $\delta(q, V(x))=\theta$, there is an assignment $v$ of truth values to the transition atoms in $\theta$ such that $v$ satisfies $\theta$ and:

- if $v\left(q^{\prime}\right)=1$, then $r\left(y^{\prime}\right)=\left(x, q^{\prime}\right)$ for some successor $y^{\prime}$ of $y$ in $W_{r}$;
- if $v\left(\diamond^{-} q^{\prime}\right)=1$, then $x \neq \varepsilon$ and $r\left(y^{\prime}\right)=\left(x \cdot-1, q^{\prime}\right)$ for some successor $y^{\prime}$ of $y$ in $W_{r}$;
- if $v\left(\square^{-} q^{\prime}\right)=1$, then $x=\varepsilon$ or $r\left(y^{\prime}\right)=\left(x \cdot-1, q^{\prime}\right)$ for some successor $y^{\prime}$ of $y$ in $W_{r}$;
- if $v\left(\diamond q^{\prime}\right)=1$, then there is some $j$ and a successor $y^{\prime}$ of $y$ in $W_{r}$ with $r\left(y^{\prime}\right)=\left(x \cdot j, q^{\prime}\right)$;
- if $v\left(\square q^{\prime}\right)=1$, then for all successors $x^{\prime}$ of $x$, there is a successor $y^{\prime}$ of $y$ in $W_{r}$ with $r\left(y^{\prime}\right)=\left(x^{\prime}, q^{\prime}\right)$.
Let $\gamma=i_{0} i_{1} \cdots$ be an infinite path in $W_{r}$ and denote, for all $j \geq 0$, with $q_{j}$ the state such that $r\left(i_{j}\right)=\left(x, q_{j}\right)$. The path $\gamma$ is accepting if the largest number $m$ such that $\Omega\left(q_{j}\right)=m$ for infinitely many $j$ is even. A run $\left(W_{r}, r\right)$ is accepting, if all infinite paths in $W_{r}$ are accepting. $\mathfrak{A}$ accepts a tree if $\mathfrak{A}$ has an accepting run over it. We use $L(\mathfrak{A})$ to denote the set of $\Theta$-labeled trees accepted by $\mathfrak{A}$.

It is not hard to show that 2ATA are closed under intersection and that the intersection automaton can be constructed in polynomial time, see for example (Comon et al. 2007). The emptiness problem for 2ATA means to decide, given a 2ATA $\mathfrak{A}$, whether $L(\mathfrak{A})=\emptyset$. Emptiness of 2ATA can be solved in time single exponential in the number of states and the maximal priority, and polynomial in all other components. This was proved for 2ATAs on ranked trees in (Vardi 1998) and it was shown in (Jung et al. 2020) that the result carries over to the particular version of 2ATAs used here, which run on trees of arbitrary finite degree.

## E. 2 Upper Bound for Hom-Conservativity

To decide hom-conservativity via Theorem 6 it suffices to devise a 2ATA $\mathfrak{A}$ such that
$\left(*_{\mathfrak{A}}\right) \mathfrak{A}$ accepts all tree-like instances $I$ of width $\max (k, \ell)$ that are models of $T_{1}$ and some tree-like $\Sigma_{Q^{-}}$-databases $D$ of width $k$ such that chase $T_{T_{2}}(D) \not \overbrace{\Sigma_{Q}} I$, where $k$ and $\ell$ are the body and head width of $T_{1}$.
However, 2ATAs cannot run directly on tree-like databases or instances because the potential labels of the underlying trees (the bags) may use any number of constants and do not constitute a finite alphabet. We therefore use an appropriate encoding of tree-like databases that reuses constants so that we can make do with finitely many constants overall, similar to what has been done, for example, in (Grädel and Walukiewicz 1999).

Encoding of tree-like instances. Let $m=\max (k, \ell)$ with $k$ the body width and $\ell$ the head width of $T_{1}$. Fix a set $\Delta$ of $2 m$ constants and define $\Theta_{0}$ to be the set of all $\Sigma$-databases $B$ with $\operatorname{adom}(B) \subseteq \Delta$ and $|\operatorname{adom}(B)| \leq m$, where $\Sigma$ is the union of $\Sigma_{D}$ and $\operatorname{sig}\left(T_{1}\right)$, that is, all relation symbols that occur in $T_{1}$.

Let $(W, L)$ be a $\Theta_{0}$-labeled tree. For convenience, we use $B_{w}$ to refer to the database $L(w)$ at node $w$. For a constant $c \in \Delta$, we say that $v, w \in W$ are $c$-equivalent if $c \in \operatorname{adom}\left(B_{u}\right)$ for all $u$ on the unique shortest path from $v$ to $w$. Informally, this means that $c$ represents the same constant in $B_{v}$ and in $B_{w}$. In case that $c \in \operatorname{adom}\left(B_{w}\right)$, we use $[w]_{c}$ to denote the set of all $v$ that are $c$-equivalent to $w$. We call $(W, L)$ well-formed if it satisfies the following counterparts of Conditions 1 and 2 of instance trees:
$1^{\prime}$. for every $w \in W$ and every $c \in \operatorname{adom}\left(B_{w}\right)$, the restriction of $W$ to $[w]_{c}$ is a tree of depth at most 1 ;
$2^{\prime}$. for every $w \in W$ and successor $v$ of $w, \operatorname{adom}\left(B_{w}\right) \cap$ adom $\left(B_{v}\right)$ contains at most one constant.
Each well-formed $\Theta_{0}$-labeled tree $(W, L)$ represents a $\Sigma$ instance tree $\mathcal{T}_{W, L}=(V, E, B)$ as follows. The underlying tree $(V, E)$ is the tree (described by) $W$. The active domain of $I_{\mathcal{T}_{W, L}}$ is the set of all equivalence classes $[w]_{c}$ with $w \in W$ and $c \in \operatorname{adom}\left(B_{w}\right)$ and the labeling $B$ is defined by taking

$$
R\left([w]_{c_{1}}, \ldots,[w]_{c_{k}}\right) \in B(w) \quad \text { iff } \quad R\left(c_{1}, \ldots, c_{k}\right) \in B_{w}
$$

for all $w \in W$ and $c \in \operatorname{adom}\left(B_{w}\right)$. As a shorthand, we use $I_{W, L}$ to denote the instance $I_{\mathcal{T}_{W, L}}$.
Conversely, for every $\Sigma_{D}$-instance $I$ such that $I=I_{\mathcal{T}}$ for a instance tree $\mathcal{T}=(V, E, B)$ of width $m$, we can find a $\Theta_{0}$-labeled tree $(W, L)$ that represents $I$ in the sense that $I_{W, L}$ is isomorphic to $I$. Since $\Delta$ is of size $2 m$, it is possible to select a mapping $\pi: \operatorname{adom}(D) \rightarrow \Delta$ such that for each $(v, w) \in E$ and each $d, e \in \operatorname{adom}(B(w)) \cup \operatorname{adom}(B(v))$, we have $\pi(d)=\pi(e)$ iff $d=e$. Define the $\Theta_{0}$-labeled tree $(W, L)$ by setting $W=(V, E)$, and for all $w \in W, B_{w}$ to the image of $B(w)$ under $\pi$. Clearly, $(W, L)$ satisfies the desired properties.

Automata Constructions We construct a 2ATA $\mathfrak{A}$ that satisfies $\left(*_{\mathfrak{A}}\right)$, for given $T_{1}, T_{2}, \Sigma_{D}, \Sigma_{Q}$. We may assume without loss of generality that all symbols from $\Sigma_{D}$ and $\Sigma_{Q}$ occur in $T_{1}$. The desired 2ATA runs over $\Theta$-labeled trees with $\Theta=\Theta_{0} \times \Theta_{0} \times \Theta_{1}$ where $\Theta_{0}$ is defined as above, and
$\Theta_{1}$ is the set of all mappings $\mu: \Delta^{\prime} \rightarrow \mathrm{TP}\left(T_{2}\right)$ for some $\Delta^{\prime} \subseteq \Delta$ with $\left|\Delta^{\prime}\right| \leq m$. Intuitively, the first component will represent a $\Sigma_{D}$-database $D$, the second component will represent a model $I$ of $T_{1}$ and $D$, and the last component will represent the $T_{2}$ chase of $D$, restricted to adom $(D)$.

For a $\Theta$-labeled tree $(W, L)$, we set $L(w)=$ ( $\left.L_{0}(w), L_{1}(w), L_{2}(w)\right)$ for all $w \in W$ and thus may use $L_{i}(w)$ to refer to the $i$-th component of the label of $w$, for $i \in\{0,1,2\}$. For the sake of readability, we may use $\mu_{w}$ to denote $L_{2}(w)$. A $\Theta$-labeled tree $(W, L)$ is called well-typed if, for all $w \in W$ :

1. the domain of $\mu_{w}$ is adom $\left(L_{0}(w)\right)$ and
2. for every successor $v$ of $w$ and every $c \in \operatorname{adom}\left(L_{0}(w)\right) \cap$ $\operatorname{adom}\left(L_{0}(v)\right)$, we have $\mu_{w}(c)=\mu_{v}(c)$.

The desired 2ATA $\mathfrak{A}$ is constructed as the intersection of the five 2ATAs $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \mathfrak{A}_{2}, \mathfrak{A}_{3}, \mathfrak{A}_{4}$ provided by the following lemma.
Lemma 23. There are 2 ATAs $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \mathfrak{A}_{2}, \mathfrak{A}_{3}, \mathfrak{A}_{4}$ such that:

- $\mathfrak{A}_{0}$ accepts $(W, L)$ iff it is well-typed and $\left(W, L_{0}\right)$ and $\left(W, L_{1}\right)$ are well-formed;
$-\mathfrak{A}_{1}$ accepts $(W, L)$ iff $I_{W, L_{0}}$ is a $\Sigma_{D}$-database of width $k$;
- $\mathfrak{A}_{2}$ accepts $(W, L)$ iff $I_{W, L_{1}}$ is a model of $I_{W, L_{0}}$ and $T_{1}$;
$-\mathfrak{A}_{3}$ accepts $(W, L)$ iff for every $w \in W$ and every $c \in$ $\operatorname{adom}\left(L_{0}(w)\right)$,

$$
\mu_{w}(c)=\operatorname{tp}_{T_{2}}\left(\operatorname{chase}_{T_{2}}\left(I_{W, L_{0}}\right),[w]_{c}\right)
$$

$-\mathfrak{A}_{4}$ accepts $(W, L)$ iff chase $T_{2}\left(I_{W, L_{1}}\right) \nrightarrow I_{W, L_{1}}$.
The number of states of

- $\mathfrak{A}_{0}$ is exponential in $\left\|T_{1}\right\|$ (and independent of $T_{2}$ );
$-\mathfrak{A}_{1}$ does not depend on the input;
$-\mathfrak{A}_{2}$ is exponential in $\left\|T_{1}\right\|$ (and independent of $T_{2}$ );
$-\mathfrak{A}_{3}$ is exponential in $\left\|T_{2}\right\|$ (and independent of $T_{1}$ );
- $\mathfrak{A}_{4}$ is double exponential in $\left\|T_{2}\right\|$ (and independent of $T_{1}$ ).

All automata can be constructed in time triple exponential in $\left\|T_{1}\right\|+\left\|T_{2}\right\|$ and have maximum priority one.

It can be verified that $\mathcal{A}$ satisfies $\left(*_{\mathfrak{A}}\right)$ and thus $L(\mathfrak{A}) \neq \emptyset$ iff $T_{1} \not \forall_{\Sigma_{\Sigma_{D}, \Sigma_{Q}}^{\text {hom }}} T_{2}$. The rest of this section is devoted to proving Lemma 23.
Automaton $\mathfrak{A}_{0}$. This automaton is straightforward to construct.

Automaton $\mathfrak{A}_{1}$. This automaton simply verifies that all databases $L_{0}(w)$ use only symbols from $\Sigma_{D}$ and at most $k$ constants, and that on every path there are only finitely many non-empty databases. Constantly many states suffice for this purpose.

Automaton $\mathfrak{A}_{2}$. First note that $I_{W, L_{1}}$ is a model of $I_{W, L_{0}}$ iff $L_{0}(w)$ is a subset of $L_{1}(w)$, for every $w \in W$. This check can easily be done by a 2ATA with constantly many states. In order to verify that $I_{W, L_{1}}$ is a model of $T_{1}$, it is essential to realize that the employed encoding allows a 2ATA to do the following:
$(\dagger)$ given some $w \in W$ and $c \in \operatorname{adom}\left(L_{1}(w)\right)$, and a unary CQ $q(x)$, verify that there is a homomorphism $h$ from $q$ to $I_{W, L_{1}}$ with $h(x)=[w]_{c}$.
Since (parts of) 2ATAs can easily be complemented by dualization, they are also able to verify that there is no such homomorphism. The 2ATA $\mathfrak{A}_{2}$ may thus visit all $w \in W$ and all $c \in \operatorname{adom}\left(L_{1}(w)\right)$ and verify that, for every TGD $\phi(x, \bar{y}) \rightarrow \exists \bar{z} \psi(x, \bar{z})$ in $T_{1}$, there is no homomorphism $h$ from $q_{\phi}(x)$ to $I_{W, L_{1}}$ with $h(x)=[w]_{c}$ or there is a homomorphism $g$ from $q_{\psi}(x)$ to $I_{W, L_{1}}$ with $g(x)=[w]_{c}$.
Informally, a 2ATA can achieve ( $\dagger$ ) by memorizing (in its state) a CQ $p$ for which it still has to check the existence of a homomorphism, plus the target constant of the free variable of $p$ (if any). If the automaton visits a given node $w \in W$ in such a state, it guesses the variables $y_{1}, \ldots, y_{n}$ that the homomorphism will map to adom $\left(L_{1}(w)\right)$ and also the corresponding homomorphism targets $e_{1}, \ldots, e_{n} \in \operatorname{adom}\left(L_{1}(w)\right)$. It verifies that the guess indeed give rise to a partial homomorphism to database $L_{1}(w)$ and proceeds with the parts of $p$ that have not been mapped to the current database $L_{1}(w)$.

To formalize this idea, we use instantiated CQs in which all answer variables are replaced with constants, writing $q(\bar{c})$ to indicate that $\bar{c}$ are precisely the constants that occur in $q$ and that all variables are quantified. We will mostly drop the word 'instantiated' and only speak of CQs.

Let $q(\bar{c})$ be an (instantiated) CQ. A $\Delta$-splitting of $q(\bar{c})$ is obtained by first replacing any number of variables in $q(\bar{c})$ with constants ${ }^{8}$ from $\Delta$ and then partitioning the (atoms of the) resulting CQ into CQs $q_{0}\left(\bar{c}_{0}\right), q_{1}\left(\bar{c}_{1}\right), \ldots, q_{n}\left(\bar{c}_{n}\right)$ such that:

1. $q_{0}$ has no quantified variables;
2. for all $i>0, \bar{c}_{i}$ is empty or a single constant from $\bar{c}_{0}$;
3. for all $j>i>0, q_{i}$ and $q_{j}$ share no variables.

For a set $T$ of frontier-one TGDs, the $\Delta$-closure $\operatorname{cls}(T, \Delta)$ of $T$ is the smallest set of CQs such that:

- For every TGD $\phi(x, \bar{y}) \rightarrow \exists \bar{z} \psi(x, \bar{z}) \in T$ and every $c \in$ $\Delta$, the CQs $q_{\phi}(c)$ and $q_{\psi}(c)$ are contained in $\operatorname{cls}(T, \Delta)$;
- if $q(\bar{c}) \in \operatorname{cls}(T, \Delta)$ and $q_{0}\left(\bar{c}_{0}\right), q_{1}\left(\bar{c}_{1}\right), \ldots, q_{n}\left(\bar{c}_{n}\right)$ is a $\Delta$ splitting of $q(\bar{c})$, then $q_{1}\left(\bar{c}_{1}\right), \ldots, q_{k}\left(\bar{c}_{k}\right) \in \operatorname{cls}(T, \Delta)$.
It is important to note that:
Lemma 24. The cardinality of $\operatorname{cls}(T, \Delta)$ is bounded by $|T|$. $2^{m} \cdot(|\Delta|+1)^{m}$, with $m$ the maximum of body and head width of $T$.
Proof. Every query in $\operatorname{cls}(T, \Delta)$ can be obtained by starting with a Boolean $\mathrm{CQ} \exists x q_{\psi}(x, \bar{z})$ or $\exists x q_{\phi}(x, \bar{y})$ for some TGD $\phi(x, \bar{y}) \rightarrow \exists \bar{z} \psi(x, \bar{z}) \in T$, restricting it to some subset of its variables, and then possibly replacing any number of variables with constants from $\Delta$.

We can now describe the 2ATA achieving $(\dagger)$ more formally. It uses all members of $\operatorname{cls}\left(T_{1}, \Delta\right)$ as states. If it visits $w \in W$ in state $q(\bar{c})$, it non-deterministically chooses a adom $\left(L_{1}(w)\right)$-splitting $q_{0}\left(\bar{c}_{0}\right), q_{1}\left(\bar{c}_{1}\right), \ldots, q_{n}\left(\bar{c}_{n}\right)$ of $q(\bar{c})$, verifies that $q_{0}(\bar{c})$ (viewed as a database) is contained in $L_{1}(w)$ and, for each $i$ with $1 \leq i \leq n$ :

[^7]- if $q_{i}\left(\bar{c}_{i}\right)$ is unary and $\bar{c}_{i}=c$, then the 2ATA sends a copy in state $q_{i}\left(\bar{c}_{i}\right)$ to some $v \in[w]_{c}$;
- if $q_{i}\left(\bar{c}_{i}\right)$ is Boolean, then the 2ATA sends a copy in state $q_{i}\left(\bar{c}_{i}\right)$ to some $v \in W$.
Using the priorities we can make sure that the process terminates, that is, at some point the splitting takes the form of $q_{0}\left(\bar{c}_{0}\right)=q(\bar{c})$. Using Lemma 24 we can verify that $\mathfrak{A}_{2}$ uses exponentially many states.

Automaton $\mathfrak{A}_{3}$. Before we can describe the idea, we need to establish some necessary preliminaries. A TGD $\phi(\bar{x}, \bar{y}) \rightarrow$ $\exists \bar{z} \psi(\bar{x}, \bar{z})$ is full if $\bar{z}$ is empty. A monadic datalog program is a set of full frontier-one TGDs. In such programs, however, we also admit nullary relation symbols and empty frontiers.

Let $T$ be a set of frontier-one TGDs. We construct from $T$ a monadic datalog program $T^{\prime}$ as follows. Recall that all CQs in $q \in \operatorname{bodyCQ}(T)$ are Boolean or unary. For every CQ $q(\bar{x}) \in \operatorname{bodyCQ}(T)$, introduce a relation symbol $A_{q(\bar{x})}$ of arity $|\bar{x}|$. With bodyCQ ${ }^{+}(T)$, we denote the set of (Boolean or unary) CQs that can be obtained from a CQ $q \in \operatorname{bodyCQ}(T)$ by adding any number of atoms $A_{p(\bar{x})}(\bar{y})$ with $p(\bar{x}) \in \operatorname{body} \mathrm{CQ}(T)$ and $\bar{y}$ a tuple of variables from $q$ of length $|\bar{x}|$.

Given a CQ $q \in \operatorname{bodyCQ}{ }^{+}(T)$, we denote with $q^{\downarrow}$ the CQ obtained from $q$ by replacing every nullary atom $A_{p(\bar{x})}$ with a copy $p^{\prime}(\bar{x})$ of $p(\bar{x})$ that uses only fresh variable names. In addition, if $\bar{x}=x$ is non-empty, the copy of $x$ in $p^{\prime}(\bar{x})$ is identified with $x$. Now, $T^{\prime}$ consists of all rules
(i) $q(\bar{x}) \rightarrow A_{p(\bar{x})}(\bar{x})$ such that $q(\bar{x}) \in \operatorname{bodyCQ}^{+}(T)$ and $p(\bar{x}) \in \operatorname{bodyCQ}(T)$ have the same arity and $D_{q^{\downarrow}}, T \models$ $p(\bar{x})$,
(ii) $q(x) \rightarrow A_{p(\bar{x})}(\bar{x})$ such that $p(\bar{x}) \in \operatorname{bodyCQ}(T)$ and $q$ is a conjunction of nullary atoms $A_{p^{\prime}}$ and unary atoms $A_{p^{\prime}}(x)$, $p^{\prime} \in \operatorname{bodyCQ}(T)$, such that $D_{q^{\downarrow}}, T \models p(\bar{x})$.

Lemma 25. Let $T$ be a set of frontier-one TGDs and $T^{\prime}$ the corresponding monadic datalog program. Then, for every database $D, q(\bar{x}) \in \operatorname{bodyCQ}(T)$, and every $\bar{c} \in$ $\operatorname{adom}(D)^{|\bar{x}|}$,

$$
D, T \models q(\bar{c}) \quad \text { iff } \quad D, T^{\prime} \models A_{q(\bar{x})}(\bar{c}) .
$$

Proof. For the "if"-direction, suppose that $D, T \not \vDash q(\bar{c})$, for some database $D, q(\bar{x}) \in \operatorname{bodyCQ}(T)$, and $\bar{c} \in \operatorname{adom}(D)^{|\bar{x}|}$, that is, $\bar{c} \notin q\left(\operatorname{chase}_{T}(D)\right)$. Obtain an instance $I$ from chase ${ }_{T}(D)$ by interpreting the fresh symbols $A_{p(\bar{y})}$ in the expected way, that is, for all $p(\bar{y}) \in \operatorname{bodyCQ}(T)$, and $\bar{d} \in \operatorname{adom}\left(\operatorname{chase}_{T}(D)\right)^{|\bar{y}|}$, we have:

$$
A_{p(\bar{y})}(\bar{d}) \in I \quad \text { iff } \quad \bar{d} \in p\left(\operatorname{chase}_{T}(D)\right)
$$

It is readily verified that $I$ is a model of $D$ and $T^{\prime}$. But since $\bar{c} \notin q\left(\operatorname{chase}_{T}(D)\right)$, we have $A_{q(\bar{x})}(\bar{c}) \notin I$ and thus $D, T^{\prime} \not \vDash A_{q(\bar{x})}(\bar{c})$.

For the "only if"-direction, let $D, T^{\prime} \notin A_{q(\bar{x})}(\bar{c})$, for some database $D, q(\bar{x}) \in \operatorname{bodyCQ}(T)$, and $\bar{c} \in \operatorname{adom}(D)^{|\bar{x}|}$, that is, $A_{q(\bar{x})}(\bar{c}) \notin I$ for some model $I$ of $D$ and $T^{\prime}$. We associate
with every $d \in \operatorname{adom}(I)$ a $T$-type $t_{d}$ by taking:

$$
\begin{aligned}
t_{d}= & \left\{p(x) \in \operatorname{bodyCQ}(T) \mid A_{p(x)}(d) \in I\right\} \cup \\
& \left\{p() \in \operatorname{bodyCQ}(T) \mid A_{p()} \in I\right\} .
\end{aligned}
$$

Now obtain an instance $I^{\prime}$ from $I$ by adding, for every $d \in$ adom $(I)$ a disjoint copy of chase $T_{T}\left(t_{d}\right)$ identifying its root with $d$. It remains to show that $I^{\prime}$ is a model of $T$ and that $\bar{c} \notin q\left(I^{\prime}\right)$. For both statements, we will need the following auxiliary claim.
Claim 1. For all $p(\bar{x}) \in \operatorname{bodyCQ}(T)$ and all $\bar{d} \in \operatorname{adom}(I)^{|\bar{x}|}$, we have

$$
\bar{d} \in p\left(I^{\prime}\right) \quad \text { iff } \quad A_{p(x)}(\bar{d}) \in I
$$

Proof of Claim 1. The "if"-direction is immediate from the construction of $I^{\prime}$, so we concentrate on "only if". The proof is by induction on the number of variables in $p$.

Let $\bar{d} \in p\left(I^{\prime}\right)$, that is, there is a homomorphism $h$ from $p$ to $I^{\prime}$ with $h(\bar{x})=\bar{d}$. Let us define $h^{\downarrow}(x)=e$ in case $h(x)$ is in the copy of $\operatorname{chase}_{T}\left(t_{e}\right)$, for all variables $x$ in $p$. Set $H^{\downarrow}=\left\{h^{\downarrow}(x) \mid x\right.$ variable in $\left.p\right\}$. We decompose $p$ guided by $h$ into queries $p_{0}, p_{e}$ with $e \in H^{\downarrow}$ as follows:

- For every $e \in H^{\downarrow}, p_{e}$ is the restriction of $p$ to all variables $y$ in $p$ with $h^{\downarrow}(y)=e$.
- $p_{0}$ consists of the remaining atoms and has answer variable $x$ in case $p$ has an answer variable $x$.

Note that all obtained queries are contained in bodyCQ $(T)$. We distinguish three cases. Observe that Case 1 applies if $p$ contains at most one variable and thus establishes the induction base.

Case 1: $p_{e}=p$, for some $e \in H^{\downarrow}$. If $p$ is Boolean, then there is a homomorphism $g$ from $p$ to chase ${ }_{T}\left(t_{e}\right)$. If $p$ has answer variable $x$, then $\bar{d}=e$ and $g(x)$ is the constant corresponding to the free variable of $t_{e}$. Thus, $t_{e}, T \models p(\bar{x})$ and we find in $T^{\prime}$ the rule $\widehat{q}(x) \rightarrow A_{p(\bar{x})}(\bar{x})$ where $\widehat{q}$ is the conjunction of all $A_{p^{\prime}(x)}(x)$ with $A_{p^{\prime}(x)}(e) \in I$ and all $A_{p^{\prime}(x)} \in I$. By definition of $\widehat{q}, e \in \widehat{q}(I)$ and hence $A_{p(\bar{x})}(\bar{d}) \in I$.

Case 2: $p_{0}=p$. Then $h$ witnesses that $\bar{d} \in p(I)$. Since trivially $D_{p^{\downarrow}}, T \models p(\bar{x}), T^{\prime}$ contains the rule $p(\bar{x}) \rightarrow$ $A_{p(\bar{x})}(\bar{x})$. This implies that $A_{p(\bar{x})}(\bar{d}) \in I$.

Case 3: Otherwise. Then all obtained queries $p_{0}, p_{e}$ have less variables than $p$. We obtain a CQ $\widehat{p}$ from $p_{0}$ by doing the following, for every $e \in H^{\downarrow}$ :

- if $p_{0}$ and $p_{e}$ do not share any variable, then add the nullary atom $A_{p_{e}}$, and
- if $p_{0}$ and $p_{e}$ share a variable, then pick such a variable $x_{e}$, make it an answer variable in $p_{e}$, and add the unary atom $A_{p_{e}\left(x_{e}\right)}\left(x_{e}\right)$.

Observe that $h$ witnesses that $\bar{d} \in \widehat{p}(I)$ since $\bar{d} \in p_{0}(I)$ and, for all $e \in H^{\downarrow}$, we have:

- If $\widehat{p}$ contains $A_{p_{e}}$, then $h$ witnesses that ()$\in p_{e}\left(I^{\prime}\right)$, and thus, by induction, $A_{p_{e}} \in I$.
- If $\hat{p}$ contains $A_{p_{e}\left(x_{e}\right)}\left(x_{e}\right)$, then $h$ witnesses that $h\left(x_{e}\right) \in$ $p_{e}\left(I^{\prime}\right)$, and thus, by induction, $A_{p_{e}\left(x_{e}\right)}\left(h\left(x_{e}\right)\right) \in I$.

Moreover, it should be clear that $D_{\widehat{p} \downarrow}, T \models p(\bar{x})$, and thus we find the rule $\widehat{p}(\bar{x}) \rightarrow A_{p(\bar{x})}(\bar{x})$ in $T^{\prime}$, hence $A_{p(\bar{x})}(\bar{d}) \in I$.

This finishes the proof of Claim 1. Claim 1 immediately implies that $\vec{c} \notin q\left(I^{\prime}\right)$ since $A_{q(\bar{x})}(\bar{c}) \notin I$. It remains to verify the following.
Claim 2. $I^{\prime}$ is a model of $T$.
Proof of Claim 2. To see that $I^{\prime}$ is a model of $T$ let $\vartheta=$ $\phi(x, \bar{y}) \rightarrow \exists \bar{z} \psi(x, \bar{z})$ be a TGD in $T$ and suppose that $d \in$ $q_{\phi}\left(I^{\prime}\right)$, that is, there is a homomorphism $h$ from $q_{\phi}$ to $I^{\prime}$ with $h(x)=d$. We show that $d \in q_{\psi}\left(I^{\prime}\right)$. We distinguish cases.

Case 1: $d \in \operatorname{adom}(I)$. In this case, Claim 1 implies that $A_{q_{\phi}}(d) \in I$, and hence $q_{\phi}(x) \in t_{d}$. Since chase $T_{T}\left(t_{d}\right)$ is a model of both $q_{\phi}(x)$ and $\vartheta$, we have that $x \in q_{\psi}\left(\operatorname{chase}_{T}\left(t_{d}\right)\right)$. The construction of $I^{\prime}$ ensures that $x \in q_{\psi}\left(I^{\prime}\right)$.

Case 2: $d \notin \operatorname{adom}(I)$. Then $d$ is in the copy of chase ${ }_{T}\left(t_{e}\right)$, for some $e \in \operatorname{adom}(I)$. We obtain CQs $q_{1}, q_{2}$ from $q_{\phi}$ as follows:

- $q_{1}$ is the restriction of $q_{\phi}$ to all variables $y$ such that $h(y)$ is in the copy of chase ${ }_{T}\left(t_{e}\right)$.
- $q_{2}$ is obtained by starting from the remaining atoms and then identifying all variables shared with $q_{1}$. (Note that every such variable $y$ satisfies $h(y)=e$.) If there is none such variable, then $q_{2}$ is Boolean. Otherwise, the variable obtained in the identification process is the answer variable.

The homomorphism $h$ witnesses that $e \in q_{2}\left(I^{\prime}\right)$ if $q_{2}$ is unary and ()$\in q_{2}\left(I^{\prime}\right)$ otherwise. If $q_{2}$ is unary, Claim 1 yields that $A_{q_{2}(y)}(e) \in I$ and thus $q_{2}(x) \in t_{e}$. Otherwise, Claim 1 yields that $A_{q_{2}} \in I$ and thus $q_{2} \in t_{e}$. By definition of chase ${ }_{T}\left(t_{e}\right)$ we find a homomorphism $g$ from $q_{2}$ to chase ${ }_{T}\left(t_{e}\right)$ that maps the answer variable of $q_{2}$ (if any) to the constant corresponding to the free variable of $t_{e}$. Let $h^{\prime}$ be the copy of $h$ that maps $q_{1}$ to chase ${ }_{T}\left(t_{e}\right)$ (instead of the copy of chase ${ }_{T}\left(t_{e}\right)$ in $I^{\prime}$ ). But then $g \cup h^{\prime}$ is a homomorphism from $q_{\phi}$ to chase ${ }_{T}\left(t_{e}\right)$, and hence $d^{\prime} \in q_{\phi}\left(\operatorname{chase}_{T}\left(t_{e}\right)\right)$ where $d^{\prime}$ is the copy of $d$ in chase ${ }_{T}\left(t_{e}\right)$. Since chase $T_{T}\left(t_{e}\right)$ is a model of $\vartheta$, we have $d^{\prime} \in q_{\psi}\left(\operatorname{chase}_{T}\left(t_{e}\right)\right)$ and thus $d \in q_{\psi}\left(I^{\prime}\right)$. This finishes the proof of Claim 2.

Lemma 26. Let $T$ be a set of frontier-one TGDs of body width $k$. Then, $T^{\prime}$ consists of:

- at most exponentially many rules of type (i), and
- at most double exponentially many rules of type (ii).

Moreover, rules of type (i) have at most $k$ variables and rules of type (ii) have only one variable. $T^{\prime}$ can be computed in time triple exponential in $\|T\|$.

Proof. First note that there are at most exponentially many queries in body $\mathrm{CQ}^{+}(T)$. Indeed, by construction, there are only exponentially many queries in bodyCQ $(T)$, and each query has at most $k$ variables, $k$ the body width of $T$. These at most $k$ variables are now labeled with the fresh concept names $A_{\psi(\bar{x})}$ with $\psi(\bar{x})$ in bodyCQ $(T)$. It follows that there
are at most exponentially many queries in bodyCQ ${ }^{+}(T)$. Overall, there are at most exponentially many candidates for rules of type (i) and at most double exponentially many candidates for rules of type (ii) in $T^{\prime}$.

Also note that, for each query $q(\bar{x})$ that can occur in a rule body in (i) or (ii), the query $q^{\downarrow}$ is a $T$-type, and thus of size exponential in $\|T\|$. Moreover, note that the checks $D_{q^{\downarrow}}, T \models p(\bar{x})$ that have to be made in oder to decide whether a candidate rule is included in $T^{\prime}$ are instances of query evaluation w.r.t. frontier-one TGDs. Since query evaluation w.r.t. frontier-one TGDs is 2ExPTIME-complete (Baget et al. 2011), all these checks can be made in triple exponential time.

We are now in a position to describe the automaton $\mathfrak{A}_{3}$. Let $T_{2}^{\prime}$ be the monadic datalog program obtained from $T_{2}$. The automaton uses $T_{2}^{\prime}$ to verify the correctness of the labeling $\mu_{w}$ by visiting every node $w \in W$ and doing the following for every $c \in \operatorname{adom}\left(L_{0}(w)\right)$ and every $q(\bar{x}) \in \operatorname{bodyCQ}\left(T_{2}\right)$ :

1. if $q(x) \in \mu_{w}(c)$ is unary, then verify that $I_{W, L_{0}}, T_{2} \models$ $\mathcal{A}_{q(x)}\left([w]_{c}\right)$;
2. if $q \in \mu_{w}(c)$ is Boolean, then verify that $I_{W, L_{0}}, T_{2} \models \mathcal{A}_{q}$;
3. if $q(x) \notin \mu_{w}(c)$ is unary, then verify that $I_{W, L_{0}}, T_{2} \not \vDash$ $\mathcal{A}_{q(x)}\left([w]_{c}\right) ;$
4. if $q \notin \mu_{w}(c)$ is Boolean, then verify that $I_{W, L_{0}}, T_{2} \not \vDash \mathcal{A}_{q}$.

By Lemma 25, the automaton may use $T_{2}^{\prime}$ in place of $T_{2}$. For Points 1 and 2, the automaton guesses a derivation, as commonly used to define the semantics of datalog; for details, we refer to (Abiteboul, Hull, and Vianu 1995). For Points 3 and 4 , it needs to verify that there is no derivation, which is easy by dualizing the subautomaton for Points 1 and 2. We thus concentrate on Points 1 and 2.

To verify that $I_{W, L_{0}}, T_{2}^{\prime} \models A_{q(x)}\left([w]_{c}\right)$ (resp., $I_{W, L_{0}}, T_{2}^{\prime} \equiv A_{q}$ ), the automaton non-deterministically chooses a derivation of $A_{q(\bar{x})}\left([w]_{c}\right)$ (resp., $\left.A_{q}\right)$ in $I_{W, L_{0}}$ under $T_{2}^{\prime}$. For doing so, it uses states from $\operatorname{cls}\left(T_{2}^{\prime \prime}, \Delta\right)$ where $T_{2}^{\prime \prime}$ is the fragment of $T_{2}^{\prime}$ consisting only of the rules of type (i) and where cls defined as in the description of $\mathfrak{A}_{2}$. It starts in state $A_{q(\bar{x})}(c)$ (resp., $A_{q}$ ). (Recall that in world $w$, the element $[w]_{c}$ of $I_{W, L_{0}}$ is represented by constant $c$.)

Intuitively, if the automaton visits $w \in W$ in a state $q(\bar{c})$, then this represents the obligation to find a derivation for $q(\widehat{c})$ in $I_{W, L_{0}}$ under $T_{2}^{\prime}$, where $\widehat{c}=[w]_{c}$ if $\bar{c}=c$ consists of a single constant and $\widehat{c}$ is empty otherwise. We distinguish cases depending on the shape of $q(\bar{c})$.

Case (1) If $q(\bar{c})$ is of shape $A_{p(\bar{x})}(\bar{c})$, then the automaton non-deterministically does one of the following:

- non-deterministically choose a rule $q^{\prime}(\bar{x}) \rightarrow A_{p(\bar{x})}(\bar{x})$ of type (i) in $T_{2}^{\prime}$ and proceed in state $q^{\prime}(\bar{c})$, or
- non-deterministically choose a rule $q^{\prime}(x) \rightarrow A_{p(\bar{x})}(\bar{x})$ of type (ii) in $T_{2}^{\prime}$ and:
- if $\bar{c}=c$ is a single constant, then (using alternation) the automaton proceeds in states $A_{p^{\prime}}(c)$, for all unary atoms $A_{p^{\prime}}(x)$ that occur in $q^{\prime}$, and in $A_{p^{\prime}}$, for all nullary atoms $A_{p^{\prime}}$ that occur in $q^{\prime}$;
- if $\bar{c}$ is empty, the automaton navigates (nondeterministically) to some $w \in W$, picks a constant $c \in \operatorname{adom}\left(L_{0}(w)\right)$ and proceeds as in the previous item (again using alternation).

Case (2) If $q(\bar{c})$ is not of shape $A_{p(\bar{x})}(\bar{c})$, then the automaton non-deterministically chooses an adom $(B(w))$-splitting $q_{0}\left(\bar{c}_{0}\right), q_{1}\left(\bar{c}_{1}\right), \ldots, q_{n}\left(\bar{c}_{n}\right)$ of $q(\widehat{c})$. It then obtains $q_{0}^{\prime}\left(\bar{c}_{0}\right)$ from $q_{0}\left(\bar{c}_{0}\right)$ by dropping all atoms of the form $A_{p(x)}(x)$ and $A_{p}$ and proceeds to verify that $q_{0}^{\prime}(\bar{c})$ (viewed as a database) is contained in $L_{0}(w)$. Additionally, for each $i$ with $1 \leq i \leq n$ :

- if $q_{i}\left(\bar{c}_{i}\right)$ is unary with $\bar{c}_{i}=c$, then the 2ATA sends a copy in state $q_{i}\left(\bar{c}_{i}\right)$ to some $v \in[w]_{c}$;
- if $q_{i}\left(\bar{c}_{i}\right)$ is Boolean, then the 2ATA sends a copy in state $q_{i}\left(\bar{c}_{i}\right)$ to some $v \in W$.
Finally, the dropped atoms are processed as follows.
- if $A_{p}(c)$ is a unary atom in $q_{0}\left(\bar{c}_{0}\right)$, the automaton sends a copy in state $A_{p}(c)$ to $w$;
- if $A_{p}$ is a Boolean atom in $q_{0}\left(\bar{c}_{0}\right)$, the automaton sends a copy in state $A_{p}$ to $w$.
Using the priorities, we can make sure that the process terminates. Combining Lemma 24 and Lemma 26, one can verify that $\operatorname{cls}\left(T_{2}^{\prime \prime}, \Delta\right)$ (recall that $T_{2}^{\prime \prime}$ is the subset of $T_{2}^{\prime}$ consisting only of rules of type (i)) contains exponentially many queries and thus $\mathfrak{A}_{3}$ uses at most exponentially many states. By Lemma $26, \mathfrak{A}_{3}$ can be computed in triple exponential time.

Automaton $\mathfrak{A}_{4}$. To construct automaton $\mathfrak{A}_{4}$, first note that $\operatorname{chase}_{T_{2}}\left(I_{W, L_{1}}\right) \nrightarrow I_{W, L_{1}}$ if for some $w \in W$ and some $c \in \operatorname{adom}\left(L_{0}(w)\right)$, there is no $\Sigma_{Q}$-homomorphism $h$ from chase $T_{2}\left(\mu_{w}(c)\right)$ to $I_{W, L_{1}}$ with $h(x)=[w]_{c}$. It thus suffices to check the latter.

For convenience, we concentrate on the complement and build an automaton that is capable of verifying that, given $w \in W$ and $c \in \operatorname{adom}\left(L_{0}(w)\right)$,
$(\dagger)$ there is a $\Sigma_{Q^{-}}$-homomorphism $h$ from chase $T_{2}\left(\mu_{w}(c)\right)$ to $I_{W, L_{1}}$ with $h(x)=[w]_{c}$.
The automaton $\mathfrak{A}_{4}$ then non-deterministically guesses a $w \in W$ and a $c \in \operatorname{adom}\left(L_{0}(w)\right)$ and uses the complement/dualization of the automaton that verifies ( $\dagger$ ).

We rely on the representation of chase $T_{2}\left(\mu_{w}(c)\right)$ as a (rooted!) $\mu_{w}(c)$-proper $T_{2}$-labeled instance tree $\mathcal{T}=$ ( $V, E, B, \mu$ ), see the discussion that preceeds Lemma 9. It is important to realize that the instance $B(v)$ at some node $v \in V$ together with the labeling $\mu_{v}$ of adom $(B(v))$ with $T_{2}$ types completely determine the successors $v^{\prime}$ of $v$ and their labeling $B\left(v^{\prime}\right)$ and $\mu_{v^{\prime}}$. More precisely, the type $\mu(c)$ of a constant $c \in \operatorname{adom}(B(v))$ determines all successors $v^{\prime}$ of $v$ that have $c$ in their domain adom $\left(B\left(v^{\prime}\right)\right)$. Moreover, $v$ has a successor with label $B\left(v^{\prime}\right), \mu_{v^{\prime}}$ iff $\mu_{v}(c), T_{2} \models q_{\left(B\left(v^{\prime}\right), \mu_{v^{\prime}}\right)}^{c}(x)$ (c.f. Condition 2 of properness). Since query evaluation w.r.t. frontier-one TGDs is 2ExpTimE-complete (Baget et al. 2011) and the size of the input is exponential in $\|T\|$, this check is possible in triple exponential time. Hence, all possible successors can be computed in triple exponential time.

For achieving $(\dagger)$, the automaton proceeds as follows. It memorizes (in its states) the database $B(v)$ at the current node $v \in V$ of $\mathcal{T}$ and the type labeling $\mu_{v}$. It then guesses a partial $\Sigma_{Q}$-homomorphism from $B(v)$ to the currently visited node $w \in W$. Each variable that is mapped to the current state gives rise to successors $v^{\prime}$ of $v$ with associated $B\left(v^{\prime}\right)$ and $\mu_{v^{\prime}}$ labelings, and the automaton spawns copies of itself that generate these successor (as states), moves to neighboring nodes in the input tree, and proceeds there. As in the encoding of $\mathcal{T}$ as a labeled tree, it remaps the constants in the instances $B(\cdot)$ to ensure that only finitely many states are used; this is possible since every instance $B(v)$ is isomorphic to the head of some TGD in $T_{2}$.
More formally, the automaton uses as states pairs $\langle q(\bar{c}), \mu\rangle$ where:

- $q(\bar{c})$ is an element of $\operatorname{cls}\left(T_{2}, \Delta\right)$, and
- $\mu$ assigns a $T_{2}$-type to every variable in $q(\bar{c})$.

When the automaton visits a node $w \in W$ in state $\langle q(\bar{c}), \mu\rangle$, this represents the obligation to verify that there is a $\Sigma_{Q^{-}}$ homomorphism $h$ from $q$ to $I_{W, L_{1}}$ such that:

- for every constant $c \in \bar{c}, h(c)=[w]_{c}$, and
- for every variable $x$ in $q$, there is a $\Sigma_{Q}$-homomorphism $g$ from chase $T_{2}(\mu(x))$ to $I_{W, L_{1}}$ with $g(x)=h(x)$.
For doing so, the automaton non-deterministically chooses an adom $(B(w))$-splitting $q_{0}\left(\bar{c}_{0}\right), \ldots, q_{n}\left(\bar{c}_{n}\right)$ of $q(\bar{c})$ and proceeds as follows:
- it verifies that the $\Sigma_{Q}$-restriction of $q_{0}\left(\bar{c}_{0}\right)$ is a subset of $L_{1}(w)$;
- for every $i$ with $1 \leq i \leq n$, we let $\mu_{i}$ be the restriction of $\mu$ to the variables in $q_{i}$, then
- if $q_{i}\left(\bar{c}_{i}\right)$ is unary with $\bar{c}_{i}=c$, then the 2ATA sends a copy in state $\left\langle q_{i}\left(\bar{c}_{i}\right), \mu_{i}\right\rangle$ to some $v \in[w]_{c}$.
- if $q_{i}\left(\bar{c}_{i}\right)$ is Boolean, then the 2ATA sends a copy in state $\left\langle q_{i}\left(\bar{c}_{i}\right), \mu_{i}\right\rangle$ to some $v \in W$.
- for every variable $x$ in $q$ that was replaced by a constant $d$ in the splitting, consider any node $v$ in $\mathcal{T}$ and any $e \in$ adom $(B(v))$ with $\mu_{v}(e)=\mu(x),{ }^{9}$ and all successors $v^{\prime}$ of $v$ with adom $(B(v)) \cap \operatorname{adom}\left(B\left(v^{\prime}\right)\right) \subseteq\{e\}$. Let $q^{\prime}$ be $B\left(v^{\prime}\right)$ viewed as a CQ which is Boolean with $e$ viewed as the answer variable if $e \in \operatorname{adom}\left(B\left(v^{\prime}\right)\right)$ and Boolean otherwise. Further let $\mu^{\prime}=\mu_{v^{\prime}}$. The automaton does the following:
- if $q^{\prime}$ is unary, then it sends a copy in state $\left\langle q^{\prime}(d), \mu^{\prime}\right\rangle$ to some $w^{\prime} \in[w]_{d}$;
- if $q^{\prime}$ is Boolean, then it sends a copy in state $\left\langle q^{\prime}, \mu^{\prime}\right\rangle$ to some $w^{\prime} \in W$.
Overall, one can verify that the number of states is at most double exponential in $\left\|T_{2}\right\|$. There are doubly exponentially many types and, by Lemma 24, the size of $\operatorname{cls}\left(T_{2}, \Delta\right)$ is bounded exponentially in the size of $\left\|T_{2}\right\|$. Since all queries in $\operatorname{cls}\left(T_{2}, \Delta\right)$ have at most $\left\|T_{2}\right\|$ variables, the triple exponential bound follows. As argued, the automaton can be computed in time triple exponential in $\left\|T_{2}\right\|$.

[^8]
## E. 3 Upper Bounds for CQ-Conservativity

We actually work with a refinement of the characterization given in Theorem 9; its proof is based on Lemma 8. The formulation of this refinement is somewhat more technical than the formulation of Theorem 9, and in fact we decided to go in these two steps for didactic reasons.
Theorem 11. Let $T_{1}$ and $T_{2}$ be sets of frontier-one TGDs, $\Sigma_{D}$ and $\Sigma_{Q}$ schemas, $k$ the body width of $T_{1}$, and $\ell$ the head width of $T_{1}$. Then $T_{1} \models{ }_{\Sigma_{D}, \Sigma_{Q}}^{C Q} T_{2}$ iff for all tree-like $\Sigma_{D^{-}}$ databases $D$ of width at most $k$ and all tree-like models I of $T_{1}$ and $D$ of width $\max (k, \ell)$, the following holds:

1. chase $\left.T_{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow_{\Sigma_{Q}} I$;
2. for every labeled $\Sigma_{Q}$-head fragment $A=(F, \mu)$ of $T_{2}$ with chase $T_{2}(D) \models q_{A}$, one of the following holds:
(a) chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow \Sigma_{Q} I$;
(b) chase $\left.T_{T_{2}}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow{ }_{\Sigma_{Q}} \lim _{\text {chase }}^{T_{1}}\left(\operatorname{tp}_{T_{1}}(I, c)\right)$ for some $c \in \operatorname{adom}(D)$.
Proof. It suffices to show that for every tree-like $\Sigma_{D^{-}}$ database $D$ of width $k$, Conditions 1 and 2 of Theorem 9 are satisfied if and only if for all tree-like models $I$ of $T_{1}$ and $D$ of width $\max (k, \ell)$, Conditions 1 and 2 above are satisfied.

First assume that for all tree-like models $I$ of $T_{1}$ and $D$ of width $\max (k, \ell)$, Conditions 1 and 2 above are satisfied. Since chase $T_{1}(D)$ is such a model, Condition 1 of Theorem 9 is also satisfied. Now for Condition 2. By Lemma 8, for all maximally $\Sigma_{Q^{\prime}}$-connected components $J$ of chase $T_{T_{2}}(D) \backslash$ chase $\left.T_{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$, Condition 2(a) or 2(b) above is satisfied when chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {on }}$ is replaced by $J$. In the former case, also Condition 2(a) of Theorem 9 is satisfied. In the latter case, it follows that $J \rightarrow \lim _{\Sigma_{Q}}$ chase $T_{1}(D)$. One can then show exactly as in the proof of Theorem 9 that either Condition 2(a) or 2(b) of that theorem is satisfied.

Conversely, suppose that Conditions 1 and 2 of Theorem 9 are satisfied for $D$. Since chase $T_{1}(D) \rightarrow I$ for every model $I$ of $T_{1}$ and $D$, Condition 1 of Theorem 9 implies that for all tree-like models $I$ of $T_{1}$ and $D$ of width $\max (k, \ell)$, Condition 1 above is satisfied. It remains to argue that Condition 2 above is satisfied. Assume to the contrary that is is not. Then there is some tree-like model $I$ of $T_{1}$ and $D$ of width $\max (k, \ell)$ and some labeled $\Sigma_{Q}$-head fragment $A=(F, \mu)$ of $T_{2}$ such that both 2(a) and 2(b) above are violated. Since chase $T_{T_{1}}(D) \rightarrow I$, these conditions are still violated when $I$ is replaced by chase $T_{T_{1}}(D)$.

We distinguish the following cases:

- chase $\left._{T_{2}}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {on }} \nrightarrow$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$.

Then chase $\left._{T_{2}}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {on }}$ is an induced subinstance of a maximally $\Sigma_{Q}$-connected component $I$ of chase $T_{2}(D) \backslash$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$. Thus, chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \quad \nrightarrow \Sigma_{Q} \quad$ chase $_{T_{1}}(D) \quad$ implies $I \rightarrow_{\Sigma_{Q}}$ chase $T_{1}(D)$ and Condition 2(a) of Theorem 9 is not satisfied. Moreover, chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \nrightarrow_{\Sigma_{Q}}^{\lim }$ $\operatorname{chase}_{T_{1}}\left(\operatorname{tp}_{T_{1}}\left(\operatorname{chase}_{T_{1}}(D), c\right)\right)$ for all $c \in \operatorname{adom}(D)$ implies $I \nrightarrow \sum_{\Sigma_{Q}}$ chase $\left._{T_{1}}(D)\right|_{c} ^{\downarrow}$, for all $c \in \operatorname{adom}(D)$. This is because chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }}$ is a subinstance of $I$
and, due to Lemma 7, chase $\left.T_{1}(D)\right|_{c} ^{\downarrow}$ is a subinstance of chase $T_{1}\left(\operatorname{tp}_{T_{1}}\left(\operatorname{chase}_{T_{1}}(D), c\right)\right)$. Thus, both Condition 2(a) and 2(b) of Theorem 9 are violated, a contradiction.

- chase $\left.T_{T_{2}}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow$ chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }}$.

Then chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \quad \nrightarrow \Sigma_{Q} \quad$ chase $_{T_{1}}(D)$ implies chase $\left._{T_{2}}(D)\right|_{\Sigma_{Q}} ^{\text {con }} \nrightarrow_{\Sigma_{Q}}$ chase $_{T_{1}}(D)$. Hence, Condition 1 of Theorem 9 is not satisfied, which is again a contradiction.

Let $T_{1}, T_{2}, \Sigma_{D}, \Sigma_{Q}$ be given. We may again assume without loss of generality that all symbols from $\Sigma_{D}$ and $\Sigma_{Q}$ occur in $T_{1}$. Let $k$ and $\ell$ be the body and head width of $T_{1}$. It suffices to devise a 2 ATA $\mathfrak{B}$ such that
$\left(*_{\mathfrak{B}}\right) \mathfrak{B}$ accepts all tree-like instances $I$ of width $\max (k, \ell)$ that are a model of $T_{1}$ and of some tree-like $\Sigma_{Q^{-}}$-database $D$ of width $k$ such that Condition 1 and Condition 2 of Theorem 11 are violated.

In order to represent tree-like instances of bounded width as the input to 2ATAs, we use exactly the same encoding of infinite instances as for hom-conservativity, and in fact, the constructed automata run over the same alphabet $\Theta=$ $\Theta_{0} \times \Theta_{0} \times \Theta_{1}$. Recall that an input tree over this alphabet represents a $\Sigma_{D}$-database $D$ in the first component, a model $I$ of $T_{1}$ and $D$ in the second component, and the chase of $D$ with $T_{2}$, restricted to adom $(D)$, in the last component.

The desired 2ATA $\mathfrak{B}$ is constructed as the intersection of 2ATAs $\mathfrak{B}_{0}, \mathfrak{B}_{1}, \mathfrak{B}_{2}, \mathfrak{B}_{3}$, and $\mathfrak{B}$ ' where $\mathfrak{B}$ ' in turn is the union of 2ATAs $\mathfrak{B}_{4}$ and $\mathfrak{B}_{5}$, all of them provided by the following lemma.
Lemma 27. There are $2 A T A s \mathfrak{B}_{0}, \mathfrak{B}_{1}, \mathfrak{B}_{2}, \mathfrak{B}_{3}, \mathfrak{B}_{4}$ such that:

- $\mathfrak{B}_{0}$ accepts $(W, L)$ iff it is well-typed and $\left(W, L_{0}\right)$ and $\left(W, L_{1}\right)$ are well-formed;
- $\mathfrak{B}_{1}$ accepts $(W, L)$ iff $I_{W, L_{0}}$ is a $\Sigma_{D}$-database of width $k$;
- $\mathfrak{B}_{2}$ accepts $(W, L)$ iff $I_{W, L_{1}}$ is a model of $I_{W, L_{0}}$ and $T_{1}$;
- $\mathfrak{B}_{3}$ accepts $(W, L)$ iff for every $w \in W$ and every $c \in$ $\operatorname{adom}\left(L_{0}(w)\right)$,

$$
\mu_{w}(c)=\operatorname{tp}_{T_{2}}\left(\operatorname{chase}_{T_{2}}\left(I_{W, L_{0}}\right),[w]_{c}\right) .
$$

- $\mathfrak{B}_{4}$ accepts $(W, L)$ iff Condition 1 of Theorem 11 is violated; with ' $I$ ' replaced with ' $I_{W, L_{1}}$ ' is violated;
- $\mathfrak{B}_{5}$ accepts $(W, L)$ iff Condition 2 of Theorem 11 with ' $I$ ' and ' $D$ ' replaced with ' $I_{W, L_{1}}$ ' and ' $I_{W, L_{0}}$ ', respectively, is violated;

The number of states

- of $\mathfrak{B}_{0}$ is exponential in $\left\|T_{1}\right\|$ (and independent of $T_{2}$ );
- of $\mathfrak{B}_{1}$ does not depend on the input;
- of $\mathfrak{B}_{2}$ is exponential in $\left\|T_{1}\right\|$ (and independent of $T_{2}$ );
- of $\mathfrak{B}_{3}$ is exponential in $\left\|T_{2}\right\|$ (and independent of $T_{1}$ );
- of $\mathfrak{B}_{4}$ is exponential in $\left\|T_{2}\right\|$ (and independent of $T_{1}$ );
- of $\mathfrak{B}_{5}$ is double exponential in both $\left\|T_{1}\right\|$ and $\left\|T_{2}\right\|$.

All automata can be constructed in time triple exponential in $\left\|T_{1}\right\|+\left\|T_{2}\right\|$ and have maximum priority one.

It can be verified that $\mathfrak{B}$ satisfies $\left(*_{\mathfrak{B}}\right)$ and thus $L(\mathfrak{B}) \neq \emptyset$ iff $T_{1} \not \vDash_{\Sigma_{D}, \Sigma_{Q}}^{\mathrm{CQ}} T_{2}$. The rest of this section is devoted to proving Lemma 27 . Automata $\mathfrak{B}_{0}, \mathfrak{B}_{1}, \mathfrak{B}_{2}, \mathfrak{B}_{3}$ are exactly as $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \mathfrak{A}_{2}, \mathfrak{A}_{3}$ in Lemma 23, so we concentrate on $\mathfrak{B}_{4}$ and $\mathfrak{B}_{5}$.
Automaton $\mathfrak{B}_{4}$. The task of $\mathfrak{B}_{4}$ is to verify chase $\left._{T_{2}}\left(I_{W, L_{0}}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \not \overbrace{\Sigma_{Q}} I_{W, L_{1}}$. Note that this is very similar to what is achieved by automaton $\mathfrak{A}_{4}$ from Lemma 23, which verifies that chase $T_{2}\left(I_{W, L_{0}}\right) \nrightarrow_{\Sigma_{Q}} I_{W, L_{1}}$. In fact, it can be solved using essentially the same construction and thus has the same size and can be computed in the same time as $\mathfrak{A}_{4}$. More precisely, the gist of the construction of $\mathfrak{A}_{4}$ is to find an automaton that verifies, given $w \in W$ and $c \in \operatorname{adom}\left(L_{0}(w)\right)$, that there is a $\Sigma_{Q}$-homomorphism $h$ from chase $T_{2}\left(\mu_{w}(c)\right)$ to $I_{W, L_{1}}$ with $h(x)=[w]_{c}$. This is done by constructing chase $T_{2}\left(\mu_{w}(c)\right)$ 'in the states'. $\mathfrak{B}_{4}$ does exactly the same, but disregards $\Sigma_{Q}$-disconnected parts of chase $T_{2}\left(\mu_{w}(c)\right)$.
Automaton $\mathfrak{B}_{5}$. The task of $\mathfrak{B}_{5}$ is to verify that for all $\Sigma_{Q}$-labeled head fragments $A=(F, \mu)$ of $T_{2}$ such that chase $_{T_{2}}\left(I_{W, L_{0}}\right) \mid=q_{A}$, the following hold:

1. chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \nrightarrow_{\Sigma_{Q}} I_{W, L_{1}}$;
2. chase $\left.T_{T_{2}}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \nrightarrow \mathcal{L i m}_{\Sigma_{Q}}^{\lim } \operatorname{chase}_{T_{1}}\left(\operatorname{tp}_{T_{1}}\left(I_{W, L_{0}},[w]_{c}\right)\right)$ for all $[w]_{c} \in \operatorname{adom}\left(I_{W, L_{0}}\right)$.
Note that the condition chase $T_{T_{2}}\left(I_{W, L_{0}}\right) \models q_{A}$ is satisfied iff for some $[w]_{c} \in \operatorname{adom}\left(I_{W, L_{0}}\right)$, the type $t=$ $\operatorname{tp}_{T_{2}}\left(\right.$ chase $\left._{T_{2}}\left(I_{W, L_{0}},[w]_{c}\right)\right)$ satisfies $t, T_{2} \models q_{A}$. Since we are considering the intersection with $\mathfrak{B}_{3}$, we can assume that $\mu_{w}(c)=\operatorname{tp}_{T_{2}}\left(\operatorname{chase}_{T_{2}}\left(I_{W, L_{0}},[w]_{c}\right)\right)$ and thus, the latter condition is satisfied iff $\mu_{w}(c), T_{2}=q_{A}$ for some $w \in W$ and $c \in \operatorname{adom}\left(L_{0}(w)\right)$.

Thus, the automaton can identify all relevant labeled $\Sigma_{Q^{-}}$ head fragments $A=(F, \mu)$ of $T_{2}$ by visiting all $w \in$ $W$, all $c \in \operatorname{adom}\left(L_{0}(w)\right)$, and testing for each whether $\mu_{w}(c), T_{2} \models q_{A}$ is satisfied. The result of all possible such tests can be computed in time triple exponential in $\left\|T_{2}\right\|$ already during the construction of $\mathfrak{B}_{5}$, since query evaluation w.r.t. frontier-one TGDs is 2ExPTIME-complete (Baget et al. 2011).

If the test $\mu_{w}(c), T_{2} \models q_{A}$ is succesfull, the automaton has to verify Points 1 and 2 above for chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma_{Q}}{ }^{\text {on }}$. There is once more a lot of similarity between Point 1 and what is achieved by automaton $\mathfrak{A}_{4}$ from Lemma 23. Constructing an automaton that verifies Point 1 is thus another variation of the construction of $\mathfrak{A}_{4}$, the main difference being that instead of chasing a single type we chase $D_{A}$ with $T_{2}$ in the states of the automaton. In particular, the automaton starts in state $\left\langle q_{F}, \mu\right\rangle$ (note that $q_{F} \in \operatorname{cls}\left(T_{2}, \Delta\right)$ ).

For Point 2, we invoke Theorem 10 for every labeled $\Sigma_{Q}$-head fragment $A=(F, \mu)$ of $T_{2}$ identified above. The automaton memorizes $A$ in its states and visits (again) all $w \in W$, and all $c \in \operatorname{adom}\left(I_{W, L_{0}}\right)$ in order to verify that

$$
\operatorname{chase}_{T_{2}}\left(D_{A}\right) \mid \Sigma_{\Sigma_{Q}}^{\text {con }} \nrightarrow \Sigma_{\Sigma_{Q}}^{\lim } \operatorname{chase}_{T_{1}}\left(\operatorname{tp}_{T_{1}}\left(I_{W, L_{1}},[w]_{c}\right)\right)
$$

Recall that these tests have been precomputed via Theorem 10. Hence, all the automaton has to do at this point
is to guess ${ }^{10}$ the $T_{1}$-type $t$ of $[w]_{c}$ in $I_{W, L_{1}}$, verify that it is the correct type using the monadic datalog rewriting $T_{1}^{\prime}$ of $T_{1}$ as in automaton $\mathfrak{A}_{3}$ of Lemma 23, and lookup the result of chase $\left.T_{T_{2}}\left(D_{A}\right)\right|_{\Sigma_{Q}} ^{\text {con }} \rightarrow \sum_{\Sigma_{Q}}$ chase $T_{T_{1}}(t)$ in the precomputated table.

Overall, the resulting automaton is of size double exponential in both $\left\|T_{2}\right\|$ (for Point 1) and $\left\|T_{1}\right\|$ (for guessing a $T_{1}$-type and verifying it in Point 2). It can be computed in triple exponential time. In particular, the computation of the lookup table for Point 2 is possible in triple exponential time, by Theorem 10 .

## E. 4 Proof of Theorem 10

We prove Theorem 10 via the characterization of bounded homomorphisms in terms of standard (unbounded) homomorphisms given by Lemma 9. Let two sets of frontier-one TGDs $T_{1}, T_{2}$, a schema $\Sigma$, a labeled $\Sigma$-head fragment $A=(D, \mu)$ of $T_{2}$, and a $T_{1}$-type $\widehat{t}$ be given. It suffices to devise a 2ATA $\mathfrak{C}$ such that:
$\left(*_{\mathfrak{C}}\right) \mathfrak{C}$ accepts all encodings of $\widehat{t}$-proper $T_{1}$-labeled instance trees $\mathcal{T}$ of width $m$ such that chase $\left.T_{T_{2}}\left(D_{A}\right)\right|_{\Sigma} ^{\text {con }} \rightarrow I_{\mathcal{T}}$.
Here we need to work with possibly non-rooted instance trees, and thus we slightly modify our encoding of instance trees as input to the 2ATA. The input alphabet is $\Theta^{\prime}=$ $\Theta_{0} \times\{0,1\} \times \Theta_{1}^{\prime}$ where $\Theta_{0}$ is defined as above and $\Theta_{1}^{\prime}$ is the set of all mappings $\mu: \Delta^{\prime} \rightarrow \operatorname{TP}\left(T_{1}\right)$ for some $\Delta^{\prime} \subseteq \Delta$ with $\left|\Delta^{\prime}\right| \leq m$. Note that, in contrast to the alphabet $\Theta_{1}$ employed before, here we use $T_{1}$-types in place of $T_{2}$-types. For a $\Theta^{\prime}$ labeled tree $(W, L)$ and $w \in W$ with $L(w)=(B, i, \mu)$, we use $L_{0}(w)$ to denote $B, i_{w}$ to denote $i$, and $\mu_{w}$ to denote $\mu$. Our aim is that every $\Theta^{\prime}$-labeled tree $(W, L)$ represents a $T_{1}$ labeled instance tree $\mathcal{T}=(V, E, B, \mu)$ where the $(V, E, B)$ part is represented by $\left(W, L_{0}\right)$ as before and the $\mu$-part is represented by $\left(W, \mu_{w}\right)$.

The additional labeling with the $0 / 1$-marker $i_{w}$ is necessary because $T_{1}$-labeled instance trees need not have a root and thus may contain an infinite predecessor path. This path will be represented as a downward path in the (rooted!) $\Theta^{\prime}$ labeled trees, but marked with a 1-marker for identification purposes.

A $\Theta^{\prime}$-labeled tree $(W, L)$ is well-typed if, for all $w \in W$, the domain of $\mu_{w}$ is adom $(L(w)$ ), and for all successors $v$ of $w$, and all $d \in \operatorname{adom}\left(L_{0}(w)\right) \cap \operatorname{adom}\left(L_{0}(v)\right)$, we have $\mu_{w}(d)=\mu_{v}(d)$. It is well-formed if $\left(W, L_{0}\right)$ satisfies the two conditions of well-formedness for $\Theta_{0}$-labeled trees from the automata constructions above plus the following additional condition:

- there is a finite or infinite (and non-empty) path $\Pi=$ $w_{0}, w_{1}, w_{2}, \ldots$ in $W$ that starts at the root such that all nodes $w \in W$ with $i_{w}=1$ lie on this path.
Every well-typed and well-formed $\Theta^{\prime}$-labeled tree $(W, L)$ gives rise to a $\Sigma$-instance tree $(V, E, B)$ and an associated instance $I_{W, L}$ as follows.
- the set of nodes $V$ is $W$;
- the set of edges $E$ is defined as follows:

[^9]- if $w^{\prime}$ is a successor of $w$ and $i_{w^{\prime}}=0$, then $\left(w, w^{\prime}\right) \in E$;
- if $w^{\prime}$ is a successor of $w$ and $i_{w^{\prime}}=1$, then (both $w, w^{\prime}$ lie on the path $\Pi$ ) and $\left(w^{\prime}, w\right) \in E$.
That is, the successor relation on the path $\Pi$ becomes the predecessor relation; the remaining successor relations stay the same. The definition of the labeling $B$ and consequently also of $I_{W, L}$ is exactly as in the preceeding encoding. Setting $\mu=\bigcup_{w \in W} \mu_{w}$, this extends to a $T_{1}$-labeled instance tree $\mathcal{T}_{W, L}=(V, E, B, \mu)$.

Conversely, for every $T_{1}$-labeled instance tree $\mathcal{T}=$ $(V, E, B, \mu)$ of width at most $m$, we can find a $\Theta^{\prime}$-labeled tree ( $W, L$ ) that represents $\mathcal{T}$ in the sense that $\mathcal{T}_{W, L}$ is isomorphic to $\mathcal{T}$. Since $\Delta$ is of size $2 m$, it is possible to select a mapping $\pi: \operatorname{adom}\left(I_{\mathcal{T}}\right) \rightarrow \Delta$ such that for each edge $(v, w) \in E$ and all constants $c, c^{\prime} \in \operatorname{adom}(B(w)) \cup \operatorname{adom}(B(v))$, we have $\pi(c)=\pi\left(c^{\prime}\right)$ iff $c=c^{\prime}$. Define the $\Theta^{\prime}$-labeled tree $(W, L)$ as follows:

- If $(V, E)$ has a root, then $W=(V, E)$. Otherwise, there is an infinite path $v_{0}, v_{1}, \ldots$ in $(V, E)$ such that $v_{i+1}$ is a predecessor of $v_{i}$, for all $i \geq 0$. We make this path the infinite successor path $\Pi$ starting from $v_{0}$ (and leave all other successor relations untouched).
- For all $w \in W, L(w)=\left(B(w), 0, \mu_{w}\right)$ if $w \notin \Pi$ and $B_{w}=\left(B(w), 1, \mu_{w}\right)$, if $w \in \Pi$.
Clearly, $(W, L)$ satisfies the desired properties.
The automaton $\mathfrak{C}$ is the intersection of the three 2ATAs $\mathfrak{C}_{0}, \mathfrak{C}_{1}, \mathfrak{C}_{2}$ provided by the following lemma.
Lemma 28. There are 2ATAs $\mathfrak{C}_{0}, \mathfrak{C}_{1}, \mathfrak{C}_{2}$ such that:
- $\mathfrak{C}_{0}$ accepts $(W, L)$ iff $(W, L)$ is well-typed and wellformed;
$-\mathfrak{C}_{1}$ accepts $(W, L)$ iff the $T_{1}$-labeled instance tree $\mathcal{T}_{W, L}$ is $\widehat{t}$-proper;
$-\mathfrak{C}_{2}$ accepts $(W, L)$ iff chase $\left.T_{2}\left(D_{2}\right)\right|_{\Sigma} ^{\text {con }} \rightarrow I_{W, L}$.
The number of states of
- $\mathfrak{C}_{0}$ is exponential in $\left\|T_{1}\right\|$ (and independent of $T_{2}$ );
$-\mathfrak{C}_{1}$ is linear in $\left\|T_{1}\right\|$ ( and independent of $T_{2}$ );
$-\mathfrak{C}_{2}$ is double exponential in $\left\|T_{2}\right\|$ (and independent of $T_{1}$ ).
All automata can be constructed in time triple exponential in $\left\|T_{1}\right\|+\left\|T_{2}\right\|$ and have maximum priority one.

It can be verified that $\mathfrak{C}$ satisfies $\left(*_{\mathfrak{C}}\right)$, and thus $L(\mathfrak{C}) \neq \emptyset$
iff there is some $\widehat{t}$-proper $T_{1}$-labeled instance tree $\mathcal{T}$ with
chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma} ^{\text {con }} \rightarrow I_{\mathcal{T}}$. The automaton $\mathfrak{C}_{0}$ is straightforward.

Automaton $\mathfrak{C}_{1}$. The automaton simply visits every node $w \in W$ in the input tree $(W, L)$ and verifies locally at each node that Conditions 1 and 2 of properness are satisfied. For Condition 1 , we have to check whether the labeling $L_{1}(w)$ of the current node $w$ satisfies Condition 1 of Properness. Condition 1(a) is a simple lookup and for Condition 1(b), one has to decide (during the construction of the automaton) whether $\widehat{t}, T_{1} \models q_{\left(B(v), \mu_{v}\right)}$ for all possible labelings $(B(v), \mu(v))$. This is possible in time triple exponential in $\left\|T_{1}\right\|$, since query evaluation w.r.t. frontier-one TGDs is 2EX-PTIME-complete (Baget et al. 2011). For Condition 2 of
properness, the automaton needs to memorize the constant $c$ (if any) that is shared between neighboring nodes in $W$. The condition $\mu_{u}(c), T_{1} \models q_{\left(B(w), \mu_{v}\right)}^{c}(x)$ that is part of Condition 2 of properness can then be checked, again in triple exponential time in $\left\|T_{1}\right\|$. Thus, $\mathfrak{C}_{1}$ can be computed in triple exponential time.

Automaton $\mathfrak{C}_{2}$. The check chase $\left.T_{2}\left(D_{A}\right)\right|_{\Sigma} ^{\text {con }} \rightarrow I_{W, L}$ is similar to what $\mathfrak{A}_{4}$ in Lemma 23 achieves and, in fact, exactly what the sub-automaton for Point 1 of $\mathfrak{B}_{5}$ in Lemma 27 achieves. We repeat it here for the sake of convenience. The 2ATA $\mathfrak{C}_{2}$ behaves exactly as $\mathfrak{A}_{4}$, but starts in state $\left\langle q_{F}, \mu\right\rangle$. Recall that $A=(F, \mu)$, that $q_{F}$ is $F$ viewed as Boolean CQ, and that $q_{F} \in \operatorname{cls}\left(T_{2}, \Delta\right)$ and so $\left\langle q_{F}, \mu\right\rangle$ is a state in $\mathfrak{A}_{4}$.


[^0]:    ${ }^{1} \mathrm{~A}$ homomorphism that disregards symbols outside of $\Sigma_{Q}$.

[^1]:    ${ }^{2}$ Orographically the first, as we generate the river from the mouth to the source.

[^2]:    ${ }^{3}$ Neither in the directed nor in the undirected sense, which is equivalent if every node has at most one incoming edge.

[^3]:    ${ }^{4}$ With the obvious exception of the single fact of the relation Start in chase $T_{1}(\emptyset)$, which has no parent.

[^4]:    ${ }^{5}$ The instance from Figure 1 can be seen as $\mathcal{C}_{4}$.

[^5]:    ${ }^{6}$ The set of all facts which can be produced from $P(\bar{x}, \bar{y})$ by projections from $T_{\text {proj }}$.

[^6]:    ${ }^{7} \mathrm{~A}$ fact $R\left(c_{1}, \ldots, c_{n}\right)$ is reflexive if $c_{1}=\cdots=c_{n}$.

[^7]:    ${ }^{8}$ Different variables may be replaced with the same constant.

[^8]:    ${ }^{9}$ Choosing different $v$ and $e$ leads to exactly the same result provided that $\mu_{v}(e)=\mu(x)$.

[^9]:    ${ }^{10}$ Recall that the $T_{1}$-type is not represented in the input.

