
Frontiers and Exact Learning of ELI Queries under DL-Lite Ontologies

Maurice Funk1 , Jean Christoph Jung2 and Carsten Lutz1
1 Leipzig University, Faculty of Mathematics and Computer Science, Germany

2 University of Hildesheim, Institute of Computer Science, Germany
mfunk@informatk.uni-leipzig.de, jungj@uni-hildesheim.de, clu@informatik.uni-leipzig.de

Abstract
We study ELI queries (ELIQs) in the presence
of ontologies formulated in the description logic
DL-Lite . For the dialect DL-LiteH, we show that
ELIQs have a frontier (set of least general gen-
eralizations) that is of polynomial size and can
be computed in polynomial time. In the dialect
DL-LiteF , in contrast, frontiers may be infinite.
We identify a natural syntactic restriction that en-
ables the same positive results as for DL-LiteH.
We use our results on frontiers to show that ELIQs
are learnable in polynomial time in the presence
of a DL-LiteH/ restricted DL-LiteF ontology in
Angluin’s framework of exact learning with only
membership queries.

1 Introduction
In the widely studied paradigm of ontology-mediated query-
ing, a database query is enriched with an ontology that pro-
vides domain knowledge as well as additional vocabulary for
query formulation [Bienvenu et al., 2013b; Calvanese et al.,
2009]. We consider ontologies formulated in description log-
ics (DLs) of the DL-Lite family and queries that are ELI
queries (ELIQs) or, in other words, tree-shaped unary con-
junctive queries (CQs). DL-Lite is a prominent choice for the
ontology language as it underpins the OWL 2 QL profile of
the OWL ontology language [OWL Working Group, 2009].
Likewise, ELIQs are a prominent choice for the query lan-
guage as they are computationally very well-behaved: with-
out an ontology, they can be evaluated in polynomial time in
combined complexity, in contrast to NP-completeness for un-
restricted CQs. Moreover, in the form of ELI concepts they
are a central building block of ontologies in several dialects
of DL-Lite and beyond.

The aim of this paper is to study the related topics of
computing least general generalizations (LGGs) of ELIQs
under DL-Lite ontologies and learning ELIQs under DL-
Lite ontologies in Angluin’s framework of exact learning
[Angluin, 1987a; Angluin, 1987b]. Computing generaliza-
tions is a natural operation in query engineering that plays
a crucial role in learning logical formulas [Plotkin, 1970;
Muggleton, 1991], in particular in exact learning [ten Cate

and Dalmau, 2021]. Exact learning, in turn, is concerned with
constructing queries and ontologies. This can be challeng-
ing and costly, especially when logic expertise and domain
knowledge are not in the same hands. Aiming at such cases,
exact learning provides a systematic protocol for query en-
gineering in which a learner interacts in a game-like fashion
with an oracle, which may be a domain expert.

Our results on LGGs concern the notion of a frontier of an
ELIQ q w.r.t. an ontology O. Such a frontier is a set F of
ELIQs that generalize q, that is, q ⊆O qF and qF ̸⊆O q
for all qF ∈ F , where ‘⊆O’ denotes query containment
w.r.t. O. Moreover, F must be complete in that for all ELIQs
q′ with q ⊆O q′ and q′ ̸⊆O q, there is a qF ∈ F such that
qF ⊆O q′. We are interested in computing a frontier that con-
tains only polynomially many ELIQs of polynomial size, in
polynomial time. This is possible in the case of ELIQs with-
out ontologies as shown in [ten Cate and Dalmau, 2021];
for the simpler EL queries, the same had been observed
earlier (also without ontologies) in [Baader et al., 2018;
Kriegel, 2019]. In contrast, unrestricted CQs do not even ad-
mit finite frontiers [Nesetril and Tardif, 2000].

In exact learning, the learner and the oracle know and agree
on the ontology O, and they also agree on the target query qT
to use only concept and role names from O. The learner may
ask membership queries where they produce an ABox A and
a candidate answer a and ask whether A,O |= qT (a), that
is, whether a is an answer to qT w.r.t. O on A. The oracle
faithfully answers “yes” or “no”. Polynomial time learnabil-
ity then means that the learner has an algorithm for construct-
ing qT , up to equivalence w.r.t. O, with running time bounded
by a polynomial in the sizes of qT and O.

Learning with only membership queries, as described
above and studied in this article, is a strong form of exact
learning. In fact, there are not many cases where polyno-
mial time learning with only membership queries is possible,
ELIQs without ontologies being an important example [ten
Cate and Dalmau, 2021]. Often, one would therefore also ad-
mit equivalence queries where the learner provides a hypoth-
esis ELIQ qH and asks whether qH is equivalent to qT un-
der O; the oracle answers “yes” or provides a counterexam-
ple, that is, an ABox A and answer a such that A,O |= qT (a)
and A,O ̸|= qH(a) or vice versa. This is done, for instance,
in [Konev et al., 2018; Funk et al., 2021].

We consider as ontology languages the DLs DL-LiteH and

DL-LiteF , equipped with role inclusions (also known as role
hierarchies) and functional roles, respectively. Both dialects
admit concept and role disjointness constraints and ELI con-
cepts on the right-hand side of concept inclusions [Calvanese
et al., 2007; Kikot et al., 2011]. We show that DL-LiteH ad-
mits polynomial frontiers that can be computed in polynomial
time, and that DL-LiteF does not even admit finite frontiers.
We then introduce a fragment DL-LiteF− of DL-LiteF that
restricts the use of inverse functional roles on the right-hand
side of concept inclusions and show that it is as well-behaved
as DL-LiteH. Both frontier constructions require a rather sub-
tle analysis. We also note that adding conjunction results in
frontiers of exponential size, even for very simple fragments
of DL-Lite . One application of our results is to show that ev-
ery ELIQ q can be characterized up to equivalence w.r.t. on-
tologies formulated in DL-LiteH or DL-LiteF− by only poly-
nomially many data examples of the form (A, a), labeled as
positive if A,O |= q(a) and as negative otherwise.

We then consider in detail the application of our results
in the context of exact learning and show that ELIQs can be
learned in polynomial time w.r.t. ontologies O formulated in
DL-LiteH or DL-LiteF−. The learning algorithm uses only
membership queries provided that a seed query is available,
that is, an ELIQ q0 such that q0 ⊆O qT . Such a seed query
can be constructed using membership queries if O contains
no concept disjointness constraints and obtained by a single
initial equivalence query otherwise. We also show that ELIQs
cannot be learned at all w.r.t. unrestricted DL-LiteF ontolo-
gies using only membership queries, and that they cannot be
learned with only polynomially many membership queries
when conjunction is admitted.

Proof details are in the appendix.

Related Work. Exact learning of queries in the context
of description logics has been studied in [Funk et al., 2021]
while [Konev et al., 2018] considers learning entire ontolo-
gies, see also [Ozaki et al., 2020; Ozaki, 2020]. It is shown
in [Funk et al., 2021] that a restricted form of CQs (that
do not encompass all ELIQs) can be learned in polynomial
time under EL ontologies using both membership and equiv-
alence queries. The results from that paper indicate that in-
verse roles provide a challenge for exact learning under on-
tologies and thus it is remarkable that we can handle them
without any restrictions in our context. Related forms of
learning are the construction of the least common subsumer
(LCS) and the most specific concept (MSC) [Baader, 2003;
Baader et al., 1999; Baader et al., 2007; Jung et al., 2020b;
Zarrieß and Turhan, 2013] which may both be viewed as a
form of query generalization. There is also a more loosely
related research thread on learning DL concepts from la-
beled data examples [Funk et al., 2019; Jung et al., 2020a;
Lehmann and Hitzler, 2010; Lehmann and Völker, 2014;
Sarker and Hitzler, 2019].

2 Preliminaries
Ontologies and ABoxes. Let NC, NR, and NI be countably
infinite sets of concept, role, and individual names. A role R
is a role name r ∈ NR or the inverse r− of a role name r. An

ELI concept is formed according to the syntax rule C,D ::=
⊤ | A | C ⊓D | ∃R.C where A ranges over concept names
and R over roles. A basic concept B is an ELI concept of
the form ⊤, A, or ∃R.⊤. When dealing with basic concepts,
for brevity we may write ∃R in place of ∃R.⊤.

A DL-LiteHF ontology O is a finite set of concept inclu-
sions (CIs) B ⊑ C, role inclusions (RIs) R1 ⊑ R2, concept
disjointness constraints B1 ⊓B2 ⊑ ⊥, role disjointness con-
straints R1 ⊓ R2 ⊑ ⊥, and functionality assertions func(R).
Here, B, B1, and B2 range over basic concepts, C over ELI
concepts, and R1, R2, R over roles. Superscript ·H indicates
the presence of role inclusions (also called role hierarchies)
and superscript ·F indicates functionality assertions, and thus
it should be clear what we mean with a DL-LiteH ontology
and with a DL-LiteF ontology. In fact, we are mainly inter-
ested in these two fragments of DL-LiteHF .

A DL-LiteHF ontology is in normal form if all concept
inclusions in it are of one of the forms A ⊑ B, B ⊑ A,
and A ⊑ ∃R.A′ with A,A′ concept names or ⊤ and B a
basic concept. Note that CIs of the form ∃R ⊑ ∃S are not
admitted and neither are CIs of the form A ⊑ ∃R.C with C
a compound concept. An ABox A is a finite set of concept
assertions A(a) and role assertions r(a, b) with A a concept
name or ⊤, r a role name, and a, b individual names. We use
ind(A) to denote the set of individual names used in A.

As usual, the semantics is given in terms of interpreta-
tions I, which we define to be a (possibly infinite and) non-
empty set of concept and role assertions. We use ∆I to de-
note the set of individual names in I, define AI = {a |
A(a) ∈ I} for all A ∈ NC, and rI = {(a, b) | r(a, b) ∈ I}
and (r−)I = {(b, a) | r(a, b) ∈ I} for all r ∈ NR. This
definition of interpretation is slightly different from the usual
one, but equivalent;1 its virtue is uniformity as every ABox is
a finite interpretation. The interpretation function ·I can be
extended from concept names to ELI concepts in the stan-
dard way [Baader et al., 2017]. An interpretation I satisfies
a concept or role inclusion α1 ⊑ α2 if αI

1 ⊆ αI
2 , a concept

or role disjointness constraint α1 ⊓ α2 ⊑ ⊥ if αI
1 ∩ αI

2 = ∅,
and a functionality assertion func(R) if RI is a partial func-
tion. It satisfies a concept or role assertion α if α ∈ I. Note
that, as usual, we thus make the standard names assumption,
implying the unique name assumption.

An interpretation is a model of an ontology or an ABox if
it satisfies all inclusions, disjointness constraints, and asser-
tions in it. We write O |= α1 ⊑ α2 if every model of the on-
tology O satisfies the concept or role inclusion α1 ⊑ α2 and
O |= α1 ≡ α2 if O |= α1 ⊑ α2 and O |= α2 ⊑ α1. If α1 and
α2 are basic concepts or roles, then such consequences are de-
cidable in PTIME both in DL-LiteH and in DL-LiteF [Artale
et al., 2009]. An ABox A is satisfiable w.r.t. an ontology O
if A and O have a common model. Deciding ABox satisfia-
bility is also in PTIME in both DL-LiteH and DL-LiteF .

A signature is a set of concept and role names, uniformly
referred to as symbols. For any syntactic object O such as an
ontology or an ABox, we use sig(O) to denote the symbols
used in O and ||O|| to denote the size of O, that is, the length

1This depends on admitting assertions ⊤(a) in ABoxes.

of a representation of O as a word in a suitable alphabet.
Queries. An ELI concept C can be viewed as an ELI
query (ELIQ). An individual a ∈ ind(A) is an answer to C
on an ABox A w.r.t. an ontology O, written A,O |= C(a),
if a ∈ CI for all models I of A and O. We shall often
view ELIQs as unary conjunctive queries (CQs) and also con-
sider CQs that are not ELIQs. In this paper, CQs are al-
ways unary. A CQ thus takes the form q(x0) = ∃ȳ ϕ(x0, ȳ)
with ϕ a conjunction of concept atoms A(x) and role atoms
r(x, y) where A ∈ NC and r ∈ NR. We use var(q) to
denote the set of variables that occur in q. We may view
q as a set of atoms and may write r−(x, y) in place of
r(y, x). We call x0 the answer variable and use the no-
tion of an answer and the notation A,O |= q(a) also for
CQs. The formal definition is in terms of homomorphisms
as usual, details are in the appendix. ELIQs are in 1-to-
1 correspondence with CQs whose Gaifman graph is a tree
and that contain no self-loops and multi-edges. For exam-
ple, the ELIQ C = A ⊓ ∃r−.(∃s.B ⊓ ∃r.A) is the CQ
q(x0) = {A(x), r(y, x), s(y, z), B(z), r(y, z′), A(z′)}. We
use Aq to denote the ABox obtained from CQ q by viewing
variables as individuals and atoms as assertions. A CQ q is
satisfiable w.r.t. ontology O if Aq is.

For CQs q1 and q2 and an ontology O, we say that q1 is
contained in q2 w.r.t. O, written q1 ⊆O q2 if for all ABoxes
A and a ∈ ind(A), A,O |= q1(a) implies A,O |= q2(a). If
q1, q2 are ELIQs, then this coincides with q1 viewed as ELI
concept being subsumed w.r.t. O by q2 viewed as an ELI
concept [Baader et al., 2017]. We call q1 and q2 equivalent
w.r.t. O, written q1 ≡O q2, if q1 ⊆O q2 and q2 ⊆O q1.
O-saturatedness and O-minimality. A CQ q is O-
saturated, with O an ontology, if Aq,O |= A(y) implies
A(y) ∈ q for all y ∈ var(q) and A ∈ NC. It is O-minimal
if there is no x ∈ var(q) such that q ≡O q|var(q)\{x} with
q|S the restriction of q to the atoms that only contain vari-
ables in S. For a CQ q and an ontology O formulated in
DL-LiteH or DL-LiteF , one can easily find in polynomial
time an O-saturated CQ q′ with q ≡O q′. To achieve O-
minimality, we may repeatedly choose variables x ∈ var(q),
check whether Aq|var(q)\{x} ,O |= q, and if so replace q with
q|var(q)\{x}. For ELIQs, the required checks can be carried
out in PTIME in DL-LiteF [Bienvenu et al., 2013a], but are
NP-complete in DL-LiteH [Kikot et al., 2011]. We conjec-
ture that in DL-LiteH, it is not possible to construct equivalent
O-minimal ELIQs in polynomial time.

3 Frontiers in DL-LiteH

We show that for every ELIQ q and DL-LiteH ontology O
such that q is satisfiable w.r.t. O, there is a frontier of poly-
nomial size that can be computed in polynomial time. We
also observe that this fails when DL-LiteH is extended with
conjunction, even in very restricted cases.

Definition 1. A frontier of an ELIQ q w.r.t. a DL-LiteHF on-
tology O is a set of ELIQs F such that

1. q ⊆O qF for all qF ∈ F;
2. qF ̸⊆O q for all qF ∈ F;

3. for all ELIQs q′ with q ⊆O q′ ̸⊆O q, there is a qF ∈ F
with qF ⊆O q′.

It is not hard to see that finite frontiers that are minimal
w.r.t. set inclusion are unique up to equivalence of the ELIQs
in them, that is, if F1 and F2 are finite minimal frontiers of q
w.r.t. O, then for every qF ∈ F1 there is a q′F ∈ F2 such that
qF ≡O q′F and vice versa. The following is the main result
of this section.

Theorem 1. Let O be a DL-LiteH ontology and q an ELIQ
that is O-minimal and satisfiable w.r.t. O. Then a frontier of
q w.r.t. O can be computed in polynomial time.

We note that Theorem 1 still holds when O-minimality
is dropped as a precondition and Condition 2 of frontiers is
dropped as well. For proving Theorem 1, we first observe that
we can concentrate on ontologies that are in normal form.

Lemma 1. For every DL-LiteH ontology O, we can construct
in polynomial time a DL-LiteH ontology O′ in normal form
such that every O-minimal ELIQ q is also O′-minimal and a
frontier of q w.r.t. O can be constructed in polynomial time
given a frontier of q w.r.t. O′.

We now prove Theorem 1, adapting and generalizing a
technique from [ten Cate and Dalmau, 2021]. Let O and
q(x0) be as in the formulation of the theorem, with O in nor-
mal form. We may assume w.l.o.g. that q is O-saturated. To
construct a frontier of q w.r.t. O, we consider all ways to gen-
eralize q in a least general way where ‘generalizing’ means to
construct from q an ELIQ q′ such that q ⊆O q′ and q′ ̸⊆O q
and ‘least general way’ that there is no ELIQ q̂ that general-
izes q and satisfies q̂ ⊆O q′ and q′ ̸⊆O q̂. We do this in two
steps: the actual generalization plus a compensation step, the
latter being needed to guarantee that we indeed arrive at a
least general generalization.

For x ∈ var(q), we use qx to denote the ELIQ obtained
from q by taking the subtree of q rooted at x and making x
the answer variable. The construction that follows involves
the introduction of fresh variables x, some of which are a
‘copy’ of a variable from var(q). We then use x↓ to denote
that original variable.

Step 1: Generalize. For each variable x ∈ var(q), define a
set F0(x) that contains all ELIQs which can be obtained by
starting with qx(x) and then doing one of the following:

(A) Drop concept atom:

1. choose an atom A(x) ∈ q such that

(a) there is no B(x) ∈ q with O |= B ⊑ A and O ̸|=
A ⊑ B and

(b) there is no R(x, y) ∈ q with O |= ∃R ⊑ A;

2. remove all B(x) ∈ q with O |= A ≡ B, including A(x).

(B) Generalize subquery:

1. choose an atom R(x, y) ∈ q directed away from x0;

2. remove R(x, y) and all atoms of qy;

3. for each q′(y) ∈ F0(y), add a disjoint copy q̂′ of q′ and
the role atom R(x, y′′) with y′′ the copy of y in q̂′;

4. for every role S with O |= R ⊑ S and O ̸|= S ⊑ R, add
a disjoint copy q̂y of qy and the role atom S(x, y′) with
y′ the copy of y in q̂y .

The definition of x↓ should be clear in all cases. In Point 3
of Case (B), for example, for every variable z in q′ that was
renamed to z′ in q̂′ set z′↓ = z↓. Note that z↓ is defined for
all variables z that occur in queries in F0(x). Also note that,
in Point 1b of (A), it is important to use q rather than qx as y
could be a predecessor of x in q.
Step 2: Compensate. We construct a frontier F of q(x0)
by including, for each p ∈ F0(x0), the ELIQ obtained from p
by the following two steps. We write x ⇝R

q,O A if Aq,O |=
∃R.A(x) and there is no S(x, y) ∈ q with O |= S ⊑ R and
Aq,O |= A(y).

Step 2A. Consider all x ∈ var(p), roles R,S, and concept
names A such that x↓ ⇝R

q,O A, O |= R ⊑ S, and O |=
∃S ⊑ B implies B(x) ∈ p for all concept names B. Add
the atoms S(x, z), A(z), R(x′, z) where z and x′ are fresh
variables with z↓ undefined, x′↓ = x↓, and add a disjoint
copy q̂ of q, glue the copy of x↓ in q̂ to x′.

Step 2B. Consider every S(x, y) ∈ p directed away from x0

that was not added in Step 2A. Then x↓ and y↓ are defined.
For every role R with Aq,O |= R(x↓, y↓), add an atom
R(z, y), z a fresh variable with z↓ = x↓, as well as a dis-
joint copy q̂ of q and glue the copy of x↓ in q̂ to z.

This finishes the construction of the frontier F of q.
Example 1. Consider the DL-LiteH ontology O = {A ⊑
∃r, ∃r ⊑ A, r ⊑ s} and the ELIQ q(x0) = A(x0) ∧B(x0).
Then F contains the ELIQs p1 and p2 shown below:

x0B

z

x1A,B x0A

z1

x1A,B

z2

x2A,B

sr r rsr

ELIQ p1 is the result of dropping the concept atom A(x0) and
p2 is the result of dropping the concept atom B(x0). Step 2A
adds an r-successor and an s-successor of x0 in p2 but only
an s-successor in p1 as O |= ∃r ⊑ A, and then attaches
copies of q. Step 2B does nothing, as all role atoms have
been added in Step 2A.2

Example 2. Consider the DL-LiteH ontology O = {r ⊑ s}
and the ELIQ q(x0) shown on the left-hand side below:

x0

yA

r

x0

y′′ y′A

x1

y1A

x2

y2A

s rrr r r

Then F contains only the ELIQ p shown on the right-hand
side. It is the result of dropping the concept atom A(y) in qy ,
then generalizing the subquery r(x0, y) in qx0

= q, and
then compensating. Step 2A of compensation adds nothing.
Step 2B adds the two dashed role atoms and attaches copies
of q to x1 and x2.

2Variables x2 and z2 can be dropped from p2 resulting in an
ELIQ that is equivalent w.r.t. O. We did not include such optimiza-
tions in the compensation step to avoid making it more complicated.

Lemma 2. F is a frontier of q(x0) w.r.t. O.

We next show that the constructed frontier is of polynomial
size and that its computation takes only polynomial time.

Lemma 3. The construction of F runs in time polynomial in
||q||+ ||O|| (and thus

∑
p∈F

||p|| is polynomial in ||q||+ ||O||).

We next observe that adding conjunction to DL-Lite de-
stroys polynomial frontiers and thus Theorem 1 does not ap-
ply to DL-Litehorn ontologies [Artale et al., 2009]. In fact,
this already holds for very simple queries and ontologies,
implying that also for other DLs that support conjunction
such as EL, polynomial frontiers are elusive. A conjunc-
tion of atomic queries (AQ∧) is a unary CQ of the form
q(x0) = A1(x0) ∧ · · · ∧ An(x0) and a conjunctive ontol-
ogy is a set of CIs of the form A1 ⊓ · · · ⊓ An ⊑ A where
A1, . . . , An and A are concept names.

Theorem 2. There are families of AQ∧s q1, q2, . . . and con-
junctive ontologies O1,O2, . . . such that for all n ≥ 1, any
frontier of qn w.r.t. On has size at least 2n.

4 Frontiers in DL-LiteF

We start by observing that frontiers of ELIQs w.r.t. DL-LiteF

ontologies may be infinite. This leads us to identifying a syn-
tactic restriction on DL-LiteF ontologies that regains finite
frontiers. In fact, we show that they are of polynomial size
and can be computed in polynomial time.

Theorem 3. There is an ELIQ q and a DL-LiteF ontology O
such that q does not have a finite frontier w.r.t. O.

In the proof of Theorem 3, we use the ELIQ A(x) and

O = { A ⊑ ∃r, ∃r− ⊑ ∃r, ∃r ⊑ ∃s, func(r−) }.

The universal model Uq,O of Aq and O is an infinite r-path
on which every point has an s-successor. Now consider the
following ELIQs q1, q2, . . . that satisfy qi ̸⊆O q ⊆O qi:

qi(x1) = r(x1, x2), . . . , r(xn−1, xn), s(xn, y), s(x
′
n, y),

r(x′
1, x

′
2), . . . , r(x

′
n−1, x

′
n), A(x

′
1).

Any frontier F must contain a pi with pi ⊆O qi for all i ≥ 1.
We show that, consequently, there is no bound on the size of
the queries in F . We invite the reader to apply the frontier
construction from Section 3 after dropping func(r−).

The proof actually shows that there is no finite frontier even
if we admit the use of unrestricted CQs in the frontier in place
of ELIQs. To regain finite frontiers, we restrict our atten-
tion to DL-LiteF ontologies O such that if B ⊑ C is a CI
in O, then C contains no subconcept of the form ∃R.D with
func(R−) ∈ O. We call such an ontology a DL-LiteF− on-
tology. We again concentrate on ontologies in normal form.

Lemma 4. For every DL-LiteF− ontology O, we can con-
struct in polynomial time a DL-LiteF− ontology O′ in nor-
mal form such that for every ELIQ q, a frontier of q w.r.t. O
can be constructed in polynomial time given a frontier of q
w.r.t. O′.

The main result of this section is as follows.

Theorem 4. Let O be a DL-LiteF− ontology and q an ELIQ
that is satisfiable w.r.t. O. Then a frontier of q w.r.t. O can be
computed in polynomial time.

To prove Theorem 4, let O and q be as in the theorem, O
in normal form. We may assume w.l.o.g. that q is O-minimal
and O-saturated. The construction of a frontier follows the
same general approach as for DL-LiteH, but the presence of
functional roles significantly complicates the compensation
step. As before, we introduce fresh variables and rely on the
mapping x↓.

Step 1: Generalize. For each variable x ∈ var(q), define a
set F0(x) that contains all ELIQs which can be obtained by
starting with qx(x) and then doing one of the following:

(A) Drop concept atom: exactly as for DL-LiteH.
(B) Generalize subquery:

1. choose an atom R(x, y) ∈ q directed away from x0;

2. remove R(x, y) and all atoms of qy;

3. if func(R) /∈ O, then for each q′(y) ∈ F0(y) add a
disjoint copy q̂′ of q′ and the role atom R(x, y′) with y′

the copy of y in q̂′;

4. if func(R) ∈ O and F0(y) ̸= ∅, then choose and add a
q′ ∈ F0(y) and the role atom R(x, y).

Step 2: Compensate. We construct a frontier F of q(x0)
by including, for each p ∈ F0(x0), the CQ obtained from p
by the following two steps. For x ∈ var(q), R a role, and
M a set of concept names from O, we write x ⇝R

q,O M if
M is maximal with Aq,O |= ∃R.

d
M(x) and there is no

R(x, y) ∈ q with Aq,O |=
d
M(y).

Step 2A. Consider every x ∈ var(p), role R, and set of
concept names M = {A1, . . . , Ak} with x↓ ⇝R

q,O M . If
O |= ∃R ⊑ B implies B(x) ∈ p for all concept names B,
add the atoms R(x, z), A1(z), . . . , Ak(z) where z is a fresh
variable, and leave z↓ undefined.

Step 2B. This step is iterative. For bookkeeping, we mark
atoms R(x, y) ∈ p to be processed in the next round of
the iteration. Marking is only applied to atoms R(x, y) di-
rected away from x0 such that y↓ is defined and if x↓ is unde-
fined then func(R−) /∈ O or q contains no atom of the form
R(y↓, z).

Start. Consider every R(x, y) ∈ p directed away from x0

with func(R−) /∈ O. Then x↓ is defined. Extend p with atom
R−(y, x′), x′ a fresh variable with x′↓ = x↓. Mark the new
atom.

Step. Choose a marked atom R(x, y) and unmark it. If
func(R−) /∈ O or q contains no atom of the form R(y↓, z),
then add a disjoint copy q̂ of q and glue the copy of y↓ in q̂
to y. Otherwise, do the following:

(i) add A(y) whenever Aq,O |= A(y↓);

(ii) for all atoms S(y↓, z) ∈ q with S(y↓, z) ̸= R−(y↓, x↓),
extend p with atom S(y, z′), z′ a fresh variable with
z′↓ = z. Mark S(y, z′).

(iii) For all roles S and sets M = {A1, . . . , Ak} such
that y↓ ⇝S

q,O M , extend p with atoms S(y, u),

S−(u, y′), A1(u), . . . , Ak(u) where u and y′ are fresh
variables. Set y′↓ = y↓ and mark S−(u, y′).

The step is repeated as long as possible. Note that in
Point (iii), the role S must occur on the right-hand side
of some CI in the DL-LiteF− ontology O. Consequently,
func(S−) /∈ O and it is not a problem that u receives two S-
predecessors. Also in Point (iii), func(S) ∈ O implies that q
cannot contain an atom S(y↓, z) due to the definition of ‘⇝’
and thus we may leave u↓ undefined.

This finishes the construction of the frontier F of q.

Example 3. Consider the ontology O = {func(s)} and
ELIQ q(x0) shown on the left-hand side below:

x0

y zA

r s

x0

y z

x′
0

y1

x1

z1A

x2

z2y2 A

r s s r r srsr

The ELIQ p ∈ F shown on the right-hand side is the result
of dropping the concept atom A(z) in qz , then generalizing
the subquery s(x0, z) in qx0 = q, and then compensating.
Step 2A of compensation adds nothing. The start of Step 2B
adds the two dashed role atoms and marks them. The step
of Step 2B adds the dotted role atom via Point (ii) and marks
it. When the step of Step 2B processes role atoms r−(y, x2)
and r(x′

0, y), it attaches copies of q to x2 and y1. Note that
directly attaching a copy of q to x′

0 would violate func(s).

Lemma 5. F is a frontier of q(x0) w.r.t. O.

As for DL-LiteH, the constructed frontier is of polynomial
size and its computation takes only polynomial time. Cru-
cially, the iterative process in Point 2B terminates since in
Step (ii) a (copy of a) subquery of q is added and the process
stops at atoms added in Step (iii).

Lemma 6. The construction of F runs in time polynomial in
||q||+ ||O|| (and thus

∑
p∈F

||p|| is polynomial in ||q||+ ||O||).

5 Uniquely Characterizing ELIQs
As a first application of our results on frontiers, we consider
the unique characterization of ELIQs in terms of polynomi-
ally many data examples. One area where this is relevant is
reverse query engineering, also known as query-by-example
(QBE), which in a DL context was studied in [Gutiérrez-
Basulto et al., 2018; Funk et al., 2019; Ortiz, 2019]. The
idea of QBE is that a query is not formulated directly, but
derived from data examples that describe its behavior. The
results in this section imply that every ELIQ can be described
up to equivalence by such examples this is always possible
and that a reasonable number of examples of reasonable size
suffices.

Formally, a data example takes the form (A, a) where A
is an ABox and a ∈ ind(A). Let E+, E− be finite sets of
data examples. We say that an ELIQ q fits (E+, E−) w.r.t. a
DL-LiteHFontology O if (A, a) ∈ E+ implies A,O |= q(a)

Algorithm 1 Learning ELIQs under DL-Lite ontologies

Input An ontology O in normal form and a CQ q0H satisfi-
able w.r.t. O such that q0H ⊆O qT
Output An ELIQ qH such that qH ≡O qT

qH := treeify(q0H)
while there is a qF ∈ FqH with qF ⊆O qT do

qH := minimize(qF)
end while
return qH

and (A, a) ∈ E− implies A,O ̸|= q(a). Then (E+, E−)
uniquely characterizes q w.r.t. O if q fits (E+, E−) and every
ELIQ q′ that also fits (E+, E−) satisfies q ≡O q′. The fol-
lowing is a consequence of Theorems 1 and 4, see also [ten
Cate and Dalmau, 2021].

Theorem 5. Let O be an ontology formulated in DL-LiteH or
DL-LiteF−. Then for every ELIQ q that is satisfiable w.r.t. O,
there are sets of data examples (E+, E−) that uniquely char-
acterize q w.r.t. O and such that ||(E+, E−)|| is polynomial
in ||q||+ ||O||. If O is a DL-LiteF− ontology, then (E+, E−)
can be computed in polynomial time and the same holds for
DL-LiteH if q is O-minimal.

6 Learning ELIQs under Ontologies
We use our results on frontiers to show that ELIQs are
polynomial time learnable under ontologies formulated in
DL-LiteH and DL-LiteF−, using only membership queries.
We also present two results on non-learnability.

Theorem 6. ELIQs are polynomial time learnable under
DL-LiteH ontologies and under DL-LiteF− ontologies using
only membership queries.

If the ontology contains concept disjointness constraints,
then this only holds true if the learner is provided with a
seed CQ (definition given below).

For proving Theorem 6, let O be an ontology formulated in
DL-LiteH or DL-LiteF− and qT (x0) the target ELIQ known
to the oracle. We may again assume O to be in normal form.

Lemma 7. In DL-LiteH and DL-LiteF−, every polynomial
time learning algorithm for ELIQs under ontologies in nor-
mal form that uses only membership queries can be trans-
formed into a learning algorithm with the same properties
for ELIQs under unrestricted ontologies.

The learning algorithm is displayed as Algorithm 1. It as-
sumes a seed CQ q0H , that is, a CQ q0H such that q0H ⊆O qT
and q0H is satisfiable w.r.t. O. If O contains no disjointness
constraints, then for Σ = sig(O) we can use as the seed CQ

q0H(x0) = {A(x0) | A ∈ Σ∩NC}∪{r(x0, x0) | r ∈ Σ∩NR}.

We can still construct a seed CQ q0H in time polynomial in
||O|| if O contains no disjoint constraints on concepts (but
potentially on roles); details are in the appendix. In the pres-
ence of concept disjointness constraints, a seed CQ can be
obtained through an initial equivalence query.

The algorithm constructs and repeatedly updates a hypoth-
esis ELIQ qH while maintaining the invariant qH ⊆O qT .
The initial call to subroutine treeify yields an ELIQ qH with
q0H ⊆O qH ⊆O qT to be used as the first hypothesis. The
algorithm then iteratively generalizes qH by constructing the
frontier FqH of qH w.r.t. O in polynomial time and choosing
from it a new ELIQ qH with qH ⊆O qT . In between, the
algorithm applies the minimize subroutine to ensure that the
new qH is O-minimal and to avoid an excessive blowup while
iterating in the while loop.

We next detail the subroutines treeify and minimize. We
define minimize on unrestricted CQs since it is applied to non-
ELIQs as part of the treeify subroutine.

The minimize subroutine. The subroutine takes as input
a unary CQ q(x0) that is satisfiable w.r.t. O and satisfies
q ⊆O qT . It computes a unary CQ q′ with q ⊆O q′ ⊆O qT
using membership queries that is minimal in a strong sense.
Formally, minimize first makes sure that q is O-saturated and
then exhaustively applies the following operation:
Remove atom. Choose a role atom r(x, y) ∈ q and let q−
be the maximal connected component of q \ {r(x, y)} that
contains x0. Pose the membership query Aq− ,O |= qT (x0).
If the response is positive, continue with q− in place of q.

Clearly, the result of minimize is O-minimal.

The treeify subroutine. The subroutine takes as input a
unary CQ q(x0) that is satisfiable w.r.t. O, and satisfies
q ⊆O qT . It computes an ELIQ q′ with q ⊆O q′ ⊆O qT by
repeatedly increasing the length of cycles in q and minimiz-
ing the obtained query; a similar construction is used in [ten
Cate and Dalmau, 2021]. The resulting ELIQ is O-minimal.

Formally, treeify first makes sure that q(x0) is O-saturated
and then constructs a sequence of CQs p1, p2, . . . starting
with p1 = minimize(q) and then taking pi+1 = minimize(p′i)
where p′i is obtained from pi by doubling the length of
some cycle. Here, a cycle in a CQ q is a sequence
R1(x1, x2), . . . , Rn(xn, x1) of distinct role atoms in q such
that x1, . . . xn are distinct. More precisely, p′i is the result of
the following operation.
Double cycle. Choose a role atom r(x, y) ∈ pi that is part
of a cycle in pi and let p be pi \ {r(x, y)}. The CQ p′i is
then obtained by starting with p, adding a disjoint copy p′ of
p where x′ refers to the copy of x ∈ var(p) in p′ and adding
the role atoms r(x, y′), r(x′, y).

If pi contains no more cycles, treeify stops and returns pi.
Returning to Algorithm 1, let q1, q2, . . . be the sequence

of ELIQs that are assigned to qH during a run of the learn-
ing algorithm. We show in the appendix that for all i ≥ 1,
it holds that qi ⊆O qT , qi ⊆O qi+1 while qi+1 ̸⊆O qi, and
|var(qi+1)| ≥ |var(qi)|. This can be used to prove that the
while loop in Algorithm 1 terminates after a polynomial num-
ber of iterations, arriving at a hypothesis qH with qH ≡O qT .

We now turn to non-learnability results. Without a seed
CQ, ontologies with concept disjointness constraints are not
learnable using only polynomially many membership queries.
A disjointness ontology is a DL-LiteHF ontology that only
consists of concept disjointness constraints.

Theorem 7. AQ∧s are not learnable under disjointness on-
tologies using only polynomially many membership queries.

We next show that when we drop the syntactic restriction
from DL-LiteF−, then ELIQs are no longer learnable at all
using only membership queries. Note that this is not a direct
consequence of Theorem 3 as there could be an alternative
approach that does not use frontiers.

Theorem 8. ELIQs are not learnable under DL-LiteF on-
tologies using only membership queries.

7 Outlook
A natural next step for future work is to generalize the results
presented in this paper to DL-LiteHF , adopting the same syn-
tactic restriction that we have adopted for DL-LiteF , and ad-
ditionally requiring that functional roles have no proper sub-
roles. The latter serves to control the interaction between
functional roles and role inclusions. Even with this restric-
tion, however, that interaction is very subtle and the frontier
construction becomes significantly more complex. Other in-
teresting questions are whether ELIQs can be learned in poly-
nomial time w.r.t. DL-Litehorn ontologies and whether CQs
can be learned w.r.t. DL-Litecore ontologies when both mem-
bership and equivalence queries are admitted.

Acknowledgements
Carsten Lutz was supported by DFG CRC 1320 EASE.

References
[Alspach et al., 1987] Brian Alspach, Jean-Claude Bermond, and

Dominique Sotteau. Decomposition into cycles I: Hamilton de-
compositions. In Proc. of the Workshop on Cycles and Rays,
pages 9–18, 1987.

[Angluin, 1987a] Dana Angluin. Learning regular sets from queries
and counterexamples. Inf. Comput., 75(2):87–106, 1987.

[Angluin, 1987b] Dana Angluin. Queries and concept learning.
Mach. Learn., 2(4):319–342, 1987.

[Artale et al., 2009] Alessandro Artale, Diego Calvanese, Roman
Kontchakov, and Michael Zakharyaschev. The DL-Lite family
and relations. J. of Artifical Intelligence Research, 36:1–69, 2009.

[Baader et al., 1999] Franz Baader, Ralf Küsters, and Ralf Molitor.
Computing least common subsumers in description logics with
existential restrictions. In Proc. of IJCAI, pages 96–103. Morgan
Kaufmann, 1999.

[Baader et al., 2007] Franz Baader, Baris Sertkaya, and Anni-
Yasmin Turhan. Computing the least common subsumer w.r.t.
a background terminology. J. Appl. Log., 5(3):392–420, 2007.

[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten Lutz,
and Ulrike Sattler. An Introduction to Description Logics. Cam-
bride University Press, 2017.

[Baader et al., 2018] Franz Baader, Francesco Kriegel, Adrian Nu-
radiansyah, and Rafael Peñaloza. Making repairs in description
logics more gentle. In Proc. of KR, pages 319–328. AAAI Press,
2018.

[Baader, 2003] Franz Baader. Least common subsumers and most
specific concepts in a description logic with existential restric-
tions and terminological cycles. In Proc. of IJCAI, pages 319–
324. Morgan Kaufmann, 2003.

[Bienvenu et al., 2013a] Meghyn Bienvenu, Magdalena Ortiz,
Mantas Simkus, and Guohui Xiao. Tractable queries for
lightweight description logics. In Proc. of IJCAI, pages 768–774,
2013.

[Bienvenu et al., 2013b] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data access:
a study through disjunctive datalog, CSP, and MMSNP. In Proc.
of PODS, pages 213–224. ACM, 2013.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–
429, 2007.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mar-
iano Rodriguez-Muro, and Riccardo Rosati. Ontologies and
databases: The DL-Lite approach. In Reasoning Web, volume
5689 of LNCS, pages 255–356, 2009.

[Funk et al., 2019] Maurice Funk, Jean Christoph Jung, Carsten
Lutz, Hadrien Pulcini, and Frank Wolter. Learning description
logic concepts: When can positive and negative examples be sep-
arated? In Proc. of IJCAI, pages 1682–1688, 2019.

[Funk et al., 2021] Maurice Funk, Jean Christoph Jung, and
Carsten Lutz. Actively learning concept and conjunctive queries
under ELr-ontologies. In Proc. of IJCAI, pages 1887–1893,
2021.

[Gutiérrez-Basulto et al., 2018] Vı́ctor Gutiérrez-Basulto,
Jean Christoph Jung, and Leif Sabellek. Reverse engineer-
ing queries in ontology-enriched systems: The case of expressive
Horn description logic ontologies. In Proc. of IJCAI-ECAI,
pages 1847–1853. ijcai.org, 2018.

[Jung et al., 2020a] Jean Christoph Jung, Carsten Lutz, Hadrien
Pulcini, and Frank Wolter. Logical separability of incomplete
data under ontologies. In Proc. of KR, pages 517–528, 2020.

[Jung et al., 2020b] Jean Christoph Jung, Carsten Lutz, and Frank
Wolter. Least general generalizations in description logic: Verifi-
cation and existence. In Proc. of AAAI, pages 2854–2861, 2020.

[Kikot et al., 2011] Stanislav Kikot, Roman Kontchakov, and
Michael Zakharyaschev. On (in)tractability of OBDA with OWL
2 QL. In Proc. of DL, 2011.

[Konev et al., 2018] Boris Konev, Carsten Lutz, Ana Ozaki, and
Frank Wolter. Exact learning of lightweight description logic on-
tologies. J. Mach. Learn. Res., 18(201):1–63, 2018.

[Kriegel, 2019] Francesco Kriegel. Constructing and Extending
Description Logic Ontologies using Methods of Formal Concept
Analysis. PhD thesis, TU Dresden, 2019.

[Lehmann and Hitzler, 2010] Jens Lehmann and Pascal Hitzler.
Concept learning in description logics using refinement opera-
tors. Mach. Learn., 78:203–250, 2010.

[Lehmann and Völker, 2014] Jens Lehmann and Johanna Völker.
Perspectives on Ontology Learning, volume 18 of Studies on the
Semantic Web. IOS Press, 2014.

[Muggleton, 1991] Stephen Muggleton. Inductive logic program-
ming. New Generation Comput., 8(4):295–318, 1991.

[Nesetril and Tardif, 2000] Jaroslav Nesetril and Claude Tardif.
Duality theorems for finite structures (characterising gaps and
good characterisations). J. Comb. Theory, Ser. B, 80(1):80–97,
2000.

[Ortiz, 2019] Magdalena Ortiz. Ontology-mediated queries from
examples: a glimpse at the DL-Lite case. In Proc. of GCAI, pages
1–14, 2019.

[OWL Working Group, 2009] W3C OWL Working Group. OWL 2
Web Ontology Language: Document Overview. W3C Rec-
ommendation, 2009. Available at http://www.w3.org/TR/
owl2-overview/.

[Ozaki et al., 2020] Ana Ozaki, Cosimo Persia, and Andrea Maz-
zullo. Learning query inseparable ELH ontologies. In Proc. of
AAAI, pages 2959–2966, 2020.

[Ozaki, 2020] Ana Ozaki. Learning description logic ontologies:
Five approaches. where do they stand? KI - Künstliche Intelli-
genz, 2020.

[Plotkin, 1970] Gordon Plotkin. A note on inductive generaliza-
tions. Edinburgh University Press, 1970.

[Sarker and Hitzler, 2019] Md. Kamruzzaman Sarker and Pascal
Hitzler. Efficient concept induction for description logics. In
Proc. of AAAI, pages 3036–3043, 2019.

[ten Cate and Dalmau, 2021] Balder ten Cate and Victor Dalmau.
Conjunctive queries: Unique characterizations and exact learn-
ability. In Proc. of ICDT, volume 186 of LIPIcs, pages 9:1–9:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Zarrieß and Turhan, 2013] Benjamin Zarrieß and Anni-Yasmin
Turhan. Most specific generalizations w.r.t. general EL-TBoxes.
In Proc. of IJCAI, pages 1191–1197, 2013.

A Additional Preliminaries
We introduce some additional preliminaries that are needed
for the lemmas and proofs in the appendix.

We start with defining the semantics of conjunctive queries
in full detail. A homomorphism h from interpretation I1
to interpretation I2 is a mapping from ∆I1 to ∆I2 such
that d ∈ AI1 implies h(d) ∈ AI2 and (d, e) ∈ rI1 im-
plies (h(d), h(e)) ∈ rI2 . We use img(h) to denote the set
{e ∈ ∆I2 | ∃d ∈ ∆I1 : h(d) = e}. For di ∈ ∆Ii , i ∈ {1, 2},
we write I1, d1 → I2, d2 if there is a homomorphism h from
I1 to I2 with h(d1) = d2. With a homomorphism from a CQ
q to an interpretation I, we mean a homomorphism from Aq

to I. For a CQ q(x0), we write q(x0) → (I, d) if there is a
homomorphism h from q to I with h(x0) = d. Let q(x0) be a
CQ and I an interpretation. An element d ∈ ∆I is an answer
to q in I, written I |= q(d), if q(x0) → (I, d). Now let O
be an ontology and A an ABox. An individual a ∈ ind(A) is
an answer to q on A w.r.t. O, written A,O |= q(a), if a is an
answer to q in every model of O and A.

Let q(x0) be an ELIQ. The codepth of a variable x ∈
var(q) is 0 if there is no R(x, x′) ∈ q directed away from
x0 and is k + 1 if k is the maximum of the codepths of all
x′ ∈ var(q) with R(x, x′) ∈ q directed away from x0.

We next define universal models, first for DL-LiteH and
then for DL-LiteF . Let O be a DL-LiteH ontology and let
A be an ABox that is satisfiable w.r.t. O. For a ∈ ind(A),
concept names A, and R a role, we write a ⇝R

A,O A if
A,O |= ∃R.A(a) and there is no S(a, b) ∈ A such that
O |= S ⊑ R and A,O |= A(b). Note that this is identical to
the definition of ‘⇝’ given in Section 3, but is formulated for
ABoxes in place of ELIQs.

A trace for A and O is a sequence t =
aR1A1R2A2 . . . RnAn, n ≥ 0 where a ∈ ind(A),
R1, . . . , Rn are roles that occur in O, and A1, . . . , An are
sets of concept names that occur in O, such that a⇝R1

A,O A1

and O |= Ai ⊑ ∃Ri+1.Ai+1 for 1 ≤ i < n. Let T denote
the set of all traces for A and O. Then the universal model of
A and O is

UA,O = A ∪ {A(a) | A,O |= A(a)} ∪
{S(a, b) | R(a, b) ∈ A and O |= R ⊑ S} ∪
{B(tRA) | tRA ∈ T and O |= A ⊑ B} ∪
{S(t, tRA) | tRA ∈ T and O |= R ⊑ S}.

For brevity, we write Uq,O instead of UAq,O and x ⇝R
q,O A

instead of x⇝R
Aq,O A for any conjunctive query q.

Now let O be a DL-LiteF ontology and let A be an ABox
that is satisfiable w.r.t. O. For a set M of concept names, we
write

d
M as a shorthand for

d
A∈M A. For a ∈ ind(A),

M,M ′ sets of concept names, and R a role, we write

• a ⇝R
A,O M if A,O |= ∃R.

d
M(a), M is maximal

with this condition, and there is no R(a, b) ∈ A such
that A,O |=

d
M(b);

• M ⇝R
O M ′ if O |=

d
M ⊑ ∃R.

d
M ′(a) and M ′ is

maximal with this condition.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

The definition of ‘⇝’ in the first item is identical to the defini-
tion of ‘⇝’ given in Section 4, but is formulated for ABoxes
in place of ELIQs. The maximality of M is important when
dealing with functional roles. If, for example, O contains
A ⊑ ∃r.B1, A ⊑ ∃r.B2, and func(r) and A = {A(a)},
then we have a ⇝r

A,O {B1, B2}, but not a ⇝r
A,O {Bi} for

an i ∈ {1, 2}. This helps to ensure that a gets only a single
r-successor in the universal model.

A trace for A and O is a sequence t =
aR1M1R2M2 . . . RnMn, n ≥ 0 where a ∈ ind(A),
R1, . . . , Rn are roles that occur in O, and M1, . . . ,Mn are
sets of concept names that occur in O, such that

(i) a⇝R1

A,O M1 and

(ii) for 1 ≤ i < n, we have Mi ⇝
Ri+1

O Mi+1 and if
func(R−

i) ∈ O, then Ri+1 ̸= R−
i .

Let T denote the set of all traces for A and O. Then the
universal model of A and O is defined as

UA,O = A ∪ {A(a) | A,O |= A(a)} ∪
{A(tRM) | tRM ∈ T and A ∈ M} ∪
{R(t, tRM) | tRM ∈ T}.

In the following, we give three elementary lemmas that
pertain to universal models and are used throughout the ap-
pendix. Their proof is entirely standard and omitted. The
most important properties of universal models are as follows.

Lemma 8. Let O be an ontology formulated in DL-LiteH or
DL-LiteF and let A an ABox that is satisfiable w.r.t. O. Then

1. UA,O is a model of A and O;
2. A,O |= q(ā) iff q(x̄) → (UA,O, ā) for all CQs q(x̄) and

all ā ∈ ind(A)|x̄|.
We note that Lemma 8 ceases to hold when O is formu-

lated in DL-LiteHF due to subtle interactions between role
inclusions and functionality assertions.

The next lemma links query containment to the existence
of homomorphisms into the universal model.

Lemma 9. Let O be an ontology formulated in DL-LiteH or
DL-LiteF , and let q1(x̄), q2(ȳ) be CQs that are satisfiable
w.r.t. O. Then q1 ⊆O q2 iff q2(ȳ) → (Uq1,O, x̄).

The following lemma states that any homomorphism from
a CQ q to some universal model UA,O can be extended to a
homomorphism from Uq,O to UA,O.

Lemma 10. Let O be an ontology formulated in DL-LiteH

or DL-LiteF , A an ABox, and q(x0) a unary CQ, such that
A and q are both satisfiable w.r.t. O. If h is a homomorphism
from q to UA,O with h(x0) = a for some a ∈ ind(A), then
h can be extended to a homomorphism h′ from Uq,O to UA,O
with h′(x0) = a.

And finally, we show a property of O-minimal and O-
saturated queries that we will use to show that the construc-
tions indeed yield frontiers. Note that the property implies
that every homomorphism h from an ELIQ q(x0) to Uq,O
with h(x0) = x0 is injective.

Lemma 11. Let O be an ontology in normal form formu-
lated in DL-LiteH or DL-LiteF , and q(x0) an ELIQ that
is O-minimal, O-saturated and satisfiable w.r.t. O. Then
var(q) ⊆ img(h) for every homomorphism h from q to Uq,O
with h(x0) = x0.

Proof. Assume for contradiction that there is a variable x ∈
var(q) with x /∈ img(h). Let q′ be the restriction of q to
var(q) \ var(qx). We show that h is also a homomorphism
from q to Uq′,O, and thus that q ≡O q′. This contradicts the
minimality of q.

First, observe that for all y ∈ var(q), h(y) /∈ var(qx), since
q is connected and there is no y′ ∈ var(q) with h(y′) = x.

Next let yR1M1 . . . RnMn ∈ ∆Uq,O be a trace start-
ing with some variable y ∈ var(q′). Then y ⇝R1

q,O M1

and therefore Aq,O |= ∃R1.
d

M1(y) and there is no
R1(y, y

′) ∈ q such that Aq,O |=
d
M1(y

′). Since O is
in normal form, there is a set of concept names M such that
Aq,O |=

d
M(y) and O |=

d
M ⊑ ∃R1.

d
M1(y). By O-

saturation of q, Aq′ ,O |=
d

M(y) and therefore Aq′ ,O |=
∃R1.

d
M1(y). Since q′ is a subset of q, y ⇝R1

q′,O M1 and
thus yR1M1 . . . RnMn ∈ ∆Uq′,O .

Let A(y) ∈ q. If h(y) ∈ var(q′), then A(h(y)) ∈ Uq′,O by
O-saturation of q. If h(y) is a trace, then, by connectedness
it is a trace below a variable of q′ and thus A(h(y)) ∈ Uq′,O.

Let r(y, y′) ∈ q. Again, by connectedness of q, h(y)
and h(y′) must be variables of q′ or traces starting with
variables of q′. If both h(y) and h(y′) are variables, then
r(h(y), h(y′)) ∈ Uq′,O, since h(y), h(y′) /∈ var(qx). If one
or both of h(y) and h(y′) are a trace, then since the trace-
subtrees are identical, also r(h(x1), h(x2)) ∈ Uq′,O.

Thus, h is a homomorphism from q to Uq′,O as required.
❏

B Proofs for Section 2
We describe how to convert a DL-LiteHF -ontology O into
a DL-LiteHF -ontology O′ in normal form. We use C(O) to
denote the set of all concepts that occur on the right-hand
side of a concept inclusion in O. Note that C(O) is closed
under sub-concepts. We introduce a fresh concept name XC

for every complex concept C ∈ C(O), and set XA = A for
concept names A ∈ C(O). The ontology O′ consists of the
following concept and role inclusions:

• all role inclusions from O;

• C ⊑ XD for every C ⊑ D ∈ O;

• XD1⊓D2
⊑ XDi

, for every D1 ⊓ D2 ∈ C(O) and i ∈
{1, 2};

• X∃R.C ⊑ ∃R.XC , for every ∃R.C ∈ C(O);

Clearly, O′ can be computed in polynomial time. Moreover,
it is easy to verify that for all C ∈ C(O), we have O′ |=
XC ⊑ C. Regarding the relationship between O and O′, we
observe the following consequences of the definition of O′.

Lemma 12.
1. O′ |= O, that is, every model of O′ is a model of O;

2. every model I of O can be extended into a model I ′ of
O′ by starting with I ′ = I and then setting for every
complex concept C ∈ C(O), XI′

C = CI .

Lemma 12 essentially says that O′ is a conservative exten-
sion of O, but is slightly stronger in also making precise how
exactly a model of O can be extended to a model of O′.

C Proofs for Section 3
Lemma 1. For every DL-LiteH ontology O, we can construct
in polynomial time a DL-LiteH ontology O′ in normal form
such that every O-minimal ELIQ q is also O′-minimal and a
frontier of q w.r.t. O can be constructed in polynomial time
given a frontier of q w.r.t. O′.

Proof. Let O be a DL-LiteH ontology and let O′ be the re-
sult of converting O into normal form as described before
Lemma 12. Moreover, let q(x) be an ELIQ and F ′ a frontier
of q w.r.t. O′. Let F be obtained from F ′ by including all
ELIQs that can be obtained by taking an ELIQ p ∈ F ′ and
then doing the following:

• for every atom XC(x), C ∈ C(O), remove that atom
and add a variable disjoint copy of C viewed as an ELIQ,
gluing the root to x;

To prove that F is a frontier of q w.r.t. O, we show that the
three conditions from the definition of frontiers are satisfied:

1. q ⊆O qF for all qF ∈ F .
Assume to the contrary that there is a qF (x) ∈ F with
q ̸⊆O qF . Then, there is an ABox A and an individual
a ∈ ind(A) such that A,O |= q(a), but A,O ̸|= qF (a).
We may assume that concept names XC do not occur in
A as they are not used in O, q, and qF . From O′ |= O,
we obtain A,O′ |= q(a). Since A,O ̸|= qF (a), there
is a model I of A and O such that I ̸|= qF (a). Let I ′

be the extension of I according to Point 2 of Lemma 12.
Then I ′ is a model of O′ and A. Now, let q0F (x) ∈ F ′

be the query from which qF (x) was obtained in the
construction of F . By construction of qF and of I ′,
I ′ ̸|= q0F (a), so A,O′ ̸|= q0F (a). Thus, A witnesses
that q ̸⊆O′ q0F , a contradiction to q0F being in F ′.

2. qF ̸⊆ q for all qF ∈ F .
Let qF (x) ∈ F and let q0F (x) ∈ F ′ be the ELIQ from
which qF (x) was obtained during the construction of F .
Since q0F ̸⊆O′ q, there is an ABox A′ and an individual
a ∈ ind(A′) such that A′,O′ |= qF0 (a), but A′,O′ ̸|=
q(a). Let the ABox A be obtained by starting with A′

and adding C(b), for each concept assertion XC(b) ∈
A′. Here, the addition of C(b), with C an ELI-concept,
is defined as expected: view C(b) as a tree-shaped ABox
AC(b) that uses only fresh individual names, and then
add this ABox gluing its root to b.
We aim to show A,O |= qF (a) and A,O ̸|= q(a), wit-
nessing qF ̸⊆O q as required.
For the former, assume to the contrary that A,O ̸|=
qF (a). Then there is a model I of A and O with
I ̸|= qF (a). Let I ′ be the extension of I according to
Point 2 of Lemma 12. Then I ′ is a model of O′ and, by

construction of I ′ and of A from A′, also a model of A′.
Moreover, I ̸|= qF (a) implies I ′ ̸|= q0F (a) by construc-
tion of qF and of I ′. This contradicts A′,O′ |= qF0 (a).
It remains to show that A,O ̸|= q(a). Since A′,O′ ̸|=
q(a), there is a model I of O′ and A′ such that I ̸|=
q(a). Since O′ |= O, I is also a model of O. Since
O′ |= X∃R.C ⊑ ∃R.C for all ∃R.C ∈ C(O) and due to
the construction of A from A′, I is also a model of A.
Thus, I witnesses A,O ̸|= q(a), as required.

3. For all ELIQs q′ with q ⊆O q′ ̸⊆O q, there is a qF ∈ F
with qF ⊆O q′.
Let q′ be an ELIQ with q ⊆O q′ ̸⊆O q. From q ⊆O q′,
it follows that q′ does not use the fresh concept names
XC(x) in O′. Consequently, we obtain from Lemma 12
that q ⊆O′ q′ ̸⊆O′ q. There is thus a q0F (x) ∈ F ′ with
q0F ⊆O′ q′. Assume that qF ∈ F was obtained from q0F
in the construction of F . It suffices to show that qF ⊆O
q′. Assume to the contrary that this is not the case. Then
there is an ABox A and an individual a ∈ ind(A) such
that A,O |= qF (a), but A,O ̸|= q′(a). We can proceed
as in Point 1 above to show that A,O′ |= qF (a) and
A,O′ ̸|= q′(a), in contradiction to q0F ⊆O′ q′.

It remains to prove the second part of the Lemma: every
O-minimal ELIQ q is also O′-minimal. Suppose that q is not
O′-minimal, that is, there is a variable x such that q ≡O′ q′

where q′ = q|var(q)\{x}. Clearly, we have q ⊆O q′ as q′ ⊆ q.
Moreover, since q′ ⊆O′ q and Point 1 of Lemma 12, we have
q′ ⊆O q. Hence, q ≡O q′ and q is not O-minimal. ❏

Lemma 2. F is a frontier of q(x0) w.r.t. O.

Proof. We show that F fulfills the three conditions of fron-
tiers. For Condition 1, let p(x0) be a query from F . Then,
since q is satisfiable w.r.t. O, so is p. Hence it suffices to show
p(x0) → (Uq,O, x0) by Lemma 9.

We extend the mapping ·↓ to be defined on all variables
of p by considering the yet unmapped variables added in
Step 2A of the construction. Let z be such a fresh variable
added for x ∈ var(p), roles R, S and concept name A. Then
x↓ ⇝R

q,O A and by construction of Uq,O, there is a trace
x↓RA ∈ ∆Uq,O . Set z↓ = x↓RA. Now ·↓ is defined on
all variables of p and, by construction of p, it is a homomor-
phism from p to Uq,O with x↓

0 = x0 as required.

We start the proof of the second condition of frontiers with
the following claim:
Claim 1. p ̸⊆O qx for all x ∈ var(q) and p(x) ∈ F0(x).
Proof of Claim 1. We show the claim by induction on the
codepth of x in q, matching the inductive construction of F0.
In the induction start, x has codepth 0. Then, by definition of
codepth, there is no R(x, y) ∈ q that is directed away from
x0 and all p ∈ F0(x) must be obtained by dropping a concept
atom.

Let p(x) be a query from F0(x) that is obtained by drop-
ping the concept atom A(x) ∈ q. Then, by choice of A(x),
there is no B(x) ∈ p with O |= B ⊑ A and no R(x, x′) ∈ p
with O |= ∃R ⊑ A. Hence, A(x) ∈ qx and A(x) /∈ Up,O,
therefore p ̸⊆O qx.

In the induction step, let x have codepth > 0, let p(x) be
a query from F0(x) and assume that the claim holds for all
variables with smaller codepth. Let ·↓ be the extension of the
original ·↓ for p to a homomorphism from Up,O to Uqx,O that
exists by Lemma 10. If p is obtained by dropping a concept
atom, then the same argument as in the induction start yields
p ̸⊆O qx. If p is obtained by generalizing a subquery attached
to a role atom R(x, y) ∈ qx, assume for contradiction that
there is a homomorphism h from qx to Up,O with h(x) = x.
From h we construct a homomorphism h′ from q to Uq,O with
h′(x0) = x0 by setting h′(z) = h(z)↓ for all z ∈ var(qy) and
h′(z) = z for all z /∈ var(qy). Since h must map y to an
R-successor of x in Up,O, we may distinguish the following
cases.

• h(y) is a z ∈ var(p) with z↓ ̸= y.
Then, by definition of ·↓, z↓ = z, and therefore, by con-
struction of h′, h′(y) = h′(z) = z. Hence h′ is a non-
injective homomorphism from q to Uq,O with h′(x0) =
x0, contradicting O-minimality or O-saturatedness of q
by Lemma 11.

• h(y) is a trace h(x)SA ∈ ∆Up,O for some role S with
O |= S ⊑ R and concept name A.
Then, if h′(y) is also a trace, there must be a y′ ∈ var(q)
with y′ /∈ img(h′), again contradicting O-minimality or
O-saturatedness of q by Lemma 11.
If h′(y) is not a trace, but a successor y′ of x with y′ ̸= y,
then h′(y′) = h′(y), again contradicting O-minimality
of q by Lemma 11.
If h′(y) = y and there is a y′ ∈ var(qy) with h′(y′) = x,
then h′(y′) = h′(x), again contradicting O-minimality
by Lemma 11.
If h′(y) = y and there is no y′ ∈ var(qy) with h′(y′) =
x, then we show a contradiction to O-minimality q by
constructing a homomorphism h′′ from q to Uq′,O with
h′′(x0) = x0 where q′ is the restriction of q to var(q) \
{y}. Note that by construction of h′, h′(z) = y implies
z = y.
Since h(x)SA↓ = y, there is no trace xSA ∈ ∆Uq,O .
But, since h(x)SA ∈ ∆Up,O it must be that h(x) ⇝S

p,O
A and thus Ap,O |= ∃R.A(h(x)) and Aq,O |=
∃R.A(x). However, x ̸⇝S

p,O A because O |= R ≡ S,
R(x, y) ∈ q and Aq,O |= A(y).
Since R(x, y) /∈ q′ and by O-saturation of q and normal
form of O, it follows that x⇝S

q′,O A and therefore there
is a trace xSA ∈ ∆Uq′,O .
Construct h′′ by setting h′′(z) = h′(z) for all z ∈
var(q) \ var(qy) and h′′(z) = xSAR2A2 . . . RnAn for
all z ∈ var(qy) if h(z) = xSAR2A2 . . . RnAn.

• h(y) is the root y′ of a p′ ∈ F0(y) that was added in
Point 3 of generalizing a subquery.
Then, by the induction hypothesis, qy ̸→ Up′,O for all
p′ ∈ F0(y). We argue that, consequently, h cannot
map qy entirely into the subtree below y′ in Up,O. To
show this, it clearly suffices to argue that this subtree is
isomorphic to Up′,O. In fact, this is the case by defi-
nition of universal models, O-saturation of p and since

O is in normal form, unless there is a concept name A
with O |= ∃R− ⊑ A such that A(y′) ∈ Up,O, but
A(y′) /∈ Up′,O. Because of O-saturatedness, this im-
plies A(y′) ∈ p and A(y′) /∈ p′. Since the construction
of F0 never adds concept names to an ELIQ, this im-
plies that A(y′

↓
) ∈ q. Thus, A(y′

↓
) was dropped during

the construction of p′ from qy′↓ . This may only happen
by dropping a concept atom. However, R(x, y) ∈ q and
O |= ∃R− ⊑ A contradicts Condition (b) of dropping a
concept atom .
We have thus shown that h cannot map qy entirely into
the subtree below y′ ∈ Up′,O. Consequently, there
must be a y′′ ∈ var(qy) with h(y′′) = x. This yields
h′(y′) = h′(x) = x contradicting O-minimality of q by
Lemma 11.

Note that h(y) cannot be a variable introduced in Point 4 of
generalizing a subquery, as there only S-successors of x are
introduced that satisfy O ̸|= S ⊑ R. This completes the proof
of Claim 1.

We continue by using Claim 1 to show that p ̸⊆O q for all
p ∈ F . Let p be a query from F and assume for contradiction
that p ⊆O q. Then, there is a homomorphism h from q to
Up,O with h(x0) = x0. Let ·↓ be the extension of the original
·↓ for p to a homomorphism from Up,O to Uq,O which exists
by Lemma 10. We compose h and ·↓ to construct a homo-
morphism h′ from q to Uq,O with h′(x0) = x0. By Claim 1,
there is no homomorphism that maps q entirely into Up′,O for
any p′ ∈ F0(x0). Hence, there must be an x ∈ var(q) such
that h(x) is a fresh variable added in the compensation step.
By definition of that step and since q is connected, we may
distinguish the following two cases:

• h(x) is a fresh variable added in Step 2A. Then by defi-
nition of ·↓, h′(x) is a trace, contradicting O-minimality
of q by Lemma 11.

• h(x) is a fresh variable z added in Step 2B for the role
atom S(y, y′) ∈ p with z↓ = y↓.
Then, since q is connected, there must be a predecessor
x′ of x with h(x′) = y. Hence h′(x) = h′(x′) = y↓,
contradicting O-minimality of q by Lemma 11.

This completes the proof of Condition 2 of frontiers.

It remains to show that Condition 3 of frontiers is satis-
fied. Let q′(x0) be an ELIQ that is satisfiable w.r.t. O such
that q ⊆O q′ ̸⊆O q. We may assume w.l.o.g. that q′ is O-
saturated.

There is a homomorphism g from q′ to Uq,O with g(x0) =
x0. We have to show that there is a p ∈ F with p ⊆O q′. To
do this, we construct in three steps a homomorphism h from
q′ to Up,O with h(x0) = x0 for some p ∈ F . During all steps,
we maintain the invariant

h(z)↓ = g(z) (∗)

for all variables z ∈ var(q′) with h(z) defined and ·↓ the
extension of the original ·↓ for p to a homomorphism from
Up,O to Uq,O. In the first step of the construction, we define
h for an initial segment of q′.

Let U ⊆ var(q′) be the smallest set of variables (w.r.t. ⊆)
of q′ such that x0 ∈ U and R(x, y) ∈ q′ with x ∈ U , g(y) ∈
var(q), and S(g(x), g(y)) ∈ q directed away from x0 implies
y ∈ U . Let qU be the restriction of q′ to the variables in U .
Claim 2. For all x ∈ U with qUx ̸⊆O qg(x), there is a
p ∈ F0(g(x)) and a homomorphism h′ from qUx to Up,O that
satisfies (∗).
Proof of Claim 2. Let y = g(x). We show Claim 2 by induc-
tion on the codepth of x in qU . In the induction start, x has
codepth 0. We distinguish the following cases:

• There is an R(y, y′) ∈ qy .
Then let p ∈ F0(y) be constructed by generalizing
the subquery attached to the role atom R(y, y′) and set
h′(x) = y. Since q is O-saturated, A(y) ∈ Uq,O implies
A(y) ∈ Up,O. This and y = g(x) implies that h′ is a
homomorphism.

• There is no R(y, y′) ∈ qy .
Then qUx ̸⊆O qy implies that there is an A(y) ∈ qy with
A(x) /∈ UqUx ,O, and we must even find an A with these
properties such that there is no B(y) ∈ qy with O |=
B ⊑ A and O ̸|= A ⊑ B. This implies that Property (a)
of dropping concept atoms is satisfied. Property (b) is
satisfied since there is no R(y, y′) ∈ qy and thus we
may construct p ∈ F0(y) by dropping the concept atom
A(y). Set h′(x) = y.

In the induction step, let x have codepth > 0 in qU and as-
sume that the claim holds for all variables of smaller codepth.
From qUx ̸⊆O qy , it follows that qy ̸→ (UqUx ,O, x). We distin-
guish the following cases:

• There is an R(y, y′) ∈ qy such that qy′ ̸→ (UqU
x′ ,O, x

′)

for all S(x, x′) ∈ qUx with O |= S ⊑ R.
Let p ∈ F0(y) be constructed by generalizing the sub-
query attached to the role atom R(y, y′). We construct
the homomorphism h′ from qUx to Up,O by starting with
h′(x) = y and continuing to map all successors of x.
Let S(x, x′) ∈ qUx .
If g(x′) ̸= y′, then extend h′ to the subtree below x′ by
setting h′(z) = g(z) for all z ∈ var(qx′).
If g(x′) = y′ and O |= S ≡ R, then, by the induction
hypothesis, there is a p′ ∈ F0(y

′) and a homomorphism
h′′ from qx′ to Up′,O with h′′(x′) = y′. Extend h′ to the
variables in q′x′ by mapping q′x′ according to h′′ to the
copy of p′ that was attached to y in Point 3 of generaliz-
ing a subquery.
If g(x′) = y′ and O ̸|= S ⊑ R, then extend h′ to the
variables in q′x′ by mapping q′x′ according to g to the
copy of qy′ that was added in Point 4 of generalizing the
subquery attached with the role S.

• For every R(y, y′) ∈ qy , qy′ → (UqU
x′ ,O, x

′) for some
S(x, x′) ∈ qUx with O |= S ⊑ R.
Then there is an A(y) ∈ qy with A(x) /∈ UqUx ,O and
we must even find an A with these properties such
that there is no B(y) ∈ qy with O |= B ⊑ A and
O ̸|= A ⊑ B. Thus, Property (a) of dropping concept

atoms is satisfied. To show that Property (b) is also satis-
fied, we have to argue that there is no R(y, y′) ∈ qy with
O |= ∃R ⊑ A. But if there is such an R(y, y′) ∈ qy ,
then qy′ → (UqU

x′ ,O, x
′) for some S(x, x′) ∈ qUx with

O |= S ⊑ R. This implies A(x) ∈ UqUx ,O, a contradic-
tion.
We may thus construct p ∈ F0(y) by dropping the con-
cept atom A(y). Set h′(x′) = g(x′) for all x′ ∈ var(qUx).

This completes the proof of Claim 2.

By Claim 2, there is a p′ ∈ F0(x0) such that qU → Up′,O.
Let p ∈ F be the query that was obtained by applying the
compensation step to p′. Then clearly also qU → Up,O. De-
fine h for all variables in U according to the homomorphism
that witnesses this. Let ·↓ be the extension of the original ·↓
for p to a homomorphism from Up,O to Uq,O which exists by
Lemma 10.

We continue with the second step of the construction of h
which covers subtrees of q′ that are connected to the ini-
tial segment qU and whose root is mapped by g to traces of
Uq,O (and as opposed to a variable from var(q)). Consider all
atoms R(x, x′) ∈ q′ with h(x) defined, h(x′) undefined and
g(x′) /∈ var(q). Before extending h to q′x′ , we first show that
there is an atom S(h(x), z) ∈ p with O |= S ⊑ R, added in
Step 2A.

Since g(x′) /∈ var(q), g(x′) must be a trace g(x)SA ∈
∆Uq,O for some concept name A and role S with O |= S ⊑
R. Hence, g(x)⇝S

q,O A.
We aim to show that Step 2A of compensation is appli-

cable. To thus end, take any concept name B such that
O |= ∃R ⊑ B. We have to show that B(h(x)) ∈ p. As-
sume to the contrary that B(h(x)) /∈ p. Then, since q is O-
saturated, B(g(x)) ∈ q and p must be the result of dropping
the concept atom B(g(x)). However, since q′ is O-saturated
and R(x, x′) ∈ q′, B(x) ∈ q′ and this contradicts Claim 2,
since x ∈ U .

Hence, Step 2A adds the atoms R(h(x), z), B(z), S(z′, z)
with z and z′ fresh variables and adds a disjoint copy q̂
of q, gluing the copy of h(x)↓ in q̂ to z′. Extend h to
the variables in q′x′ by setting h(x̂) = zR2M2 . . . RnMn if
g(x̂) = g(x)SAR2M2 . . . RnMn for all x̂ in the subtree be-
low x′. If there is an x′′ ∈ var(q′x′) with g(x′′) = g(x), set
h(x′′) = z′ and continue mapping the subtree below x′′ into
the attached copy q̂ of q according to g.

In the third and final step of the construction of h, we con-
sider the remaining subtrees of q′. Let R(x, x′) ∈ q′ be di-
rected away from x0 with h(x) defined and h(x′) undefined.

Then h(x) was defined in the first step of the construc-
tion of h, and thus x ∈ U . As h(x′) was not defined in
the second step g(x′) ∈ var(q). Therefore, since x′ /∈ U ,
R(g(x), g(x′)) ∈ Uq,O must be directed towards x0. This
implies that x is not the root of q′ and that there is an atom
T (x′′, x) ∈ q′ directed away from x0 with g(x′′) = g(x′).
From x ∈ U it follows that x′′ ∈ U and therefore h(x′′) and
h(x) were defined in the first step of the construction of h.

Hence, there is an atom S(h(x′′), h(x)) ∈ p directed away
from x0 with O |= S ⊑ T that was not added in Step 2A.

Since by (∗) h(x′′)↓ = g(x′′) = g(x′) and h(x)↓ = g(x),
Aq,O |= R−(h(x′′)↓, h(x)↓)

Therefore, Step 2B added an atom R−(z, h(x)) to p, z a
fresh variable, and glued a copy q̂ of q to z. Set h(x′) = z
and extend h to the entire subtree q′x′ by mapping all variables
into the attached copy of q according to g.

This completes the construction of h and the proof that
Condition 3 is satisfied. ❏

Lemma 3. The construction of F runs in time polynomial in
||q||+ ||O|| (and thus

∑
p∈F

||p|| is polynomial in ||q||+ ||O||).

Proof. In order to reduce notational clutter, we introduce
some abbreviations used throughout the proof.

• s = |sig(q)| denotes the number of concept and role
names used in q;

• o = ||O|| denotes the size of O;
• for an ELIQ p, np = |var(p)| denotes the number of

variables in p;
• for a set Q of queries, nQ denotes

∑
p∈Q np.

We assume without loss of generality that s and o are at least
one.

We start with analyzing the size of the queries in F0(x)
that are obtained as the result of the generalization step.
Claim. For every x ∈ var(q),

nF0(x) ≤ s · o · n3
qx .

Proof of the claim. The proof is by induction on the codepth
of x in q. For the base case, consider a variable x of codepth
0 in q, that is, a leaf. In this case, only Step (A) is applicable,
and it adds at most s queries to F0(x), each with a single
variable.

For the inductive step, consider a variable x of codepth
greater than 0. We partition F0(x) into FA

0 (x) and FB
0 (x),

that is, the queries that are obtained by dropping a concept
atom in Step (A) and the queries that are obtained by general-
izing a subquery in Step (B), respectively, and analyze them
separately, starting with FA

0 (x). Clearly, every p ∈ FA
0 (x)

uses nqx variables and there are at most s queries in FA
0 .

Thus, we have
nFA

0 (x) ≤ s · nqx .

Next, we analyze FB
0 (x). Each query in FB

0 (x) is obtained
by first picking, in Point 1, an atom R(x, y) in qx. Then, in
Point 3, we add

∑
p∈F0(y)

np variables and, in Point 4, we
add at most o copies of qy . Thus, we obtain

nFB
0 (x) ≤

∑
R(x,y)∈qx

(nqx + nF0(y) + o · nqy).

Plugging in the induction hypothesis, we obtain

nFB
0 (x) ≤

∑
R(x,y)∈qx

(nqx + s · o · n3
qy + o · nqy). (1)

We simplify the right-hand side of (1) by making the follow-
ing observations:

•
∑

R(x,y)∈qx
nqx ≤ nqx · (nqx − 1),

•
∑

R(x,y)∈qx
nqy = nqx − 1, and

•
∑

R(x,y)∈qx
n3
qy ≤

(∑
R(x,y)∈qx

nqy

)3

= (nqx − 1)3.
Here, the inequality is an application of the general in-
equality

∑
i a

3
i ≤ (

∑
i ai)

3, for every sequence of non-
negative numbers a1, . . . , ak.

Using these observations, Inequality (1) can be simplified to:

nFB
0 (x) ≤ nqx · (nqx − 1) + s · o · (nqx − 1)3 + o · (nqx − 1)

≤ s · o ·
(
nqx · (nqx − 1) + (nqx − 1)3 + (nqx − 1)

)
= s · o ·

(
n2
qx + (nqx − 1)3 − 1

)
.

Overall, we get

nF0(x) = nFA
0 (x) + nFB

0 (x)

≤ s · nqx + s · o ·
(
n2
qx + (nqx − 1)3 − 1

)
≤ s · o ·

(
nqx + n2

qx + (nqx − 1)3 − 1
)

≤ s · o · n3
qx .

In the last inequality, we used that z3 ≥ z+z2+(z−1)3−1,
for all real numbers z. This finishes the proof of the claim.

We analyze now the compensation Step 2, in which the
queries in F0(x0) are further extended. We denote with F1

the result of applying Step 2A to F0(x0). In Step 2A, we
add at most one variable and a copy of q for every variable
in F0(x0) and every choice of a concept name A and role
names S and R that occurs in O. Therefore, we add at most
(1 + nq) · nF0(x0) · o3 variables in total. Using the claim, we
get

nF1 ≤ nF0(x0) + (1 + nq) · nF0(x0) · o
3

≤ s · o · n3
q ·

(
1 + (1 + nq) · o3

)
.

In Step 2B, we add at most one copy of q for every role
atom in some query in F1 and every role name in O. Hence,

nF ≤ nF1 + nF1 · nq · o
=

(
s · o · n3

q ·
(
1 + (1 + nq) · o3

))
· (1 + nq · o),

which is polynomial in ||q|| and ||O||. Moreover, the compu-
tation of F can be carried out in polynomial time since all the
involved queries are of polynomial size and consequences of
O can be decided in polynomial time. ❏

Theorem 2. There are families of AQ∧s q1, q2, . . . and con-
junctive ontologies O1,O2, . . . such that for all n ≥ 1, any
frontier of qn w.r.t. On has size at least 2n.
Proof. For n ≥ 1, let

qn(x) = A1(x) ∧A′
1(x) ∧ · · · ∧An(x) ∧A′

n(x)

On = {Ai ⊓A′
i ⊑ A1 ⊓A′

1 ⊓ · · · ⊓An ⊓A′
n | 1 ≤ i ≤ n}.

Suppose F is a frontier of qn w.r.t. On. Let p be any query
that contains for each i with 1 ≤ i ≤ n either Ai(x) or A′

i(x).
It suffices to show that p ∈ F .

Clearly, qn ⊆On
p ̸⊆On

qn and thus Point 3 of the defini-
tion of frontiers implies that there is a p′ ∈ F with p′ ⊆O p.
We distinguish cases:

• p′ contains the atoms Ai(x), A
′
i(x) for some i. But then

p′ ≡On qn and p′ cannot be in F by Point 2 of the defi-
nition of frontiers, a contradiction.

• p′ does not contain both atoms Ai(x), A
′
i(x) for any i.

But then the ontology does not have an effect on the con-
tainment p′ ⊆On

p and hence every Ai(x), A
′
i(x) that

occurs in p must occur in p′. As p′ does not contain the
atoms Ai(x), A

′
i(x) for any i, we actually have p′ = p,

which was to be shown.
❏

D Proofs for Section 4
A CQ-frontier for an ELIQ q w.r.t. O is a finite set of unary
CQs that satisfies Properties 1–3 of Definition 1. Note that
every frontier is a CQ-frontier, but not vice versa.
Theorem 3. There is an ELIQ q and a DL-LiteF ontology O
such that q does not have a finite frontier w.r.t. O.
Proof. Let q(x) = A(x) and
O = { A ⊑ ∃r, ∃r− ⊑ ∃r, ∃r ⊑ ∃s, func(r−) }.

The universal model Uq,O of Aq and O is an infinite r-path
in which every point has a single s-successor.

Suppose, for the sake of showing a contradiction, that F
is a CQ-frontier of q w.r.t. O. We can assume w.l.o.g. that
all queries in F are satisfiable w.r.t. O, especially that they
satisfy func(r−). Since F is finite, there is an n ≥ 1 such
that |var(p)| < n, for all p ∈ F . Consider the following
ELIQ q′:

q′(x1) = r(x1, x2), . . . , r(xn−1, xn),

s(xn, y), s(x
′
n, y),

r(x′
1, x

′
2), . . . , r(x

′
n−1, x

′
n), A(x

′
1).

Note that q′ ̸⊆O q ⊆O q′ and that q′ satisfies func(r−).
By Property 3 of frontiers, there is a query p(z) ∈ F such

that p ⊆O q′. By Lemma 9, there is a homomorphism h from
q′ to Up,O with h(x1) = z. We distinguish cases.

Suppose first that h(xi) ∈ var(p) for all i with 1 ≤ i ≤ n,
then by the choice of n there must be 1 ≤ i < j ≤ n such that
h(xi) = h(xj). Since q′ contains a directed r-path from xi

to xj and Up,O does not contain edges between variables that
are not part of p, this implies that p must contain an r-cycle.
Thus, q ̸⊆O p, violating Property 1 of frontiers.

Suppose now that h(xi) /∈ var(p) for some i with
1 ≤ i ≤ n, that is, h(xi) is a trace starting with some y ∈
var(p). Since q′ is an ELIQ, there is a j < i such that
h(xj) = y and h(xj+1), . . . , h(xi) /∈ var(p). The struc-
ture of q′ and the structure of the anonymous part in universal
models of O imply that h(x′

j) = h(xj).
We now show that h(x1) = h(x′

1). If j = 1, we are done.
If j > 1, there are atoms r(xj−1, xj) and r(x′

j−1, x
′
j) in q′.

Since h is a homomorphism, h(xj) = h(x′
j), and p satisfies

func(r−), we obtain h(xj−1) = h(x′
j−1). Repeating this

argument yields h(x1) = h(x′
1) as required. Since h(x1) =

z, we also have h(x′
1) = z. Since h is a homomorphism and

A(x′
1) ∈ q′, we have A(z) ∈ p and thus p ⊆O q, violating

Property 2 of frontiers. ❏

Lemma 4. For every DL-LiteF− ontology O, we can con-
struct in polynomial time a DL-LiteF− ontology O′ in nor-
mal form such that for every ELIQ q, a frontier of q w.r.t. O
can be constructed in polynomial time given a frontier of q
w.r.t. O′.

Proof. The proof of the Lemma is the same as the proof of
Lemma 1, except for the verification that the constructed set
F satisfies Property 2 of frontiers. So we detail this here.
Claim. qF ̸⊆ q, for all qF ∈ F .
Proof of the claim. Let qF (x) ∈ F and let q0F (x) ∈ F ′ be
the ELIQ from which qF (x) was obtained during the con-
struction of F . Since q0F ̸⊆O′ q, there is an ABox A′ and
an individual a ∈ ind(A′) such that A′,O′ |= qF0 (a), but
A′,O′ ̸|= q(a). As in the proof of Lemma 1, the idea is to
obtain an ABox A by starting with A′ and adding AC(b), for
each concept assertion XC(b) ∈ A′. However, the addition
of AC(b), with C an ELI-concept has to respect the func-
tionality assertions of O. In order to achieve this, we define
the addition of a tree-shaped ABox B with root b0 to A at a
inductively on the structure of B as follows:

1. for all A(b0) ∈ B, add A(a) to A;

2. for all R(b0, b
′) ∈ B, let B′ be the sub-ABox of B rooted

at b′ and

(a) if func(R) ∈ O and there is an atom R(a, a′) in A,
then add B′ to A at a′;

(b) otherwise, add an atom R(a, a′) for a fresh individ-
ual a′ and add B′ to A at a′.

Importantly, there can only be one atom R(b, b′) in the first
case for the existential restriction, if A satisfies the function-
ality assertions in O. It should be clear that the resulting
ABox also satisfies the functionality assertions if A does.

We thus obtain the ABox A by starting with A = A′ and
adding AC(b) to A at b, for each concept assertion XC(b) ∈
A′. We aim to show A,O |= qF (a) and A,O ̸|= q(a), wit-
nessing qF ̸⊆O q as required.

For the former, assume to the contrary that A,O ̸|= qF (a).
Then there is a model I of A and O with I ̸|= qF (a). Let
I ′ be the extension of I according to Point 2 of Lemma 12.
Then I ′ is a model of O′ and, by construction of I ′ and of A
from A′, also a model of A′. Moreover, I ̸|= qF (a) implies
I ′ ̸|= q0F (a) by construction of qF and of I ′. This contradicts
A′,O′ |= qF0 (a).

It remains to show that A,O ̸|= q(a). Since A′,O′ ̸|=
q(a), there is a model I of O′ and A′ such that I ̸|= q(a).
Since O′ |= O, I is also a model of O. Since O′ |= X∃R.C ⊑
∃R.C for all ∃R.C ∈ C(O) and due to the construction of A
from A′, I is also a model of A. Thus, I witnesses A,O ̸|=
q(a), as required.

This finishes the proof of the claim and of the lemma.
❏

Lemma 5. F is a frontier of q(x0) w.r.t. O.

Proof. We show that F fulfills the three conditions of fron-
tiers. For Condition 1, let p(x0) be a query from F and let
p0(x0) ∈ F0(x0) be the query that was used to construct p

by applying the compensation step. First we observe that p0
is satisfiable w.r.t. O, since q is satisfiable w.r.t. O and neither
the dropping of a concept atom nor the generalizing of a sub-
query introduces any violations of functionality assertions in
O. Next, let R(x, z) ∈ p be an atom that was added during
Step 2A of the compensation step. Then either func(R) /∈ O
or there is no atom R(x, z′) ∈ p and therefore Step 2A in-
troduces no atoms that violate any functionality assertions.
Similarly Step 2B ensures that all added atoms to not violate
functionality assertions in O. Therefore p is also satisfiable
w.r.t. O. Hence it suffices to show p(x0) → (Uq,O, x0) by
Lemma 9.

We extend the mapping ·↓ to be defined on all variables of p
by considering the yet unmapped variables added in Step 2A
and Point (iii) of Step 2B. Let u be a fresh variable with u↓ un-
defined that was added because there is a x ∈ var(p), a role R
and a set M of concept names such that x↓ ⇝R

q,O M . Then,
by construction of Uq,O there is a trace x↓RM ∈ ∆Uq,O . Set
u↓ = x↓RM . Now ·↓ is defined on all variables of p and, by
construction of p, it is a homomorphism from p to Uq,O with
x↓
0 = x0 as required.

We start the proof of the second condition of frontiers with
the following claim:
Claim 1. p ̸⊆O qx for all x ∈ var(q) and p(x) ∈ F0(x).
Proof of Claim 1. We show the claim by induction on the
codepth of x in q, matching the inductive construction of F0.
In the induction start, x has codepth 0. Then, by definition of
codepth, there is no R(x, y) ∈ q that is directed away from x0

and all p ∈ F0(x) are obtained by dropping a concept atom.
Let p(x) be a query from F0(x) that is obtained by drop-

ping the concept atom A(x) ∈ q. Then, by choice of A(x),
there is no B(x) ∈ p with O |= B ⊑ A and no R(x, x′) ∈ p
with O |= ∃R ⊑ A. Hence A(x) ∈ qx, but A(x) /∈ Up,O and
therefore p ̸⊆O qx.

In the induction step, let x have codepth > 0, let p(x) be
a query from F0(x) and assume that the claim holds for all
variables with smaller codepth. Let ·↓ be the extension of
the original ·↓ for p to a homomorphism from Up,O to Uqx,O,
which exists by Lemma 10. If p is obtained by dropping a
concept atom, then the same argument as in the induction start
yields p ̸⊆O qx. If p is obtained by generalizing the subquery
attached to a role atom R(x, y) ∈ q, assume for contradic-
tion that there is a homomorphism h from qx to Up,O with
h(x) = x. From h we construct a homomorphism h′ from q
to Uq,O with h′(x0) = x0 by setting h′(z) = h(z)↓ for all
z ∈ var(qy) and h′(z) = z for all z /∈ var(qy). Since h must
map y to a R-successor of x in Up,O, we may distinguish the
following cases.

• h(y) is a variable z ∈ var(p) with z↓ ̸= y. Then, by defi-
nition of ·↓, z↓ = z, and therefore, by construction of h′,
h′(y) = h′(z) = z. Hence, h′ is a non-injective homo-
morphism from q to Uq,O with h′(x0) = x0, contradict-
ing O-minimality or O-saturatedness of q by Lemma 11.

• h(y) is a trace h(x)RM ∈ Up,O for some set M of con-
cept names.
If h′(y) is also a trace, then there must be a y′ ∈ var(q)

with y′ /∈ img(h′), again contradicting O-minimality or
O-saturatedness of q by Lemma 11.
If h′(y) is not a trace, but a different successor y′ of x,
then h′(y′) = h′(y), again contradicting O-minimality
of q by Lemma 11.
If h′(y) = y and there is no y′ ∈ var(qy) with h′(y′) =
x, then we show a contradiction to O-minimality q by
constructing a homomorphism h′′ from q to Uq′,O with
h′′(x0) = x0 where q′ is the restriction of q to var(q) \
{y}. Note that by construction of h′, h′(z) = y implies
z = y.
Since h(x)RM↓ = y, there is no trace xRM ∈ ∆Uq,O .
But, since h(x)RM ∈ ∆Up,O it must be that h(x)⇝S

p,O
M and thus Ap,O |= ∃R.

d
M(h(x)) and Aq,O |=

∃R.
d

M(x). However, x ̸⇝S
p,O M because R(x, y) ∈

q and Aq,O |=
d

M(y).
Since R(x, y) /∈ q′ and by O-saturation of q and normal
form of O, it follows that x ⇝R

q′,O M and therefore
there is a trace xRM ∈ ∆Uq′,O .
Construct h′′ by setting h′′(z) = h′(z) for all z ∈
var(q) \ var(qy) and h′′(z) = xRMR2M2 . . . RnMn

for all z ∈ var(qy) if h(z) = xRMR2M2 . . . RnMn.

• h(y) is the root y′ of a p′ ∈ F0(y) that was added in
Points 3 or 4 of generalizing a subquery.
By the induction hypothesis, qy ̸→ Up′,O for all p′ ∈
F0(y). We argue that, consequently, h cannot map qy
entirely into the subtree below y′ in Up,O. To show this,
it clearly suffices to argue that this subtree is isomor-
phic to Up′,O. In fact, this is the case by definition of
universal models and since O is in normal form, un-
less there is a concept name A with O |= ∃R− ⊑ A
such that A(y′) ∈ Up,O, but A(y′) /∈ Up′,O. Be-
cause of O-saturatedness, this implies A(y′) ∈ p and
A(y′) /∈ p′. Since the construction of F0 never adds
concept names to an ELIQ, this implies that A(y′

↓
) ∈ q.

Thus, A(y′
↓
) was dropped during the construction of p′

from qy′↓ . This may only happen by dropping a con-
cept atom. However, R(x, y) ∈ q and O |= ∃R− ⊑ A
contradicts Condition (b) of dropping a concept atom.
We have thus shown that h cannot map qy entirely into
the subtree below y′ ∈ Up′,O. Consequently, there
must be a y′′ ∈ var(qy) with h(y′′) = x. This yields
h′(y′) = h′(x) = x contradicting O-minimality of q by
Lemma 11.

This completes the proof of Claim 1.
We continue by using Claim 1 to show that p ̸⊆O q for all

p ∈ F . Let p be a query from F and assume for contradiction
that p ⊆O q. Then, there is a homomorphism h from q to
Up,O with h(x0) = x0. Let ·↓ be the extension of the original
·↓ for p to a homomorphism from Up,O to Uq,O, which exists
by Lemma 10. We compose h and ·↓ to construct a homo-
morphism h′ from q to Uq,O with h′(x0) = x0. By Claim 1,
there is no homomorphism that maps q entirely into Up′,O for
any p′ ∈ F0(x0). Hence, there must be an x ∈ var(q) such
that h(x) is a fresh variable added in the compensation step.

By definition of that step and since q is connected, we may
distinguish the following cases:

• h(x) is a fresh variable added in Step 2A.
Then, by definition of ·↓, h′(x) is a trace, contradicting
O-minimality of q by Lemma 11.

• h(x) is a fresh variable z added in the start of Step 2B
for the role atom R(y, y′) ∈ p with z↓ = y↓.
Then, since q is connected, there must be a predecessor
x′ of x with h(x′) = y. Hence h′(x) = h′(x′) = y↓,
contradicting O-minimality of q by Lemma 11.

• h(x) is a fresh variable added in the iterated step of
Step 2B.
Then, since q is connected and the step only adds vari-
ables to the subtree below a marked atom , there must
be a predecessor x′ of x such that h(x′) is a fresh vari-
able added in the start of Step 2B. This leads to the same
contradiction as in the last case.

This completes the proof of Condition 2 of frontiers.

It remains to show that Condition 3 of frontiers is satisfied.
Let q′(x0) be an ELIQ that is satisfiable w.r.t. O such that
q ⊆O q′ ̸⊆O q. We may assume w.l.o.g. that q′ is O-saturated
and that it satisfies all functionality assertions in O. If, in
fact, q′ contains atoms R(x, y1), R(x, y2) with y1 ̸= y2 and
func(R) ∈ O, then we can identify y1 and y2, obtaining an
ELIQ that is equivalent w.r.t. O to the original q′.

There is a homomorphism g from q′ to Uq,O with g(x0) =
x0. We have to show that there is a p ∈ F with p ⊆O q′. To
do this, we construct in four steps a homomorphism h from q′

to Up,O with h(x0) = x0 for some p ∈ F . During all steps,
we maintain the invariant

h(z)↓ = g(z) (∗)

for all variables z ∈ var(q′) with h(z) defined and ·↓ the
extension of the original ·↓ for p to a homomorphism from
Up,O to Uq,O. In the first step of the construction, we define
h for an initial segment of q′.

Let U ⊆ var(q′) be the smallest set of variables (w.r.t. ⊆)
of q′ such that x0 ∈ U and, for all x ∈ U and R(x, y) ∈
q′ directed away from x0, we have: if R(g(x), g(y)) is an
atom in q directed away from x0, then y ∈ U . Intuitively, U
induces the maximal initial segment of q′ that is mapped in a
‘direction-preserving’ way. Let qU be the restriction of q′ to
the variables in U .
Claim 2. For all x ∈ U with qUx ̸⊆O qg(x), there is a
p ∈ F0(g(x)) and a homomorphism h′ from qUx to Up,O that
satisfies (∗).
Proof of Claim 2. Let y = g(x). We show Claim 2 by induc-
tion on the codepth of x in qU . In the induction start, x has
codepth 0. We distinguish the following cases:

• There is an R(y, y′) ∈ qy .
Then let p ∈ F0(y) be constructed by generalizing the
subquery attached to R(y, y′) and set h′(x) = y. Since
q is O-saturated, A(y) ∈ Uq,O implies A(y) ∈ Up,O.
This and y = g(x) implies that h′ is a homomorphism.

• There is no R(y, y′) ∈ qy .
Then qUx ̸⊆O qy implies that there is an A(y) ∈ qy with
A(x) /∈ UqUx ,O, and we must even find an A with these
properties such that there is no B(y) ∈ qy with O |=
B ⊑ A and O ̸|= A ⊑ B. This implies that Property (a)
of dropping concept atoms is satisfied. Property (b) is
satisfied since there is no R(y, y′) ∈ qy and thus we
may construct p ∈ F0(y) by dropping the concept atom
A(y). Set h′(x) = y.

In the induction step, let x have codepth > 0 and assume that
the claim holds for all variables of smaller codepth. From
qUx ̸⊆O qy , it follows that qy ̸→ (UqUx ,O, x). We distinguish
the following cases:

• There is an R(y, y′) ∈ qy such that qy′ ̸→ (UqU
x′ ,O, x

′)

for all R(x, x′) ∈ qUx .
First assume func(R) /∈ O. Then let p ∈ F0(y)
be constructed by generalizing the subquery attached
to R(y, y′). We construct the homomorphism h′ from
qUx to Up,O by starting with h′(x) = y and continu-
ing to map all successors of x. Let S(x, x′) ∈ qUx .
If g(x′) ̸= y′, then extend h′ to the subtree below
x′ by setting h′(z) = g(z) for all z ∈ var(qx′). If
g(x′) = y′, then, by the induction hypothesis, there is a
p′ ∈ F0(y

′) and a homomorphism h′′ from qx′ to Up′,O
with h′′(x′) = y′. Extend h′ to the variables in qx′ by
mapping qx′ according to h′′ to the copy of p′ that was
attached to y in Point 3 of generalizing the subquery at-
tached to R(y, y′).
Now assume func(R) ∈ O. Then there is at most one
R(x, x′) ∈ qUx with g(x′) = y′. If there is none, choose
an arbitrary p ∈ F0(y) constructed by generalizing the
subquery attached to R(y, y′) and extend h′ as above.
If there is a single such R(x, x′), then, by the induction
hypothesis, there is a p′ ∈ F0(y

′) and homomorphism
h′′ from qUx′ to Up′,O with h′′(x′) = y′. Let p ∈ F0(y)
be constructed by generalizing the subquery attached to
R(y, y′) and attaching p′ in Step 4, then extend h′ as
above.

• For every R(y, y′) ∈ qy , qy′ → (UqU
x′ ,O, x

′) for some
R(x, x′) ∈ qUx .
Then there is an A(y) ∈ qy with A(x) /∈ UqUx ,O and
we must even find an A with these properties and such
that there is no B(y) ∈ qy with O |= B ⊑ A and O ̸|=
A ⊑ B. Thus, Property (a) of dropping concept atoms is
satisfied. To show that Property (b) is also satisfied, we
have to argue that there is no R(y, y′) ∈ qy with O |=
∃R ⊑ A. But by assumption for any such R(y, y′) ∈ qy
we have qy′ → (UqU

x′ ,O, x
′) for some R(x, x′) ∈ qUx .

This implies A(x) ∈ UqUx ,O, a contradiction.

We may thus construct p ∈ F0(y) by dropping the con-
cept atom A(y). Set h′(x′) = g(x′) for all x′ ∈ var(qUx).

This completes the proof of Claim 2.

By Claim 2, there is a p′ ∈ F0(x0) such that qU → Up′,O.
Let p ∈ F be the query that was obtained by applying the

compensation step to p′. Then clearly also qU → Up,O. De-
fine h for all variables in U according to the homomorphism
that witnesses this and let ·↓ be the extension of the original
·↓ for p to a homomorphism from Up,O to Uq,O.

We continue with the second step of the construction of h
which covers parts of q′ that are connected to the initial seg-
ment qU and which are mapped to traces of Uq,O rather than
to var(q). Consider all atoms R(x, x′) ∈ q′ with h(x) de-
fined, h(x′) undefined and g(x′) /∈ var(q). Before extending
h to x′, we first show that there is an atom R(h(x), z) ∈ p,
added in Step 2A.

Since g(x′) /∈ var(q), g(x′) must be a trace g(x)RM ∈
∆Uq,O for some set M , hence g(x) ⇝R

q,O M . This implies
that there is no R(g(x), y) ∈ q with Aq,O |=

d
M(y).

Furthermore, assume that there is a concept name B such
that O∃R ⊑ B but B(h(x)) /∈ p. Then, since q is O-
saturated, B(g(x)) ∈ q and p must be the result of dropping
the concept atom B(g(x)). However, since q′ is O-saturated,
B(x) ∈ q′, contradicting Claim 2, therefore there is no such
concept name.

Hence, Step 2A adds a fresh variable z ∈ var(p) and the
atom R(h(x), z) to p with z↓ = g(x)RM . We extend h to the
initial segment of q′x′ that is mapped by g into the traces below
g(x′). Set h(x̂) = zR2M2 . . . RnMn for all x̂ in this initial
segment with g(x̂) = g(x)RMR2M2 . . . RnMn. If we reach
a R(x′′, x′′′) ∈ q′x′ directed away from x0 with g(x′′) a trace
and g(x′′′) ∈ var(q), then leave h(x′′′) undefined. The map-
ping h will be extended to the subtree q′x′′′ in the next steps.
Note that (∗) is satisfied.

In the third step of the construction of h, we consider all
R(x, x′) ∈ q′ directed away from x0 with h(x) defined and
h(x′) undefined. Before defining h(x′), we first show that

(a) there is an atom R(h(x), y) ∈ p directed towards x0

such that func(R−) /∈ O and

(b) g(x′) ∈ var(q).

Distinguish the following cases:

• g(x) is a trace.
Then h(x) was defined in the second step. From the
fact that h(x′) was not defined in the second step, it fol-
lows that g(x′) ∈ var(q), as required for (b). Conse-
quently, g(x) must be of the form g(x′)R−M ∈ Uq,O
and h(x) was defined in the second step to be a fresh
variable added to p in Step 2A of its construction and
this variable is an R−-successor of some variable y,
that is, R−(y, h(x)) ∈ p directed away from x0. We
may thus use the inverse of this atom as the desired
atom R(h(x), y) in (a). Since g(x′)R−M is a trace in
Uq,O and due to the syntactic restriction adopted by the
DL-LiteF− ontology O, we further have func(R) /∈ O.

• g(x) is not a trace, that is, g(x) ∈ var(q).
Since h(x′) has neither been defined in the first nor in
the second step, we must have x ∈ U , g(x′) ∈ var(q)
(as required for (b)) and R(g(x), g(x′)) ∈ q is directed
towards x0. The latter implies that x is not the root
of q′, thus q′ contains an atom S(x′′, x) directed away
from x0. From x ∈ U , it follows by definition of U

that x′′ ∈ U . Thus h(x′′) and h(x′) were both de-
fined in the first step and, due to the formulation of that
step, S(x′′, x) ∈ q′ directed away from x0 implies that
q contains the atom S(g(x′′), g(x)) directed away from
x0. So S(g(x′′), g(x)) ∈ q is directed away from x0

and R(g(x), g(x′)) ∈ q is directed towards x0. Since
q is a tree, this implies g(x′′) = g(x′) and S = R−.
We have thus shown that R−(x′′, x) and R(x, x′) are
atoms in q′ that are both directed away from x0. Since
q′ satisfies all functionality assertions in O, this implies
func(R) /∈ O. We use R(h(x), h(x′′)) ∈ p as the de-
sired atom R(h(x), y).

Consider the inverse R−(y, h(x)) of the atom
R(h(x), y) ∈ p that exists due to (a). In the start of Step 2B
of the construction of p, the inverse atom R−(y, h(x)) is con-
sidered and leads to the introduction of an atom R(h(x), y′),
y′ a fresh variable with y′

↓
= y↓. Set h(x′) = y′. Note

that R(h(x), h(x′)) ∈ p was marked in Step 2B of the
construction of p.

In the final step of the construction of h we define h(x) for
all remaining variables x. We do this by repeatedly choosing
atoms R(x, x′) ∈ q′ directed away from x0 such that

1. h(x) and h(x′) defined and

2. for all S(x′, x′′) ∈ q′ directed away from x0, h(x′′) is
undefined and there is at least one such S(x′, x′′).

If we choose such an R(x, x′) directly after the third step
of the construction of h, then g(x′) ∈ var(q) due to (b)
and R(h(x), h(x′)) ∈ p was marked in Step 2B of the con-
struction of p. We implement our extension of h such that
these conditions are always guaranteed when we choose an
R(x, x′) ∈ q′ that satisfies Properties 1 and 2 above.

Let R(x, x′) ∈ q′ be an atom that satisfies Properties 1
and 2. First assume that func(R−) /∈ O. Then processing the
marked atom R(h(x), h(x′)) ∈ p in Step 2B of the construc-
tion of p results in a copy q̂ of q to be added to p, with the
copy of h(x′)

↓ in q̂ glued to h(x′). Define h for all variables
x′′ ∈ var(q′x′) by setting h(x′′) to be the copy of g(x′′) in q̂ if
g(x′′) is a variable, or to be the trace h(x′′′)R1M1 . . . RnMn

if g(x′′) is the trace g(x′′′)R1M1 . . . RnMn.
Now assume that func(R−) ∈ O. Consider each

S(x′, x′′) ∈ q′ directed away from x0. We distinguish two
cases:

• g(x′′) is a trace.
Since g(x′) ∈ var(q), g(x′′) must be of the form
g(x′)SM . Thus, g(x′) ⇝S

q,O M and by (∗),
h(x′)↓ ⇝S

q,O M and when the marked atom
R(h(x), h(x′)) ∈ p is processed in Step 2B of the con-
struction of p. Thus, Point (iii) of Step 2B adds to p
atoms S(h(x′), u), S−(u, y′), and A(u) for every A ∈
M . Additionally, processing the marked atom S−(u, y′)
attaches a copy q̂ of q to y′, since y′↓ = g(x′)⇝S

q,O M

and therefore either func(S) /∈ O or there is no atom
S(y′↓, z) ∈ q.
Extend h by setting h(x′′′) = uR2M2 . . . RnMn if
g(x′′′) = g(x′)SMR2M2 . . . RnMn for all x′′′ ∈
var(q′x′′) up until g(x′′′) = g(x′). If there is a subtree

q′x′′′ with x′′′ ∈ var(q′x′′) and g(x′′′) = g(x′), map it to
y′ and the attached q̂ by setting h(x′′′) = y′ and all h(z)
for z ∈ var(q′x′′′) to the copy of g(z) in q̂, or the trace
starting in q̂.

• g(x′′) is not a trace.
Since g(x′) ∈ var(q), this implies S(g(x′), g(x′′)) ∈ q.
It follows from (∗) that h(x′)↓ = g(x′) and thus
S(h(x′)↓, g(x′′)) ∈ q. When the marked atom marked
atom R(h(x), h(x′)) ∈ p is processed in Step 2B of the
construction of p, then S(h(x′)↓, g(x′′)) ∈ q is thus one
of the atoms under consideration in Point (ii).
Since R(x, x′) ∈ q′ and S(x′, x′′) ∈ q′ are both di-
rected away from x0 and q′ satisfies all functionality as-
sertions in O, we have S ̸= R. It follows from (∗) that
h(x)↓ = g(x) As a consequence S(h(x′)↓, g(x′′)) ̸=
R−(h(x′)↓, h(x)↓). Thus, in Point (ii) of Step 2B an
atom S(h(x′), z′) is added to p with z′ a fresh vari-
able and z′

↓
= g(x′′) and this atom is marked. Set

h(x′′) = z′ and leave the successors of x′′ in q′ to be
processed in subsequent iterations of the loop in step
four of the construction of h.

This completes the construction of h and the proof of Condi-
tion 3. ❏

Lemma 6. The construction of F runs in time polynomial in
||q||+ ||O|| (and thus

∑
p∈F

||p|| is polynomial in ||q||+ ||O||).

Proof. In order to reduce notational clutter, we introduce
some abbreviations used throughout the proof.

• s = |sig(q)| denotes the number of concept and role
names used in q;

• o = ||O|| denotes the size of O;

• for an ELIQ p, np = |var(p)| denotes the number of
variables in p;

• for a set Q of queries, nQ denotes
∑

p∈Q np.

We assume without loss of generality that s and o are at least
one.

We start with analyzing the size of the queries in F0(x)
that are obtained as the result of the ‘generalize’ step.

Claim. For every x ∈ var(q), we have:

1. |F0(x)| ≤ s · nqx ;

2. nF0(x) ≤ s · n3
qx .

Proof of the claim. The proof of both points is by induction
on the codepth of x in q. We start with Point 1. For the base
case, consider a variable x of codepth 0 in q, that is, a leaf.
In this case, only Step (A) is applicable, and it adds at most s
queries to F0(x).

For the inductive step, consider a variable x of codepth
greater than 0. We partition F0(x) into FA

0 (x) and FB
0 (x),

that is, the queries that are obtained by dropping a concept
atom in Step (A) and the queries that are obtained by general-
izing a subquery in Step (B), respectively, and analyze them

separately, starting with FA
0 (x). Clearly, there are at most s

queries in FA
0 , that is,

|FA
0 (x)| ≤ s.

Next, we analyze FB
0 (x). Each query in FB

0 (x) is ob-
tained by first picking, in Point 1, an atom R(x, y) in qx. If
func(R) /∈ O, we add 1 query to FB

0 (x). Otherwise, we add
|F0(y)| queries (in Point 4). Thus, we obtain

|FB
0 (x)| ≤ |{R(x, y) ∈ qx | func(R) /∈ O}|+∑

R(x,y)∈qx,
func(R)∈O

|F0(y)|

Using the fact that nqy ≥ 1 and the induction hypothesis, we
obtain

|FB
0 (x)| ≤

∑
R(x,y)∈qx

s · nqy = s ·
∑

R(x,y)∈qx

nqy .

The above sum can be simplified to nqx−1. Hence, we obtain

|F0(x)| = |FA
0 (x)|+ |FB

0 (x)| ≤ s+ s · (nqx − 1) = s · nqx .

We now prove Point 2, again by induction on the codepth
of x in q. For the base case, consider a variable x of codepth
0 in q, that is, a leaf. In this case, only Step (A) is applicable,
and it adds at most s queries of size 1 to F0(x).

For the inductive step, consider a variable x of codepth
greater than 0 and the same partition of F0(x) into FA

0 (x)
and FB

0 (x) as before. Clearly, every p ∈ FA
0 (x) uses nqx

variables and there are at most s queries in FA
0 . Thus, we

have
nFA

0 (x) ≤ s · nqx .

Next, we analyze FB
0 (x). Each query in FB

0 (x) is ob-
tained by first picking, in Point 1, an atom R(x, y) in qx. If
func(R) /∈ O, we add

∑
p∈F0(y)

np variables (in Point 3).
Otherwise, we replace qy with some element of F0(y) (in
Point 4). Thus, we obtain

nFB
0 (x) ≤

∑
R(x,y)∈qx,
func(R)/∈O

(nqx + nF0(y)) +

∑
R(x,y)∈qx,
func(R)∈O

(nqx · |F0(y)|+ nF0(y))

≤
∑

R(x,y)∈qx

(nqx · |F0(y)|+ nF0(y)).

Plugging in the induction hypothesis from both Point 1 and 2,
we obtain

nFB
0 (x) ≤

∑
R(x,y)∈qx

(nqx · s · nqy + s · n3
qy)

= s · nqx

∑
R(x,y)∈qx

nqy + s
∑

R(x,y)∈qx

n3
qy . (2)

We simplify the right-hand side of (2) by making the follow-
ing observations:

•
∑

R(x,y)∈qx
nqy = nqx − 1, and

•
∑

R(x,y)∈qx
n3
qy ≤

(∑
R(x,y)∈qx

nqy

)3

= (nqx − 1)3.
Here, the inequality is an application of the general in-
equality

∑
i a

3
i ≤ (

∑
i ai)

3, for every sequence of non-
negative numbers a1, . . . , ak.

Using these observations, Inequality (2) can be simplified to:

nFB
0 (x) ≤ s · nqx · (nqx − 1) + s · (nqx − 1)3

= s ·
(
n3
qx − 2n2

qx + 2nqx − 1
)
.

Overall, we get

nF0(x) = nFA
0 (x) + nFB

0 (x)

≤ s · nqx + s ·
(
n3
qx − 2n2

qx + 2nqx − 1
)

= s ·
(
n3
qx − 2n2

qx + 3nqx − 1
)

≤ s · n3
qx .

In the last inequality, we used that z3 ≥ z3 − 2z2 + 3z − 1,
for all numbers z ≥ 1. This finishes the proof of the claim.

We analyze now the compensation Step 2, in which the
queries in F0(x0) are further extended. We let F1 denote
the result of applying Step 2A to F0(x0). In Step 2A, we
add at most one variable per variable in F0(x0) and concept
∃R.B that occurs in O. Therefore, we add at most nF0(x0) · o
variables. Using the claim, we get

nF1 ≤ nF0(x0) + nF0(x0) · o ≤ s · n3
q · (1 + o).

We now analyze Step 2B, applied to some query p ∈ F1.
First of all note that the marking proviso “if R(x, y) is marked
then y↓ is defined and if x↓ is undefined, then func(R−) /∈ O
or q contains no atom of the form R(y↓, z)” is indeed satis-
fied.

Consider now an atom R(x, y) ∈ p that was marked in the
Start phase. We distinguish two cases.

• If x↓ is undefined, then the marking proviso implies
that func(R−) /∈ O or q contains no atom of the form
R(y↓, z). In the Step phase, we just unmark the atom
and add a copy of q, hence no iteration takes place, and
the query size increases by nq .

• Otherwise, x↓ is defined, and by definition of ↓, we have
R(x↓, y↓) ∈ q. Now, the iterative process ensures that:

– Whenever an atom S(y, z′) is marked in (ii), then
both y↓ and z′

↓ are defined and S(y↓, z′
↓
) ∈ q.

Moreover, the condition ‘S(y↓, z) ̸= R−(y↓, x↓)’
and the fact that q is an ELIQ ensure that every
atom from q is ‘met’ at most once during the en-
tire process.

– Whenever an atom S−(u, y′) is marked in (iii),
then u↓ is undefined. Hence, the marking pro-
viso implies that, in the Step phase, this atom is
unmarked, a copy of q is added, and the iteration
stops.

Overall, we obtain that, per role atom in p, the marking pro-
cess adds at most nq role atoms in Step (ii), for each such
atom and every ∃r.B in O one more role atom in Step (iii),
and for each introduced variable at most one copy of q. All
this is polynomial in ||q|| and ||O||. Moreover, the computa-
tion of F can be carried out in polynomial time since all the
involved queries are of polynomial size and consequences of
O can be decided in polynomial time. ❏

E Proofs for Section 5
Theorem 5. Let O be an ontology formulated in DL-LiteH or
DL-LiteF−. Then for every ELIQ q that is satisfiable w.r.t. O,
there are sets of data examples (E+, E−) that uniquely char-
acterize q w.r.t. O and such that ||(E+, E−)|| is polynomial
in ||q||+ ||O||. If O is a DL-LiteF− ontology, then (E+, E−)
can be computed in polynomial time and the same holds for
DL-LiteH if q is O-minimal.
Proof. Let O and q(x) be as in the theorem. By Theorems 1
and 4, we can compute in polynomial time a frontier Fq(x)
for q w.r.t. O. Let E+ = {(Aq, x)} and E− = {(Ap, x) |
p ∈ Fq(x)}. It is not hard to verify that q fits (E+, E−). We
show that (E+, E−) in fact uniquely characterizes q w.r.t. O.

Let q′ be an ELIQ that fits (E+, E−). We have q ⊆O q′

since (Aq, x) is a positive example. Moreover, since all data
examples in E− are negative examples for q′, we know that
p ̸⊆O q′ for any p ∈ Fq(x). By Point 3 of the definition of
frontiers, we can conclude that q′ ⊆O q. Thus q′ ≡O q, as
required. ❏

F Proofs for Section 6
We start with showing how to construct a seed CQ in the
case that the ontology O contains no concept disjointness
constraints. This is in fact trivial if O contains no role dis-
jointness constraint either, as then we can simply use

q0H(x0) =
∧

A∈Σ∩NC

A(x0) ∧
∧

r∈Σ∩NR

r(x0, x0).

Here and in what follows, for brevity we use Σ to denote
sig(O).

We consider now the case with role disjointness con-
straints (but still without concept disjointness). Let R =
{r1, . . . , rm} be the set of all role names r ∈ Σ such that
∃r is satisfiable w.r.t. O. If, for example, O contains r ⊑ s
and r ⊓ s ⊑ ⊥, then ∃r is not satisfiable w.r.t. O.

Introduce variables x0, . . . , x2m and let K2m+1 be the
2m + 1-clique that uses these variables as its vertices. It
is known that for each n ≥ 1, the n-clique Kn has at least
n−1
2 Hamilton cycles that are pairwise edge-disjoint, see for

instance the survey [Alspach et al., 1987]. We thus find in
K2m+1 Hamilton cycles P1, . . . , Pm that are pairwise edge-
disjoint. By directing the cycles, we may view each Pi as a
set of directed edges (xj , xℓ). We then set

q0H(x0) =
∧

A∈Σ∩NC, 0≤i≤2m

A(xi)

∧
(xi,xj)∈P1

r1(xi, xj) ∧ · · · ∧
∧

(xi,xj)∈Pm

rm(xi, xj).

Clearly, q0H has no multi-edges and thus satisfies all role dis-
jointness constraints in O. Moreover, every variable has ex-
actly one r-successor and exactly one r-predecessor for every
role name r ∈ R. On the one hand, this implies that all func-
tionality assertions in O are satisfied. On the other hand, it
means that there is a homomorphism from every target ELIQ
qT to q0H because any qT is required to be satisfiable w.r.t. O
and thus may only use role names from R.

If O contains at least one concept disjointness constraint
B1 ⊓ B2 ⊑ ⊥, then we cannot use the above q0H as it is
not satisfiable w.r.t. O, but we may obtain a seed query q0H
by viewing B1 ⊓ B2 as an ELIQ q in the obvious way and
posing q as an equivalence query to the oracle. Since the tar-
get query is satisfiable w.r.t. O, the oracle is forced to return
a positive counterexample (A, a), that is, a pair (A, a) such
that A,O |= qT (a) and A,O ̸|= qH(a). The desired query
q0H is (A, a) viewed as a CQ with answer variable a. Note that
when learning with equivalence queries, then in polynomial
time learnability, the running time of the learning algorithm
may also polynomially depend, at any given time, on the size
of the largest counterexample returned by the oracle so far.
This condition is satisfied by our algorithm.

Lemma 7. In DL-LiteH and DL-LiteF−, every polynomial
time learning algorithm for ELIQs under ontologies in nor-
mal form that uses only membership queries can be trans-
formed into a learning algorithm with the same properties
for ELIQs under unrestricted ontologies.

Proof. We show the lemma by converting a learning algo-
rithm L′ for ontologies in normal form into a learning al-
gorithm L for unrestricted ontologies, relying on the normal
form described in Lemma 12. Since L will ask a single query
for every query asked by L′, the lemma follows.

We start with DL-LiteH. Given a DL-LiteH ontology O
and a signature Σ = sig(O) with sig(qT) ⊆ Σ, algorithm
L first computes the ontology O′ in normal form as per
Lemma 12, choosing the fresh concept names so that they
are not from Σ. It then runs L′ on O′ and Σ′ = Σ ∪ sig(O′).
In contrast to L′, the oracle still works with the original on-
tology O. To ensure that the answers to the queries posed to
the oracle are correct, L modifies L′ as follows.

Whenever L′ asks a membership query A′,O′ |= qT (a),
we may assume that A′ satisfies the functionality assertions
from O, since otherwise the answer is trivially “yes”. Then,
L instead asks the membership query A,O |= qT (a), where
A is obtained from A′ as follows. Start with A = A′, and

(∗) add C(b), for each concept assertion XC(b) ∈ A′.

Here, the addition of C(b) for an ELI-concept C to an ABox
B is defined as expected in case of DL-LiteH ontologies:
View C(b) as a tree-shaped ABox AC(b) with root b and as-
sume without loss of generality that b is the only individual
shared by B and AC(b). Then take the union of A and AC(b).

By the following claim, the answer to the modified mem-
bership query coincides with that to the original query.

Claim 1. A′,O′ |= q(a) iff A,O |= q(a) for all ELIQs q that
only use symbols from Σ.

Proof of Claim 1. For “if”, suppose that A,O |= q(a) and
let I be a model of A′ and O′. We can assume that ∆I does
not mention any of the individuals that were introduced in the
construction of A. We will construct a model I ′ of A and O
that has a homomorphism h from I ′ to I which is the identity
on ∆I . This clearly suffices since I ′ |= q(a).

The interpretation I ′ has the following domain:

∆I′
= ∆I ∪

⋃
XC(b)∈A′

ind(AC(b))

In order to define the interpretation of concept and role
names, observe first that, for every XC(b) ∈ A′, there is a
homomorphism hC(b) : AC(b), b → I, b since I is a model
of A′ and O′, and O′ |= XC ⊑ C. We combine all these
homomorphisms into a mapping h : ∆I′ → ∆I by taking

h(c) =

{
c if c ∈ ∆I ,

hC(b)(c) if c ∈ ind(AC(b)) \∆I .

Then, we set

AI′
= {d | h(d) ∈ AI}

rI
′
= {(d, e) | (h(d), h(e) ∈ rI}

It is routine to verify that I ′ is as required.
For “only if”, suppose that A′,O′ |= q(a) and let I be a

model of A and O. Observe that the model I ′ of O′ that can
be obtained from I as in Lemma 1 Point 2 coincides with I on
Σ and is additionally a model of A′. It follows that I |= q(a)
as required. This finishes the proof of Claim 1.

In the case of DL-LiteF− ontologies, we follow the same
strategy. However, the addition of AC(b) in (∗) has to respect
the functionality assertions. In fact, not even AC(b) neces-
sarily satisfies the functionality assertions in O. We define
the addition of a tree-shaped ABox B with root b0 to A at a
inductively on the structure of B as follows:

1. for all A(b0) ∈ B, add A(a) to A;
2. for all R(b0, b

′) ∈ B, let B′ be the sub-ABox of B rooted
at b′ and

(a) if func(R) ∈ O and there is an atom R(a, a′) in A,
then add B′ to A at a′;

(b) otherwise, add an atom R(a, a′) for a fresh individ-
ual a′ and add B′ to A at a′.

Note that there can only be one atom R(a, a′) in Step 2(a) if
A satisfies the functionality assertions in O. It should be also
clear that the resulting ABox also satisfies the functionality
assertions if A does.

Now, A is obtained from A′ by starting with A = A′ and
(∗′) adding AC(b) to A at b, for each XC(b) ∈ A′.

By the following claim, the answer to the modified mem-
bership query coincides with that to the original query.

Claim 2. A′,O′ |= q(a) iff A,O |= q(a) for all ELIQs q that
only use symbols from Σ.

Proof of Claim 2. For “if”, suppose that A,O |= q(a) and
let I be a model of A′ and O′. We can assume that ∆I does

not mention any of the individuals that were introduced in the
construction of A. We will construct a model I ′ of A and O
that has a homomorphism h from I ′ to I which is the identity
on ∆I . This clearly suffices since I ′ |= q(a).

Observe first that, for every XC(b) ∈ A′, there is a homo-
morphism hC(b) : AC(b), b → I, b since I is a model of A′

and O′, and O′ |= XC ⊑ C.
Let F denote the set of fresh individuals introduced in the

construction of A. Note that for every fresh element there is
an XC(b) ∈ A′ which ‘triggered’ the addition of d in some
(possibly later) application of Step 2(b). We associate with
every d ∈ F an element g(d) ∈ ∆I as follows:

• if d was introduced in Step 2(b) triggered by XC(b) ∈
A′, then set g(d) = hC(b)(b

′) where b′ is the element
mentioned in Step 2.

We further associate with every d ∈ F a tree-shaped
interpretation Id. Intuitively, Id is the unraveling of I
at g(d), with the functionality assertions taken into ac-
count. Formally, the domain ∆Id consists of all sequences
a0R1a1 . . . Rnan such that

• a0 = g(d);

• ai ∈ ∆I , for all i with 0 ≤ i ≤ n;

• (ai, ai+1) ∈ RI
i+1, for all i with 0 ≤ i < n;

• if func(R−
i) ∈ O, then Ri+1 ̸= R−

i , for all i with 0 ≤
i < n;

• if func(R1) ∈ O, there is no atom of shape R1(d, d
′) in

AC(b), where XC(b) ∈ A′ triggered the addition of d.

The interpretation of concept and role names is as follows:

AId = {a0R1a1 . . . Rnan ∈ ∆Id | an ∈ AI} for all A ∈ NC;

rId = {(π, πra) | πra ∈ ∆Id} ∪
{(πr−a, π) | πr−a ∈ ∆Id} for all r ∈ NR.

The interpretation I ′ is then obtained by starting with I ′ =

I ∪A, and then adding, for every d ∈ F , a copy Îd of Id and
gluing the copy of g(d) in Îd to d.

It is routine to verify that I ′ is as required.
For “only if”, suppose that A′,O′ |= q(a) and let I be a

model of A and O. Observe that the model I ′ of O′ that can
be obtained from I as in Lemma 1 Point 2 coincides with I on
Σ and is additionally a model of A′. It follows that I |= q(a)
as required. This finishes the proof of Claim 2. ❏

We now work towards showing that the algorithm pre-
sented in Section 6 indeed learns ELIQs under ontologies for-
mulated in DL-LiteH or DL-LiteF−, in polynomial time. We
start with analyzing the minimize subroutine.

Lemma 13. Let q be a unary CQ that is O-saturated and sat-
isfiable w.r.t. O such that q ⊆ qT for the target query qT (x0),
and let q′(x0) = minimize(q). Then

1. q ⊆O q′ and q′ ⊆O qT ;

2. |var(q′)| ≤ |var(qT)|;
3. q′ is O-minimal, connected, and O-saturated.

Proof. We start with Point 1. We have q ⊆O q′ since q′ is a
subset of q. For q′ ⊆O qT , it suffices to observe that minimize
ensures in each step that Aq′ ,O |= qT (x0).

For Point 2, it suffices to show that var(q′) ⊆ img(h) for
every homomorphism h from qT to Uq′,O with h(x0) = x.
Assume for a contradiction that there is a homomorphism h
from qT to Uq′,O with h(x0) = x0 and a y ∈ var(q′) that
is not in img(h). Choose some r(x, y) ∈ q such that the
distance from x0 to x is strictly smaller than that from x0 to
y, and let q− be the restriction of q \ {r(x, y)} to the atoms
that contain only variables reachable from x0 in q\{r(x, y)}.
We argue that h is a homomorphism from qT to Uq−,O which
witnesses that Aq− ,O |= qT (x0), in contradiction to the con-
struction of q′ and y ∈ var(q′).

To see that h is a homomorphism, first note that since qT is
connected and h(x0) = x0, the range of h contains only vari-
ables from var(q−) and the subtrees below them that (consist
of traces and) are added in the construction of the universal
model. Next observe that for all x1, x2 ∈ var(q−), the fol-
lowing holds by construction of universal models and since q
is O-saturated:

(a) A(x1) ∈ Uq′,O iff A(x1) ∈ Uq−,O;

(b) r(x1, x2) ∈ Uq′,O iff r(x1, x2) ∈ Uq−,O.

Since O is in normal form and due to (a), it follows from the
construction of universal models that the subtree in Uq′,O be-
low each x1 ∈ var(q−) \ {y} is identical to the subtree in
Uq−,O below x1. Moreover, the subtree in Uq′,O below y can
be obtained from the subtree in Uq−,O below y by dropping
subtrees. It should thus be clear that, as required, h is a ho-
momorphism from qT to Uq−,O.

For Point 3, we start with O-minimality. Assume for a
contradiction that q′ is not O-minimal, that is, there is a ho-
momorphism h from q′ to Uq′′,O with h(x0) = x0 where
q′′ = q|var(q)\{y} for some variable y ∈ var(q). Choose some
r(x, y) ∈ q such that the distance from x0 to x is strictly
smaller than that from x0 to y and let q− be the restriction of
q\{r(x, y)} to the atoms that contain only variables reachable
from x0 in q\{r(x, y)}. We can show as above that h is a ho-
momorphism from qT to Uq−,O and thus Aq− ,O |= qT (x0),
in contradiction to the construction of q′ and y ∈ var(q′).

Now for connectedness. Assume for a contradiction that
q′(x0) is not connected and let x be a variable that is in a dif-
ferent maximally connected component of q′ than x0. Then
x is also in a different maximally connected component of
Uq′,O than x0. By Point 1, there is a homomorphism h from
qT to Uq′,O with h(x0) = x0. Since qT is connected, we
must have x /∈ img(h), thus var(q′) ̸⊆ img(h). But we have
already seen in the proof of Point 2 that this is impossible.

Finally, O-saturatedness of q′ is clear given that the origi-
nal CQ q is O-saturated, q′ is a subquery of q, and during the
construction of q′ we have not removed any concept atoms on
any of the remaining variables. ❏

We next turn to the treeify subroutine. We start with a prelim-
inary.

Definition 2. An ELI-simulation from interpretation I1 to
interpretation I2 is a relation S ⊆ ∆I1 ×∆I2 such that for
all (d1, d2) ∈ S, we have:

1. for all A ∈ NC: if A(d1) ∈ I1, then A(d2) ∈ S;

2. for all r ∈ NR and R ∈ {r, r−}: if there is some d′1 ∈
∆I1 with R(d1, d

′
1) ∈ I1, then there is d′2 ∈ ∆I2 such

that (d′1, d
′
2) ∈ S and R(d2, d

′
2) ∈ I2.

The following lemma gives an important property of sim-
ulations. The proof is standard and omitted.

Lemma 14. Let O be a DL-LiteHF ontology, A1, A2 ABoxes
and q(x) an ELIQ such that A1, A2, and q are satisfiable
w.r.t O. If there is an ELI-simulation S from A1 to A2 with
(a1, a2) ∈ S, then A1,O |= q(a1) implies A2,O |= q(a2).

Lemma 15. Let q(x0) be a unary CQ that is O-saturated and
satisfiable w.r.t. O such that q ⊆O qT for the target query
qT (x0). Further let p1(x0), p2(x0), . . . be the sequence of
CQs computed by treeify(q). Then for all i ≥ 1,

1. pi ⊆O qT ;

2. |var(pi+1)| > |var(pi)|;
3. pi is O-saturated and satisfiable w.r.t. O.

Proof. We show Point 1 by induction on i. The case i = 1 is
immediate by Point 1 of Lemma 13 since p1 = minimize(q).
Now let i ≥ 1. By the induction hypothesis pi ⊆ qT and thus
Api ,O |= qT (x0). By construction of p′i,

S = {(x, x) | x ∈ var(pi)} ∪ {(x, x′) | x ∈ var(pi)}

is an ELI-simulation from Api to Ap′
i

with (x0, x0) ∈ S.
Therefore, by Lemma 14, Ap′

i
,O |= qT (x0) and p′i ⊆O qT .

Hence, by Point 1 of Lemma 13, pi+1 ⊆O qT for pi+1 =
minimize(p′i).

For Point 2, define a homomorphism g from var(pi+1) to
var(pi) by setting g(x) = x for all x ∈ var(pi) ∩ var(pi+1)
and g(x′) = x for all x′ ∈ var(pi+1) \ var(pi). To estab-
lish that |var(pi+1)| > |var(pi)|, we show the following three
claims, proving that g is surjective, but not injective. For an
injective and surjective function, we use g− to denote the in-
verse of g.
Claim 1. g is surjective.
Proof of Claim 1. Suppose that g is not surjective. Then some
y ∈ var(pi) does not occur in the image of g. Choose some
r(x, y) ∈ pi and define p−i = pi \{r(x, y)}. Clearly, g is still
a homomorphism from pi+1 to p−i . By Lemma 10, we can
extend g to be a homomorphism from Upi+1,O to Up−

i ,O. By
Point 1, there is a homomorphism h from qT to Upi+1,O with
h(x0) = x0. Composing h and g yields a homomorphism
g′ from qT to Up−

i ,O with g′(x0) = x0. Thus, Ap−
i
,O |=

qT (x0) which is in contradiction to the fact that pi is obtained
by applying minimize, and that this operation would replace
pi with p−i .
Claim 2. If g is injective, then r(x, y) ∈ pi implies
r(g−(x), g−(y)) ∈ pi+1.
Proof of Claim 2. Suppose to the contrary that there is an
r(x, y) ∈ pi with r(g−(x), g−(y)) /∈ pi+1. Then g is
also a homomorphism from pi+1 to pi \ {r(x, y)} and us-
ing the same composition-of-homomorphisms argument as in
the proof of Claim 1, we find a homomorphism h from qT to

Upi\{r(x,y)},O with h(x0) = x0. Hence pi\{r(x, y)} ⊆O qT .
This contradicts the fact that pi = minimize(p′i).
Claim 3. g is not injective.
Proof of Claim 3. Let R1(x1, x2), . . . , Rn(xn, x1) be a cycle
in pi and Rn(xn, x1) the atom that was chosen in the cycle
doubling operation. Suppose for contradiction that g is injec-
tive. The construction of g, together with g being surjective
and injective, implies that exactly one of xj , x

′
j is in var(pi+1)

for all j with 1 ≤ j ≤ n. Assume that xn ∈ var(pi+1) (the
case x′

n ∈ var(pi+1) is analogous) and thus g(xn) = xn.
We prove by induction on j that xj /∈ var(pi+1) for

1 ≤ j ≤ n, thus obtaining a contradiction to xn ∈
var(pi+1). For the induction start, assume to the contrary of
what is to be shown that x1 ∈ var(pi+1). Then g(x1) =
x1 and Rn(xn, x1) ∈ pi implies Rn(xn, x1) ∈ pi+1 by
Claim 2. This contradicts the construction of pi+1 that re-
moves R(xn, x1).

For the induction step, let j ≥ 1. By the induction hypoth-
esis xj /∈ var(pi+1) and thus x′

j ∈ var(pi+1). Assume to
the contrary of what is shown that xj+1 ∈ var(pi+1). Then
g(xj+1) = xj+1, g(x′

j) = xj and Rj(xj , xj+1) ∈ pi yield
Rj(x

′
j , xj+1) ∈ pi+1 by Claim 2. This contradicts the con-

struction of pi+1.
This completes the proof of Claim 3 and thus Point 2 of the

lemma.
We show Point 3 of the lemma by induction on i. In the

induction start, O-saturatedness and satisfiability of p1 w.r.t.
O follows from O-saturatedness and satisfiability of q w.r.t.
O and the fact that minimize preserves those properties.

Now let pi be O-saturated and satisfiable w.r.t. O. Then
p′i is also O saturated, by construction. Moreover, we can
construct a model I of Ap′

i
and O by starting with I = Ap′

i

and attaching the trace subtrees below every x ∈ ind(Api
) in

UApi
,O to x and x′ in I, and then adding (d, e) to rI when-

ever (d, e) ∈ sI and O |= s ⊑ r. The resulting interpretation
I is a model of Ap′

i
and O. In particular, I satisfies all func-

tionality assertions in O, because every element in ∆I has
the same number of r-successors and r-predecessors as its
corresponding original element in UApi

,O.
Since minimize preserves O-saturatedness and satisfiabil-

ity w.r.t. O, pi+1 is therefore also O-saturated and satisfiable
w.r.t. O. ❏

Point 2 of Lemma 15 and Point 2 of Lemma 13 imply that
treeify terminates and thus eliminates all cycles in q while
maintaining q ⊆O qT . The next lemma makes this precise.
Lemma 16. Let q be a CQ that is O-saturated, satisfiable
w.r.t. O, and satisfies q ⊆O qT . Then q′ = treeify(q) is
an ELIQ. Moreover, treeify(q) runs in time polynomial in
|var(qT)|+ ||q||+ ||O||.
Proof. Let p1, p2, . . . , be the sequence of constructed queries.
Recall that for all i ≥ 1, pi is the result of applying minimize.
Thus, by Point 2 of Lemma 13, |var(pi)| ≤ |var(qT)| for all
i ≥ i. But by Point 2 of Lemma 15, pi+1 has more variables
than pi, for every i. It follows that the length n of the se-
quence of queries is at most |var(qT)| and thus treeify stops
at pn = treeify(q). It also follows that pn does not contain

a cycle. Moreover, pn is obtained by applying minimize and
thus connected due to Point 3 of Lemma 13. Thus, pn is an
ELIQ.

It remains to argue that the running time is as claimed in
the lemma. A cycle in pi can be identified in time polynomial
in |var(pi)| ≤ |var(qT)|. Moreover, each call minimize(p′i)
makes at most ||p′i|| membership queries. It suffices to note
that ||p′i|| ≤ 2 · ||pi|| and that ||pi|| ≤ ||O|| · ||qT || since
var(pi) ≤ var(qT) and pi uses only symbols from O. ❏

We now analyze the main part of the algorithm. To this end,
let q1(x0), q2(x0), . . . be the sequences of hypotheses qH that
the algorithm constructs. The following lemma summarizes
their most important properties.
Lemma 17. For all i ≥ 1,

1. qi ⊆O qT ;
2. qi ⊆O qi+1 and qi+1 ̸⊆O qi;
3. var(qi) ⊆ img(h) for every homomorphism h from qi+1

to Uqi,O with h(x) = x.
Proof. Point 1 is proved by induction on i. For i = 1, q1 =
treeify(q0H) and q0H ⊆O qT imply q1 ⊆O qT by Point 3 of
Lemma 15. For i > 1, recall that qi = minimize(qF) for
some qF ⊆O qT . Thus, qi ⊆O qT follows by Point 1 of
Lemma 13.

Point 2 follows from the fact that qi+1 = minimize(qF) for
qF some element of a frontier of qi w.r.t. O. By definition of
frontiers and Point 1 of Lemma 13 it follows that qi ⊆O qi+1

and qi+1 ̸⊆O qi, as required.
For Point 3, let h be a homomorphism from qi+1 to Uqi,O

with h(x0) = x0. Assume to the contrary of what is to be
shown that some y ∈ var(qi) does not occur in the image
of h. Choose some r(x, y) ∈ qi such that the distance from
x0 to x is strictly smaller than that from x0 to y and let q−i
be the restriction of qi \ {r(x, y)} to the atoms that contain
only variables reachable from x0 in qi \ {r(x, y)}. We can
argue as in the proof of Lemma 13 that h is a homomorphism
from qi+1 to Uq−i ,O. By Lemma 10, we can extend h to be
a homomorphism from Uqi+1,O to Uq−i ,O. By Point 1, there
is a homomorphism g from qT to Uqi+1,O with h(x0) = x0.
Composing g and h yields a homomorphism g′ from qT to
Uq−i ,O with g′(x0) = x0. Thus Aq−i

,O |= qT (x0) which
is in contradiction to the fact that qi is obtained by applying
minimize, and that this operation would replace qi with q−i .

❏

It remains to show that the algorithm terminates after polyno-
mially many steps.
Lemma 18. qn ≡ qT for some n ≤ p(|var(qT)|+||O||), with
p a polynomial.
Proof. Every ELIQ qi, with i ≥ 1, is O-saturated and satisfi-
able w.r.t. O. This is easy to prove by induction on i. The in-
duction start follows from the fact that the seed CQ is satisfi-
able w.r.t. O and O-saturated, and from Point 3 of Lemma 15.
The induction step follows from Point 3 of Lemma 13.

Point 2 of Lemma 13 thus yields |var(qi)| ≤ |var(qT)|
for all i ≥ 1. Moreover, Point 3 of Lemma 17 implies that
|var(qi)| ≤ |var(qi+1)|. Hence, it remains to show that the

length of any subsequence qj , . . . , qk with |var(qj)| = · · · =
|var(qk)| is bounded by a polynomial in var(qT) + ||O||.

Let hℓ for ℓ ∈ {j, . . . , k − 1} be the homomorphism from
qℓ+1 to Uqℓ,O that exists due to Point 2 of Lemma 17. Since
|var(qℓ)| = |var(qℓ+1)| and by Point 3 of Lemma 17, hℓ is a
bijection between var(qℓ+1) and var(qℓ). Also by Point 2 of
Lemma 17, h− is not a homomorphism from qℓ to Uqℓ+1,O.

Therefore, one of the following two cases applies:
1. there is a concept atom A(x1) ∈ qℓ such that

A(h−
ℓ (x1)) /∈ Uqℓ+1,O or

2. there is a role atom r(x1, x2) ∈ qℓ such that
r(h−

ℓ (x1), h
−
ℓ (x2)) /∈ Uqℓ+1,O.

We show that each case can occur at most polynomially often
in var(qT) + ||O||.

We start with Case 1. It follows from the fact that h is
a homomorphism that whenever A(h−

ℓ (x1)) ∈ qℓ+1, then
A(x1) ∈ Uqℓ,O. Since qℓ is O-saturated, this implies A(x1) ∈
qℓ. Moreover, A(h−

ℓ (x1)) /∈ Uqℓ+1,O implies A(h−
ℓ (x1)) /∈

qℓ+1. Consequently, qℓ contains at least one concept atom
more than qℓ+1. Thus, Case 1 can occur as most as often as
there are concept atoms in q1, and this number is bounded by
|var(qT)| · ||O|| since |var(q1)| ≤ |var(qT)| and q1 may only
use symbols from O.

In Case 2, consider the unique role atom
s(h−

ℓ (x1), h
−
ℓ (x2)) ∈ qℓ+1. Since hℓ is a homomorphism,

s(x1, x2) ∈ Uqℓ,O. From r(x1, x2) ∈ qℓ and the construction
of universal models, it follows that O |= r ⊑ s. From
r(h−

ℓ (x1), h
−
ℓ (x2)) /∈ Uqℓ+1,O, it follows that O ̸|= s ⊑ r.

Thus, Case 2 can occur at most ||O|| times for each role
atom in q1. Since q1 is a tree, |var(q1)| ≤ |var(qT)|, and q1
may only use symbols from O, the number of such atoms is
bounded by |var(qT)| · ||O||. ❏

Theorem 7. AQ∧s are not learnable under disjointness on-
tologies using only polynomially many membership queries.
Proof. To prove the theorem, we use a proof strategy that
is inspired by basic lower bound proofs for abstract learning
problems due to Angluin [Angluin, 1987b]. Essentially the
same proof is given in [Funk et al., 2021] for a slightly dif-
ferent class of ontologies that allows only concept inclusions
between arbitrary conjunctions of concept names.

Here, it is convenient to view the oracle as an adversary
who maintains a set S of candidate target queries that the
learner cannot distinguish based on the queries made so far.
We have to choose S and the ontology carefully so that each
membership query removes only few candidate targets from
S and that after a polynomial number of queries there is still
more than one candidate that the learner cannot distinguish.

For each n ≥ 1, let

On = {Ai ⊓A′
i ⊑ ⊥ | 1 ≤ i ≤ n}

and

Sn = {q(x) = α1(x) ∧ · · · ∧ αn(x) |
αi ∈ {Ai, A

′
i} for all i with 1 ≤ i ≤ n}.

Note that Sn is a frontier of ⊥ w.r.t. On, if only AQ∧ queries
using the concept names Ai and A′

i for all 1 ≤ i ≤ n, are

considered for Condition 3. Clearly, Sn contains 2n queries.3
Assume to the contrary of what is to be shown that AQ∧

queries are learnable under disjointness ontologies using only
polynomially many membership queries. Then there exists
a learning algorithm and polynomial p such that the num-
ber of membership queries needed to identify a target query
qT is bounded by p(n1, n2), where n1 is the size of qT
and n2 is the size of the ontology. We choose n such that
2n > p(r1(n), r2(n)), where r1 is a polynomial such that
every query q ∈ Sm satisfies ||q|| = r1(m) and r2 is a poly-
nomial such that r2(m) > ||Om|| for every m ≥ 1.

Now, consider a membership query posed by the learning
algorithm with ABox and answer individual (A, a). The ora-
cle responds as follows:

1. if A,On |= q(a) for no q ∈ Sn, then answer no;

2. if A,On |= q(a) for a single q ∈ Sn, then answer no
and remove q from Sn;

3. if A,On |= q(a) for more than one q ∈ Sn, then answer
yes.

Note that the third response is consistent since A must then
contain Ai(a) and A′

i(a) for some i and thus A is not satisfi-
able w.r.t. On. Moreover, the answers are always correct with
respect to the updated set Sn. Thus, the learner cannot distin-
guish the remaining candidate queries by answers to queries
posed so far.

It follows that the learning algorithm removes at most
p(r1(n), r2(n)) many queries from Sn. By the choice of n, at
least two candidate concepts remain in Sn after the algorithm
is finished. Thus, the learner cannot distinguish between them
and we have derived a contradiction. ❏

Theorem 8. ELIQs are not learnable under DL-LiteF on-
tologies using only membership queries.

Proof. We use the same ontology O as in the proof of Theo-
rem 3, that is,

O = { A ⊑ ∃r, ∃r− ⊑ ∃r, ∃r ⊑ ∃s, func(r−) }.

To show that ELIQs are not learnable under O using only
membership queries we use an infinite set H of hypotheses
(i.e., candidate target queries) that cannot be distinguished by
a finite number of membership queries. Let

H = {q∗} ∪ {qn | n prime},

where q∗(x1) = {A(x0), r(x0, x1), A(x1)} and each qn is
defined as follows:

qn(x1) = { A(x0), r(x0, x1), r(x1, x2), . . . , r(xn−1, xn),

s(xn, y), s(x
′
n, y),

r(x′
1, x

′
2), . . . , r(x

′
n−1, x

′
n), A(x

′
1) }.

It is important to note that q∗ ⊆O qn for all n ≥ 1. Intuitively,
this makes it impossible for the learner to distinguish between
q∗ being the target query and one of the qn being the target

3In fact, it can be shown similar as in the proof of Theorem 2 that
Sn is contained in any frontier of ⊥ w.r.t. On. Hence, ⊥ does not
have polynomially sized frontiers w.r.t. disjointness ontologies.

query. If, for example, the learner asks a membership query
‘A∗,O |= qT (a)?’, where A∗ is q∗ viewed as an ABox, then
the oracle will answer ‘yes’ and the learner has not gained
any additional information.

Now, the strategy of the oracle to answer a membership
query ‘A,O |= qT (a)?’ is as follows:

1. if A,O |= q∗(a), then reply “yes”;
2. otherwise, reply “no” and remove from H any q that sat-

isfies A,O |= q(a).
An important aspect of this strategy is that, as proved be-
low, only finitely many hypotheses q are removed whenever
Case 2 above applies. Consequently, after any number of
membership queries, the set of remaining hypotheses H is in-
finite and contains q∗. The learner can then, however, not dis-
tinguish between q∗ and the remaining hypotheses and thus
not identify the target query. In particular, the presence of
q∗ ∈ H prevents the learner from simply going through all
qi ∈ H, asking membership queries with ABoxes that take
the form of these queries, and identifying qi as the target
query when the membership query for qi succeeds.
Claim. Let A an ABox and a ∈ ind(A). If A,O ̸|= q∗(a),
then A,O |= qn(a) for only finitely many primes n.
Proof of the claim. Let A an ABox and a ∈ ind(A) such
that A,O ̸|= q∗(a). Then A satisfies func(r−). Suppose to
the contrary of what we have to show that there are infinitely
many primes n such that A,O |= qn(a) and let hn be the wit-
nessing homomorphisms from qn to UA,O with h(x1) = a.

• If hn(xn) /∈ ind(A) for some prime n with A,O |=
qn(a), then hn(x

′
n) = hn(xn) due to the tree structure

of the non-ABox part of UA,O. Since r− is functional, it
follows that hn(x

′
j) = hn(x

′
j) for all j with 1 ≤ j ≤ n.

Since A(x′
1) ∈ qn, also A(hn(x

′
1)) = A(hn(x1)) =

A(a) ∈ A. Since also A(x0), r(x0, x1) ∈ qn, we have
A(hn(x0)), r(hn(x0), hn(x1)) ∈ UA,O, and thus hn is
a homomorphism from q∗ to UA,O with hn(x1) = a.
Hence, A,O |= q∗(a), a contradiction.

• Otherwise, hn(xn) ∈ ind(A) for all primes n with
A,O |= qn(a). Since A is finite, there is an element
b ∈ ind(A) such that hm(xm) = b for infinitely many
primes m. Thus, there is an r-path of length m from a
to b in A for infinitely many primes m. Since A is fi-
nite and satisfies func(r−), this is only possible if a = b,
r(a, a) ∈ A, and hm(xj) = a for all considered m and
all j with 1 ≤ j ≤ m. Since also A(x0), r(x0, x1) ∈ qn
and A satisfies func(r−), we further have hn(x0) = a
for all primes n with A,O |= qn(a) and A(a) ∈ A. But
then A,O |= q∗(a), a contradiction.

❏

	Introduction
	Preliminaries
	Frontiers in DL-LiteH
	Frontiers in DL-LiteF
	Uniquely Characterizing ELIQs
	Learning ELIQs under Ontologies
	Outlook
	Additional Preliminaries
	Proofs for Section 2
	Proofs for Section 3
	Proofs for Section 4
	Proofs for Section 5
	Proofs for Section 6

