
Exact Learning of ℰℒℐ Queries in the Presence of
DL-Lite-Horn Ontologies
Maurice Funk1, Jean Christoph Jung2 and Carsten Lutz1

1Leipzig University
2University of Hildesheim

Abstract
Learning, in Angluin’s framework of exact learning, a query in the presence of a description logic ontology
often involves as a crucial (iterated) step the generalization of a hypothesis query. This may be achieved,
for example, by constructing a least general generalization of the hypothesis and a counterexample that
was provided by the oracle. In this research note, we observe that it may pay off to resort to a more
liberal construction that uses the counterexample as a guide to produce a generalization of the hypothesis
while not necessarily achieving a generalization of the counterexample. We use this approach to show
polynomial time learnability of ℰℒℐ concept queries (ELIQs) in the presence of ontologies which are
formulated in a mild restriction of DL-Liteℱhorn.

Keywords
Exact Learning, Least General Generalizations, DL-Lite-Horn

1. Introduction

Various forms of learning description logic (DL) concepts, ontologies, and queries have been
studied in the literature, including PAC learning [1, 2, 3], the construction of the least common
subsumer (LCS) and the most specific concept (MSC) [4, 5, 6, 7, 8], and learning from labeled
data examples [9, 10, 11, 12, 13, 14]. In this research note, we consider Angluin’s framework of
exact learning where a learner interacts in a game-like fashion with an oracle [15, 16]. The main
aim is to find an algorithm that enables the learner to construct the target object in polynomial
time based on queries that they pose to the oracle, even when the oracle does not answer the
queries in the most informative way.

The interest in exact learning in DLs started with an investigation of ontology learning in
(the conference version of) [17], see also [18, 19] and the survey [20]. This was complemented
by studies of exactly learning DL concepts and queries: learning ℰℒℐ concept queries (ELIQs)
without ontologies is considered in [21] while [22] studies learning ℰℒ concept queries (ELQs),
ELIQs, and restricted forms of conjunctive queries (CQs) in the presence of ℰℒ and ℰℒℐ
ontologies. Very recently, [23, 24] has investigated learning ELIQs in the presence of ontologies
formulated in the DL-Lite dialects DL-Liteℋ and DL-Liteℱ− where the ‘−’ indicates a restriction
on the use of inverse functional roles.

DL 2022: 35th International Workshop on Description Logics, August 7–10, 2022, Haifa, Israel
$ mfunk@informatik.uni-leipzig.de (M. Funk); jungj@uni-hildesheim.de (J. C. Jung);
clu@informatik.uni-leipzig.de (C. Lutz)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mfunk@informatik.uni-leipzig.de
mailto:jungj@uni-hildesheim.de
mailto:clu@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


To explain the contribution of this article, let us introduce exact learning of queries in the
presence of DL ontologies. Learner and oracle both know and agree on the ontology 𝒪 and
they also agree on the target query 𝑞𝑇 to use only concept and role names from 𝒪. There
are two kinds of queries that the learner may pose to the oracle. In a membership query,
the learner provides an ABox 𝒜 and a candidate answer �̄� and asks whether 𝒜,𝒪 |= 𝑞𝑇 (�̄�);
the oracle faithfully answers “yes” or “no”. In an equivalence query, the learner provides a
hypothesis query 𝑞𝐻 and asks whether 𝑞𝐻 is equivalent to 𝑞𝑇 under 𝒪; the oracle answers
“yes” or provides a counterexample, that is, an ABox 𝒜 and tuple �̄� such that 𝒜,𝒪 |= 𝑞𝑇 (�̄�)
and 𝒜,𝒪 ̸|= 𝑞𝐻(�̄�) (positive counterexample) or vice versa (negative counterexample). Then,
polynomial time learnability means that there is a learning algorithm that constructs 𝑞𝑇 (�̄�),
up to equivalence w.r.t. 𝒪, such that at any given time, the running time of the algorithm is
bounded by a polynomial in the sizes of 𝑞𝑇 , 𝒪, and the largest counterexample given by the
oracle so far. A weaker requirement is polynomial query learnability where only the sum of
the sizes of the queries posed to the oracle up to the current time has to be bounded by such a
polynomial.

We next describe, on an informal level, how a typical learning algorithm works. The described
strategy has been used, e.g., to learn CQs and mappings in database theory [25, 26], LTL
formulas [27], as well as ontologies and queries in a DL context [17, 22, 24]. The algorithm
constructs a sequence

𝑞0 ⊆𝒪 𝑞1 ⊆𝒪 𝑞2 ⊆𝒪 · · ·

of increasingly general hypothesis queries, where ‘⊆𝒪’ denotes query containment under the
ontology 𝒪. It maintains the invariant that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 0 where 𝑞𝑇 is the target query
to be learned (only known to the oracle). As the initial hypothesis 𝑞0, one constructs a very
strong query which implies any possible 𝑞𝑇 . If, for example, the query language is unary CQs
and the ontology 𝒪 does not express any disjointnesses between concept and role names, then
this query might be the single-variable query that has atoms 𝐴(𝑥) and 𝑟(𝑥, 𝑥) for all concept
names 𝐴 and role names 𝑟. If a more restricted query class such as ELIQs is used or the ontology
expresses disjointness constraints, then the construction of the initial hypothesis might be more
subtle and also involve interaction with the oracle, see [22, 24].

To move from hypothesis 𝑞𝑖 to 𝑞𝑖+1, the algorithm repeatedly employs a suitable generaliza-
tion strategy, which may be viewed as the heart of the learning algorithm. In the literature, one
finds two main such strategies. To describe them, assume that the class of target queries 𝒬 is a
class of CQs such as all CQs or all ELIQs.

When query and ontology language are sufficiently restricted, it may happen that the set
of all possible least general generalizations of the current hypothesis 𝑞𝐻 can be computed in
polynomial time. Then, membership queries to the oracle can be used to identify a generalization
that implies the target, and the algorithm does not need to use equivalence queries at all. This
strategy has been used, for example, to learn ELIQs in the presence of ontologies formulated
in DL-Liteℋ and DL-Liteℱ− [21, 24], but it already fails for learning ELIQs under DL-Litehorn
ontologies [24]; recall that the ·horn subscript indicates the presence of conjunction. The second
strategy is to pose the current hypothesis as an equivalence query to the oracle, and to then
construct a least general generalization of the hypothesis 𝑞𝐻 and the returned counterexample
(𝒜, �̄�), which must be positive since the hypothesis is contained in the target. What we mean



here is a 𝒬-LGG, that is, a query 𝑝 such that 𝑞𝐻 ⊆𝒪 𝑝, 𝑞𝒜 ⊆𝒪 𝑝 where 𝑞𝒜 is 𝒜 viewed as
a CQ with answer variables �̄�, and 𝑝 ⊆𝒪 𝑝′ for every 𝑝′ ∈ 𝒬 with 𝑞𝐻 ⊆𝒪 𝑝′ and 𝑞𝒜 ⊆𝒪 𝑞′.
This approach has been used to learn unrestricted CQs without ontologies [21] and to learn
syntactically restricted CQs under ℰℒ ontologies [22].

The aim of this note is to introduce a variation of the second approach to generalization,
and to demonstrate its usefulness by devising a polynomial time learning algorithm for ELIQs
in the presence of DL-Liteℱ−

horn ontologies. In theory, a natural way to construct a 𝒬-LGG of
the hypothesis 𝑞𝐻 and counterexample 𝒜 is to build the universal models of 𝑞𝐻 (viewed as an
ABox) and of 𝒜 under the ontology 𝒪, and to then take their direct product.1 If we interpret
‘universal model’ as meaning homomorphism universal,2 then such models are infinite and
thus the described construction cannot be used in a learning algorithm. But homomorphism
universality is not strictly required to obtain a 𝒬-LGG when 𝒬 is not the class of all CQs. We
may then use 𝒬-universal models which only require that for every query 𝑞 in the target query
language 𝒬, the answers to 𝑞 on 𝒜 under 𝒪 coincide with the answers to 𝑞 on the universal
model. Sometimes, it is possible to construct finite 𝒬-universal models, an approach that has
been used successfully to learn a restricted form of CQs in the presence of ℰℒ ontologies [22]. To
learn ELIQs under DL-Lite ontologies, however, this approach fails since finite ELIQ-universal
models are not guaranteed to exist (even for non-branching ELIQs).

Example 1. Let 𝒪 = {⊤ ⊑ ∃𝑟.⊤} and 𝒜 = {𝐴(𝑎)}. The homomorphism-universal model of 𝒜
and 𝒪 is 𝒜 extended with an infinite 𝑟-path 𝑟(𝑎, 𝑎1), 𝑟(𝑎1, 𝑎2), . . . . Any ELIQ-universal model
also needs such a path, and thus the only chance to obtain a finite ELIQ-universal model is to reuse
individuals on the path. But such a model cannot be ELIQ-universal: if 𝑎𝑛 = 𝑎𝑚, with 𝑛 < 𝑚,
then 𝑎 is an answer to the ELIQ ∃𝑟𝑚.∃(𝑟−)𝑛.𝐴 on the universal model, but not on 𝒜 under 𝒪.

Of course, there could potentially be ways to construct a 𝒬-LGG other than taking the direct
product of 𝒬-universal models. In the presence of DL-Lite ontologies, though, the 𝒬-LGG is not
guaranteed to exist when 𝒬 is the class of CQs or the class of non-branching ELIQs extended
with reflexive role atoms. For non-extended ELIQs, the existence of 𝒬-LGGs remains open.

Example 2. Let 𝒪 = {∃𝑟−.⊤ ⊑ ∃𝑟.⊤,∃𝑟−.⊤ ⊑ ∃𝑠.⊤}. Consider the unary CQs

𝑝(𝑥) = ∃𝑦∃𝑧 𝑟(𝑥, 𝑥) ∧ 𝑠(𝑥, 𝑦) ∧ 𝑠(𝑧, 𝑦) ∧ 𝑟(𝑧, 𝑧) ∧𝐴(𝑧) and 𝑞(𝑥) = ∃𝑦 𝐴(𝑥) ∧ 𝑟(𝑥, 𝑦).

We claim that no ELIQ-LGG of 𝑝 and 𝑞 exists, and thus also no 𝒬-LGG for any query class 𝒬
that contains all ELIQs. To see this, assume that the CQ ̂︀𝑞(𝑥) is an ELIQ-LGG of 𝑝 and 𝑞, and
consider all ELIQs of the form 𝑞𝑛,𝑚 = ∃𝑟𝑛.∃𝑠.∃𝑠−.∃(𝑟−)𝑚.𝐴 with 𝑛,𝑚 ≥ 1. It is easy to see
that 𝑝 ⊆𝒪 𝑞𝑛,𝑚 and 𝑞 ⊆𝒪 𝑞𝑛,𝑚 if and only if 𝑛 = 𝑚, thus ̂︀𝑞 ⊆𝒪 𝑞𝑛,𝑚 if and only if 𝑛 = 𝑚.
For all 𝑖 ≥ 1, take a homomorphism ℎ𝑖 from 𝑞𝑖,𝑖 to the homomorphism universal model 𝒰 of ̂︀𝑞
(viewed as an ABox) and 𝒪; this model is defined in detail in Section 2. If for some 𝑖, ℎ𝑖 maps
two distinct variables in the ‘∃𝑟𝑖’ prefix of 𝑞𝑖,𝑖 to the same element of 𝒰 , then an easy pumping
argument shows that ̂︀𝑞 ⊆𝒪 𝑞𝑗,𝑖 for some 𝑗 > 𝑖, a contradiction. Otherwise, there is some 𝑖 ≥ 1
such that ℎ𝑖 chooses as the 𝑠-successor required by the ‘∃𝑠’ infix in 𝑞𝑖,𝑖 an element of 𝒰 that was

1This may yield a CQ that does not fall within 𝒬, but there are strategies for the learning algorithm to deal with this.
2that is, a universal model of an ABox 𝒜 and 𝒪 admits a homomorphism into every model of 𝒜 and 𝒪.



generated by an existential quantifier, that is, it is in the tree-shaped ‘anonymous’ part of 𝒰 . Since
𝑞𝑖,𝑖 is rooted, the ℎ𝑖-homomorphic image of the ‘∃𝑟𝑖’ prefix of 𝑞𝑖,𝑖 enters the anonymous part from
the same non-anonymous element 𝑦 where it also leaves it to eventually reach an element that
satisfies 𝐴 (there are no such elements in the anonymous part). Thus 𝑦 is reachable in ̂︀𝑞 from 𝑥
along an 𝑟-path and 𝑥 reaches an instance of 𝐴 along an 𝑟-path, which means that ̂︀𝑞 ⊆𝒪 ∃𝑟𝑘.𝐴
for some 𝑘 ≥ 1. But this contradicts 𝑝 ⊆𝒪 ̂︀𝑞.

In this paper, we propose to replace 𝒬-LGGs by a more liberal construction, which still
achieves a generalization of the hypothesis, though not necessarily of the counterexample. In
fact, we use the counterexample only as a guide to identify in polynomial time a generalization
of the hypothesis that is contained in the target query. In contrast to the construction of 𝒬-LGGs
via products, our construction is asymmetric in that it treats the hypothesis differently from
the counterexample. We use our construction as a central ingredient to prove polynomial
time learnability of ELIQs in the presence of DL-Liteℱ−

horn ontologies. For the type of learning
algorithm that we pursue, there is a ‘natural ensemble’ of lemmas that one may use to prove
correctness and termination in polynomial time [21, 22]. Whenever possible, we establish these
lemmas in a general version, namely for rooted CQs in place of ELIQs and for ℰℒℐℱ ontologies
in place of DL-Liteℱ−

horn ontologies. This serves to highlight the places where we crucially rely
on ELIQs and DL-Liteℱ−

horn, and in addition it is potentially useful for future proofs where the
lemmas that admit a general formulation do not need to be reproved.

Missing proof details are provided in the appendix.

2. Preliminaries

Ontologies and ABoxes. Let NC, NR, and NI be countably infinite sets of concept, role and
individual names. A role 𝑅 is a role name 𝑟 or the inverse 𝑟− of a role name, and 𝑅− denotes
𝑟 when 𝑅 = 𝑟−. A basic concept 𝐵 is of the form ⊤, 𝐴, or ∃𝑅 where 𝐴 ranges over NC and
𝑅 over roles. A DL-Liteℱhorn ontology is a set of concept inclusions (CIs) 𝐵1 ⊓ · · · ⊓ 𝐵𝑛 ⊑ 𝐵,
concept disjointness constraints 𝐵1 ⊓ · · · ⊓𝐵𝑛 ⊑ ⊥, role disjointness constraints 𝑅1 ⊓𝑅2 ⊑ ⊥,
and functionality assertions func(𝑅) where 𝐵𝑖, 𝐵 range over basic concepts and 𝑅1, 𝑅2, 𝑅 over
roles. In a DL-Liteℱ−

horn ontology, we additionally require that if ∃𝑅 occurs on the right-hand side
of a CI, then func(𝑅−) /∈ 𝒪 [24].

An ℰℒℐ concept is an expression 𝐶 that is built according to the rule 𝐶 ::= ⊤ | 𝐴 | 𝐶 ⊓ 𝐶 |
∃𝑅.𝐶 where 𝐴 ranges over concept names and 𝑅 over roles. An ℰℒℐℱ ontology 𝒪 is a finite
set of concept inclusions (CIs) 𝐶 ⊑ 𝐷, emptiness constraints 𝐶 ⊑ ⊥, role disjointness constraints
𝑅1 ⊓𝑅2 ⊑ ⊥, and functionality assertions func(𝑅) where 𝐶,𝐷 range over ℰℒℐ concepts and
𝑅1, 𝑅2, 𝑅 over roles. The basic concept ∃𝑅 is a different way to write the ℰℒℐ concept ∃𝑅.⊤.
Note that every DL-Liteℱhorn ontology is an ℰℒℐℱ ontology. An ℰℒℐℱ ontology (and thus also
a DL-Liteℱhorn ontology) is in normal form if all concept inclusions in it are of the form 𝐴 ⊑ 𝐶
or 𝐶 ⊑ 𝐴, where 𝐴 is a concept name. Every DL-Liteℱhorn ontology 𝒪 can be transformed in
polynomial time into a DL-Liteℱhorn ontology 𝒪′ in normal form such that 𝒪′ is a conservative
extension of 𝒪, and the same is true for ℰℒℐℱ ontologies.

An ABox 𝒜 is a finite set of concept assertions 𝐴(𝑎) and role assertions 𝑟(𝑎, 𝑏) with 𝐴 a
concept name or ⊤, 𝑟 a role name, and 𝑎, 𝑏 individual names. We use ind(𝒜) to denote the



set of individual names used in 𝒜. We admit concept assertions ⊤(𝑎) in order to represent
interpretations and ABoxes in a uniform way.

The semantics is defined as usual in terms of interpretations ℐ , which we define to be a
(possibly infinite and) non-empty set of concept and role assertions. We use ∆ℐ to denote the
set of individual names in ℐ and set 𝐴ℐ = {𝑎 | 𝐴(𝑎) ∈ ℐ} for all 𝐴 ∈ NC and 𝐶ℐ for compound
concepts 𝐶 in the usual way [28]. Note that every ABox is a finite interpretation and, vice versa,
every finite interpretation is an ABox. An interpretation ℐ satisfies a concept inclusion 𝐶 ⊑ 𝐷
if 𝐶ℐ ⊆ 𝐷ℐ , a constraint 𝐶 ⊑ ⊥ if 𝐶ℐ = ∅, a functionality assertion func(𝑅) if 𝑅ℐ is a partial
function, a concept assertion 𝐴(𝑎) if 𝑎 ∈ 𝐴ℐ , and a role assertion 𝑟(𝑎, 𝑏) if (𝑎, 𝑏) ∈ 𝑟ℐ . An
interpretation is a model of an ℰℒℐℱ ontology or an ABox if it satisfies all concept inclusions,
constraints, and assertions in it. We write 𝒪 |= 𝐶 ⊑ 𝐷 if every model of the ontology 𝒪
satisfies the concept inclusion 𝐶 ⊑ 𝐷 and 𝒜,𝒪 |= 𝐵(𝑎) if every model of 𝒜 and 𝒪 satisfies the
concept assertion 𝐵(𝑎). An ABox 𝒜 is satisfiable w.r.t. an ℰℒℐℱ ontology 𝒪 if 𝒜 and 𝒪 have a
common model. We use ℐ1 × ℐ2 to denote the direct product of two interpretations ℐ1, ℐ2.

A signature is a set of concept and role names, uniformly referred to as symbols. For a syntactic
object 𝑂 such as an ontology, we use sig(𝑂) to denote the symbols used in 𝑂 and ||𝑂|| to denote
the size of 𝑂, that is, the length of a representation of 𝑂 as a word in a suitable alphabet.

Queries. Every ℰℒℐ concept 𝐶 can be viewed as an ℰℒℐ query (ELIQ). An individual 𝑎 ∈
ind(𝒜) is an answer to 𝐶 on an ABox 𝒜 w.r.t. an ontology 𝒪, written 𝒜,𝒪 |= 𝐶(𝑎), if 𝑎 ∈ 𝐶ℐ

for all models ℐ of 𝒜 and 𝒪. We shall often view ELIQs as unary conjunctive queries (CQs)
and also consider CQs that are not ELIQs. A CQ takes the form 𝑞(�̄�) = ∃𝑦 𝜑(�̄�, 𝑦) with 𝜑 a
conjunction of concept atoms 𝐴(𝑥) and role atoms 𝑟(𝑥, 𝑦) where 𝐴 ∈ NC and 𝑟 ∈ NR. We call
the variables in �̄� answer variables. The arity of 𝑞 is the length |�̄�| of �̄�, and a query is Boolean
if it has arity 0. We use var(𝑞) to denote the set of variables that occur in 𝑞. We may view 𝑞 as a
set of atoms whenever convenient and may write 𝑟−(𝑥, 𝑦) in place of 𝑟(𝑦, 𝑥). A CQ is rooted
if in its Gaifman graph 𝐺𝑞 = (var(𝑞), {{𝑦, 𝑧} | 𝑟(𝑦, 𝑧) ∈ 𝑞}) every variable is reachable from
some answer variable. It is well-known that ELIQs are in 1-to-1 correspondence with rooted,
unary CQs whose Gaifman graph is a tree and that contain no self-loops and multi-edges. We
use 𝒜𝑞 to denote the ABox obtained from CQ 𝑞 by viewing variables as individuals and atoms
as assertions. A CQ 𝑞 is satisfiable w.r.t. ontology 𝒪 if 𝒜𝑞 is. For any CQ 𝑞 and set 𝑈 ⊆ var(𝑞),
𝑞|𝑈 is the restriction of 𝑞 to all atoms that only contain variables in 𝑈 .

The semantics of CQs is given in terms of homomorphisms as usual. As for ELIQs, we will
write 𝒜,𝒪 |= 𝑞(�̄�) if the tuple �̄� is an answer to 𝑞(�̄�) on 𝒜 w.r.t. 𝒪. For CQs 𝑞1 and 𝑞2 and an
ℰℒℐℱ ontology 𝒪, we say that 𝑞1 is contained in 𝑞2 w.r.t. 𝒪, written 𝑞1 ⊆𝒪 𝑞2, if for all ABoxes
𝒜 and �̄� from ind(𝒜), 𝒜,𝒪 |= 𝑞1(�̄�) implies 𝒜,𝒪 |= 𝑞2(�̄�). We call 𝑞1 and 𝑞2 equivalent w.r.t.
𝒪, written 𝑞1 ≡𝒪 𝑞2, if 𝑞1 ⊆𝒪 𝑞2 and 𝑞2 ⊆𝒪 𝑞1.

Universal Model. Query answering and query containment w.r.t. DL-Liteℱhorn ontologies can
be conveniently characterized using universal models. Let 𝒪 be an DL-Liteℱhorn ontology in
normal form and 𝒜 an ABox that is satisfiable w.r.t. 𝒪. For a set 𝑀 of concept names, we writed
𝑀 as a shorthand for

d
𝐴∈𝑀 𝐴. For 𝑎 ∈ ind(𝒜), 𝑀,𝑀 ′ sets of concept names, and 𝑅 a role,

we write 𝑎⇝𝑅
𝒜,𝒪 𝑀 if 𝒜,𝒪 |= ∃𝑅.

d
𝑀(𝑎) and 𝑀 is maximal with this condition. We write



𝑀 ⇝𝑅
𝒪 𝑀 ′ if 𝒪 |=

d
𝑀 ⊑ ∃𝑅.

d
𝑀 ′ and 𝑀 ′ is maximal with this.

A trace for 𝒜 and 𝒪 is a sequence 𝑡 = 𝑎𝑅1𝑀1𝑅2𝑀2 . . . 𝑅𝑛𝑀𝑛, 𝑛 ≥ 0 where 𝑎 ∈ ind(𝒜),
𝑅1, . . . , 𝑅𝑛 are roles in sig(𝒪), and 𝑀1, . . . ,𝑀𝑛 are sets of concept names in sig(𝒪), such that

(i) 𝑎⇝𝑅1
𝒜,𝒪 𝑀1 and there is no 𝑏 ∈ ind(𝒜) with 𝑅1(𝑎, 𝑏) ∈ 𝒜,

(ii) 𝑀𝑖 ⇝
𝑅𝑖+1

𝒪 𝑀𝑖+1 and 𝑅𝑖+1 ̸= 𝑅−
𝑖 , for 1 ≤ 𝑖 < 𝑛.

The set T of all traces for 𝒜 and 𝒪 forms the domain of the universal model 𝒰𝒜,𝒪 , defined as

𝒰𝒜,𝒪 = 𝒜 ∪ {𝐴(𝑎) | 𝒜,𝒪 |= 𝐴(𝑎)} ∪ {𝐴(𝑡𝑅𝑀) | 𝑡𝑅𝑀 ∈ T and 𝐴 ∈ 𝑀} ∪
{𝑅(𝑡, 𝑡𝑅𝑀) | 𝑡𝑅𝑀 ∈ T}.

For a CQ 𝑞, we usually write 𝒰𝑞,𝒪 instead of 𝒰𝒜𝑞 ,𝒪 . The following property of 𝒰𝒜,𝒪 is crucial
for our technical development.

Observation 3. Let 𝒪 be a DL-Liteℱhorn ontology in normal form, 𝒜 an ABox, and ℐ = 𝒰𝒜,𝒪 ∖ 𝒜.
Then for every role 𝑅, 𝑅ℐ is a partial function.

𝒪-saturatedness and 𝒪-minimality. Let 𝒪 be an ℰℒℐℱ ontology. A CQ 𝑞 is 𝒪-minimal if
there is no 𝑈 ⊊ var(𝑞) such that 𝑞 ≡𝒪 𝑞|𝑈 . A CQ 𝑞 is 𝒪-saturated if 𝒜𝑞,𝒪 |= 𝐴(𝑦) implies
𝐴(𝑦) ∈ 𝑞 for all 𝑦 ∈ var(𝑞) and 𝐴 ∈ NC. Every CQ (or ELIQ) can be converted into an equivalent
𝒪-saturated one in polynomial time when an oracle for queries of the form “𝒜,𝒪 |= 𝐴(𝑎)?”
is available. In DL-Liteℱhorn, such queries can be answered in polynomial time [29] and thus
𝒪-saturatedness can be established in polynomial time.

3. Guided Generalizations

Recall from the introduction that a CQ ̂︀𝑞 is a least general 𝒬-generalization (𝒬-LGG) of CQs
𝑝, 𝑞 under an ontology 𝒪 if 𝑞 ⊆𝒪 ̂︀𝑞, 𝑝 ⊆𝒪 ̂︀𝑞, and ̂︀𝑞 ⊆𝒪 𝑞′ for every 𝑞′ ∈ 𝒬 with 𝑞 ⊆𝒪 𝑞′ and
𝑝 ⊆𝒪 𝑞′. We consider the following weakening of 𝒬-LGGs.

Definition 4. Let 𝒪 be an ontology and 𝒬 a class of queries, and let 𝑝, 𝑞 be CQs with 𝑝 ̸⊆𝒪 𝑞. A
CQ ̂︀𝑞 is a 𝑝-guided 𝒬-generalization of 𝑞 under 𝒪 if the following conditions are satisfied:

1. 𝑞 ⊆𝒪 ̂︀𝑞;

2. ̂︀𝑞 ̸⊆𝒪 𝑞;

3. ̂︀𝑞 ⊆𝒪 𝑞′, for every 𝑞′ ∈ 𝒬 with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′.

Conditions 1 and 3 match the first and the last condition in the definition of a 𝒬-LGG.
Intuitively, they mean that ̂︀𝑞 is a generalization of 𝑞 (Condition 1) which preserves all common
𝒬-consequences of 𝑝 and 𝑞 (Condition 3). Condition 2 weakens the second condition in the
definition of an LGG: instead of requiring 𝑝 ⊆ ̂︀𝑞, we only want ̂︀𝑞 to strictly generalize 𝑞. In the
context of learning, one may view 𝑝 as orthogonal knowledge about how to imply the unknown
target, and the goal of guided generalization is to incorporate some of that knowledge into ̂︀𝑞.



Thus, in contrast to LGGs, guided generalizations are an asymmetric notion in that the two
queries 𝑝 and 𝑞 play different roles: 𝑞 is the query to be generalized and 𝑝 acts as the guide for
doing so. We start with observing that 𝑝-guided 𝒬-generalizations are not uniquely defined.

Example 5. Consider 𝑞(𝑥) = 𝐴(𝑥) ∧𝐵(𝑥) ∧ 𝐶(𝑥) and 𝑝(𝑥) = 𝐴(𝑥). Then both 𝑞1(𝑥) = 𝐴(𝑥)
and 𝑞2(𝑥) = 𝐴(𝑥) ∧𝐵(𝑥) are 𝑝-guided ELIQ-generalizations of 𝑞 under the empty ontology.

It is not by accident that in Example 5 the ELIQ-LGG of 𝑞 and 𝑝 (which is 𝑞1) is also a guided
ELIQ-generalization. In fact, it is not difficult to show that each 𝒬-LGG of two CQs 𝑝, 𝑞 under an
ontology 𝒪 is both a 𝑝-guided 𝒬-generalization of 𝑞 under 𝒪 and a 𝑞-guided 𝒬-generalization
of 𝑝 under 𝒪. The subsequent example shows that the converse direction is not true, that is,
there are cases where a guided generalization exists, but LGGs do not.

Example 6. Consider again queries 𝑝 and 𝑞 and the ontology 𝒪 from Example 2, and recall that
there is no CQ-LGG for 𝑝, 𝑞. However, the query

̂︀𝑞(𝑥) = ∃𝑦∃𝑦′ 𝑟(𝑥, 𝑦) ∧ 𝑟(𝑥, 𝑦′) ∧𝐴(𝑦′)

is a 𝑝-guided CQ-generalization of 𝑞 under 𝒪. To illustrate the asymmetry of the notion, observe
that ̂︀𝑞 is not a 𝑞-guided CQ-generalization of 𝑝 under 𝒪, since it does not satisfy Condition 1.

We now give our main result, namely that guided ELIQ-generalizations of ELIQs under
DL-Liteℱ−

horn ontologies always exist and can be computed in polynomial time.

Theorem 7. Given a DL-Liteℱ−
horn ontology 𝒪 in normal form and ELIQs 𝑝, 𝑞 such that 𝑝, 𝑞 are

satisfiable w.r.t. 𝒪 and 𝑞 is 𝒪-minimal,3 we can compute in polynomial time a 𝑝-guided ELIQ-
generalization ̂︀𝑞 of 𝑞 under 𝒪 such that ̂︀𝑞 is satisfiable w.r.t. 𝒪.

Let 𝑞(𝑥1), 𝑝(𝑥2) be ELIQs. We construct a 𝑝-guided ELIQ-generalization ̂︀𝑞 of 𝑞 under 𝒪 in
three steps as follows. We start with the query ̂︀𝑞 = (𝒰𝑞,𝒪×𝒰𝑝,𝒪)|{(𝑥1,𝑥2)}, that is, the restriction
of 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to variable (𝑥1, 𝑥2), which will be the answer variable of ̂︀𝑞. This query is then
extended by first exhaustively applying rule (A1) below and then applying rule (A2).

(A1) For every (𝑧, 𝑡) ∈ var(̂︀𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ ∆𝒰𝑝,𝒪 , every atom 𝑅(𝑧, 𝑧′) in 𝑞, and
every atom 𝑅(𝑡, 𝑡′) ∈ 𝒰𝑝,𝒪, add the atom 𝑅((𝑧, 𝑡), (𝑧′, 𝑡′)), and all atoms 𝐴(𝑧′, 𝑡′) such
that 𝐴(𝑧′) ∈ 𝒰𝑞,𝒪 and 𝐴(𝑡′) ∈ 𝒰𝑝,𝒪 .

(A2) For every (𝑧, 𝑡) ∈ var(̂︀𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ ∆𝒰𝑝,𝒪 and every role 𝑅 such that
𝑧 ⇝𝑅

𝑞,𝒪 𝑀 for some 𝑀 and there is no atom of the form 𝑅(𝑧, 𝑧′) in 𝑞, add the atoms

𝑅((𝑧, 𝑡), ̂︀𝑧), 𝑅(𝑧′, ̂︀𝑧)
with ̂︀𝑧 a fresh variable, and add a copy 𝑞′ of 𝑞 in which the copy of 𝑧 is 𝑧′.

3We conjecture that, given an ELIQ, an equivalent 𝒪-minimal ELIQ can be computed in polynomial time by
extending the techniques for answering tree-shaped queries over DL-Lite knowledge bases in polynomial time [30]
to DL-Liteℱhorn knowledge bases. For the purpose of this paper the statement in the theorem suffices.



Recall that 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 , when viewed as an infinitary CQ, may serve as a CQ-LGG of 𝑝 and 𝑞.
Intuitively, the above construction may be viewed as producing an approximation of this product
from below, in the sense that the product may be more general. It is easy to see that after having
applied (A1) exhaustively, we have constructed exactly the restriction of the product 𝒰𝑞,𝒪×𝒰𝑝,𝒪
to the elements (𝑡, 𝑡′) that are reachable from the element (𝑥1, 𝑥2) and satisfy 𝑡 ∈ var(𝑞). We
will show that this is a finite structure and even of polynomial size, which is essentially due to
Observation 3 on the shape of universal models for DL-Liteℱ−

horn ontologies. What is missing is
the infinite part of 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 determined by elements (𝑡, 𝑡′) where 𝑡 is a proper trace, that is,
𝑡 is not a variable from 𝑞. (A2) approximates this part by traveling the traces of 𝒰𝑞,𝒪 (but not
of 𝒰𝑝,𝒪) for only one step and then adding copies of 𝑞 as described. Note that for DL-Liteℱ−

horn
ontologies 𝒪, the first step into the traces of 𝒰𝑞,𝒪 is enough to regenerate via 𝒪 the entire
universal model 𝒰𝑞,𝒪 . Also note that for (A2) to produce a query that is satisfiable w.r.t. 𝒪, we
rely on the restriction to DL-Liteℱ−

horn: the precondition of (A2) implies that ∃𝑅 appears on the
right-hand side of some concept inclusion in 𝒪 and thus 𝑅− is not functional.

We demonstrate our construction on two examples that additionally illustrate (1) that (A2) is
indeed needed and (2) that the result ̂︀𝑞 is not necessarily an ELIQ.

Example 8. (1) Consider the ontology 𝒪 = {𝑋 ⊑ ∃𝑟, ∃𝑟 ⊑ 𝑋,∃𝑟− ⊑ ∃𝑠} and ELIQs

𝑞(𝑥1) = 𝐵(𝑥1) ∧𝑋(𝑥1) 𝑝(𝑥2) = ∃𝑥′∃𝑦 𝑋(𝑥2) ∧ 𝑟(𝑥2, 𝑦) ∧ 𝑟(𝑥′, 𝑦) ∧𝐵(𝑥′) ∧𝑋(𝑥′).

Note that 𝑝 and 𝑞 are 𝒪-saturated. The result of exhaustively applying Step (A1) is ̂︀𝑞0(𝑥) = 𝑋(𝑥),4

which generalizes 𝑞, but is too general: the ELIQ

𝑞𝑇 (𝑥) = ∃𝑥′∃𝑦∃𝑦′∃𝑧 𝑟(𝑥, 𝑦) ∧ 𝑠(𝑦, 𝑧) ∧ 𝑠(𝑦′, 𝑧) ∧ 𝑟(𝑥′, 𝑦′) ∧𝐵(𝑥′)

satisfies ̂︀𝑞0 ̸⊆𝒪 𝑞𝑇 , while 𝑝 ⊆𝒪 𝑞𝑇 and 𝑞 ⊆𝒪 𝑞𝑇 . After additionally applying (A2), we obtain

̂︀𝑞(𝑥) = ∃𝑥′∃𝑦 𝑋(𝑥) ∧ 𝑟(𝑥, 𝑦) ∧ 𝑟(𝑥′, 𝑦) ∧𝐵(𝑥′) ∧𝑋(𝑥′),

which is a 𝑝-guided ELIQ-generalization of 𝑞 under 𝒪.
(2) Consider the following queries 𝑝′, 𝑞′ and the empty ontology.

𝑝′(𝑥) = ∃𝑦1∃𝑦2 𝑟(𝑥, 𝑦1) ∧ 𝑟(𝑥, 𝑦2) ∧𝐴(𝑦1) ∧𝐵(𝑦2)

𝑞′(𝑥) = ∃𝑦∃𝑧 𝑟(𝑥, 𝑦) ∧ 𝑟(𝑧, 𝑦) ∧𝐴(𝑦) ∧𝐵(𝑦)

The result of (A1) is the direct product 𝑞′ × 𝑝′ of 𝑞′ and 𝑝′ which is ̂︀𝑞′(𝑥) = ∃𝑦1∃𝑦2∃𝑧 𝑟(𝑥, 𝑦1) ∧
𝑟(𝑥, 𝑦2) ∧ 𝑟(𝑧, 𝑦1) ∧ 𝑟(𝑧, 𝑦2) ∧𝐴(𝑦1) ∧𝐵(𝑦2), which is not an ELIQ.

4. Exact Learning with Membership and Equivalence Queries

We apply the notion of guided generalizations to show that ELIQs are polynomial time learnable
in the presence of DL-Liteℱ−

horn ontologies using membership and equivalence queries. It is
known that both kinds of queries are needed as otherwise polynomial time learnability fails
(already without functional roles) [22]. Our learning algorithm follows the scheme detailed in
the introduction. The main result is as follows.
4We have replaced the single answer variable (𝑥1, 𝑥2) with 𝑥 for the sake of readability.



Algorithm 1 Algorithm for learning ELIQs under DL-Liteℱ−
horn ontologies

Input A DL-Liteℱ−
horn ontology 𝒪 and a unary CQ 𝑞0𝐻 satisfiable w.r.t. 𝒪 such that 𝑞0𝐻 ⊆𝒪 𝑞𝑇

Output An ELIQ 𝑞𝐻 such that 𝑞𝐻 ≡𝒪 𝑞𝑇

𝑞𝐻 := extract-minimal-ELIQ(𝑞0𝐻)
while the equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇 ?” returns a counterexample (𝒜, 𝑎) do

𝑞𝐷 := extract-minimal-ELIQ(𝑞𝒜) where 𝑞𝒜 is 𝒜 viewed as a CQ with answer variable 𝑎
𝑞′𝐻 := a 𝑞𝐷-guided ELIQ-generalization of 𝑞𝐻 under 𝒪
𝑞𝐻 := extract-minimal-ELIQ(𝑞′𝐻)

end while
return 𝑞𝐻

Theorem 9. ELIQs are polynomial time learnable under DL-Liteℱ−
horn ontologies using membership

and equivalence queries.

To prove the theorem, it suffices to consider ontologies in normal form:

Lemma 10. If ELIQs are polynomial time learnable under DL-Liteℱ−
horn ontologies in normal form

using membership and equivalence queries, the same is true for unrestricted DL-Liteℱ−
horn ontologies.

Our learning algorithm is listed in Algorithm 1. It takes as input a DL-Liteℱ−
horn ontology 𝒪

in normal form and a seed query 𝑞0𝐻 with 𝑞0𝐻 ⊆𝒪 𝑞𝑇 . A seed query can be obtained in several
ways, depending on the type of disjointness constraints present in 𝒪; we refer to [24] for details.
As explained in the introduction, the algorithm starts with the seed query and constructs a
sequence of increasingly more general hypothesis queries. In each round, the learner asks
whether the current hypothesis 𝑞𝐻 is the target using an equivalence query. If not, they use
the counterexample provided by the oracle as a guide to generalize 𝑞𝐻 via the construction
from the proof of Theorem 7. Since both the input to that construction and the queries posed as
equivalence queries must be ELIQs, the algorithm relies on the subroutine extract-minimal-ELIQ
to generalize a CQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇 into an ELIQ 𝑞′ with 𝑞′ ⊆𝒪 𝑞𝑇 using membership queries.
In order to attain polynomial running time, extract-minimal-ELIQ additionally ensures a strong
minimality condition on 𝑞′, namely that it is (𝑞𝑇 ,𝒪)-minimal, which means that there is no
𝑈 ⊊ var(𝑞′) with 𝑞′|𝑈 ⊆𝒪 𝑞𝑇 . Importantly, a (𝑞𝑇 ,𝒪)-minimal query may have at most as
many variables as 𝑞𝑇 (provided that it is 𝒪-saturated, a condition that we shall maintain at all
times), and it is 𝒪-minimal. We next detail the extract-minimal-ELIQ subroutine.

The extract-minimal-ELIQ subroutine takes as input a unary CQ 𝑞 that satisfies 𝑞 ⊆𝒪 𝑞𝑇 .
It computes an ELIQ 𝑞′ with 𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇 by repeatedly attaining (𝑞𝑇 ,𝒪)-minimality and
increasing the length of cycles in 𝑞. A cycle in a CQ 𝑞 is a sequence 𝑅1(𝑥1, 𝑥2), . . . , 𝑅𝑛(𝑥𝑛, 𝑥1)
of distinct role atoms in 𝑞 such that 𝑥1, . . . 𝑥𝑛 are distinct. Now, extract-minimal-ELIQ computes
the 𝒪-saturation 𝑝 of 𝑞 and then modifies 𝑝 by exhaustively applying the following two rules:

Drop variable. Choose a variable 𝑦 ∈ var(𝑝) and let 𝑝′ = 𝑝|var(𝑝)∖{𝑦}. If the response to the
membership query 𝒜𝑝′ ,𝒪 |= 𝑞𝑇 (𝑥) is positive, continue with 𝑝′ in place of 𝑝.

Double cycle. Choose a role atom 𝑟(𝑥, 𝑦) ∈ 𝑝 that is part of a cycle. Then add a disjoint copy



𝑝′ of 𝑝 to 𝑝 and let 𝑥′, 𝑦′ be the copies of 𝑥, 𝑦 in 𝑝′. Remove the atoms 𝑟(𝑥, 𝑦), 𝑟(𝑥′, 𝑦′) and add
the atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦).

We give preference to the first rule, that is, the second rule is only applied when the first one
is not applicable. Clearly, if Drop variable is not applicable, then 𝑝 is (𝑞𝑇 ,𝒪)-minimal. Once no
rule is applicable anymore, extract-minimal-ELIQ returns 𝑞′ = 𝑝.

The following lemma collects the relevant properties of extract-minimal-ELIQ. All properties
except termination are essentially consequences of the definition of the subroutine. The proof
of termination after polynomially many steps relies on Theorem 13 below.

Lemma 11. Let 𝑞 be a unary CQ with 𝑞 ⊆𝒪 𝑞𝑇 that is satisfiable w.r.t. 𝒪. Then,
extract-minimal-ELIQ(𝑞) terminates in time polynomial in ||𝒪|| + ||𝑞|| + ||𝑞𝑇 || and returns
an ELIQ 𝑞′ that is 𝒪-saturated, (𝑞𝑇 ,𝒪)-minimal, and satisfies 𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇 .

To show termination and correctness of our algorithm, we first formalize the notion of a
‘sequence of increasingly general hypotheses which are all contained in 𝑞𝑇 ,’ which is underlying
the general scheme described in the introduction.

Definition 12. Let 𝑞𝑇 be a CQ and 𝒪 an ontology. A sequence 𝑞1, 𝑞2, . . . of CQs is a generalization
sequence towards 𝑞𝑇 under𝒪 if for all 𝑖 ≥ 0, 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 ̸⊆𝒪 𝑞𝑖, 𝑞𝑖 ⊆𝒪 𝑞𝑇 , and sig(𝑞𝑖) ⊆ sig(𝒪).

Let 𝑞1, 𝑞2, . . . be the sequence of ELIQs that are assigned to 𝑞𝐻 during the run of the algorithm.
We show inductively that 𝑞1, 𝑞2, . . . is a generalization sequence towards the target query 𝑞𝑇
under 𝒪. For the base case, note that extract-minimal-ELIQ (𝑞0𝐻) computes an initial 𝑞𝐻 with
𝑞0𝐻 ⊆𝒪 𝑞𝐻 ⊆𝒪 𝑞𝑇 . For the inductive step, let (𝒜, 𝑎) be a counterexample provided by the oracle
to the equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇 ?”. We may assume that 𝒜 uses only symbols from 𝒪 (we
can simply drop all assertions mentioning other symbols). Since 𝑞𝐻 ⊆𝒪 𝑞𝑇 , the counterexample
is positive and thus 𝑞𝒜 ̸⊆𝒪 𝑞𝐻 . The subroutine extract-minimal-ELIQ generalizes 𝑞𝒜 into a
query 𝑞𝐷, hence 𝑞𝐷 ̸⊆𝒪 𝑞𝐻 . Since 𝑞′𝐻 is a 𝑞𝐷-guided ELIQ-generalization of 𝑞𝐻 , we have
𝑞𝐻 ⊆ 𝑞′𝐻 (Condition 1 of Definition 4), 𝑞′𝐻 ̸⊆ 𝑞𝐻 (Condition 2), and 𝑞′𝐻 ⊆𝒪 𝑞𝑇 (Condition 3). It
remains to note that extract-minimal-ELIQ preserves these conditions.

It has been observed that already for ELIQs that do not use inverse roles and under the empty
ontology, there is no elementary bound on the length of generalization sequences towards a
given query 𝑞𝑇 [31]. However, since Lemma 11 guarantees that all 𝑞𝑖 are (𝑞𝑇 ,𝒪)-minimal and
𝒪-saturated, the next theorem implies that only polynomially many hypotheses are produced.

Theorem 13. Let 𝑞𝑇 be a rooted CQ and 𝒪 an ℰℒℐℱ ontology in normal form, and let 𝑞1, 𝑞2, . . .
be a generalization sequence towards 𝑞𝑇 under 𝒪 such that 𝑞1 is satisfiable w.r.t. 𝒪. If all 𝑞𝑖 are
(𝑞𝑇 ,𝒪)-minimal and 𝒪-saturated, then the sequence has length at most |var(𝑞𝑇 )|3 · |sig(𝒪)|.

It remains to show that the extract-minimal-ELIQ subroutine terminates after polynomially
many steps. For this, consider the sequence 𝑝1, 𝑝2, . . . of queries that Double cycle is applied
to during a run of extract-minimal-ELIQ. All these queries are 𝒪-saturated. By the preference
imposed on rule application, they are also (𝑞𝑇 ,𝒪)-minimal. Since an application of Drop Variable
decreases the size of the query, there are at most polynomially many such applications between
𝑝𝑖 and 𝑝𝑖+1. Thus, it suffices to show the following lemma and apply Theorem 13.

Lemma 14. The sequence 𝑝1, 𝑝2, . . . is a generalization sequence towards 𝑞𝑇 under 𝒪.



We conclude the section with some comments regarding the (limits of) generality of the
central Theorem 13. It has been shown that Theorem 13 holds for unrestricted CQs when one
considers the restriction ℰℒ of ℰℒℐ as ontology language [22] and we conjecture the same to
be true also for many DL-Lite dialects, e.g., DL-Liteℱhorn. However, the extension to unrestricted,
that is, possibly non-rooted, CQs is not possible for ℰℒℐ . The subsequent example illustrates
that it fails already for Boolean CQs with a single variable.

Example 15. Let 𝑋𝑖, 𝑋𝑖 for 1 ≤ 𝑖 ≤ 𝑛 be concept names and 𝑟 a role name. Let 𝒪 be an ℰℒℐ
ontology that contains the following concept inclusions, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛:

𝑋𝑖 ⊑ ∃𝑟.⊤
∃𝑟−.(𝑋0 ⊓ · · · ⊓𝑋𝑖−1 ⊓𝑋𝑖) ⊑ 𝑋𝑖 ∃𝑟−.(𝑋0 ⊓ · · · ⊓𝑋𝑖−1 ⊓𝑋𝑖) ⊑ 𝑋𝑖

∃𝑟−.𝑋𝑖 ⊓𝑋𝑗 ⊑ 𝑋𝑖 ∃𝑟−.𝑋𝑖 ⊓𝑋𝑗 ⊑ 𝑋𝑖

Each subset of {𝑋𝑖, 𝑋𝑖 | 1 ≤ 𝑖 ≤ 𝑛} containing exactly one of 𝑋𝑖, 𝑋𝑖 for each 𝑖 represents a
number between 0 and 2𝑛 − 1 in an obvious way. Let 𝑞𝑖 be the Boolean CQ that corresponds to
number 𝑖. Clearly, all 𝑞𝑖 are 𝒪-saturated and (𝑞2𝑛−1,𝒪)-minimal. The sequence 𝑞1, 𝑞2, . . . , 𝑞2𝑛−1

is a generalization sequence towards 𝑞2𝑛−1 under 𝒪, but its length is exponential in 𝑛.

5. Conclusions and Future Work

We have introduced a new form of generalizations and proved its applicability in the context
of exact learning of ELIQs in the presence of DL-Liteℱ−

horn ontologies. We believe it is worth
investigating the new notion of guided generalizations more thoroughly. On the one hand,
there are basic open questions such as whether there always exists a least general or most
general 𝑝-guided ELIQ-generalization of 𝑞 for all ELIQs 𝑝, 𝑞. On the other hand, we would
like to understand whether Theorem 7 holds for other relevant combinations of query class
and ontology language, e.g., ELIQs and DL-Liteℱhorn, CQs and any DL-Lite dialect, ELIQs and
DL-Liteℋ, that is, DL-Lite with role hierarchies. The latter will be challenging since there are no
universal models that satisfy Observation 3. We note that Theorem 7 does not extend to ELIQs
and ℰℒℐ ontologies: Our results imply that if we could compute in polynomial time using an
oracle for queries of the form “𝒜,𝒪 |= 𝐴(𝑎)”, guided ELIQ-generalization of ELIQs under ℰℒℐ
ontologies, then ELIQs would be polynomial query learnable under ℰℒℐ ontologies which is
known not to be the case [22]. In cases where guided generalizations are not guaranteed to exist,
it would be interesting to study the induced existence and verification decision problems [7].
Finally, we are wondering whether guided generalizations have other applications, for example
in learning from labeled data examples.

As we have shown, positive answers to (some of) these questions would directly lead to
polynomial time learnability results. Here, interesting open (and challenging) questions are
whether CQs are polynomial time learnable in the presence of DL-Liteℱhorn (or even DL-Lite)
ontologies, and whether ELIQs are efficiently learnable under DL-Liteℱhorn or DL-Liteℋ ontologies.



References

[1] W. W. Cohen, H. Hirsh, The learnability of description logics with equality constraints,
Mach. Learn. 17 (1994) 169–199.

[2] W. W. Cohen, H. Hirsh, Learning the classic description logic: Theoretical and experimental
results, in: Proc. of KR, Morgan Kaufmann, 1994, pp. 121–133.

[3] M. Frazier, L. Pitt, Classic learning, Mach. Learn. 25 (1996) 151–193.
[4] F. Baader, Least common subsumers and most specific concepts in a description logic with

existential restrictions and terminological cycles, in: Proc. of IJCAI, Morgan Kaufmann,
2003, pp. 319–324.

[5] F. Baader, R. Küsters, R. Molitor, Computing least common subsumers in description logics
with existential restrictions, in: Proc. of IJCAI, Morgan Kaufmann, 1999, pp. 96–103.

[6] F. Baader, B. Sertkaya, A. Turhan, Computing the least common subsumer w.r.t. a back-
ground terminology, J. Appl. Log. 5 (2007) 392–420.

[7] J. C. Jung, C. Lutz, F. Wolter, Least general generalizations in description logic: Verification
and existence, in: Proc. of AAAI, 2020, pp. 2854–2861.

[8] B. Zarrieß, A. Turhan, Most specific generalizations w.r.t. general ℰℒ-TBoxes, in: Proc. of
IJCAI, 2013, pp. 1191–1197.

[9] M. Funk, J. C. Jung, C. Lutz, H. Pulcini, F. Wolter, Learning description logic concepts:
When can positive and negative examples be separated?, in: Proc. of IJCAI, 2019, pp.
1682–1688.

[10] J. C. Jung, C. Lutz, H. Pulcini, F. Wolter, Logical separability of incomplete data under
ontologies, in: Proc. of KR, 2020, pp. 517–528.

[11] J. Lehmann, P. Hitzler, Concept learning in description logics using refinement operators,
Mach. Learn. 78 (2010) 203–250.

[12] J. Lehmann, J. Völker, Perspectives on Ontology Learning, volume 18 of Studies on the
Semantic Web, IOS Press, 2014.

[13] M. K. Sarker, P. Hitzler, Efficient concept induction for description logics, in: Proc. of
AAAI, 2019, pp. 3036–3043.

[14] V. Gutiérrez-Basulto, J. C. Jung, L. Sabellek, Reverse engineering queries in ontology-
enriched systems: The case of expressive Horn description logic ontologies, in: Proc. of
IJCAI-ECAI, ijcai.org, 2018, pp. 1847–1853.

[15] D. Angluin, Learning regular sets from queries and counterexamples, Inf. Comput. 75
(1987) 87–106.

[16] D. Angluin, Queries and concept learning, Mach. Learn. 2 (1987) 319–342.
[17] B. Konev, A. Ozaki, F. Wolter, A model for learning description logic ontologies based on

exact learning, in: Proc. of AAAI, AAAI Press, 2016, pp. 1008–1015.
[18] B. Konev, C. Lutz, A. Ozaki, F. Wolter, Exact learning of lightweight description logic

ontologies, J. Mach. Learn. Res. 18 (2018) 1–63.
[19] A. Ozaki, C. Persia, A. Mazzullo, Learning query inseparable ℰℒℋ ontologies, in: Proc. of

AAAI, 2020, pp. 2959–2966.
[20] A. Ozaki, Learning description logic ontologies: Five approaches. where do they stand?,

KI - Künstliche Intelligenz (2020).
[21] B. ten Cate, V. Dalmau, Conjunctive queries: Unique characterizations and exact learn-



ability, in: Proc. of ICDT, volume 186 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 9:1–9:24.

[22] M. Funk, J. C. Jung, C. Lutz, Actively learning concept and conjunctive queries under
ℰℒ𝑟-ontologies, in: Proc. of IJCAI, 2021, pp. 1887–1893.

[23] M. Funk, J. C. Jung, C. Lutz, Actively learning ELI queries under DL-Lite ontologies, in:
Proc. of DL 2021), volume 2954 of CEUR Workshop Proceedings, CEUR-WS.org, 2021.

[24] M. Funk, J. C. Jung, C. Lutz, Frontiers and exact learning of ℰℒℐ queries under DL-Lite
ontologies, in: Proc. of IJCAI, 2022.

[25] B. ten Cate, P. G. Kolaitis, K. Qian, W. Tan, Active learning of GAV schema mappings, in:
Proc. of PODS, 2018, pp. 355–368. doi:10.1145/3196959.3196974.

[26] B. ten Cate, V. Dalmau, P. G. Kolaitis, Learning schema mappings, ACM Trans. Database
Syst. 38 (2013) 28:1–28:31.

[27] M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Unique
characterisability and learnability of temporal instance queries, in: Proc. of KR, 2022.

[28] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logics, Cambridge
University Press, 2017.

[29] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and
relations, J. Artif. Intell. Res. 36 (2009) 1–69.

[30] M. Bienvenu, M. Ortiz, M. Simkus, G. Xiao, Tractable queries for lightweight description
logics, in: Proc. of IJCAI, 2013, pp. 768–774.

[31] F. Kriegel, Navigating the ℰℒ subsumption hierarchy, in: M. Homola, V. Ryzhikov, R. A.
Schmidt (Eds.), Proc. of DL, volume 2954 of CEUR Workshop Proceedings, CEUR-WS.org,
2021.

[32] E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Games for query
inseparability of description logic knowledge bases, Artif. Intell. 234 (2016) 78–119.

http://dx.doi.org/10.1145/3196959.3196974


A. Additional Preliminaries

A.1. Direct Product

The direct product of interpretations ℐ1 and ℐ2 is the interpretation ℐ1 × ℐ2 defined as

{⊤(𝑎1, 𝑎2) | 𝑎𝑖 ∈ ∆ℐ𝑖 for 𝑖 ∈ {1, 2}} ∪
{𝐴(𝑎1, 𝑎2) | 𝐴(𝑎𝑖) ∈ ℐ𝑖 for 𝑖 ∈ {1, 2}}∪
{𝑟((𝑎1, 𝑎2), (𝑏1, 𝑏2)) | 𝑟(𝑎𝑖, 𝑏𝑖) ∈ ℐ𝑖 for 𝑖 ∈ {1, 2}}.

A.2. Semantics of Conjunctive Queries

The semantics of CQs is given in terms of homomorphisms as usual. A homomorphism ℎ from
interpretation ℐ1 to interpretation ℐ2 is a mapping from ∆ℐ1 to ∆ℐ2 such that 𝐴(𝑑) ∈ ℐ1 implies
𝐴(ℎ(𝑑)) ∈ ℐ2 and 𝑟(𝑑, 𝑒) ∈ ℐ1 implies 𝑟(ℎ(𝑑), ℎ(𝑒)) ∈ ℐ2. We use img(ℎ) to denote the set
{ℎ(𝑑) | 𝑑 ∈ ∆ℐ1}. For tuples 𝑑�̄� over ∆ℐ𝑖 , 𝑖 ∈ {1, 2}, we write (ℐ1, 𝑑1̄) → (ℐ2, 𝑑2̄) if there is a
homomorphism ℎ from ℐ1 to ℐ2 with ℎ(𝑑1̄) = 𝑑2̄. With a homomorphism from a CQ 𝑞 to an
interpretation ℐ , we mean a homomorphism from 𝒜𝑞 to ℐ .

Let 𝑞(�̄�) be a CQ, ℐ an interpretation, and let �̄� be a tuple over ∆ℐ (of the same arity as �̄�).
We write 𝑞(�̄�) → (ℐ, �̄�) if there is a homomorphism ℎ from 𝑞 to ℐ with ℎ(�̄�) = �̄�, and call �̄�
an answer to 𝑞 in ℐ , written ℐ |= 𝑞(�̄�), if 𝑞(�̄�) → (ℐ, �̄�). Let 𝒪 be an ℰℒℐℱ ontology and 𝒜 an
ABox. A tuple of individuals �̄� from ind(𝒜) is an answer to 𝑞 on 𝒜 w.r.t. 𝒪, written 𝒜,𝒪 |= 𝑞(�̄�),
if �̄� is an answer to 𝑞 in every model of 𝒪 and 𝒜.

A.3. Universal model

For the sake of completeness, we provide the definition of traces in the case of ℰℒℐℱ ontologies.
There, a trace for 𝒜 and 𝒪 is a sequence 𝑡 = 𝑎𝑅1𝑀1𝑅2𝑀2 . . . 𝑅𝑛𝑀𝑛, 𝑛 ≥ 0 where 𝑎 ∈ ind(𝒜),
𝑅1, . . . , 𝑅𝑛 are roles that occur in 𝒪, and 𝑀1, . . . ,𝑀𝑛 are sets of concept names that occur
in 𝒪, such that

(i’) 𝑎⇝𝑅1
𝒜,𝒪 𝑀1 and if func(𝑅1) ∈ 𝒪, then there is no 𝑏 ∈ ind(𝒜) with 𝑅1(𝑎, 𝑏) ∈ 𝒜,

(ii’) 𝑀𝑖 ⇝
𝑅𝑖+1

𝒪 𝑀𝑖+1 and if func(𝑅−
𝑖 ) ∈ 𝒪, then 𝑅𝑖+1 ̸= 𝑅−

𝑖 , for 1 ≤ 𝑖 < 𝑛.

Let T denote the set of all traces for 𝒜 and 𝒪. We always assume that T depends on the
ontology language: if 𝒪 is in DL-Liteℱhorn, then traces are defined as in the main body of the
paper, otherwise, they are defined as above.

Then the universal model 𝒰𝒜,𝒪 of 𝒜 and 𝒪 is

𝒰𝒜,𝒪 = 𝒜 ∪ {𝐴(𝑎) | 𝒜,𝒪 |= 𝐴(𝑎)} ∪ {𝐴(𝑡𝑅𝑀) | 𝑡𝑅𝑀 ∈ T and 𝐴 ∈ 𝑀} ∪
{𝑅(𝑡, 𝑡𝑅𝑀) | 𝑡𝑅𝑀 ∈ T}.

The following lemma states the two most important properties of universal models. Its proof is
standard, see, e.g., [32]. Note that the maximality conditions of ‘⇝’ are important to ensure
that all functionality assertions in 𝒪 are satisfied.



Lemma 16. For any ℰℒℐℱ ontology 𝒪 in normal form and any ABox 𝒜 that is satisfiable w.r.t. 𝒪,

1. 𝒰𝒜,𝒪 is a model of 𝒜 and 𝒪;

2. 𝒜,𝒪 |= 𝑞(�̄�) iff 𝒰𝒜,𝒪 |= 𝑞(�̄�), for all CQs 𝑞(�̄�) and all �̄� ∈ ind(𝒜)|�̄�|.

Universal models also play an important role for query containment. In fact, Point 2 of
Lemma 16 implies the following characterization of query containment.

Lemma 17. Let 𝒪 be an ℰℒℐℱ ontology in normal form and 𝑝(�̄�), 𝑞(�̄�) CQs such that 𝑝 is
satisfiable w.r.t. 𝒪. Then, 𝑝 ⊆𝒪 𝑞 iff 𝑞(�̄�) → (𝒰𝑝,𝒪, �̄�).

The following lemmas show the connections between an ontology in normal form, 𝒪-
saturated queries and 𝒪-minimal queries.

Lemma 18. Let 𝒪 be an ℰℒℐℱ ontology in normal form, let 𝑞(�̄�) be a rooted CQ, and let 𝑝(𝑦) be
an 𝒪-saturated CQ. Then every homomorphism ℎ : 𝑞(�̄�) → (𝒰𝑝,𝒪, 𝑦) is also a homomorphism
𝑞(�̄�) → (𝒰𝑝|𝑈 ,𝒪, 𝑦) where 𝑈 = img(ℎ) ∩ var(𝑝).

Proof. Let ℎ be a homomorphism ℎ : 𝑞(�̄�) → (𝒰𝑝,𝒪, 𝑦), and let 𝑈 = img(ℎ) ∩ var(𝑝).
Since 𝑝 is 𝒪-saturated, 𝐴(𝑦) ∈ 𝒰𝑝,𝒪 if and only if 𝐴(𝑦) ∈ 𝒰𝑝|𝑈 ,𝒪, for all concept names 𝐴

and every 𝑦 ∈ 𝑈 . Since 𝒪 is in normal form, 𝒜𝑝,𝒪 |= ∃𝑅.
d
𝑀(𝑦) if and only if 𝒜𝑝|𝑈 ,𝒪 |=

∃𝑅.
d
𝑀(𝑦) for all sets of concept names 𝑀 and 𝑦 ∈ 𝑈 . By definition of the universal model,

the tree generated below any variable 𝑦 ∈ 𝑈 in 𝒰𝑝|𝑈 ,𝒪 is identical to the tree generated below
𝑦 in 𝒰𝑝,𝒪 .

Since 𝑞 is rooted, ℎ maps all variables 𝑥 ∈ var(𝑞) either to 𝑈 or to the tree below some
element in 𝑈 . Finally, because 𝑝|𝑈 and 𝑝 also agree on the role atoms, ℎ is a homomorphism
ℎ : 𝑞(�̄�) → (𝒰𝑝|𝑈 ,𝒪, 𝑦) as required. ❏

Lemma 19. Let 𝒪 be an ℰℒℐℱ ontology in normal form, and let 𝑞(�̄�) be an 𝒪-minimal and
𝒪-saturated rooted CQ that is satisfiable w.r.t. 𝒪. Then every homomorphism ℎ : 𝑞(�̄�) → (𝒰𝑞,𝒪, �̄�)
is a homomorphism 𝑞(�̄�) → (𝑞, �̄�).

Proof. Suppose the contrary, that is, let ℎ be a homomorphism ℎ : 𝑞(�̄�) → (𝒰𝑞,𝒪, �̄�) which
maps some variable 𝑥0 in var(𝑞) to the anonymous part of 𝒰𝑞,𝒪. Let 𝑈 be the image of ℎ
restricted to var(𝑞), that is, 𝑈 = img(ℎ) ∩ var(𝑞). Since 𝑥0 is mapped to a trace of length > 1,
𝑈 ⊊ var(𝑞), and by Lemma 18 ℎ is a homomorphism from 𝑞(�̄�) → (𝒰𝑞|𝑈 ,𝒪, �̄�). Now, Lemma 17
yields 𝑞|𝑈 ⊆𝒪 𝑞 in contradiction to 𝒪-minimality of 𝑞. ❏

The following lemma states that any homomorphism from a CQ 𝑞 to some universal model
𝒰𝒜,𝒪 can be extended to a homomorphism from 𝒰𝑞,𝒪 to 𝒰𝒜,𝒪 .

Lemma 20. Let 𝒪 be an ℰℒℐℱ ontology, 𝒜 an ABox, and 𝑞(�̄�) a CQ, such that 𝒜 and 𝑞 are both
satisfiable w.r.t. 𝒪. Every homomorphism ℎ : 𝑞(�̄�) → (𝒰𝒜,𝒪, �̄�) for some tuple �̄� over ind(𝒜) can
be extended to a homomorphism ℎ′ : (𝒰𝑞,𝒪, �̄�) → (𝒰𝒜,𝒪, �̄�).



B. Proofs for Section 3

Lemma 21. The computation of ̂︀𝑞 terminates after polynomially many steps.

Proof. The initial ̂︀𝑞 can clearly be computed in polynomial time. For the analysis of (A1),
observe that, by definition, (A1) computes an initial fragment of the product 𝒰𝑞,𝒪×𝒰𝑝,𝒪 . Thus, it
creates at most ||𝑞×𝑝|| facts over variables (𝑥, 𝑦)with 𝑥 ∈ var(𝑞) and 𝑦 ∈ var(𝑝). The remaining
rule applications can be structured into labeled trees 𝑇𝑥𝑦 , for each (𝑥, 𝑦) ∈ var(𝑞)× var(𝑝), as
follows:

• the root 𝜀 of 𝑇𝑥𝑦 is labeled with 𝜆(𝜀) = (𝑥, 𝑦);

• if some node 𝑛 is labeled with 𝜆(𝑛) = (𝑧, 𝑡) and (A1) is applicable to some 𝑅(𝑧, 𝑧′) and
𝑅(𝑡, 𝑡′), then 𝑛 has a successor 𝑛′ with 𝜆(𝑛′) = (𝑧′, 𝑡′); we additionally associate with 𝑛′

another label 𝜌(𝑛′) = 𝑅(𝑧, 𝑧′).

Clearly, it suffices to bound the sizes of each tree 𝑇𝑥𝑦 by a polynomial in the input, which is
established in the following claim.

Claim. There are no two nodes 𝑛1 ̸= 𝑛2 in 𝑇𝑥𝑦 such that 𝜆(𝑛1) = (𝑧1, 𝑡1), 𝜆(𝑛2) = (𝑧2, 𝑡2),
and 𝑧1 = 𝑧2.

Proof of the claim. The proof is by contradiction. Suppose there are 𝑛1 ̸= 𝑛2 in 𝑇𝑥𝑦 such that
𝜆(𝑛1) = (𝑧1, 𝑡1), 𝜆(𝑛2) = (𝑧2, 𝑡2), and 𝑧1 = 𝑧2. Consider the unique shortest path from 𝑛1 to
𝑛2 in 𝑇𝑥𝑦 and let 𝑛 be the node closest to the root on this path, that is, the path 𝑤0 . . . 𝑤𝑘 from
𝑛1 to 𝑛 “goes up” in the tree and the path 𝑣0 . . . 𝑣𝑚 from 𝑛 to 𝑛2 “goes down”.5 Consider the
following sequence 𝛼0, . . . , 𝛼𝑘+𝑚−1 of facts:

(a) for 0 ≤ 𝑖 < 𝑘, let 𝛼𝑖 be the fact 𝑅−(𝑧, 𝑧′) when 𝜌(𝑤𝑖) = 𝑅(𝑧′, 𝑧);

(b) for 0 < 𝑖 ≤ 𝑚, let 𝛼𝑘+𝑖−1 = 𝜌(𝑣𝑖).

By definition of (A1) and the resulting definition of 𝑇𝑥𝑦 , the sequence 𝛼0, . . . , 𝛼𝑘+𝑚−1 is a path
from 𝑧1 to 𝑧2 in 𝑞. Since 𝑧1 = 𝑧2 and 𝑞 is acyclic, there has to be some 𝑖 such that 𝛼𝑖 = 𝑅(𝑧, 𝑧′)
and 𝛼𝑖+1 = 𝑅−(𝑧′, 𝑧), for some role 𝑅. We distinguish cases on where 𝛼𝑖 and 𝛼𝑖+1 were
defined (in (a) or in (b) above).

Suppose first that both were defined in (a) and consider the nodes 𝑤𝑖, 𝑤𝑖+1. By definition of
𝛼𝑖, 𝛼𝑖+1:

• 𝜌(𝑤𝑖) = 𝑅−(𝑧, 𝑧′) and 𝜌(𝑤𝑖+1) = 𝑅(𝑧′, 𝑧),

• 𝜆(𝑤𝑖) = (𝑧′, 𝑡1), for some 𝑡1, and 𝜆(𝑤𝑖+1) = (𝑧, 𝑡2), for some 𝑡2.

Note that 𝜌(𝑤𝑖) and 𝜌(𝑤𝑖+1) refer to the same atom. Let 𝑅(𝑡, 𝑡2) be the atom such that
𝑤𝑖+1 was added to 𝑇𝑥𝑦 via an application of (A1) to (𝑧′, 𝑡), 𝑅(𝑧′, 𝑧), 𝑅(𝑡, 𝑡2). By Observa-
tion 3, 𝑅− is functional in 𝒰𝑝,𝒪 ∖ 𝑝, and thus 𝑡2 has no other 𝑅−-neighbor than 𝑡 and thus
𝑡1 = 𝑡. But then (A1) is not applicable to (𝑧, 𝑡2), 𝑅

−(𝑧, 𝑧′), 𝑅−(𝑡2, 𝑡1) = 𝑅−(𝑡2, 𝑡) since
𝑅((𝑧, 𝑡2), (𝑧

′, 𝑡1)) = 𝑅((𝑧, 𝑡2), (𝑧
′, 𝑡) is already present, a contradiction.

5As usual in computer science, we assume that the root of the tree is at the top and leaves at the bottom.



In the other two cases (𝛼𝑖, 𝛼𝑖+1 were both defined in (b) or 𝛼𝑖 was defined in (a) and 𝛼𝑖+1

was defined in (b)), a contradiction is derived analogously. This finishes the proof of the claim.

Now, let the result of applying (A1) have domain size 𝑁 . Then (A2) is applied at most 𝑁 · 𝜌
times, where 𝜌 denotes the number of roles in 𝒪. Moreover, for each application, we only add
two atoms and a copy of 𝑝. Thus, the overall construction finishes in polynomial time. ❏

Lemma 22. ̂︀𝑞 is satisfiable w.r.t. 𝒪 and it is a 𝑝-guided ELIQ-generalization of 𝑞 under 𝒪.

Proof. We show that ̂︀𝑞 satisfies Conditions 1 to 3 from Definition 4 and that ̂︀𝑞 is satisfiable
w.r.t. 𝒪. For the proof, it is convenient to use the map 𝑔 defined by taking:

• 𝑔(𝑧, 𝑡) = 𝑧 for every (𝑧, 𝑡) ∈ var(̂︀𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ ∆𝒰𝑝,𝒪 ;

• 𝑔(̂︀𝑧) = 𝑧𝑅𝑀 , for every variable ̂︀𝑧 introduced in Step (A2) applied to (𝑧, 𝑡) and 𝑅,𝑀 ;

• 𝑔(𝑥′) = 𝑥, for every copy 𝑥′ of some variable 𝑥 in 𝑞 introduced in Step (A2).

For Condition 1, we observe that 𝑔 is a homomorphism ̂︀𝑞(𝑥1, 𝑥2) → (𝒰𝑞,𝒪, 𝑥1), and thus
𝑞 ⊆𝒪 ̂︀𝑞.

Satisfiability of ̂︀𝑞 w.r.t. 𝒪 follows from the facts that 𝑞 is satisfiable under 𝒪, that the map 𝑔
defined above is a homomorphism from ̂︀𝑞 to 𝒰𝑞,𝒪, and that since 𝑞 satisfies all functionality
assertions in 𝒪, by construction so does ̂︀𝑞. For the latter, it is important that 𝒪 is formulated in
DL-Liteℱ−

horn rather than in DL-Liteℱhorn. In particular, this ensures that the role 𝑅 in Step (A2) is
not inverse functional.

For Condition 2, suppose to the contrary of what we have to show that ̂︀𝑞 ⊆𝒪 𝑞. Since ̂︀𝑞 is
satisfiable, we can fix a homomorphism ℎ : 𝑞(𝑥1) → (𝒰̂︀𝑞,𝒪, (𝑥1, 𝑥2)). By Lemma 20, there is
an extension of the homomorphism 𝑔 to a homomorphism 𝑔′ for (𝒰̂︀𝑞,𝒪, (𝑥1, 𝑥2)) → (𝒰𝑞,𝒪, 𝑥1).
Then, the composition of ℎ and 𝑔′ is a homomorphism 𝑞(𝑥1) → (𝒰𝑞,𝒪, 𝑥1). Lemma 19 implies
that variables ̂︀𝑧 introduced in (A2) are not in the image of ℎ. Indeed, if ℎ(𝑥) = ̂︀𝑧 for some
𝑥 ∈ var(𝑞), then 𝑔′(ℎ(𝑥)) takes the shape 𝑧𝑅𝑀 , in contradiction to Lemma 19. Since 𝑞 is
rooted, all ℎ(𝑥) take the shape (𝑧, 𝑡) for some 𝑧 ∈ var(𝑞) and some trace 𝑡 in 𝒰𝑝,𝒪. Consider
the projection ℎ′ of ℎ to its second component, that is

ℎ′(𝑥) = 𝑡 for all 𝑥 ∈ var(𝑞) such that ℎ(𝑥) = (𝑧, 𝑡).

It is routine to show that ℎ′ is a homomorphism 𝑞(𝑥1) → (𝒰𝑝,𝒪, 𝑥2), and thus 𝑝 ⊆𝒪 𝑞, a
contradiction.

For Condition 3, let 𝑞′(𝑥0) be any ELIQ with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′. We can fix homomorphisms
ℎ1, ℎ2 with ℎ1 : 𝑞

′(𝑥0) → (𝒰𝑞,𝒪, 𝑥1) and ℎ2 : 𝑞
′(𝑥0) → (𝒰𝑝,𝒪, 𝑥2). Based on ℎ1 and ℎ2, we

inductively define a map ℎ. We start with setting ℎ(𝑥0) = (ℎ1(𝑥0), ℎ2(𝑥0)).
For the inductive step, suppose ℎ(𝑥) = (𝑧, 𝑡) is defined and 𝑧 ∈ var(𝑞) and let 𝑅(𝑥, 𝑥′) be an

atom in 𝑞′ such that ℎ(𝑥′) is still undefined. Note that 𝑧′ = ℎ1(𝑥
′) satisfies 𝑅(𝑧, 𝑧′) ∈ 𝑞 since

ℎ1 is a homomorphism. Similarly, 𝑡′ = ℎ2(𝑥
′) satisfies 𝑅(𝑡, 𝑡′) ∈ 𝒰𝑝,𝒪 . We distinguish cases.

1. Suppose first that 𝑧′ ∈ var(𝑞). Then (A1) is applicable to 𝑧, 𝑧′, 𝑡, 𝑡′, and we find
𝑅((𝑧, 𝑡), (𝑧′, 𝑡′)) ∈ ̂︀𝑞. Set ℎ(𝑥′) = (𝑧′, 𝑡′).



2. Otherwise, 𝑧′ /∈ var(𝑞). Since 𝑧 ∈ var(𝑞), 𝑧′ takes the form 𝑧𝑅𝑀 for some 𝑀 and thus
𝑧 ⇝𝑅

𝑞,𝒪 𝑀 for that 𝑀 . Then (A2) is applicable to (𝑧, 𝑡) and 𝑅. Let ̂︀𝑧 be the variable
introduced in (A2). Using the definition of the universal model, one can show that there
is a homomorphism 𝑓 from 𝒰𝑞,𝒪 to 𝒰̂︀𝑞,𝒪 which maps 𝑧𝑅𝑀 to ̂︀𝑧 and 𝑞 to the copy of 𝑞
that was added to ̂︀𝑞 in this application of (A2). We set

ℎ(𝑥′′) = 𝑓(ℎ1(𝑥
′′))

for every node 𝑥′′ in the subtree rooted at 𝑥′ (assuming again that the root 𝑥0 is at the
top).

It remains to argue that ℎ is a homomorphism from 𝑞′(𝑥0) → (𝒰̂︀𝑞,𝒪, (𝑥1, 𝑥2)), and thuŝ︀𝑞 ⊆𝒪 𝑞′.
To see this, let first 𝐴(𝑥) ∈ 𝑞′.

• If ℎ(𝑥) was defined in Step 1 above, then ℎ(𝑥) = (𝑧, 𝑡) for 𝑧 = ℎ1(𝑥) ∈ var(𝑞) and
𝑡 = ℎ2(𝑥) ∈ ind(𝒰𝑝,𝒪). Since both ℎ1 and ℎ2 are homomorphisms, both 𝐴(𝑧) ∈ 𝒰𝑞,𝒪
and 𝐴(𝑡) ∈ 𝒰𝑝,𝒪 . Thus 𝐴(ℎ(𝑥)) = 𝐴(𝑧, 𝑡) ∈ ̂︀𝑞 ⊆ 𝒰𝑞,𝒪 .

• If ℎ(𝑥) was defined in Step 2 above, then ℎ(𝑥) = 𝑓(ℎ1(𝑥)) where 𝑓 is a homomorphism
from 𝑞 to 𝒰̂︀𝑞,𝒪 . Since additionally, ℎ1 is a homomorphism, it follows that 𝐴(ℎ(𝑥)) ∈ 𝒰̂︀𝑞,𝒪 .

Suppose now 𝑅(𝑥, 𝑦) ∈ 𝑞′ and 𝑥 is closer to the root 𝑥0 than 𝑦 in 𝑞′.

• If bothℎ(𝑥) andℎ(𝑦)were defined in Step 1. By (A1), 𝑅((ℎ1(𝑥), ℎ2(𝑥)), (ℎ1(𝑦), ℎ2(𝑦))) ∈̂︀𝑞 and thus 𝑅(ℎ(𝑥), ℎ(𝑦)) ∈ ̂︀𝑞 ⊆ 𝒰̂︀𝑞,𝒪 .

• If both ℎ(𝑥) and ℎ(𝑦) were defined in Step 2, then ℎ(𝑥) = 𝑓(ℎ1(𝑥)) and ℎ(𝑦) = 𝑓(ℎ1(𝑥))
for some homomorphism 𝑓 from 𝑞 to 𝒰̂︀𝑞,𝒪 . Since additionally, ℎ1 is a homomorphism, it
follows that 𝑅(ℎ(𝑥), ℎ(𝑦)) ∈ 𝒰̂︀𝑞,𝒪 .

• Ifℎ(𝑥)was defined in Step 1 andℎ(𝑦)was defined in Step 2, thenℎ(𝑥) = (ℎ1(𝑥), ℎ2(𝑥)) =
(𝑧, 𝑡) and ℎ(𝑦) = 𝑓(ℎ1(𝑦)) = ̂︀𝑧 for the element ̂︀𝑧 that was introduced in the application
of (A2) to (𝑧, 𝑡) that defined ℎ(𝑦). (A2) additionally implies that 𝑅((𝑧, 𝑡), ̂︀𝑧) ∈ ̂︀𝑞, and thus
𝑅(ℎ(𝑥), ℎ(𝑦)) ∈ 𝒰̂︀𝑞,𝒪 .

• The case that ℎ(𝑥) was defined in Step 2, but ℎ(𝑦) was defined in Step 1 is not possible
since 𝑥 is closer to the root than 𝑦, by assumption and the fact that ℎ is defined from root
to leaves in 𝑞′.

❏

C. Proofs for Section 4

We describe how to convert an ℰℒℐℱ ontology 𝒪 into an ℰℒℐℱ ontology 𝒪′ in normal form.
We use C(𝒪) to denote the set of all concepts that occur on the right-hand side of a concept
inclusion in 𝒪. Note that C(𝒪) is closed under taking sub-concepts. We introduce a fresh



concept name 𝑋𝐶 for every complex concept 𝐶 ∈ C(𝒪), and set 𝑋⊥ = ⊥ and 𝑋𝐴 = 𝐴 for
concept names 𝐴 ∈ C(𝒪). The ontology 𝒪′ consists of all functionality assertions in 𝒪 and the
following concept inclusions:

• 𝑋𝐶 ⊑ 𝑋𝐷 for every 𝐶 ⊑ 𝐷 ∈ 𝒪;

• 𝑋𝐷1⊓𝐷2 ⊑ 𝑋𝐷𝑖 and 𝑋𝐷1 ⊓𝑋𝐷2 ⊑ 𝑋𝐷1⊓𝐷2 , for every 𝐷1 ⊓𝐷2 ∈ C(𝒪) and 𝑖 ∈ {1, 2};

• 𝑋∃𝑅.𝐶 ⊑ ∃𝑅.𝑋𝐶 and ∃𝑅.𝑋𝐶 ⊑ 𝑋∃𝑅.𝐶 , for every ∃𝑅.𝐶 ∈ C(𝒪).

Clearly, 𝒪′ can be computed in polynomial time. Regarding the relationship between 𝒪 and 𝒪′,
we observe the following consequences of the definition of 𝒪′.

Lemma 23.

1. 𝒪′ is a conservative extension of 𝒪;

2. sig(𝒪′) = sig(𝒪) ∪ {𝑋𝐶 | 𝐶 ∈ C(𝒪)};

3. 𝒪′ |= 𝑋𝐶 ≡ 𝐶 , for all 𝐶 ∈ C(𝒪).

Lemma 23 essentially says that 𝒪′ is a conservative extension of 𝒪, but is slightly stronger
in also making precise how exactly a model of 𝒪 can be extended to a model of 𝒪′.

Lemma 10. If ELIQs are polynomial time learnable under DL-Liteℱ−
horn ontologies in normal form

using membership and equivalence queries, the same is true for unrestricted DL-Liteℱ−
horn ontologies.

Proof. Let 𝐿′ be a polynomial time learning algorithm for ELIQs under DL-Liteℱhorn ontologies
in normal form. We transform it into a polynomial time learning algorithm 𝐿 for ELIQs under
unrestricted DL-Liteℱhorn ontologies, relying on the normal form provided by Lemma 23.

Given a DL-Liteℱhorn ontology 𝒪 and a signature Σ = sig(𝒪) with sig(𝑞𝑇 ) ⊆ Σ, algorithm 𝐿
first computes the ontology 𝒪′ in normal form as per Lemma 23, choosing the fresh concept
names so that they are not from Σ. It then runs 𝐿′ on 𝒪′ and Σ′ = Σ ∪ sig(𝒪′). In contrast
to 𝐿′, the oracle still works with the original ontology 𝒪. To ensure that the answers to the
queries posed to the oracle are correct, 𝐿 modifies 𝐿′ as follows.

Whenever 𝐿′ asks a membership query 𝒜′,𝒪′ |= 𝑞𝑇 (𝑎), we may assume that 𝒜′ satisfies the
functionality assertions from 𝒪, since otherwise the answer is trivially “yes”. Then, 𝐿 asks the
membership query 𝒜,𝒪 |= 𝑞𝑇 (𝑎), where 𝒜 is obtained from 𝒜′ by starting with 𝒜 = 𝒜′ and
then extending it as follows:

(*) for every 𝑋∃𝑅(𝑏) ∈ 𝒜′ with 𝒜 ̸|= ∃𝑅(𝑏), add 𝑅(𝑏, 𝑏′) for a fresh individual 𝑏′.

By the following claim, the answer to the modified membership query coincides with that to
the original query.

Claim 1. 𝒜′,𝒪′ |= 𝑞(𝑎) iff 𝒜,𝒪 |= 𝑞(𝑎) for all ELIQs 𝑞 that only use symbols from Σ, and all
𝑎 ∈ ind(𝒜′).

Proof of the Claim 1. For “if”, suppose that 𝒜,𝒪 |= 𝑞(𝑎) and let ℐ ′ be a model of 𝒜′ and 𝒪′.
We can assume that ∆ℐ′

does not mention any of the individuals that were introduced in the



construction of 𝒜. We will extend ℐ ′ to a model ℐ of 𝒜 and 𝒪 and such that (ℐ, 𝑎) → (ℐ ′, 𝑎).
This clearly suffices since ℐ |= 𝑞(𝑎).

We construct ℐ by processing every atom introduced in (*). Let 𝑅(𝑏, 𝑏′) be such an atom.
Then, 𝑋∃𝑅(𝑏) ∈ 𝒜′ and, by definition of the normal form, 𝑋∃𝑅 ⊑ ∃𝑅 ∈ 𝒪′. Since ℐ ′ is a model
of 𝒜′ and 𝒪′, there is an element 𝑐 with 𝑅(𝑏, 𝑐) ∈ ℐ ′. Informally, let 𝒥𝑐 be the unraveling of ℐ ′

at 𝑐 which takes into account the functionality assertions in 𝒪, and in which the 𝑅−-successor
of 𝑐 is omitted in case func(𝑅−) ∈ 𝒪. Then, add a copy of 𝒥𝑐 to ℐ ′, rename the root of 𝒥𝑐 to 𝑏′,
and add 𝑅(𝑏, 𝑏′) to ℐ .

We now give a formal definition of 𝒥𝑑. Its domain ∆𝒥𝑐 consists of all sequences
𝑎0𝑅1𝑎1 . . . 𝑅𝑛𝑎𝑛 such that

• 𝑎0 = 𝑐;

• 𝑎𝑖 ∈ ∆ℐ′
, for all 𝑖 with 0 ≤ 𝑖 ≤ 𝑛;

• (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅ℐ′
𝑖+1, for all 𝑖 with 0 ≤ 𝑖 < 𝑛;

• if func(𝑅−
𝑖 ) ∈ 𝒪, then 𝑅𝑖+1 ̸= 𝑅−

𝑖 , for all 𝑖 with 0 ≤ 𝑖 < 𝑛;

• if 𝑅1 = 𝑅− then func(𝑅−) /∈ 𝒪.

The interpretation of concept and role names is then as expected:

𝐴𝒥𝑐 = {𝑎0𝑅1𝑎1 . . . 𝑅𝑛𝑎𝑛 ∈ ∆𝒥𝑐 | 𝑎𝑛 ∈ 𝐴ℐ} for all 𝐴 ∈ NC;

𝑟𝒥𝑐 = {(𝜋, 𝜋𝑟𝑎) | 𝜋𝑟𝑎 ∈ ∆ℐ𝑑} ∪
{(𝜋𝑟−𝑎, 𝜋) | 𝜋𝑟−𝑎 ∈ ∆𝒥𝑐} for all 𝑟 ∈ NR.

Note that each 𝒥𝑐 has a homomorphism into ℐ ′: just map every sequence 𝑎0𝑅1 . . . 𝑎𝑛 to 𝑎𝑛.
Let ℐ be the result of doing the above for every atom in 𝒜 ∖ 𝒜′. Clearly, because each such

atom is added (as the final step), we have ℐ |= 𝒜. It is routine to verify that ℐ is also a model of
𝒪 and that there is a homomorphism (ℐ, 𝑎) → (ℐ ′, 𝑎).

For “only if”, suppose that 𝒜′,𝒪′ |= 𝑞(𝑎) and let ℐ be a model of 𝒜 and 𝒪. Since 𝒪′ is a
conservative extension of 𝒪, there is a model ℐ ′ of 𝒪′ that coincides with ℐ on Σ. Moreover, by
Point 3 of Lemma 23, it is also a model of 𝒜′. It follows that ℐ |= 𝑞(𝑎) as required. This finishes
the proof of Claim 1.

Second, whenever 𝐿′ asks an equivalence query 𝑞′𝐻 ≡𝒪′ 𝑞𝑇 , 𝐿 instead asks the equivalence
query 𝑞𝐻 ≡𝒪 𝑞𝑇 , where 𝑞𝐻 is obtained from 𝑞′𝐻 by replacing each assertion 𝑋∃𝑅(𝑥) with
an assertion 𝑅(𝑥, 𝑥′), 𝑥′ a fresh variable. Clearly, 𝑞𝐻 is an ELIQ and can thus be used in an
equivalence query. Furthermore, when the counterexample returned is 𝒜, the algorithm replaces
it with the restriction 𝒜|Σ to signature Σ before passing it on to 𝐿′.

Applying the following claim to both 𝑞′𝐻 and 𝑞′𝑇 = 𝑞𝑇 shows that the answer to the modified
equivalence query coincides with that to the original query.

Claim 2. Let 𝑞′ be a CQ that uses only symbols from sig(𝒪′) and let 𝑞 be obtained from 𝑞′

by replacing each assertion 𝑋∃𝑅(𝑥) with an assertion 𝑅(𝑥, 𝑥′), for a fresh variable 𝑥′. Then
𝒜|Σ,𝒪′ |= 𝑞′(�̄�) iff 𝒜,𝒪 |= 𝑞(�̄�) for all ABoxes 𝒜.



Proof of Claim 2. For “if”, suppose 𝒜,𝒪 |= 𝑞(�̄�) and let ℐ be a model of 𝒜|Σ and 𝒪′. Since 𝑞 and
𝒪 contain only symbols from Σ, 𝒜|Σ,𝒪 |= 𝑞(�̄�). Since 𝒪′ is a conservative extension of 𝒪, ℐ is
also a model of 𝒪. Thus ℐ |= 𝑞(�̄�) and by Point 3 of Lemma 23, ℐ |= 𝑞′(�̄�) follows as required.

For “only if”, suppose 𝒜|Σ,𝒪′ |= 𝑞′(�̄�) and let ℐ be a model of 𝒜 and 𝒪. Since 𝒪 contains
only symbols from Σ, ℐ|Σ is a model of 𝒜|Σ and since 𝒪′ is a conservative extension of 𝒪,
there is a model ℐ ′ of 𝒪′ that coincides on all symbols from Σ with ℐ|Σ. Thus ℐ ′ |= 𝑞′(�̄�) and
by Point 3 of Lemma 23, ℐ|Σ |= 𝑞(�̄�). Then ℐ |= 𝑞(�̄�) since 𝑞 uses only symbols from Σ, as
required. ❏

Theorem 13. Let 𝑞𝑇 be a rooted CQ and 𝒪 an ℰℒℐℱ ontology in normal form, and let 𝑞1, 𝑞2, . . .
be a generalization sequence towards 𝑞𝑇 under 𝒪 such that 𝑞1 is satisfiable w.r.t. 𝒪. If all 𝑞𝑖 are
(𝑞𝑇 ,𝒪)-minimal and 𝒪-saturated, then the sequence has length at most |var(𝑞𝑇 )|3 · |sig(𝒪)|.

Proof. Let 𝒪 be an ℰℒℐℱ ontology in normal form and 𝑞𝑇 a rooted CQ. Further, let
𝑞1(�̄�1), . . . , 𝑞𝑛(�̄�𝑛) be a generalization sequence towards 𝑞𝑇 (�̄�) under 𝒪 such that 𝑞1 is satisfi-
able w.r.t. 𝒪, and suppose all 𝑞𝑖 are 𝒪-saturated and (𝑞𝑇 ,𝒪)-minimal.

We start with showing that all 𝑞𝑖 are rooted and have at most as many variables as 𝑞𝑇 .

Claim 1. For all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, |var(𝑞𝑖)| ≤ |var(𝑞𝑇 )| and 𝑞𝑖 is rooted.

Proof of Claim 1. Assume to the contrary that |var(𝑞𝑖)| > |var(𝑞𝑇 )| or 𝑞𝑖 is not rooted. Since
𝑞𝑖 ⊆𝒪 𝑞𝑇 , there is a homomorphism ℎ : 𝑞𝑇 (�̄�) → (𝒰𝑞𝑖,𝒪, �̄�𝑖). If |var(𝑞𝑖)| > |var(𝑞𝑇 )|, there is an
𝑥 ∈ var(𝑞𝑖)with𝑥 /∈ img(ℎ). The same is true if 𝑞𝑖 is not rooted, since 𝑞𝑇 is rooted. By Lemma 18,
ℎ is also a homomorphism witnessing 𝑞𝑇 (�̄�) → (𝒰𝑞𝑖|𝑈 ,𝒪, �̄�𝑖) where 𝑈 = img(ℎ) ∩ var(𝑞𝑖).
Hence, 𝑞𝑖|𝑈 ⊆𝒪 𝑞𝑇 which is contradiction to (𝑞𝑇 ,𝒪)-minimality. This finishes the proof of
Claim 1.

We will show next that the 𝑞𝑖 have an increasing number of variables; we need some prepa-
ration. Because 𝑞1 is satisfiable w.r.t. 𝒪 and 𝑞1 ⊆𝒪 𝑞𝑖, for all 𝑖, all 𝑞𝑖 are satisfiable w.r.t. 𝒪.
Thus, we can use the characterization of query containment under 𝒪 in terms of the universal
model from Lemma 17. Since 𝑞𝑖 ⊆𝒪 𝑞𝑖+1, for all 𝑖 < 𝑛, we can thus fix homomorphisms
ℎ𝑖 : 𝑞𝑖+1(�̄�𝑖+1) → (𝒰𝑞𝑖,𝒪, �̄�𝑖).

Claim 2. For all 𝑖 < 𝑛, var(𝑞𝑖) ⊆ img(ℎ𝑖) and |var(𝑞𝑖)| ≤ |var(𝑞𝑖+1)|.
Proof of Claim 2. Since var(𝑞𝑖) ⊆ img(ℎ𝑖) implies |var(𝑞𝑖)| ≤ |var(𝑞𝑖+1)|, it suffices to show the
former. Assume to the contrary that there is an 𝑥 ∈ var(𝑞𝑖) with 𝑥 /∈ img(ℎ𝑖). By Lemma 18, ℎ
is also a homomorphism from 𝑞𝑖+1(�̄�𝑖+1) → (𝒰𝑞𝑖|𝑈 ,𝒪, �̄�𝑖) with 𝑈 = img(ℎ) ∩ var(𝑞𝑖). Let ℎ′

be the extension of ℎ to a homomorphism from 𝒰𝑞𝑖+1,𝒪 to 𝒰𝑞𝑖|𝑈 ,𝒪 which exists by Lemma 20.
Composing ℎ′ with a homomorphism 𝑔 : 𝑞𝑇 (�̄�) → (𝒰𝑞𝑖+1,𝒪, �̄�𝑖+1) yields a homomorphism
𝑔′ : 𝑞𝑇 (�̄�) → (𝒰𝑞𝑖|𝑈 ,𝒪, �̄�𝑖). Hence, 𝑞𝑖|𝑈 ⊆ 𝑞𝑇 , which is in contradiction to (𝑞𝑇 ,𝒪)-minimality
of 𝑞𝑖. This finishes the proof of Claim 2.

Now, we use the two claims to show that 𝑛 ≤ 2 · |var(𝑞𝑇 )|3 · |sig(𝒪)|. Claim 2 implies that
|var(𝑞𝑖)| ≤ |var(𝑞𝑖+1)| for all 𝑖 > 0. By Claim 1, it suffices to show that the length of any
subsequence 𝑞𝑗 , . . . , 𝑞𝑘 with |var(𝑞𝑗)| = · · · = |var(𝑞𝑘)| is bounded by |var(𝑞𝑇 )|2 · |sig(𝒪)|.

Consider any 𝑖 ∈ {𝑗, . . . , 𝑘−1}. Since |var(𝑞𝑖+1)| = |var(𝑞𝑖)| and by Claim 2, ℎ𝑖 is a bijection
between var(𝑞𝑖+1) and var(𝑞𝑖). Since 𝑞𝑖 is 𝒪-saturated, ℎ𝑖 is also a bijective homomorphism
from 𝑞𝑖+1 to 𝑞𝑖. Thus, the number of atoms in 𝑞𝑖+1 is at most the number atoms in 𝑞𝑖. By the



definition of generalization sequence, 𝑞𝑖+1 ̸⊆𝒪 𝑞𝑖, and thus ℎ−𝑖 cannot be a homomorphism
from 𝑞𝑖 to 𝑞𝑖+1. Therefore, one of the following two cases applies:

1. there is a concept atom 𝐴(𝑥1) ∈ 𝑞𝑖 such that 𝐴(ℎ−𝑖 (𝑥1)) /∈ 𝑞𝑖+1, or

2. there is a role atom 𝑟(𝑥1, 𝑥2) ∈ 𝑞𝑖 such that 𝑟(ℎ−𝑖 (𝑥1), ℎ
−
𝑖 (𝑥2)) /∈ 𝑞𝑖+1.

Thus, at least one atom is removed going from any 𝑞𝑖 to 𝑞𝑖+1.
Since, by definition of generalization sequences, all symbols in 𝑞𝑗 must occur in 𝒪, 𝑞𝑗 contains

at most 𝑁 |var(𝑞𝑗)|2 +𝑀 |var(𝑞𝑗)| atoms, 𝑁 and 𝑀 are the numbers of role names and concept
names, respectively, in sig(𝒪). Since, by Claim 1, |var(𝑞𝑗)| ≤ |var(𝑞𝑇 )|, the length of the
sequence 𝑞𝑗 , . . . , 𝑞𝑘 is bounded by

𝑁 |var(𝑞𝑗)|2 +𝑀 |var(𝑞𝑗)| ≤ (𝑁 +𝑀) · |var(𝑞𝑗)|2 ≤ |sig(𝒪)| · |var(𝑞𝑇 )|2.

❏

Definition 24. An ℰℒℐ-simulation from interpretation ℐ1 to interpretation ℐ2 is a relation
𝑆 ⊆ ∆ℐ1 ×∆ℐ2 such that for all (𝑑1, 𝑑2) ∈ 𝑆, we have:

1. for all 𝐴 ∈ NC: if 𝐴(𝑑1) ∈ ℐ1, then 𝐴(𝑑2) ∈ 𝑆;

2. for all 𝑟 ∈ NR and 𝑅 ∈ {𝑟, 𝑟−}: if there is some 𝑑′1 ∈ ∆ℐ1 with 𝑅(𝑑1, 𝑑
′
1) ∈ ℐ1, then there

is 𝑑′2 ∈ ∆ℐ2 such that (𝑑′1, 𝑑
′
2) ∈ 𝑆 and 𝑅(𝑑2, 𝑑

′
2) ∈ ℐ2.

The following lemma gives an important property of simulations. The proof is standard and
omitted.

Lemma 25. Let 𝒪 be a ℰℒℐℱ ontology, 𝒜1, 𝒜2 ABoxes and 𝑞(𝑥) an ELIQ such that 𝒜1, 𝒜2, and
𝑞 are satisfiable w.r.t 𝒪. If there is an ℰℒℐ-simulation 𝑆 from 𝒜1 to 𝒜2 with (𝑎1, 𝑎2) ∈ 𝑆, then
𝒜1,𝒪 |= 𝑞(𝑎1) implies 𝒜2,𝒪 |= 𝑞(𝑎2).

Lemma 14. The sequence 𝑝1, 𝑝2, . . . is a generalization sequence towards 𝑞𝑇 under 𝒪.

Proof. First note that both rules used in extract-minimal-ELIQ preserve satisfiability w.r.t. 𝒪.
Since the input 𝑞 to extract-minimal-ELIQ is assumed to be satisfiable w.r.t. 𝒪 (recall the precon-
dition of Lemma 11), all 𝑝𝑖 are satisfiable w.r.t. 𝒪 as well, and we can use the characterization of
query containment in terms of homomorphisms to the universal model provided in Lemma 17.
We do this without further notice below.

We start by showing 𝑝𝑖 ⊆𝒪 𝑝𝑖+1 for all 𝑖 < 𝑛. Let 𝑝′𝑖 be the result of applying Double cycle to
𝑝𝑖 and recall that 𝑝𝑖+1 is the result of exhaustively applying Drop variable to 𝑝′𝑖. Hence, it suffices
to show 𝑝𝑖 ⊆𝒪 𝑝′𝑖. To do this, in turn, it is enough to point out that we obtain a homomorphism
ℎ𝑖 from 𝑝′𝑖 to 𝑝𝑖 with ℎ𝑖(𝑥0) = 𝑥0 by setting ℎ𝑖(𝑥) = 𝑥 for all 𝑥 ∈ var(𝑝𝑖) and ℎ𝑖(𝑥

′) = 𝑥 for
all variables 𝑥′ in the disjoint copy of 𝑝𝑖 that is added in Double Cycle. We shall reuse ℎ𝑖 below
and call it the natural homomorphism from 𝑝′𝑖 to 𝑝𝑖.

Next we show that 𝑝𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, by induction on 𝑖. In the induction start,
𝑝1 is the result of exhaustive application of Drop variable to the 𝒪-saturation of the input 𝑞.
Since 𝑞 ⊆𝒪 𝑞𝑇 and Drop variable preserves this property, 𝑝1 ⊆𝒪 𝑞𝑇 follows.



Now assume that 𝑝𝑖 ⊆𝒪 𝑞𝑇 and thus 𝒜𝑝𝑖 ,𝒪 |= 𝑞𝑇 (𝑥0). Let again 𝑝′𝑖 be the result of applying
Double cycle to 𝑝𝑖 and recall that 𝑝𝑖+1 is the result of exhaustively applying Drop variable to 𝑝′𝑖.
Hence, it suffices to show 𝑝′𝑖 ⊆𝒪 𝑞𝑇 . By construction of 𝑝′𝑖, the relation

𝑆 = {(ℎ𝑖(𝑥), 𝑥) | 𝑥 ∈ var(𝑝′𝑖)},

where ℎ𝑖 is the natural homomorphism from 𝑝′𝑖 to 𝑝𝑖, is an ℰℒℐ-simulation from 𝒜𝑝𝑖 to 𝒜𝑝′𝑖
with (𝑥0, 𝑥0) ∈ 𝑆. Thus, 𝒜𝑝′𝑖

,𝒪 |= 𝑞𝑇 (𝑥0) by Lemma 25, and 𝑝′𝑖 ⊆𝒪 𝑞𝑇 as required.
It remains to show that 𝑝𝑖+1 ̸⊆𝒪 𝑝𝑖 for 1 ≤ 𝑖 < 𝑛. Similarly to what was done above, it

suffices to show that 𝑝′𝑖 ̸⊆𝒪 𝑝𝑖 where 𝑝′𝑖 is the result of applying Double cycle to 𝑝𝑖. Assume to
the contrary that 𝑝′𝑖 ⊆𝒪 𝑝𝑖 for some 𝑖. Then there is a homomorphism 𝑔 : 𝑝𝑖(𝑥0) → (𝒰𝑝′𝑖,𝒪, 𝑥0).
Composing 𝑔 with the extension ℎ+𝑖 of the natural homomorphism ℎ𝑖 to a homomorphism from
𝒰𝑝′𝑖

to 𝒰𝑝𝑖 , which exists by Lemma 20, yields a homomorphism ̂︀𝑔 : 𝑝𝑖(𝑥0) → (𝒰𝑝𝑖,𝒪, 𝑥0).
Let 𝑅(𝑦1, 𝑦2), . . . , 𝑅𝑛(𝑦𝑛, 𝑦1) be the cycle that was expanded in the construction of 𝑝′𝑖 and

consider the set Γ of all sets of variables that form a cycle of length 𝑛 in 𝑝𝑖. For example,
{𝑦1, . . . , 𝑦𝑛} ∈ Γ.

Let {𝑥1, . . . , 𝑥𝑛} be any element of Γ. We show that {̂︀𝑔(𝑥1), . . . , ̂︀𝑔(𝑥𝑛)} ∈ Γ. Since ̂︀𝑔 is
a homomorphism, it suffices to show that |{̂︀𝑔(𝑥1), . . . , ̂︀𝑔(𝑥𝑛)}| = 𝑛. Assume the contrary.
Then there are 𝑥𝑗 and 𝑥𝑘 with 𝑥𝑗 ̸= 𝑥𝑘 and ̂︀𝑔(𝑥𝑗) = ̂︀𝑔(𝑥𝑘), implying that ̂︀𝑔 is not injective.
This, in turn, implies that there is a 𝑥 ∈ var(𝑝𝑖) with 𝑥 /∈ img(̂︀𝑔), in contradiction to the
(𝑞𝑇 ,𝒪)-minimality of 𝑝𝑖.

Hence, we can define a function 𝑓 : Γ → Γ by setting 𝑓({𝑥1, . . . , 𝑥𝑛}) = {̂︀𝑔(𝑥1), . . . , ̂︀𝑔(𝑥𝑛)}.
Assume that 𝑓 is not injective, that is, there are 𝛾, 𝛾′ ∈ Γ with 𝛾 ̸= 𝛾′ and 𝑓(𝛾) = 𝑓(𝛾′). Since
𝛾 ̸= 𝛾′ and |𝛾| = |𝛾′|, there must be a variable 𝑥 ∈ 𝛾 with 𝑥 /∈ 𝛾′. Since 𝑓(𝛾) = 𝑓(𝛾′),
there is a variable 𝑥′ ∈ 𝛾′ with ̂︀𝑔(𝑥) = ̂︀𝑔(𝑥′), and clearly 𝑥′ ̸= 𝑥. This again contradicts
(𝑞𝑇 ,𝒪)-minimality of 𝑝𝑖 as above. Thus, 𝑓 is a bijection from Γ to Γ.

Since Γ is finite, it follows that there must be a 𝑗 ≥ 1 such that 𝑓 𝑗({𝑦1, . . . , 𝑦𝑛}) =
{𝑦1, . . . , 𝑦𝑛}. By definition of 𝑓 this implies that {̂︀𝑔𝑗(𝑦1), . . . , ̂︀𝑔𝑗(𝑦𝑛)} = {𝑦1, . . . , 𝑦𝑛}. Re-
call that ̂︀𝑔 is the composition of the homomorphisms ℎ+𝑖 and 𝑔. Since (𝑞𝑇 ,𝒪)-minimality of 𝑝𝑖
implies that ̂︀𝑔 is injective, 𝑔 must also be injective. Thus, the composition 𝑔′ of ̂︀𝑔𝑗−1 and 𝑔 is an
injective homomorphism that maps the cycle {𝑦1, . . . , 𝑦𝑛} in 𝑝𝑖 to some subset of the expanded
cycle {𝑦1, 𝑦′1, . . . , 𝑦𝑛, 𝑦′𝑛} in 𝑝′𝑖.

First consider the case where {𝑔′(𝑦1), . . . , 𝑔′(𝑦𝑛)} = {𝑦1, . . . , 𝑦𝑛}. By the construction of 𝑝′𝑖
from 𝑝𝑖, the query 𝑝′𝑖|{𝑦1,...,𝑦𝑛} contains one less role atom than the query 𝑝𝑖|{𝑦1,...,𝑦𝑛}, implying
that 𝑔′ cannot be an injective homomorphism, leading to a contradiction. The case where
{𝑔′(𝑦1), . . . , 𝑔′(𝑦𝑛)} = {𝑦′1, . . . , 𝑦′𝑛} is analogous.

The remaining case is that {𝑔′(𝑦1), . . . , 𝑔′(𝑦𝑛)} contains both variables of the form 𝑦𝑗 and 𝑦′𝑗 .
Then two different atoms from the cycle 𝑅(𝑦1, 𝑦2), . . . , 𝑅𝑛(𝑦𝑛, 𝑦1) must be mapped by 𝑔′ to the
role atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦) that were added by Double cycle to connect the disjoint copy of 𝑝𝑖
added in that construction. However, since ℎ𝑖(𝑥′) = ℎ𝑖(𝑥) and ℎ𝑖(𝑦

′) = ℎ𝑖(𝑦), this implies that
the composition of 𝑔′ and ℎ𝑖 is a non-injective homomorphism from 𝑝𝑖 to 𝑝𝑖, again contradicting
(𝑞𝑇 ,𝒪)-minimality of 𝑝𝑖. ❏


	1 Introduction
	2 Preliminaries
	3 Guided Generalizations
	4 Exact Learning with Membership and Equivalence Queries
	5 Conclusions and Future Work
	A Additional Preliminaries
	A.1 Direct Product
	A.2 Semantics of Conjunctive Queries
	A.3 Universal model

	B Proofs for Section 3
	C Proofs for Section 4

