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Abstract
We study the complexity of answer counting for ontology-mediated queries and for querying under
constraints, considering conjunctive queries and unions thereof (UCQs) as the query language
and guarded TGDs as the ontology and constraint language, respectively. Our main result is
a classification according to whether answer counting is fixed-parameter tractable (FPT), W[1]-
equivalent, #W[1]-equivalent, #W[2]-hard, or #A[2]-equivalent, lifting a recent classification for
UCQs without ontologies and constraints due to Dell et al. [19]. The classification pertains to various
structural measures, namely treewidth, contract treewidth, starsize, and linked matching number.
Our results rest on the assumption that the arity of relation symbols is bounded by a constant
and, in the case of ontology-mediated querying, that all symbols from the ontology and query can
occur in the data (so-called full data schema). We also study the meta-problems for the mentioned
structural measures, that is, to decide whether a given ontology-mediated query or constraint-query
specification is equivalent to one for which the structural measure is bounded.
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1 Introduction

Tuple-generating dependencies (TGDs) are a prominent formalism for formulating database
constraints. A TGD states that if certain facts are true, then certain other facts must be
true as well. This can be interpreted in different ways. In ontology-mediated querying, TGDs
give rise to ontology languages and are used to derive new facts in addition to those that
are present in the database. This makes it possible to obtain additional answers if the data
is incomplete and also enriches the vocabulary that is available for querying. In a more
classical setup that we refer to as querying under constraints, TGDs are used as integrity
constraints on the database, that is, a TGD expresses the promise that if certain facts are
present in the database, then certain other facts are present as well. Integrity constraints
are relevant to query optimization as they might enable the reformulation of a query into
a ‘simpler’ one. TGDs generalize a wide range of other integrity constraints, which was the
original reason for introducing them [1].

When unrestricted TGDs are used as an ontology language, ontology-mediated querying
© Cristina Feier, Carsten Lutz, and Marcin Przybyłko;
licensed under Creative Commons License CC-BY 4.0

24th International Conference on Database Theory (ICDT 2021).
Editors: Ke Yi and Zhewei Wei; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:feier@uni-bremen.de
mailto:clu@uni-bremen.de
mailto:przybyl@uni-bremen.de
https://doi.org/10.4230/LIPIcs.ICDT.2021.9
https://arxiv.org/abs/2101.03058
https://arxiv.org/abs/2101.03058
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Answer Counting under Guarded TGDs

is undecidable even for unary queries that consist of a single atom [12]. This has led
to intense research on identifying restricted forms of TGDs that regain decidability, see
[3, 12, 13, 30] and references therein. In this paper, we consider guardedness as a basic
and robust such restriction: a TGD is guarded if some body atom, the guard, contains all
body variables [12]. Guarded TGDs are useful also for formalizing integrity constraints. For
example, the important class of referential integrity constraints (also known as inclusion
dependencies) is a special case of guarded TGDs.

While being decidable, both ontology-mediated querying and querying under constraints
with guarded TGDs is computationally intractable. Let us make this precise for query
evaluation, i.e. the problem to decide, given a database, a query, and a candidate answer,
whether the candidate is indeed an answer. We use (G,CQ) to denote the language of onto-
logy-mediated queries (O,S, q) that consist of an ontology O which is a set of guarded TGDs,
a data schema S, and a conjunctive query (CQ) q. As usual, S contains the relation names
that can be used in the data while both the ontology and query can also use additional
names. Evaluating ontology-mediated queries (OMQs) from (G,CQ) is 2ExpTime-complete
in combined complexity. The same holds for (G,UCQ) where the queries are unions of CQs
(UCQs) [12]. For querying under constraints, we consider constraint query specifications
(CQSs) of the form (T ,S, q) where T is a set of integrity constraints and q is a query, both
over schema S. Overloading notation, we use (G, (U)CQ) also to denote the class of CQSs in
which the constraints are guarded TGDs and the queries are (U)CQs; it will always be clear
from the context whether (G, (U)CQ) denotes an OMQ language or a class of CQSs. Query
evaluation for CQSs from (G,CQ) and (G,UCQ) is NP-complete.

In this paper, we are interested in counting the number of answers to OMQs and to
queries posed under integrity constraints, with an emphasis on the limits of efficiency from the
viewpoint of parameterized complexity theory. Counting the number of answers is important
to inform the user when there are too many answers to compute all of them, and it is
supported by almost every data management system. It is also a fundamental operation in
data analytics and in decision support where often the count is more important than the
actual answers. Despite its relevance, however, the problem has received little attention
in ontology-mediated querying and querying under constraints, see [29, 28, 9, 14] for some
notable exceptions.

We equate efficiency with fixed-parameter tractability (FPT), the parameter being the
size of the OMQ and of the CQS, respectively. Evaluating Boolean queries is W[1]-hard
both for ontology-mediated querying in (G, (U)CQ) and for querying under constraints in
(G, (U)CQ) [5], and therefore answer counting (which is the same problem as query evaluation
for Boolean queries) is in general not fixed-parameter tractable unless FPT = W[1]. The
main question that we ask is: how can we characterize the parameterized complexity of
answer counting for classes of OMQs or CQSs C ⊆ (G, (U)CQ) and, most importantly, for
which such classes C can we count answers in FPT? The classes C will primarily be defined
in terms of structural restrictions of the (U)CQ, but will also take into account the interplay
between the ontology/constraints and the (U)CQ. Note that PTime combined complexity,
a (significant) strengthening of FPT, cannot be obtained by structural restrictions on the
UCQ in ontology-mediated querying with (G, (U)CQ) because evaluating Boolean OMQs is
2ExpTime-complete already for unary single atom queries. For querying under constraints, in
contrast, PTime combined complexity is not out of reach and in the case of query evaluation
can in fact sometimes be attained in (G, (U)CQ) [8, 7].

A seminal result due to Grohe states that a recursively enumerable class C of CQs can be
evaluated in FPT if and only if there is a constant that bounds the treewidths of CQs in C,
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modulo equivalence [26]. Here, treewidth of a CQ q means the treewidth of the Gaifman
graph of q after dropping all answer variables. The result rests on the assumptions that
FPT ̸= W[1] and that the arity of relation symbols is bounded by a constant, which we shall
also assume throughout this article. Grohe’s result extends to UCQs in the expected way, that
is, the characterization for UCQs is in terms of the maximum treewidth of the constituting
CQs modulo equivalence, assuming w.l.o.g. that there are no containment relations among
them. An adaptation of Grohe’s proof was used by Dalmau and Jonsson to show that a class
C of CQs without quantified variables admits answer counting in FPT if and only if the
treewidths of CQs in C is bounded by a constant [18]. In a series of papers by Pichler and
Skritek [32], Durand and Mengel [20, 21], Chen and Mengel [16, 17], and Dell et al. [19], this
was extended to a rather detailed classification of the parameterized complexity of answer
counting for classes of CQs and UCQs that may contain both answer variables and quantified
variables. The characterization uses treewidth, which now refers to the entire Gaifman graph
including the answer variables. It also refers to the additional structural measures of contract
treewidth, starsize,1 and linked matching number. It links boundedness of these measures
by a constant, modulo equivalence, to the relevant complexities, which turn out to be FPT,
W[1]-equivalence, #W[1]-equivalence, #W[2]-hardness, and #A[2]-equivalence. Here, we
speak of ‘equivalence’ rather than of ‘completeness’ to emphasize that hardness is defined in
terms of (parameterized counting) Turing (fpt-)reductions.

The main results of this article are classifications of the complexity of answer counting
for classes of ontology-mediated queries from (G, (U)CQ), assuming that the data schema
contains all symbols used in the ontology and query, and for classes of constraint query
specifications from (G, (U)CQ). Our classifications parallel the one for the case without
TGDs, involve the same five complexities mentioned above, and link them to the same
structural measures. However, there is a twist. The ontology interacts with all of the
mentioned structural measures in the sense that for each measure, there is a class of CQs
C and an ontology O such that the measure is unbounded for C modulo equivalence while
there is a constant k such that each OMQ (O,S, q), q ∈ C, is equivalent to an OMQ (O,S, q′)
with the measure of q′ bounded by k. A similar effect can be observed for querying under
constraints. We can thus not expect to link the complexity of a class C of OMQs to the
structural measures of the actual queries in the OMQs. Instead, we consider a certain
class of CQs that we obtain from the OMQs in C by first rewriting away the existential
quantifiers in TGD heads in the ontology, then taking the CQs that occur in the resulting
OMQs, combining them conjunctively guided by the inclusion-exclusion principle, next
chasing them with the ontology (which is a finite operation due to the first step), and then
taking the homomorphism core. The structural measures of the resulting class of CQs
turn out to determine the complexity of answer counting for the original class of OMQs C.
Interestingly, the same is also true for classes of constraint query specifications and thus the
characterizations for OMQs and for CQSs coincide. We in fact establish the latter by mutual
reduction between answer counting for OMQs and answer counting for CQSs.

Inspired by our complexity classifications, we also study the meta problems to decide
whether a given query is equivalent to a query in which some selected structural measures are
small, and to construct the latter query if it exists. We do this both for ontology-mediated
queries and for queries under constraints, considering all four measures that are featured
in the classifications (and sets thereof). We start with querying under constraints where

1 The measure is called dominating starsize in [19] and strict starsize in [16]. We only speak of starsize.
Note that this is not identical to the original notion of starsize from [20, 21].
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9:4 Answer Counting under Guarded TGDs

we are able to obtain decidability results in all relevant cases. These results can also be
applied to ontology-mediated querying when (i) the data schema contains all symbols used
in the ontology and query and (ii) we require that the ontology used in the OMQ cannot be
replaced with a different one. For contract treewidth and starsize, we additionally show that
it is never necessary to modify the ontology to attain equivalent OMQs with small measures,
and we provide decidability results without assumptions (i) and (ii). We also observe that
treewidth behaves differently in that modifying the ontology might result in smaller measures.
Deciding the meta problems for the measure of treewidth is left open as an interesting and
non-trivial open problem.

Some proofs are deferred to the appendix of the long version of this paper [23], available
at https://arxiv.org/abs/2101.03058.

Related Work. The complexity of ontology-mediated querying has been a subject of
intense study from various angles, see for example [10, 11, 33] and references therein. The
parameterized complexity of evaluating ontology-mediated queries has been studied in [6, 5].
In [5], it is shown that query evaluation in FPT coincides with bounded treewidth modulo
equivalence in (G,UCQ) when the arity of relation symbols is bounded by a constant. An FPT
upper bound for querying under constraints that are guarded TGDs has been established
in [8, 7] for CQs that have bounded generalized hypertreewidth modulo equivalence. That
paper also studies the meta problems for querying under constraints that are guarded TGDs
and for the measure of generalized hypertree width. A related topic is query containment
under constraints, see for example [15, 27, 24].

2 Preliminaries

For an integer n ≥ 1, we use [n] to denote the set {1, . . . , n}. To indicate the cardinality of a
set S, we may write #S or |S|.
Relational Databases. A schema S is a set of relation symbols R with associated arity
ar(R) ≥ 0. We write ar(S) for maxR∈S{ar(R)}. An S-fact is an expression of the form R(c̄),
where R ∈ S and c̄ is an ar(R)-tuple of constants. An S-instance is a (possibly infinite)
set of S-facts and an S-database is a finite S-instance. We write adom(I) for the set of
constants in an instance I. For a set S ⊆ adom(I), we denote by I|S the restriction of I
to facts that mention only constants from S. A homomorphism from I to an instance J is
a function h : adom(I) → adom(J) such that R(h(c̄)) ∈ J for every R(c̄) ∈ I. A database
D′ is obtained from a database D by cloning constants if D′ ⊇ D can be constructed by
choosing a1, . . . , an ∈ adom(D) and positive integers m1, . . . ,mn, reserving fresh constants
ai11 , . . . , a

in
n , 1 ≤ iℓ ≤ mℓ for 1 ≤ ℓ ≤ n, and adding to D each atom R(ā′) that can be

obtained from some R(ā) ∈ D by replacing each occurrence of ai, 1 ≤ i ≤ n, with aji for
some j with 1 ≤ j ≤ mi.
CQs and UCQs. A conjunctive query (CQ) q(x̄) over a schema S is a first-order formula
of the form ∃ȳ φ(x̄, ȳ) where φ is a conjunction of relational atoms Ri(x̄i) with Ri ∈ S and
x̄i a tuple of variables of length ar(Ri) and equality atoms x1 = x2. We require that only
variables from x̄ appear in equality atoms. With var(q), we denote the set of variables that
occur in x̄ or in ȳ. Whenever convenient, we identify a conjunction of atoms with a set of
atoms. When we are not interested in order and multiplicity, we treat x̄ as a set of variables.
We write CQ for the class of CQs.

Every CQ q can be naturally seen as a database Dq, known as the canonical database of q,
obtained by dropping the existential quantifier prefix and the equality atoms, and viewing
variables as constants. A homomorphism h from a CQ q to an instance I is a homomorphism

https://arxiv.org/abs/2101.03058
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from Dq to I such that x = y ∈ q implies h(x) = h(y). A tuple c̄ ∈ adom(I)|x̄| is an answer
to Q on I if there is a homomorphism h from q to I with h(x̄) = c̄. The evaluation of q(x̄)
on I, denoted q(I), is the set of all answers to Q on I.

A union of conjunctive queries (UCQ) over a schema S is a first-order formula of the
form q(x̄) := q1(x̄) ∨ · · · ∨ qn(x̄), where n ≥ 1, and q1(x̄), . . . , qn(x̄) are CQ over S. We refer
to the variables in x̄ as the answer variables of q and the arity of q is defined as the number
of its answer variables. The evaluation of q on an instance I, denoted q(I), is the set of
tuples

⋃
i∈[n] qi(I). We write UCQ for the class of UCQs. A (U)CQ of arity zero is called

Boolean. The only possible answer to a Boolean query is the empty tuple. For a Boolean
(U)CQ q, we may write I |= q if q(I) = {()} and I ̸|= q otherwise.

Let q1(x̄) and q2(x̄) be two UCQs over the same schema S. We say that q1 is contained
in q2, written q1 ⊆S q2, if q1(D) ⊆ q2(D) for every S-database D. Moreover, q1 and q2 are
equivalent, written q1 ≡S q2, if q1 ⊆S q2 and q2 ⊆S q1.

A CQ q(x̄) is a core if every homomorphism h from q to Dq with h(x̄) = x̄ is surjective.
Every CQ q(x̄) is equivalent to a CQ p(x̄) that is a core and can be obtained from q by
dropping atoms. In fact, p is unique up to isomorphism and we call it the core of q. For a
UCQ q, we use core(q) to denote the disjunction whose disjuncts are the cores of the CQs
in q.

For a UCQ q, but also for any other syntactic object q, we use ||q|| to denote the number
of symbols needed to write q as a word over a suitable alphabet.

Our main interest is in the complexity of counting the number of answers. Every choice
of a query language Q, such as CQ and UCQ, and a class of databases D gives rise to the
following answer counting problem:

PROBLEM : AnswerCount(Q,D)
INPUT : A query q ∈ Q over some schema S and an S-database D ∈ D
OUTPUT : #q(D)

Our main interest is in the parameterized version of the above problem where we generally
assume that the parameter is the size of the input query, see below for more details. When
D is the class of all databases, we simply write AnswerCount(Q).
Treewidth. Treewidth is a widely used notion that measures the degree of tree-likeness
of a graph. Let G = (V,E) be an undirected graph. A tree decomposition of G is a pair
δ = (Tδ, χ), where Tδ = (Vδ, Eδ) is a tree, and χ is a labeling function Vδ → 2V , i.e., χ
assigns a subset of V to each node of Tδ, such that:
1.

⋃
t∈Vδ

χ(t) = V ,
2. if {u, v} ∈ E, then u, v ∈ χ(t) for some t ∈ Vδ,
3. for each v ∈ V , the set of nodes {t ∈ Vδ | v ∈ χ(t)} induces a connected subtree of Tδ.
The width of δ is the number maxt∈Vδ

{|χ(t)|} − 1. If the edge set E of G is non-empty, then
the treewidth of G is the minimum width over all its tree decompositions; otherwise, it is
defined to be one. Each instance I is associated with an undirected graph (without self
loops) GI = (V,E), called the Gaifman graph of I, defined as follows: V = adom(I), and
{a, b} ∈ E iff there is a fact R(c̄) ∈ I that mentions both a and b. The treewidth of I is the
treewidth of GI .
TGDs, Guardedness. A tuple-generating dependency (TGD) T over S is a first-order
sentence of the form ∀x̄∀ȳ

(
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
such that ∃ȳ ϕ(x̄, ȳ) and ∃z̄ ψ(x̄, z̄) are CQs

without equality atoms. As a special case, we also allow ϕ(x̄, ȳ) to be the empty conjunction,
i.e. logical truth, denoted by true. For simplicity, we write T as ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄). We call

ICDT 2021



9:6 Answer Counting under Guarded TGDs

ϕ and ψ the body and head of T , denoted body(T ) and head(T ), respectively. An instance I
over S satisfies T , denoted I |= T , if qϕ(I) ⊆ qψ(I). It satisfies a set of TGDs S, denoted
I |= S, if I |= T for each T ∈ S. We then also say that I is a model of S. We write TGD to
denote the class of all TGDs.

A TGD T is guarded if body(T ) is true or there exists an atom α in its body that contains
all variables that occur in body(T ) [12]. Such an atom α is the guard of T , denoted guard(T ).
We write G for the class of guarded TGDs. A TGD T is full if the tuple z̄ of variables is
empty. We use FULL to denote the class of full TGDs and shall often refer to G ∩ FULL,
the class of TGDs that are both guarded and full. Note that this class is essentially the class
of Datalog programs with guarded rule bodies.

We next introduce the well-known chase procedure for making explicit the consequences
of a set of TGDs [31, 27, 22, 12]. We first define a single chase step. Let I be an instance
over a schema S and T = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) a TGD over S. We say that T is applicable to
a tuple (c̄, c̄′) of constants in I if ϕ(c̄, c̄′) ⊆ I. In this case, the result of applying T in I at
(c̄, c̄′) is the instance J = I ∪ψ(c̄, c̄′′), where c̄′′ is the tuple obtained from z̄ by simultaneously
replacing each variable z with a fresh distinct constant that does not occur in I. We describe
such a single chase step by writing I T, (c̄,c̄′)−−−−−→ J . Let I be an instance and S a finite set of
TGDs. A chase sequence for I with S is a sequence of chase steps

I0
T0, (c̄0,c̄

′
0)−−−−−−→ I1

T1, (c̄1,c̄
′
1)−−−−−−→ I2 . . .

such that (1) I0 = I, (2) Ti ∈ S for each i ≥ 0, and (3) J |= S with J =
⋃
i≥0 Ii. The

instance J is the (potentially infinite) result of this chase sequence, which always exists. The
chase sequence is fair if whenever a TGD T ∈ S is applicable to a tuple (c̄, c̄′) in some Ii,
then Ij

T, (c̄,c̄′)−−−−−→ Ij+1 is part of the sequence for some j ≥ i. Note that our chase is oblivious,
that is, a TGD is triggered whenever its body is satisfied, even if also its head is already
satisfied. As a consequence, every fair chase sequence for I with S leads to the same result,
up to isomorphism. Thus, we can refer to the result of chasing I with S, denoted chS(I).

▶ Lemma 1. Let S be a finite set of TGDs and I an instance. Then for every model J of S
with I ⊆ J , there is a homomorphism h from chS(I) to J that is the identity on adom(I).

For sets S of TGDs from G ∩ FULL, we may also chase a CQ q(x̄) with S, denoting the
result with chS(q). What we mean is the (finite!) result of chasing database Dq with S and
viewing the resulting as a CQ with answer variables x̄.
Parameterized Complexity. A counting problem over a finite alphabet Λ is a function
P : Λ∗ → N and a parameterized counting problem over Λ is a pair (P, κ), with P a counting
problem over Λ and κ the parameterization of P , a function κ : Λ∗ → N that is computable
in PTime. An example of a parameterized counting problem is #pClique in which P maps
(a suitable encoding of) each pair (G, k) with G an undirected graph and k ≥ 0 a clique size
to the number of k-cliques in G, and where κ(G, k) = k. Another example is #pDomSet
where P maps each pair (G, k) to the number of dominating sets of size k, and where again
κ(G, k) = k.

A counting problem P is a decision problem if the range of P is {0, 1}, and a parameterized
decision problem is defined accordingly. An example of a parameterized decision problem is
pClique in which P maps each pair (G, k) to 1 if the undirected graph G contains a k-clique
and to 0 otherwise, and where κ(G, k) = k.

A parameterized problem (P, κ) is fixed-parameter tractable (fpt) if there is a computable
function f : N → N such that P (x) can be computed in time |x|O(1)·f(κ(x)) for all inputs x.
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We use FPT to denote the class of all parameterized counting problems that are fixed-
parameter tractable.

A Turing fpt-reduction from a parameterized counting problem (P1, κ1) to a parameterized
counting problem (P2, κ2) is an algorithm that computes P1 with oracle access to P2, runs
within the time bounds of fixed parameter tractability for (P1, κ1), and when started on input
x only makes oracle calls with argument y such that κ2(y) ≤ f(κ1(x)), for some computable
function f . The reduction is called a parsimonious fpt-reduction if only a single oracle call is
made at the end of the computation and its output is then returned as the output of the
algorithm without any further modification.

A parameterized counting problem (P, κ) is #W[1]-easy if it can be reduced to #pClique
and it is #W[1]-hard if #pClique reduces to (P, κ), both in terms of Turing fpt-reductions.
W[1]-easiness and -hardness are defined analogously, but using pClique in place of #pClique,
and likewise for #W[2] and #pDomSet, and for #A[2] and the parameterized prob-
lem of counting the answers to CQs, the parameter being the size of the CQ. For C ∈
{W[1],#W[1],#W[2],#A[2]}, (P, κ) is C-equivalent if it is C-easy and C-hard. Note that
we follow [16, 19] in defining both easiness and hardness in terms of Turing fpt-reductions;
stronger notions would rely on parsimonious fpt-reductions [25].

3 The Classification Without TGDs

In the series of papers [20, 21, 16, 17, 19], the parameterized complexity of answer counting is
studied for classes of CQs and UCQs, resulting in a rather detailed classification. We present
it in this section as a reference point and as a basis for establishing our own classifications
later on. We start with introducing the various structural measures that play a role in the
classification.

Let q(x̄) = ∃ȳ φ(x̄, ȳ) be a CQ. The Gaifman graph of q, denoted Gq, is GDp where CQ p

is obtained from q by replacing answer variable x2 with answer variable x1 whenever x1 = x2
is an atom in q. The treewidth (TW) of q(x̄) is the treewidth of Gq.

An x̄-component of Gq is the undirected graph obtained as follows: (1) take the subgraph
of Gq induced by vertex set var(q) \ x̄, (2) choose a maximal connected component (Vc, Ec),
and (3) re-add all edges from Gq that contain at least one vertex from Vc. The contract of
Gq, denoted contract(Gq), is the restriction of Gq to the variables in x̄, extended with every
edge {x1, x2} ⊆ x̄ such that x1, x2 co-occur in some x̄-component of Gq. We shall often
be interested in the treewidth of the contract of a CQ q, which we refer to as the contract
treewidth (CTW) of q.

The starsize (SS) of q is the maximum number of answer variables in any x̄-component
of Gq. Note that the same notion is called strict starsize in [16] and dominating starsize
in [19]. It is different from the original notion of starsize from [20, 21].

A set of quantified variables S in q is node-well-linked if for every two disjoint sets
S1, S2 ⊆ S of the same cardinality, there are |S1| vertex disjoint paths in Gq that connect the
vertices in S1 with the vertices in S2. For example, S is node-well-linked if Dq|S takes the
form of a grid or of a clique. A matching M from the answer variables x̄ to the quantified
variables var(q) \ x̄ in the graph Gq (in the standard sense of graph theory) is linked if the set
S of quantified variables that occur in M is node-well-linked. The linked matching number
(LMN) of q is the size of the largest linked matching from x̄ to var(q) \ x̄ in Gq. One should
think of the linked matching number as a strengthening of starsize. We do not only demand
that many answer variables are interlinked by the same x̄-component, but additionally require
that this component is sufficiently large and highly connected (‘linked’).

ICDT 2021
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(a) TW = 3, CTW = 1 (b) CTW = 3, SS = 2 (c) SS = 4, LMN = 1 (d) LMN = 4

Figure 1 Examples for structural measures: Example (a) is the (3,3)-complete bipartite graph,
the contract of Example (b) is the 4-clique, Example (c) is a 4-star, and Example (d) is a 4-star with
the 4-clique in the centre. Filled nodes are answer variables, hollow nodes are quantified variables.

Figure 1 contains some example CQs with associated measures. For a class of CQs C,
the contract treewidths of CQs in C being bounded by a constant implies that the same is
true for starsizes, and bounded starsizes in turn imply bounded linked matching numbers.
There are no implications between bounded treewidths and bounded contract treewidths; in
Figure 1, Example (a) generalizes to any treewidth while always having contract treewidth 1
and Example (c), which has contract treewidth 3, generalizes to any contract treewidth (and
starsize) while always having treewidth 1. See also [16, 19] for additional examples.

It is a fundamental observation that cores of CQs are guaranteed to have minimum
measures among all equivalent CQs, as stated by the following lemma [16, 19].

▶ Lemma 2. If a CQ q is equivalent to a CQ of treewidth k, then core(q) has treewidth at
most k. The same is true for contract treewidth, starsize, and linked matching number.

An additional ingredient needed to formulate the classification for UCQs emerges from [17].
There, Chen and Mengel associate with every UCQ q a set of CQs clCM(q) such that,
informally speaking, counting the number of answers to q is equivalent to counting the
number of answers to the CQs in clCM(q). We now introduce this set in detail.

Two CQs q1(x̄1) and q2(x̄2) over the same schema S are counting equivalent if #q1(D) =
#q2(D) for all S-databases D. Let q(x̄) = p1 ∨· · ·∨pn. The starting point for defining clCM(q)
is the observation that, by the inclusion-exclusion principle, every database D satisfies

#q(D) =
∑
I⊆[n]

(−1)|I|+1 · #
( ∧
i∈I

pi(D)
)

We can manipulate this sum as follows: if there are two summands c1 · #
( ∧

i∈I1
pi(D)

)
and

c2 · #
( ∧

i∈I2
pi(D)

)
such that

∧
i∈I1

pi and
∧
i∈I2

pi are counting equivalent, then delete both
summands and add (c1 + c2) · #(

∧
i∈I1

pi(D)
)

to the sum. After doing this exhaustively,
delete all summands with coefficient zero. The elements of clCM(q) are all CQs

∧
i∈I pi in

the original sum that are counting equivalent to some CQ CQ
∧
i∈J pi which remains in

the sum.2 Note that the number of CQs in clCM(q) might be exponentially larger than the
number of CQs in q and that clCM(q) does not need to contain all CQs from the original
UCQ q. The main property of clCM(q) is as follows.

2 This definition slightly deviates from that of Chen and Mengel, who include no two CQs that are
counting equivalent. For all relevant purposes, however, the two definitions are interchangable.
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▶ Lemma 3 ([17]). Let q be a UCQ over schema S and D an S-database. Then #q(D) can
be computed in polynomial time from the counts #q′(D), q′ ∈ clCM(q). Conversely, for every
q′ ∈ clCM(q), there is a set of databases D1, . . . , Dn such that #q′(D) can be computed in
polynomial time from the counts #q(Di), 1 ≤ i ≤ n, and D1, . . . , Dn can be computed in
time f(||q||) · p(||D||) where f is a computable function and p is a polynomial.

For the first part of Lemma 3, note that #q(D) can be computed from #q′(D), q′ ∈ clCM(q),
simply by evaluating the sum derived above from the inclusion-exclusion principle, after the
manipulation.

We are now ready to state the characterization.

▶ Theorem 4 ([16, 17, 19]). Let Q ⊆ UCQ be recursively enumerable and have relation
symbols of bounded arity, and let Q⋆ = {core(q) | q ∈ clCM(Q)}. Then the following holds:
1. If the treewidths and the contract treewidths of CQs in Q⋆ are bounded, then AnswerCount(Q)

is in FPT; it is even in PTime when Q ⊆ CQ.
2. If the treewidths of CQs in Q⋆ are unbounded and the contract treewidths of CQs in Q⋆

are bounded, then AnswerCount(Q) is W[1]-equivalent.
3. If the contract treewidths of CQs in Q⋆ are unbounded and the starsizes of CQs in Q⋆

are bounded, then AnswerCount(Q) is #W[1]-equivalent.
4. If the starsizes of CQs in Q⋆ are unbounded, then AnswerCount(Q) is #W[2]-hard.
5. If the linked matching numbers of CQs in Q⋆ are unbounded, then AnswerCount(Q)

is #A[2]-equivalent.
We remark that clCM(q) = {q} when q is a CQ, and thus it suffices to define Q⋆ as {core(q) |
q ∈ Q} when Q ⊆ CQ in Theorem 4.

Note that the classification given by Theorem 4 is not complete. It leaves open the
possibility that there is a class of (U)CQs Q such that AnswerCount(Q) is #W[2]-hard, but
neither #W[2]-equivalent nor #A[2]-equivalent. It is conjectured in [19] that such a class Q
indeed exists and in particular that there might be classes Q such that AnswerCount(Q) is
#Wfunc[2]-equivalent. The classification also leaves open whether unbounded linked matching
numbers is a necessary condition for #A[2]-hardness. While a complete classification is
certainly desirable we note that, from our perspective, the most relevant aspect is the
delineation of the FPT cases from the hard cases, achieved by Points 1-3 of the theorem.

4 Problems Studied and Main Results

We introduce the problems studied and state the main results of this paper. We start with
ontology-mediated querying and then proceed to querying under constraints.

An ontology O is a finite set of TGDs. An ontology mediated query (OMQ) takes the form
Q = (O,S, q) where O is an ontology, S is a finite schema called the data schema, and q is a
UCQ. Both O and q can use symbols from S, but also additional symbols, and in particular
O can ‘introduce’ additional symbols to enrich the vocabulary available for querying. We
assume w.l.o.g. that all relation symbols in q that are not from S occur also in O. This can
always be achieved by introducing dummy TGDs R(x̄) → R(x̄). When O and q only use
symbols from S, then we say that the data schema of Q is full. The arity of Q is defined
as the arity of q. We write Q(x̄) to emphasize that the answer variables of q are x̄ and for
brevity often refer to the data schema simply as the schema.

A tuple c̄ ∈ adom(D)|x̄| is an answer to Q over D if c̄ ∈ q(I) for each model I of O with
I ⊇ D. The evaluation of Q(x̄) over D, denoted Q(D), is the set of all answers to Q over D.
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Figure 2 CQ q4 from Example 5. Filled circles indicate answer variables.

Note that, as a consequence of Lemma 1, Q(D) = q(chO(D)) for every OMQ Q = (O,S, q)
and S-database D.

An OMQ language is a class of OMQs. For a class of TGDs C and a class of UCQs Q,
we write (C,Q) to denote the OMQ language that consists of all OMQs (O,S, q) where O
is a set of TGDs from C and q ∈ Q. For example, we may write (G ∩ FULL,UCQ). We
say that an OMQ language (C,Q) has full data schema if every OMQ in it has. If Q is an
OMQ language, the problem AnswerCount(Q) is defined exactly as in Section 2 with query
language Q.

Our first main result is a counterpart of Theorem 4 for OMQs from (G,UCQ) based
on the full schema. To illustrate the effect of adding an ontology, we first observe that the
ontology interacts with all of the measures in Theorem 4.

▶ Example 5. Let O = {R(x, y) → S(x, y)} and S = {R,S}. For all n ≥ 0, let

qn(x1, . . . , xn, z1, . . . , zn) = ∃1<i+j<n+2 yi,j
∧

1≤i≤nR(xi, z1) ∧
∧

1≤i<nR(zi, zi+1) ∧∧
i+j=n+1 S(xi, yi,j) ∧∧
2<i+j<n+2 S(yi+1,j , yi,j) ∧ S(yi,j+1, yi,j).

Then qn is a core of treewidth ⌊n2 ⌋, contract treewidth n, starsize n, and linked matching
number n. But the OMQ (O,S, qn) is equivalent to (O,S, pn) with pn obtained from qn by
dropping all S-atoms. Since pn is tree-shaped and has no quantified variables, all measures
are at most 1. Figure 2 depicts query q4.

Before we state our characterization, we observe as a preliminary that OMQs from
(G,UCQ) can be rewritten into equivalent ones from (G ∩ FULL,UCQ), that is, existential
quantifiers can be removed from rule heads when the actual query is adjusted in a suitable
way. This has already been observed, for example, in [5].

▶ Theorem 6. For every OMQ Q ∈ (G,UCQ), there is an equivalent OMQ from (G ∩
FULL,UCQ) that can be effectively computed.

The proof of Theorem 6 is constructive, that is, it provides an explicit way of computing,
given an OMQ Q = (O,S, q) ∈ (G,UCQ), an equivalent OMQ from (G ∩ FULL,UCQ).
We denote this OMQ with Q∃ = (O∃,S, q∃) and call it the ∃-rewriting of Q. It is worth
noting that even if q contains no equality atoms, such atoms might be introduced during the
construction of q∃. This is the main reason for admitting equality atoms in (U)CQs in this
paper in the first place.

For OMQs Q ∈ (G,UCQ), we define a set clCM(Q) in exact analogy with the definition of
clCM(q) for UCQs q, that is, for Q = (O,S, p1 ∨ · · · ∨pn), we use the OMQs (O,S, pi) in place
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of the CQs pi from the UCQ q in the definition of clCM(Q). This requires the use of counting
equivalence for OMQs, which is as defined in the expected way. For a class Q ⊆ (G,UCQ),
we now identify a class Q⋆ of CQs by setting

Q⋆ = {core(chO∃(p)) | ∃Q ∈ C : (O∃,S, p) ∈ clCM(Q∃)}.

Our main result is now as follows.

▶ Theorem 7. Let Q ⊆ (G,UCQ) be a recursively enumerable class of OMQs with full data
schema and relation symbols of bounded arity. Then the following hold:
1. If the treewidths and contract treewidths of CQs in Q⋆ are bounded, then AnswerCount(Q)

is in FPT.
2. If the treewidths of CQs in Q⋆ are unbounded and the contract treewidths of CQs in Q⋆

are bounded, then AnswerCount(Q) is W[1]-equivalent.
3. If the contract treewidths of CQs in Q⋆ are unbounded and the starsizes of CQs in Q⋆

are bounded, then AnswerCount(Q) is #W[1]-equivalent.
4. If the starsizes of CQs in Q⋆ are unbounded, then AnswerCount(Q) is #W[2]-hard.
5. If the linked matching numbers of CQs in Q⋆ are unbounded, then AnswerCount(Q) is

#A[2]-equivalent.

Points 1 to 5 of Theorem 7 parallel exactly those of Theorem 4, but of course the definition
of Q⋆ is a different one. It is through this definition that we capture the potential interaction
between the ontology and the structural measures. Note, for example, that the class of OMQs
(O,S, qn), n ≥ 1, from Example 5 would be classified as #A[2]-equivalent if core(chO∃(p))
was replaced with p in the definition of Q⋆ while it is in fact in FPT. Also note that the
PTime statement in Point 1 of Theorem 4 is absent in Theorem 7. In fact, evaluating
Boolean OMQs from (G,UCQ) is 2ExpTime-complete [12] and since for Boolean OMQs
evaluation coincides with answer counting, PTime cannot be attained.

Our second main result concerns querying under integrity constraints that take the form
of guarded TGDs. In contrast to OMQs, the constraints are thus not used for deductive
reasoning, but instead give rise to a promise regarding the shape of the input database.
Following [5], we define a constraint-query specification (CQS) as a triple S = (T ,S, q) where
T is a set of TGDs over finite schema S and q a UCQ over S. We call T the set of integrity
constraints. Overloading notation, we write (C,Q) for the class of CQSs in which the set of
integrity constraints is formulated in the class of TGDs C, and the query is coming from the
class of queries Q. It will be clear from the context whether (C,Q) is an OMQ language or a
class of CQSs. Every class C of CQSs gives rise to the following answer counting problem.

PROBLEM : AnswerCount(C)
INPUT : A set of TGDs T , a query q, and an S-database D that satisfies T

such that (T , S, q) ∈ C.
OUTPUT : #q(D)

Our second main result parallels Theorems 4 and 7. We refrain from explicitly listing all
cases again.

▶ Theorem 8. Let Q ⊆ (G,UCQ) be a recursively enumerable class of CQSs with relation
symbols of bounded arity. Then Statements 1-5 of Theorem 7 hold.

Note that the delineation of the considered complexities is identical for ontology-mediated
querying and for querying under constraints. In particular, Theorem 8 (implicitly) uses
exactly the same class of CQs Q⋆ and the same associated measures.
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It would be interesting to know whether AnswerCount(Q) being in FPT coincides with
AnswerCount(Q) being in PTime for classes of CQSs Q ⊆ (G,CQ). Note that this is the case
for evaluation in the presence of constraints that are guarded TGDs [8, 7] and also for answer
counting without constraints [16]. The proof of these results, however, break in our setting.

We derive Theorem 8 from Theorem 7 by means of reduction. In fact, Theorem 8 is a
consequence of Theorem 7 and the following result.

▶ Theorem 9. Let C ⊆ (G,UCQ) be a recursively enumerable class of CQSs and let C′ be C
viewed as a class of OMQs based on the full schema.3 Then there is a Turing fpt-reduction
from AnswerCount(C′) to AnswerCount(C) and there is a parsimonious polynomial time
reduction from AnswerCount(C) to AnswerCount(C′).

The reduction from AnswerCount(C) to AnswerCount(C′) is immediate: given a set of
guarded TGDs T , a CQ q, and an S-database D that satisfies T , we can view (T ,S, q) as an
OMQ Q based on the full schema and return #Q(D) as #q(D). It is easy to see that this is
correct.

For the converse reduction, we are given a Q = (O,S, q) that is a CQS from C viewed as
an OMQ and an S-database D. It seems a natural idea to simply view Q as a CQS, which
it originally was, and replace D with chO(D) so that the promise is satisfied, and to then
return #q(chO(D)) as #Q(D). However, there are two obstacles. First, chO(D) need not be
finite; and second, chasing adds fresh constants which changes the answer count. We solve
the first problem by replacing the infinite chase with a (finite!) database D⋆ that extends D
and satisfies O. The following result from [5] is essentially a consequence of G being finitely
controllable.

▶ Theorem 10 ([5]). Given an ontology O ⊆ G, an S-database D, and an n ≥ 1, one can
effectively construct a finite database D∗ that satisfies the following conditions:
1. D∗ |= O and D ⊆ D∗;
2. ā ∈ q(D∗) iff ā ∈ Q(D) for all OMQs (O,S, q) where q has at most n variables and for

all tuples ā that use only constants in adom(D).
The construction of D∗ takes time ||D||O(1) · f(||O|| + n).

To address the second problem, we correct the count. Note that this cannot be done by
introducing fresh unary relation symbols as markers to distinguish the original constants
from those introduced by the chase as this would require us to change the query. We instead
use an approach inspired by [16]. The idea is to compute #q(D′) on a set of databases
D′ obtained from D⋆ by cloning constants in adom(D) ⊆ adom(D⋆). The results can be
arranged in a system of equations whose coefficients form a Vandermonde matrix. Finally,
the system can be solved to obtain #q(D). This is formalized by the following lemma where
we use clones(D) to denote the class of all S-databases that can be obtained from S-database
D by cloning constants. A proof is in the appendix of the long version.

▶ Lemma 11. Fix a constant r. There is a polynomial time algorithm that, given a UCQ
q(x̄) over schema S with ar(S) ≤ r, an S-database D, and a set F ⊆ adom(D), computes
#(q(D) ∩ F |x̄|) using an oracle for AnswerCount({q}, clones(D)).

3 Syntactically, a CQS (T , S, q) and an OMQ (T , S, q) are actually the same thing except that the
definition of CQSs is more strict regarding the schema S; as a consequence when viewing a CQS as an
OMQ, the latter is based on the full schema.
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Now for the reduction from AnswerCount(C′) to AnswerCount(C) claimed in Theorem 9.
Let Q(x̄) = (O, S, q) be a CQS from C viewed as an OMQ, and let D be an S-database.
We first construct the database D∗ as per Theorem 10 with n being the number of vari-
ables in q. We then apply the algorithm asserted by Lemma 11 with D∗ in place of D
and with F := adom(D). Cloning preserves guarded TGDs and thus we can use the or-
acle (which can compute #q(D′) for any S-database D′ that satisfies O) for computing
AnswerCount({q}, clones(D)) as required by Lemma 11.

5 Proof of Theorem 7

We first establish the upper bounds in Theorem 7, starting with the FPT upper bound from
Point 1. Let C ⊆ (G,UCQ) be a class of OMQs such that the treewidths and the contract
treewidths of CQs in Q⋆ are bounded by a constant k. Given an OMQ Q ∈ C and an
S-database D, we first replace Q by its ∃-rewriting Q∃ = (O∃,S, q∃). Since Q is equivalent
to Q∃ we have that #Q(D) = #Q∃(D), thus it suffices to compute the latter count. The first
part of Lemma 3 clearly lifts from UCQs to OMQs, see also the remark after that lemma.
We can thus compute #Q∃(D) (essentially by applying the inclusion-exclusion principle)
within the time requirements of FPT once we have computed #(O∃,S, p)(D) for all p such
that (O∃,S, p) ∈ clCM(Q∃). By the universality of the chase, #(O∃,S, p)(D) = #p(chO∃(D)).
Moreover, since O∃ is from G ∩ FULL, chO∃(D) is finite and can be computed within the
time requirements of FPT.

Thus, to compute #Q(D) it is enough to compute #p(chO∃(D)) for all CQs p such that
(O∃,S, p) ∈ clCM(Q∃) or, equivalently, to compute #core(chO∃(p))(chO∃(D)) for all p with
(O∃,S, p) ∈ clCM(Q∃). But the CQs core(chO∃(p)) for these p are exactly the CQs from Q⋆
and thus their treewidths and contract treewidths are bounded by k. Consequently, we can
apply the fpt algorithm from Point 1 of Theorem 4 as a black box and overall obtain an
FPT procedure. The remaining upper bounds from Theorem 7 can be proved analogously,
exploiting that easiness for W[1] and #W[1] is defined in terms of Turing fpt-reductions.

We next turn towards lower bounds, which are proved by a sequence of Turing fpt-
reductions. The first such reduction consists in transitioning to the ∃-rewritings of the OMQs
in the original class. The second reduction enables us to consider OMQs that use CQs rather
than UCQs.4 And in the third reduction, we remove ontologies altogether, that is, we reduce
classes of CQs to classes of OMQs. We start with the first reduction.

▶ Theorem 12. Let C ⊆ (G,UCQ) be recursively enumerable and let C′ ⊆ (G∩FULL,UCQ)
be the class of ∃-rewritings of OMQs from C. There is a parsimonious fpt-reduction from
AnswerCount(C′) to AnswerCount(C).

Proof. Given a Q = (O,S, q) ∈ C′ and an S-database D, find some Q′ = (O′,S, q′) ∈ C
such that Q is an ∃-rewriting of Q′ by recursively enumerating C′ and exploiting that OMQ
equivalence is decidable in (G,UCQ) [4], then compute and return #Q′(D). ◀

The second reduction is given by the following theorem.

▶ Theorem 13. Let C ⊆ (G ∩ FULL,UCQ) be a recursively enumerable class of OMQs
with full schema and relation symbols of bounded arity, and let C′ ⊆ (G ∩ FULL,CQ) be the
class of OMQs {Q′ | ∃Q ∈ C : Q′ ∈ clCM(Q)}. Then there is a Turing fpt-reduction from
AnswerCount(C′) to AnswerCount(C).

4 The construction of Q∃ may produce a UCQ even if the original OMQ contained a CQ.
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In [17], Chen and Mengel establish Theorem 13 in the special case where ontologies are
empty. However, a careful analysis reveals that their proof extends to recursively enumerable
classes D of databases over some schema S that satisfy the following conditions:
1. D is closed under disjoint unions, direct products, and contains the well of positivity D⊤

S ,
that is, the S-database with a single constant c defined as D⊤

S = {R(c, . . . , c) | R ∈ S};
2. counting equivalence and semi-counting equivalence between CQs over D is decidable,

where CQs q1(x̄1) and q2(x̄2) over the same schema S are semi-counting equivalent if
they are counting equivalent over all S-databases D with #q1(D) > 0 and #q2(D) > 0.

This allows us to establish Theorem 13 by observing that models of TGDs are closed under
the operations mentioned in Point 1and that the two equivalence problems in Point 2 are
both decidable. Details are in the appendix of the long version.

We next give the reduction that removes ontologies.

▶ Theorem 14. Let C ⊆ (G ∩ FULL,CQ) be a recursively enumerable class of OMQs with
full schema and relation symbols of bounded arity. There is a class C′ ⊆ CQ that only
contains cores and such that:
1. there is a Turing fpt-reduction from AnswerCount(C′) to AnswerCount(C);
2. for every OMQ Q = (O,S, q) ∈ C, we find a CQ p ∈ C′ such that the treewidth of p

is equal to that of core(chO(q)), and likewise for contract treewidth, starsize, and linked
matching number.

Using Theorems 12, 13, and 14, we can make use of the lower bounds for classes of (U)CQs
stated in Theorem 4 to prove the lower bounds in Theorem 7. Let us consider, for example,
the W[1] lower bound from Point 2. Take a class C0 ⊆ (G,UCQ) of OMQs such that the
treewidths of CQs in

Q⋆ = {core(chO∃(p)) | ∃Q ∈ C0 : (O∃,S, p) ∈ clCM(Q∃)}

are unbounded. Theorems 12 and 13 give a Turing fpt-reduction from AnswerCount(C) to
AnswerCount(C0) where

C = {Q′ | ∃Q ∈ C0 : Q′ ∈ clCM(Q∃)}.

By assumption, the treewidths of the CQs core(chO(q)), (O,S, q) ∈ C, are unbounded.
Theorem 14 thus yields a Turing fpt-reduction from AnswerCount(C′) to AnswerCount(C)
for some class of CQs C′ that are all cores and such that the treewidths of CQs in C′ are
unbounded. By Point 2 of Theorem 4, AnswerCount(C′) is W[1]-hard. Composing the
reductions, we obtain a Turing fpt-reduction from AnswerCount(C′) to AnswerCount(C0).
The other lower bounds can be proved analogously.

Now for the proof of Theorem 14. It in turn uses two consecutive fpt-reductions. In
the first step, we show that we can assume that every variable in a CQ (inside an OMQ) is
marked by a unary relation symbol that identifies the variable. The marking of a CQ q over
schema S is the CQ qm obtained from q by adding the atom Rx(x), for each x ∈ var(q) and
with Rx a fresh unary relation symbol. Note that qm is over schema Sm obtained from S by
adding all the fresh symbols. The core-chased marking of an OMQ Q = (O,S, q) ∈ (G,CQ)
is the OMQ Qm = (O,Sm, core(chO(q))m) ∈ (G,CQ). We lift this to classes of OMQs C as
expected, that is, Cm = {Qm | Q ∈ C}.

▶ Lemma 15. Let C ⊆ (G ∩ FULL,CQ) be a recursively enumerable class of OMQs with
full schema and relation symbols of bounded arity. Then there is a Turing fpt-reduction from
AnswerCount(Cm) to AnswerCount(C).
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The proof of Lemma 15 in the appendix of the long version lifts a corresponding proof
from [16] that applies to CQs without ontologies, essentially by verifying that the proof also
applies to classes of databases chased with an ontology from G ∩ FULL. We next observe
that in the presence of markings it is possible to get rid of ontologies, in the following sense.

▶ Lemma 16. Let Cm ⊆ (G ∩ FULL,CQ) be a recursively enumerable class of OMQs with
full schema and relation symbols of bounded arity that are core-chased markings. There exists
a class C ⊆ CQ of cores with relation symbols of bounded arity such that:
1. there is a Turing fpt-reduction from AnswerCount(C) to AnswerCount(Cm);
2. C is based on the same Gaifman graphs as Cm: {Gq | q ∈ Cm} = {Gq | (O,S, q) ∈ C}.

We provide a proof of Lemma 16 below. Before, however, we show how Theorem 14
follows from Lemmas 15 and 16.

Proof of Theorem 14. Let C ⊆ (G∩FULL,CQ) be a recursively enumerable class of OMQs
with full schema and relation symbols of bounded arity. From Lemma 16, we obtain a class
C′ of CQs that are cores and are based on the same Gaifman graphs as Cm. This is the class
whose existence is postulated by Theorem 14. We briefly argue that Points 1 and 2 of that
theorem are satisfied. The Turing fpt-reduction required by Point 1 is the composition of the
reductions asserted by Lemmas 15 and 16. Point 2 is a consequence of the facts that (1) the
structural measures of a CQ are defined through its Gaifman graph, (2) C′ is based on the
same Gaifman graphs as Cm, and (3) marking a CQ does not affect its Gaifman graph. ◀

Now for the announced proof of Lemma 16, a key ingredient to the proof of Theorem 7.

Proof of Lemma 16. To prove the lemma, we define the required class of CQs C and describe
an fpt algorithm that

takes as an input a query q ∈ C over schema S and an S-database D,
has access to an oracle for AnswerCount(Cm), and
outputs #q(D).

A guarded set in a database D is a set S ⊆ adom(D) such that all constants in S jointly
occur in a fact in D, possibly together with additional constants. With a maximal guarded
set, we mean a guarded set that is maximal regarding set inclusion.

The class C contains one CQ qs for every OMQ Q = (O,Sm, qm) ∈ C that is formulated
in a different schema introduced below (whence the superscript ‘s’). Fix a total order on
var(qm). For every guarded set S in Dq, let S be the tuple that contains the variables in
S in the fixed order. Now qs contains, for every maximal guarded set S in Dq, the atom
RS(S) where RS is a fresh relation symbol of arity |S|. Note that qs is self-join free, that
is, it contains no two different atoms that use the same relation symbol. It is thus a core.
Moreover, the Gaifman graph of qs is identical to that of qm since the maximal guarded sets
of Dqm are exactly those of Dqs . An example of transformation from q to qs can be found in
Figure 3.

We now describe the algorithm. Let a CQ qs ∈ C over schema Ss and an Ss-database
Ds be given as input. To compute #qs(Ds), we first enumerate Cm to find an OMQ
Q = (O,Sm, qm) that makes qs belong to C, as described above. Since Q is a core chased
marking, qm contains Rx(x) for every x ∈ var(qm). Let S be Sm without the unary
symbols Rx.

Construct the Ss-database P = Dqs ×Ds and then the Sm-database

Dm = {R(ā) | R ∈ S of arity |ā| and ā tuple over some guarded set S in P} ∪
{Rx((x, a)) | x ∈ var(qm) and (x, a) ∈ dom(P )}
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x y z

P
R

R

R

(a) CQ q

x y z

Rxy Ryz

(b) CQ qs

Figure 3 A CQ q() = ∃x∃y∃z P (x, x, x) ∧ R(x, y) ∧ R(y, z) ∧ R(z, y) and it’s self-join free
counterpart qs() = ∃x∃y∃z Rxy(x, y) ∧ Ryz(y, z) from the proof of Lemma 16.

Dm Pm Ds

Qm qm qm,s qs

flood database
Ss to S take product with Dqs

add unary Rx symbols

Dm O-saturated Ss to S drop unary Rx symbols

h : x 7→ (x, h(x)) h : x 7→ (x, h(x))

h′ : x 7→ h(x)

Figure 4 The overall proof strategy of Lemma 16. The diagram depicts the intermediary queries,
databases, and underlying relations.

where a tuple is over set S if it contains only constants from S, in any order and possibly
with repetitions. Note that the relations Rx used in the second line are the marking relations
from Sm. It is easy to see that the maximal guarded sets of Dm are exactly those of P
and that Dm is “flooded” in the sense that we cannot add any facts without introducing a
new maximal guarded set. As a consequence and since O is a set of guarded TGDs, Dm is
O-saturated, meaning that p(Dm) = p(chO(Dm)) for all conjunctive queries p.

Clearly, the database Dm can be constructed within the time requirements of FPT and we
can use the oracle to compute #Q(Dm). Let qs,m be obtained from qs by adding Rx(x) for
every x ∈ var(qs) and let Pm be obtained from P by adding Rx(x, a) for every a ∈ adom(Ds).
To end the proof, it suffices to show that

#Q(Dm) = #qm(Dm) = #qs,m(Pm) = #qs(Ds).

The various databases and queries involved as well as the relationships between them are
illustrated in Figure 4.

The first equality is immediate since Dm is O-saturated. For the third equality, let
x̄ = x1 · · ·xn be the answer variables in qs and for any ā = a1 · · · an ∈ adom(Ds)n, let x̄× ā

denote the tuple (x1, a1) · · · (xn, an) ∈ adom(P )n. Then qs,m(Pm) = {x̄ × ā | ā ∈ q(Ds)}.
In fact, this follows from P being the product of Dqs and Ds and from how the relation
symbols Rx are used in qs,m and Pm.

It thus remains to deal with the second equality by showing that qm(Dm) = qs,m(Pm).
It is enough to observe that any function h : var(qm) → adom(Dm) is a homomorphism from
qm to Dm if and only if it is a homomorphism from qs,m to Pm.

For the “if” direction, let h be a homomorphism from qs,m to Pm. First let R(ȳ) be an
atom in qm with R ∈ S. There is a maximal guarded set S of Dqm that contains all variables
in ȳ. Then RS(S) is an atom in qs and thus RS(h(S)) ∈ P . By construction of Dm and
since ȳ is a tuple over S, this yields R(h(ȳ)) ∈ Dm, as required. Now let Rx(x) be an atom
in qm. Then Rx(x) is also an atom in qs,m and thus h(x) ∈ {x} × adom(Ds) due to the
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definition of Pm. But then Rx(h(x)) ∈ Dm by definition of Dm.
For the “only if” direction, let h be a homomorphism from qm to Dm. First consider

atoms RS(S) in qs,m. Then qm contains an atom R(ȳ) where ȳ contains exactly the variables
in S and thus R(h(ȳ)) ∈ Dm. By construction of Dm, h(ȳ) is thus a tuple over some
guarded set in P , that is, P contains an atom Q(ā) where ā contains all constants from
h(ȳ). Let V ⊆ var(qs) be the first components of the constants/pairs in ā. Since Q(ā) ∈ P

and by construction of P , V must be a guarded set in qs. Now note that we must have
h(y) ∈ {y} × adom(Ds) for every variable y in ȳ due to the use of the relation symbols Ry in
qm and Dm. Thus every variable from ȳ (and thus every variable from S) occurs in V and
thus V = S because S is a maximal guarded set in Dqs . It follows that ā uses exactly the
constants from h(ȳ) and not a proper superset. Also, the only atom that uses all variables
from S in qs is RS(S) and consequently Q(ā) must be RS(h(S)) which is thus in P , as
required. It remains to deal with atoms Rx(x) in qs,m, which is straightforward as in the “if”
direction. ◀

6 Meta Problems

Theorems 7 and 8 show that low values for the structural measures of treewidth, contract
treewidth, starsize, and linked matching number are central to efficient answer counting. This
suggests the importance of the meta problems to decide whether a given query is equivalent
to a query in which some selected structural measures are small, and to construct the latter
query if it exists. In the current section, we present some results on this topic both for
ontology-mediated querying and for querying under constraints. The obtained results also
shed some more light on the interplay between the ontology and the structural measures.

We start with querying under constraints. Our approach is as follows. For a given CQS
(T ,S, q), we construct a certain CQ q′ that approximates q from below under the constraints
in T and that has small measures. Then, we show that if there is any CQ q′′ that has
small measures and is equivalent to q under the constraints in T , then q′ is equivalent to q.
In this way, we are able to simultaneously solve the decision and computation version of
the meta problem at hand. With ‘approximation from below’, we mean that the answers
to q′ are contained in those to q on all S-databases. This should not be confused with
computing a numerical approximation of the number of answers to a given query, which is a
very interesting but entirely different problem.

A set of measures is a subset M ⊆ {TW,CTW,SS,LMN} with the obvious meaning. For
M a set of measures and k ≥ 1, we say that a UCQ q is an Mk-query if for every CQ in q,
every measure from M is at most k.

▶ Definition 17. Let (T ,S, q) ∈ (G,UCQ) be a CQS, M a set of measures, and k ≥ 1. An
Mk-approximation of q under T is a UCQ q′ such that
1. q′ ⊆T q,
2. q′ is an Mk-query, and
3. for each UCQ q′′ that satisfies Conditions 1 and 2, q′′ ⊆T q′.
We next identify a simple way to construct Mk-approximations. Let (T ,S, q) ∈ (G,UCQ)
be a CQS, M a set of meaures, and k ≥ 1. Moreover, let ℓ be the maximum number of
variables in any CQ in q. Assuming that T is understood from the context, we define qMk
to be the UCQ that contains as a disjunct any CQ p such that p ⊆T q, p is an Mk-query,
and the number of variables in p is bounded by ℓ · ar(S). As containment between UCQs
under constraints from G is decidable [4], given (T ,S, q) we can effectively compute qMk . We
observe that qMk is an Mk-approximation of q under T .
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▶ Lemma 18. Let (T ,S, q) ∈ (G,UCQ) be a CQS, M a set of measures, and k ≥ 1. Then
qMk is an Mk-approximation of q under T .

Proof. By construction, qMk satisfies Points 1 and 2 from Definition 17. We show that it
satisfies also Point 3.

We start with some preparations. For an S-database D, a set of TGDs T , and a
constant a ∈ adom(chT (D)) \ adom(D), a guarded set X over D is a generator of a in T if
a ∈ adom(chT (chT (D)|X)). Informally, X being a generator of a means that a is located
in the tree rooted at X that the chase generates in chT (D). Note that when T is a set
of guarded TGDs, then a generator exists for every a ∈ adom(chT (D)) \ adom(D) and
furthermore, generators are complete in the sense that R(ā) ∈ chT (D) with a ∈ ā implies
R(ā) ∈ chT (chT (D)|X) [12]. We also remark that generators need not be unique.

Let q′′(x̄) be a UCQ such that q′′ ⊆T q and q′′ is an Mk-query. Further, let p be a CQ
in q′′. We have to show that qMk contains a CQ p′ with p ⊆T p′.

We apply Theorem 10 to the database Dp, the set of TGDs T , and the integer ℓ, defined
to be the maximum number of variables of CQs in q. We obtain a database D∗

p which has
the properties that D∗

p |= T , Dp ⊆ D∗
p, and thus x̄ ∈ p(D∗

p). By containment, x̄ ∈ q(D∗
p),

and thus there must be CQ qi in q such that x̄ ∈ qi(D∗
p). From Point 2 of Theorem 10 and

|qi| ≤ ℓ, it follows that x̄ ∈ Q(Dp) for the OMQ Q = (T ,S, qi). Consequently, qi maps into
chT (Dp) via some homomorphism h that is the identity on x̄. We construct a new CQ p′ as
follows. For each atom R(ā) in qi,
1. if all constants in h(ā) are from adom(p), then add R(h(ā)) to p′;
2. if h(ā) contains some constant a /∈ adom(p), then take a generator X for a in T and add

all facts in chT (p)|X as atoms to p′.
The answer variables of p′ are exactly those of p. It follows from the construction of p′ that
the identity is a homomorphism from p′ to chT (p). Thus p ⊆T p′ and it remains to show
that p′ is a CQ in qMk . This follows from the following properties:
1. p′ is an Mk-query. Follows from the fact that all guarded sets in p′ are also guarded sets

in p and thus the Gaifman graph of p′ is a subgraph of the Gaifman graph of p, and the
fact that all measures are monotone regarding subgraphs.

2. p′ ⊆T qi. Due to the completeness of generators, the homomorhism h from qi to chT (Dp)
is a also a homomorphism from qi to chT (D′

p). Consequently, p′ ⊆T qi.
3. |adom(p′)| ≤ ℓ · ar(S). For every variable in qi, at most ar(S) variables are introduced

during the construction of p′. ◀

By definition of Mk-approximations, it is clear that if (T ,S, q) ∈ (G,UCQ) is a CQS such
that q is equivalent under T to a UCQ q′ that is an Mk-query, then any Mk-approximation
of q under T also satisfies these properties. The following is thus an immediate consequence
of Lemma 18 and the fact that containment between UCQs under constraints from G is
decidable.

▶ Theorem 19. Let M be a set of measures. Given a CQS (T ,S, q) ∈ (G,UCQ) and k ≥ 1,
it is decidable whether q is equivalent under T to a UCQ q′ that is an Mk-query. Moreover,
if this is the case, then such a q′ can be effectively computed.

A particularly relevant case is M = {TW,CTW}, as it is linked to fixed-parameter tractability.
Let (T ,S, q) ∈ (G,CQ) and assume that we have computed an equivalent UCQ q′ that is
an Mk-query as per Theorem 19. Since the original query q is a CQ and q ≡T q′, there
must be a single disjunct q∗ of q such that q ≡T q∗. We can effectively identify q∗ and count
answers to q∗ on any S-database in FPT based on Theorem 4. It remains an interesting
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open question whether the same is true when the original query is a UCQ and, related to
this, whether Mk-approximations always admit answer counting in FPT, that is, even when
the original query is not equivalent under T to an Mk-query.

We now turn to ontology-mediated querying, using essentially the same approach to the
meta problems as in the case of CQSs. We say that OMQ Q1(x̄) = (O1,S, q1) is contained in
OMQ Q2(x̄) = (O2,S, q2), written Q1 ⊆ Q2, if Q1(D) ⊆ Q2(D) for every S-database D. Q1
and Q2 are equivalent, written Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1. We say that an OMQ
Q = (O,S, q) is an Mk-query if q is.

▶ Definition 20. Let Q = (O,S, q) ∈ (G,UCQ) be an OMQ, M a set of measures, and
k ≥ 1. An Mk-approximation of Q is an OMQ Q′ = (O′,S, q′) ∈ (G,UCQ) such that
1. Q′ ⊆ Q,
2. Q′ is an Mk-query, and
3. for each Q′′ = (O′′,S, q′′) ∈ (G,UCQ) that satisfies Conditions 1 and 2, Q′′ ⊆ Q′.

We say that Q′ is an Mk-approximation of Q while preserving the ontology if it is an
Mk-approximation and O′ = O.

We show in the appendix of the long version that Mk-approximations of OMQs (O,S, q) ∈
(G,UCQ) based on the full schema and while preserving the ontology are identical to Mk-
approximations of (O,S, q) viewed as a CQS. We can thus reuse the approximations from
Lemma 18 as a basis for showing the following counterpart of Theorem 19.

▶ Theorem 21. Let M be a set of measures. Given an OMQ Q = (O,S, q) ∈ (G,UCQ)
based on the full schema and k ≥ 1, it is decidable whether Q is equivalent to an OMQ
Q′ = (O,S, q′) ∈ (G,UCQ) that is an Mk-query. Moreover, if this is the case, then such a
Q′ can be effectively computed.

We next consider approximations of OMQs that need not preserve the ontology and
might not assume the full schema, focussing on single structural measures rather than
sets thereof. To simplify notion instead of, say, {CTW}k-approximations, we speak of
CTWk-approximations. We only have full results for contract treewidth and starsize.

A collapsing of a CQ q(x̄) is a CQ p(x̄) that can be obtained from q by identifying variables
and adding equality atoms (on answer variables). When an answer variable x is identified
with a non-answer variable y, the resulting variable is x; the identification of two answer
variables is not allowed. The CTWk-approximation of an OMQ Q = (O,S, q) ∈ (G,UCQ),
for k ≥ 1, is the OMQ QCTW

k = (O,S, qCTW
k ) where qCTW

k is the UCQ that contains as CQs
all collapsings of q that have contract treewidth at most k. The SSk-approximation of Q is
defined accordingly, and denoted with QSS

k .

▶ Theorem 22. Let (O,S, q) ∈ (G,UCQ) be an OMQ and k ≥ 1. Then QCTW
k is a

CTWk-approximation of Q. Moreover, if k ≥ ar(S), then QSS
k is an SSk-approximation of Q.

The proof of Theorem 22 is non-trivial and relies on careful manipulations of databases that
are tailored towards the structural measure under consideration. It gives rise to decidability
results that, in contrast to Theorem 21, neither require the ontology to be preserved nor the
schema to be full.

▶ Corollary 23. Given an OMQ Q = (O,S, q) ∈ (G,UCQ) and k ≥ 1, it is decidable whether
Q is equivalent to an OMQ Q′ ∈ (G,UCQ) of contract treewidth at most k. Moreover, if this
is the case, then such a Q′ can be effectively computed. The same is true for starsize in place
of contract treewidth.
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For treewidth, we leave open decidability of the meta problem and only observe that it
behaves differently from contract treewidth and starsize in that obtaining approximations
might require a modification of the ontology. This is even true when the schema is full.

▶ Example 24. For n ≥ 3, let Qn() = (∅,Sn, qn ∨ pn) where Sn = {W,R1, . . . , Rn} with W

of arity n and each Ri binary and where

qn = ∃x1 · · · ∃xnW (x1, . . . , xn) and pn = ∃x1 · · · ∃xn∃y R1(x1, y), . . . , Rn(xn, y).

Then Q′
n() = (O,Sn, pn) with O = {W (x̄) → pn(x̄)} is a TW1-approximation of Qn. In

fact, it is equivalent to Qn. However, Qn has no TWk-approximation Q∗ based on the same
(empty) ontology as Qn for any k < n since Q′

n ̸⊆ Q∗ for any Q∗ = (∅,Sn, q∗) such that
Q∗ ⊆ Q and q∗ is of treewidth k < n. In fact, any Q∗ with the latter property does not
return any answers on the database {W (a1, . . . , an)}.

In the appendix of the long version, we provide a further set of examples which does not
require the arity of relation names to grow. It does, however, use a data schema that is
not full. It remains an interesting and non-trival open problem to prove a counterpart of
Corollary 23, even for the case of the full schema.

7 Conclusions

We have provided a complexity classification for counting the number of answers to UCQs
in the presence of TGDs that applies both to ontology-mediated querying and to querying
under constraints. The classification also applies to ontology-mediated querying with the
OMQ language (ELIH,UCQ) where ELIH is a well-known description logic [2]. In fact, this
is immediate if the ontologies in OMQs are in a certain well-known normal form that avoids
nesting of concepts [2]. In the general case, it suffices to observe that all our proofs extended
from guarded TGDs to frontier-guarded TGDs [3] with bodies of bounded treewidth, a
strict generalization of ELIH. In contrast, a complexity classification for OMQs based on
frontier-guarded TGDs with unrestricted bodies is an interesting problem for future work.

There are several other interesting questions that remain open, we mention only a few. In
querying under constraints that are guarded TGDs, does answer counting in FPT coincide
with answer counting in PTime? Do our results extend to ontology-mediated querying when
the data schema is not required to be full? What about OMQs and CQSs based on other
decidable classes of TGDs? And how can we decide the meta problems for the important
structural measure of treewidth when the ontology needs not be preserved, with full data
schema or even with unrestricted data schema?
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