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Abstract

We consider the problem to learn a concept or a
query in the presence of an ontology formulated
in the description logic ELr, in Angluin’s frame-
work of active learning that allows the learning al-
gorithm to interactively query an oracle (such as a
domain expert). We show that the following can
be learned in polynomial time: (1) EL-concepts,
(2) symmetry-free ELI-concepts, and (3) conjunc-
tive queries (CQs) that are chordal, symmetry-free,
and of bounded arity. In all cases, the learner can
pose to the oracle membership queries based on
ABoxes and equivalence queries that ask whether
a given concept/query from the considered class is
equivalent to the target. The restriction to bounded
arity in (3) can be removed when we admit unre-
stricted CQs in equivalence queries. We also show
that EL-concepts are not polynomial query learn-
able in the presence of ELI-ontologies.

1 Introduction
In logic based knowledge representation, a significant bot-
tleneck is the construction of logical formulas such as de-
scription logic (DL) concepts, queries, and ontologies, as it
is laborious and expensive. This is particularly true if the
construction involves multiple parties because logic expertise
and domain knowledge are not in the same hands. Angluin’s
model of exact learning, a form of active learning, is able
to support the construction of logical formulas in terms of a
game-like collaboration between a learner and an oracle [An-
gluin, 1987b; Angluin, 1987a]. Applied in knowledge repre-
sentation, the learner can be a logic expert and the oracle a
domain expert that is interactively queried by the learner. Al-
ternatively, the oracle can take other forms such as a set of la-
beled data examples that in some way represents the formula
to be learned. The aim is to find an algorithm that, when ex-
ecuted by the learner, constructs the desired formula in poly-
nomial time even when the oracle is not able to provide most
informative answers. Landmark results from active learn-
ing state that such algorithms exist for learning propositional
Horn formulas and finite automata [Angluin et al., 1992;
Angluin, 1987a].

The aim of this paper is to study active learning of DL con-
cepts and of conjunctive queries (CQs) in the presence of an
ontology. Concepts are the main building block of ontolo-
gies [Baader et al., 2017] and learning them is important for
ontology engineering. CQs are very prominent in ontology-
mediated querying where data stored in an ABox is enriched
with an ontology [Bienvenu et al., 2014]. We concentrate on
the EL family of DLs which underlies the OWL EL profile
of the OWL 2 ontology language [Krötzsch, 2012] and is fre-
quently used in biomedical ontologies such as SNOMED CT.
We consider ontologies formulated in the DLs ELr and ELI
where ELr extends EL with range restrictions and ELI ex-
tends ELr with inverse roles. In both DLs, concepts can be
viewed as a tree-shaped conjunctive query, and from now on
we shall treat them as such. In fact, it is not uncommon to use
concepts as queries in ontology-mediated querying, which
provides an additional motivation for learning them.

We now describe the learning protocol in detail. It is an in-
stance of Angluin’s model, which we do not repeat here in full
generality. The aim is to learn a target CQ qT (x̄) in the pres-
ence of an ontology O. The learner and the oracle both know
and agree on the ontology O, the arity of qT , and the concept
and role names that are available for constructing qT ; we as-
sume that all concept and role names inO can be used also in
qT . The learner can ask two types of queries to the oracle. In
a membership query, the learner provides an ABox A and a
candidate answer ā and asks whetherA,O |= qT (ā); the ora-
cle faithfully answers “yes” or “no”. In an equivalence query,
the learner provides a hypothesis CQ qH and asks whether
qH is equivalent to qT under O; the oracle answers “yes” or
provides a counterexample, that is, an ABox A and tuple ā
such that A,O |= qT (ā) and A,O 6|= qH(ā) (positive coun-
terexample) or vice versa (negative counterexample). When
we learn a restricted class of CQs such as EL-concepts, we
assume that only CQs from that class are admitted in equiv-
alence queries. We are then interested in whether there is a
learning algorithm that constructs qT (x̄), up to equivalence
under O, such that at any given time, the running time of
the algorithm is bounded by a polynomial in the sizes of qT ,
of O, and of the largest counterexample given by the oracle
so far. This is called polynomial time learnability. A weaker
requirement is polynomial query learnability where only the
sum of the sizes of the queries posed to the oracle up to the
current time point has to be bounded by such a polynomial.



Our main results are that the following can be learned
in polynomial time under ELr-ontologies: (1) EL-concepts,
(2) ELI-concepts that are symmetry-free, and (3) CQs
that are chordal, symmetry-free, and of bounded arity. In
Point (2), symmetry-freeness means that there is no subcon-
cept of the form ∃r.(C u ∃r−.D) with r a role name, a con-
dition that has recently been introduced in [Jung et al., 2020],
in a slightly less general form where r can also be an inverse
role. In Point (3), chordal means that every cycle of length
at least four that contains at least one quantified variable has
a chord and symmetry-free means that the CQ contains no
atoms r(x1, y), r(x2, y) such that x1 6= x2, y is a quantified
variable, neither r(x1, y) nor r(x2, y) occur on a cycle, and
there is no atom s(z, z) for any z ∈ {x1, x2, y}. An analysis
of well-known benchmarks for ontology-mediated querying
suggests that the resulting class CQcsf of CQs is sufficiently
general to include many relevant CQs that occur in practi-
cal applications. Our proofs crucially rely on the use of a
finite version of the universal model that is specifically tai-
lored to the class CQcsf. We also show that the restriction to
bounded arity can be removed from Point (3) when we ad-
mit unrestricted CQs as the argument to equivalence queries.
Proving this requires very substantial changes to the learning
algorithm.

In addition, we prove several negative results. First, we
show that none of the classes of CQs in Points (1) to (3)
can be learned under EL-ontologies using only membership
queries or only equivalence queries (unless P = NP in the lat-
ter case). Note that polynomial time learning with only mem-
bership queries is important because it is related to whether
CQs can be characterized up to equivalence using only poly-
nomially many data examples [ten Cate and Dalmau, 2020].
We also show the much more involved result that none of the
classes of CQs in Points (1) to (3) is polynomial query learn-
able under ELI-ontologies. Note that while polynomial time
learnability cannot be expected because subsumption in ELI
is EXPTIME-complete, there could well have been a poly-
nomial time learning algorithm with access to an oracle (in
the classical sense) for subsumption/query containment un-
der ELI-ontologies that attains polynomial query learnabil-
ity. Our result rules out this possibility. The appendix with
proof details is available in [Funk et al., 2021].

Related work. Learning EL-ontologies, rather than con-
cepts or queries, was studied in [Konev et al., 2018; Konev
et al., 2016]. It turns out that EL-ontologies are not polyno-
mial time learnable while certain fragments thereof are. In
contrast, we attain polynomial time learnability also under
unrestricted EL-ontologies. See also the surveys [Lehmann
and Völker, 2014; Ozaki, 2020] and [Ozaki et al., 2020]
for a variation less related to the current work. It has been
shown in [ten Cate et al., 2013; ten Cate et al., 2018] that
unions of CQs (UCQs) are polynomial time learnable, and
the presented algorithm can be adapted to CQs. Active learn-
ing of CQs with only membership queries is considered in
[ten Cate and Dalmau, 2020] where among other results it is
shown that ELI-concepts can be learned in polynomial time
with only membership queries when the ontology is empty.
PAC learnability of concepts formulated in the DL CLASSIC,

without ontologies, was studied in [Cohen and Hirsh, 1994b;
Cohen and Hirsh, 1994a; Frazier and Pitt, 1996].

2 Preliminaries
Concepts and Ontologies. Let NC, NR, and NI be count-
ably infinite sets of concept names, role names, and individ-
ual names, respectively. A role R takes the form r or r−
where r is a role name and r− is called an inverse role. If
R = s− is an inverse role, then R− denotes the role name s.
An ELI-concept is formed according to the syntax rule

C,D ::= > | A | C uD | ∃R.C

where A ranges over NC and R over roles. An EL-concept is
an ELI-concept that does not use inverse roles.

An ELI-ontology O is a finite set of concept inclusions
(CIs) C v D where C and D range over ELI-concepts. An
ELr-ontology is an ELI-ontology where inverse roles occur
only in the form of range restrictions ∃r−.> v C with C an
EL-concept. Note that domain restrictions ∃r.> v C can be
expressed already in EL. An EL-ontology is an ELI-ontology
that does not use inverse roles. An ELr-ontology is in normal
form if all CIs in it are of one of the forms

A1 uA2 v A, A1 v ∃r.A2, ∃r.A1 v A2, ∃r−.> v A

where A,A1, A2 are concept names or >. An ABox A is a fi-
nite set of concept assertionsA(a) and role assertions r(a, b)
where A ∈ NC ∪{>}, r ∈ NR, and a, b ∈ NI. We use ind(A)
to denote the set of individual names that are used in A and
may write r−(a, b) in place of r(b, a). An ABox is a ditree
if the directed graph (ind(A), {(a, b) | r(a, b) ∈ A}) is a
tree and there are no multi-edges, that is, r(a, b), s(a, b) ∈ A
implies r = s.

The semantics is defined as usual in terms of interpreta-
tions I, which we define to be a (possibly infinite and) non-
empty set of concept and role assertions. We use ∆I to de-
note the set of individual names in I, define AI = {a |
A(a) ∈ I} for all A ∈ NC, and rI = {(a, b) | r(a, b) ∈ I}
for all r ∈ NR. The extension CI of ELI-concepts C is
then defined as usual [Baader et al., 2017]. This definition
of interpretation is slightly different from the usual one, but
equivalent; its virtue is uniformity as every ABox is a (finite)
interpretation. An interpretation I satisfies a CI C v D if
CI ⊆ DI , and a (concept or role) assertion α if α ∈ I or
α has the form >(a). We say that I is a model of an ontol-
ogy/ABox if it satisfies all concept inclusions/assertions in it
and write O |= C v D if every model of the ontology O
satisfies the CI C v D.

A signature is a set of concept and role names, uniformly
referred to as symbols. For any syntactic object O such as an
ontology or an ABox, we use sig(O) to denote the symbols
used in O and ||O|| to denote the size of O, that is, the length
of a word representation of O in a suitable alphabet.
CQs and Homomorphisms. A conjunctive query (CQ)
takes the form q(x̄) ← ϕ(x̄, ȳ) where ϕ is a conjunction of
concept atoms A(x) and role atoms r(x, y) with A ∈ NC

and r ∈ NR. We may write r−(x, y) in place of r(y, x).
Note that the tuple x̄ used in the head q(x̄) of the CQ may
contain repeated occurrences of variables. When we do



not want to make the body ϕ(x̄, ȳ) explicit, we may denote
q(x̄) ← ϕ(x̄, ȳ) simply with q(x̄). We refer to the variables
in x̄ as the answer variables of q. and to the variables in ȳ as
the quantified variables. When we are not interested in order
and multiplicity, we treat x̄ and ȳ as sets of variables. We
use var(q) to denote the set of all variables in x̄ and ȳ. The
arity of q is the length of tuple x̄ and q is Boolean if it has
arity zero. Every CQ q(x̄) ← ϕ(x̄, ȳ) gives rise to an ABox
(and thus interpretation) Aq obtained from ϕ(x̄, ȳ) by view-
ing variables as individual names and atoms as assertions. A
CQ is a ditree if Aq is.

A homomorphism h from interpretation I1 to interpretation
I2 is a mapping from ∆I1 to ∆I2 such that d ∈ AI1 implies
h(d) ∈ AI2 and (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 . For
d̄i a tuple over ∆Ii , i ∈ {1, 2}, we write I1, d̄1 → I2, d̄2 if
there is a homomorphism h from I1 to I2 with h(d̄1) = d̄2.
With a homomorphism from a CQ q to an interpretation I,
we mean a homomorphism from Aq to I.

Let q(x̄) ← ϕ(x̄, ȳ) be a CQ and I an interpretation. A
tuple d̄ ∈ (∆I)|x̄| is an answer to q on I, written I |= q(d̄),
if there is a homomorphism h from q to I with h(x̄) = d̄.
Now let O be an ELI-ontology and A an ABox. A tuple ā ∈
ind(A)|x̄| is an answer to q on A under O, written A,O |=
q(ā) if ā is an answer to q on every model of O and A.

For q1 and q2 CQs of the same arity n and O an ELI-
ontology, we say that q1 is contained in q2 under O, written
q1 ⊆O q2, if for all ABoxes A and ā ∈ ind(A)n, A,O |=
q1(ā) implies A,O |= q2(ā). We call q1 and q2 equivalent
under O, written q1 ≡O q2, if q1 ⊆O q2 and q2 ⊆O q1.

Every ELI-concept can be viewed as a unary tree-shaped
CQ in an obvious way. For example, the EL-concept A u
∃s.>u∃r.B yields the CQ q(x)← A(x)∧s(x, y)∧r(x, z)∧
B(z). We use ELQ to denote the class of all EL-concepts
viewed as a CQ, and likewise for ELIQ and ELI-concepts.

Important Classes of CQs. We next define a class of CQs
that we show later to admit polynomial time learnability un-
der ELr-ontologies, one of the main results of this paper.
Let A be an ABox. A path in A from a to b is a sequence
p = R0(a0, a1), . . . , Rn−1(an−1, an) ∈ A, n ≥ 0, such
that a0 = a and an = b. We say that p is a cycle of length
n if a0 = an, all assertions in p are distinct, and all of
a0, . . . , an−1 are distinct. A chord of cycle p is an assertion
R(ai, aj) with 0 ≤ i, j < n−1 and i /∈ {j, j−1 mod n, j+1

mod n}. A cycle in a CQ q is a cycle in Aq . With CQcsf, we
denote the class of CQs q(x̄)← ϕ(x̄, ȳ) that are

1. chordal, that is, every cycle R0(x0, x1), . . . ,
Rn−2(xn−2, xn−1) in q of length at least four that
contains at least one quantified variable has a chord;

2. symmetry-free, that is, if ϕ contains atoms
r(y1, x), r(y2, x) with y1 6= y2, then x is an an-
swer variable or one of the atoms occurs on a cycle or ϕ
contains an atom s(z, z) for some z ∈ {x, y1, y2}.

In Point 2, r is a role name and thus there are no re-
strictions on ‘inverse symmetries’: ϕ may contain atoms
r(x, y1), r(x, y2) with x a quantified variable and none of the
atoms occurring on a cycle and no reflexive loops present.
Note that CQcsf contains all CQs without quantified variables

(also called full CQs), all ELQs, and all ELIQs obtained from
ELI-concepts that are symmetry-free, that is, that do not con-
tain a subconcept of the form ∃r.(C u ∃r−.D) with r a role
name. We denote the latter class with ELIQsf. CQcsf also
includes all CQs obtained from such ELIQs by choosing a
set of variables and making them answer variables. Note that
CQs from CQcsf need not be connected, in fact CQcsf is closed
under disjoint union. Every CQ whose graph is a clique or a
k-tree (a maximal graph of treewidth k) with k > 1 is in
CQcsf. Some concrete examples for CQs in CQcsf are given
below, filled circles indicating answer variables:
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We believe that CQcsf includes many relevant CQs that
occur in practical applications. To substantiate this, we have
analyzed the 65 queries that are part of three widely used
benchmarks for ontology-mediated querying, namely Fish-
mark, LUBM∃, and NPD [Bail et al., 2012; Lutz et al., 2013;
Lanti et al., 2015]. We found that more than 85% of the
queries fall into CQcsf while less than 5% fall into ELIQsf.
Universal Models. Let A be an ABox and O an ELr-
ontology. The universal model of A and O, denoted UA,O, is
the interpretation obtained by starting withA and then ‘chas-
ing’ with the CIs in the ontology which adds (potentially infi-
nite) ditrees below every a ∈ ind(A). The formal definition is
in the appendix. The model is universal in that UA,O |= q(ā)

iffA,O |= q(ā) for all CQs q(x̄) and tuples ā ∈ ind(A)|x̄|. It
can be useful to represent universal models in a finite way, as
for example in the combined approach to ontology-mediated
querying [Lutz et al., 2009]. Here, we introduce a finite rep-
resentation that is tailored towards our class CQcsf.

The 3-compact model C3
A,O of A and O is defined as fol-

lows. Let sub(O) be the set of all concepts inO, closed under
subconcepts. C3

A,O uses the individual names from A as well
as individual names of the form ca,i,r,C where a ∈ ind(A),
0 ≤ i ≤ 4, r is a role name from O, and C ∈ sub(O). For
every role name r, we use Cr to denote the conjunction over
all C such that ∃r−.> v C ∈ O, and > if the conjunction is
empty. Let i⊕ 1 be short for (i mod 4) + 1. Define
C3
A,O := A ∪ {A(a) | A,O |= A(a)}∪

{A(ca,i,r,C) | O |= C u Cr v A}∪
{r(a, ca,0,r,C) | A,O |= ∃r.C(a)}∪
{r(ca,i,s,C , ca,i⊕1,r,C′) | O |= C u Cs v ∃r.C ′}.

There is a homomorphism from UA,O to C3
A,O that is the iden-

tity on ind(A), but in general not vice versa. Nevertheless,
C3
A,O is universal for CQcsf.

Lemma 1. Let A be an ABox and O an ELr-ontology. Then
C3
A,O is a model of A and O such that for every CQ q(x̄) ∈
CQcsf and ā ∈ ind(A)|x̄|, C3

A,O |= q(ā) iff A,O |= q(ā).



C3
A,O is defined so as to avoid spurious cycles of length

at most 3 while larger spurious cycles are irrelevant for CQs
that are chordal. This explains the superscript ·3 and enables
the lemma below. C3

A,O also avoids spurious predecessors
connected via different role names. Spurious predecessors
connected via the same role name cannot be avoided, but are
irrelevant for CQs that are symmetry-free.

Lemma 2. Every cycle in C3
A,O of length at most three con-

sists only of individuals from ind(A).

We also use the direct product I1 × I2 of interpretations
I1 and I2, defined in the standard way (see appendix). For
tuples of individuals āi = (ai,1, . . . , ai,n), i ∈ {1, 2}, we set
ā1 ⊗ ā2 = ((a1,1, a2,1), . . . , (a1,n, a2,n)).

3 Learning under ELr-Ontologies
We establish polynomial time learnability results under ELr-
ontologies for the query classes CQcsf, ELQ, and ELIQsf. For
CQcsf, we additionally have to assume that the arity of CQs to
be learned is bounded by a constant or that unrestricted CQs
can be used in equivalence queries. When speaking of equiv-
alence queries, we generally imply that the CQs used in such
queries must be from the class of CQs to be learned. If this is
not the case and unrestricted CQs are admitted in equivalence
queries, then we speak of CQ-equivalence queries. When us-
ing CQ-equivalence queries, the learned representation of the
target query is a CQ, but need not necessarily belong to C
(though it is equivalent to a query from C). For w ≥ 0, let
CQcsf

w be the restriction of CQcsf to CQs of arity at most w.
The following are the main results obtained in this section.

Theorem 1.
1. ELQ- and ELIQsf-queries are polynomial time learn-

able under ELr-ontologies using membership and equiv-
alence queries;

2. for every w ≥ 0, CQcsf
w -queries are polynomial time

learnable under ELr-ontologies using membership and
equivalence queries;

3. CQcsf-queries are polynomial time learnable under
ELr-ontologies using membership and CQ-equivalence
queries.

Before providing a proof of Theorem 1, we show that both
membership and equivalence queries are needed for polyno-
mial learnability. Let AQ∧ denote the class of unary CQs of
the form q(x)← A1(x) ∧ · · · ∧An(x), and let a conjunctive
ontology be an EL-ontology without role names.

Theorem 2.
1. AQ∧-queries are not polynomial query learnable under

conjunctive ontologies using only membership queries;

2. ELQ-queries are not polynomial time learnable (with-
out ontologies) using only CQ-equivalence queries un-
less P = NP.

Note that Points 1 and 2 of Theorem 2 imply the same state-
ments for all relevant query classes, that is, ELQ, ELIQsf,
CQcsf, CQcsf

w for all w ≥ 1, and CQ, in place of the classes
mentioned in the theorem. In particular, Point 2 implies that

Algorithm 1 Learning queries qT from ELQ / ELIQsf / CQcsf
w

under an ELr-ontology O.

procedure LEARNCQ
qH(x̄) := refine(q⊥(x̄0))
while qH 6≡O qT (equivalence query) do

Let A, ā be the positive counterexample returned
and let q′H(x̄′) be C3

AqH
,O × C3

A,O viewed as a CQ
with answer variables x̄′ = x̄⊗ ā

qH(x̄) := refine(q′H(x̄′))

return qH(x̄)

unrestricted CQs are not polynomial time learnable with only
equivalence queries in the classical setting (without ontolo-
gies) unless P = NP, even when only unary and binary
relations are admitted, see [Cohen, 1995; Haussler, 1989;
Hirata, 2000] for related results. The proof of Point 1 follows
basic lower bound proofs for abstract learning problems [An-
gluin, 1987b]. Point 2 is proved by exploiting connections
between active learning and inseparability questions studied
in [Funk et al., 2019; Jung et al., 2020; Funk, 2019].

3.1 Reduction to Normal Form
We show that the ontology under which we learn can w.l.o.g.
be assumed to be in normal form. It is well-known that ev-
ery ELr-ontology O can be converted into normal form by
introducing fresh concept names [Baader et al., 2017]. We
use such a conversion to show that, for the relevant classes
of CQs, a polynomial time learning algorithm under ELr-
ontologies in normal form can be converted into a polynomial
time learning algorithm under unrestricted ELr-ontologies.
Care has to be exercised as the fresh concept names can oc-
cur in membership and equivalence queries. From now on,
we thus assume that ontologies are in normal form.

Proposition 1. Let Q ∈ {ELQ,ELIQsf,CQcsf
w | w ≥ 0}.

If queries in Q are polynomial time learnable under ELr-
ontologies in normal form using membership and equivalence
queries, then the same is true for unrestricted ELr-ontologies.

3.2 Algorithm Overview
We start with proving Points 1 and 2 of Theorem 1. Thus
let Q ∈ {ELQ,ELIQsf,CQcsf

w | w ≥ 0}. The algorithm that
establishes polynomial time learnability of queries from Q
under ELr-ontologies is displayed as Algorithm 1. We next
explain some of its details.

LetO be an ELr-ontology, Σ a finite signature that contains
all symbols in O, and ar ≤ w an arity for the query to be
learned with ar = 1 if Q ∈ {ELQ,ELIQsf}, all known to the
learner and the oracle. Further let qT (ȳ) ∈ Q be the target
query known to the oracle, formulated in signature Σ. The
algorithm maintains and repeatedly updates a hypothesis CQ
qH(x̄) of arity ar. It starts with the hypothesis

q⊥(x̄0)← {A(x0) | A ∈ Σ∩NC}∪{r(x0, x0) | r ∈ Σ∩NR}

where x̄0 contains only the variable x0, repeated ar times. By
construction, q⊥ ⊆O q for all CQs q of arity ar that use only



symbols from Σ. Note that q⊥ ∈ CQcsf
w for all w, but q⊥ is

neither in ELQ nor in ELIQsf.
If q1(x̄1), q2(x̄2), . . . are the hypotheses constructed dur-

ing a run of the algorithm, then for all i ≥ 1:

1. qi ∈ Q and qi ⊆O qT ;

2. qi ⊆O qi+1 and qi 6≡O qi+1;

3. |var(qi)| ≤ |var(qT )|.
Taken together, Points 1 and 2 mean that the hypotheses ap-
proximate the target query from below in an increasingly bet-
ter way and Point 3 is crucial for proving that we must reach
qT after polynomially many steps. The fact that O is in nor-
mal form is used to attain Point 3.

Point 1 also guarantees that the oracle always returns a pos-
itive counterexample A, ā to the equivalence query used to
check whether qH 6≡O qT in the while loop. The algorithm
extracts the commonalities of qH(x̄) and A, ā by means of
a direct product with the aim of obtaining a better approxi-
mation of the target. The same is done in the case without
ontologies [ten Cate et al., 2013] where AqH × A (viewed
as a CQ) is the new hypothesis, but this is not sufficient
here as it misses the impact of the ontology. The product
UAqH

,O × UA,O would work, but need not be finite. So we
resort to C3

AqH
,O×C3

A,O instead, viewed as a CQ q′H(x̄′). This
new hypothesis need not belong to Q, so we call the subrou-
tine refine detailed in the subsequent section to convert it into
a new hypothesis qH(x̄) ∈ Q such that q′H ⊆O qH ⊆O qT .
The initial call to refine serves the same purpose as q⊥(x̄0)
need not be in Q, depending on the choice of Q.

It is not immediately clear that the described approach
achieves the containment in Point 2 since C3

AqH
,O × C3

A,O
is potentially too strong as a replacement of UAqH

,O×UA,O;
in particular, there might be cycles in the former product that
do not exist in the latter. What saves us, however, is that the
CQ qH constructed by refine belongs to Q while the models
C3
AqH

,O and C3
A,O are universal for Q as per Lemma 1.

3.3 The refine Subroutine
The refine subroutine gets as input a CQ q′H(x̄′) that does not
need to be in Q, but that satisfies q′H ⊆O qT . It produces
a query qH(x̄) from Q such that q′H ⊆O qH ⊆O qT and
|var(qH)| ≤ |var(qT )|. For notational convenience, we prefer
to view q′H(x̄′) as a pair (A, ā) where A = Aq′H and ā = x̄′.
Let nmax denote the maximum length of a chordless cycle in
any query inQ, that is nmax = 0 forQ ∈ {ELQ,ELIQsf} and
nmax = 3 forQ = CQcsf

w , w ≥ 0. We shall use the following.

Minimize. Let B be an ABox and b̄ a tuple such that B,O |=
qT (b̄). Then minimize(B, b̄) is the ABox B′ obtained from B
by exhaustively applying the following operations:
(1) choose c ∈ ind(B) \ b̄ and remove all assertions that in-
volve c. Use a membership query to check whether, for the
resulting ABox B−, B−,O |= qT (b̄). If so, proceed with B−
in place of B.
(2) choose r(a, b) ∈ B and use a membership query to check
whether B \ {r(a, b)},O |= qT (b̄). If so, proceed with B \
{r(a, b)} in place of B.

The refine subroutine builds a sequence (B1, b̄1), (B2, b̄2), . . .
starting with (B1, b̄1) = (minimize(A, ā), ā) and exhaus-
tively applying the following step:

Expand. Choose a chordless cycle R0(a0, a1), . . . ,
Rn−1(an−1, an) in Bi with n > nmax and, in case that
Q = CQcsf

w , {a0, . . . , an−1} 6⊆ b̄i.1 Let B′i be the ABox
obtained by doubling the length of the cycle: start with Bi,
introduce copies a′0, . . . , a

′
n−1 of a0, . . . , an−1, and then

• remove all assertions R(an−1, a0);
• add B(a′i) if B(ai) ∈ Bi;
• add R(a′i, c) if R(ai, c) ∈ Bi with 0 ≤ i < n and c ∈

ind(Bi) \ {a0, . . . , an−1};
• add R(a′i, a

′
j) if R(ai, aj) ∈ Bi with 0 ≤ i, j < n and

{i, j} 6= {0, n− 1};
• add R(an−1, a

′
0) and R(a′n−1, a0) if R(an−1, a0) ∈ Bi.

A similar construction is used in [Konev et al., 2016]. Let
τi be the set of tuples b̄ obtained from b̄i = (b1, . . . , bk) by
replacing any number of components bj by b′j . Use member-
ship queries to identify b̄i+1 ∈ τi with B′i,O |= qT (b̄i+1)
and set Bi+1 = minimize(B′i, b̄i+1). We prove in the ap-
pendix that such a b̄i+1 always exists and that the Expand
step can only be applied polynomially many times. The re-
sulting (Bn, b̄n) viewed as a CQ with answer variables b̄n is
chordal, but not necessarily symmetry-free. To establish also
the latter, we compute a sequence of ABoxes Bn,Bn+1, . . .
by exhaustively applying the following step:

Split. Choose r(a, b), r(c, b) ∈ Bi such that b /∈ b̄n and
neither r(a, b) nor r(c, b) occurs on a cycle. Construct B′i by
removing r(a, b) from Bi, taking a fresh individual b′, and
adding B(b′) for all B(b) ∈ Bi and S(d, b′) for all S(d, b) ∈
Bi with S(d, b) 6= r(c, b). If B′i,O |= qT (b̄n), then Bi+1 =
minimize(B′i, b̄n).

We prove in the appendix that only polynomially many ap-
plications are possible and that, for Bm the resulting ABox,
(B′m, b̄n) viewed as a CQ is chordal and symmetry-free.
Moreover, it is in ELQ if qT is, and likewise for ELIQsf.
Refine returns this CQ as its result. Note that the running
time of refine depends exponentially on ar due to the brute
force search for a tuple b̄i+1 ∈ τi in the Expand step.

3.4 Unbounded Arity
To prove the remaining Point 3 of Theorem 1, we have to deal
with CQs of unbounded arity and cannot use the refine sub-
routine presented in Section 3.3. We thus introduce a second
version of refine that works rather differently from the previ-
ous one. We give an informal description, full details are in
the appendix.

Recall that refinement starts with the product P =
C3
AqH

,O × C3
A,O. In Section 3.3, we blow up cycles in P ,

not distinguishing the ABox part and the existentially gen-
erated part of the 3-compact models involved. The second
version of refine instead unravels the existentially generated

1This is because CQcsf admits cycles that consist only of answer
variables while ELQ and ELIQsf do not.



part of the two 3-compact models inside the product P . A full
such unraveling would eventually result in UAqH

,O × UA,O,
but we interleave with a Minimize step as in Section 3.3 and
thus obtain a finite initial piece thereof. Unlike in the previ-
ous version of refine, we do not have to redefine the answer
variables at all (but note that they may still change outside of
refine when we take the product).

The above suffices for target CQs from CQcsf in which ev-
ery variable is reachable from an answer variable. In the
general case, disconnected Boolean components might be
present (or emerge during unraveling and minimization) that
are never unraveled. To address this, we subsequently ap-
ply the original version of refine to such components, avoid-
ing the Splitting step and leaving the already unraveled parts
untouched. Note that the exponential blowup in the arity is
avoided because the original refine is only applied to Boolean
subqueries. However, the resulting queries are not guaranteed
to be in CQcsf. We can thus not rely on Lemma 1 as before
which is why we need CQ-equivalence queries.

4 Learning under ELI-Ontologies
When we replace ELr-ontologies with ELI-ontologies, poly-
nomial time learnability can no longer be expected since con-
tainment between ELQs under ELI-ontologies is EXPTIME-
complete [Baader et al., 2008]. In contrast, polynomial query
learnability is not ruled out and in fact it is natural to ask
whether there is a polynomial time learning algorithm with
access to an oracle (in the classical sense) for query con-
tainment under ELI-ontologies. Note that such an algo-
rithm would show polynomial query learnability. We answer
this question to the negative and show that polynomial query
learnability cannot be attained under ELI-ontologies for any
of the query classes considered in this paper. This is a conse-
quence of the following result, which also captures learning
of unrestricted CQs.
Theorem 3. EL-concepts are not polynomial query learn-
able under ELI-ontologies with membership queries and
CQ-equivalence queries.

For the proof, we use the ELI-ontologiesOn, n ≥ 1, given
in Figure 1. There, r = s and s = r. Every On is associated
with a setHn of 2n potential target concepts of the form

∃σ1 · · · ∃σn.∃rn.A with σ1, . . . , σn ∈ {r, s}
where ∃rn denotes the n-fold nesting of ∃r. The idea of the
proof is to show that if there was an algorithm for learning
EL-concepts under ELI-ontologies such that, at any given
time, the sum of the sizes of all (membership and CQ-
equivalence) queries asked to the oracle is bounded by a poly-
nomial p(n1, n2, n3) with n1 is the size of the target query,
n2 is the size of the ontology, and n3 is the size of the largest
counterexample seen so far, then we can choose n large
enough so that the learner needs more than p(n1, n2, n3)
queries to distinguish the targets in Hn under On if the or-
acle uses a ‘sufficiently destructive’ strategy to answer the
queries. Such a strategy is presented in the appendix, we only
give one example that highlights a crucial aspect.

Assume that the learner poses as an equivalence query
the EL-concept CH = ∃σ1 · · · ∃σn.∃rn.A. Then the

> v ∃r.> u ∃s.>

Li v ∃r.Li+1 u ∃s.Li+1

for 0 ≤ i ≤ n
Li v ∃r.Li+1 for n ≤ i < 2n

L2n v A

∃σ.Li+1 v Li for σ ∈ {r, s} and 0 ≤ i ≤ 2n

Ki v ∃r.(Ki+1 u V ri+1) u ∃s.(Ki+1 u V si+1)

for σ ∈ {r, s} and 0 ≤ i ≤ n
Ki uWσ

i+1 v ∃r.Ki+1 for σ ∈ {r, s} and n ≤ i < 2n

∃σ−.(Kj u V σ
′

i ) v V σ
′

i for σ, σ′ ∈ {r, s}, 1 ≤ i ≤ n,
and i ≤ j ≤ 2n

K2n u V σi uWσ
i v A for σ ∈ {r, s} and 1 ≤ i ≤ n

∃σ.Wσ′
i vWσ′

i for σ ∈ {r, s, r−, s−},
σ′ ∈ {r, s}, and 1 ≤ i ≤ n

W r
i uW s

i v L0 for 0 ≤ i ≤ n

∃σ.Ki+1 v Ki for σ ∈ {r, s} and 0 ≤ i ≤ 2n

∃σ−.> v Uσ1 for σ ∈ {r, s}
∃σ−.Uσ

′
i v Uσ

′
i+1 for σ, σ′ ∈ {r, s} and 1 ≤ i < 2n

Uri u Usi v D for 1 ≤ i ≤ 2n

Ki uA v D for 0 ≤ i < 2n

Li uA v D for 0 ≤ i < 2n

Li u Lj v D for n ≤ i < j ≤ 2n

Ki uKj v D for n ≤ i < j ≤ 2n

Li uKj v D for n ≤ i, j ≤ 2n

∃σ.D v D for σ ∈ {r, s, r−, s−}
D v L0

Figure 1: ELI-ontology On

oracle returns “no” and positive counterexample A =
{K0(a0),Wσ1

1 (a0), . . . ,W σn
n (a0)}. It is instructive to ver-

ify that A,O |= C ′H(a0) for all C ′H ∈ Hn \ {CH} while
A,O 6|= CH(a0) as this illustrates the use of inverse roles
in On.

5 Conclusion
We conjecture that our results can be extended from ELr-
ontologies to ELHr-ontologies, thus adding role inclusions.
In contrast, we do not know how to learn in polyno-
mial time unrestricted ELI-concepts under EL-ontologies, or
symmetry-free CQs under EL-ontologies. We would not be
surprised if these indeed turn out not to be learnable in poly-
nomial time. It is an interesting question whether our results
can be generalized to symmetry-free CQs that admit chord-
less cycles of length bounded by a constant larger than three.
This would require the use of a different kind of compact uni-
versal model.
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