
Least General Generalizations in Description Logic: Verification and Existence

Jean Christoph Jung,1 Carsten Lutz,1 Frank Wolter2

1 {jeanjung,clu}@uni-bremen.de, University of Bremen, Germany
2 wolter@liverpool.ac.uk, University of Liverpool, United Kingdom

Abstract

We study two forms of least general generalizations in de-
scription logic, the least common subsumer (LCS) and most
specific concept (MSC). While the LCS generalizes from ex-
amples that take the form of concepts, the MSC generalizes
from individuals in data. Our focus is on the complexity of ex-
istence and verification, the latter meaning to decide whether
a candidate concept is the LCS or MSC. We consider cases
with and without a background TBox and a target signature.
Our results range from CONP-complete for LCS and MSC
verification in the description logic EL without TBoxes to
undecidability of LCS and MSC verification and existence
in ELI with TBoxes. To obtain results in the presence of a
TBox, we establish a close link between the problems studied
in this paper and concept learning from positive and negative
examples. We also give a way to regain decidability in ELI
with TBoxes and study single example MSC as a special case.

1 Introduction
Generalization is a fundamental method in relational learn-
ing and inductive logic programming (Plotkin 1970; Mug-
gleton 1991). Given a finite number of positive examples,
one seeks a description in a logical language that encom-
passes all examples and in this sense provides a generaliza-
tion. To ensure that the description is as informative as possi-
ble, one aims at obtaining least general generalizations, that
is, generalizations that cannot be made more specific with-
out losing at least one example. Note that computing least
general generalizations is a form of supervised learning in
which only positive, but no negative examples are given.

In this paper, we study least general generalizations in the
context of description logics (DLs), a widely known family
of ontology languages that underpin the web ontology lan-
guage OWL 2 (Baader et al. 2017). In DLs, concepts are
the building blocks of an ontology and thus a prime target
for being learned through generalization. There are in fact
several applications in which this is useful, including on-
tology design by domain experts that are not sufficiently
proficient in logical modeling (Baader and Küsters 1998;
Baader, Küsters, and Molitor 1999; Baader, Sertkaya, and
Turhan 2007; Donini et al. 2009), supporting the improve-
ment and restructuring of an ontology (Cohen, Borgida, and

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hirsh 1992; Küsters and Borgida 2001), and creative discov-
ery of novel concepts through conceptual blending (Faucon-
nier and Turner 2008; Eppe et al. 2018). We focus on the two
fundamental DLs EL and ELI, fragments of first-order Horn
logic that can express positive conjunctive existential prop-
erties, ELI extending EL with inverse roles. Both DLs are
natural choices for generalization as their limited expressive
power helps to avoid overfitting, that is, we cannot general-
ize by disjunctively combining descriptions of each single
example, but are forced to find a true generalization. In fact,
least general generalizations in EL have received significant
attention (Baader, Küsters, and Molitor 1999; Baader 2003;
Zarrieß and Turhan 2013) while, somewhat surprisingly,
there appears to be no prior work on DLs with inverse roles.

There are two established notions of least general gener-
alization in the DL context. When the examples are given in
the form of concepts, the desired generalization is the least
common subsumer (LCS), the least general concept that sub-
sumes all examples (Cohen, Borgida, and Hirsh 1992). A
natural alternative is to give examples using relational data,
which in DLs are represented as an ABox. Traditionally, one
uses only a single example, which takes the form of an in-
dividual in the data, and then asks for the most specific con-
cept (MSC), that is, the least general concept that the indi-
vidual is an instance of (Nebel 1990). However, there seems
to be no good reason to restrict the MSC to a single exam-
ple and thus we define it based on multiple examples. In
this way, the LCS becomes a special form of MSC in which
the data consists of a collection of trees. We remark that EL
and ELI concepts can be viewed as natural tree query lan-
guages for graph databases and knowledge graphs and thus
the MSC is useful for data exploration and comprehension,
see e.g. (Colucci et al. 2016). It is also related to generating
referring expressions (Borgida, Toman, and Weddell 2016).

For both the LCS and the MSC, we study the two decision
problems existence and verification. In fact, both the LCS
and the MSC need not exist because there can be an infinite
sequence of less and less general generalizations. In verifi-
cation, one is given a candidate concept and the question is
whether the candidate is the LCS or MSC. Verification is rel-
evant, for example, in approaches that try to find the LCS or
MSC by refinement operators that move towards less general
generalizations in a step-wise fashion (Badea and Nienhuys-
Cheng 2000; Lehmann and Hitzler 2010; Lehmann and

Haase 2009) and check after each step whether the least
general generalization has already been reached. We con-
sider the case with and without a background TBox and
with and without a target signature that the generalization
should be formulated in. If the generalization does not exist,
one can resort to approximations (Küsters and Molitor 2001;
Baader, Sertkaya, and Turhan 2007).

We now summarize our main complexity and undecid-
ability results. They are based on characterizations in terms
of simulations between products of universal models, mildly
varying characterizations given in (Zarrieß and Turhan 2013;
Funk et al. 2019). We start with the case without TBoxes,
for which we find LCS and MSC verification in EL to be
CONP-complete. It is well-known that the LCS in EL always
exists (Baader, Küsters, and Molitor 1999), and we comple-
ment this by proving that MSC existence in EL is PSPACE-
complete. We then add inverse roles which introduce sig-
nificant technical challenges. In particular, the structure of
the relevant products from the mentioned characterizations
is much more complex. As a consequence, the LCS in ELI
is not guaranteed to exist. We prove that LCS and MSC ex-
istence and verification are PSPACE-hard and in EXPTIME.
The lower bounds require a remarkably intricate construc-
tion and show as a by-product that the product simulation
problem on trees (defined in the paper) is PSPACE-hard.

We then switch to the case with TBoxes, starting
with observing a connection to concept learning (Badea
and Nienhuys-Cheng 2000; Lehmann and Hitzler 2010;
Lehmann and Haase 2009; Lisi 2012; Bühmann et al. 2018;
Sarker and Hitzler 2019) and in particular to the concept
separability problem (Funk et al. 2019) which asks whether
there is a concept that separates given positive examples
from given negative examples. It turns out that its comple-
ment reduces in polynomial time to MSC existence. Using
results from (Funk et al. 2019), this can be used to show
that MSC existence is undecidable in ELI and EXPTIME-
complete in EL. The same is true for verification as the two
problems are mutually reducible in polynomial time when a
TBox can be used. We consider it remarkable that inverse
roles have such a dramatic computational effect. We also
identify a way around undecidability, namely to consider
for the generalization only symmetry free ELI concepts,
that is, ELI concepts that do not admit a subconcept of the
form ∃r.(C u ∃r−.D). In this case, the complexity drops to
EXPTIME again. Up to this point, all mentioned complex-
ity lower bounds and undecidability results hold without a
signature restriction on the target concept while all upper
bounds apply also with such a restriction. We finally con-
sider the MSC of single examples and show that existence
and verification are in PTIME in EL while they are com-
plete for EXPTIME and 2-EXPTIME in ELI, depending on
whether or not we assume the signature to be full. Thus once
more, adding inverse roles has a drastic effect.

Note that in the literature, the LCS is sometimes restricted
to only constantly many examples. In all of the above re-
sults, we do not assume a constant bound on the number of
examples. We also make observations regarding that case,
though. Without a TBox, the complexity typically drops to
PTIME and the same is true for EL with TBoxes (Zarrieß

and Turhan 2013). When both inverse roles and TBoxes are
present, however, the complexity tends to not decrease. We
remark that in the decidable cases, our constructions yield
upper bounds on the role depth of the LCS and MSC, if they
exists, which together with the characterizations can be used
to actually construct them.

A full version that contains all proof details is available at
http://www.informatik.uni-bremen.de/tdki/research/.

2 Preliminaries
We introduce the basics of DLs as required for this paper,
for full details see (Baader et al. 2017). Let NC be a set of
concept names and NR a set of role names, both countably
infinite. A role is either a role name or an inverse role r−,
r a role name. For uniformity, we identify (r−)− with r. An
ELI concept is formed according to the syntax rule

C,D ::= > | A | C uD | ∃r.C
whereA ranges over concept names and r over roles. An EL
concept is an ELI concept that does not use inverse roles.
The depth of a concept refers to the nesting depth of the
operator ∃r.C.

For any DL L, an L TBox is a finite set of concept inclu-
sions (CIs) C v D, where C and D are L concepts. Let NI

be a countably infinite set of individual names. An ABox A
is a finite set of concept assertions A(a) and role assertions
r(a, b) where A ∈ NC, r ∈ NR, and a, b ∈ NI. We often
use r(a, b) to denote r−(b, a) if r is an inverse role. We use
ind(A) to denote the set of all individual names that occur
in A. An L knowledge base (KB) (T ,A) consists of an L
TBox T and an ABox A.

The semantics of DLs is defined in terms of interpreta-
tions I = (∆I , ·I), where ∆I is a non-empty set and ·I
maps each concept name A ∈ NC to a subset AI of ∆I

and each role name r ∈ NR to a binary relation rI on ∆I .
We refer to (Baader et al. 2017) for details on how to extend
·I to compound concepts. An interpretation I satisfies a CI
C v D if CI ⊆ DI , a concept assertion A(a) if a ∈ AI ,
and a role assertion r(a, b) if (a, b) ∈ rI . I is a model of a
TBox, an ABox, or a knowledge base if it satisfies all inclu-
sions and assertions in it. The CI C v D is a consequence
of the TBox T , in symbols T |= C v D, if CI ⊆ DI for all
models I of T . For a KB K = (T ,A), a concept C, and an
individual a ∈ ind(A), we writeK |= C(a) if a ∈ CI for all
models I ofK. For a DL L, L instance checking is the prob-
lem to decide, given an L KB K = (T ,A), an a ∈ ind(A),
and an L concept C, whether K |= C(a).

A signature Σ is a set of concept and role names. An L
concept is an L(Σ) concept if it uses only concept and role
names from Σ, and likewise for other syntactic objects such
as TBoxes and ABoxes. The signature sig(O) of a syntactic
objectO is the set of concept and role names that occur inO.
The Σ-reduct I|Σ of an interpretation I is obtained from I
by setting AI = ∅ and rI = ∅ for all concept names A and
role names r not in Σ.

Each interpretation I gives rise to a directed graph GI =
(∆I , {(d, e) | (d, e) ∈ rI}) and a corresponding undirected
graph GuI . We thus apply graph theoretic terminology di-
rectly to interpretations, speaking for example about their

outdegree. An interpretation is tree-shaped (resp. ditree-
shaped) if GuI (resp. GI) is a tree without multiedges, that
is, (d, e) ∈ rI ∩ sI implies r = s for all roles r, s. Each
ELI (resp. EL) concept C can be viewed as a tree-shaped
(resp. ditree-shaped) interpretation and vice versa. All this
also applies to ABoxes, which are only a different way to
present finite interpretations. We use AC to denote the ELI
concept C viewed as a tree-shaped ABox and use ρC to de-
note the root of AC . For example, C = A u ∃r.B u ∃r−.>
gives AC = {A(ρC), r(ρC , b1), B(b1), r(b2, ρC)}.
Lemma 1 For all ELI TBoxes T and ELI concepts C,D,
T |= C v D iff (T ,AC) |= D(ρC).

We introduce simulations, universal models, and direct prod-
ucts. Let I1 and I2 be interpretations. A relation S ⊆
∆I1 × ∆I2 is an EL(Σ) simulation from I1 to I2 if for all
d, d′ ∈ ∆I1 and e ∈ ∆I2 :

1. d ∈ AI1 and (d, e) ∈ S imply e ∈ AI2 , for all A ∈ Σ;
2. (d, d′) ∈ rI1 and (d, e) ∈ S imply (d′, e′) ∈ S and

(e, e′) ∈ rI2 for some e′ ∈ ∆I2 , for all role names r ∈ Σ.
S is an ELI(Σ) simulation if Condition 2 also holds for
inverse roles r− with r ∈ Σ. Let L ∈ {EL, ELI} and
(d, e) ∈ ∆I1 ×∆I2 . We write (I1, d) �L,Σ (I2, e) if there
exists an L(Σ) simulation from I1 to I2 that contains (d, e).
We omit Σ if it is the full signature NC ∪ NR, writing �L
and speaking of L simulations. It can be checked in poly-
nomial time whether (I1, d) �L,Σ (I2, e). The following
lemma shows that L(Σ) simulations characterize preserva-
tion of L(Σ) concepts.
Lemma 2 Let L ∈ {EL, ELI}, let I1, I2 be interpretations
with finite outdegree, and let Σ be a signature. The following
are equivalent:

1. (I1, d) �L,Σ (I2, e);
2. for all L(Σ) concepts C: if d ∈ CI1 , then e ∈ CI2 .

Let K = (T ,A) be a KB and sub(T) be the set of all
subconcepts of concepts that occur in T . A type for T is a
subset t ⊆ sub(T) such that T |=

d
t v D implies D ∈ t

for all D ∈ sub(T). Denote by T the set of all types for T .
When a ∈ ind(A), t, t′ ∈ T , and r is a role, we write
• a Kr t if K |= ∃r.

d
t(a) and t is maximal with this

condition, and
• t Tr t′ if T |=

d
t v ∃r.

d
t′ and t′ is maximal with

this condition.
A path p for K is a sequence ar0t1 · · · rn−1tn such that a ∈
ind(A), r0, . . . , rn−1 are roles, t1, . . . , tn ∈ T , a Kr0 t1,
and ti Tri ti+1 for all i < n. Let tail(p) denote the last
element of the path p. Define the universal model UK of K
by taking as ∆UK the set of all paths forK and setting for all
concept names A and role names r:

AUK = {a ∈ ind(A) | T ,A |= A(a)}∪
{p ∈ ∆UK \ ind(A) | A ∈ tail(p)}

rUK = {(a, b) ∈ ind(A)2 | r(a, b) ∈ A} ∪
{(p, prt) | prt ∈ ∆UK}∪{(pr−t, p) | pr−t ∈ ∆UK}

The universal model UT ,C of an ELI TBox T and an ELI
concept C is defined as UK where K = (T ,AC).

Lemma 3 For all ELI KBs K, ELI concepts C, and a ∈
ind(K), K |= C(a) iff a ∈ CUK .

The direct product
∏n
i=1 Ii of interpretations I1, . . . , In is

defined by

∆
∏n

i=1Ii = ∆I1 × · · · ×∆In

A
∏n

i=1Ii =AI1 × · · · ×AIn
r
∏n

i=1Ii = {((d1, . . . , dn), (e1, . . . , en)) |∀i : (di, ei)∈rIi}

If (d1, . . . , dn) ∈ ∆
∏n

i=1 Ii , then we write
∏n
i=1(Ii, di) for

the pair (
∏n
i=1 Ii, (d1, . . . , dn)).

Lemma 4 For all I1, . . . , In, (d1, . . . , dn) ∈ ∆
∏n

i=1 Ii ,
and ELI concepts C, (d1, . . . , dn) ∈ C

∏n
i=1 Ii iff di ∈ CIi

for 1 ≤ i ≤ n.

3 LCS and MSC: Basics
We introduce least common subsumers and most spe-
cific concepts, discuss their relationship, and give model-
theoretic characterizations for verification and existence.
The latter are mild extensions of characterizations estab-
lished in (Zarrieß and Turhan 2013).

Definition 1 Let T be a TBox, C1, . . . , Cn concepts called
examples, L ∈ {EL, ELI}, and Σ a signature. An L(Σ)
concept D is a least common L(Σ) subsumer (L(Σ)-LCS)
of C1, . . . , Cn w.r.t. T if

1. T |= Ci v D for all i = 1, . . . , n;
2. if T |= Ci v D′ for all i = 1, . . . , n, D′ an L(Σ) con-

cept, then T |= D v D′.
If an L(Σ)-LCS w.r.t. a TBox T exists, then it is unique up
to equivalence w.r.t. T . We thus speak about the L(Σ)-LCS.
We omit Σ if it contains sig(T ∪{C1, . . . , Cn}), speaking of
the L-LCS w.r.t. T . Clearly, no L-LCS can contain symbols
that are not in the TBox or the examples. Thus, all signatures
between the finite sig(T ∪{C1, . . . , Cn}) and the full signa-
ture behave in the same way. We also omit T if it is empty,
speaking of the L(Σ)-LCS.

Example 1 (1) Let C1 = ∃attend.MLConf and C2 =
∃attend.KRConf. Then ∃attend.>. is the EL (and ELI)
LCS of C1, C2. Let T = {MLConf v AIConf,KRConf v
AIConf}. Then ∃attend.AIConf is the EL (and ELI) LCS of
C1, C2 w.r.t. T .

(2) The L-LCS, L ∈ {EL, ELI}, of a single L concept
C w.r.t. an L TBox T is just C. For Σ (sig(C), however,
the L(Σ)-LCS of C w.r.t. T does not always exist. Take, for
example, T = {A v ∃r.A} and Σ = {r}. Then neither
the ELI(Σ)-LCS nor the EL(Σ)-LCS of A w.r.t. T exists
as T |= A v ∃rn.> for all n ≥ 0, but there is no ELI(Σ)
conceptC with T |= A v C and T |= C v ∃rn.> for all n.

Definition 2 Let K = (T ,A) be a KB, a1, . . . , an ∈
ind(A) individuals called examples, L ∈ {EL, ELI}, and
Σ a signature. An L(Σ) concept C is a most specific L(Σ)
concept (L(Σ) MSC) of a1, . . . , an w.r.t. K if

1. K |= C(ai) for all i = 1, . . . , n;
2. if K |= D(ai) for all i = 1, . . . , n, D an L(Σ) concept,

then T |= C v D.

Like the LCS, the MSC is unique up to equivalence w.r.t. T
(if it exists) and thus we speak of the MSC. We drop Σ if
Σ ⊇ sig(K). As for the LCS, a symbol that does not occur
in the KB cannot occur in the MSC.
Example 2 (1) In contrast to the EL-LCS, the EL-MSC of a
single example does not always exist, even when the TBox
is empty, due to cycles in the ABox. For example, for A =
{A(a), r(a, a)} the EL-MSC of a w.r.t.K = (∅,A) does not
exist (use that K |= ∃rn.>(a) for all n ≥ 0). In contrast, the
EL-MSC of a w.r.t. K′ = ({A v ∃r.A},A) is A.

(2) A common proposal to generalize from individuals is
to compute the MSC of each individual separately and then
generalize by applying the LCS, provided that all MSCs ex-
ist (Baader, Küsters, and Molitor 1999). It pays off, however,
to directly apply the MSC to multiple individuals. Let, for
example, K = (∅,A), A = {A(a), r(a, a), A(b), s(b, b)}.
Then the EL-MSC of a alone w.r.t. K does not exist, and
likewise for b. In constrast, the EL-MSC of a, b w.r.t.K isA.
The following theorem, which is an immediate consequence
of Lemma 1, shows that the LCS is a special form of MSC.
Theorem 1 Let L ∈ {EL, ELI}, T be an L TBox,
C1, . . . , Cn L concepts, and Σ a signature. Then an L(Σ)
concept D is the L(Σ)-LCS of C1, . . . , Cn w.r.t. T iff D
is the L(Σ)-MSC of ρC1

, . . . , ρCn
w.r.t. the KB (T ,A),

A = AC1
∪ · · · ∪ ACn

.
LCS and MSC give rise to the four decision problems stud-
ied in this paper. Let L be a description logic. L-LCS ex-
istence w.r.t. TBoxes means to decide, given L concepts
C1, . . . , Cn, an L TBox T , and a finite signature Σ, whether
the L(Σ)-LCS of C1, . . . , Cn w.r.t. T exists. By the re-
mark made after Definition 1, it is without loss of gen-
erality to consider only finite signatures. In particular, we
can use sig(T ∪ {C1, . . . , Cn}) instead of the full signa-
ture. L-MSC existence w.r.t. TBoxes is defined accordingly,
the input consisting of a KB (T ,A) with T an L TBox,
a1, . . . , an ∈ ind(A), and a finite signature Σ. In L-LCS
(resp. L-MSC) verification w.r.t. TBoxes, we are given as an
additional input a candidate L(Σ) concept C and the ques-
tion is whether C is the L(Σ)-LCS of C1, . . . , Cn w.r.t. T
(resp. the L(Σ)-MSC of a1, . . . , an w.r.t. K).

Theorem 1 provides a reduction from L-LCS existence
w.r.t. TBoxes to L-MSC existence w.r.t. TBoxes, and like-
wise for verification. In this reduction, neither the TBox
nor the signature nor the number of examples change. We
now present a converse reduction which, however, requires
to modify the TBox.
Theorem 2 Let L ∈ {EL, ELI}. Then L-MSC verification
(resp. existence) w.r.t. TBoxes can be reduced in polynomial
time to L-LCS verification (resp. existence). This also holds
in the full signature case if there are at least two examples.
Proof. Let T be an L TBox, A an ABox, a1, . . . , an ∈
ind(A). We may assume w.l.o.g. that A is the disjoint
union of ABoxes A1, . . . ,An such that ai ∈ ind(Ai) for
i = 1, . . . , n. Let Xa be a fresh concept name for every
a ∈ ind(A) and let T ′ be the extension of T with

Xa v A for all A(a) ∈ A,
Xa v ∃r.Xa′ for all r(a, a′) ∈ A.

(If L = ELI, then also add Xa v ∃r−.Xa′ if r(a′, a) ∈
A.) Then for every signature Σ that does not contain
{Xa1

, . . . , Xan} and every L(Σ) conceptD,D is the L(Σ)-
MSC of a1, . . . , an w.r.t. (T ,A) iff D is the L(Σ)-LCS of
Xa1

, . . . , Xan w.r.t. T ′.
In the case of the full signature, we have to consider the

L(Σ ∪ {Xa1
, . . . , Xan})-LCS in place of the L(Σ)-LCS.

The assumption that there are at least two examples ensures
that the concept names Xa cannot occur in the LCS. o

We next provide model-theoretic characterizations for
MSC verification and existence based on products and sim-
ulations. Corresponding characterizations for LCS verifica-
tion and existence can be obtained in a straightforward way
via Theorem 1, see the appendix. Note that Point 1 below
can also be viewed as a simulation condition.

Theorem 3 (MSC Verification) Let L ∈ {EL, ELI}, K =
(T ,A) be an L KB, a1, . . . , an ∈ ind(A), and Σ a signa-
ture. An L(Σ) concept C is the L(Σ)-MSC of a1, . . . , an
w.r.t. K iff the following conditions hold:

1. (a1, . . . , an) ∈ CΠn
i=1UK ;

2. Πn
i=1(UK, ai) �L,Σ UT ,C , ρC .

Proof. By Lemmas 3 and 4, Condition 1 is equivalent to
Condition 1 of the definition of MSCs. By Lemmas 2, 3, and
4, Condition 2 is equivalent to Condition 2 of the definition
of MSCs. o

For an interpretation I and a d0 ∈ ∆I , a d0-path of length
k in I is a sequence d0r0 · · · rk−1dk with (di, di+1) ∈ rIi
for all i < k, each ri a (potentially inverse) role. Denote
by tail(p) the last element of p. The ELI, k-unfolding of I
at d0, denoted (I, d0)↓ELI,k, is the interpretation defined by
taking ∆(I,d0)↓ELI,k to be the set of all d0-paths of length at
most k and setting

A(I,d0)↓ELI,k = {p | tail(p) ∈ AI}
r(I,d0)↓ELI,k = {(p, prt) | prt ∈ ∆(I,a)↓ELI,k} ∪

{(pr−t, p) | prt ∈ ∆(I,a)↓ELI,k}.

The EL, k-unfolding of I at d0, denoted (I, d0)↓EL,k,
is defined accordingly, but only admitting role names in
paths. For L ∈ {EL, ELI} and an L KB K, we use
(Πn

i=1(UK, di))↓L,k|Σ to denote the L, k-unfolding of the Σ-
reduct of Πn

i=1(UK, di) at (d1, . . . , dn). It can be verified
that this interpretation is tree-shaped for L = ELI and
ditree-shaped for L = EL and can thus be viewed as an
L concept Ck.

Theorem 4 (MSC Existence) Let L ∈ {EL, ELI}, K =
(T ,A) be an L KB, a1, . . . , an ∈ ind(A), and Σ
a signature. The following are equivalent, for Ck =

(Πn
i=1(UK, ai))↓L,k|Σ :

1. the L(Σ)-MSC of a1, . . . , an w.r.t. K exists;
2. Ck is the L(Σ)-MSC of a1, . . . , an w.r.t. K, for a k ≥ 0;
3. Πn

i=1(UK, ai) �L,Σ (UT ,Ck
, ρCk

) for some k ≥ 0.

Proof. “2 ⇒ 1” is trivial. “3 ⇒ 2” is an immediate con-
sequence of Theorem 3. For “1 ⇒ 3”, let the L(Σ)-MSC
D be of depth k. It then follows from Theorem 3 that
(a1, . . . , an) ∈ D

∏n
i=1 UK which implies ρCk

∈ DUT ,Ck .
Now Point 3 follows from the definition of the MSC and
Lemmas 2, 3, and 4. o

Note that Theorems 3 and 4 link MSC-verification and exis-
tence, as well as LCS-verification and existence (via Theo-
rem 1) to product simulation problems. For L ∈ {EL, ELI},
the L-product simulation problem is to decide given
(I1, d1), . . . , (In, dn), (J , e), whether

∏n
i=1(Ii, di) �L

(J , e). These are fundamental problems that have received
attention in several areas such as verification and database
theory (Harel, Kupferman, and Vardi 2002; Barceló and
Romero 2017; ten Cate and Dalmau 2015).

4 Without TBoxes
We start with studying least general generalizations in the
case without TBoxes, beginning with verification in EL.

Theorem 5 In EL, LCS and MSC verification w.r.t. the
empty TBox are CONP-complete. The lower bounds apply
even when the signature is full.

Proof. (sketch) The upper bound uses Theorem 3, the fact
that instance checking in EL is in PTIME, and the observa-
tion that the EL-product simulation problem is in CONP if
the interpretation J is tree-shaped (here, it is even ditree-
shaped). In fact, if (I, d) 6�EL,Σ (J , e) with J tree-shaped,
then there is a subinterpretation I0 of I of polynomial size
such that (I0, d) 6�EL,Σ (J , e). The lower bound is proved
by reducing the satisfiability problem for propositional logic
to the complement of EL-LCS verification. It also estab-
lishes CONP-hardness of the EL-product simulation prob-
lem in the case that J is tree-shaped. o

Regarding existence, a first well-known observation is that
the EL-LCS always exists, even if the signature is not
full. This follows from Theorem 4 and the fact that if
K = (∅,AC1

∪ · · · ∪ ACn
) then the (reachable part of

the) Σ-reduct of
∏n
i=1(UK, ρCi

) is ditree-shaped and co-
incides with Πn

i=1(UK, ρCi
)↓EL,k|Σ , k the maximum depth of

C1, . . . , Cn. In contrast, the EL-MSC does not always exist
even with the empty TBox, see Example 2.

Theorem 6 In EL, MSC existence w.r.t. the empty TBox is
PSPACE-complete. The lower bound applies even when the
signature is full.

Proof. (sketch) Using Theorem 4, one can show that the
EL(Σ)-MSC of a1, . . . , an w.r.t. a KB K = (∅,A) exists if
and only if there is no infinite Σ-path in An =

∏n
i=1A that

starts at (a1, . . . , an)—we view ABoxes as finite interpreta-
tions here. We can thus decide existence of the EL(Σ)-MSC
in polynomial space in the standard way: guess an element
a of An and, proceeding step by step, a path through An
that starts at (a1, . . . , an) and follows only role names from
Σ. Reject if the element a is seen twice. The lower bound is
established by reducing the word problem of deterministic
polynomially space-bounded Turing machines. o

We next turn to ELI. In contrast to EL, here the LCS does
not always exist even when the TBox is empty.
Example 3 Consider the following ELI concepts D1, D2

over concept names A1, . . . , A4 and a single role r:

A1, A2

A3 A4

A1

A3, A4

A2

A1

A3 A2

A4

D1 D2 U

The interpretation U is the part of AD1
×AD2

that is reach-
able from its root ◦. One can show that the infinite path in U
labeled with (A1, r, A3, r

−, A2, r, A4, r
−)ω is not ELI sim-

ulated by (U↓ELI,k, ◦), for any k ≥ 0. Thus, the ELI-LCS
of D1, D2 does not exist by Theorem 4.
The next theorem summarizes our results regarding ELI.
Theorem 7 In ELI, LCS and MSC existence and verifica-
tion w.r.t. the empty TBox are PSPACE-hard and in EXP-
TIME. The lower bounds apply when the signature is full.
Proof. (sketch) The main ingredient to the PSPACE lower
bounds is a rather intricate proof that the ELI-product sim-
ulation problem is PSPACE-hard already when restricted
to tree-shaped interpretations. In fact, this is the case even
when interpretations on the left-hand sides are trees of depth
two and the interpretation on the right-hand side is fixed (and
of depth eleven). It is interesting to contrast this with the fact
that the EL-product simulation problem is CONP-complete
on tree-shaped interpretations, see the proof of Theorem 5.
To obtain a PSPACE lower bound for LCS verification and
existence, we then use reductions from ELI-product simu-
lation on tree shaped interpretations.

The upper bound for MSC verification (and thus also for
LCS verification) is obtained by recalling that ELI instance
checking is EXPTIME-complete and adapting the EXPTIME
upper bound from (Zarrieß and Turhan 2013) for the EL-
product simulation problem to ELI.

The EXPTIME upper bound for MSC existence (and thus
also for LCS existence) can be proved similarly to the upper
bound in Theorem 6. The main difference is that we now
work with ELI simulations rather than EL simulations and
thus need to be more careful about the paths we consider.
In fact, we use paths d0, r0, d1, r1, d2, . . . through An =∏n
i=1A that start at d0 = (a1, . . . , an), follow only Σ-roles,

and satisfy the following for all i ≥ 0: 1. if ri = r−i+1,
then (An, di+2) 6�ELI,Σ (An, di); 2. there is no e 6= di+1

such that ri(di, e) ∈ An, (An, di+1) �ELI,Σ (An, e), and
(An, e) 6�ELI,Σ (An, di+1). o

All problems studied in this section are solvable in PTIME if
the number of examples is bounded by a constant. This fol-
lows from an analysis of the presented upper bound proofs
and has in some cases also been established before (Baader,
Küsters, and Molitor 1999; Zarrieß and Turhan 2013).

5 With TBoxes
We now add TBoxes to the picture. It turns out that, in this
case, we can transfer results from the concept separabil-

ity problem, which has been considered in concept learning
from positive and negative examples (Funk et al. 2019).

Definition 3 Let L ∈ {EL, ELI}. An L learning instance is
a triple (K, P,N) with K = (T ,A) an L KB and P,N ⊆
ind(A) sets of positive and negative examples. Let Σ be a
signature. An L(Σ) solution to (K, P,N) is an L(Σ) con-
cept C such that K |= C(a) for all a ∈ P and K 6|= C(a)
for all a ∈ N .

This definition gives rise to the decision problem of L
concept separability: given anL learning instance (K, P,N)
and a signature Σ, decide whether it admits an L(Σ) solu-
tion. As the conjunction of L(Σ) solutions to (K, P, {b}),
b ∈ N , is an L(Σ) solution to (K, P,N), it suffices to con-
sider instances with N singleton. Note that in (Funk et al.
2019) only the full signature case is considered.

One can easily derive from (Funk et al. 2019) that
(K, P, {b}) has an L(Σ) solution iff

∏
a∈P (UK, a) 6�L,Σ

(UK, b). By encoding b as a concept D as in the proof of
Theorem 2, we can thus view L(Σ) concept separability as
the problem to decide for an L KB K = (T ,A), exam-
ples a1, . . . , an ∈ ind(A), and an L concept D whether∏n
i=1(UK, ai) 6�L,Σ (UT ,D, ρD), which is exactly the nega-

tion of Condition 2 of the characterization of MSC verifica-
tion in Theorem 3. This provides the basis for the following.

Theorem 8 For L ∈ {EL, ELI}, the complement of L con-
cept separability can be reduced in polynomial time to L-
MSC verification and existence. This also holds for the full
signature.

Proof. (sketch) We consider EL and the full signature
case. Given K, a1, . . . , an, and D, we extend K by adding
assertions v(ρi, ai), v(ρi, bi), D(bi), where ρi and bi are
fresh individuals, v a fresh role name, and D(bi) stands for
AD rooted at bi. Then

∏n
i=1(UK, ai) 6�EL (UT ,D, ρD) iff

∃v.D is the EL-MSC of ρ1, . . . , ρn w.r.t. the extended KB
(under mild assumptions). For the reduction to MSC exis-
tence, we additionally generate infinite r-chains starting at
ai and bi using CIs X v ∃r.X and adding X(ai) and X(bi)
to the ABox, where the concept names X are distinct for
distinct ai but coincide for all bi. If we assume w.l.o.g. that
n ≥ 2, then

∏n
i=1(UK, ai) 6�EL (UT ,D, ρD) iff the EL-MSC

of ρ1, . . . , ρn w.r.t. the extended KB exists. o

It is shown in (Funk et al. 2019) that ELI concept separabil-
ity is undecidable already in the full signature case and even
with only two positive examples. We thus obtain the follow-
ing from Theorems 8 and 2 and the fact that the number of
examples remains unchanged under the reductions.

Theorem 9 In ELI, MSC and LCS verification and exis-
tence are undecidable. This is already the case when the
signature is full and there are at most two examples.

It is also shown in (Funk et al. 2019) that EL concept separa-
bility is EXPTIME-hard. In this case the number of positive
examples is not bounded by a constant.

Theorem 10 In EL, MSC and LCS verification and exis-
tence are EXPTIME-complete. The lower bounds already
apply when the signature is full.

Proof. (sketch) The lower bounds come from Theorems 8
and 2. EXPTIME upper bounds for LCS existence and ver-
ification with the full signature are in (Zarrieß and Turhan
2013), the former explicitly and the latter implicitly. They
extend to other signatures in a straightforward way. To lift
these bounds to the MSC, we use Theorem 2. o

When the number of examples is bounded, then all problems
in Theorem 10 can be solved in PTIME (which was known
for LCS existence (Zarrieß and Turhan 2013)).

We close this section with observing that L-MSC verifi-
cation can be reduced to the complement of concept separa-
bility, and thus, by Theorem 8, to L-MSC existence.
Theorem 11 For L ∈ {EL, ELI}, L-MSC verification can
be reduced in polynomial time to the complement of L con-
cept separability. This also holds for the full signature.

Proof. (sketch) Recall that Condition 2 of Theorem 3
is the complement of concept separability. By Lemmas 3
and 2, Condition 1 is equivalent to requiring UT ,C , ρC �L
UK, ai, for all i. These simulation checks can be incorpo-
rated into Condition 2 by extending the ABox. o

6 Symmetry Free ELI
An inspection of the proof of the undecidability results in
Theorem 9 reveals that it crucially depends on the MSC and
LCS to contain subconcepts of the form ∃r.(C u ∃r−.D).
Indeed, concept separability is decidable when the TBox is
formulated in ELI while separating concepts are restricted
to EL (Funk et al. 2019). We consider a more general case
by restricting the MSC and LCS to symmetry free ELI con-
cepts (ELIsf concepts for short), that is, ELI concepts that
do not contain such subconcepts. With ELIsf -LCS and MSC
verification and existence w.r.t. ELI TBoxes, we mean that
the TBox is formulated in ELI while we seek a least general
generalization formulated in ELIsf . In the case of the LCS,
also the examples are formulated in unrestricted ELI.

We start with providing a characterization of ELIsf(Σ)-
MSC existence. To achieve this, we modify the notion of
ELI, k-unfolding of an interpretation I at a d0 ∈ ∆I given
in Section 3 by restricting the domain of the resulting in-
terpretation to symmetry free d0-paths of length k, that is,
to d0-paths d0r0 · · · rm−1dm, m ≤ k, that satisfy ri 6= r−i+1

for all i < m. We speak of the ELIsf , k-unfolding of I at d0,
denoted (I, d0)↓ELI

sf ,k. We further use (I, d0)↓ELI
sf

to de-
note the unbounded ELIsf -unfolding of I at d0, that is, the
union of all (I, d0)↓ELI

sf ,k, k ≥ 0. Now let Σ be a signature.
For an ELI KB K, we use (Πn

i=1(UK, di))↓ELI
sf ,k

|Σ to denote

the ELIsf , k-unfolding of the Σ-reduct of Πn
i=1(UK, di) at

(d1, . . . , dn). As this interpretation is tree-shaped, it can be
viewed as an ELI concept which is even an ELIsf concept.

Theorem 12 (ELIsf -MSC Existence w.r.t. ELI TBoxes)
Let K = (T ,A) be an ELI KB, a1, . . . , an ∈ ind(A),
and Σ a signature. The following are equivalent, for Ck =

(Πn
i=1(UK, ai))↓ELI

sf ,k
|Σ :

1. the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K exists;

2. Ck is the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K, for a
k ≥ 0;

3. Πn
i=1(UK, ai)↓ELI

sf �ELI,Σ (UT ,Ck
, ρCk

) for a k ≥ 0.

Since Theorem 1 extends to the case considered in this
section, Theorem 12 also yields a characterization for ELIsf
LCS existence w.r.t. ELI TBoxes. Theorems 8 and 11 can
also be adapted using a version of concept separability
where the separating concepts are formulated in ELIsf . Thus
verification reduces to existence in polynomial time and we
refrain from giving an explicit characterization.

Theorem 12 provides the basis for proving that symmetry
freeness regains decidability.

Theorem 13 ELIsf -MSC and LCS existence and verifica-
tion with respect to ELI TBoxes are EXPTIME-complete.
The lower bounds hold in the full signature case and with
only one example.

The lower bounds are easy to prove by reduction from the
subsumption of concept names w.r.t. ELI TBoxes (Baader,
Brandt, and Lutz 2008). For the upper bounds, we use an ap-
proach based on automata on infinite trees. Let K = (T ,A)
be an ELI KB, a1, . . . , an ∈ ind(A), and Σ a signa-
ture. Theorem 12 suggests to test emptiness of two tree
automata A and B where A accepts precisely the tree-
shaped interpretations that admit an ELI(Σ) simulation
from U := (Πn

i=1(UK, ai))↓ELI
sf

and B accepts precisely
the tree-shaped interpretations UT ,Ck

, ρCk
, k ≥ 0. In par-

ticular, the automaton A visits all elements of U using its
states, assigning to each of them a simulating element in the
input interpretation. Elements in U are represented by their
type t and the role that led to it—note that these uniquely
determine the successors, and that this is not the case with-
out symmetry freeness. We thus have (at least) exponen-
tially many states. To obtain an EXPTIME upper bound, we
therefore use non-deterministic tree automata (NTA) rather
than alternating ones. To avoid having a state for every set
of types, we must further make sure that every element in
U is simulated by a different element in the input tree. To
have enough room when moving down in the input tree, we
slightly refine our characterization.

A simulation S from I1 to I2 is injective if for all e ∈
∆I2 , there is at most one d ∈ ∆I1 with (d, e) ∈ S. We write
(I1, d1) �in

ELI,Σ (I2, d2) if there is an injective ELI(Σ)-
simulation from I1 to I2 that contains (d1, d2). Let I×` de-
note the interpretation that is obtained from a tree-shaped
interpretation I by duplicating every successor in the tree so
that it occurs ` times.

Lemma 5 Let N be the outdegree of Πn
i=1UK. Then the

ELIsf(Σ)-MSC of a1, . . . , an w.r.t.K exists iff, for some sub-
concept D of (Πn

i=1(UK, ai))↓ELI
sf

Σ , we have:

(Πn
i=1(UK, ai))↓ELI

sf

�in
ELI,Σ (U×NT ,D, ρD).

Now, A accepts the tree-shaped interpretations that admit
injective ELI(Σ) simulations from (Πn

i=1(UK, ai))↓ELI
sf

using exponentially many states. Further, B accepts inter-
pretations of the form U×NT ,D for some D as in the lemma.

We first construct an automaton that works over pairs of
tree-shaped interpretations and verifies that the first compo-
nent represents a suitable D and the second component rep-
resents UT ,D. We then project to the latter and modify the
automaton so as to accept all I×N with I accepted before.

7 Single Example MSC
We consider the MSC of a single example, which is the case
traditionally studied in the literature. A PTIME upper bound
for EL was given in (Zarrieß and Turhan 2013). We show
that adding a signature does not affect this result, and that it
also holds for verification.
Theorem 14 In EL, single example MSC existence and ver-
ification are in PTIME.

Proof. (sketch) This is a consequence of the proof of Theo-
rem 13. Applying the constructions from that proof to an EL
TBox instead of an ELI TBox has two effects: first, all in-
volved automata can be constructed in polynomial time and
are of polynomial size; and second Theorem 12 implies that
if the ELIsf -MSC exists, it is actually an EL concept. o

We next show that the ELI case is dramatically different. In
particular, the complexity is much higher and admitting non-
full signatures causes an exponential jump in complexity.
Theorem 15 In ELI, single example MSC existence and
verification are 2-EXPTIME-complete in general and
EXPTIME-complete when the signature is full.

Proof. (sketch) In the full signature case, the lower bound
is by reduction from the subsumption of concept names
w.r.t. ELI TBoxes. For unrestricted signatures, we reduce
the complement of single example ELI concept separability,
shown 2-EXPTIME-hard in (Gutiérrez-Basulto, Jung, and
Sabellek 2018), similar to the proof of Theorem 8.

The upper bounds are shown using an automata based ap-
proach that is in spirit similar to the approach taken in Sec-
tion 6. The main difference is that the automaton A has to be
two-way since it checks for ELI simulations from UK, a. In
case of restricted signature, it has to store types in its states,
while for the full signature ABox individuals suffice. o

8 Discussion
We have analyzed the complexity of LCS and MSC verifica-
tion and existence in the DLs EL and ELI, obtaining various
complexity results and establishing a close link to concept
separability. Topics for future research include tight bounds
on the size of the LCS and MSC and studying cases in which
the TBoxes is formulated in an expressive DL such as ALC
while the LCS and MSC are formulated in EL or ELI (to
avoid overfitting). It would also be interesting to study DLs
that admit role constraints such as transitive roles and ex-
pressive forms of role inclusion. Finally, it would be of in-
terest to study the data complexity, under which the TBox is
not regarded as part of the input.

Acknowledgments. Carsten Lutz was supported by the
DFG CRC EASE. Frank Wolter was partially supported by
EPSRC grant EP/S032207/1.

References
Baader, F., and Küsters, R. 1998. Computing the least com-
mon subsumer and the most specific concept in the presence
of cyclic aln-concept descriptions. In Proc. of KI, 129–140.
Springer.
Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the EL
envelope further. In Proc. of OWLED workshop.
Baader, F.; Küsters, R.; and Molitor, R. 1999. Computing
least common subsumers in description logics with existen-
tial restrictions. In Proc. of IJCAI, 96–103.
Baader, F.; Sertkaya, B.; and Turhan, A. 2007. Computing
the least common subsumer w.r.t. a background terminology.
J. Applied Logic 5(3):392–420.
Baader, F. 2003. Least common subsumers and most spe-
cific concepts in a description logic with existential restric-
tions and terminological cycles. In Proc. of IJCAI, 319–324.
Badea, L., and Nienhuys-Cheng, S. 2000. A refinement
operator for description logics. In Proc. of ILP, 40–59.
Barceló, P., and Romero, M. 2017. The complexity of re-
verse engineering problems for conjunctive queries. In Proc.
of ICDT, 7:1–7:17.
Borgida, A.; Toman, D.; and Weddell, G. E. 2016. On refer-
ring expressions in query answering over first order knowl-
edge bases. In Proc. of KR, 319–328.
Bühmann, L.; Lehmann, J.; Westphal, P.; and Bin, S. 2018.
DL-learner - structured machine learning on semantic web
data. In Proc. of WWW, 467–471.
Cohen, W. W.; Borgida, A.; and Hirsh, H. 1992. Computing
least common subsumers in description logics. In Proc. of
AAAI, 754–760.
Colucci, S.; Donini, F. M.; Giannini, S.; and Sciascio, E. D.
2016. Defining and computing least common subsumers in
RDF. J. Web Semant. 39:62–80.
Donini, F. M.; Colucci, S.; Noia, T. D.; and Sciascio, E. D.
2009. A tableaux-based method for computing least com-
mon subsumers for expressive description logics. In Proc.
of IJCAI, 739–745.
Eppe, M.; Maclean, E.; Confalonieri, R.; Kutz, O.; Schor-
lemmer, M.; Plaza, E.; and Kühnberger, K. 2018. A com-
putational framework for conceptual blending. Artif. Intell.
256:105–129.
Fauconnier, G., and Turner, M. 2008. The way we think:
Conceptual blending and the mind’s hidden complexities.
Basic Books.
Funk, M.; Jung, J. C.; Lutz, C.; Pulcini, H.; and Wolter, F.
2019. Learning description logic concepts: When can posi-
tive and negative examples be separated. In Proc. of IJCAI.
Gutiérrez-Basulto, V.; Jung, J. C.; and Sabellek, L. 2018.
Reverse engineering queries in ontology-enriched systems:
The case of expressive Horn description logic ontologies. In
Proc. of IJCAI-ECAI.
Harel, D.; Kupferman, O.; and Vardi, M. Y. 2002. On the
complexity of verifying concurrent transition systems. Inf.
Comput. 173(2):143–161.

Jung, J.; Lutz, C.; Martel, M.; and Schneider, T. 2017. Query
conservative extensions in Horn description logics with in-
verse roles. In Proc. of IJCAI-17.
Küsters, R., and Borgida, A. 2001. What’s in an attribute?
consequences for the least common subsumer. J. Artif. Intell.
Res. 14:167–203.
Küsters, R., and Molitor, R. 2001. Approximating most
specific concepts in description logics with existential re-
strictions. In Proc. of KI, 33–47.
Lehmann, J., and Haase, C. 2009. Ideal downward refine-
ment in the EL description logic. In Proc. of ILP, 73–87.
Lehmann, J., and Hitzler, P. 2010. Concept learning in de-
scription logics using refinement operators. Machine Learn-
ing 78:203–250.
Lisi, F. A. 2012. A formal characterization of concept learn-
ing in description logics. In Proc. of DL.
Muggleton, S. 1991. Inductive logic programming. New
Generation Comput. 8(4):295–318.
Nebel, B. 1990. Reasoning and Revision in Hybrid Repre-
sentation Systems. Springer.
Plotkin, G. 1970. A note on inductive generalizations. Ed-
inburgh University Press.
Sarker, M. K., and Hitzler, P. 2019. Efficient concept induc-
tion for description logics. In Proc. of AAAI, 3036–3043.
ten Cate, B., and Dalmau, V. 2015. The product homomor-
phism problem and applications. In Proc. of ICDT, 161–176.
Vardi, M. Y. 1998. Reasoning about the past with two-way
automata. In Proc. of ICALP’98, 628–641.
Zarrieß, B., and Turhan, A. 2013. Most specific general-
izations w.r.t. general EL-TBoxes. In Proc. of IJCAI, 1191–
1197.

Notes for Section 3
For the convenience of the reader we formulate the model-
theoretic characterizations also for the verification and exis-
tence of the LCS. We start with LCS verification. The fol-
lowing characterization follows from Theorems 1 and 3.

Theorem 16 (LCS Verification) LetL ∈ {EL, ELI}, T be
an L TBox, C1, . . . , Cn L concepts, and Σ a signature. An
L(Σ) concept C is the L(Σ)-LCS of C1, . . . , Cn w.r.t. T iff
the following conditions hold:

1. (ρC1 , . . . , ρCn) ∈ C
∏n

i=1 UT ,Ci ;
2.
∏n
i=1(UT ,Ci

, ρCi
) �L,Σ UT ,C , ρC .

For LCS existence, the following characterization follows
from Theorems 1 and 4.
Theorem 17 (LCS Existence) Let L ∈ {EL, ELI}, T be
an L TBox, C1, . . . , Cn L concepts, and Σ a signature. The
following are equivalent, for Dk = (Πn

i=1UT ,Ci
, ρCi

)↓L,k|Σ :

1. the L(Σ)-LCS of C1, . . . , Cn w.r.t. T exists;
2. Dk is the L(Σ)-LCS of C1, . . . , Cn w.r.t. T , for some
k ≥ 0;

3. Πn
i=1(UT ,Ci

, ρCi
) �L,Σ (UT ,Dk

, ρDk
), for some k ≥ 0.

Proofs for Section 4
Theorem 6 In EL, MSC existence w.r.t. the empty TBox is
PSPACE-complete. The lower bound applies even when the
signature is full.

Proof. We reduce the word problem for polynomially
space bounded Turing machines (TMs), that is, given such a
TM M with polynomial space bound p(n), we construct an
ABox A with individuals a1, . . . , an, such that the ELMSC
of a1, . . . , an w.r.t. A exists iff M accepts an input w. It is
well-known that there is a deterministic polynomially space
bounded TM whose halting problem is PSPACE-hard.

For our purposes, a Turing machine M = (Q,Γ, q0, δ, F)
consists of a set of states Q, finite set of tape symbols Γ, an
initial state q0, a set of final states F , and a (partial) transition
function δ : Q × Γ → Q × Γ × {L,R}. There, L and R
correspond to the head moving to the left and to the right,
respectively. We assume that M halts once it reaches a state
q ∈ F , and always continues otherwise.

For the reduction, let M = (Q,Γ, q0, δ, F) be a p(n)-
space bounded deterministic TM, and w an input of length
n. We construct an ABox A without any concept assertions.
Let us first fix the following individuals:

ind(A) = {(q, a, i), (a, i) | q ∈ Q, a ∈ Γ, 1 ≤ i ≤ p(n)}.

Intuitively, an individual (q, a, i) represents that the content
of cell i is a, that the head of the TM is on cell i and that
the TM is in state q. Similarly, an individual (a, i) repre-
sents that the content of cell i is a (and that the head is not
at position i). In the following description the cases i = 1
and i = p(n) are not treated in a special way, since we can
assume thatM does not move its head beyond cell 1 or p(n).

As role names, we use rq,a,i, for all (q, a, i) ∈ ind(A).
Informally, a role assertion rq,a,i(e, e′) is included inA if in
state q with the head at cell i and reading tape symbol a, M

will change the tape cell represented by e to e′. Note that e
and e′ may be identical, meaning that the TM transition does
not affect the tape cell.

Formally, we include the following role assertions for
every q ∈ Q, a ∈ Γ, and i ∈ {1, . . . , p(n)} such that
δ(q, a) = (q′, b,D) is defined:

1. Role assertions that affect the direct environment of the
head position i:

rq,a,i((q, a, i), (b, i)) if D = L

rq,a,i((a
′, i− 1), (q′, a′, i− 1)) if D = L

rq,a,i((a
′, i+ 1), (a′, i+ 1)) if D = L

rq,a,i((q, a, i), (b, i)) if D = R

rq,a,i((a
′, i− 1), (a′, i− 1)) if D = R

rq,a,i((a
′, i+ 1), (q′, a′, i+ 1)) if D = R

2. Role assertions that do not affect the direct environment
of the head position i:

rq,a,i((b, j), (b, j)) for all b ∈ Γ, j /∈ {i− 1, i, i+ 1}

This finishes the construction ofA. It remains to specify the
individuals a1, . . . , ap(n) for the input w = b1 · · · bn:

a1 = (q0, b1, 1)

ai = (bi, i) for all i ∈ {2, . . . , n}
ai = (�, i) for all i ∈ {n+ 1, . . . , p(n)},

where � denotes the blank symbol.
Claim. M accepts w iff the EL-MSC of a1, . . . , an w.r.t. A
exists.
Proof of the Claim. We provide some insight into the con-
struction of A. For this purpose, let us denote with Ap(n)

the p(n)-fold product of A. For a configuration α of M , let
xα denote the element of Ap(n) corresponding to this con-
figuration in the natural way. The construction of A ensures
the following:

(∗) if α′ is a successor configuration of α then xα has pre-
cisely one successor in Ap(n), namely xα′ .

Thus, paths inAp(n) starting in (a1, . . . , ap(n)) directly cor-
respond to computations of M on input w.

The claim now follows from (∗) and the fact that the MSC
exists iff all paths starting from (a1, . . . , ap(n)) in Ap(n) are
finite. This finishes the proof of the claim, and in fact of the
Theorem. o

Theorem 5 In EL, LCS and MSC verification w.r.t. the
empty TBox are CONP-complete. The lower bounds apply
even when the signature is full.

For the proof of Theorem 5 we require the following
lemma. For a tree-shaped interpretation J and e ∈ ∆J we
denote by Je the subinterpretation of J induced by the sub-
tree of J rooted at e.
Lemma 6 Let I and J be interpretations with J tree-
shaped. If (I, d) 6�EL,Σ (J , e), then there exists a set X
with d ∈ X ⊆ ∆I such that |X| ≤ |∆Je | + 1 and
(I|X , d) 6�EL,Σ (J , e).

Proof. The proof is by induction on the depth of Je. As-
sume first that Je has depth 0. If there exists a concept name
A ∈ Σ with d ∈ AI but e 6∈ AJ , then X = {d} is as re-
quired. Otherwise there exists a role name r ∈ Σ and d′ with
(d, d′) ∈ rI . Then X = {d, d′} is as required. Now suppose
that e has depth k+ 1 and the lemma has been proved for all
e′ with Je′ of depth ≤ k. Assume (I, d) 6�EL,Σ (J , e). If
there exists a concept nameA ∈ Σ with d ∈ AI but e 6∈ AJ ,
then X = {d} is as required. Otherwise there exists a role
name r ∈ Σ and d′ with (d, d′) ∈ rI such that for all e′ with
(e, e′) ∈ rJ , (I, d′) 6�EL,Σ (J , e′). Fix d′. By induction
hypothesis, we can take for every e′ with (e, e′) ∈ rJ a set
Xe′ with d′ ∈ Xe′ ⊆ ∆I such that |Xe′ | ≤ |∆Je′ | + 1 and
(I|Xe′

, d′) 6�EL,Σ (J , e′). Let X be the union of {d} and
the sets Xe′ , (e, e′) ∈ rJ . Then X is as required. o

We now give the proof of Theorem 5.

Proof. By Theorem 1, it suffices to give the CONP upper
bound for EL(Σ)-MSC verification with empty TBox. As-
sume an ABox A, a1, . . . , an ∈ ind(A), a signature Σ, and
an EL(Σ) concept C are given. It can be checked in PTIME
where A |= C(ai) for i = 1, . . . , n. Thus it suffices to show
that

n∏
i=1

(A, ai) 6�EL,Σ AC , ρC

is in NP, where we regard A,
∏n
i=1A, and AC as interpre-

tations in the obvious way. But this follows directly since
• by Lemma 6, if

∏n
i=1(A, ai) 6�EL,Σ AC , ρC , then there

exists a subset X of ∆
∏n

i=1A with |X| ≤ |ind(AC)| + 1
such that ((

∏n
i=1A)|X , (a1, . . . , an)) 6�EL,Σ AC , ρC ;

• the simulation relation can be checked in polynomial
time.

For the lower bound, we reduce SAT to LCS verifica-
tion. Let ϕ be a formula in CNF that consists of m clauses
with n variables x1, . . . , xn. We will construct concepts
C1, . . . , Cn and a concept D such that the following are
equivalent:

1. ϕ is unsatisfiable;
2. (

∏n
i=1ACi , ρCi) �EL (AD, ρD);

3. the LCS of C ′1, . . . , C
′
n is ∃s.D, where C ′i = ∃s.Ci u

∃s.D for i = 1, . . . , n.
For better readability, we define concepts C1, . . . , Cn in
terms of interpretations I1, . . . , In as follows:

• ∆I
′
i = {di, di0, di1};

• sI
′
i = {(di, di0), (di, di1)};

• XI
′
i

j = X
I′i
j = {di0, di1}, for all j 6= i;

• XI
′
i

i = {di1} and X
I′i
i = {di0}.

Intuitively, each Ii has a root di with two successors di0, di1
which “choose” a value for variable xi. Note that every suc-
cessor of the root of the product

∏n
i=1 Ii corresponds to a

variable assignment. We define D via the interpretation J
defined as follows:

• ∆J = {d, 1, . . . ,m};
• sJ = {(d, j) | j ∈ {1, . . . ,m}};
• j ∈ XJi iff xi does not occur positively in clause j, for

all j ∈ {1, . . . ,m} and i ∈ {1, . . . , n};

• j ∈ XJi iff xi does not occur negatively in clause j, for
all j ∈ {1, . . . ,m} and all i ∈ {1, . . . , n}.

Note that every element j in J corresponds to clause j in ϕ
and is labeled with all negated literals from the clause, that
is, a successor of the root in

∏n
i=1 Ii maps to j iff the cor-

responding assignment makes the clause false. The concepts
C1, . . . , Cn, D thus satisfy the equivalence “1 ⇔ 2” above.
For the equivalence “2 ⇔ 3”, we use Theorem 3 (note that
it applies to the LCS since the constructed ABoxes are es-
sentially EL concepts). For “2⇒ 3”, note that
• ∃s.D satisfies Condition 1 of Theorem 3, since it is a con-

junct in every C ′i;
• ∃s.D satisfies Condition 2 of Theorem 3: first note that

every s-successor in the product ΠiIC′i that involves D
is trivially simulated by D; second note that the the s-
successor corresponding to ΠiI is simulated by D by
Point 2 above.

Conversely, that is, from “3 ⇒ 2”, Point 2 above follows
from Condition 2 of Theorem 3. o

Theorem 7 In ELI, LCS and MSC existence and verifica-
tion w.r.t. the empty TBox are PSPACE-hard and in EXP-
TIME. The lower bounds apply when the signature is full.

The EXPTIME upper bound for MSC existence in ELI is
established in the following.
Lemma 7 In ELI, MSC existence w.r.t the empty TBox is
decidable in EXPTIME.
Proof. Assume K = (∅,A), a1, . . . , an ∈ ind(A), and
a signature Σ are given. We show that the ELI(Σ)-MSC
of a1, . . . , an w.r.t. K exists iff there is no infinite path
d0, r0, d1, r1, d2, . . . in I =

∏n
i=1 UK satisfying

(†) d0 = (a1, . . . , an) and for all i ≥ 0: sig(ri) ⊆ Σ and
1. if ri = r−i+1, then (I, di+2) 6�ELI,Σ (I, di);

2. there is no e 6= di+1 such that (di, e) ∈ rIi ,
(I, di+1) �ELI,Σ (I, e), and (I, e) 6�ELI,Σ (I, di+1).

To prove this characterization, recall that by Theorem 4 the
ELI(Σ)-MCS of a1, . . . , an with respect toK exists iff there
exists k ≥ 0 such that for Ck = Πn

i=1(UK, ai))↓ELI,k|Σ

(Sk) Πn
i=1(UK, ai) �ELI,Σ (U∅,Ck

, ρCk
).

Assume first that there is an infinite path satisfying (†).
Then clearly the path cannot be ELI(Σ)-simulated by
(U∅,Ck

, ρCk
) for any k because in any U∅,Ck

the length of
such paths starting at ρCk

does not exceed k. Conversely,
assume there are no infinite paths satisfying (†). Then let k
be the length of the longest path satisfying (†). It is readily
shown that (Sk) holds, as required. As the universal model
UK can be constructed in exponential time and the exis-
tence of infinite paths in

∏n
i=1 UK satisfying (†) can also be

checked in exponential time, the existence of the ELI(Σ)-
MSC can be decided in EXPTIME. o

For the lower bound, we first prove lower bounds for the
ELI-product simulation problem for the case of tree-shaped
interpretations.

Theorem 18 The ELI-product simulation problem on tree-
shaped interpretations is PSPACE-hard.

We reduce from a tiling problem where the input is a tiling
system (T,H, V), an initial tiling θ = t1, . . . , tn with tiles
from T , and a final tile tF ∈ T . The goal is to tile a finite
rectangle of size n ×m, m ≥ 1 arbitrary, such that the first
row is tiled with θ and tF occurs in the tiling. Formally, a
solution to a tiling instance (T,H, V, θ, tF), θ of length n,
is a mapping τ : {1, . . . ,m} × {1, . . . , n} → T , for some
m ≥ 2, such that the following conditions are satisfied:

1. (τ(i, j), τ(i, j + 1)) ∈ H for 1 ≤ i ≤ m and 1 ≤ j < n;

2. (τ(i, j), τ(i+ 1, j)) ∈ V for 1 ≤ i < m and 1 ≤ j ≤ n;

3. (τ(1, 1), . . . , τ(1, n)) = θ;

4. tF is in the range of τ .

Let a tiling instance (T,H, V, θ, tF) be given. We construct
tree interpretations I1, . . . , I3n,M such that for suitably
chosen d0 and e0, (

∏3n
i=1 Ii, d0) �ELI (M, e0) iff there is

no solution.

We use the following signature:

1. a single role name r;

2. concept names T it,j , t ∈ T , i ∈ {1, . . . , n}, j ∈ {1, 2} to
express that position i is tiled with t;

3. concept names M1, . . . ,M5 representing different
‘phases’ we go through when following a path through
the product;

4. concept names Mij with 1 ≤ i, j ≤ 5 and j ∈ {i− 1, i+
1}, representing transitions between these phases.

Let TH be the set of triples (t1, t2, t3) with (t1, t2) ∈ H
and (t2, t3) ∈ H . For every τ = (t1, t2, t3) ∈ TH , i ∈
{1, . . . , n}, and ` ∈ {1, 2}, let Siτ,` be the set of concept
names that contains T i−1

t1,`
, T it2,`, T

i+1
t3,`

, and T jt,` for every j ∈
{1, . . . , i−2, i+2, . . . , n} and t ∈ T . We admit superscripts
−1 and n+ 1 for uniformity purposes.

The interpretations Ii, 1 ≤ i ≤ n are defined as follows:

• Ii is a tree of depth two that branches only at the root di0;

• for all τ ∈ TH , di0 has an r−-successor eiτ which has an
r-successor diτ ;

• di0 has further r−-successors di34, di43, di45,di54;

• di0 is labeled with M3,M4,M5 and with T it,` for every
i ∈ {1, . . . , n}, t ∈ T , and ` ∈ {1, 2};

• each diτ is labeled with M1,M2, with every concept
name from Siτ,1 and with every concept name T it,2, i ∈
{1, . . . , n} and t ∈ T ;

• each eiτ is labeled with M12, M21, M23, and M32;

• each dijk is labeled with Mjk.

The interpretations Ii, n + 1 ≤ i ≤ 2n are defined as fol-
lows:

• Ii is a tree of depth two that branches only at the root di0;

• for all τ1, τ2 ∈ TH , di0 has an r−-successor eiτ1,τ2 which
has an r-successor diτ1,τ2 ;

• di0 is labeled with M1,M5 and with T it,` for every i ∈
{1, . . . , n}, t ∈ T , and ` ∈ {1, 2};

• each diτ1,τ2 is labeled with M2,M3,M4, with every con-
cept name from Siτ1,1 and from Siτ2,2;

• each eiτ1,τ2 is labeled with all concept names Mjk.

The interpretations Ii, 2n + 1 ≤ i ≤ 3n are defined as
follows:

• Ii is a tree of depth two that branches only at the root di0;

• for all τ ∈ TH , di0 has an r−-successor eiτ which has an
r-successor diτ ;

• di0 has further r−-successors di12, di21, di23, di32;

• di0 is labeled with M1,M2,M3 and with T it,` for every
i ∈ {1, . . . , n}, t ∈ T , and ` ∈ {1, 2};

• each diτ is labeled with M4,M5, with every concept
name from Siτ,2 and with every concept name T it,1, i ∈
{1, . . . , n} and t ∈ T .

• each eiτ is labeled with M34, M43, M45, and M54;

• each dijk is labeled with Mjk.

We are mainly interested in paths through
∏3n
i=1 Ii that are

marked with the following pattern:

M1, r
−,M12, r,

M2, r
−,M23, r,

M3, r
−,M34, r,

M4, r
−,M45, r,

M5, r
−,M54, r, . . . (∗)

M4, r
−,M43, r,

M3, r
−,M32, r,

M2, r
−,M21, r,

M1, r
−,M12, r,M2,

We give an informal description of how the mentioned paths
are related to rectangle tilings. Note first that, if an ele-
ment of

∏3n
i=1 Ii satisfies some Mi, then this has implica-

tions regarding its components. For instance, if an element
(d1, . . . , d3n) satisfies M3, then d1, . . . , dn are all roots of
their respective interpretations and so are d2n+1, . . . , d3n,
while dn+1, . . . , d2n are leaves. We sketch how to obtain a
path through

∏3n
i=1 Ii that follows pattern (∗) and represents

any rectangle tiling. Let θ1, θ2, . . . be an enumeration of the
rows of some the tiling.

• In
∏n
i=1 Ii, start at those diτ that represent θ1 by concept

names T it,1. In
∏3n
i=n+1 Ii, we start at dn+1

0 , . . . , d3n
0 . This

point in the product is labeled M1.

• Then proceed via an element labeled M12 to an element
labeledM2 that represents θ2 in the T it,2 and θ1 in the T it,1.
The choice is in components

∏2n
i=n+1 Ii and we remain

stationary in
∏n
i=1 Ii and in

∏3n
i=2n+11 Ii.

• Next proceed to the roots in
∏n
i=1 Ii, remaining station-

ary in
∏3n
i=n+1 Ii (label M3, via M23). We still represent

θ1 and θ2 as before. As explained later, this transition
serves to verify the vertical matching condition.

• Next proceed to leaves in
∏3n
i=2n+1 Ii, remaining sta-

tionary in
∏2n
i=1 Ii (label M4, via M34). Once more, θ1

and θ2 are represented as before. This transition serves
no purpose as we move ‘upwards’ (towards higher in-
dexes) in theM1, . . . ,M5 sequence. When moving down-
wards, this transition checks the vertical matching condi-
tion while the transition in the previous item serves no
purpose.

• Then proceed to the roots in
∏2n
i=n+1 Ii, remaining sta-

tionary in all other components (label M5, via M45); this
preserves the representation of θ2 via T it,2, but ‘forgets’
the representation of θ1 via T it,1.

• Now do everything backwards, fromM5 towardsM1; first
proceed via an element labeledM54 to an element labeled
M4 that represents θ3 in the T it,1 and θ2 in the T it,2. The
choice is in components

∏2n
i=n+1 Ii and we remain sta-

tionary in all other components; then move to lavel M3

via M43, and so on.
• After reaching M1, proceed again in the forward direc-

tion, representing θ4, and so forth.
Of course, there are paths through the product that do not
follow this ideal pattern, for different reasons. For instance,
the desired sequence of the Mi is not followed, some el-
ement does not correspond to a valid row in the tiling, or
the vertical matching condition is not met. These undesired
paths are captured by ‘traps’ in the interpretationM that we
construct next.

We assemble M by starting with a path of length nine,
connected by alternating between r− and r:

e1 r
− e12 r e2 r

− e23 r e3 r
− e34 r e4 r

− e45 r e5

such that each ei is labeled with Mi and with all concept
names T it,`, 1 ≤ i ≤ n, ` ∈ {1, 2}, and t ∈ T \ {tF }; the
missing tF means that any ‘proper’ path reaching tF will
result in non-simulation. Also, each eij is labeled with Mij

and Mji.
We now add traps to make sure that undesired paths are

simulated byM. We start with the case that the desired se-
quence of the Mi is not followed:

1. To every eij , we attach an r-successor that is labeled with
Mk for every k /∈ {i, j} and with all concept names T i

′

t,`,
and that has an r−-successor which has an r-successor
that makes true all concept names (including all T itF ,`),
acting as a well of positivity.

2. To every ei, we attach an r−-successor that is labeled with
Mjk whenever jk /∈ {ii − 1, ii + 1}, and that has an r-
successor which is a well of positivity.

Next, we add traps that address defects which concern a sin-
gle row of the tiling:

3. To each eij , we attach an r-successor for each k ∈
{1, . . . , n} and ` ∈ {1, 2}. No concept name T kt,` is true
there, but all concept names T jt,m with (j,m) 6= (k, `) and
t ∈ T , and of course there is a well below it. This has two
effects:

(a) it enforces synchronization of the tiling of each i-
th column accross the

∏n
i=1 Ii resp.

∏2n
i=n+1 Ii resp.∏3n

i=2n+1 Ii; so the horizontal tiling condition is satis-
fied;

(b) inM2 andM4-configurations, it enforces that the tiling
of the row that is represented twice, once in

∏n
i=1 Ii

and once in
∏2n
i=n+1 Ii, resp. once in

∏2n
i=n+1 Ii and

once in
∏3n
i=2n+1 Ii, is identical.

It remains to deal with paths that violate the vertical match-
ing condition:

4. at e23, we attach a trap for each (t1, t2) /∈ V and each
i ∈ {1, . . . , n}, labeled with M2, with T it1,1 and T it2,2,
and with T jt,` for all j 6= i, ` ∈ {1, 2}, and t ∈ T ;

5. at e34, we attach a trap for each (t2, t1) /∈ V and each
i ∈ {1, . . . , n}, labeled with M4, with T it2,2 and T it1,1,
and with T jt,` for all j 6= i, ` ∈ {1, 2}, and t ∈ T .

The initial tiling θ = t1, . . . , tn gives rise to a sequence of
triples τ1, . . . , τn in the obvious way. We are going to use

d0 = (d1
τ1 , . . . , d

n
τn , d

n+1
0 , . . . , d3n

0).

as the starting point for the simulation.

Lemma 8 (
∏3n
i=1 Ii, d0) �ELI (M, e1) iff there is no solu-

tion for (T,H, V, θ1, tF).

Proof. “if”. Assume that there is no solution for
(T,H, V, θ, tF). We prove the existence of a simulation from
(
∏3n
i=1 Ii, d0) to (M, e1).

Let us first introduce some notation. We call a tuple
t1, . . . , tn ∈ T possible if there is a mapping τ with
τ(i, 1) = t1, . . . , τ(i, n) = tn, for some i and which sat-
isfies Condition 1–3 of a solution (but does not necessarily
mention tF). As there is no solution for (T,H, V, θ, tF), no
tuple that is possible mentions tF .

Now, we say that d is k-proper if d satisfies Mk and

• if k = 1, then the T it,1 represent a possible row at d;

• if k = 2, then the T it,1 represent a possible row, and the
T it,2 represent some row satisfying the horizontal tiling
condition;

• if k = 3, then the T it,` represent possible rows, for ` ∈
{1, 2};

• if k = 4, then the T it,2 represent a possible row, and the
T it,1 represent some row satisfying the horizontal tiling
condition;

• if k = 5, then the T it,2 represent a possible row.

We claim that there is a simulation S from (
∏3n
i=1 Ii, d0) to

(M, e1) which relates all k-proper elements in
∏3n
i=1 Ii with

ek. The statement then follows, because the initial tuple d0

is 1-proper by construction.
We show the arguments only for k = 2 because the other

cases are similar. Thus, take any d that is 2-proper, and as-
sume (d, e2) ∈ S. We show how to continue the simulation
from (d, e2). To this end, let d′ be an r−-successor of d. We
distinguish several cases that can arise by the construction
of the Ii:
• if d′ does not satisfy one of M21 or M23, then d′ is simu-

lated by the trap of type 2 at e2.

• if d′ satisfiesM21, then we add (d′, e12) to the simulation.
Now, let d′′ be any r-successor of d′. Since d′ satisfies
M21, we have to be in di21 for all i ∈ {2n + 1, . . . , 3n}
and thus d′′ satisfies one of M1,M2,M3 or no Mi at all.
We again distinguish cases:

– if d′′ satisfies M3 or no Mi at all, then d′′ is simulated
by a trap of type 1 at e12;

– if d′′ satisfies M2, then, by construction of the Ii, d′′ is
actually d and it is simulated by e2;

– if d′′ satisfies M1, the construction of the Ii implies
that the rows represented by T it,1, at d′′ are the same as
these rows at represented by T it,1 at d. Since the latter
is possible by assumption, so is the former. Thus, d′′ is
1-proper and we know that (d′′, e1) ∈ S.

• if d′ satisfies M23, then we add (d′, e23) to the simulation
and continue as in the previous case. More precisely, let
d′′ be any r-successor of d′. Since d′ satisfies M23, we
have to be in di23 for all i ∈ {2n + 1, . . . , 3n} and thus
d′′ satisfies one of M1,M2,M3 or no Mi at all. We again
distinguish cases:

– if d′′ satisfies M1 or no Mi at all, then d′′ is simulated
by a trap of type 1 at e23;

– if d′′ satisfies M2, then, by construction of the Ii, d′′ is
actually d and it is simulated by e2;

– if d′′ satisfiesM3, the construction of the Ii implies that
the rows represented by T it,`, ` ∈ {1, 2} at d′′ are the
same as these rows at represented by T it,`, ` ∈ {1, 2} at
d. Let t1, . . . tn and t′1, . . . , t

′
n be the rows represented

by T it,1 and T it,2, respectively. If (tj , t
′
j) /∈ V , for some

j, then d′′ is simulated by a trap of type 4 at e23. Oth-
erwise, the row represented by the T it,2 at d′′ is a valid
successor of the row represented by the T it,1 at d. Over-
all, d′′ is 3-proper and we know that (d′′, e3) ∈ S.

“only if”. Assume that there is a solution τ for
(T,H, V, θ, tF), and let tF occur in the last row. Let
d0, r

−, d′0, r, d1, . . . , dn be the path which follows the pat-
tern (∗) that is contained in the product and which reflects
the solution τ . (We can obtain this path by letting τ guide the
selection of successors as described above). By construction,
the path satisfies the following properties, for all i ≥ 0:

• if di satisfies M1, then the T it,1 represent a row of τ ;

• if di satisfies M2, then the T it,` represent rows θ`, for ` ∈
{1, 2}, respectively, and

– if di−1 satisfies M1, θ2 is a successor row of θ1 in τ
and θ1 is represented by the T it,1 at di−1, and

– if di−1 satisfies M3, θ1 is a successor row of θ2 in τ
and θ2 is represented by the T it,2 at di−1;

• if di satisfiesM3, then the T it,1 and the T it,2 represent rows
of τ , and in fact the same rows as the T it,1 and T it,2 at di−1;

• if di satisfies M4, then the T it,` represent rows θ`, for ` ∈
{1, 2}, respectively, and:

– if di−1 satisfiesM3, then θ1 and θ2 are also represented
by the T it,1 and T it,2 at di−1;

– if di−1 satisfies M5, then θ1 is a successor row of θ2 in
τ , and θ2 is represented by the T it,2 at di−1;

• if di satisfies M5, then the T it,2 represent a row of τ , and
the T it,2 represent the same row at di−1;

• d′i satisfies Mjk such that di satisfies Mj and di+1 satis-
fies Mk or di+1 satisfies Mj and di satisfies Mk.

In order to show that there is no simulation, we show that:

(†) if di satisfies Mk it can only be simulated by ek.

Note that this is a contradiction since dn satisfies T itF ,` for
some i, `, but none of the ei does.

We argue inductively. The induction base is given by the
fact that d0 has to be simulated by e0 in the lemma. In the in-
duction step, we suppose that di satisfies someMk and show
that di+1 can only be simulated by ek−1 or ek+1, respec-
tively, depending on whether di+1 satisfies Mk−1 or Mk+1.

We show how to argue for k = 2, assuming that we are
in the downward phase of the construction of the path, that
is, di+1 will be labeled with M3. Based on the invariants
given above, it can be verified that di′ and di+1 cannot be
simulated by any trap, and thus have to be simulated by e23

and e3, respectively. o

To show PSPACE hardness of LCS and MSC verification
and existence we first observe that the tiling problem used
in the proof of Theorem 18 is still PSPACE hard if one only
considers tiling instances (T,H, V, θ, tF) such that the ini-
tial tiling θ only occurs in the first row for any mapping
τ : {1, . . . ,m} × {1, . . . , n} → T , m ≥ 2, such that the
first three conditions for a solution are satisfied:

1. (τ(i, j), τ(i, j + 1) ∈ H for 1 ≤ i ≤ m and 1 ≤ j < n;

2. (τ(i, j), τ(i+ 1, j) ∈ V for 1 ≤ i < m and 1 ≤ j ≤ n;

3. (τ(1, 1), . . . , τ(1, n)) = θ.

If this is the case then the pair (
∏3n
i=1 Ii, d0), (M, e1) con-

structed above has the following property which we require
in the reduction to LCS and MSC verification and existence.
Let I and J be interpretations and d ∈ ∆I . An ELI simula-
tion S from I to J is called d-injective if there exists exactly
one e ∈ ∆J with (d, e) ∈ S. We write (I, d) �d-inj

ELI (J , e) if
there exists a d-injective ELI simulation S from I to J that
contains (d, e). We say that a pair (I, d), (J , e) is oblivious

to d-injectivity if (I, d) �d-inj
ELI (J , e) iff (I, d) �ELI (J , e).

It is easy to show the following.

Lemma 9 The pair (
∏3n
i=1 Ii, d0), (M, e1) is oblivious to

d-injectivity if the input tiling instance (T,H, V, θ1, tF) is
such that the initial tiling θ1 can only occur in the first row
for any mapping τ satisfying the first three conditions of so-
lutions.

Now let C1, . . . , Cn and D be ELI concepts and assume
that n ≥ 2. Consider the concepts D1, D2 constructed in
Example 3 and let

D3 = A1 uA2 u ∃r.(A3 uA4),

where we assume that the signature of D1, D2 is disjoint
from the signature of C1, . . . , Cn. Set C ′i = Ci u D1 if i
is even, C ′i = C1 u D2 if i is odd, and let D′ = D u D3.
Let v be a fresh role name and Ei = ∃v.C ′i u ∃v.D′ for
i = 1, . . . , n. PSPACE-hardness of LCS and MSC verifica-
tion and existence now follow directly from the following
reduction.
Lemma 10 Assume that

∏n
i=1(UCi , ρCi), (UD, ρD) is

oblivious to (ρC1 , . . . , ρCn)-injectivity. Then the following
conditions are equivalent:

1.
∏n
i=1(UCi

, ρCi
) �ELI (UD, ρD);

2. ∃v.D′ is the ELI-LCS of E1, . . . , En;
3. The ELI-LCS of E1, . . . , En exists.
Proof. “1⇒ 2”. By Theorem 3, it suffices to show

1. (ρE1
, . . . , ρEn

) ∈ (∃v.D′)Πn
i=1UEi ;

2. Πn
i=1(UEi

, ρEi
) �ELI (U∃v.D′ , ρ∃v.D′).

Condition 1 follows directly from the construction. For
Condition 2, we construct for every v successor ~d =

(d1, . . . , dn) of (ρE1 , . . . , ρEn) a ~d-injective ELI simula-
tion S~d between Πn

i=1(Udi , di) and (UD′ , ρD′). Then we are
done: let V be the set of v-successors of (ρE1 , . . . , ρEn).
Then

S = {((ρE1
, . . . , ρEn

), ρ∃v.D′)} ∪
⋃
~d∈V

S~d

witnesses Πn
i=1(UEi , ρEi) �ELI (U∃v.D′ , ρ∃v.D′), as re-

quired. Assume ~d = (d1, . . . , dn) is given.
Case 1. (d1, . . . , dn) = (ρC′1 , . . . , ρC′n). To con-

struct a (ρC′1 , . . . , ρC′n)-injective ELI simulation let
S0 be a (ρC1

, . . . , ρCn
)-injective ELI simulation be-

tween Πn
i=1(UCi

, ρCi
) and (UD, ρD). It exists since∏n

i=1(UCi
, ρCi

), (UD, ρD) is oblivious to (ρC1
, . . . , ρCn

)-
injectivity. To define the simulating nodes for the remain-
ing elements of Πn

i=1UCiuD′i (where we set D′i = D1 if
i is even and D′i = D2 if i is odd) simply choose the
projection to a fixed component D′i composed with the
obvious ρD′i -injective ELI simulation between (UD′i , ρD′i)
and (UD3

, ρD3
). The resulting relation is a (ρC′1 , . . . , ρC′n)-

injective ELI simulation.
Case 2. there exists di with di = ρDuD3 . Then we

take the projection to the component UDuD3 and obtain a
(d1, . . . , dn)-injective ELI simulation.

“2⇒ 3” is trivial.

“3⇒ 1”. We use Theorem 4. There exists k ≥ 0 such that
for Gk = Πn

i=1(UEi
, ρEi

)↓ELI,k

Πn
i=1(UEi

, ρEi
) �ELI (UGk

, ρGk
).

Consider the v successor (ρC′1 , . . . , ρC′n) of (ρE1 , . . . , ρEn)
in Πn

i=1UEi
. There exists a v-successor (d1, . . . , dn) of ρGk

in UGk
such that

n∏
i=1

(UC′i , ρC′i) �ELI (UGk
, (d1, . . . , dn))

Note that (d1, . . . , dn) 6= (ρC′1 , . . . , ρC′n) because n ≥ 2
and the chain constructed in Example 3 shows that there
is no ELI simulation between

∏n
i=1(UD′i , ρD′i) and any

(UGk
, (ρC′1 , . . . , ρC′n)), where D′i = D1 if i is even and

D′i = D2 if i is odd. It follows that there exists i ≤ n such
that di = ρDuD3

. Then

(UGk
, (d1, . . . , dn)) �ELI (UDuD3 , ρDuD3)

as the projections onto components are ELI simulations. By
taking the composition of ELI simulations we obtain

n∏
i=1

(UC′i , ρC′i) �ELI (UDuD3
, ρDuD3

)

Condition 1 follows by construction. o

Proofs for Section 5
Theorem 8 For L ∈ {EL, ELI}, the complement of L con-
cept separability can be reduced in polynomial time to L-
MSC verification and existence. This also holds for the full
signature.

Proof. Let L ∈ {EL, ELI}. Similarly to the proof of
Theorem 2, one can show that it suffices to provide a re-
duction of the following problem: given an L TBox T , an
ABox A with assertions A1(a1), . . . , An(an), B(b), where
A1, . . . , An, B are concept names, and a signature Σ con-
taining B, is it the case that

n∏
i=1

(UK, ai) �L,Σ (UK, b),

where K = (T ,A)? We start with the reduction for EL.
Assume an EL TBox T and an ABox A with assertions

A1(a1), . . . , An(an), B(b), where A1, . . . , An, B are con-
cept names, are given. We may assume that n ≥ 2 and all
ai, i = 1, . . . , n, and b are distinct. Define the relativisa-
tion C|E of a concept C to a concept name E inductively as
follows:

>|E = E

A|E = E uA
(C uD)|E = C|E uD|E

(∃r.C)|E = E u ∃r.C|E

The relativisation T|E of a TBox T to a concept name E is
defined by setting

T|E = {C|E v D|E | C v D ∈ T }

Construct a new TBox

T ′ = T|B1
∪ T|B2

∪ T|B3
∪ {Bi v ∃w.Bi | i = 1, 2, 3},

where w is a fresh role name and B1, B2, B3 are fresh con-
cept names. Take a fresh role name v and construct an ABox
A′ with individuals ρi, ai, bi, i = 1, . . . , n, and assertions

• v(ρi, ai), v(ρi, bi), i = 1, . . . , n;

• Ai(ai), B(bi), i = 1, . . . , n;

• B1(ai) if i is even;

• B2(ai) if i is odd;

• B3(bi) for i = 1, . . . , n.

Let C0 = ∃v.(B u B3), K′ = (T ′,A′), and Σ′ = Σ ∪
{B1, B2, B3, v, w}. We show that the following conditions
are equivalent:

(a)
∏n
i=1(UK, ai) �EL,Σ (UK, b);

(b) C0 is the EL(Σ′)-MSC of ρ1, . . . , ρn w.r.t. K′;
(c) The EL(Σ′)-MSC of ρ1, . . . , ρn w.r.t. K′ exists.

(a) ⇒ (b). Assume (a) holds. By Theorem 3, it suffices to
show

1. (ρ1, . . . , ρn) ∈ CΠn
i=1UK′

0 ;

2. Πn
i=1(UK′ , ρi) �EL,Σ′ (UT ′,C0

, ρC0
).

Condition 1 follows from ((ρ1, . . . , ρn), (b1, . . . , bn)) ∈
vΠn

i=1UK′ and

(b1, . . . , bn) ∈ (B uB3)
∏n

i=1 UK′

since C0 = ∃v.(B u B3). For Condition 2, it follows from
the construction of K′ that is suffices to show that

Πn
i=1(UK′ , di) �EL,Σ′ (UT ′,(BuB3), ρBuB3

)

for every v-successor (d1, . . . , dn) of (ρ1, . . . , ρn) in
Πn
i=1UK′ . If there exists i ≤ n with di = bi then this fol-

lows from the fact that projections are simulations and the
construction of K′. Otherwise di = ai for all i = 1, . . . , n.
Denote by

• U ′ai the tree-shaped subinterpretation rooted at ai in UK′ ;
• Uai the tree-shaped subinterpretation rooted at ai in UK;

• U ′BuB3
the tree-shaped subinterpretation rooted at ρBuB3

in UT ′,C0
;

• UB the tree-shaped subinterpretation rooted at b in UK.

Observe that U ′ai is obtained from Uai by adding infinite w-
chains starting from each node in Uai and making B1 true
in every node if i is even and B2 in every node if i is odd.
Similarly, U ′BuB3

is obtained from UB by adding infinite w-
chains starting from each node in UB and making B3 true in
every node. By definition, it suffices to show that

Πn
i=1(U ′ai , ai) �EL,Σ′ (U ′BuB3

, ρBuB3
).

But this follows directly from the fact that
n∏
i=1

(Uai , ai) �EL,Σ (UK, b)

and the assumption that n ≥ 2 which implies that noBi, i =
1, 2 is satisfied in Πn

i=1(U ′ai , ai).
(b)⇒ (c) is trivial.
(c)⇒ (a) We use Theorem 4. There exists k ≥ 0 such that

for Gk = Πn
i=1(UK′ , ρi)↓EL,k

Πn
i=1(UK′ , ρi) �EL,Σ′ (UT ′,Gk

, ρGk
).

Consider (a1, . . . , an) and the product
∏n
i=1 U ′ai of which it

is the root. There exists a v-successor (d1, . . . , dn) of ρGk
in

UT ′,Gk
such that
n∏
i=1

(U ′ai , ai) �EL,Σ′ (UT ′,Gk
, (d1, . . . , dn))

Note that (d1, . . . , dn) 6= (a1, . . . , an) because there is an
infinite w-chain starting at (a1, . . . , an) in

∏n
i=1 U ′ai but

there is no such w-chain starting at (a1, . . . , an) in UT ′,Gk

because no Bi, i = 1, 2, 3, is satisfied in any node of Gk in
the subtree generated by (a1, . . . , an) and w-chains are only
generated by the TBox T ′ from nodes satisfying at least one
Bi. It follows that there exists i ≤ n such that di = bi. Then

(UT ′,Gk
, (d1, . . . , dn)) �EL,Σ′ (UK′ , bi)

as the projections onto components are EL simulations. By
taking the composition of EL simulations we obtain

n∏
i=1

(U ′ai , ai) �EL,Σ′ (UK′ , bi)

(a) follows by construction of K′.

We now sketch the proof for ELI. The construction given
above for EL almost works except that in the proof of (a)
⇒ (b), for ELI simulations we have to consider the v-
predecessor (ρ1, . . . , ρn) of (d1, . . . , dn) when proving

Πn
i=1(UK′ , di) �ELI,Σ′ (UT ′,(BuB3), ρBuB3)

to show that Condition 2 for ELI-MSC verification in
Theorem 3 holds. In the EL case, the nodes EL sim-
ulating (d1, . . . , dn) might not have v-predecessors sim-
ulating (ρ1, . . . , ρn). To ensure the existence of appro-
priate v-predecessors we modify the construction as fol-
lows. Given an ELI TBox T and an ABox A with asser-
tions A1(a1), . . . , An(an), B(b), with A1, . . . , An, B con-
cept names, and a signature Σ, we construct T ′ and A′ as
before but add to T ′ the CIs B3 v ∃v−.B4 and

B4 v X u
l

s∈role(T ′)

∃s.B4,

where role(T ′) denotes the set of all role names and their
inverses used in T ′ and X =

d
A∈sub(T ′)A. Now Σ′ also

contains B4. Then one can prove that the following condi-
tions are equivalent:

(a)
∏n
i=1(UK, ai) �ELI,Σ (UK, b);

(b) C0 is the ELI(Σ′)-MSC of ρ1, . . . , ρn w.r.t. K′;
(c) The ELI(Σ′)-MSC of ρ1, . . . , ρn w.r.t. K′ exists.

The reduction follows directly. o

Theorem 11 For L ∈ {EL, ELI}, L-MSC verification can
be reduced in polynomial time to the complement of L con-
cept separability. This also holds for the full signature.

Proof. Let L ∈ {EL, ELI}. Let K = (T ,A) be an L
knowledge base, a1, . . . , an ∈ ind(A) individuals, Σ a sig-
nature, and C an L(Σ) concept. We construct a new ABox
A′ as follows:

• start with A extended with a disjoint copy of A where
every individual a ∈ ind(A) is replaced with a′;

• take a fresh role name s, and let Aij , with i, j ∈
{1, . . . , n}, be (disjoint) copies of AC with roots ρij .
Then add the ABoxes Bi, for every i ∈ {1, . . . , n}, AC
(with root ρC), and B′ (also with root ρC) defined as fol-
lows:

Bi =
⋃

j∈{1,...,n}

Aij ∪ {s(ai, ρi1)} ∪

{s(ρij , ρij+1) | j ∈ {1, . . . , n− 1}}
B′ = {s(ρC , a′1)} ∪ {s(a′i, a′i+1) | i ∈ {1, . . . , n− 1}}

Intuitively, B adds an s-chain of length n to every ai in
which every element satisfies C, and B′ adds an s-chain to
the copies of the individuals ai.

Let K′ = (T ,A′) and Σ′ = Σ∪ {s}. Moreover, let U de-
note the interpretation that is obtained by taking the union of∏n
i=1(UK, ai) and UT ,B1

(the index is not important), iden-
tifying the root a1 of UT ,B1

with the root (a1, . . . , an) of the
product. Let ρ denote the new root of U . Note that we have:

n∏
i=1

(UK′ , ai) �L,Σ′ (U , ρ) �L,Σ′
n∏
i=1

(UK′ , ai). (1)

The second simulation exists since U is a sub-structure of
the product. The first simulation exists because

n∏
i=1

(UK′ , ai) �L,Σ
n∏
i=1

(UK, ai)

and because for elements in the product reachable via some
s-successor of (a1, . . . , an), any projection is an L(Σ′)-
simulation to UT ,B1 .

Claim. C is the L(Σ)-MSC of a1, . . . , an w.r.t. K iff∏n
i=1(UK′ , ai) �L,Σ′ (UK′ , ρC).

Proof of the Claim. For the “if”-direction, suppose∏n
i=1(UK′ , ai) �L,Σ′ (UK′ , ρC). By Equation (1), it follows

that
(U , ρ) �L,Σ′ (UK′ , ρC).

Since s is fresh, we have that
∏n
i=1(UK, ai) �L,Σ′

(UT ,AC
, ρC) and (UT ,B1 , a1) �L,Σ′ (UT ,B′ , ρC). The for-

mer is just Condition 2 of Theorem 3 is satisfied. Moreover,
the latter implies that (UT ,Aij

, ρij) �L,Σ (UK, a′i), for all
i ∈ {1, . . . , n}. Thus, we also have K |= C(ai), for all i and
hence also Condition 1 of Theorem 3 holds.

For “only if”, suppose that C satisfies Conditions 1 and 2
of Theorem 3. The former implies thatK |= C(ai) for all i ∈
{1, . . . , n}, and thus (UT ,AC

, ρC) �L,Σ′ (UK, ai), for all i.

It can be verified that (UT ,B1
, a1) �L,Σ′ (UT ,B′ , ρC). More-

over, Condition 2 reads
∏n
i=1(UK, ai) �L,Σ (UT ,AC

, ρC).
Together, we have (U , ρ) �L,Σ′ (UK′ , ρC), and the claim
follows from Equation (1).

The Claim establishes correctness of the reduction, so it
remains to note that the construction of A’ can be imple-
mented in polynomial time. o

Proofs for Section 6

To show Theorem 12, we first observe the following eas-
ily proved relationship between ELI simulations between
(I1, d)↓ELI

sf

and (I2, e) and preservation of ELIsf concepts
from (I1, d) to (I2, e).

Lemma 11 Let I1, I2 have finite outdegree, and let Σ be a
signature. The following conditions are equivalent:

• (I1, d)↓ELI
sf �ELI,Σ (I2, e);

• for all ELIsf(Σ) concepts C: if d ∈ CI1 , then e ∈ CI2 .

We also state and prove the characterization for MSC ver-
ification in ELIsf .

Theorem 19 Let K = (T ,A) be an ELI KB, a1, . . . , an ∈
ind(A), and Σ a signature. An ELIsf(Σ) concept C is the
ELIsf(Σ)-MSC of a1, . . . , an with respect to K if, and only
if, the following conditions hold:

1. (a1, . . . , an) ∈ CΠn
i=1UK ;

2. (Πn
i=1(UK, ai))↓ELI

sf �ELI,Σ UT ,C , ρC .

Proof. The proof if similar to the proof of Theorem 3. By
Lemmas 3 and 4, Condition 1 is equivalent to Condition 1
of the definition of MSCs. For Condition 2 observe that by
Lemmas 3, 4, and 11, Condition 2 is equivalent to Condi-
tion 2 of the definition of MSCs. o

Theorem 12 (ELIsf -MSC Existence w.r.t. ELI TBoxes)
Let K = (T ,A) be an ELI KB, a1, . . . , an ∈ ind(A),
and Σ a signature. The following are equivalent, for Ck =

(Πn
i=1(UK, ai))↓ELI

sf ,k
|Σ :

1. the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K exists;

2. Ck is the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K, for a
k ≥ 0;

3. Πn
i=1(UK, ai)↓ELI

sf �ELI,Σ (UT ,Ck
, ρCk

) for a k ≥ 0.
The proof is similar to the proof of Theorem 4.
Proof. “2 ⇒ 1” is trivial. “3 ⇒ 2” is an immediate con-

sequence of Theorem 19. For “1 ⇒ 3”, let the L(Σ)-MSC
D be of depth k. It follows from Theorem 19 that

(a1, . . . , an) ∈ D
∏n

i=1 UT ,K

which implies

(a1, . . . , an) ∈ D(
∏n

i=1 UT ,K)↓ELI
sf

since D is an ELIsf concept. As D has depth k and has sig-
nature Σ,

ρCk
∈ DUT ,Ck .

Now, Point 3 follows from the definition of the MSC and
Lemmas 3, 4, and 11. o

Theorem 13 ELIsf -MSC and LCS existence and verifica-
tion with respect to ELI TBoxes are EXPTIME-complete.
The lower bounds hold in the full signature case and with
only one example.

We show hardness for LSC verification and existence at
the same time, by reducing from concept subsumption rel-
ative to general ELI TBoxes (Baader, Brandt, and Lutz
2008). Hardness for MSC verification and existence then
follows from Theorem 1. Let T , A,B be an input to the
subsumption problem. We define a TBox T ′ by taking fresh
role names r, s and fresh concept namesE,F and setting for
C := ∃r.∃r−.A, D0 := ∃r.∃r−.B, and D1 := ∃r.∃r−.E:

T ′ = T ∪ {C v ∃s.D1, D1 v ∃s.D1,

D0 v F, F v ∃s.(∃r.> u F)}.
Based on Theorems 1, 19, and 12, one can verify that the
following conditions are equivalent:

(a) T |= A v B;

(b) ∃r.> u F is the ELIsf -LCS of C w.r.t T ′;
(c) the ELIsf -LCS of C w.r.t. T ′ exists.

This establishes the claimed lower bounds.

Establishing the upper bounds requires more work. We
start with Lemma 5.
Lemma 5 Let N be the outdegree of Πn

i=1UK. Then the
ELIsf(Σ)-MSC of a1, . . . , an w.r.t.K exists iff, for some sub-
concept D of (Πn

i=1(UK, ai))↓ELI
sf

Σ , we have:

(Πn
i=1(UK, ai))↓ELI

sf

�in
ELI,Σ (U×NT ,D, ρD).

Proof. In the “if”-direction, assume that

(Πn
i=1(UK, ai))↓ELI

sf

�in
ELI,Σ U×NT ,D, ρD,

for some subconcept D of (Πn
i=1(UK, ai))↓ELI

sf

Σ , and let S
be a witnessing injective simulation. Let h be the homomor-
phism from U×NT ,D to UT ,D which maps every element to its
“original”. It should be clear the relation S′ defined by

S′ = {(d, h(e)) | (d, e) ∈ S}

is an ELI(Σ)-simulation between (Πn
i=1(UK, ai))↓ELI

sf

and
UT ,D, ρD. SinceD is a subconcept of (Πn

i=1(UK, ai))↓ELI
sf

Σ ,
it is also a sub-concept of Ck where k is the role depth of D,
and thus

(Πn
i=1(UK, ai))↓ELI

sf

�ELI,Σ UT ,Ck
, ρCk

.

By Theorem 12, the MSC exists.
Conversely, suppose the ELIsf(Σ)-MSC exists, and thus,

there is a k ≥ 0 with

(Πn
i=1(UK, ai))↓ELI

sf

�ELI,Σ UT ,Ck
, ρCk

.

Take D = Ck and let S be the witnessing simulation. It is
crucial to observe that, by the definition of ELIsf unfolding
we have the following property:

(∗) for all (d, e), (d′, e′) ∈ S: if d′ is a successor of d in the
tree Πn

i=1(UK, ai))↓ELI
sf

then e′ is an successor of e in
the tree UT ,D, ρD.

Intuitively, the simulation always goes “downwards” in the
right tree. Based on this insight, we construct an injective
simulation S′ to U×NT ,D, ρD inductively. During the construc-
tion, we maintain the invariant that (d, e) ∈ S′ implies
(d, h(e)) ∈ S, where h is the homomorphism from U×NT ,D
to UT ,D which maps every element to its “original”.

• Start with S′ = {(a1, . . . , an), ρD};
• For the inductive step, do the following for every (d, e) ∈
S′: let d1, . . . , dn be the all Σ-successors of d in
Πn
i=1(UK, ai))↓ELI

sf

, that is, n ≤ N . Since (d, h(e)) ∈ S,
there are corresponding Σ-successors e1, . . . , en in UT ,D
such that (d, ei) ∈ S for all i. Let e′1, . . . , e

′
n be pair-

wise distinct copies of these nodes in U×NT ,D, and add
(di, ei) ∈ S′, for all i.

It can be verified that the invariant is preserved and that S′
is an injective simulation because of (∗). o

We give now the automata-based approach to deciding the
criterion in Lemma 5. We start with providing the necessary
preliminaries. An n-ary tree is the set T = {1, . . . , n}∗. For
a node ui ∈ T , we identify ui·−1 with u. For an alphabet Θ,
a Θ-labeled tree is a pair (T, L) with T a tree and L : T →
Θ a node labeling function. We also recall the notion of non-
deterministic parity tree automata (NTA). An NTA over N -
ary trees is a tuple A = (Q,Θ, q0,∆,Ω) where Q is a set
of states, Θ is the input alphabet, q0 ∈ Q is the initial state,
∆ ⊆ Q×Θ×QN is the transition relation, and Ω : Q→ N
is the priority function. The semantics of NTAs is defined as
usual via runs. A run of an NTA A = (Q,Θ, q0,∆,Ω) over
an N -ary input (T, L) is a Q-labeled tree (T, r) such that:

• r(ε) = q0, and

• for all w ∈ T , (r(w), L(w), r(w1), . . . , r(wN)) ∈ ∆.

Let γ = i0i1 · · · be an infinite path in (T, r) and denote,
for all j ≥ 0, with qj the state such that r(ij) = (x, qj).
The path γ is accepting if the largest number m such that
Ω(qj) = m for infinitely many j is even. A run (T, r) is

accepting, if all infinite paths in Tr are accepting. The lan-
guage accepted by A, denoted L(A), is the set of all trees
(T, L) for which there is an accepting run.

To encode interpretations we use the alphabet Θ = 2Θ0

where

Θ0 = sub(T) ∪ {r, r− | r occurs in T }.

A Θ-labeled tree (T, L) represents the interpretation IL =
(T, ·IL) given by

AIL = {u | A ∈ L(u)},
rIL = {(u, u · −1) | r−∈L(u)} ∪ {(u · −1, u) | r∈L(u)}

for every concept name A ∈ sub(T) and role name r that
occurs in T . Note that the interpretation IL is not neces-
sarily connected; however, we usually identify IL with its
sub-interpretation induced by all elements reachable from
the root. It should be clear that conversely, for every tree-
shaped interpretation I of outdegree ≤ n, there is an n-ary
labeled tree (T, L) such that I and IL are ismorphic.

We also use NTA over the alphabet Θ2 in which case an
input tree (T, L) is treated as two trees (T, L1), (T, L2) and
thus encodes two interpretations IL1 and IL2 . Finally, we
treat IL as a concept if it is finite and has no multiedges.

Lemma 12 Let N be the outdegree of Πn
i=1UK.

1. There is an NTA A such that, for all N2-ary Θ-labeled
trees (T, L), we have:

(T, L) ∈ L(A) iff (Πn
i=1(UK, ai))↓ELI

sf

�in
ELI,Σ IL, ε.

2. There is an NTA B0 over N2-ary Θ2-labeled trees such
that for every (T, L) ∈ L(B0), there is a subconcept D
of (Πn

i=1(UK, ai))↓ELI
sf

|Σ such that:

(a) IL1 is the concept D, and
(b) IL2

is isomorphic to UT ,D.
Conversely, for every subconcept D of
(Πn

i=1(UK, ai))↓ELI
sf

|Σ there is some (T, L) ∈ L(B0) such
that IL1

is D.

Moreover, A and B0 can be constructed in time exponential
in |K|.

In order to prove this lemma, we need a concrete defini-
tion of (Πn

i=1(UK, ai))↓ELI
sf

. Let tp(T) denote the set of all
types for T , and rol(T) be the set of roles that occur in T .
For each r ∈ rol(T), we define a relation →r on the set
U := Dn × ({ε} ∪ rol(T)) for

D = ind(A) ∪ tp(T)

by taking (x1, . . . , xn, x)→r (y1, . . . , yn, y) iff

• y = r and x 6= r−, and

• for every i ∈ {1, . . . , n}, one of the following is satisfied:

(i) xi, yi ∈ ind(A) and r(xi, yi) ∈ A
(ii) xi ∈ ind(A), yi ∈ tp(T), and ai T ,Ar yi;

(iii) xi, yi ∈ tp(T) and xi Tr yi;

Some element (x1, . . . , xn, x) ∈ U satisfies a concept
name A if for every i ∈ {1, . . . , n}, either xi ∈ tp(T)
and A ∈ xi, or xi ∈ ind(A) and UK |= A(xi). A
path is a sequence u0r0u1r1 · · · rn−1un such that u0 =
(a1, . . . , an, ε), ui−1 →ri−1

ui, for all i ∈ {1, . . . , n}. We
denote with PATHS the set of all paths, and with tail(p) the
last element in the sequence p. It can be verified that the
interpretation (U , (a1, . . . , an, ε)) with U defined below is
isomorphic to (Πn

i=1(UK, ai))↓ELI
sf

:

∆U = PATHS

AU = {p | tail(p) satisfies A}
rU = {(p, pru′) | pru′ ∈ PATHS} ∪

{(pr−u, p) | pr−t ∈ PATHS}.

Construction of A Informally, the automaton A simulates
the definition of U by keeping in its state only the tail of the
current path.

More formally, the set Q of states is the smallest set
that contains q> and (a1, . . . , an, ε) and is closed under
the relations →r defined above, that is, if u ∈ Q and
u →r u

′ for some r ∈ rol(T), then u′ ∈ Q. The initial
state is (a1, . . . , an, ε), and the transition relation contains
(q>, θ, q

N2

>), for all θ ∈ Θ, and

((x1, . . . , xn, x), θ, q1, . . . , qN2)

whenever:

• if (x1, . . . , xn, x) satisfies A then A ∈ θ, for all A ∈ Σ;

• if x 6= ε, then x ∈ θ;

• each (y1, . . . , yn, r) such that (x1, . . . , xn, x) →r

(y1, . . . , yn, r) for some r ∈ rol(T) occurs precisely once
in q1, . . . , qN2 ; all other qi are q>.

It is routine to verify that A is as required.

Construction of B0 The automaton B0 is the intersection
of three automata A0,A1,A2.

Automaton A0 verifies Condition (a) from the Lemma by
ensuring that IL,1 is a Σ-concept, that is, finite and without

multiedges, and in fact, a subconcept of Πn
i=1(UK, a)↓ELI

sf

|Σ .
Realizing this condition as an NTA is relatively straightfor-
ward; details are thus omitted.

The automata A1,A2 together verify Condition (b) from
the Lemma, assuming that IL1

is some concept C. The first,
A1, ensures that for all n ∈ ∆IL1 with L1(n) 6= ∅ and all
D ∈ sub(T), we have

D(a) ∈ L2(n) iff T , IL1
|= D(a). (2)

r ∈ L2(n) iff r ∈ L1(n) (3)

Thus, on the elements in IL1
, the interpretation IL2

is the
universal model of IL1

and T . Based on this, A2 just gen-
erates (in L2) the trees induced in the universal model be-
low the elements in ∆IL1 by simulating Tr , which is again
standard and omitted.

It is rather tedious to specify the automaton A1 ensur-
ing (2) directly as an NTA. Instead, we specify A1 as a two-
way alternating tree automata (TWAPA) relying on the fact
that every TWAPA can be transformed into an equivalent
NTA under an exponential blowup (Vardi 1998).

Two-way Alternating Tree Automata A two-way alter-
nating parity tree automaton over k-ary trees (TWAPA) is a
tuple A = (Q,Θ, q0, δ,Ω) whereQ is a finite set of states, Θ
is the input alphabet, q0 ∈ Q is the initial state, δ is a tran-
sition function, and Ω : Q→ N is a priority function (Vardi
1998). The transition function δ maps every state q and in-
put letter θ ∈ Θ to a positive Boolean formula δ(q, θ) over
the truth constants true and false and transition atoms of the
form (i, q) ∈ [k]×Q, where [k] = {−1, 0, 1, . . . , k}. The se-
mantics is given in terms of runs. More precisely, let (T, L)
be a Θ-labeled tree and A = (Q,Θ, q0, δ,Ω) a TWAPA. A
run of A over (T, L) is a (T × Q)-labeled tree (Tr, r) such
that:

1. r(ε) = (ε, q0), and

2. for all y ∈ Tr with r(y) = (x, q), there is a subset S ⊆
[k]×Q such that S |= δ(q, L(x)) and for every (i, q′) ∈ S,
there is some successor y′ of y in Tr with r(y) = (x·i, q′).

Let γ = i0i1 · · · be an infinite path in Tr and denote, for all
j ≥ 0, with qj the state such that r(ij) = (x, qj). The path
γ is accepting if the largest number m such that Ω(qj) = m
for infinitely many j is even. A run (Tr, r) is accepting, if all
infinite paths in Tr are accepting. A accepts a tree if A has
an accepting run over it.

Before we can give the TWAPA, we need some prelim-
inary notions, in particular a syntactic characterization of
whether T ,A |= C(a), which can be easily be implemented
in a TWAPA. Similar characterizations have been used be-
fore, e.g., in (Jung et al. 2017).

Derivation Trees Fix an ELI knowledge base K =
(T ,A), a0 ∈ ind(A), andC ∈ sub(T). A derivation tree for
an assertionC0(a0) inAw.r.t. T is a finite ind(A)×sub(T)-
labeled tree (T, V) such that:

• V (ε) = (a0, C0);

• if V (n) = (a,C) and neitherC(a) ∈ A nor T |= > v C,
one of the following holds:

(i) n has successors n1, . . . , nk, k ≥ 1 with V (ni) =
(a,Ci), for 1 ≤ i ≤ k and T |= C1 u . . . u Ck v C;

(ii) n has a single successors n′ with V (n′) = (b, C ′) such
that r(a, b) ∈ A and T |= ∃r.C ′ v C.

Lemma 13 T ,A |= C0(a0) iff there is a derivation tree for
C0(a0) in A w.r.t. T .

Proof. (⇐) is clear.
For (⇒), we construct a sequence of ABoxes A =
A0,A1, . . . , by obtaining Ai+1 from Ai by applying one
of the following two rules:

1. if C1(a), . . . , Ck(a) ∈ A and T |= C1 u . . . u Ck v C
for some C ∈ sub(T), then add C(a) to Ai;

2. if r(a, b), C ′(b) ∈ Ai and T |= ∃r.C ′ v C for some
C ∈ sub(T), then add C(a).

Note that the sequence is finite, and denote withA∗ the final
ABox.
Claim. There is a model I of A∗ and T such that a ∈ CI
implies C(a) ∈ A∗, for all a ∈ ind(A) and C ∈ sub(T).
Proof of the Claim. Start with an interpretation I0 defined
by:

∆I0 = ind(A)

AI0 = {a | A(a) ∈ A∗}
rI0 = {(a, b) | r(a, b) ∈ A}

Denote withA∗a the set of all C(a) inA∗. Now extend I0 as
follows: For every a ∈ ind(A) and every C v ∃r.C ′ ∈ T
such that T ,A∗a |= C(a), add the r-successor of a satisfying
C ′ in UT ,A∗a as an r-successor of a to I.

This finishes the construction of I, and it can be verified
that it indeed satisfies the requirements of the claim. This
finishes the proof of the claim.

Now suppose T ,A |= C0(a0). By the Claim, we have
C0(a0) ∈ A∗. Exploiting that the two rules to construct
A0,A1, . . . are in one-to-one correspondence with Condi-
tions (i) and (ii) from the definition of derivation trees, we
can inductively construct a derivation tree for C0(a0) in A
w.r.t. T . o

We are now in the position to construct the automaton A1.
It ensures that when a Θ2-labeled tree (T, L) is accepted,
then for all n ∈ ∆IL1 with L1(n) 6= ∅, Condition (3) is
satisfied, and for all concepts D ∈ sub(T):

(∗) D ∈ L2(n) iff there is a derivation tree for D(n) in IL1

(viewed as ABox);
By Lemma 13, this condition ensure that Equation (2) above
is satisfied. We take A1 = (Q,Θ, q0, δ,Ω) where

Q = {q0, q
′
0} ∪ {qD, qD | D ∈ sub(T)} ∪

{qr, qr, qr,D, qr,D | r ∈ rol(T), D ∈ sub(T)}

and Ω assigns zero to all states, except for states of the form
qD, to which it assigns one.

For Condition (∗), we use states qD for the “⇒” part, and
states qD for the “⇐” part. Intuitively, a state qD assigned
to some node n is an obligation to verify the existence of
a derivation tree for D(n). Conversely, qA is the obligation
that there is no such derivation tree. The automaton starts
with the following transitions for every θ = (θ1, θ2):

δ(q0, θ) =

true if θ1 = ∅
q′0 if θ1 6= ∅ and θ2 ∩ rol(T) = θ1 ∩ rol(T)

false otherwise

δ(q′0, θ) =

N2∧
i=1

(i, q) ∧
∧

D∈θ2∩sub(T)

qD ∧
∧

D∈sub(T)\θ2

qD

For states qD, we implement Conditions (i) and (ii) of
derivation trees as transitions. Finiteness of the derivation
tree is ensured by the priority assigned to these states. More

precisely, we set, for all θ ∈ Θ, δ(qD, θ) = false if θ1 = ∅,
δ(qD, θ) = true if D ∈ L0 or T |= > v D, and otherwise

δ(qD, θ) =
∨

T |=D1u···uDkvD

(
(0, qD1

) ∧ · · · ∧ (0, qDk
)
)
∨

∨
T |=∃r.D′vD

(
((−1, qD′) ∧ qr) ∨

N2∨
i=1

(i, qr,D′)
)

Finally, the transitions for qr and qr,D are as follows:

δ(qr, θ) =

{
true if r ∈ θ1

false otherwise

δ(qr,D, θ) = (0, qr) ∧ (0, qD)

The transitions for qD, qr, and qr,D are obtained by du-
alizing the ones for qD, qr, qr,D. More precisely, for every
such q, we define δ(q, θ) = δ(q, θ), where ϕ is obtained
from ϕ by exchanging ∧ with ∨, true with false, and replac-
ing every state pwith p. This finishes the construction of A1.
Based on the provided explanations it can be shown that it
verifies Condition (2) from above, that is, it computes locally
the universal model of C.

This finishes the proof of Lemma 12.

Now, let B′0 be the projection of the NTA B0 from
Lemma 12 to its second component L2. Then, obtain B0

from B′0 by modifying B′0 such that it accepts

{(T, L)×N | (T, L) ∈ B′0}.

Note that both modifications can be implemented in poly-
nomial time. Based on Lemmas 5 and 12, it is not hard to
verify that the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K exists
iff A and B have non-empty intersection. Since the involved
automata can be constructed in exponential time and inter-
section emptiness for NTAs can be solved in PTIME, the
upper bounds in Theorem 13 follow.

Proofs for Section 7
Theorem 15 In ELI, single example MSC existence and
verification are 2-EXPTIME-complete in general and
EXPTIME-complete when the signature is full.

We start with the lower bounds. For the full signature
case, we reduce concept subsumption relative to general
ELI-TBoxes which is EXPTIME-hard, already for subsump-
tion between concept names (Baader, Brandt, and Lutz
2008). Let T , A,B be an input to the subsumption problem.
We define a knowledge base K = (T ′,A) by taking

T ′ = T ∪ {B v ∃r.E,E v ∃r.E u ∃r−.E u ∃r−.A}
A = {A(a), r(a, b), r(b, b)},

for fresh names E, r. Then, the following are equivalent.

(a) T |= A v B;

(b) the ELI-MSC of a w.r.t. K is A;

(c) the ELI-MSC of a w.r.t. K exists.

Observe first that (b) ⇒ (c) is trivial. For (a) ⇒ (b),
suppose T |= A v B. We show via Theorem 3 that A is
the ELI-MSC of a w.r.t. K. Condition 1 is satisfied since
A(a) ∈ A. For Condition 2, note first that the universal
model UT ′,A has the following structure:
• its root ρA satisfies A,B and has an r-successor b satisfy-

ing E;
• b is the root of an infinite binary tree in which each node

has an r-successor and an r−-successor satisfying E;
• every node in the binary tree has an r−-successor satisfy-

ing A;
• below each element satisfying A we find a copy of UT ′,A

itself.
It is now straightforward to define an ELI simulation be-
tween (UK, a) and (UT ′,A, ρA).

For (c) ⇒ (a), suppose C is an ELI-MSC of a w.r.t. K.
By Theorem 4, there is some k ≥ 0 such that (UK, a) �ELI
(UT ′,Ck

, ρCk
). Note that there is an infinite r-path starting

from a in UK. However, if T 6|= A v B, there is no infinite
r-path starting at ρCk

in any UT ′,Ck
, a contradiction.

For 2-EXPTIME-hardness in the general case, we reduce
the complement of single example ELI concept separability
which has been shown to be 2-EXPTIME-hard in (Gutiérrez-
Basulto, Jung, and Sabellek 2018).1

Theorem 20 Let L ∈ {EL, ELI}. Then the complement of
single individual L concept separability can be reduced in
polynomial time to single example L-MSC verification and
to single example L-MSC existence.

Proof. The basic argument is very similar to the proof of
Theorem 8. The difference is that the proof of Theorem 8 re-
lies on the fact that at least two positive examples are given
in the learning instance which are then used to generate w-
chains using distinct concepts names B1, B2 which cannot
occur in the MSC. Here, instead of using two positive ex-
amples we make use of the signature restriction: the concept
name generating the w-chains is not in the signature Σ.

Let L ∈ {EL, ELI}. We reduce single individual L con-
cept separability. We can assume without loss of generality
that it is formulated as follows: given an L TBox T , a sig-
nature Σ, and an ABox A = {A(a), B(b)}, where A,B are
concept names with B ∈ Σ, decide whether it is the case
that (UK, a) �L,Σ (UK, b), where K = (T ,A). We use the
notation introduced in the proof of Theorem 8 and start with
EL. Construct a new TBox

T ′ = T|B1
∪ T|B2

∪ {Bi v ∃w.Bi | i = 1, 2},
where w is a fresh role name and B1, B2 are fresh concept
names. Take a fresh role name v and construct an ABox A′
with individuals ρ, a, b, and assertions
v(ρ, a), v(ρ, b), A(a), B(b), B1(a), B2(b)

1In (Gutiérrez-Basulto, Jung, and Sabellek 2018), the authors
consider the query by example problem rather than ELI concept
separability. Hence, the semantic characterization is formulated in
terms of homomorphisms between universal models rather than
ELI simulations. But as one can work with tree-shaped universal
models there is no difference between homomorphisms and ELI
simulations.

Let C0 = ∃v.(B u B2), set Σ′ = Σ ∪ {w, v,B2}, and let
K′ = (T ′,A′). We show that the following conditions are
equivalent:

(a) (UK, a) �EL,Σ (UK, b);
(b) C0 is the EL(Σ′)-MSC of ρ w.r.t. K′;
(c) The EL(Σ′)-MSC of ρ w.r.t. K′ exists.

(a) ⇒ (b). Assume (a) holds. By Theorem 3, it suffices to
show

1. ρ ∈ CUK′0 ;
2. (UK′ , ρ) �EL,Σ′ (UT ′,C0

, ρC0
).

Condition 1 is by construction. For Condition 2, it suffices
to show that

(UK′ , d) �EL,Σ′ (UT ′,(BuB2), ρBuB2
)

for d ∈ {a, b}. For d = b this is trivial and for d = a this
follows directly from (a) and the construction of K′ and Σ′.

(b)⇒ (c) is trivial.

(c)⇒ (a) We use Theorem 4. There exists k ≥ 0 such that
for Gk = (UK′ , ρ)↓EL,k|Σ′

(UK′ , ρ) �EL,Σ′ (UT ′,Gk
, ρGk

).

Then a, b are in the domain of Gk and

(UK′ , a) �EL,Σ′ (UT ′,Gk
, d)

for either d = a or d = b. But the assumption d = a leads
to a contradition as there is an infinite w-chain starting at a
in UK′ but there is no such w-chain starting at a in UT ′,Gk

because no Bi, i = 1, 2, is satisfied in any node of Gk in
the subtree generated by a (since B1 6∈ Σ′) and w-chains
are only generated by the TBox T ′ from nodes satisfying at
least one Bi. It follows that d = b. Then

(UT ′,Gk
, a) �EL,Σ′ (UT ′,Gk

, b) �EL,Σ′ (UK′ , b)
and (c) follows by construction of K′.

For ELI we modify the construction of T ′ in exactly the
same way as in the proof of Theorem 8. Thus, we construct
T ′ and A′ as before but add to T ′ the CIs B2 v ∃v−.B3

and
B3 v X u

l

s∈role(T ′)

∃s.B3,

where role(T ′) denotes the set of all role names and their
inverses used in T ′ andX =

d
A∈sub(T ′)A. We also add the

concept name B3 to Σ′. o

For the upper bounds, we establish the following Lemma,
relying on the encoding of tree-shaped interpretations used
in Section “Proofs for Section 6”. We concentrate on exis-
tence since verification can be reduced, see Theorem 11.
Lemma 14 Let K = (T ,A) be an ELI knowledge base,
a ∈ ind(A), and Σ a signature, and let N be the outdegree
of UK. Then, there is an NTA A such that for every N2-ary
Θ-labeled tree (T, L) with IL |= T , we have:

(T, L) ∈ L(A) iff UK, a �ELI,Σ IL, ε.
Moreover, A can be constructed in time double exponential
in |K| in general, and exponential in |K| if Σ is full.

Proof. We start with the general case. We denote with
rolΣ(T) the set of all Σ-roles that occur in T , and with
tp(T) the set of all types for T . We do not specify the
NTA directly, but rather go via two-way alternating au-
tomata (TWAPA), see Section “Proofs for Section 6” for pre-
cise definitions. The set Q of states of A = (Q,Θ, q0,∆,Ω)
is defined as

Q = {qx, qr,x, pr,x | x ∈ ind(A) ∪ tp(T), r ∈ rolΣ(T)},

and the initial state is qa. For b ∈ ind(A), we denote with tb
the type of b in UK, that is,

tb = {C ∈ sub(T) | b ∈ CUK}.

The transition function δ of A assigns δ(qt, θ) = false and
δ(qb, θ) = false whenever t ∩ Σ 6⊆ θ and tb ∩ Σ 6⊆ θ,
respectively. Otherwise, we set:

δ(qt, θ) =
∧

t rt
′,

r∈rolΣ(T)

(
(0, pr,t′)) ∨

∨
1≤i≤N2

(i, qr,t)
)

δ(qb, θ) = (0, qtb) ∧∧
(b,b′)∈rUK ,
r∈rolΣ(T)

(
(0, pr,b′)) ∨

∨
1≤i≤N2

(i, qr,b′)
)

The transition function for states of the form pr,x, qr,x is de-
fined by taking, for all θ ∈ Θ:

δ(pr,x, θ) = false if r− /∈ θ
δ(pr,x, θ) = (−1, qx) if r− ∈ θ
δ(qr,x, θ) = false if r /∈ θ
δ(qr,x, θ) = (0, qx) if r ∈ θ

It is not hard to verify that (T, L) ∈ L(A) iff UK,a �ELI,Σ
IL, ε, for all (T, L), even without the assumption IL |= T .
Moreover, the size of A is exponential in |K|, and it can be
computed in exponential time.

For the full signature case, we obtain A′ from A by drop-
ping the states of the shape qt, qr,t, pr,t, for all types t. The
transition function δ′ is obtained from δ given above by re-
placing every atom (i, q) for a dropped state q with true. It is
routine to verify that (T, L) ∈ L(A′) iff UK,a �ELI IL, ε,
whenver IL |= T . Moreover, the size of A′ is polynomial
in |K|, and it can be computed in exponential time.

The required NTAs can now be obtained from A, A′ by
the standard translation of TWAPAS to NTAs, incurring an
exponential blow-up (Vardi 1998). o

To finish the upper bound from Theorem 15, let B be the
projection of B0 from Lemma 12 to its second component.
It is routine to verify that the ELI(Σ)-MSC of a w.r.t. K
exists iff the intersection of A and B is non-empty.

Since all automata can be computed in double exponential
time, and since intersection (non-)emptiness can be verified
in PTIME, the 2-EXPTIME upper bound follows. For the full
signature case, we obtain an EXPTIME upper bound since in
this case A and B can be computed in exponential time.

