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Abstract
Finding a logical formula that separates positive and negative
examples given in the form of labeled data items is fundamen-
tal in applications such as concept learning, reverse engineer-
ing of database queries, and generating referring expressions.
In this paper, we investigate the existence of a separating for-
mula for incomplete data in the presence of an ontology. Both
for the ontology language and the separation language, we
concentrate on first-order logic and three important fragments
thereof: the description logic ALCI, the guarded fragment,
and the two-variable fragment. We consider several forms of
separability that differ in the treatment of negative examples
and in whether or not they admit the use of additional helper
symbols to achieve separation. We characterize separabil-
ity in a model-theoretic way, compare the separating power
of the different languages, and determine the computational
complexity of separability as a decision problem.

1 Introduction
There are several scenarios in which the aim is to find some
kind of logical formula that separates positive from nega-
tive examples given in the form of labeled data items. In
concept learning in description logic (DL), the aim is to au-
tomatically construct a concept description that can then be
used, for instance, in ontology engineering (Lehmann and
Hitzler 2010). In reverse engineering of database queries,
also known as query by example (QBE), one seeks to find a
query from example answers and non-answers provided by a
user who is able to give such examples, but not to formulate
the query (Martins 2019). In generating referring expression
(GRE), the aim is to find a formula that separates a single
positive data item from all other data items and can thus be
used as a uniquely identifying description of the data item
(Krahmer and van Deemter 2012). And in entity compari-
son, the separation is between a single positive and a single
negative data item, aiming to summarize the differences be-
tween the two (Petrova et al. 2017).

In this paper, we consider the separation of positive and
negative examples given in the form of data items, in the
presence of an ontology. As usual when data and on-
tologies are combined, we assume that the data is incom-
plete and adopt an open world semantics. This matches
the setup of concept learning for DLs and of QBE and
GRE for ontology-mediated queries which have both re-
ceived recent interest (Borgida, Toman, and Weddell 2016;

Gutiérrez-Basulto, Jung, and Sabellek 2018). It also encom-
passes entity comparison under ontologies. While separat-
ing formulas are often required to have additional properties
such as providing a good abstraction of the positive exam-
ples (in QBE) or being comprehensible (in GRE), a funda-
mental question common to these applications is when and
whether a separating formula exists at all. It is this question
of separability that we concentrate on in the present paper.

We assume that a labeled knowledge base (KB) (K, P,N)
is given,K = (O,D), whereO is an ontology,D a database,
P a set of positive examples, and N a set of negative ex-
amples. All examples are tuples of constants of the same
length. Due to the open world semantics, different choices
are possible regarding the definition of a formula ϕ that sep-
arates (K, P,N). While it is uncontroversial to demand that
K |= ϕ(~a) for all ~a ∈ P , for negative examples ~b ∈ N

it makes sense to demand that K 6|= ϕ(~b), but also that
K |= ¬ϕ(~b). When ϕ is formulated in logic L, we refer to
the former as weak L-separability and to the latter as strong
L-separability. Moreover, one might or might not admit the
use of helper symbols in ϕ that do not occur in K, giving
rise to projective and non-projective versions of separabil-
ity. While it might be debatable whether the use of helper
symbols is natural in separating formulas, they arise very
naturally when studying the separating power of different
logics used as a separation language. We study all four cases
that emerge from these choices. Projective weak separabil-
ity has already been studied for a variety of DLs in (Funk et
al. 2019) and some first observations on strong separability
were presented in the same paper.

We study ontologies and separating formulas formulated
in first-order logic (FO), its guarded negation fragment
(GNFO), its guarded fragment (GF), its two-variable frag-
ment FO2, and the DL ALCI—a fragment of both GF
and FO2. As separating formulas, we additionally con-
sider unions of conjunctive queries (UCQs). With (L,LS)-
separability, we mean LS-separability of labeled L-KBs.
We aim to characterize (L,LS)-separability in a model-
theoretic way, to compare the separating power of different
languages LS , and to determine the decidability and com-
plexity of (L,LS)-separability as a decision problem.

We start with weak separability. Our first main result
provides a characterization of (weak) (FO,FO)-separability



in terms of homomorphisms. It implies that projective
and non-projective (FO,LS)-separability coincide for all
FO-fragments LS situated between FO and UCQ (such as
GNFO), and that moreover (FO,LS)-separability coincides
for all such LS . Note that this is due to the open world se-
mantics. Our result also lifts the link between separability
and UCQ-evaluation on KBs first observed in (Funk et al.
2019) to a more general setting. As a first application, we
use it to show that (GNFO,GNFO)-separability is decidable
and 2EXPTIME-complete.

We then proceed to study (L,L)-separability for the frag-
ments L ∈ {ALCI,GF,FO2}. Note that these fragment
do not contain UCQ and thus the above results do not ap-
ply. In fact, the projective and non-projective cases do
not coincide for any of these L. We start with projective
(ALCI,ALCI)-separability. It is implicit in (Funk et al.
2019) that this is the same as (projective and non-projective)
(ALCI,UCQ)-separability and thus, by the results above,
also as (ALCI,FO)-separability. It is proved in in (Funk
et al. 2019) that this separability problem is NEXPTIME-
complete in combined complexity and it is claimed to be Πp

2-
complete in data complexity where the ontology is assumed
to be fixed. We first correct the latter statement and show
that the problem is NEXPTIME-complete also in data com-
plexity. We then turn to the technically more intricate case of
non-projective (ALCI,ALCI)-separability, observe that it
does not coincide with the projective case, and characterize
it using a mix of homomorphisms, bisimulations, and types.
This allows us to show that non-projective (ALCI,ALCI)-
separability is also NEXPTIME-complete, both in combined
complexity and in data complexity.

For projective and non-projective (GF,GF)-separability,
we establish characterizations that parallel those for ALCI
except that bisimulations are replaced with (a form of)
guarded bisimulations. The proofs are significantly more
subtle. As in the ALCI-case, projective (GF,LS)-
separability coincides with (GF,UCQ)-separability and thus
also with (GF,FO)-separability. We additionally ob-
serve that is also coincides with projective (GF, openGF)-
separability where openGF is a ‘local’ version of GF that
arguably is a natural choice for separation (Hernich et al.
2020). A main result is then that projective and non-
projective (GF,GF)-separability are 2EXPTIME-complete
in combined complexity. We next show that, in con-
trast, (FO2,FO2)-separability and (FO2,FO)-separability
are both undecidable. Moreover, they coincide neither in the
projective nor in the non-projective case. These results are
linked in an interesting way to the fact that FO2 has the finite
model property but is not finitely controllable for UCQs.

We then switch to strong separability, first observ-
ing that in marked contrast to the weak case, projective
strong (L,LS)-separability coincides with non-projective
strong (L,LS)-separability for all choices of L and LS
relevant to this paper. We establish a characterization
of strong (FO,FO)-separability in terms of KB unsatis-
fiability and show that strong (FO,FO)-separability co-
incides with strong (FO,UCQ)-separability and conse-
quently with strong (FO,LS)-separability for all LS be-
tween FO and UCQ. We next consider the same FO-

fragments ALCI,GF,FO2 as before and show that for each
of these fragments L, strong (L,L)-separability coincides
with strong (L,FO)-separability and thus the connection to
KB unsatisfiability applies. This allows us to derive tight
complexity bounds for stong strong (L,L)-separability. For
ALCI, EXPTIME-completeness in combined complexity
and CONP-completeness in data complexity was shown in
(Funk et al. 2019). We prove completeness for 2EXPTIME
and NEXPTIME in combined complexity for GF and FO2,
respectively, and CONP-completeness in data complexity in
both cases. Note that strong (FO2,FO2)-separability thus
turns out to be decidable, in contrast to the weak case.

2 Related Work and Applications
We discuss in more detail related work and applications
of our results, starting with concept learning in DL as
first proposed in (Badea and Nienhuys-Cheng 2000). In-
spired by inductive logic programming, refinement opera-
tors are used to construct a concept that generalizes posi-
tive examples while not encompassing any negative ones.
An ontology may or may not be present. There has been
significant interest in this approach, both for weak sepa-
ration (Lehmann and Haase 2009; Lehmann and Hitzler
2010; Lisi and Straccia 2015; Sarker and Hitzler 2019) and
strong separation (Fanizzi, d’Amato, and Esposito 2008;
Lisi 2012). Prominent systems include the DL LEANER
(Bühmann et al. 2018; Bühmann, Lehmann, and Westphal
2016), DL-FOIL, YINYANG, and PFOIL-DL (Fanizzi et
al. 2018; Iannone, Palmisano, and Fanizzi 2007; Straccia
and Mucci 2015). A method for generating strongly sep-
arating concepts based on bisimulations has been devel-
oped in (Ha et al. 2012; Tran, Nguyen, and Hoang 2015;
Divroodi et al. 2018) and an approach based on answer set
programming was proposed in (Lisi 2016). Algorithms for
DL concept learning typically aim to be complete, that is,
to find a separating concept whenever there is one. Com-
plexity lower bounds for separability as studied in this pa-
per then point to an inherent complexity that no such algo-
rithm can avoid. Undecidability even means that there can
be no learning algorithm that is both terminating and com-
plete. The complexity of deciding separability in DL con-
cept learning was first investigated in (Funk et al. 2019).
Computing least common subsumers (LCS) and most spe-
cific concepts (MSC) can be viewed as DL concept learn-
ing in the case that only positive, but no negative example
are available (Cohen, Borgida, and Hirsh 1992; Nebel 1990;
Baader, Küsters, and Molitor 1999; Zarrieß and Turhan
2013). A recent study of LCS and MSC from a separabil-
ity angle is in (Jung, Lutz, and Wolter 2020).

Query by example is an active topic in database research
since many years, see e.g. (Tran, Chan, and Parthasarathy
2009; Zhang et al. 2013; Weiss and Cohen 2017; Kalash-
nikov, Lakshmanan, and Srivastava 2018; Deutch and Gi-
lad 2019; Staworko and Wieczorek 2012) and (Martins
2019) for a recent survey. In this context, separability
has also received attention (Arenas and Diaz 2016; Bar-
celó and Romero 2017; Kimelfeld and Ré 2018). A cru-
cial difference to the present paper is that QBE in classical



databases uses a closed world semantics under which there
is a unique natural way to treat negative examples: sim-
ply demand that the separating formula evaluates to false
there. Thus, the distinction between weak and strong sepa-
rability, and also between projective and non-projective sep-
arability does not arise. Moreover, the separating power of
many logics is much higher under a closed world seman-
tics; for instance, FO-separability is far from coinciding with
UCQ-separability. QBE for ontology-mediated querying
(Gutiérrez-Basulto, Jung, and Sabellek 2018; Ortiz 2019)
and for SPARQL queries (Arenas, Diaz, and Kostylev 2016),
in contrast, makes an open world semantics. The former
is captured by the framework studied in the current article.
In fact, our results imply that the existence of a separating
UCQ is decidable for ontology languages such as ALCI
and the guarded fragment. The corresponding problem for
CQs is undecidable even when the ontology is formulated
in the inexpressive description logic ELI (Funk et al. 2019;
Jung, Lutz, and Wolter 2020).

Generating referring expressions has originated from lin-
guistics (Krahmer and van Deemter 2012) and has recently
received interest in the context of ontology-mediated query-
ing (Areces, Koller, and Striegnitz 2008; Borgida, Toman,
and Weddell 2016; Toman and Weddell 2019). GRE fits into
the framework used in this paper since a formula that sepa-
rates a single data item from all other items in the KB can
serve as a referring expression for the former. Both weak
and strong separability are conceivable: weak separability
means that the positive data item is the only one that we are
certain to satisfy the separating formula and strong separa-
bility means that in addition we are certain that the other data
items do not satisfy the formula. Approaches to GRE such
as the ones in (Borgida, Toman, and Weddell 2016) aim for
even stronger guarantees as the positive example must in a
sense also be separated from all ‘existential objects’, that is,
objects that are not explicitly mentioned in the database, but
whose existence is asserted by the ontology. Such a strong
guarantee, however, cannot be achieved in the ontology lan-
guages studied here (Toman and Weddell 2019).

In entity comparison, one aims to compare two selected
data items, highlighting both their similarities and their dif-
ferences. An approach to entity comparison in RDF graphs
is presented in (Petrova et al. 2017; Petrova et al. 2019).
There, SPARQL queries are used to describe both similar-
ities and differences, under an open world semantics. The
‘computing similarities’ part of this approach is closely re-
lated to the LCS and MSC mentioned above. The ‘comput-
ing differences’ is closely related to QBE and fits into the
framework studied in this paper. In fact, it corresponds to
separation with a single positive and a single negative exam-
ple, and with an empty ontology.

3 Preliminaries
Let Σfull be a set of relation symbols that contains countably
many symbols of every arity n ≥ 1 and let Const be a count-
ably infinite set of constants. A signature is a set of relation
symbols Σ ⊆ Σfull. We write ~a for a tuple (a1, . . . , an) of
constants and set [~a] = {a1, . . . , an}. A database D is a
finite set of ground atoms R(~a), where R ∈ Σfull has arity n

and ~a is a tuple of constants from Const of length n. We use
cons(D) to denote the set of constant symbols in D.

Denote by FO the set of first-order (FO) formulas con-
structed from constant-free atomic formulas x = y and
R(~x), R ∈ Σfull, using conjunction, disjunction, negation,
and existential and universal quantification. As usual, we
write ϕ(~x) to indicate that the free variables in the FO-
formula ϕ are all from ~x and call a formula open if it has
at least one free variable and a sentence otherwise. Note
that we do not admit constants in FO-formulas. While many
results presented in this paper should lift to the case with
constants, dealing with constants introduces significant tech-
nical complications that are outside the scope of this paper.

A fragment of FO is a set of FO formulas that is closed
under conjunction. We consider various such fragments. A
conjunctive query (CQ) takes the form q(~x) = ∃~y ϕ where
ϕ is a conjunction of atomic formulas x = y and R(~y). We
assume w.l.o.g. that if a CQ contains an equality x = y, then
x and y are free variables. A union of conjunctive queries
(UCQ) is a disjunction of CQs that all have the same free
variables. In the context of CQs and UCQs, we speak of
answer variables rather than of free variables. A CQ q is
rooted if every variable in it is reachable from an answer
variable in the Gaifman graph of q viewed as a hypergraph
and a UCQ is rooted if every CQ in it is. We write (U)CQ
also to denote the class of all (U)CQs.

In the guarded fragment (GF) of FO (Andréka, Németi,
and van Benthem 1998; Grädel 1999), formulas are built
from atomic formulas R(~x) and x = y by applying the
Boolean connectives and guarded quantifiers of the form

∀~y(α(~x, ~y)→ ϕ(~x, ~y)) and ∃~y(α(~x, ~y) ∧ ϕ(~x, ~y))

where ϕ(~x, ~y) is a guarded formula and α(~x, ~y) is an atomic
formula or an equality x = y that contains all variables in
[~x] ∪ [~y]. The formula α is called the guard of the quanti-
fier. An extension of GF that preserves many of the nice of
properties of GF is the guarded negation fragment GNFO of
FO which contains both GF and UCQ. GNFO is obtained
by imposing a guardedness condition on negation instead of
on quantifiers, details can be found in (Bárány, ten Cate, and
Segoufin 2015). The two-variable fragment FO2 of FO con-
tains every formula in FO that uses only two fixed variables
x and y (Grädel, Kolaitis, and Vardi 1997).

For L an FO-fragment, an L-ontology is a finite set of
L-sentences. An L-knowledge base (KB) is a pair (O,D),
where O is an L-ontology and D a database. For any syn-
tactic objectO such as a formula, an ontology, and a KB, we
use sig(O) to denote the set of relation symbols that occur
in O and ||O|| to denote the size of O, that is, the number
of symbols needed to write it with names of relations, vari-
ables, and constants counting as a single symbol.

As usual, KBs K = (O,D) are interpreted in relational
structures A = (dom(A), (RA)R∈Σfull , (c

A)c∈Const) where
dom(A) is the non-empty domain of A, each RA is a re-
lation over dom(A) whose arity matches that of R, and
cA ∈ dom(A) for all c ∈ Const. Note that we do not make
the unique name assumption (UNA), that is cA1 = cA2 might
hold even when c1 6= c2. This is essential for several of our
results. A structure A is a model of a KB K = (O,D) if it



satisfies all sentences inO and all ground atoms inD. A KB
K is satisfiable if there exists a model of K.

Description logics are fragments of FO that only sup-
port relation symbols of arities one and two, called concept
names and role names. DLs come with their own syntax,
which we introduce next (Baader et al. 2003; Baader et al.
2017). A role is a role name or an inverse role R− with R
a role name. For uniformity, we set (R−)− = R. ALCI-
concepts are defined by the grammar

C,D ::= A | ¬C | C uD | ∃R.C
where A ranges over concept names and R over roles. As
usual, we write ⊥ to abbreviate Au¬A for some fixed con-
cept nameA,> for ¬⊥,CtD for ¬(¬Cu¬D),C → D for
¬C tD, and ∀R.C for ¬∃R.¬C. AnALCI-concept inclu-
sion (CI) takes the form C v D where C and D are ALCI-
concepts. An ALCI-ontology is a finite set of ALCI-CIs.
An ALCI-KB K = (O,D) consists of an ALCI-ontology
O and a database D that uses only unary and binary relation
symbols. We sometimes also mention the fragment ALC of
ALCI in which inverse roles are not available.

To obtain a semantics, every ALCI-concept C can be
translated into an GF-formula C† with one free variable x:

A† = A(x)
(¬ϕ)† = ¬ϕ†

(C uD)† = C† ∧D†
(∃R.C)† = ∃y (R(x, y) ∧ C†[y/x])

(∃R−.C)† = ∃y (R(y, x) ∧ C†[y/x]).

The extension CA of a concept C in a structure A is
defined as CA = {a ∈ dom(A) | A |= C†(a)}. A CI C v
D translates into the GF-sentence ∀x (C†(x)→ D†(x)). By
reusing variables, we can even obtain formulas and ontolo-
gies from GF ∩ FO2. We write O |= C v D if CA ⊆ DA

holds in every model A of O. Concepts C and D are equiv-
alent w.r.t. an ontologyO ifO |= C v D andO |= D v C.

We close this section with introducing homomorphisms.
A homomorphism h from a structure A to a structure B is
a function h : dom(A) → dom(B) such that ~a ∈ RA im-
plies h(~a) ∈ RB for all relation symbols R and tuples ~a
and with h(~a) being defined component-wise in the expected
way. Note that homomorphisms need not preserve constant
symbols. Every database D gives rise to the finite structure
AD with dom(AD) = cons(D) and ~a ∈ RAD iff R(~a) ∈ D.
A homomorphism from database D to structure A is a ho-
momorphism from AD to A. A pointed structure takes the
form A,~a with A a structure and ~a a tuple of elements of
dom(A). A homomorphism from A,~a to pointed structure
B,~b is a homomorphism h from A to B with h(~a) = ~b. We
write A,~a→ B,~b if such a homomorphism exists.

4 Fundamental Results
We introduce the problem of (weak) separability in its pro-
jective and non-projective version. We then give a funda-
mental characterization of (FO,FO)-separability which has
the consequence that UCQs have the same separating power
as FO. This allows us to settle the complexity of deciding
separability in GNFO.

Definition 1 Let L be a fragment of FO. A labeled L-KB
takes the form (K, P,N) with K = (O,D) an L-KB and
P,N ⊆ cons(D)n non-empty sets of positive and negative
examples, all of them tuples of the same length n.

An FO-formula ϕ(~x) with n free variables (weakly) sep-
arates (K, P,N) if

1. K |= ϕ(~a) for all ~a ∈ P and
2. K 6|= ϕ(~a) for all ~a ∈ N .
Let LS be a fragment of FO. We say that (K, P,N) is pro-
jectively LS-separable if there is an LS-formula ϕ(~x) that
separates (K, P,N) and (non-projectively) LS-separable if
there is such a ϕ(~x) with sig(ϕ) ⊆ sig(K).
The following example illustrates the definition.
Example 1 Let K1 = (∅,D) where

D = {born in(a, c), citizen of(a, c), born in(b, c1),

citizen of(b, c2),Person(a)}.
Then Person(x) separates (K1, {a}, {b}). As any citizen is
a person, however, this separating formula is not natural and
it only separates because of incomplete information about b.
This may change with knowledge from the ontology. Let

O = {∀x(∃y(citizen of(x, y))→ Person(x))}
and K2 = (O,D). Then K2 |= Person(b) and so Person(x)
no longer separates. However, the more natural formula

ϕ(x) = ∃y(born in(x, y) ∧ citizen of(x, y)),

separates (K2, {a}, {b}). Thus (K2, {a}, {b}) is non-
projectively L-separable for L = CQ and L = GF.
In the projective case, one admits symbols that are not from
sig(K) as helper symbols in separating formulas. Their
availability sometimes makes inseparable KBs separable.
Note that in (Funk et al. 2019), helper symbols are gener-
ally admitted and the results depend on this assumption.
Example 2 The separating formula ϕ(x) in Example 1 can-
not be expressed as an ALCI-concept. Using a helper con-
cept name A, we obtain the separating concept

C = ∀born in.A→ ∃citizen of.A.

and thus (K2, {a}, {b}) is projectively ALCI-separable.
Note that C can be refuted at b because one can make A true
at c1 and false at c2. For separation, it is thus important that
A is not constrained by O. Person is a concept name that,
despite being in sig(K2), is also sufficiently unconstrained
by O to act as a helper symbol: by replacing A by Person
in C, one obtains a (rather unnatural) concept that witnesses
also non-projective ALCI-separability of (K2, {a}, {b}).

As we only study FO-fragments LS that are closed under
conjunction, a labeled KB (K, P,N) is (projectively) LS-
separable if and only if all (K, P, {~b}), ~b ∈ N , are (pro-
jectively) LS-separable. In fact, a formula that separates
(K, P,N) can be obtained by taking the conjunction of for-
mulas that separate (K, P, {~b}), ~b ∈ N . We thus mostly
consider labeled KBs with single negative examples.

Each choice of an ontology language L and a separation
language LS give rise to a separability problem and a pro-
jective separability problem, defined as follows.



PROBLEM : (Projective) (L,LS)-separability
INPUT : A labeled L-KB (K, P,N)
QUESTION : Is (K, P,N) (projectively) LS-separable?

We study both the combined complexity and the data com-
plexity of separability. In the former, the full labeled KB
(K, P,N) is taken as the input. In the latter, only D and the
examples P,N are regarded as the input whileO is assumed
to be fixed.

Our first result provides a characterization of (FO,FO)-
separability in terms of homomorphisms, linking it to UCQ-
separability and in fact to UCQ evaluation on KBs.We first
give some preliminaries. With every pointed database D,~a,
where ~a = (a1, . . . , an), we associate a CQ ϕD,~a(~x) with
free variables ~x = (x1, . . . , xn) that is obtained from D,~a
as follows: view each R(c1, . . . , cm) ∈ D as an atom
R(xc1 , . . . , xcm), existentially quantify all variables xc with
c ∈ cons(D)\ [~a], replace every variable xc such that ai = c
for some i with the variable xi such that i is minimal with
ai = c, and finally add xi = xj whenever ai = aj . For a
pointed databaseD,~a, we writeDcon(~a) to denote the restric-
tion of D to those constants that are reachable from some
constant in ~a in the Gaifman graph of D.

Theorem 1 Let (K, P, {~b}) be a labeled FO-KB, K =
(O,D). Then the following conditions are equivalent:

1. (K, P, {~b}) is projectively UCQ-separable;

2. (K, P, {~b}) is projectively FO-separable;
3. there exists a model A of K such that for all ~a ∈ P :
Dcon(~a),~a 6→ A,~bA;

4. the UCQ
∨
~a∈P ϕDcon(~a),~a separates (K, P, {~b}).

Proof. “1 ⇒ 2” and “4 ⇒ 1” are trivial and “3 ⇒ 4” is
straightforward. We thus concentrate on “2⇒ 3”. Assume
that (K, P, {~b}) is separated by an FO-formula ϕ(~x). Then
there is a model A of K such that A 6|= ϕ(~b). Let ~a ∈ P .
Since K |= ϕ(~a), there is no model B of K and such that
B,~aB and A,~bA are isomorphic, meaning that there is an
isomorphism τ from B to A with τ(~aB) = ~bA. A satisfies
Condition 3. Assume to the contrary that there is a homo-
morphism h from Dcon(~a),~a to A,~bA for some ~a ∈ P . Let
the structure B by obtained from A by setting cB = h(c) for
all c ∈ cons(Dcon(~a)) and cB = cA for all remaining con-
stants c. This construction relies on not making the UNA.
B is a model of K since O does not contain constants. It is
easy to verify that B,~aB and A,~bA are isomorphic and thus
we have obtained a contradiction. o

Note that the UCQ in Point 4 of Theorem 1 is a concrete
separating formula. It is only of size polynomial in the size
of the KB, but not very illuminating. It also contains no
helper symbols1 and thus we obtain the following.

1In fact, it even contains only relation symbols that occur in D
while symbols that only occur in O are not used.

Corollary 1 (FO,LS)-separability coincides with projec-
tive (FO,LS)-separability for all FO-fragments LS ⊇
UCQ. Moreover, (FO,LS)-separability coincides for all
such LS .

Theorem 1 also implies that for all (L,LS) with L a frag-
ment of FO such that LS ⊇ UCQ, (L,LS)-separability can
be mutually polynomially reduced with rooted UCQ evalua-
tion on L-KBs. This is the problem to decide, given a rooted
UCQ q, an L-KB K = (O,D), and a tuple ~a of constants
from D, whether K |= q(~a) (Baader et al. 2017). A connec-
tion of this kind was first observed in (Funk et al. 2019).

Since rooted UCQ evaluation on FO-KBs is undecidable,
so is (FO,FO)-separability. However, rooted UCQ evalu-
ation is decidable in 2EXPTIME on GNFO-KBs (Bárány,
ten Cate, and Segoufin 2015) and 2EXPTIME-hardness is
straightforward to show by reduction from satisfiability in
GNFO. Since GNFO ⊇ UCQ, we thus obtain the following.

Theorem 2 (GNFO,GNFO)-separability coincides with
(GNFO,LS)-separability for all FO-fragments LS ⊇
UCQ. It further coincides with projective (GNFO,LS)-
separability for all these LS and is 2EXPTIME-complete in
combined complexity.

We conjecture that the problems in Theorem 2 are 2EXP-
TIME-complete also in data complexity, see Section 5.2 for
further discussion in the context of GF.

We briefly mention the case of FO-separability of labeled
KBs in which the ontology is empty. From the connection
to rooted UCQ evaluation, it is immediate that this problem
is CONP-complete. This is in contrast to GI-completeness
of the FO-definability problem on closed world structures
(Arenas and Diaz 2016).

5 Results on Separability
We study (L,L)-separability for L ∈ {ALCI,GF,FO2}.
None of these fragments L contains UCQ, and thus we can-
not use Theorem 1 in the same way as for GNFO above. All
our results, in particular the lower bounds, also apply to the
special case of GRE where the set P of positive examples is
a singleton and P,N is a partition of cons(D). The same is
true for the special case of entity comparison where both P
and N are singletons.

5.1 Separability of ALCI-KBs
We are interested in separating labeled ALCI-KBs
(K, P,N) in terms of ALCI-concepts which is relevant for
concept learning, for generating referring expressions, and
for entity comparison. Note that since ALCI-concepts are
FO-formulas with one free variable, positive and negative
examples are single constants rather than proper tuples. Pro-
jective (ALCI,ALCI)-separability has already been stud-
ied in (Funk et al. 2019) and thus we concentrate mainly on
the non-projective case.

We start, however, with two observations on projective
separability. It is shown in (Funk et al. 2019) that a la-
beledALCI-KB (K, P,N) is projectivelyALCI-separable



iff Condition 4 from Theorem 1 holds. We thus obtain the
following.2

Corollary 2 Projective (ALCI,ALCI)-separability coin-
cides with (ALCI,LS)-separability for all FO-fragments
LS ⊇ UCQ.
It is proved in (Funk et al. 2019) that the separability prob-
lem from Corollary 2 is NEXPTIME-complete in combined
complexity. It is also stated that it is Πp

2-complete in data
complexity, and that the same is the case for (ALC,ALC)-
separability. Unfortunately, though, the results on data com-
plexity are incorrect. We start with correcting them.
Theorem 3 Projective (ALCI,ALCI)-separability is
NEXPTIME-complete in data complexity and projective
(ALC,ALC)-separability is PSPACE-complete in data
complexity.

The lower bounds are proved using reductions from a
tiling problem and QBF validity, respectively. The up-
per bounds are by reduction to rooted UCQ-entailment on
ALC(I)-KBs with a fixed ontology.

We now turn to the main topic of this section, non-
projective separability. We first observe that projective and
non-projective separability are indeed different.
Example 3 Let K = (O,D) be the ALCI-KB where

O = {> v ∃R.> u ∃R−.>}
D = {R(a, a), R(b, c)}.

Further let P = {a} and N = {b}. Then the ALCI-
concept A→ ∃R.A separates (K, P,N), using the concept
name A as a helper symbol, and thus (K, P,N) is projec-
tively ALCI-separable.

In contrast, (K, P,N) is not non-projectively ALCI-
separable. In fact, every ALCI-concept C with sig(C) =
{R} is equivalent to > or to ⊥ w.r.t. O. Thus if K |= C(a),
then O |= C ≡ >, and so K |= C(b).
Of course, Example 3 implies that an analogue of Corol-
lary 2 fails for non-projective separability. In fact, it is easy
to see that the labeledALCI-KB in Example 3, which is not
ALCI-separable, is separated by the CQ R(x, x).

We next aim to characterize (ALCI,ALCI)-separability
in the style of Point 3 of Theorem 1. We start with not-
ing that the ontology O used in Example 3 is very strong
and enforces that all elements of all models ofO are sig(K)-
bisimilar to each other. For ontologies that make such strong
statements, symbols from outside of sig(K) might be re-
quired to construct a separating concept. It turns out that
this is the only effect that distinguishes non-projective from
projective separability. We next make this precise.

We use bisimulations between pointed structures, defined
in the standard way but restricted to a signature Σ, see e.g.
(Lutz, Piro, and Wolter 2011; Goranko and Otto 2007) for
details. With A, a ∼ALCI,Σ B, b, we indicate that there
is a Σ-bisimulation between A and B that contains (a, b).

2The UNA is made in (Funk et al. 2019), but not in the current
paper. This is inessential for (ALCI,ALCI)-separability since
K |= C(a) with UNA iff K |= C(a) without UNA if K is an
ALCI-KB and C an ALCI-concept.

For a KB K, we use cl(K) to denote the set of concepts in
K and the concepts ∃R.> and ∃R−.> for all role names
R ∈ sig(K), closed under subconcepts and single negation.
A K-type is a set t ⊆ cl(K) such that there exists a model A
of K and an a ∈ dom(A) with tpK(A, a) = t where

tpK(A, a) = {C ∈ cl(K) | a ∈ CA}
is the K-type of a in A. We say that a K-type t is connected
if ∃R.> ∈ t for some role R.
Definition 2 A K-type t is ALCI-complete if for any two
pointed models A1, b1 and A2, b2 of K, t = tpK(A1, b1) =
tpK(A2, b2) implies A1, b1 ∼ALCI,sig(K) A2, b2.
This is similar in spirit to the notion of a complete theory in
classical logic (Chang and Keisler 1998). A type t is realiz-
able in K, b, where K = (O,D) and b ∈ cons(D), if there
exists a model A of K such that tpK(A, bA) = t.
Example 4 (1) In Example 3, there is only a single K-type
and this type is ALCI-complete.

(2) Let D be a database and OD the ontology that con-
tains all CIs that only use symbols from sig(D) and are true
in the structure AD. This ontology is infinite, but easily seen
to be equivalent to a finite ontology. Let K = (OD,D).
Then every K-type is ALCI-complete.
We are now in the position to formulate the characterization
of non-projective (ALCI,ALCI)-separability.
Theorem 4 A labeled ALCI-KB (K, P, {b}) is non-
projectively ALCI-separable iff there exists a model A of
K such that for all a ∈ P :

1. Dcon(a), a 6→ A, bA and

2. if tpK(A, bA) is connected and ALCI-complete, then
tpK(A, bA) is not realizable in K, a.

Proof. (idea) It is not difficult to show that (K, P, {b}) is
non-projectively ALCI-separable iff there is a model A
of K such that for all models B of K and all a ∈ P :
B, aB 6∼ALCI,sig(K) A, bA. One then proves that non-
existence of a bisimilar B, aB can be equivalently replaced
by non-existence of a homomorphism from Dcon(a), a if
tpK(A, bA) is not connected or not ALCI-complete. o

Note that Point 1 of Theorem 4 is identical to Point 3
of Theorem 1 and that the characterization of projective
(ALCI,ALCI)-separability in (Funk et al. 2019) is as in
Theorem 4 with Point 2 dropped.

In practice, one would expect that KBs K are such that
no connected K-type is ALCI-complete (while every non-
connected K-type is necessarily ALCI-complete). It thus
makes sense to consider the following special case. A la-
beledALCI-KB (K, P,N) is strongly incomplete if no con-
nected K-type that is realizable in some K, b, with b ∈ N , is
ALCI-complete. For ALCI-KBs that are strongly incom-
plete, we can drop Point 2 from Theorem 4 and obtain the
following from Theorem 1 and Corollary 2.
Corollary 3 For labeled ALCI-KBs that are strongly in-
complete, non-projective ALCI-separability coincides with
non-projective and projective LS-separability for all FO-
fragments LS ⊇ UCQ.



It follows from Theorem 4 that we can reduce pro-
jective (ALCI,ALCI)-separability to non-projective
(ALCI,ALCI)-separability in polynomial time. Let
(K, P, {b}), K = (O,D), be a labeled ALCI-KB. Then K
is projectively ALCI-separable if and only if (K′, P, {b})
is non-projectively ALCI-separable where K′ = (O′,D)
and O′ = O ∪ {A v A}, A a fresh concept name. In fact,
K is clearly projectively ALCI-separable iff K′ is, and K′
is projectively ALCI-separable iff it is non-projectively
ALCI-separable because no connected K′-type is ALCI-
complete and thus Point 2 of Theorem 4 is vacuously true
forK′. This also implies that whenever a labeledALCI-KB
is projectively separable, then a single fresh concept name
suffices for separation.

We now have everything in place to clarify the complexity
of non-projective (ALCI,ALCI)-separability.
Theorem 5 Non-projective (ALCI,ALCI)-separability is
NEXPTIME-complete in combined complexity and in data
complexity.
Proof. (sketch) The lower bound is a consequence of Theo-
rem 3 and the mentioned reduction of projective separabil-
ity to non-projective separability. For the upper bound, we
first observe in the full version that it is EXPTIME-complete
to decide whether a given K-type t is ALCI-complete.
Let (K, P, {b}) be a labeled ALCI-KB. For any K-type
t, let Kt = (Ot,Dt) where Ot = O ∪ {A v

d
C∈t C}

and Dt = D ∪ {A(b)} for a fresh concept name A. By
Theorem 4, (K, P, {b}) is ALCI-separable iff there exists
a K-type t that is realizable in K, b such that (i) Kt 6|=∨
a∈P ϕDcon(a),a(b) and (ii) if t is connected and ALCI-

complete, then t is not realizable in K, a for any a ∈ P .
The NEXPTIME upper bound now follows from the fact that
rooted UCQ evaluation on ALCI-KBs is in CONEXPTIME
(complement of (i)) and that ALCI-completeness of t and
realizability of t inK, a can be checked in EXPTIME. o

When the ontology in K is empty, then no connected K-
type is ALCI-complete and thus Point 2 of Theorem 4 is
vacuously true. It follows that non-projective (and projec-
tive) ALCI-separability of KBs (∅,D) coincides with FO-
separability and is CONP-complete.

5.2 Separability of GF-KBs
We study projective and non-projective (GF,GF)-
separability which turns out to behave similarly to the
ALCI case in many ways. The results are, however,
significantly more difficult to establish.

We start with an example which shows that projective and
non-projective (GF,GF)-separability do not coincide. Note
that Example 3 does not serve this purpose since the labeled
KB given there is separable by the GF-formula R(x, x). We
use the more succinct ALCI-syntax for GF-formulas and
ontologies whenever possible.
Example 5 Define K = (O,D) where

O = {> v ∃R.> u ∃R−.>, ∀x∀y(R(x, y)→ ¬R(y, x))}
D = {R(a, c), R(c, d), R(d, a), R(b, e)}

That is, D looks as follows:

a

b

c

d
e

The labeled GF-KB (K, {a}, {b}) is separated by the
ALCI-concept C = A → ∃R.∃R.∃R.A that uses the con-
cept name A as a helper symbol. In contrast, the KB is
not non-projectively GF-separable since every GF-formula
ϕ(x) with sig(ϕ) = {R} is equivalent to x = x or ¬(x = x)
w.r.t. O.

To illustrate the role of the second sentence in O, let
O− be O without this sentence. Then K− = (O−,D) is
separated by the GF-sentence obtained from the separating
ALCI-concept C above by replacing each occurrence of
A(x) in C† by ∃y(R(x, y) ∧ x 6= y ∧R(y, y)). We thus use
a non-atomic formula in place of a helper symbol.
Let openGF be the fragment of GF that consists of all open
formulas in GF whose subformulas are all open and in which
equality is not used as a guard. OpenGF was first consid-
ered in (Hernich et al. 2020) where it is also observed that a
GF formula is equivalent to an openGF formula if and only
if it is invariant under disjoint unions. Informally, openGF
relates to GF in the same way as ALCI relates to the exten-
sion of ALCI with the universal role (Baader et al. 2017).
We start our investigation with observing the following.
Theorem 6 (GF,GF)-separability coincides with
(GF, openGF)-separability, both in the projective and
in the non-projective case.
The proof of Theorem 6 uses guarded bisimulations between
pointed structures, defined in the standard way (Grädel and
Otto 2014), and openGF bisimulations as defined in (Her-
nich et al. 2020). With A,~a ∼openGF,Σ B,~b, we indicate
that there is a Σ-openGF-bisimulation between A and B

that contains (~a,~b). Arguably, openGF formulas are more
natural for separation purposes than unrestricted GF formu-
las as they use only ‘local’ quantifiers and thus speak only
about the neighbourhood of the examples. The next example
shows that this is at the expense of larger separating formu-
las (a slightly modified example shows the same behaviour
for ALCI and its extension with the universal role).
Example 6 Let

O = {A v ∀R.A, ∀xy(R(x, y)→ ¬R(y, x))}
and letD contain twoR-paths of length n, a0Ra1R . . . Ran
and b0Rb1R . . . Rbn with an labeled with E:

a0 a1 an

b0 b1 bn

{E}+

−

Consider the labeled GF-KB (K, {a0}, {b0}) with K =
(O,D). Then the GF-formula A(x) → ∃y(A(y) ∧ E(y))
separates (K, {a0}, {b0}), but we show in the full version
that the shortest separating openGF-formula has guarded
quantifier rank n.
Let K = (O,D) be a GF-KB. For each n ≥ 1, fix a tuple of
distinct variables ~xn of length n. We use cl(K) to denote the



smallest set of GF-formulas that is closed under subformulas
and single negation and contains: all formulas from O; x =
y for distinct variables x, y; for allR ∈ sig(K) of arity n and
all distinct x, y ∈ [~xn], the formulas R(~xn), ∃~y1 (R(~xn) ∧
x 6= y) where ~y1 is ~xn without x, and ∃~y2R(~xn) for all ~y2

with [~y2] ⊆ [~xn] \ {x, y}. Let A be a model of K and ~a a
tuple in A. The K-type of ~a in A is defined as

tpK(A,~a) = {ϕ | A |= ϕ(~a), ϕ ∈ cl(K)[~x]},

where cl(K)[~x] is obtained from cl(K) by substituting in any
formula ϕ ∈ cl(K) the free variables of ϕ by variables in ~x
in all possible ways, ~x a tuple of distinct variables of the
same length as ~a. Any such K-type of some ~a in a model A
of K is called a K-type and denoted Φ(~x). A K-type Φ(~x) is
connected if it contains a formula of the form ∃~y1 (R(~x) ∧
xi 6= xj). It is realizable in K,~b if there exists a model A of
K with tpK(A,~b) = Φ(~x).

Definition 3 Let K be a GF-KB. A K-type Φ(~x) is openGF-
complete if for any two pointed models A1,~b1 and A2,~b2
of K, Φ(~x) = tpK(A1,~b1) = tpK(A2,~b2) implies
A1,~b1 ∼openGF,Σ A2,~b2.

In the labeled KB K from Example 5, there is only a sin-
gle K-type Φ1(x) with free variable x and only a single K-
type Φ2(x, y) with free variables x, y, and both of them are
openGF-complete. In the KB K− from the same example,
there are multiple types of each kind and no connected type
is openGF-complete.

We could now characterize non-projective (GF,GF)-
separability in a way that is completely analogous to
Theorem 4, replacing ALCI-completeness of types with
openGF-completeness. However, this works only for la-
beled KBs (K, P, {~b}), K = (O,D), such that all constants
in [~b] can reach one another in the Gaifman graph of D.
To formulate a condition for the general case, for a tuple
~a = (a1, . . . , an) and I ⊆ {1, . . . , n} let ~aI = (ai | i ∈ I).

Theorem 7 A labeled GF-KB (K, P, {~b}) with ~b =
(b1, . . . , bn) is non-projectively GF-separable iff there exists
a model A of K such that for all ~a ∈ P :

1. Dcon(~a),~a 6→ A,~bA and

2. if the set I of all i such that tpK(A, bAi ) is connected and
openGF-complete is not empty, then

(a) J = {1, . . . , n} \ I 6= ∅ and Dcon(~aJ ),~aJ 6→ A,~bAJ or

(b) tpK(A,~bA) is not realizable in K,~a.

For projective GF-separability, Point 2 must be dropped.

In contrast to the case of ALCI, the proof requires the
careful use of bounded bisimulation and crucially relies on
the fact that evaluating rooted UCQs on GF-KBs is finitely
controllable (Bárány, Gottlob, and Otto 2014), a subject that
is picked up again in the subsequent section.

Paralleling the case of ALCI, we could now define a no-
tion of strongly incomplete GF-KBs and observe a coun-
terpart of Corollary 3. We refrain from giving the details.

Also as for ALCI, we can reduce projective (GF,GF)-
separability to non-projective (GF,GF)-separability in poly-
nomial time and show that a single unary helper symbol al-
ways suffices to separate a GF-KB that is projectively GF-
separable. The following is an immediate consequence of
Theorems 1 and 7.
Corollary 4 Projective (GF,GF)-separability coincides
with projective (GF,LS)-separability for all FO-fragments
LS ⊇ UCQ.

We obtain the following in a similar way as Theorem 5.
Theorem 8 Projective and non-projective (GF,GF)-
separability are 2EXPTIME-complete in combined com-
plexity.

The lower bounds in Theorem 8 are by reduction from sat-
isfiability in GF. We conjecture that the problems in Theo-
rem 8 are 2EXPTIME-complete also in data complexity. In
fact, it seems possible but laborious to strengthen the proof
from (Lutz 2008) that UCQ evaluation on ALCI-KBs is
2EXPTIME-hard so that it uses a fixed TBox; this would
use similar ideas as the proof of Theorem 3. Moreover, it is
not hard to reduce UCQ evaluation onALCI-KBs to rooted
UCQ evaluation on GF-KBs in polynomial time. This would
yield the conjectured result.

In the special case where the ontology is empty, Point 2
of Theorem 7 is vacuously true and thus projective and non-
projective GF-separability coincide with FO-separability.

5.3 Separability of FO2-KBs
We show that (FO2,FO2)- and (FO2,FO)-separability are
undecidable both in the projective and in the non-projective
case. We also show that these separation problems do not
coincide even in the projective case, in contrast to our re-
sults on ALCI and GF in the previous sections. This in
fact applies to all fragments of FO that have the finite model
property, but for which UCQ evaluation is not finitely con-
trollable. In the context of FO2, we generally assume that
examples are tuples of length one or two.

UCQ evaluation on FO2-KBs is undecidable (Rosati
2007) and the proof easily adapts to rooted UCQs. Together
with Theorem 1, we obtain undecidability of (FO2,FO)-
separability both in the projective and non-projective case
(which coincide, due to that theorem). The proof can fur-
ther be adapted to projective and non-projective (FO2,FO2)-
separability. It uses only a single positive example.
Theorem 9 For L ∈ {FO,FO2}, projective and non-
projective (FO2,L)-separability is undecidable, even for la-
beled KBs with a single positive example.

Example 5 shows that (FO2,FO)-separability and
(FO2,FO2)-separability do not coincide in the non-
projective case, since every FO2-formula ϕ(x) with
sig(ϕ) = {R} is equivalent to x = x or to ¬(x = x)
w.r.t. the ontology O used there. The example also yields
that projective and non-projective (FO2,FO2)-separability
do not coincide. We next show that (FO2,FO)-separability
and (FO2,FO2)-separability do not coincide also in the pro-
jective case, in a more general setting.



Let L be a fragment of FO. Evaluating queries from a
query language Q ⊆ FO is finitely controllable on L-KBs if
for every L-ontology O, database D, L-formula ϕ(~x), tuple
of constants ~c, and model A of O and D that satisfies A 6|=
ϕ(~c), there is also a finite such model A. We further say that
L has the finite model property (FMP) if evaluating queries
from L is finitely controllable on L-KBs. Finally, L has the
relativization property (Chang and Keisler 1998) if for every
L-sentence ϕ and unary relation symbol A /∈ sig(ϕ), there
exists a sentence ϕ′ such that for every structure A, A |= ϕ′

iff A|A |= ϕ where A|A is the AA-reduct of A, that is, the
restriction of A to domain AA.

FO2 has the FMP and the relativization property, but
evaluating rooted UCQs on FO2 is not finitely controllable
(Rosati 2007). The following theorem thus implies that pro-
jective (FO2,FO)-separability does not coincide with pro-
jective (FO2,FO2)-separability.

Theorem 10 Let L be a fragment of FO that has the rel-
ativization property and the FMP and such that projec-
tive (L,FO)-separability coincides with projective (L,L)-
separability. Then evaluating rooted UCQs on L-KBs is
finitely controllable.

When the ontology is empty, projective and non-
projective FO2-separability coincide with FO-separability.

6 Strong Separability
We introduce strong separability and give a characterization
of strong (FO,FO)-separability that, in contrast to Theo-
rem 1, establishes a link to KB unsatisfiability rather than to
the evaluation of rooted UCQs. We also observe that strong
projective separability and strong non-projective separabil-
ity coincide in all relevant cases. We also settle the com-
plexity of deciding strong separability in GNFO.

Definition 4 An FO-formula ϕ(~x) strongly separates a la-
beled FO-KB (K, P,N) if

1. K |= ϕ(~a) for all ~a ∈ P and
2. K |= ¬ϕ(~a) for all ~a ∈ N .

Let LS be a fragment of FO. We say that (K, P,N) is
strongly projectively LS-separable if there is an LS-formula
ϕ(~x) that strongly separates (K, P,N) and strongly (non-
projectively) LS-separable if there is such a ϕ(~x) with
sig(ϕ) ⊆ sig(K).

By definition, (projective) strong separability implies (pro-
jective) weak separability, but the converse is false.

Example 7 Let K1 = (∅,D) with

D = {votes(a, c1), votes(b, c2), Left(c1),Right(c2)}.

Then (K1, {a}, {b}) is weakly separated by the ALCI-
concept ∃votes.Left, but it is not strongly FO-separable.

Now let K2 = (O,D) with

O = {∃votes.Left v ¬∃votes.Right}.

Then ∃votes.Left strongly separates (K2, {a}, {b}).

As illustrated by Example 7, ‘negative information’ intro-
duced by the ontology is crucial for strong separability be-
cause of the open world semantics and since the database
cannot contain negative information. In fact, labeled KBs
with an empty ontology are never strongly separable. In
a sense, weak separability tends to be too credulous if the
data is incomplete regarding positive information, see Ex-
ample 1, while strong separability tends to be too sceptical
if the data is incomplete regarding negative information as
shown by Example 7.

For FO-fragments LS closed under conjunction and dis-
junction, a labeled KB (K, P,N) is strongly (projectively)
LS-separable iff every KB (K, {~a}, {~b}) is, ~a ∈ P and
~b ∈ N . In fact, if ϕ~a,~b separates (K, {a}, {b}) for all ~a ∈ P
and ~b ∈ N , then

∨
~a∈P

∧
~b∈N ϕ~a,~b separates (K, P,N).

Note that this is the setup of entity comparison.
In contrast to weak separability, projective and non-

projective separability coincide in all cases of strong sep-
arability that are relevant to this paper. From now on, we
thus omit these qualifications.
Proposition 1 Let (K, P,N) be an FO-KB and let
LS ∈ {UCQ,ALCI,GF, openGF,GNFO,FO2,FO}.
Then (K, P,N) is strongly projectively LS-separable iff it
is strongly non-projectively LS-separable.
The main observation behind Propositon 1 is that if a for-
mula ϕ strongly separates a labeled KB (K, P,N) using
some R 6∈ sig(K), then the formula ϕ′ obtained from ϕ
by replacing R by some R′ ∈ sig(K) of the same arity also
strongly separates (K, P,N).

Each choice of an ontology language L and a sepa-
ration language LS thus gives rise to a (single) strong
separability problem that we refer to as strong (L,LS)-
separability, defined in the expected way. We next charac-
terize strong (FO,FO)-separability in terms of KB unsatisfi-
ability and show that strong (FO,FO)-separability coincides
with strong (FO,UCQ)-separability. Let D be a database
and let ~a = (a1, . . . , an) and ~b = (b1, . . . , bn) be tuples of
constants in D. We write D~a=~b to denote the database ob-
tained by taking D ∪ D′, D′ a disjoint copy of D, and then
identifying ai and b′i for 1 ≤ i ≤ n.
Theorem 11 Let (K, P,N) be a labeled FO-KB, K =
(O,D). Then the following conditions are equivalent:

1. (K, P,N) is strongly UCQ-separable;
2. (K, P,N) is strongly FO-separable;

3. for all ~a ∈ P and ~b ∈ N , the KB (O,D~a=~b) is unsatisfi-
able;

4. the UCQ
∨
~a∈P ϕDcon(~a),~a strongly separates (K, P,N).

Proof. “1 ⇒ 2”, “2 ⇒ 3”, and “4 ⇒ 1” are straightfor-
ward. It remains to prove “3 ⇒ 4”. Thus assume that∨
~a∈P ϕDcon(~a),~a does not strongly separate (K, P,N). Then

there are a model A of K, ~a ∈ P , and ~b ∈ N such that
A |= ϕDcon(~a),~a(~bA). One can easily interpret the constants
of D~a=~b in such a way that A becomes a model of D~a=~b.
Thus the KB (O,D~a=~b) is satisfiable. o



Note that the UCQ in Point 4 of Theorem 11 is a concrete
separating formula of polynomial size, and that it is identi-
cal to the UCQ in Point 4 of Theorem 1. Point 3 provides
the announced link to KB unsatisfiability. Such a connec-
tion was first observed in (Funk et al. 2019). Satisfiability of
GNFO-KBs is 2EXPTIME-complete in combined complex-
ity and NP-complete in data complexity (Bárány, ten Cate,
and Segoufin 2015; Bárány, ten Cate, and Otto 2012). This
can be used to show the following.

Theorem 12 Strong (GNFO,GNFO)-separability co-
incides with strong (GNFO,LS)-separability for all
FO-fragments LS ⊇ UCQ. It is 2EXPTIME-complete
in combined complexity and CONP-complete in data
complexity.

A slightly careful argument is needed to obtain the CONP
lower bound for data complexity in the special case of GRE.
For example, one can adapt the CONP-hardness proof from
(Schaerf 1993) in a suitable way. The same is true for Theo-
rems 14, 16, and 17 below.

7 Results on Strong Separability
We study strong (L,L)-separability for L ∈
{ALCI,GF,FO2}. For all these cases, strong (L,L)-
separability coincides with strong (L,FO)-separability and
thus we can use the link to KB unsatisfiability provided
by Theorem 11 to obtain decidability and tight complexity
bounds. As in the case of weak separability, all results also
apply to the special cases of GRE and of entity comparison.

7.1 Strong Separability of ALCI-KBs
It has been shown in (Funk et al. 2019) that strong
(ALCI,ALCI)-separability is EXPTIME-complete in com-
bined complexity and CONP-complete in data complexity.
Here, we add that strong (ALCI,ALCI)-separability coin-
cides with strong (ALCI,FO)-separability. With K-types,
we mean the types introduced for ALCI in Section 5.1. We
identify a type with the conjunction of concepts in it.

Theorem 13 For every labeled ALCI-KB (K, P,N), the
following conditions are equivalent:

1. (K, P,N) is strongly ALCI-separable;
2. (K, P,N) is strongly FO-separable;
3. For all a ∈ P and b ∈ N , there do not exist models A and

B of K such that aA and bB realize the same K-type;
4. The ALCI-concept t1 t · · · t tn strongly separates

(K, P,N), t1, . . . , tn the K-types realizable in K, a.

Note that Point 4 of Theorem 13 provides concrete sep-
arating concepts. These are not illuminating, but of size at
most 2p(||O||), p a polynomial. In contrast to the case of
weak separability, the length of separating concepts is thus
independent of D.

Theorem 14 Strong (ALCI,ALCI)-separability co-
incides with strong (ALCI,LS)-separability for all
FO-fragments LS ⊇ UCQ.

7.2 Strong Separability of GF-KBs
We start with observing a counterpart of Theorem 6.
Theorem 15 Strong (GF,GF)-separability coincides with
strong (GF, openGF)-separability.
The proof is based on bisimulations. We can next prove
an analogue of Theorem 13, using K-types for GF as de-
fined in Section 5.2 in place of K-types for ALCI. An ex-
plicit formulation can be found in the full version. It fol-
lows that the size of strongly separating GF-formulas is at
most 22p(||O||) , p a polynomial, and thus does not depend on
the database. Interestingly, we can use a variation of Exam-
ple 6 to show that this is not the case for separating openGF-
formulas. Details are given in the full version. Satisfiabil-
ity of GF-KBs is 2EXPTIME-complete in combined com-
plexity and NP-complete in data complexity (Grädel 1999;
Bárány, ten Cate, and Otto 2012). We obtain the following.
Theorem 16 Strong (GF,GF )-separability coincides with
strong (GF,LS)-separability for all FO-fragments LS ⊇
UCQ. It is 2EXPTIME-complete in combined complexity
and CONP-complete in data complexity.

7.3 Strong Separability of FO2-KBs
We show that in contrast to weak separability, strong
(FO2,FO2)-separability is decidable. The proof strategy is
the same as for ALCI and GF and thus we first need a suit-
able notion of type for FO2-KBs. Existing such notions,
such as the types defined in (Grädel, Kolaitis, and Vardi
1997), are not strong enough for our purposes. For read-
ers familiar with the model theory of FO2, we remark that
they do not record sufficient information about certain spe-
cial elements in models sometimes referred to as kings. For-
tunately, it is possible to define a sufficiently strong notion
of type. We can then once more establish a theorem that
parallels Theorem 13. As in the GF case, strongly separat-
ing formulas are of size at most 22p(||O||) , p a polynomial.
Since satisfiability of FO2-KBs is NEXPTIME-complete in
combined complexity and NP-complete in data complexity
(Pratt-Hartmann 2009). We obtain the following.
Theorem 17 Strong (FO2,FO2)-separability coincides
with strong (FO2,LS)-separability for all FO-fragments
LS ⊇ UCQ. It is NEXPTIME-complete in combined
complexity and CONP-complete in data complexity.

8 Conclusion
In this article and in (Funk et al. 2019), we have started an
investigation of the separability problem for labeled KBs.
Numerous questions remain to be addressed, including the
following. What is the exact role of the UNA? What hap-
pens if (some) constants are admitted in the ontology or sep-
arating language? What happens if some symbols of the KB
are not admitted in separating formulas? What is the size
of separating formulas? What happens if one restricts the
shape or size of separating formulas?
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Bárány, V.; Gottlob, G.; and Otto, M. 2014. Querying the
guarded fragment. Logical Methods in Computer Science
10(2).
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A Preliminaries
We start by introducing tree-shaped structures and forest
models for ALCI-KBs. Assume A is a structure such that
RA = ∅ for any relation symbol R of arity > 2. We as-
sociate with A an undirected graph GA that has the set of
vertices dom(A) and an edge {d, e} whenever (d, e) ∈ RA

for some roleR. We say that A is tree-shaped ifGA is a tree
without reflexive loops and RA ∩ SA if R 6= S. We say that
A has finite outdegree if GA has finite outdegree. We call
a model A of an ALCI KB K = (O,D) a forest model of
K if A is the disjoint union of tree-shaped models BaA , for
a ∈ cons(D), extended by all R(aA, bA) with R(a, b) ∈ D.
The following result is well known.
Lemma 1 Let K be a ALCQI KB and C an ALCI con-
cept. If K 6|= C(a), then there exists a forest model A of K
of finite outdegree with a 6∈ CA.
Now let A be an arbitrary structure. The Gaifman graph
GA of A has the set of vertices dom(A) and an edge {d, e}
whenever there exists ~a ∈ RA containing d, e for some re-
lation R. A path of length n from a to b in A is a sequence
R1(~b1), . . . , Rn(~bn) with

• A |= Ri(~bi) and |[~bi]| ≥ 2 for all i ≤ n;

• a ∈ [~b1], b ∈ [~bn];

• [~bi] ∩ [~bi+1] 6= ∅, for all i < n.

We call a path p strict if all [~bi] ∩ [~bi+1] are singletons con-
taining distinct points ci and there are sets A1, . . . , An ⊆
dom(A) covering dom(A) such that [~bi] ⊆ Ai, Ai ∩Ai+1 =
{ci} and such that if i < j, then any path in the Gaifman
graph of A from an element of Ai to an element of Aj con-
tains ck for all k ∈ {i, . . . , j − 1}.

The distance distA(a, b) between a, b ∈ dom(A) is de-
fined as the length of a shortest path from a to b, if such a
path exists. Otherwise distA(a, b) = ∞. The maximal con-
nected component (mcc) Acon(~a) of ~a in A is the substructure
of A induced by the set of all b such that there exists a ∈ [~a]
with distA(a, b) <∞.

B Proofs for Section 5.1: Data Complexity
Our aim is to prove Theorem 3. We start with theALC-part.
Theorem 18 Projective (ALC,ALC)-separability is
PSPACE-complete in data complexity.
Proof. For the lower bound, by Corollary 2 and Theorem 1
it suffices to show that rooted UCQ evaluation onALC-KBs
K = (O,D) with the Gaifman graph of D connected is
PSPACE-hard. The reduction is from QBF validity. We first
define the ontology O as:

E v ∃R.(U u T ) u ∃R.(U u F )

U v ∃R.(E u (T t F ))

T ≡ ¬F
> v ∃S.>

and also fix a database D = {U(a0),M(a0)}. Set K =
(O,D). We assume w.l.o.g. that the input QBF is of the
form

ϕ = ∀x1∃x2∀x3 · · · ∃xn ψ



with ψ = ψ1 ∧ · · · ∧ψm in KNF. We show how to construct
in polynomial time a rooted UCQ qϕ such that ϕ is valid iff
K 6|= qϕ(a0). The UCQ qϕ consists of the following CQs
where x0 is the (only) answer variable and we use Ri(x, y),
i ≥ 1, as shorthand forR(z1, z2), . . . , R(zi−1, zi) with z1 =
x, zi = y, and z2, . . . , zi−1 fresh variables:
• memorize chosen truth values; for 1 ≤ i, j ≤ n with
i+ j = n:

M(x0), Ri(x0, x1), T (x1), Rj(x1, x2), Si(x2, x3), F (x3)

• make sure ψ is satisfied; for 1 ≤ i ≤ m with ψi = `1 ∨
· · · ∨ `k and the variable in `j being pij for 1 ≤ j ≤ n:

M(x0), Rn(x0, x1),
Si1(x1, y1), V 1(y1), . . . , Sik(x1, yk), V k(yk)

where V j = F if the literal `j is positive and V j = T
otherwise.

It can be verified that qϕ is as required.

For the upper bound, it suffices to show that rooted UCQ
evaluation inALC is in PSPACE when the ontology is fixed.
We do not rely on the assumption that the Gaifman graph
of the database is connected. An EL-concept is an ALC-
concept that uses only the constructors >, u, and ∃r.C. An
augmented database is a database that may contain ‘atoms’
¬C(a), C an EL-concept and an augmented ALC-KB is a
pair (O,D) with O an ALC-ontology and D an augmented
database. It has been shown in (?) that given an ALC-KB
(O,D) and a Boolean CQ q, one can compute a sequence of
augmented ALC-KBs K1, . . . ,Kn, Ki = (Oi,D) such that
K 6|= q iff at least one Ki is satisfiable. The proof straight-
forwardly extends to non-Boolean UCQs q and an easy anal-
ysis shows that when q is rooted, then we can assume that
Oi = O for all i. Each database Di is of size polynomial
in ||D|| + ||q|| and the KBs K1, . . . ,Kn, of which there are
only single exponentially many in ||D|| + ||q||, can be enu-
merated using polynomial space. It thus suffices to show
that for every fixed ALC-ontology O, given an augmented
database D it can be decided in PSPACE whether the KB
(O,D) is satisfiable.

We only sketch the procedure. Let cl(O) denote the set
of subconcepts of (concepts that occur in) O closed un-
der single negation. A type t is a subset of cl(O). We
can precompute in constant time the set S of types that are
satisfiable w.r.t. O. To check satisfiability of (O,D), we
first guess an assignment δ : dom(D) → S of satisfiable
types to constants in D such that whenever r(a, b) ∈ D and
∃r.C ∈ cl(O), then C ∈ δ(b) implies ∃r.C ∈ δ(a). It re-
mains to check whether for every a ∈ dom(D), the conceptd
C(a)∈D C is satisfiable w.r.t. O. This can be done using a

minor variation of the standardALC-worlds style procedure
that decides in PSPACE the satisfiability of anALC-concept
C without ontologies by verifying the existence tree-shaped
model of depth ||C|| using a depth-first traversal (Baader et
al. 2017). In our case, we have to take into account the ontol-
ogy O. But since it is fixed, we we can still use the same al-
gorithm searching for a tree model of depth ||

d
C(a)∈D C||:

as long as we make sure that all occurring types are from

S, it is guaranteed that we can extend the identified initial
piece of a tree model to an infinite tree model that satisfies
not only

d
C(a)∈A C, but also O. o

Theorem 19 Projective (ALCI,ALCI)-separability is
NEXPTIME-complete in data complexity.

The upper bound is immediate since rooted UCQ evalu-
ation on ALCI-KBs is in CONEXPTIME (?). For the
lower bound, it suffices to show that the following problem
is CONEXPTIME-hard for every fixed ALCI-ontology O:
given a database D whose Gaifman graph is connected, a
unary rooted UCQ q, and an a ∈ dom(D), decide whether
(O,D) |= q(a). To achieve this, we adapt a CONEXPTIME-
hardness proof from (Lutz 2008).

A tiling system T is a triple (T,H, V ), where T =
{0, 1, . . . , k − 1}, k ≥ 0, is a finite set of tile types and
H,V ⊆ T × T represent the horizontal and vertical match-
ing conditions. Let T be a tiling system and c = c0 · · · cn−1

an initial condition, i.e. an n-tuple of tile types. A mapping
τ : {0, . . . , 2n− 1}×{0, . . . , 2n− 1} → T is a solution for
T and c if for all x, y < 2n, the following holds where ⊕i
denotes addition modulo i:

1. if τ(x, y) = t and τ(x⊕2n 1, y) = t′, then (t, t′) ∈ H;
2. if τ(x, y) = t and τ(x, y ⊕2n 1) = t′, then (t, t′) ∈ V ;
3. τ(i, 0) = ci for i < n.
It is well-known that there is a tiling system T such that it
is NEXPTIME-hard to decide, given an initial condition c,
whether there is a solution for T and c. For what follows, fix
such a system T.

We first define the fixed ontology O. We use S to denote
the role composition R0;R−0 . It is convenient to think of S
as a symmetric role. To represent tiles, we introduce a con-
cept name Di for each i ∈ T . We write ∃R.C as shorthand
for

∃S.(B1 u ∃S.(B2 u ∃S.(B3 u C))).

Now O contains the following:

A v ∃R.(A u T ) u ∃R.(A u F )

A v
l

1≤i≤3

∃R.(H ′ u ∃R.(G′ uG′i))

¬M uH ′ v H

¬M uG′ v G

¬M uG′i v Gi for 1 ≤ i ≤ 3

G v t
i∈T

(Di u
l

j∈T\{i}

¬Dj)

H v t
i∈T

(¬Di u
l

j∈T\{i}

Dj)

T ≡ ¬F
> v ∃R1.>

Let c = c0 · · · cn−1 be an initial condition for T. We aim
to construct a rooted UCQ qc such that there is a solution
for T and c iff (O,D) 6|= qc(a0) where D = {A(a0)}.
When defining CQs, we write S(x, y) as shorthand for



· · ·

G1 G2 G3
G G G

represents (i, j)
represents (i + 1, j)

represents (i, j + 1)

H HH

Figure 1: The structure encoding the 2n × 2n-grid.

r(x, z), r(y, z) with z a fresh variable and R(x, y) as short-
hand for S(x, z1), S(z1, z2), S(z2, y) with z1, z2 fresh vari-
ables. Note that this corresponds to the ∃R.C abbreviation
used in the construction ofO, but without the concept names
B1, B2, B3 (we only need those to make sure that there is
really ‘progress’ whenever we introduce new successors in
Line 1 of O). We further use Ri(x, y), i ≥ 1, as shorthand
for R(z1, z2), . . . , R(zi−1, zi) where z1 = x, zi = y, and
z2, . . . , zi−1 are fresh variables. We start with several CQs
in the UCQ qc that are comparably simple to construct. In
each of them, x0 is the (only) answer variable.

Our first aim is to generate an R-tree of depth 2n whose
leaves are the roots of additional depth two gadgets as shown
in Figure 1 where all edges are ‘R-edges’ (in the sense of
the abbreviation defined above) and H , G, G1, G2, G3 are
concept names. As shown in the figure, every G-node rep-
resents a position in the 2n × 2n-grid. This representation
is in binary, that is, we encode the numbers 0, . . . , 22n − 1
in binary by assuming bit i to be one at a domain element d
if d ∈ (∃Ri+1

1 .T )I and zero if d ∈ (∃Ri+1
1 .F )I where bit

0 is the least significant bit. In principle, the tree and gad-
gets are already generated by O. However, O uses concept
names H ′, G′, and G′i in place of F , G, and Gi. We still
need to ‘activate’ the non-primed versions at the right depth
via the concepts ¬M . This is the purpose of our first CQs.
Note that, for this and all following CQs, we are interested
in models in which they are false in the sense that there is no
homomorphism h from the CQ to models of the form shown
in Figure 1 such that h maps x0 to the root of the tree. The
first CQs work together with Lines 3-5 of O. They are

R2n+1(x0, x1),M(x1)

and
R2n+2(x0, x1),M(x1).

We next achieve the correct labeling with bits at the G1-
nodes. The correct counting is given by the T and F concept
names used on the path of the tree that leads to the G1-node.
We still need to ‘push it down’ to R1-paths below G-nodes
to achieve the desired representation. For 1 ≤ i, j ≤ n with

i+ j = 2n, include the CQ

Ri(x0, x1), T (x1), Rj+2(x1, x2), G1(x2), Ri1(x2, x3), F (x3).

To make the counter value unique, we should also ensure
that ∃ri.T and ∃ri.F are not both true. We need this
both for G-nodes and for H-nodes. From now on, we use
(x bit i = V ), 0 ≤ i < 2n and V ∈ {T, F}, to abbreviate
Ri+1

1 (x, y), V (y) for a fresh variable y. For 0 ≤ i < 2n,
add the CQs

R2n+1(x0, x1), H(x1), (x1 bit i = T ), (x1 bit i = F )

and

R2n+2(x0, x1), G(x1), (x1 bit i = T ), (x1 bit i = F ).

We further want that, relative to its G1-sibling, each G2

node represents the horizontal neighbor position in the grid
and each G3-node represents the vertical neighbor position.
This can be achieved by a couple of additional CQs that are
slightly tedious. We only give CQs which express that if
a G1-node represents (i, j), then its G2-sibling represents
(i⊕2n 1, `) for some `. For 0 ≤ i < n, put

R2n(x0, x1), R2(x1, y1), G1(y1),
∧

0≤j≤i

(y1 bit j = T )

R2(x1, y2), G2(y2), (y2 bit i = F )

and

R2n(x0, x1), R2(x1, y1), G1(y1),
∧

0≤j<i

(y1 bit j = T ),

(y1 bit i = F )R2(x1, y2), G2(y2), (y2 bit i = T )

and for 0 ≤ j < i < n, put

R2n(x0, x1), R2(x1, y1), G1(y1), (y1 bit j = F ),

(y1 bit i = F ), R2(x1, y2), G2(y2), (y2 bit i = T )

and

R2n(x0, x1), R2(x1, y1), G1(y1), (y1 bit j = F ),

(y1 bit i = T ), R2(x1, y2), G2(y2), (y2 bit i = F ).

Due to Line 6 of O, every G-node is labeled with Di for a
unique i ∈ T. The initial condition is now easily guaranteed.
For 0 ≤ i < n, and each j ∈ T \ {ci}, add the CQ

R2n+2(x0, x1), G(x1), Dj(x1),

(y1 bit 0 = V0), . . . , (y1 bit n− 1 = Vn−1)

where Vi is T if the i-th bit in the binary representation of i is
1 and F otherwise. To enforce the matching conditions, we
proceed in two steps. First we ensure that they are satisfied
locally, i.e., among the threeG-nodes in each gadget. For all
i, j /∈ H , put

R2n(x0, x1), R2(x1, y1), G1(y1), Ti(y1),

R2(x1, y2), G2(y2), Tj(y2)

and likewise for all i, j /∈ V and G3 in place of G2.
Second, we enforce the following condition, which to-

gether with local satisfaction of the matching conditions en-
sures their global satisfaction:
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Figure 2: The query qi (left) and two collapsings.

(∗) if twoG-nodes represent the same grid position, then their
tile types coincide.

In (∗), a G-node can be any of a G1-, G2-, or G3-node.
To enforce (∗), we use a CQ that is less straightforward to
construct and was first used in (Lutz 2008). To prepare, we
first need more CQs to enforce two technical conditions that
will be explained later: if d is an H-node and e its G-node
successor, then

T1 d satisfies ∃si.T iff e satisfies ∃si.F for 1 ≤ i ≤ 2n;

T2 if d satisfies Dj , then e satisfies ¬Dj u
l

`∈T\{j}

Dj .

We can enforce T1 using for 0 ≤ i < 2n the CQs

Rm+1(x0, x1), H(x1), (x1 bit i = T ),

R(x1, x2), G(x2), (x2 bit i = T )

and
Rm+1(x0, x1), H(x1), (x1 bit i = F ),

R(x1, x2), G(x2), (x2 bit i = F ).

We now construct a CQ q that does not match the grid rep-
resentation iff (∗) is satisfied. In other words, q matches the
grid representation iff there are two G-nodes that agree on
the grid position but are labelled with different tile types.
Such a CQ has first been constructed in (Lutz 2008) and has
been reused several times. We only adapt it in a minor way.
We confine ourselves to a graphical presentation. q consists
of 2n+1 components q0, . . . , q2n−1, qtile that all share three
variables xans, x, and x′ with xans being the (only) answer
variable. The CQ qi, for 0 ≤ i < 2n, is shown in Figure 2.
There, every edge is an R-edge and qVi (y), V ∈ {T, F}
is shorthand for the CQ (y bit i = V ) whose edges we do
not show. The most important property of qi is that it can
collapse (by identifying variables) in the two ways shown
in the middle and right of Figure 2. Informally, the middle
collapsing represents the fact that bit i is one and the right
collapsing represents that bit i is zero. The homomorphisms
h from q0∧· · ·∧q2n−1 to the grid representation with h(xans)
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Figure 3: The query qtile (left) and one collapsing.

the root of the tree connect via h(x) and h(x′) exactly those
G-nodes that represent the same grid position. We refer to
(Lutz 2008) for more detailed arguments.

The additional component qtile of q is shown in Figure 3
for the case where T = {0, 1, 2}. It should be obvious how
to generalize this to different tile sets. There are six (in gen-
eral |O| · (|O|− 1)) relevant collapsings of qtile, very similar
to those of the CQs qi. While collapsings of qi that have
a match in the grid representation have either qTi or qFi on
both ends of the resulting path, the qtile collapses into paths
that have Di and Dj at the ends for any distinct i, j ∈ T. It
should now be obvious that the desired property (∗) holds iff
the root of the grid presentation is not an answer to q.

C Proofs for Section 5.1
Let Σ be a signature and A and B structures. A relation
S ⊆ dom(A)× dom(B) is a Σ-bisimulation between A and
B if the following conditions hold for all concept names
A ∈ Σ and roles R over Σ:

(atom) for all (d, e) ∈ S, d ∈ AA iff e ∈ AB;

(forth) if (d, e) ∈ S and (d, d′) ∈ RA, then there exists e′
with (e, e′) ∈ RB and (d′, e′) ∈ S;

(back) if (d, e) ∈ S and (e, e′) ∈ RB, then there exists d′
with (d, d′) ∈ RA and (d′, e′) ∈ S.

We say that pointed structures A, a and B, b are Σ-
bisimilar and write A, a ∼ALCI,Σ B, b if there exists a Σ-
bisimulation between A and B containing (a, b).

The following bisimulation based characterization of
(ALCI,ALCI)-separability can be proved using the fact
that bisimulations characterize the expressive power of
ALCI (Lutz, Piro, and Wolter 2011; Goranko and Otto
2007).

Theorem 20 Let (K, P, {b}) be a labeled ALCI-KB and
Σ = sig(K). Then the following conditions are equivalent:

1. (K, P, {b}) is ALCI-separable;



2. there exists a forest model A of K of finite outdegree such
that for all a ∈ P : there exists no model B of K with
B, aB ∼ALCI,Σ A, bA.

We now refine this characterization further. Let Σ be a sig-
nature. A relation S between cons(D) and dom(A) is an
ALCI(Σ)-embedding if the following conditions hold for
all concept names A and roles names R:

(atom) if (a, b) ∈ S and A(a) ∈ D, then b ∈ AA;
(bisim) if (a, b), (a, b′) ∈ S, then A, b ∼ALCI,Σ A, b′;
(forth) if R(a, a′) ∈ D and (a, b) ∈ S, then there exists b′

with (b, b′) ∈ RA and (a′, b′) ∈ S.
We write D, a �Σ A, bA iff there exists an ALCI(Σ) em-
bedding S with (a, bA) ∈ S. We obtain the following char-
acterization using Theorem 20.
Theorem 21 Let (K, P, {b}) be a labeled ALCI-KB and
Σ = sig(K). Then the following conditions are equivalent:

1. (K, P, {b}) is ALCI-separable;
2. there exists a forest model A of K of finite outdegree such

that for every a ∈ P : Dcon(a), a 6�Σ A, bA.

Let K = (O,D) be anALCI-KB and Σ = sig(K). We give
a syntactic characterization of when a K-type t is ALCI-
complete. Let R be a role. We say thatK-types t1 and t2 are
R-coherent if there exists a model A of K and nodes d1 and
d2 realizing t1 and t2, respectively, such that (d1, d2) ∈ RA.
We write t1  R t2 in this case. A sequence

σ = t0R0 . . . Rntn+1 (1)

of K-types t0, . . . , tn+1 and Σ-roles R0, . . . , Rn witnesses
ALCI-incompleteness of a K-type t if t = t0, n ≥ 1, and
• ti  Ri+1

ti+1 for i ≤ n;
• there exists a model A of K and nodes dn−1, dn ∈

dom(A) with (dn−1, dn) ∈ RA
n−1 such that dn−1 and dn

realize tn−1 and tn in A, respectively, and there does not
exist dn+1 in A realizing tn+1 with (dn, dn+1) ∈ RA

n .

Lemma 2 The following conditions are equivalent, for any
K-type t:

1. t is not ALCI-complete;
2. there is a sequence witnessing ALCI-incompleteness of
t;

3. there is a sequence of length not exceeding 2||O|| + 2 wit-
nessing ALCI-incompleteness of t.

It is decidable in EXPTIME whether a K-type t is ALCI-
complete.

Proof. “1⇒ 2”. Let Σ = sig(K). Consider the tree-shaped
model At of O whose root c realizes t such that if a node
e ∈ dom(At) realizes any K-type t1 and is of depth k ≥ 0,
then for every K-type t2 with t1  R t2 for some Σ-role R
there exists e′ realizing t2 of depth k+1 with (e, e′) ∈ RAt .
If t is notALCI-complete, then there exists a model A′t ofO
realizing t in its root c′ such that At, c 6∼ALCI,Σ At′ , c

′. But
then there is a sequence σ of the form (1), possibly with n =
0, witnessing ALCI-incompleteness of t that is realized in
At starting from c. To obtain a sequence σ with n ≥ 1

assume that there exist a role R, a K-type t′ and a node d ∈
dom(At) such that (c, d) ∈ RAt and d realizes t′ in At,
but there exists no such d′ in A′t with (c′, d′) ∈ RA′t and
d′ realizing t′ in A′t. (If no such R, t′, d exist then clearly
already n ≥ 1.) Now observe that ∃R.> ∈ t. Thus there
exists d′ realizing a K-type t′′ in A′ such that (d, d′) ∈ RA′ .
Then

tRt′′R−tRt′

is as required.

“2⇒ 3”. A straightforward pumping argument.
“3⇒ 1”. Straightforward from the definition.

To show that it is in EXPTIME to decide whether aK-type
t isALCI-complete, observe that one can construct a struc-
ture A whose domain consists of all K-types t and such that
t ∈ AA if A ∈ t and (t1, t2) ∈ RA if t1  R t2. Then t is
not ALCI-complete iff there exists a path starting at t in A
that ends with RA

n−1tnR
A
n tn+1 such that the second condi-

tion for sequences witnessing ALCI-incompleteness holds.
The existence of such a path can be decided in exponential
time. o

Theorem 4 A labeled ALCI-KB (K, P, {b}) is non-
projectively ALCI-separable iff there exists a model A of
K such that for all a ∈ P :

1. Dcon(a), a 6→ A, bA and

2. if tpK(A, bA) is connected and ALCI-complete, then
tpK(A, bA) is not realizable in K, a.

Proof. Let Σ = sig(K).
“⇒”. Assume (K, P, {b}) is ALCI-separable. By The-

orem 21, there exists a forest model A of K of finite out-
degree such that for all a ∈ P : Dcon(a), a 6�Σ A, bA.
To show that Condition 1 holds, assume that there exists
a ∈ P and a homomorphism h from Dcon(a) to A map-
ping a to bA. As h is clearly an ALCI(Σ)-embedding,
we have derived a contradiction. To show that Condition 2
holds, assume that tpK(A, bA) is ALCI-complete and that
tpK(A, bA) is realized at aB in a model B of K. By defi-
nition, B, aB ∼ALCI,Σ A, bA. But then the restriction of
the bisimulation witnessing this to Dcon(a) is an ALCI(Σ)-
embedding between Dcon(a), a and A, bA and we have de-
rived a contradiction.

“⇐”. Assume Conditions 1 and 2 hold for a model A
of K. We may assume that A is a forest-model and of
finite outdegree. If tpK(A, bA) is connected and ALCI-
complete, then by Condition 2¬(

d
C∈tpK(A,bA) C) separates

(K, P, {b}) and we are done. If tpK(A, bA) is not connected,
then it follows from Dcon(a), a 6→ A, bA that either there
exists A with A(a) ∈ D and bA 6∈ AA or there exists R
with R(a, c) ∈ D for some c. In both cases tpK(A, bA) is
not realizable in K, a. Thus ¬(

d
C∈tpK(A,bA) C) separates

(K, P, {b}) and we are done.
Assume now that tpK(A, bA) is connected and notALCI-

complete. For a model C of K and ` ≥ 0 we denote by C≤`D,b
the substructure of C induced by all nodes reachable from
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Figure 4: Construction of C.

some cC, c ∈ dom(Dcon(b)), in at most ` steps. We construct
for any ` ≥ 0 a model C of K such that

(a) C≤`D,b, b
C → A, bA;

(b) for any two distinct d1, d2 ∈ dom(C≤`D,b): C, d1 6∼ALCI,Σ
C, d2.

We first show that the theorem is proved if such a C can be
constructed.

Claim. If (a) and (b) hold for ` ≥ |D| and Dcon(a), a 6→
A, bA for a ∈ P , then Dcon(a), a 6�Σ C, bA.

By the claim and Theorem 21, (K, P, {b}) is ALCI-
separable, as required. To prove the claim, let ` ≥ |D|. As-
sume that there exists an ALCI(Σ) embedding S between
Dcon(a), a and C, bC for some a ∈ P . As there is no ho-
momorphism from Dcon(a) to A mapping a to bA, by Con-
dition (a) there is no homomorphism from Dcon(a) to C≤`D,b
mapping a to bC. Then there exist e, d, d′ with d 6= d′

and (e, d), (e, d′) ∈ S such that dist(bC, d), dist(bC, d′) ≤
|Dcon(a)|. Then C, d ∼ALCI,Σ C, d′ and we have derived a
contradiction to Condition (b) for C.

We come to the construction of C. It is illustrated in Fig-
ure 4. Take a sequence σ = tσ0R

σ
0 . . . R

σ
mσ t

σ
mσ+1 that wit-

nesses ALCI-incompleteness of tσ0 := tpK(A, bA), where
1 ≤ mσ ≤ LO := 2||O|| + 1. Note that there exists
d ∈ dom(A) such that (bA, d) ∈ (Rσ0 )A, since ∃Rσ0 .> ∈ tσ0 .

By unfolding A at all cA, c ∈ dom(Dcon(b)), we obtain a
model of K having exactly the same properties as A except
that in addition in the tree-shaped models Ac hooked to cA
all nodes of any depth k have an R-successor in Ac of depth
k + 1, for some R ∈ sig(K).

We denote this model again by A. Denote by L the set
of all nodes in A that have depth exactly ` in some Ac, c ∈
dom(Dcon(b)). We obtain C by keeping only A≤`D,b and then
attaching to every d ∈ L a tree-shaped model Fd such that
in the resulting model no node in L is Σ-bisimilar to any
other node in A≤`D,b. It then directly follows that C satisfies
Conditions (a) and (b).

We set

C0 =
l

C∈tσmσ−1

C, C1 =
l

C∈tσmσ

C, C2 =
l

C∈tσmσ+1

C,

and let S = Rσmσ−1, T = Rσmσ . Take for any d ∈ L a num-
ber Nd > |D| + 2` + 2(LO + 1) such that |Nd − Nd′ | >
2(LO + 1) for d 6= d′. Now fix d ∈ L and let t0 =
tpK(A, d). By first walking from d to bA we find a sequence
t0R0 · · ·Rndtnd+1 that witnesses ALCI incompleteness of
t0 and ends with tσmσ−1St

σ
mσTt

σ
mσ+1. By Lemma 2 we may

assume that nd ≤ LO. Let

D = ∃ΣLO .(C1 u ¬∃T.C2),

where ∃Σk.C stands for the disjunction of all ∃ρ.C with
ρ a path R1 · · ·Rm of Σ roles R1, . . . , Rm and m ≤ k.



To construct Ad consider the tree-shaped model Ac0 of O
whose root c0 realizes tnd such that if a node e ∈ dom(Ac0)
realizes any K-type t and is of depth k ≥ 0, then for every
K-type t′ with t  R t′ for some Σ-role R there exists e′
realizing t′ of depth k + 1 with (e, e′) ∈ RAc0 , except if
k ≤ Nd + LO + 1, t = tnd , R = T , and t′ = tnd+1.
Observe that Ac0 satisfies
• e ∈ DAc0 for all e with distAc0 (c0, e) ≤ Nd;

• e 6∈ DAc0 for all e with distAc0 (c0, e) > Nd+2(LO+1).
Moreover, Ac0 contains a path

e0, . . . , end . . . , end+2Nd = c0

such that
• t0 is realized in e0;

• (ei, ei+1) ∈ RAc0
i for i < nd;

• (end+2k+1, end+2k), (end+2k+1, end+2k+2) ∈ SAc0 for
0 ≤ k < Nd;

• end+2k ∈ C
Ac0
1 , for all k ≤ Nd;

• end+2k+1 ∈ C
Ac0
0 , for all k < Nd.

Then Fd is obtained from Ac0 by renaming e0 to d. Finally
C is obtained from A≤`D,b by hooking Fd at d to A≤`D,b for all
d ∈ L, see Figure 4. C is a model of K since t0 is realized
in e0. Moreover, clearly C satisfies Condition (a). For Con-
dition (b) assume d ∈ L is as above. Let Cd = ∀ΣNd .D,
where ∀Σk.D stands for ¬∃Σk.¬D. Then end+2Nd ∈ CC

d

and by construction CC
d ⊆ dom(Fd). Condition (b) now fol-

lows from the fact that there exists a path from d to a node
satisfying Cd that is shorter than any such path in C from
any other node in A≤`D,b to a node satisfying Cd. o

D Proofs for Section 5.2
D.1 Preliminaries for Guarded Bisimulations
We define guarded bisimulations, a standard tool for prov-
ing that two structures satisfy the same guarded formu-
las (Grädel and Otto 2014; Hernich et al. 2020).

Let A be structure. It will be convenient to use the nota-
tion [~a] = {a1, . . . , an} to denote the set of components of
the tuple ~a = (a1, . . . , an) ∈ dom(A)n. A set G ⊆ dom(A)
is guarded in A if G is a singleton or there exists R with
A |= R(~a) such that G = [~a]. By S(A), we denote the set
of all guarded sets in A. A tuple ~a ∈ dom(A)n is guarded
in A if [~a] is a subset of some guarded set in A.

Let Σ be a signature. For tuples ~a = (a1, . . . , an) in A

and ~b = (b1, . . . , bn) in B we call a mapping p from [~a] to
[~b] with p(ai) = bi for 1 ≤ i ≤ n (written p : ~a 7→ ~b) a
partial Σ-homomorphism if p is a homomorphism from the
Σ-reduct of A|[~a] to B|[~b]. We call p a partial Σ-isomorphism
if, in addition, the inverse of p is a partial Σ-homomorphism
with domain B|[~b].

A set I of partial Σ-isomorphisms p : ~a 7→ ~b from
guarded tuples ~a in A to guarded tuples ~b in B is called a
connected guarded Σ-bisimulation if the following hold for
all p : ~a 7→ ~b ∈ I:

(i) for every guarded tuple ~a′ in A with [~a] ∩ [~a′] 6= ∅ there
exists a guarded tuple ~b′ in B and p′ : ~a′ 7→ ~b′ ∈ I such
that p′ and p coincide on [~a] ∩ [~a′].

(ii) for every guarded tuple ~b′ in B with [~b] ∩ [~b′] 6= ∅ there
exists a guarded tuple ~a′ in A and p′ : ~a′ 7→ ~b′ ∈ I such
that p′−1 and p−1 coincide on [~b] ∩ [~b′].

Assume that ~a and ~b are (possibly not guarded) tuples in
A and B. Then we say that A,~a and B,~b are connected
guarded Σ-bisimilar, in symbols A,~a ∼openGF,Σ B,~b, if
there exists a partial Σ-isomorphism p : ~a 7→ ~b and a con-
nected guarded Σ-bisimulation I such that the condition (i)
and (ii) hold for p (Hernich et al. 2020).

Connected guarded Σ-bisimulations differ from the stan-
dard guarded Σ bismulations (Grädel and Otto 2014) in re-
quiring [~a] ∩ [~a′] 6= ∅ in Condition (i) and [~b] ∩ [~b′] 6= ∅
in Condition (ii). If we drop these conditions then we talk
about guarded Σ-bisimulations and guarded Σ-bisimilarity,
in symbols A,~a ∼GF,Σ B,~b.

In the finitary versions of (connected) guarded bisimula-
tions the Conditions (i) and (ii) are required to hold a finite
number ` ≥ 0 of rounds only. Thus, one considers sets
I`, . . . , I0 of partial Σ-isomorphisms such that I` contains
the partial Σ-isomorphism p : ~a 7→ ~b and for any p ∈ Ii
there exist p′ ∈ Ii−1 such that (i) and, respectively, (ii) hold,
for 0 < i ≤ `. If such sets exist then we say that A,~a
and B,~b are (connected) guarded Σ `-bisimilar and write
A,~a ∼`openGF,Σ B,~b and A,~a ∼`GF,Σ B,~b, respectively.

We say that A,~a and B,~b are GF(Σ)-equivalent, in sym-
bols A,~a ≡GF,Σ B,~b, if A |= ϕ(~a) iff A |= ϕ(~a) for all for-
mulas ϕ(~x) in GF(Σ). The guarded quantifier rank gr(ϕ)
of a formula ϕ in GF is the number of nestings of guarded
quantifiers in it. We say that A,~a and B,~b are GF`(Σ)-
equivalent, in symbols A,~a ≡`GF,Σ B,~b, if A |= ϕ(~a)

iff A |= ϕ(~a) for all formulas ϕ(~x) in GF(Σ) of guarded
quantifier rank at most `. We say that A,~a and B,~b are
openGF(Σ)-equivalent, in symbols A,~a ≡openGF,Σ B,~b,
if A |= ϕ(~a) iff A |= ϕ(~a) for all formulas ϕ(~x) in
openGF(Σ). We say that A,~a and B,~b are openGF`(Σ)-
equivalent, in symbols A,~a ≡`openGF,Σ B,~b, if A |= ϕ(~a) iff
A |= ϕ(~a) for all formulas ϕ(~x) in openGF(Σ) of guarded
quantifier rank at most `. The following is shown in (Grädel
and Otto 2014; Hernich et al. 2020).

Lemma 3 Let A,~a and B,~b be pointed structures and Σ a
signature. Then for L ∈ {GF, openGF} and all ` ≥ 0:

A,~a ≡`L,Σ B,~b iff A,~a ∼`L,Σ B,~b.

Moreover,

A,~a ∼L,Σ B,~b implies A,~a ≡L,Σ B,~b

and, conversely, if A and B are ω-saturated, then

A,~a ≡L,Σ B,~b implies A,~a ∼L,Σ B,~b



D.2 Preliminaries for Guarded Tree
Decompositions

We introduce guarded tree decompositions as also used for
example in (Grädel and Otto 2014; Hernich et al. 2020).
A guarded tree decomposition of a structure A is a triple
(T,E, bag) with (T,E) an undirected tree and bag a func-
tion that assigns to every t ∈ T a guarded set bag(t) in A
such that

1. A =
⋃
t∈T A|bag(t);

2. {t ∈ T | a ∈ bag(t)} is connected in (T,E), for every
a ∈ dom(A).

When convenient, we assume that (T,E) has a designated
root r which allows us to view (T,E) as a directed tree.
Also, it will be useful to sometimes allow bag(r) not to be
guarded. The difference between a classical tree decompo-
sition and a guarded one is that in the latter, the elements in
each bag must be a guarded set. While there is a classical
tree decomposition of every structure, albeit of potentially
high width (that is, maximum bag size), this is not the case
for guarded tree decompositions. We say that A is guarded
tree decomposable if there exists a guarded tree decomposi-
tion of A. Observe that for every GF-ontology O and GF-
formula ϕ(~x) such that O 6|= ϕ there exists a guarded tree-
decomposable model A of O such that A |= ¬ϕ(~a) for a
tuple ~a with [~a] ⊆ bag(r).

D.3 Partial Unfoldings
We introduce a new construction that allows us to transform
paths into strict paths. The partial unfolding A~a of a struc-
ture A along a tuple ~a = (a1, . . . , an) in dom(A) such that
distA(ai, ai+1) = 1 for all i < n is defined as the follow-
ing union of n + 1 copies of A. Denote the copies by A1,
A2, . . . ,An+1. The copies are mutually disjoint except that
Ai and Ai+1 share a copy of ai. Formally, the domain of Ai
is A× {i} except that (ai−1, i) is replaced by (ai−1, i− 1),
for all i > 1. The constants are interpreted in A1 as before
and we often denote the elements (a, 1) of A1 simply by a.
We following figure illustrates the construction.

A1

. . .

A3

A4

a3a2a1

A2

a4

R2R1 R3

We use the following properties of A~a:

Lemma 4 1. If i < j, then any path in A~a from an element
of dom(Ai) to an element of dom(Aj) contains (ak, k) for
all k ∈ {i, . . . , j − 1};

2. Let I contain for all i with 1 ≤ i ≤ n+ 1 and all guarded
(b1, . . . , bk) in A the mappings p : (b1, . . . , bk) 7→

(c1, . . . , ck), where cj = (bj , i) if bj 6= ai−1 and cj =
(bj , i− 1) if bj = ai−1. Then I is a guarded bisimulation
between A and A~a.

3. If A is a model of K, then A~a is a model of K.
4. The mapping h from A~a to A defined by setting h(b, i) = b

is a homomorphism from A~a to A.

Assume thatR0(~a0), . . . , Rn(~an) is a path in A with ai+1 ∈
[~ai] ∩ [~ai+1] for i ≤ n. Let ~ai = (a1

i , . . . , a
ni
i ) and assume

a1
i = ai+1. Then R0(~a0, 1), . . . , Rn(~an, n + 1) is a strict

path in A~a realizing the same K-types as the original path,
where

(~a0, 1) := ((a1
0, 1), . . . , (an0

0 , 1))

(~ai, i+ 1) := ((a1
i , i), (a

2
i , i+ 1) . . . , (anii , i+ 1))

D.4 Proof for Example 6
Proposition 2 Let (K, P, {b}) be as in Example 6. Then any
openGF-formula separating (K, P,N) has guarded quanti-
fier rank at least n.

Proof. Let Σ = {A,E,R} = sig(K). To prove that no
openGF-formula of depth m < n separates (K, {a0}, {b0}),
it is sufficient to prove that for all models A ofK there exists
a model B of K such that A, bA0 ∼mopenGF,Σ B, aB0 . Let A be
a model ofK. Define B as the disjoint union of the standard
unfolding A∗a0 of A at bA0 into a guarded tree-decomposable
structure (Hernich et al. 2020) and A, modified by

• interpreting aBi , 0 ≤ i ≤ n, by the strict RA∗a -chain start-
ing at bA0 and corresponding to the path bA0 R

A · · ·RAbAn ;

• adding aBn to EB;

• setting bBi := bAi , for 0 ≤ i ≤ n.

It is straightforward to check that B is a model ofK and that
B, aB0 ∼mopenGF,Σ A, bA0 , for all m < n. o

D.5 Guarded Embeddings
We introduce guarded embeddings as a tool to prove Theo-
rems 6 and 7. Let D,~a be a pointed database, A,~b a pointed
structure, ` ≥ 0, and Σ ⊇ sig(D) a signature. A partial em-
bedding is an injective partial homomorphism. A pair (e,H)

is a guarded Σ `-embedding between D,~a and A,~b if e is a
homomorphism fromD onto a databaseD′ and H is a set of
partial embeddings from D′ to A containing h0 : e(~a) 7→ ~b
and a partial embedding h from any guarded set in D′ to A
such that the following condition hold:

• if hi : ~ai 7→ ~bi ∈ H for i = 1, 2, then there exists a partial
isomorphism p : h1([~a1] ∩ [~a2]) 7→ h2([~a1] ∩ [~a2]) such
that p ◦ h1 and h2 coincide on [~a1] ∩ [~a2] and for any ~c
with [~c] = h1([~a1] ∩ [~a2]), A,~c ∼`openGF,Σ A, p(~c).

We write D,~a �`openGF,Σ A,~bA if there exists a guarded Σ

`-embedding H between D,~a and A,~b.
The following lemma shows that guarded Σ `-

embeddings determine a sequenceH`, . . . ,H0 of partial em-
beddings satisfying the (forth) condition of guarded Σ `-
bisimulations.



Lemma 5 Let (D,~a) be a pointed database and (A,~bA) be
a pointed model such that (D,~a) �`openGF,Σ (A,~bA). Then
there there exist a surjective homomorphism e : D → D′
for some database D′ and sets H`, . . . ,H0 of partial em-
beddings D′ → A such that

1. for all k ≤ `, all h ∈ Hk and all guarded sets ~c in D′
such that [~c] ∩ dom(h) 6= ∅, there exists h′ ∈ Hk−1 with
domain [~c] such that h′ coincides with h on [~c] ∩ dom(h).

2. for all k1, k2 ≤ `, all h1 ∈ Hk1 , h2 ∈ Hk2 , and all
tuples ~c1,~c2 in D′ such that [~ci] = dom(hi), we have
h1(~c) ∼min(k1,k2)

openGF,Σ h2(~c) for all ~c such that [~c] = [~c1] ∩
[~c2].

Proof. Let H be the set of partial embeddings witness-
ing (D,~a) �`openGF,Σ (A,~bA). Define H` := H . We define
Hk for k < ` by induction. Suppose Hk has been defined.
We define Hk−1. We assume that for all h1 ∈ Hk, h2 ∈ H`

having intersecting domains [~c1], [~c2], with ~c2 being guarded
the following condition holds:

(*) for any tuple ~c in D′ such that [~c] = [~c1] ∩ [~c2], there
is a partial isomorphism p : h1(~c) 7→ h2(~c) witnessing
h1(~c) ∼kopenGF,Σ h2(~c)

~c1

~c2

h1 ∈ Hk

h2 ∈ H`

∼kp qh1,h2

∼k−1

Now assume that h1, h2 satisfying the conditions above are
given. As [h2(~c2)] is guarded (by ~c2 being guarded and h
a partial homomorphism) and intersects The h2[[~c1] ∩ [~c2]],
and as p witnesses a openGF Σ k-bisimulation, there exists
a partial isomorphism qh1,h2 with domain [h2(~c2)] witness-
ing h2(~c2) ∼k−1

openGF,Σ qh1,h2
(h2(~c2)) and that coincides with

p−1 on h2[[~c1]∩ [~c2]]. We then include qh1,h2 ◦◦h2 inHk−1.
This is well-defined, as the assumption (*) holds for all k ≤
`:

• If k = `, then (*) is stated in the definition of Σ `-guarded
embeddings.

• If 0 < k < ` and (*) holds for k, let h1 ∈ Hk−1, h2 ∈ H`

with intersecting domains [~c1], [~c2] and ~c2 guarded be
given. Then h1 = qη1,η2 ◦η2 for some η1 ∈ Hk, η2 ∈ H`,
by definition of Hk−1. By definition of Σ `-guarded em-
beddings, as η2 and h2 are both in H` and have intersect-
ing domains [~c1] and [~c2], there exists a partial isomor-
phism p′ witnessing η2(~c) ∼`openGF,Σ h2(~c) for any ~c such
that [~c] = [~c1] ∩ [~c2]. Then, by composition of bisimula-
tions, p := p′|η2[~c] ◦ (q−1

η1,η2)|h1[~c] is a partial isomorphism

witnessing h1(~c) ∼k−1
openGF,Σ h2(~c) i.e. (*) holds for k − 1.

~c1

~c2

η2 ∈ H`

h2 ∈ H
`

qη1,η2

∼k−1

h1 ∈ Hk−1

∼`p′

p
′ ◦ q−

1
η1,η2

∼k−1

Elements of Hk−1 are partial embeddings, as compo-
sitions of partial isomorphisms with partial embeddings.
We thus have a homomorphism e : D → D′ and sets
H`, . . . ,H0 of partial embeddings D′ → A. We now prove
that Conditions 1 and 2 hold.

1. Let 0 ≤ k ≤ ` and h1 ∈ Hk with domain [~c1]. Let ~c2 be
guarded in D′ such that [~c1] ∩ [~c2] 6= ∅. By definition of
`-guarded embeddings, every guarded tuple is the domain
of some embedding in H = H`. In particular there ex-
ists h2 ∈ H` with domain [~c2]. Then Condition (*) holds,
with matching notation. Consider qh1,h2

and p as defined
above. A witnessing partial homomorphism h′ can be de-
fined as h′ := qh1,h2

◦ h2 ∈ Hk−1. Since p−1 ◦ h2 coin-
cides with h1 on [~c1]∩ [~c2], and qh1,h2

coincides with p−1

on h2[[~c1] ∩ [~c2]], it follows that h′ coincides with h1 on
[~c1] ∩ [~c2].

2. Let h1 ∈ Hk1 , h2 ∈ Hk2 with intersecting domains
[~c1], [~c2]. By definition of `-guarded embeddings, there
exists h′2 in H = H` with domain [~c2]. By (*), for every ~c
in D′ such that [~c] = [~c1] ∩ [~c2] we have h1(~c) ∼k1openGF,Σ

h′2(~c) and h2(~c) ∼k2openGF,Σ h′2(~c), thus h1(~c) ∼min(k1,k2)
openGF,Σ

h2(~c) by composition of bisimulations.
o

Observe that if H`, . . . ,H0 satisfying the conditions of
Lemma 5 exist, then H` ⊆ · · · ⊆ H0: let k ≤ ` and ~c 7→
~d ∈ Hk. By condition (1), since [~c] ∩ [~c] 6= ∅ there exists
~c 7→ ~d′ ∈ Hk−1 that coincides with ~c 7→ ~d on [~c], i.e. ~c 7→
~d ∈ Hk−1.

Theorem 22 Let (K, P, {~b}) be a labelled GF-KB and Σ =
sig(K). Then the following conditions are equivalent:

1. (K, P, {~b}) is openGF-separable.

2. (K, P, {~b}) is GF-separable.
3. there exists a (finite) model A of K and ` ≥ 0 such that

for all models B of K and ~a ∈ P : B,~aB 6∼`GF,Σ A,~bA.
4. there exists a (finite) model A of K and ` ≥ 0 such that

for all ~a ∈ P : Dcon(~a),~a 6�`openGF,Σ A,~bA.
5. there exists a (finite) model A ofK and ` ≥ 0 such that for

all models B ofK and all~a ∈ P : B,~aB 6∼`openGF,Σ A,~bA.

Proof. The implications “1⇒ 2”, “2⇒ 3”, and “5⇒ 1” are
straightforward. We prove “3⇒ 4” and “4⇒ 5”.

“3 ⇒ 4”. Take a model A of K and ` ≥ 0 witnessing
Condition 3. We may assume that ` exceeds the maximum



guarded quantifier rank of formulas inK. We show that Con-
dition 4 holds for A and `. Assume for a proof by contradic-
tion that there exists ~a0 ∈ P such that there exists a guarded
Σ `-embedding (e,H) from Dcon(~a0),~a0 to A,~bA. Assume
e : Dcon(~a0) 7→ D′ and that e(~a0) = ~a′0. We construct a
model B as follows: first take a copy B′ of A. For the
constants c ∈ dom(D) \ dom(Dcons( ~a0)), we define cB

′
as

the copy of cA in B′. The interpretation of the constants in
Dcons(~a0) will be defined later. We define B as the disjoint
union of B′ and B′′, where B′′ is defined next. We denote
by H ′ the set obtained from H with ~a′0 7→ ~bA removed if ~a0

is not guarded. Now let

dom(B′′) = (H ′ × dom(A))/∼,

where ∼ identifies all (h, d), (h′, d′) such that (h, d) =
(h′, d′) or there exists c ∈ dom(h) ∩ dom(h′) such that
h(c) = d and h′(c) = d′. Denote the equivalence class of
(h, d) w.r.t. ∼ by [h, d]. For any constant c in Dcon(~a0), we
set cB

′′
= [h, h(e(c))], where h ∈ H ′ is such that e(c) ∈

dom(h). Observe that this is well defined as (h′, h′(e(c))) ∼
(h, h(e(c))) for any h′ ∈ H ′ with e(c) ∈ dom(h′). We
define the interpretation RB′′ of the relation symbol R by
setting for e1, . . . , en ∈ dom(B′′), B′′ � R(e1, . . . , en) if
there exists h ∈ H ′ and c1, . . . , cn ∈ dom(A) such that
ei = [h, ci] and A � R(c1, . . . cn). Then, the map

fh : dom(A)→ (H ′ × dom(A))/∼

c 7→ [h, c]

is an embedding from A to B′′, by definition.
We show that B,~aB0 ∼`GF,Σ A,~bA. By construction and

the assumption that ` exceeds the guarded quantifier rank of
K it also follows that B is a model of K. It thus follows
that we have derived a contradiction to the assumption that
A and ` witness Condition 3.

To define a guarded Σ `-bisimulation Ĥ`, . . . , Ĥ0, let Si
be the set of p : ~c 7→ ~d witnessing that A,~c ∼iopenGF,Σ A, ~d,
where ~c is guarded. Then include in Ĥi

• all ~c′ 7→ ~c, where ~c′ is the copy in B′ of the guarded tuple
~c in A;

• all compositions p ◦ (f−1
h )|[~d] for any guarded tuple ~d in

the range of fh and p ∈ Si;

In addition, include in ~aB0 7→ ~bA in all Ĥi, 0 ≤ i ≤ `. We
show that Ĥ`, . . . , Ĥ0 is a guarded Σ `-bisimulation.

For any i ≤ ` any g ∈ Ĥi is clearly a partial Σ-
isomorphism, either trivially if dom(g) ⊆ B′ or by com-
position of partial Σ-isomorphisms if dom(g) ⊆ B′′. By
definition, Ĥ` contains ~aB0 7→ ~bA. We thus only need to
check the “Forth” and “Back” conditions for guarded `-
bisimulations. Let g ∈ Ĥk for some k with 1 ≤ k ≤ `.
By definition of Ĥk, we have either dom(g) ⊆ B′ or
dom(g) ⊆ B′′. In each case, we show that for any guarded
~c in B and guarded ~d in A, there exists g′0 ∈ Ĥk−1 with
domain [~c] that coincides with g on [~c]∩ dom(g) (Forth) and

there exists g′1 ∈ Ĥk−1 such that dom((g′1)−1) = [~d] and
(g′1)−1 coincides with g−1 on [~d] ∩ im(g) (Back).

First assume that [~c]∩ dom(g) = ∅. Then, as ~c is guarded
in B, it is either included in B′ or included in B′′. If ~c is
included in B′, then the partial isomorphism mapping ~c to
its copy in A is in Ĥk−1, as required. If ~c is in B′′, then
~c can be written ([h, c1], . . . , [h, cn]) for some h ∈ H ′ and
c1, . . . , cn ∈ dom(A) as it is guarded. But then (fh)−1

|[~c] ∈
Ĥk−1 is as required.

The case [~d] ∩ im(g) = ∅ is similar. Assume ~d =

(d1, . . . , dn) and let [h, ~d] := ([h, d1], . . . , [h, dn]) ∈ B′′

for any h ∈ H ′. Then (fh)−1

|[h,~d]
∈ Ĥk−1 is as required, for

any h ∈ H ′. We now focus on proving (Forth) and (Back)
assuming intersections are not empty.

(1) Suppose dom(g) ⊆ B′.
(Forth) Let ~c be guarded in B such that [~c]∩ dom(g) 6= ∅.

We show there exists g′ ∈ Ĥk−1 that coincides with g on
dom(g)∩dom(g′), such that [~c] = dom(g′). By construction
of B, [~c] ∩ dom(g) 6= ∅ and dom(g) ⊆ B′ imply [~c] ⊆ B′.
By definition of Ĥk, dom(g) is the copy of im(g) in B′.
Therefore simply take g′ to be the partial isomorphism ~c 7→
~d such that ~c is the copy in B′ of ~d; it clearly coincides with
g on the intersection of their domains, and is in Ĥk−1 which
contains every “copying” function, by definition.

(Back) Let ~d be guarded in A such that [~d] ∩ im(g) 6= ∅.
Take ~c to be the copy in B′ of ~d. Then, the partial isomor-
phism g′ := ~c 7→ ~d is in Ĥk−1 by definition, and is such that
(g′)−1 coincides with g−1 on im(g) ∩ im(g′).

(2) Suppose dom(g) ⊆ B′′.
(Forth) Write dom(g) as ([h1, c1], . . . , [hn, cn]) with

h1, . . . , hn ∈ H ′ and (c1, . . . , cn) =: ~c a tuple in A. We
want to prove that for any ([h′1, c

′
1], . . . , [h′m, c

′
m]) guarded

in B that intersects dom(g) there exists g′ ∈ Ĥk−1

with domain ([h′, c′1], . . . , [h′, c′m]) that coincides with g on
dom(g) ∩ dom(g′). As ([h′1, c

′
1], . . . , [h′m, c

′
m]) is guarded

in B and intersects dom(g) which is in B′′, it also has to
be contained in B′′, by construction of B. The fact it is
guarded implies we can write it as ([h′, c′1], . . . , [h′, c′m])
for some h′ ∈ H ′, with (c′1, . . . , c

′
m) being guarded in A,

again by construction of B. As for ([h1, c1], . . . , [hn, cn]),
we can write it as ([h, c1], . . . , [h, cn]) for some h ∈ H ′, ei-
ther because it is guarded or because it is equal to ~aB, i.e.
([h, h(a1)], . . . , [h, h(an)]) for some h ∈ H ′. By definition
of Ĥk, we can write g as p ◦ (f−1

h )|dom(g) for some p ∈ Sk,
and we know g′ has to be in the form p′ ◦ (f−1

h′ )|dom(g′) for
some p′ ∈ Sk−1. For notation purposes, we write [h,~c] =
([h, c1], . . . , [h, cn]) and [h′,~c′] = ([h′, c′1], . . . , [h′, c′m]).

Case 1. h = h′. Then [h,~c] ∩ [h,~c′] 6= ∅ implies
[~c] ∩ [~c′] 6= ∅. Then, since p ∈ Sk and dom(p) = [~c], by
definition of guarded k-bisimulations there exists p′ ∈ Sk−1

with domain [~c′] that coincides with p on [~c] ∩ [~c′]. Then
g′ := p′ ◦ (f−1

h )|[h,~c′] ∈ Ĥk−1 is as required.



Case 2. h 6= h′. Figure 5 illustrates the following construc-
tion. For all [h, ci] ∈ [[h,~c]] ∩ [[h′,~c′]] we have that ci =
h(di) and c′i = h′(di) for some di ∈ dom(h) ∩ dom(h′).
For any tuple ~d in D′ such that [~d] = dom(h) ∩ dom(h′),
we have A, h′(~d) ∼`GF,Σ A, h(~d), witnessed by some partial
isomorphism q : [h′(~d)] → [h(~d)]. Also, via p, we have
A, ~d′ ∼kGF,Σ A, p(~d′) for any ~d′ such that [~d′] = [h(~d)] ∩ [~c].
By composition, for any ~d′′ such that [~d′′] = [h′(~d)] ∩ [~c′]

we have A, ~d′′ ∼kGF,Σ A, p(q(~d′′)). Because p ◦ q is in
Sk (by definition of Sk) and because [~c′] trivially inter-
sects [h′(~d)] ∩ [~c′], there exists, by definition of guarded
k-bisimulations, a partial isomorphism p′ ∈ Sk−1 of do-
main [~c′] that coincides with p ◦ q on [h′(~d)] ∩ [~c′]. Then,
g′ := p′ ◦ (f−1

h′ )|[h′,~c′] is the desired partial isomorphism in
Ĥk−1.

(Back) The construction is illustrated in Figure 6. Let
~d be guarded in A such that [~d] ∩ im(g). We show there
exists g′ ∈ Ĥk−1 with image [~d] such that (g′)−1 co-
incides with g−1 on [~d] ∩ im(g). By definition of Ĥk

we can write g = p ◦ (f−1
h )|dom(g) for some h ∈ H ′

and p ∈ Sk, and we know g′ has to be of the form
p′ ◦ (f−1

h′ )|[~d] for some h′ ∈ H ′. By definition of guarded k-

bisimulations there exists p′ ∈ Sk−1 such that im(p′) = [~d]
and p′−1 coincides with p−1 on im(p) ∩ im(p′). Given
that im(g) = im(p), if we write ~d = (d1, . . . , dn) and
[h, p′−1(~d)] := ([h, p′−1(d1)], . . . , [h, p′−1(dn)]) ∈ B′′,
then g′ = p′ ◦ (fh)−1

|[h,p′−1(~d)]
∈ Ĥk−1 is as required.

“4 ⇒ 5” For an indirect proof, suppose I2`, . . . , I0 is a
guarded Σ 2`-bisimulation between B,~aB and A,~bA for
a model B of K, where ` ≥ |D|. We may assume that
Ii+1 ⊆ Ii for i < 2`. Let D′ be the restriction of B to
{cB | c ∈ cons(Dcon(~a))}, where we regard the elements cB

as constants. Define e : Dcon(~a) → D′ by setting e(c) = cB.
Let H contain h0 : ~aB 7→ ~bA and, for every guarded tuple ~d
in D′ any h : ~d 7→ ~c ∈ I`. It is easy to show that (e,H) is a
guarded Σ `-embedding: assume that hi : ~ci 7→ ~di ∈ H for
i = 1, 2. Let X1, X2 be the images of [~c1] ∩ [~c2] under hi
and ~d such that [~d] = X1. Then we have hi : ~ci 7→ ~di ∈ I`,
for i = 1, 2. Let p be the restriction of h2 ◦ h−1

1 to X1. By
definition p is a partial isomorphism from X1 to X2. It is as
required as

A, ~d ∼`openGF,Σ B, h−1
1 (~d) ∼`openGF,Σ A, h2(h−1(~d)).

o

D.6 Proof of Theorem 7
Let K = (O,D) be a GF-KB and Σ = sig(K). We give
a syntactic description of when a K-type Φ(x) is openGF-
complete. A guarded K-type Φ(~x) is a K-type that contains
an atom R(~x). Call K-types Φ1(~x1) and Φ2(~x2) coherent if

there exists a model A of K satisfying Φ1 ∪Φ2 under an as-
signment µ for the variables in [~x1]∪[~x2]. For aK-type Φ(~x)
and a subsequence ~xI of ~x we denote by Φ|~xI the subset of
Φ containing all formulas in Φ with free variables from ~xI .
Φ|~xI is called the the restriction of Φ of ~xI . Observe that K-
types Φ1(~x1) and Φ2(~x2) are coherent iff their restrictions to
[~x1] ∩ [~x2] are logically equivalent. Assume a K-type Φ(x)
is given. A sequence

σ = Φ0(~x0), . . . ,Φn(~xn),Φn+1(~xn+1)

witnesses openGF-incompleteness of Φ if Φ is the restriction
of Φ0 to x, n ≥ 0, and all Φi, 0 ≤ i ≤ n + 1, are guarded
K-types each containing at ¬(x = y) for some variables x, y
(we say that the Φi are non-unary) such that [~xi] ∩ [~xi+1] 6=
∅, all Φi,Φi+1 are coherent, and there exists a model A ofK
and a tuple~an in A such that A |= (Φn∧¬∃~x′n+1Φn+1)(~an),
where ~x′n+1 is the sequence ~xn+1 without [~xn] ∩ [~xn+1].

Lemma 6 The following conditions are equivalent, for any
K-type Φ(x):

1. Φ(x) is not openGF-complete;
2. there is a sequence witnessing openGF-incompleteness of

Φ(x);

3. there is a sequence of length not exceeding 22||O|| + 2
witnessing openGF incompleteness of Φ(x).

It is decidable in 2EXPTIME whether a K-type Φ(x) is
openGF complete.

Proof. Let Σ = sig(K). It is straightforward to construct a
guarded tree decomposable model A of O with tree decom-
positon (T,E, bag) and root r such that Φ(x) is realized in
bag(r) by a and for every K-type Ψ1(~x) realized in some
bag(t) by ~a and every K-type Ψ2(~y) coherent with Ψ1(~x)
there exists a successor t′ of t in T such that Ψ1(~x)∪Φ2(~y)
is realized in bag(t) ∪ bag(t′) in A under an assignment µ
of the variables [~x] ∪ [~y] such that µ(~x) = ~a. Thus, A satis-
fies ∀~x(Ψ1 → ∃~y′Ψ2) for any coherent pair Ψ1(~x),Ψ2(~y),
where ~y′ is ~y without [~x] ∩ [~y].

“1⇒ 2”. If Φ(x) is not openGF-complete, then there ex-
ists a guarded tree decomposable model A′ of K with root r
which realizes Φ(x) in bag(r) at a′ such that A, a 6∼openGF,Σ
A′, a′. But then A, a realizes a sequence σ that witnesses
openGF-incompleteness of Φ(x), except that possibly there
exists already a guarded non-unary K-type Φ0(~x0) which
is realized in some ~a0 in A with a ∈ [~a0] but there
is no ~a′0 in A′ containing a′ and realizing Φ0(~x0). Let
R0(~x0) ∈ Φ0. Then, because we included the formulas
∃~xi(R(~x) ∧ xi 6= xj) in cl(K), there exists a non-unary
guarded K-type Φ′(~x′0) containing R0(~x′0) such that there
exists a tuple ~a′0 in A′ containing a′ realizing Φ′. We obtain
a sequence σ of any length by first taking Φ′(~x0) an arbitrary
number of times and then appending Φ0.

“2⇒ 3”. This can be proved by a straightforward pump-
ing argument. This is particularly straightforward if one
works with a sequence σ realized by a strict path. Consider
a sequence

σ = Φ0(~x0), . . . ,Φn(~xn),Φn+1(~xn+1)



Figure 5: Illustration of proof of (Forth) condition for Ĥ`, . . . , Ĥ0.
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g′ ∈ Ĥk−1
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that witnesses openGF-incompleteness of Φ(x) and a model
A of K satisfying A |= (Φn ∧ ¬∃~x′n+1Φn+1)(~an). We may
assume (by possibly repeating Φn once in the sequence) that
there is a model A of K with a path R0(~a0), . . . , Rn(~an)
such that ~ai realizes Φi and A |= (Φn∧¬∃~x′n+1Φn+1)(~an).
We now modify A in such a way that we obtain a sequence
witnessing openGF-incompletensss of Φ(x) which is real-
ized by a strict path. Choose a sequence ~a = (a1, . . . , am)
such that a1 = a for the node a in ~a0 realizing Φ(x),
ai 6= ai+1 and ai, ai+1 ∈ [~aj ] for some j ≤ n, for all
i < m, and am ∈ ~an. Clearly one can find such a sequence
for some m ≤ 2n. Then take the partial unfolding A~a of
A along ~a. In A~a we find the required strict path Lemma4.
Pumping on this path is straightforward.

“3⇒ 1”. Straightforward.
The 2EXPTIME upper bound for deciding whether a K-

type is openGF-complete can now be proved similarly to the
EXPTIME upper bound for deciding whether a type defined
by an ALCI-KB is ALCI-complete. o

Lemma 7 A K-type Φ(~x) is openGF-complete iff all re-
strictions Φ(x) of Φ to some variable x in ~x are openGF-
complete.

Proof. Assume first that Φ(~x) is not openGF-complete. One
can show similarly to the proof of Lemma 6 that (i) or (ii)
holds:

(i) there exists a guarded K-tuple Φ0(~x0) sharing with ~x
the variables ~xI for some nonempty I ⊆ {1, . . . , n} such
that for ~x′0 the variables in ~x0 without ~xI the following
holds:

1. there exists a model A of K realizing Φ in a tuple ~a such
that A |= (∃~x′0Φ0)(~aI);

2. there exists a model A′ of K realizing Φ in a tuple ~a such
that A′ 6|= (∃~x′0Φ0)(~aI).

(ii) there exists a guarded K-tuple Φ0(~x0) shar-
ing with ~x the variables ~xI for some nonempty
I ⊆ {1, . . . , n} and a sequence of guarded K-tuples
Φ1(~x1), . . . ,Φn(~xn),Φn+1(xn+1) with n ≥ 1 such
that Φ(~x) ∪ Φ(~x0) is satisfiable in a model of K and
Φ0(~x0),Φ1(~x1), . . . ,Φn(~xn),Φn+1(xn+1) satisfy the con-
ditions of a sequence witnessing non openGF-completeness,
except that no type Φ(x) of which is witnesses non oprnGF-
completeness is given).

If (ii), then we are done by taking any variable x in xI
and the restriction Φ|x of Φ to x. Then Φ|x is not openGF-
complete. Now assume that (i) holds. We are again done
if I contains at most one element (we can simply take
the type of tpK(A, aI) then). Consider a relation R0 with
R0(~x0) ∈ Φ0. By the closure condition on K-types, we
have A′ |= ∃~x′0R0(~x0)(~aI). Take an extension ~a1 of ~aI
such that A′ |= R0(~a1). Take any a ∈ ~aI , the unary K-type
Φ(x) = tpK(A′, a), and the K-type Φ1(~x1) := tpK(A′,~a1).
Then the sequence Φ1,Φ0 shows that Φ(x) is not openGF-
complete. o

Lemma 8 LetD,~a be a pointed database, A,~b be a pointed
structure, and ` ≥ |D|. If Dcon(~a),~a �`openGF,Σ A,~b and

Dcon(~a),~a 6→ A,~b, then there exist d, d′ with d 6= d′ in

A
≤|D|
~b

such that A, d ∼`−|D|openGF,Σ A, d′.

Proof. Let e,H`, . . . ,H0 witness Dcon(~a),~a �`openGF,Σ

A,~b as in Lemma 5. We define a sequence of mappings
S0, . . . , S` with Sk ⊆ H`−k for k ≤ ` as follows. Define
S0 = {e(~a) 7→ ~b} and assume that Sk has been defined
for some k < `. To define Sk+1, choose for every h ∈ Sk
and all guarded ~c intersecting dom(h) an h′ ∈ H`−k−1 with
domain [~c] that coincides with h on [~c]∩dom(h) (this is pos-
sible by Condition 1 of Lemma 5) and add it to Sk+1. Define
h =

⋃
(
⋃
k≤|D| Sk). We can see h as a set of pairs from

dom(D′con(e(~a)))× dom(A),

which may or may not be functional. We know h is not a
homomorphism from D′con(e(~a)), e(~a) to A,~bA because oth-

erwise h ◦ e would witness Dcon(~a),~a→ A,~bA. However,
* D′ � R(c1, . . . , cn) implies A � R(d1, . . . , dn) for every

(c1, d1), . . . , (cn, dn) ∈ h and every n-ary R ∈ Σ, since
h is a union of partial homomorphisms

* for every c ∈ D′con(e(~a)) there exists h ∈⋃
k≤distD′ (c,e(~a)) Sk such that c ∈ dom(h), so h is

defined on the entire underlying set of D′con(e(~a)), as
distD′(c, e(~a)) ≤ |D′| trivially and |D′| ≤ |D| as e is
surjective

* e(~a) 7→ ~b is included in h
Therefore the only possible reason as to why h is not a
homomorphism witnessing Dcon(~a),~a → A,~b is that h is
not functional, i.e. there exist c ∈ dom(D′con(e(~a))) and
d, d′ ∈ dom(A) such that d 6= d′ and (c, d), (c, d′) ∈ h. As
every h included in h is functional, that implies there exist
h, h′ ∈

⋃
k≤|D| Sk such that h(c) = d and h′(c) = d′. There

exist k1, k2 ≥ `− |D| such that h ∈ Hk1 and h′ ∈ Hk2 . By
condition (2) of Lemma 5 we get A, d ∼min(k1,k2)

openGF,Σ A, d′,

hence A, d ∼`−|D|openGF,Σ A, d′. Finally, d, d′ ∈ A
≤|D|
~b

follows

from the fact that distA(h(c),~b) ≤ k for any c ∈ dom(h)
such that h ∈ Sk. This can be proved by induction on k.

o

Theorem 7 A labeled GF-KB (K, P, {~b}) with ~b =
(b1, . . . , bn) is non-projectively GF-separable iff there exists
a model A of K such that for all ~a ∈ P :

1. Dcon(~a),~a 6→ A,~bA and

2. if the set I of all i such that tpK(A, bAi ) is connected and
openGF-complete is not empty, then

(a) J = {1, . . . , n} \ I 6= ∅ and Dcon(~aJ ),~aJ 6→ A,~bAJ or

(b) tpK(A,~bA) is not realizable in K,~a.

For projective GF-separability, Point 2 must be dropped.



Proof. “⇒”. Assume (K, P, {~b}) is non-projectively GF-
separable. Let Σ = sig(K). By Theorem 22, there exists
a finite model A of K and `0 ≥ 0 such that for all ~a ∈ P :
Dcon(~a),~a 6�`0openGF,Σ A,~bA. Assume ~a ∈ P is given. As

Dcon(~a),~a → A,~bA implies Dcon(~a),~a �`openGF,Σ A,~bA for
all ` ≥ 0, we obtain that Condition 1 holds. To show that
Condition 2 holds for A and ~a, assume that I as defined
in the theorem is not empty and that tpK(A,~bA) is realiz-
able in K,~a. Take a model B witnessing this. Consider
the maximal sets I1, . . . , Ik ⊆ {1, . . . , n} such that ~bBIj is
in a connected component Bj of B. Then there exists at
least one j such that tpK(A,~bAIj ) is not openGF-complete or

not connected: otherwise B,~aBIj ∼openGF,Σ A,~bAIj for all j

and so Dcon(~aIj ),~aIj �`openGF,Σ A,~bAIj for all ` ≥ 0, thus

Dcon(~a),~a �`openGF,Σ A,~bA, for all ` ≥ 0, a contradiction.
For any j such that tpK(A,~bAIj ) is not openGF-complete

we have by Lemma 7 that tpK(A,~bAi ) is not openGF-
complete for any i ∈ Ij . Therefore J 6= ∅. Assume now for
a proof by contradiction that Dcon(~aJ ),~aJ → A,~bAJ . Then
Dcon(~aJ ),~aJ �`openGF,Σ A,~bAJ , for any ` ≥ 0. By Lemma 7,
tpK(A,~bAI ) is openGF-complete and so B,~aBI ∼openGF,Σ

A,~bAI , and therefore Dcon(~aI),~aI �`openGF,Σ A,~bAI , for ev-
ery ` ≥ 0. As Dcon(~aI) and Dcon(~aJ ) are disjoint, it follows
that Dcon(~a),~a �`openGF,Σ A,~bA for any ` ≥ 0, and we have
derived a contradiction.

“⇐”. Assume Conditions 1 and 2 hold for some model A
ofK for all ~a ∈ P . As GF is finitely controllable there exists
a finite such model A. Assume that the set I defined in the
theorem is empty. (The case in which it is not empty is very
similar to this case and omitted.)

Let X be the set of i such that Φi(x) = tpK(A, bAi ) is not
connected. If X = {1, . . . , n}, then ¬

∧
i∈X Φi(xi) sepa-

rates (K, P, {~b}) and we are done. Otherwise, let Ai, i ∈ X ,
be the maximal connected components of A containing the
singleton bAi . Our aim is to show that Dcon(~a),~a 6�`openGF,Σ

C,~bA for a variant C of A and for sufficiently large `, where
Σ = sig(K).

We partition the remaining part of A without Ai, i ∈ X ,
into components as follows. Define an equivalence relation
E on the class of K-types Φ(x) with one free variable x
such that (Φ(x),Ψ(x)) ∈ E iff there exists a model A of
K and nodes a, b in dom(A) such that a, b are in the same
connected component in A and a and b realize Φ and Ψ,
respectively. Let A′ and {E | E ∈ K} be the maximal
components of A without {bAi | i ∈ X} such that:

• all nodes in any E are connected to a node in {cA |
c ∈ dom(D)} and all K-types Φ(x) realized in E are E-
equivalent;

• no node in A′ is connected to a node in {cA | c ∈
dom(D)}.

Observe that A is the disjoint union of Ai, i ∈ X , A′, and the
structures in K. Let E ∈ K and let D′ be the restriction of

D to the constants c ∈ cons(D) such that cE ∈ dom(E). Let
I0 be the set of i with bAi ∈ dom(E). We aim to construct a
model C of (O,D′) such that

(∗) if Dcon(~aI0 ),~aI0 6→ A,~bAI0 , then there exists ` ≥ 0 such

that Dcon(~aI0 ),~aI0 6�`openGF,Σ C,~bAI0 .

For any model C ofD′ and d ∈ dom(C) we let the distance
distC(D′, d) = ` iff ` is minimal such dist(cC, d) ≤ ` for at
least one c ∈ cons(D′). We denote by C≤`D′ the substructure
of C induced by the set of nodes d in C with distC(D′, d) ≤ `.
We construct for any ` ≥ 0 a model C of O that coincides
with E on {cE | c ∈ dom(D′)} such that C≤`D′ is finite and
there exists `′ ≥ ` with

(a) C≤`D′ ,
~bAI0 → A,~bAI0 ;

(b) for any two distinct d1, d2 ∈ dom(C≤`D′ ), C, d1 6∼`
′

openGF,Σ
C, d2.

We first show that (∗) follows. Assume `′ is such that (b)
holds. Let `′′ = `′ + |D| and ` ≥ |D|. Assume that
Dcon(~aI0 ),~aI0 �`

′′

openGF,Σ C,~bAI0 but Dcon(~aI0 ),~aI0 6→ A,~bAI0 .
By Condition (a),

Dcon(~aI0 ),~aI0 6→ C≤`
′′

D′ ,
~bCI0

By Lemma 8, there exist d, d′ with d 6= d′ in C
≤|D|
D′ such that

C, d ∼`′openGF,Σ C, d′ and we have derived a contradiction to
Condition (b).

Assume ` ≥ 0 is given. To construct C, tet TE be the
set of K-types Φ(x) that are E-equivalent to some K-type
realized in E. Observe that TE is an equivalence class for
the relation E, by construction of E. No K-type in TE is
openGF-complete and, in fact, we find a sequence

σ = Φσ0 ,Φ
σ
1 ,Φ

σ
2

such that for any K-type Φ(x) ∈ TE we find a sequence
witnessing openGF-incompleteness of Φ(x) that ends with
σ. As a first step of the construction of C, we define a model
B of K by repeatedly forming the partial unfolding of E so
that

(path) from any f0 ∈ B≤`D′ there exists a strict path
Rf01 (~d1), . . . , Rf0k (~dk) from f0 to some f1 such that
distB(D′, f1)) = `.

For the construction of B, let B0 = A and include all
d ∈ dom(A≤`D′ ) into the frontier F0. Assume Bi and frontier
Fi have been constructed. If Fi is empty, we are done and
set B = Bi. Otherwise take d ∈ Fi and let d′ 6= d be
any element contained in a joint guarded set with d in Bi.
Assume k = distBi

(D′, d). Then let Bi+1 be the partial
unfolding (Bi)~d of Bi for the tuple ~d = (d, d′, d, d′, . . .)
of length ` − k, and obtain Fi+1 by removing d from Fi
and adding all new nodes in dom((Bi+1)≤`D′ ). Clearly this
construction terminates after finitely many steps and (path)
holds, see Lemma 4.
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Figure 7: Construction of C.

Let L denote the set of all d in B with distB(D′, d) = `

and let L′ denote the set of all ~d of arity ≥ 2 in B such
that there exist R with B |= R(~d) and d ∈ [~d] with
distB(D′, d) = `. We obtain C by keeping B≤`D′ and the
guarded sets that intersect with it and attaching to every
d ∈ L and ~d ∈ L′ guarded tree decomposable Fd and F′~d
such that in the resulting model no d in L is guarded Σ `′-
bisimilar to any other d′ in B≤`D′ for a sufficiently large `′. It
then directly follows that C satisfies Conditions (a) and (b).

The construction of F′~d is straightforward. Fix ~d ∈ L′. Let

Φ′0 := tpK(B, ~d). Then F′~d is defined as the tree decomposi-
ble model A′r of O with tree decompositon (T ′, E′, bag′)
and root r such that A′r |= Φ′0(~d) and bag(r) = [~d] and for
every K-type Ψ1(~x1) realized by some ~c with [~c] = bag(t)
and K type Ψ2(~x2) coherent with Ψ1(~x1) there exists a suc-
cessor t′ of t in T such that Ψ1(~x1) ∪ Ψ2(~x2) is realized
in bag(t) ∪ bag(t′) under an assignment µ of the variables
[~x1] ∪ [~x2] such that µ(~x1) = ~c1. The only properties of F′~d
we need is that

F′~d |= ∀~x1(Φσ1 → ∃~x′Φσ2 )

where here and in what follows ~x1 are the variables in Φσ1
and ~x′ are the variables in Φ2 that are not in Φ1.

The construction of Fd is more involved. Let LO =

22||O|| + 1 and take for any d ∈ L a number

Nd > |B≤`+1
D′ |+ 2(LO + 1)

such that |Nd − Nd′ | > 2(LO + 1) for d 6= d′. Fix d ∈
L and let Φ0(x) = tpK(A, d). Then Φ0(x) ∈ TE and we
find a sequence Φ0(~x0), . . . ,Φnd(~xnd),Φnd+1(~xnd+1) that
witnesses openGF incompleteness of Φ0(x0) and ends with
Φσ0 Φσ1 Φσ2 . By Lemma 2 we may assume that 1 ≤ nd ≤
LO + 1. Let

Ψ(x) = ∃ΣLO+1.(Φσ1 ∧ ¬∃~x′Φσ2 ),

where ∃Σk.χ stands for the disjunction of all openGF for-
mulas stating that the exists a path from x along relations in
Σ of length at most k to a tuple where χ holds. To con-
struct Fd consider the tree decomposible model Ar of O
with tree decomposition (T,E, bag) and root r such that
Ar |= Φ0(c0) for some constant c0 with bag(r) = {c0}
and for every K-type Ψ1(~x1) realized by some ~c with [~c] =
bag(t) and K type Ψ2(~x2) coherent with Ψ1(~x1) there ex-
ists a successor t′ of t in T such that Ψ1(~x1) ∪ Ψ2(~x2)
is realized in bag(t) ∪ bag(t′) under an assignment µ of
the variables [~x1] ∪ [~x2] such that µ(~x1) = ~c1, except
if Ψ1 ∧ ¬∃~x′Ψ2 (with ~x′ the sequence of variables in ~x2

which are not in ~x1) is equivalent to Φσ1 ∧ ¬∃~x′Φσ2 and
distAr (bag(t), bag(r)) ≤ Nd + LO + 1. Observe that
• Ar |= Ψ(e) for all e with distAr (c0, e) ≤ Nd;
• Ar |= ¬Ψ(e) for all e with distAr (c0, e) > Nd + 2(LO +

1).



Moreover, Ar contains a strict path

R1(~e1), . . . , Rnd(~end), . . . , Rnd(~end+2Nd)

from e0 ∈ [~e1] to c0 ∈ [~end+2Nd ] such that Φ0(x) is realized
in e0. Then Fd is obtained from Ar by renaming e0 to d.
Finally C is obtained by hooking Fd at d to B≤`D′ for all d ∈
L.
C is a model of K since Φ0(x) is realized in e0 and

d. Moreover, it clearly satisfies Condition (a). For Condi-
tion (b) assume d ∈ L is as above. Let

ϕd(x) = ∀ΣNd .Ψ

where ∀Σk.χ stands for ¬∃Σk.¬χ. Then C |= ϕd(c0) and
by construction no node that is not in dom(Fd) satisfies ϕd.
Condition (b) now follows from the fact that there exists a
path from d to a node satisfying ϕd that is shorter than any
such path in C from any other node in B≤`D′ to a node satis-
fying ϕd.

We have proved (∗). We now aim to extend (∗) and show
that Dcon(~a),~a 6�`openGF,Σ C,~bA, for appropriately defined C,
all ~a ∈ P , and for sufficiently large `.

Let ~a ∈ P be fixed. If Dcon(~aI0 ),~aI0 6→ A,~bAI0
for some I0 associated to some E ∈ K, then, by (∗),
Dcon(~aI0 ),~aI0 6�`openGF,Σ C,~bCI0 , for some `, and therefore

Dcon(~a),~a 6�`openGF,Σ C,~bA, for some `, and we are done.
Now assume that Dcon(~aI0 ),~aI0 → A,~bAI0 for all I0 associ-

ated with any E ∈ K. We know that Dcon(~a),~a 6→ A,~bA.
But then either (i) Dcon(ai), ai 6�`openGF,Σ C, bCi for some
i ∈ X (and we are done) or (ii) some ai, aj with i 6= j
and i, j ∈ X are connected inD, or (iii) some ai, i ∈ X and
a ∈ [~aI0 ] with I0 linked to some E ∈ K are connected in D
or (iv) some a ∈ [~aI0 ] and a′ ∈ [~aI′0 ] with I0 and I ′0 linked
to distinct E ∈ K are connected in D. In all these cases it
follows that Dcon(~a),~a 6�`openGF,Σ C,~bA, for sufficiently large
`. o

E Proofs for Section 5.3
Theorem 9 For L ∈ {FO,FO2}, projective and non-
projective (FO2,L)-separability is undecidable, even for la-
beled KBs with a single positive example.

Proof. We start with L = FO and show later how to gen-
eralize to FO2. We reduce the infinite tiling problem which
is, given a triple (T, V,H) with V,H ⊆ T × T , determine
whether there is a function τ : N×N→ T such that, for all
i, j ≥ 0:

(i) (τ(i, j), τ(i+ 1, j)) ∈ H , and

(ii) (τ(i, j), τ(i, j + 1)) ∈ V .

In this case, we say that (T,H, V ) admits a solution. Given
such a triple (T,H, V ), we construct an FO2-KB K =

(O,D) as follows:

O = ∀x (B(x)→ (∃yRv(x, y) ∧B(y)) ∧
(∃yRh(x, y) ∧B(y))) ∧ (2)

∀xy (B(x) ∧B(y)→ U(x, y)) (3)

∀xy (¬Rv(x, y)→ Rv(x, y)) ∧ (4)

∀x
∨
t∈T

(At(x) ∧
∧

t′∈T\{t}

¬At′(x)) ∧ (5)

∀xy (Rv(x, y)→
∨

(t,t′)∈V

At(x) ∧At′(y)) ∧ (6)

∀xy (Rh(x, y)→
∨

(t,t′)∈H

At(x) ∧At′(y)) ∧ (7)

D = { U(a, a1), Rv(a1, a2), Rh(a2, a3),

Rh(a1, a4), Rv(a4, a3), B(b) }

Claim 1. ϕDcon(a),a separates (K, {a}, {b}) iff (T,H, V ) ad-
mits a solution.
Proof of Claim 1. By Theorem 1, it suffices to verify that
K 6|= ϕDcon(a),a(b) iff (T,H, V ) admits a solution.

For (⇒), let A be a structure witnessing K 6|=
ϕDcon(a),a(b). Since A is a model of formulas (2)–(4) and
A 6|= ϕDcon(a),a(b), it contains an infinite grid formed by re-
lations Rv and Rh. Since A is a model of formula (5) every
element in the grid is labeled with At for a unique element
t ∈ T . Finally, since A is a model of formulas (6) and (7),
the relations H and V are respected along Rh and Rv , re-
spectively.

For (⇐), we can easily read off a structure A from a solu-
tion τ for (T,H, V ). The domain of A is N×N. The binary
relation symbols Rv and Rh are interpreted as the vertical
and horizontal successor relations, respectively. The relation
Rv is the complement of Rv , and U is the universal relation.
Finally, every element (i, j) ∈ ∆I is labeled with B and
(precisely) with Aτ(i,j). By construction of A and since τ
is a solution, we have A |= K. However, A 6|= ϕDcon(a),a

because A was constructed from a grid. This finishes the
proof of the Claim, and establishes undecidability of projec-
tive and non-projective (FO2,FO)-separability.

For (FO2,FO2)-separability, we make a very similar re-
duction, but reduce from tiling problems that have a finite
solution iff they have an infinite one (which are still unde-
cidable). Moreover, we assume that T contains three fixed
tiles tr, tu, tru which are border tiles corresponding to the
right border, upper border, and upper right corner with the
appropriate entries in H,V . The formulas in O are slightly
changed so as to also allow finite models: points labeled
with border tiles do not have the respective successors.
Claim 2. The following are equivalent:

1. (K, {a}, {b}) is projectively or non-projectively FO-
separable;

2. (K, {a}, {b}) is projectively or non-projectively FO2-
separable;

3. (T,H, V ) admits a solution.



Proof of Claim 2. (2)⇒ (1) is trivial.
(1)⇔ (3) is proven in the Claim above.
(3)⇒ (2) We show that (K, {a}, {b}) is non-projectively

FO2-separable under the assumption that K mentions a bi-
nary relation symbol S. This is without loss of generality,
as we can include ∀xy S(x, y) → S(x, y). If (T,H, V ) ad-
mits a solution then it admits a finite one, say a solution
τ : [n] × [m] → T . Let π be a bijection from [n] × [m]
to [nm] and let Cij be theALCI-concept (corresponding to
an FO2-formula) expressing that there is an S-path of length
π(i, j). We construct the following FO2-formula ϕmn(x),
written as an ALCI-concept:

t
i,j
∃U.(∀Rv.∀Rh.Cij → ∃Rh.Rv.Cij).

It should be clear that K |= ϕmn(a) since already D |=
ϕmn(a). To see that K 6|= ϕmn(b), note that the finite so-
lution τ viewed as a structure with points dij labeled with
Aτ(i,j) and having outgoing S-paths of length π(i, j) is a
model of K and ¬ϕmn(b). o

The fact that positive and negative examples in Claims 1
and 2 in the proof of Theorem 9 are singletons immedi-
ately yields undecidability of entity comparison by FO/FO2-
formulas over FO2 KBs. Moreover, one can verify that
Claims 1 and 2 remain valid if the set {b} of negative ex-
amples is replaced with the set N = cons(D) \ {a}. This
shows that the undecidability applies to the problem GRE as
well.

The construction from the proof of Theorem 9 can be used
to prove that evaluating rooted CQs with a single answer
variable is not finitely controllable for FO2. One simply
uses an infinite tiling problem that has a solution but that
does not have a solution that can be ‘realized’ in a finite
model of the ontology O. It thus follows from the follow-
ing proof that projective (FO2,FO)-separability does not co-
incide with projective (FO2,FO2)-separability even for la-
beled KBs with a single positive example consisting of a
single constant.

Theorem 10 Let L be a fragment of FO that has the rel-
ativization property and the FMP and such that projec-
tive (L,FO)-separability coincides with projective (L,L)-
separability. Then evaluating rooted UCQs on L-KBs is
finitely controllable.

Proof. Assume that evaluating UCQs on L-KBs is not
finitely controllable, that is, there is an L-KB K = (O,D),
a rooted UCQ q(~x) =

∨
i∈I qi(~x), ~x = (x1, . . . , xn), and a

tuple ~a in D such that K 6|= q(~a), but B |= q(~a) for all finite
models B of (O,D). Consider the relativization O|A of the
axioms of O to A and D+A = D ∪ {A(a) | a ∈ dom(D)},
for a fresh unary relation A.

Regard each query qi(x1, . . . , xn) as a pointed database
Di, ([x1], . . . , [xn]) as follows: define an equivalence re-
lation ∼ on the set of variables in qi by setting x ∼ y
if (x, y) is in the smallest equivalence relation containing
all conjuncts (x = y) of qi. Then regard the equivalence
classes [x] as constants and set R([y1], . . . , [ym]) ∈ Di iff
there are y′1 ∈ [y1], . . . , y′m ∈ [ym] such that R(y′1, . . . , y

′
m)

is a conjunct of qi. We assume the pointed databases
Di, ([x1], . . . , [xn]), i ∈ I , are mutually disjoint with the
copy of ([x1], . . . , [xn]) in Di denoted ([x1]i, . . . , [xn]i).
Let D′ = D+A ∪

⋃
i∈I Di and set

P = {([x1]i, . . . , [xn]i) | i ∈ I}, N = {~a}.
Consider the labeled knowledge base (K′, P,N) for K′ =
(O|A,D′). Then the UCQ q(~x) separates (K′, P,N): on
the one hand, K′ |= qi([x1]i, . . . , [xn]i) for all i ∈ I
since Di ⊆ D′. Thus K′ |= q([x1]i, . . . , [xn]i) for all
([x1]i, . . . , [xn]i) ∈ P . On the other hand, A 6|= q(~a) for
some model A of K and, by relativization, such an A can be
expanded to a model ofK′ in which q(~a) is still not satisfied.

Suppose there is an L-formula ϕ(~x) that separates
(K′, P,N). Since L has the FMP, there exists a finite model
Af of K′ such that Af |= ¬ϕ(~a). As B |= q(~a) for all finite
models B of (O,D), there exists i ∈ I with Af |= qi(~a).
Then there is a homomorphism h fromDi, ([x1]i, . . . , [xn]i)
to Af ,~a witnessing this. We modify Af to obtain a new
structure A′f which coincides with Af except that the con-
stants c in Di are interpreted as h(c). Then A′f is a model
ofK′ with A′f |= ¬ϕ([x1]i, . . . , [xn]i) which contradicts the
assumption that ϕ(~x) separates (K′, P,N). o

F Proofs for Section 7.1
Theorem 13 For every labeled ALCI-KB (K, P,N), the
following conditions are equivalent:

1. (K, P,N) is strongly ALCI-separable;
2. (K, P,N) is strongly FO-separable;
3. For all a ∈ P and b ∈ N , there do not exist models A and

B of K such that aA and bB realize the same K-type;
4. The ALCI-concept t1 t · · · t tn strongly separates

(K, P,N), t1, . . . , tn the K-types realizable in K, a.

Proof. Only “2 ⇒ 3” is not trivial. Let K = (O,D)
and assume that Point 3 does not hold, that is, there ex-
ist models A and B of K and a ∈ P , b ∈ N such that
tpK(A, aA) = tpK(B, bB). We prove that (O,Da=b) is sat-
isfiable. This implies that (K, P,N) is not strongly FO sep-
arable by Theorem 11.

By reinterpreting constants, we can achieve that B is a
model of the database D′ from the definition of Da=b. De-
fine the structure C as A]B in which aA and b′B are identi-
fied. There is an obvious surjection f : dom(A ] B) →
dom(C). Using the fact that tpK(A, aA) = tpK(B, b′B)
and a simple induction on the structure of concepts C, we
can show that for all C ∈ cl(K) and d ∈ dom(A ] B),
d ∈ CA]B iff f(d) ∈ CC. Since A and B are models of O,
it follows that C is a model of O. By construction, it is also
a model of Da=b. o

G Proofs for Section 7.2
Theorem 15 is an immediated consequence of the following
theorem.

Theorem 23 Let (K, P,N) be a labeled GF-KB and Σ =
sig(K). Then the following conditions are equivalent:



1. (K, P,N) is strongly openGF-separable;
2. (K, P,N) is strongly GF-separable;

3. For all models A and B of K and ~a ∈ P and ~b ∈ N we
have A,~aA 6∼GF,Σ B,~bB;

4. For all models A and B of K and ~a ∈ P and ~b ∈ N we
have A,~aA 6∼openGF,Σ B,~bB.
Proof. The implications 1. ⇒ 2. and 4. ⇒ 3. are triv-

ial. Moreover, 2. ⇒ 3. and 1. ⇒ 4. are immediate from
Lemma 3. We prove below 3. ⇒ 2., 4. ⇒ 1, and 3. ⇒ 4.
We start with the first implication; the proof of the second is
analogous.

3.⇒ 2. Suppose (K, P,N) is not strongly GF-separable.
Let

ΓP = {ϕ(~x) ∈ GF(Σ) | ∀~a ∈ P : K |= ϕ(~a)}
ΓN = {ϕ(~x) ∈ GF(Σ) | ∀~a ∈ N : K |= ϕ(~a)}

In what follows we use the fact that ΓP and ΓN are closed
under conjunction. We say that a set Γ of GF formulas is
satisfiable in ~a w.r.t. a KB K = (O,D) if the extended (pos-
sibly infinite) KB

K′ = (O,D ∪ {ϕ(~a) | ϕ(~x) ∈ Γ})
is satisfiable.

Claim 1. (1) There exists ~a ∈ P such that ΓP ∪ ΓN is
satisfiable in ~a w.r.t. K. (2) There exists ~a ∈ N such that
ΓP ∪ ΓN is satisfiable in a w.r.t. K.

We prove (1), the proof of (2) is dual. Assume ΓP∪ΓN is not
satisfiable in any ~a ∈ P w.r.t. K. Then ΓN is not satisfiable
in any ~a ∈ P w.r.t. K. By compactness, there exist ϕ~a(~x) ∈
ΓN such that K |= ¬ϕ~a(~a), for all ~a ∈ P . Thus, K |=
¬(

∧
~b∈P ϕ~b)(~a) for all~a ∈ P andK |= (

∧
~b∈P ϕ~b)(~a) for all

~a ∈ N . However, this is in contradiction to the assumption
that (K, P,N) is not strongly separable.

Now, let Γ0 = ΓP ∪ ΓN and consider an enumeration
ϕ1, ϕ2, . . . of the remaining GF(Σ) formulas. Then we set
inductively, Γi+1 = Γi ∪ {ϕi+1} if there exist ~a ∈ P and
~b ∈ N such that Γi ∪ {ϕi+1} is satisfiable in both ~a and ~b
w.r.t. K. Set Γi+1 = Γi ∪ {¬ϕi+1}, otherwise.

Claim 2. For all i > 0: there are ~a ∈ P and~b ∈ N such that
Γi∪{ϕi+1} is satisfiable in both ~a and~b w.r.t.K or there are
~a ∈ P and ~b ∈ N such that Γi ∪ {¬ϕi+1} is satisfiable in
both ~a and~b w.r.t. K.

Assume Claim 2 has been proved for i − 1. Let w.l.o.g.,
Γi = ΓP ∪ ΓN ∪ {ϕ1, . . . , ϕi}. Assume Claim 2 does not
hold for i. Then, again w.l.o.g., there is no ~a ∈ P such
that Γi ∪ {ϕi+1} is satisfiable in ~a w.r.t. K and there is no
~b ∈ N such that Γi ∪{¬ϕi+1} is satisfiable in~b w.r.t. K. By
compactness, there exists ϕ ∈ ΓN such that K |= ϕ′(~a) for
all ~a ∈ P and

ϕ′ = ((ϕ u ϕ1 u · · · u ϕi)→ ¬ϕi+1).

Then, by definition, we have ϕ′ ∈ ΓP . Then ϕ′ ∈ Γi and so
there is no b ∈ N such that Γi is satisfiable in b w.r.t. K. We
have derived a contradiction.

Let Γ =
⋃
i≥0 Γi. Then there exist models A and B of K

and ~a ∈ P and~b ∈ P such that A |= ϕ(~a) for all ϕ ∈ Γ and
B |= ϕ(~b) for all ϕ ∈ Γ. Thus, A,~a ≡GF(Σ) B,~b. We may
assume that A and B are ω-saturated in the sense of classical
model theory. By Lemma 3, we obtain A,~a ∼GF,Σ B,~b, as
required.

3. ⇒ 4. Suppose there are models A and B of K and
~a ∈ P and ~b ∈ N such that A,~aA ∼openGF,Σ B,~bB. Obtain
B′ from A and B by removing the parts from B that are
not connected to ~bB, and adding a disjoint copy of A to the
remaining connected component of B.

Obviously, we have A,~aA ∼openGF,Σ B′,~bB
′

and the con-
nected guarded bisimulation can be extended to a guarded
bisimulation by adding all partial isomorphisms between A
and its copy in B′. It remains to note that B′ is a model
of K since it is still a model of D and one can verify the
following.
Claim 3. A and B′ satisfy the same GF(Σ) sentences.
Proof of Claim 3. It suffices to consider sentences of the
form ψ = ∃~y(α(~y) ∧ ϕ(~y)). Moreover, we can inductively
assume that (∗) all subsentences of ψ are satisfied in A iff
they are satisfied in B′. Suppose first that ψ is satisfied in A.
Since A is a substructure of B′ and by (∗), ψ is also satisfied
in B′. Conversely, assume that ψ is satisfied in B′ and let
~c be such that B′, [~y/~c] |= α(~y) ∧ ϕ(~y). If ~c is in the copy
of A in B′, then ψ is also satisfied in A, due to (∗). If ~c is
connected to~bB, then A,~aA ∼openGF(Σ) B

′,~bB
′

implies that
also A |= ψ. This finishes the proof of the Claim. o

Moreover, we observe that GF and openGF differ in terms
of the size of the strongly separating formula.
Example 8 Let O be the GF-ontology containing

A1 v ∀S.A1, A2 v ∀R.A2,

to propagate A1 and A2 along roles S and R, respectively,
and

E2 uA1 v ∃u.B, E1 uA2 v ¬∃u.B.
to trigger either that B holds somewhere or holds nowhere
(where u is the universal role). Let D contain
• an R-chain from a0 to cn of length n and A1(a0) and
E1(cn):

R(a0, c1), . . . , R(cn−1, cn)

• an S-chain from b0 to c′n of length n with A2(b0) and
E2(c′n):

S(b0, c
′
1), . . . , S(c′n−1, c

′
n)

LetK = (O,D) and let P = {a0} andN = {b0}. In GF (in
fact in ALC with the universal role) the following formula
strongly separates (K, P,N):

(A1 uA2 u ¬∃u.B) t (A1 u ¬A2).

In contrast, any strongly separating formula in openGF has
guarded quantifier rank at least n.

Proposition 3 Any openGF-formula strongly separating
(K, P,N) has guarded quantifier rank ≥ n.



Proof. Consider the model A with
• dom(A) = {a0, c1, . . . , cn, d1, . . . , dn, b0, c

′
1, . . . , c

′
n, f};

• AA
1 = {a0, c1, . . . , cn, d1, . . . , dn};

• AA
2 = {a0, c1, . . . , cn, d1, . . . , dn} ∪ {b0};

• BA = ∅;
• EA

1 = {cn}, EA
2 = {c′n};

• RA = {(a0, c1), . . . , (cn−1, cn)};
•

SA = {(a0, d1), . . . , (dn−1, dn)} ∪
{(b0, c′1), . . . , (c′n−1, c

′
n)}

• aA0 = a0, bA0 = b0, cAi = ci, (c′i)
A = c′i;

and the model B with
• dom(B) = {b0, c′1, . . . , c′n, d1, . . . , dn, a0, c1, . . . , cn, f};
• AB

1 = {b0, c′1, . . . , c′n, d1, . . . , dn} ∪ {a0};
• AB

2 = {b0, c′1, . . . , c′n, d1, . . . , dn};
• BB = {f};
• EB

1 = {cn}, EB
2 = {c′n};

• SB = {(b0, c′1), . . . , (cn−1, c
′
n)};

•

RB = {(b0, d1), . . . , (dn−1, dn)} ∪
{(a0, c1), . . . , (cn−1, cn)}

• aB0 = a0, bB0 = b0, cBi = ci, (c′i)
B = c′i.

Then A and B are both models of K and
A, aA0 ∼n−1

openGF,sig(K) B, b
B
0 . o

We next provide the announced analogue of Theorem 13;
here, the K-type refers to the K-type for GF. Its proof is
essentially as the proof of Theorem 13, so we omit it.

Theorem 24 For every labeled GF-KB (K, P,N), the fol-
lowing conditions are equivalent:
1. (K, P,N) is strongly GF-separable;
2. (K, P,N) is strongly FO-separable;

3. For all ~a ∈ P and~b ∈ N , there do not exist models A and
B of K such that ~aA and~bB realize the same K-type;

4. The GF-formula Φ1(~x) ∨ · · · ∨ Φn(~x) strongly separates
(K, P,N), Φ1(~x), . . . ,Φn(~x) the K-types realizable in
K,~a.

H Proofs for Section 7.3
We start by introducing appropriate types for FO2-KBs. As-
sume that K = (O,D) is a FO2-KB. Let cl(K) denote
the union of the closure under single negation and swap-
ping the variables x, y of the set of subformulas of O and
{R(x, x) | R ∈ sig(K)}. The 1-type for K of a pointed
structure A, a, denoted tpK(A, a), is the set of all formulas
ψ(x) ∈ cl(K) such that A |= ψ(a). We denote by Tx(K)
the set of all 1-types for K. We say that t(x) ∈ Tx(K) is
realized in A, a if t(x) = tpK(A, a). Denote by t(x)[y/x]
the set of formulas obtained from t(x) by swapping y and x.

The 2-type for K of a pointed structure A, a, b, denoted
tpK(A, a, b), is the set of all R(x, y) with A |= R(a, b),
R(y, x) with A |= R(b, a), ¬R(x, y) with A 6|= R(a, b),
and ¬R(y, x) with A 6|= R(b, a), where R is a binary rela-
tion in K. In addition, x = y ∈ tpK(A, a, b) if a = b and
¬(x = y) ∈ tpK(A, a, b) if a 6= b. We denote by Tx,y(K)
the set of all 2-types for K. We say that t(x, y) ∈ Tx,y(K) is
realized in A, a, b if t(x, y) = tpK(A, a, b).

Types as defined above are not yet sufficiently powerful
to ensure that models of K can be merged. To achieve this
we introduce extended types. For t(x) ∈ Tx(K), we set
t(x)=1 = ∀y(

∧
t(y) → (x = y)). The extended 2-type for

K of a pointed structure A, a, b, denoted tp∗K(A, a, b), is the
conjunction of
1. tpK(A, a, b) ∧ tpK(A, a) ∧ tpK(A, b)[y/x];
2. ∃y(tpK(A, a, c) ∧ tpK(A, c)[y/x]) for any c ∈ dom(A) \
{a, b} such that tpK(A, c) is realized only once in A;

3. ∃x(tpK(A, c, b) ∧ tpK(A, c)[x/y]) for any c ∈ dom(A) \
{a, b} such that tpK(A, c) is realized only once in A;

4. ¬∃x
∧
t(x), for any t(x) ∈ Tx(K) not realized in A;

5. ∃x(
∧
t(x) ∧ t(x)=1) if t(x) ∈ Tx(K) is realized exactly

once in A;
6. ∃x(

∧
t(x)∧¬t=1(x)) if t(x) ∈ Tx(K) is realized at least

twice in A;
7. ∃xy

∧
tpK(A, c, d) ∧ tpK(A, c) ∧ tpK(A, d)[y/x] for any

c 6= d such that tpK(A, c) and tpK(A, d) are realized only
once in A.

We denote by T ∗x,y(K) the set of all extended 2-types for
K. We say that t(x, y) ∈ T ∗x,y(K) is realized in A, a, b if
t(x, y) = tpK(A, a, b).

The extended 1-type for K of a pointed structure A, a is
defined in the same way with tpK(A, a, b), tpK(A, b)[y/x]
removed in Point 1 and with Point 3 completely removed.
We also define the realization of such types by pointed struc-
tures as expected.
Theorem 25 For every labeled FO2-KB such that the tuples
in P ∪ N have length i ∈ {1, 2}, the following are equiva-
lent:

1. (K, P,N) is strongly FO2-separable;
2. (K, P,N) is strongly FO-separable;

3. for all ~a ∈ P and~b ∈ N , there do not exist models A and
B of K such that ~aA and ~bB realize the same extended
i-type for K;

4. The FO2-formula t1 ∨ · · · ∨ tn strongly separates
(K, P,N), t1, . . . , tn the extended i-types for K realiz-
able in K,~a.

Proof. Assume w.l.o.g. that the tuples in P and N have
length two. Implications “1 ⇒ 2”, “3 ⇒ 4” and “4 ⇒
1” are straightforward. For “2 ⇒ 3” assume that Condi-
tion 3 does not hold. Thus, there are ~a = (a1, a2) ∈ P and
~b = (b1, b2) ∈ N and models A and B of K such that the
extended 2-types of A,~a and B,~b coincide. We show that
there exists a model C of (O,D~a=~b). Then, by Theorem 11,
(K, P,N) is not FO-separable. We construct C from A and
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Figure 8: Construction in the proof of Proposition 3.

B as follows: assume that aA1 6= aA2 . The case aA1 = aA2
is similar and omitted. Then, by the first conjunct of ex-
tended types and since 2-types contain equality assertions,
bB1 6= bB2 . By Points 5 and 6, A and B realize exactly the
same 1-types once. We may thus assume that
• aAi = bBi , for i = 1, 2;
• it t(x) ∈ Tx(K) is realized only once, then a = b for

the nodes a ∈ dom(A) and b ∈ dom(B) with t(x) =
tpK(A, a) = tpK(B, b);

• no other nodes are shared by dom(A) and dom(B).
Now let dom(C) = dom(A) ∪ dom(B) and define the inter-
pretation of the relation symbols in C such that the relativi-
sation of C to dom(A) and dom(B) coincides with A and
with B, respectively. This is well defined by the conjuncts
in Points 1, 2, 3, and 7 of the definition of extended types.
Set cC = cA for all constants c in D and (c′)C = (c′)B

for all constants c′ ∈ D′ (from the definition of D~a=~b).
It remains to define the 2-type realized by (c, d) in C for
c ∈ dom(C) \ dom(B) and d ∈ dom(C) \ dom(A). As-
sume such a (c, d) is given. Then the type tpK(B, d) is
realized in A, by the formulas in Point 5 and 6 of the def-
inition of extended types. Take d′ ∈ dom(A) such that
tpK(A, d′) = tpK(B, d).

merged points

A B
c d

d′

We may assume that d′ 6= c as tpK(B, d) is realized at least
twice in both A and in B. Now interpret the relations R ∈
sig(K) in C in such a way that tpK(C, d, c) = tpK(A, d′, c).
One can show that C is a model of (O,D~a=~b).

o
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