
Ontology-Mediated Querying with
Horn Description Logics

Dissertation

Leif Sabellek, M. Sc.

Universität Bremen
Fachbereich 3 - Mathematik/Informatik

Betreuer
Prof. Dr. Carsten Lutz

Gutachter
Prof. Dr. Carsten Lutz
Prof. Dr. Frank Wolter

Datum der Verteidigung
28. August 2019

Abstract
An ontology-mediated query (OMQ) consists of a database query paired with an ontology.
When evaluated on a database, an OMQ returns not only the answers that are already
in the database, but also those answers that can be obtained via logical reasoning using
rules from ontology.

There are many open questions regarding the complexities of problems related to OMQs.
Motivated by the use of ontologies in practice, new reasoning problems which have never
been considered in the context of ontologies become relevant, since they can improve
the usability of ontology enriched systems. This thesis deals with various reasoning
problems that occur when working with OMQs and it investigates the computational
complexity of these problems. We focus on ontologies formulated in Horn description
logics, which are a popular choice for ontologies in practice. Speci�cally, we cover the
following three topics:

• We classify all OMQs based on a conjunctive query and an EL ontology regarding
their data complexity and rewritability into linear Datalog. We show that evaluation
of such OMQ is either in AC0, NL-complete or PTime-complete. Additionally, we
show that it is ExpTime-complete to decide in which of the three categories a given
OMQ falls. Finally, we show that such an OMQ is rewritable into linear Datalog if
and only if it can be evaluated in NL.

• We investigate the problem query-by-example where given a knowledge-base and
positive and negative examples of query answers, a conjunctive query should
be computed whose answers generalize the given examples. We analyze this
problem for ontologies formulated in Horn-ALC and ELI. While the problem is
coNExpTime-complete for Horn-ALC, it becomes undecidable for ELI.

• In ontology-based data access, multiple databases are joined by so-called mappings
into a global schema, which is then additionally enriched by an ontology. We
investigate the question whether a given query over the original databases can
also be answered via a query formulated over the global schema. We show that
this problem is Πp

2-complete for DL-Lite ontologies and coNExpTime-complete or
2-ExpTime-complete for ELHI ontologies, depending on whether the query is
rooted or not.

iii

Zusammenfassung
Eine ontology-mediated query (OMQ) ist eine Datenbankanfrage gepaart mit einer Ontolo-
gie. Bei der Auswertung einer OMQ auf einer Datenbank werden nicht nur die Antworten
geliefert, die bereits in der Datenbank stehen, sondern auch solche, die mittels Regeln
aus der Ontologie geschlussfolgert werden können.

Es gibt viele o�ene Fragen, was die Komplexität diverser Schlussfolgerungsprobleme
im Zusammenhang mit OMQs anbelangt. Motiviert durch den Einsatz von Ontologien
in der Praxis werden auch immer wieder neue Schlussfolgerungsprobleme relevant,
deren Anwendung die Benutzerfreundlichkeit verbessern kann, die aber bisher nie im
Zusammenhang mit Ontologien untersucht worden sind. Diese Arbeit beschäftigt sich
mit der Analyse diverser Schlussfolgerungsprobleme, die im Zusammenhang mit OMQs
auftreten und untersucht diese Probleme in Bezug auf ihre Berechnungskomplexität.
Dabei fokussieren wir uns auf Ontologien, die in Horn-Beschreibungslogiken formuliert
sind, welche eine beliebte Wahl für Ontologien in der Praxis darstellen. Konkret behandeln
wir folgende drei Themen:

• Wir klassi�zieren sämtliche OMQs basierend auf einer konjunktiven Anfrage
und einer EL-Ontologie bzgl. ihrer Datenkomplexität und Umformulierbarkeit
in linear Datalog. Wir zeigen, dass jede solche OMQ entweder enthalten in AC0,
NL-vollständig oder PTime-vollständig ist. Zusätzlich zeigen wir, dass es ExpTime-
vollständig ist zu entscheiden, in welche der drei Kategorien eine gegebene OMQ
fällt. Außerdem zeigen wir, dass eine solche OMQ genau dann in linear Datalog
umformuliert werden kann, wenn sie in NL ausgewertet werden kann.

• Wir untersuchen das Problem query-by-example, bei dem zu gegebenen positiven
und negativen Beispielen eine konjunktive Anfrage berechnet werden soll, deren
Antworten die gegebenen Beispiele verallgemeinern. Dieses Problem analysieren
wir für Ontologien formuliert in Horn-ALC und ELI. Während das Problem für
Horn-ALC noch coNExpTime-vollständig ist, ist es für ELI unentscheidbar.

• Unter dem Stichwort ontology-based data access werden mehrere Datenbanken
durch sogenannte mappings in einem globalen Schema zusammengeführt, welches
dann zusätzlich durch eine Ontologie bereichert wird. Wir untersuchen die Frage,
ob eine gegebene Anfrage über den ursprünglichen Datenbanken auch über dem
globalen Schema beantwortet werden kann, wenn die Ontologie in ELHI oder
der DL-Lite-Familie formuliert ist. Wir zeigen, dass dieses Problem für DL-Lite-
OntologienΠ

p
2-vollständig ist und für ELHI-Ontologien coNExpTime-vollständig

oder 2-ExpTime-vollständig, abhängig davon, ob die Anfrage rooted ist oder nicht.

v

Acknowledgements
First of all, I want to thank my advisor Carsten Lutz. He introduced me to the area of
description logics and did a truly fantastic job advising me over the past three and a
half years. I feel very lucky to be part of his group Theorie der künstlichen Intelligenz
which provided me with a pleasant working environment. I am very grateful to my
colleagues, TDKIers and collaborators Cristina Feier, Víctor Gutiérrez Basulto, Anneke
Haga, Peter Hansen, Jean Christoph Jung, Antti Kuusisto, Mauricio Martel, Johannes
Marti and Thomas Schneider for countless interesting discussions. It is always a pleasure
working with you and I learned a lot from you! Furthermore, I thank Frank Wolter for
agreeing to review my thesis.
I also thank my brother André Sabellek for giving me feedback on the introduction
chapter. For the beautiful style this document is set in, my warmest thanks goes to
Christoph Pegel, who helped me setting up the document in the same style that he used
for his own thesis. I owe thanks to my parents, who made it possible for me to study
without any worries, and �nally, I thank Emily for her everlasting and loving support.

Bremen, July 2019
Leif Sabellek

vii

Contents

1 Introduction 1
1.1 Structure of the Thesis . 6
1.2 Summary of Publications . 7

2 Preliminaries 9
2.1 First-order Logic . 9
2.2 Horn Description Logic TBoxes . 10
2.3 Databases, ABoxes and Knowledge Bases 13
2.4 Query Languages . 13
2.5 Ontology-Mediated Queries . 15
2.6 Universal Models . 16
2.7 Pseudo Tree-Shaped ABoxes . 18
2.8 Derivation Trees . 19
2.9 Two-way Alternating Parity Automata (TWAPA) 20
2.10 Computational Complexity . 21

3 A complete classi�cation of complexity and rewritability for (EL,CQ) 23
3.1 Preliminaries . 26
3.2 AC0 versus NL for Connected CQs . 30
3.3 NL versus PTime for Connected CQs . 36

3.3.1 Unbounded Pathwidth Implies PTime-hardness 37
3.3.2 Bounded Pathwidth Implies Linear Datalog Rewritability 46

3.4 The Trichotomy for Disconnected CQs 53
3.5 Width Hierarchy for Linear Datalog Rewritability 55
3.6 Decidability and Complexity . 64
3.7 Conclusion . 69
3.8 Towards a Classi�cation for (ELI,AQ) 69

4 Query-by-Example for Expressive Horn Description Logic Ontologies 75
4.1 Problem De�nition and Basic Observations 77
4.2 Model-Theoretic Characterizations . 80
4.3 Complexity of qbe and qdef . 83

4.3.1 Horn-ALC . 84
4.3.2 ELI (Undecidability) . 88

4.4 Size of Witness Queries . 102
4.5 Discussion and Future Work . 105

ix

Contents

5 Query Expressibility and Veri�cation in the Data Integration Setting 107
5.1 Preliminaries . 110
5.2 Characterizations and Basic Observations 111
5.3 Expressibility and Veri�cation in DL-Lite 118
5.4 Expressibility in ELHI: Upper Bound for Rooted Queries 123
5.5 Expressibility in ELHI: Upper Bound for Unrestricted Queries 125
5.6 Veri�cation in ELHI: Upper Bounds . 127
5.7 Expressibility and Veri�cation in EL: Lower Bounds 133
5.8 Conclusion . 137

6 Conclusion 139

Bibliography 141

x

1 Introduction
Relational databases are the classical formalism to digitally represent data. A relational
database consists of relations (also called tables), where a relation is a set of facts of the
same arity. Traditionally, databases are interpreted under the closed world assumption,
which means that a fact is considered to be true if and only if it is contained in the
database [Rei77]. In other words: Everything that is not explicitly written in the database
is considered to be false. But this approach has some limitations: First, in many scenarios,
especially in times of Big Data, one has to manage incredible amounts of data that arise
from multiple sources, scattered across many di�erent databases. This means one has
to deal with incomplete and inhomogeneous knowledge. Thus, we cannot assume that
all true facts are in our database, but merely consider the content of the database as a
collection of facts that we know so far. Second, there might be a lot of knowledge that
is not explicitly stored in the database to reduce redundancy, but that could be derived
from the database using logical reasoning by someone familiar with the matter. For
these purposes, a di�erent approach to the usage of databases has emerged, which is
called the open world assumption. Under the open world assumption, one interprets the
facts in the database as true, but there might be more true facts that can be derived via
logical reasoning using background knowledge. This background knowledge is stored in
a so-called ontology.

An ontology is a set of logical sentences which represent general knowledge about a
speci�c domain. Ontologies are very popular in the �elds of biology and medicine, since
these �elds are home to large amounts of pure factual knowledge. While a database also
stores knowledge, the main di�erence is that a database stores instance data, which is
data about speci�c situations that could also change over time. For example, a database
in a hospital could store information about patients, doctors, rooms, appointments, and
diagnoses. An ontology on the other hand stores general knowledge, like knowledge
about anatomy, diseases or medicine. Together, the database and the ontology form a
so-called knowledge base.

A knowledge base contains a lot of implicit knowledge that can be derived from the
database in combination with the ontology. If queries are posed in the presence of an
ontology, one usually considers the query and the ontology together as a compound
query, a so-called ontology-mediated query (OMQ). When answering an OMQ, one does
not simply speak of answers to the query, but of certain answers, which are all answers to
the query that can be derived from the database using the ontology and logical reasoning.
This approach has been studied extensively, see for example [Cal+13; CGP12; Bie+14].
Consider the following example:

Example 1.1. An ontology about diseases, formulated in the description logic EL, could

1

1 Introduction

include the following rules:

AlzheimerDisease v DementiaDisorder

DementiaDisorder v ∃ hasFindingSite.BrainPart

BrainConcussion v ∃ hasFindingSite.BrainPart

The �rst rule says that the Alzheimer’s disease is a dementia disorder. The second rule
says that every instance of DementiaDisorder is related to an instance of BrainPart via the
binary relation hasFindingSite. The third rule states the same about BrainConcussion.
Assume a hospital’s database includes the following facts:

hasFinding(patient12, finding345)

hasFinding(patient45, finding257)

AlzheimerDisease(finding345)

BrainConcussion(finding257)

A doctor needs a list of all patients who have a �nding located in the brain. Then the OMQ
consisting of the ontology above and the query

q(x) ← hasFinding(x ,y) ∧ hasFindingSite(y, z) ∧ BrainPart(z)

returns both patient12 and patient45 as certain answers.

Example 1.1 also exempli�es another advantage of ontologies which is introducing
new vocabulary that can be used for querying. This is especially useful in the context
of ontology-based data access (OBDA), where data from multiple databases with di�erent
schemes are uni�ed using an ontology, which provides a new, global schema and relates
the global schema to all the source schemas [Pog+08].

Description Logics
How can ontologies be formally de�ned? First-order logic (FO) is the most fundamental
logic in computer science and it seems natural to de�ne an ontology to be just any set
of sentences in �rst-order logic. However, it is not viable to use full FO for formulating
ontologies because central reasoning problems like satis�ability and consequence are
undecidable for FO. So one has to �nd weaker fragments of FO whose reasoning problems
are decidable but such that they still provide enough expressive power to formulate
meaningful ontologies. Searching and investigating such fragments has been a topic of
research over the last thirty years and di�erent families of fragments have been identi�ed,
which are referred to as description logics (DLs).

Description logics (DLs) are decidable fragments of �rst order logic that have become a
popular choice for formulating ontologies [Baa+07; Baa+17]. It is notable that DLs only use
unary and binary predicates, where unary predicates are called concept names and binary

2

predicates are called roles.1 In the Example 1.1, AlzheimerDisease, DementiaDisorder,
BrainConcussion and BrainPart are concept names, and hasFinding and hasFindingSite
are roles. Depending on the speci�c DL, di�erent sets of operators can be used to
form concepts, which correspond to FO formulas with one free variable. In the example,
∃ hasFindingSite.BrainPart is a concept that describes all objects which are related via
the role hasFindingSite to an instance of the class BrainPart.

There is a large variety of of DLs with di�erent expressive power and complexity of
reasoning. Very expressive DLs like for instance SHOIQ can express, among others,

• disjunctions of concepts (‘every human is dead or alive’),
• transitivity of roles (‘if x is a part of y and y is a part of z, then x is a part of z),
• role hierarchies (‘if x is the father of y, then x is a parent of y’),
• inverse roles (‘if x is the father of y, then y is a child of x ’),
• number restrictions (‘every hand has �ve �ngers’) and
• can refer to concrete individuals (‘everyone knows Dave’).

More inexpressive DLs like EL on the other hand only allow simple rules like

• concept name inclusion (‘every student is a person’),
• conjunction (if x is a person and x is female, then x is a woman’) and
• existential restrictions (‘if x has a mother that is a chimpanzee, then x is a chim-

panzee’ or ‘every country has a capital city’).

The reason to consider a large variety of DLs is the trade-o� between expressive power
and computational complexity. The more expressive the logic, the harder the reasoning
problems become. To give a rough idea: Many standard reasoning problems for expressive
DLs like SHOIQ are NExpTime-complete [Tob01] or of even higher complexity, while
for less expressive DLs like EL or the DL-Lite family, many reasoning problems are
solvable in PTime or coNP [Art+09; KL07]. But if the logic is not expressive enough,
it might not be suitable to model the knowledge appropriately. It turns out that the
complexity is crucially in�uenced by whether or not disjunctions are allowed. The
explanation is simple: Disjunctions do not allow unique conclusions to be drawn. So
while the other mentioned types of conclusion rules can essentially be applied in only one
way, leading to a unique result, disjunctive rules lead to di�erent results and it becomes
harder to check whether a certain fact is logically implied by the rules. In fact, one
can encode NP-complete problems into the OMQ answering problem even for a �xed
ontology, if the ontology language allows disjunctions. This is shown in the following
example, using an ontology formulated in the description logic ALC:

1Reasoning with only unary and binary relations is useful for several reasons: The data can be visualized
as labelled graphs and is thus easier to understand. Also, relations of higher arity are not always
necessary. For example, instead of using a 4-ary relation Appointment(id, date, doctor, patient), one
can use four concept names Appointment, Date, Doctor, Patient and three roles hasDate, hasDoctor,
hasPatient to represent the same data.

3

1 Introduction

Example 1.2. [Baa+17] The 3-colorability problem is a well-known NP-complete problem.
It asks whether the vertices of a given graph can be colored with three di�erent colors in
such a way that no two adjacent vertices have the same color. Let the graph be stored as
a database with a single binary relation E for the edges of the graph and �x the following
ontology:

> v Red t Blue t Green

Red u ∃ E.Red v Conflict

Blue u ∃ E.Blue v Conflict

Green u ∃ E.Green v Conflict

The �rst rule states that every vertex is colored either red, blue or green. The other three
rules express that whenever a vertex has a neighbour of the same color, then this vertex is
labelled with the concept name Conflict. The query

q() ← Conflict(x)

asks whether there is a vertex labelled with Conflict, so the query evaluates to true if and
only if the graph is not 3-colorable.

For this reason, DLs without disjunctions are investigated. These DLs are called
Horn DLs and they are a popular choice as ontology languages. Widely used ontologies
like SNOMED CT (Systematized Nomenclature of Human and Veterinary Medicine –
Clinical Terms) and GALEN (Generalised architecture for languages, encyclopedia and
nomenclatures in medicine) are to a great extent formulated in a Horn DL. The ontology
language used in Example 1.1, EL, is also a Horn DL. Horn DLs enjoy nice properties,
most important for answering OMQs is the universal model property: It is possible to
apply conclusion rules from the ontology in a straightforward way to obtain a (generally
in�nite) extension of the database (the so-called universal model) which includes all facts
that are relevant for answering certain types of queries, so that OMQs can be answered
by constructing the universal model and then evaluating the query as a standard (not
ontology-mediated) query on the universal model.

Reasoning problems
There are a lot of open questions regarding OMQs with Horn DLs. This thesis contributes
to foundational research about Horn DLs, more precisely we are concerned with pin-
pointing the computational complexity of several decision problems involving OMQs.
We focus on two areas:

1. Get a deeper understanding of the complexities of answering Horn DL OMQs.

2. Introduce new relevant reasoning problems and analyse their complexities.

In the following, we give a broad overview of all reasoning problems that are studied in
this thesis. A more detailed overview including more references to related work can be

4

found at the beginning of the relevant chapter. For all the following reasoning problems,
the ontology languages we consider are always one or several di�erent Horn DLs.

Data complexity of answering OMQs. Answering queries in the presence of ontolo-
gies is a very natural problem. The input consists of an ontology, a database, and a query.
One is interested in what the certain answers of the query are in the given database and
under the given ontology. To transform the question into a decision problem, one can
additionally give a candidate tuple a of constants from the database as an input and the
question is whether a is a certain answer to the query.

Interestingly, this problem is already ExpTime-complete for many Horn DLs, which
sounds like bad news for the usability of these logics in real-life knowledge representation
scenarios. However, this result is slightly misleading because the complexity is usually
measured relative to the size of the input and the database usually accounts for the biggest
part of the input, while the query and the ontology are relatively small and often static. So
there is a di�erent, more re�ned way to measure the complexity, called data complexity:
For every ontology T and query q, one considers the OMQ answering problem, where
the input is only the database and a candidate tuple. Data complexity has been studied
for many DLs [HMS05; KL07; Ros07; Cal+13; Bie+14; LW17], and measured in data
complexity, answering Horn DL OMQs is usually tractable.

With this re�ned view on the complexity of answering OMQs, more questions arise.
One can choose an ontology language L and a query language Q and ask: What are
all the possible complexities of OMQs formulated in L and Q? How can OMQs that
belong to the same complexity class be characterized? And the so-called meta problem:
How complex is it to decide what the complexity of a given OMQ is? See [LW12; Bie+14;
ZKG18; LSW15] for initial results on these questions. To classify OMQs into di�erent
complexity classes, one is interested in results of the form ‘every OMQ formulated in L
and Q is either in complexity class X or hard for complexity class Y ’, which shows that
there are no OMQs with a complexity that lies ‘strictly between X and Y ’. These so-called
dichotomy results also play an important role in the complexity classi�cation of constraint
satisfaction problems (CSP), the recently proven PTime/NP dichotomy (formerly known
as the Feder-Vardi conjecture) being the most famous result from this area. And in fact,
there is a very strong connection between complexities of CSP and the data complexity
of OMQs [Bie+14].

Rewritability. How can OMQs be answered in practice? There are several reasoners,
e.g. Protégé, Pellet and Fact++, that implement algorithms for reasoning with ontologies.
However, traditional database management systems (DBMS) based on SQL or Datalog
are still popular, since these have been developed for a long time and are nowadays
highly optimized. This raises the question whether traditional DBMS can be utilized for
answering OMQs, even though they do not explicitly provide this functionality. One
way to achieve this is by rewriting the OMQ Q into an SQL or Datalog query q, which
means to �nd a q such that the certain answers to Q are equal to the answers of q if
executed on any database. It is not always possible to �nd such a rewriting q, since even
for Horn DLs, rewritings into FO are not guaranteed to exist. But if a rewriting exists,
one would certainly like to know this, to make use of the existing, very optimized DBMS.

5

1 Introduction

So an interesting question is: Given an OMQ, is it rewritable into FO (as an abstraction
of SQL) or into Datalog, or into some other relevant fragment of these? For results on
rewritability of OMQs, see [Eit+12; BLW13; Bie+14; KNG14; FKL19]. In particular, we
consider linear Datalog, the fragment of Datalog where recursive rules can only have
one IDB atom in the body. We will see in Chapter 3 that rewritability into linear Datalog
is strongly related to NL data complexity, a connection that has already been observed in
[Dal05].

Query-by-example. Another reasoning problem we study is called query-by-example
(QBE). Imagine that someone explores a knowledge base and this person would like to
formulate a query but is unable to do so since the person is unfamiliar with the ontology
language or query language. However, the person can provide positive and negative
examples from the data, i.e., data that should and data that should not be returned. The
QBE problem asks: Is it possible to generalize the given examples into a query that returns
at least all of the positive examples, but none of the given negative examples? In the
positive case, we also want to compute said query. This problem is related to machine
learning research: We want to learn a query from the given examples. QBE has been
suggested in [Zlo75] and has been studied for traditional databases and di�erent query
languages [TCP14; CD15; BCS16; BR17; ADK16; BCL15]. We initiate the research on
QBE for OMQs.

Expressiblility and veri�cation. In ontology-based data access (OBDA), data from
multiple sources is uni�ed using a new, global vocabulary. The relations of the new
vocabulary are de�ned in terms of the old vocabulary using queries (called mappings)
over the data sources. Additionally, the global vocabulary is enriched with an ontology
[Pog+08]. In the process of creating such an ontology, it might be unclear whether a
certain query over the sources can be already expressed as a query over the global vocab-
ulary, that is, whether there is an OMQ that when executed over the global vocabulary
returns the same answers as the input query when executed over the old data sources.
If this is not the case, introducing more mappings or changing the ontology might be
necessary. So the expressibility problem asks, given an ontology, mappings, and a query
q over the sources, whether q can be expressed as a query over the global vocabulary.
The veri�cation problem asks, additionally given a query qt , whether qt expresses q. We
investigate these problems for several Horn DLs.

1.1 Structure of the Thesis
Besides the preliminaries (Chapter 2) and the conclusion (Chapter 6), this thesis has three
main chapters.

In Chapter 3, we study the non-uniform data complexity of OMQs based on an EL
ontology and a conjunctive query. We give a complete characterization regarding the
data complexities of such OMQs, showing that for every such OMQ, the evaluation prob-
lem is either in AC0 or NL-complete or PTime-complete. Additionally, we characterize
rewritability into linear Datalog and show that it coincides with the OMQ having data

6

1.2 Summary of Publications

complexity in NL and that there is no constant bound on the width of linear Datalog
rewritings. We also investigate the meta problem to decide, given an OMQ, what its
data complexity is and whether it is rewritable into linear Datalog, and show that this is
ExpTime-complete.

In Chapter 4, we examine the QBE problem in the presence of ontologies. We focus
on knowledge bases with Horn-ALC and ELI ontologies and show that the question
of whether there exists a CQ that separates the positive from the negative examples is
coNExpTime-complete for Horn-ALC and even undecidable for ELI. Furthermore,
we investigate the size of witness queries in the Horn-ALC case and show that there
are cases of knowledge bases that require witness queries of double exponential size, and
we show that double exponential size is always su�cient.

In Chapter 5, we study the expressibility and veri�cation problem in the OBDA setting.
We consider unions of conjunctive queries (UCQs) as source and target queries and
global-as-view (GAV) mappings, showing that both problems are Πp

2-complete in DL-Lite,
coNExpTime-complete between EL and ELHI when source queries are rooted, and
2ExpTime-complete for unrestricted source queries.

1.2 Summary of Publications
Substantial parts of the results in this thesis have already been published in conference
or workshop proceedings, or are currently under review. In detail:

Chapter 3

[LS17a] Carsten Lutz and Leif Sabellek. “Ontology-Mediated Querying with EL: Tri-
chotomy and Linear Datalog Rewritability”. In: Proceedings of DL-workshop. 2017

[LS17b] Carsten Lutz and Leif Sabellek. “Ontology-Mediated Querying with the Descrip-
tion Logic EL: Trichotomy and Linear Datalog Rewritability”. In: Proc. of IJCAI. 2017,
pp. 1181–1187

[LS19] Carsten Lutz and Leif Sabellek. “A Complete Classi�cation of the Complexity
and Rewritability of Ontology-Mediated Queries based on the Description Logic EL”.
submitted to AI Journal. 2019

Chapter 4

[GJS18a] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. “Query-by-
Example for Expressive Horn Description Logics”. In: Proceedings of DL-workshop. 2018

[GJS18b] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. “Reverse Engi-
neering Queries in Ontology-Enriched Systems: The Case of Expressive Horn Description
Logic Ontologies”. In: Proceedings of IJCAI. 2018, pp. 1847–1853

Chapter 5

7

1 Introduction

[LMS18] Carsten Lutz, Johannes Marti, and Leif Sabellek. “Query Expressibility and
Veri�cation in Ontology-Based Data Access”. In: Proceedings of KR. AAAI Press, 2018,
pp. 389–398

8

2 Preliminaries
In this chapter, we introduce the basic formalisms and tools used throughout the whole
thesis. Additionally, a chapter might have its own preliminary section to introduce
chapter-speci�c notions. We introduce �rst-order logic, the description logics that are
relevant for this thesis, ontology-mediated queries, and we recall some well-known
results about these topics.

2.1 First-order Logic
First-order logic (FO) is a fundamental logic used in mathematics and computer science.
This thesis is concerned with many di�erent fragments of FO, so even though we rarely
speak about full �rst-order logic, we introduce it here to set the frame for the description
logics and query languages introduced in the coming sections. We introduce a version of
FO without function symbols and without constants.

Syntax
A signature is a set Σ of relational symbols, each symbol R ∈ Σ being associated with a
positive integer, called the arity of R. A symbol of arity k is called k-ary, symbols of arity
1 are called unary, symbols of arity 2 are called binary. An FO formula over Σ is build
according to the following context free grammar:

φ ::= R(x1, . . . ,xk) | ¬φ | φ ∧ φ | ∃xφ
where R ∈ Σ is a k-ary relational symbol and x1, . . . ,xk ,x are symbols from an in�nite
set of variables. An FO(=) formula is build according to the context free grammar from
above, where the rule φ ::= x = y is allowed as well, x ,y being variables. By var(φ) we
denote the set of all variables that appear in φ. The free variables of φ are de�ned as
follows.

free(R(x1, . . . ,xk)) = {x1, . . . ,xk}
free(¬φ) = free(φ)
free(φ ∧ψ) = free(φ) ∪ free(ψ)
free(∃xφ) = free(φ) \ {x}

When we write φ(x), where x is a tuple of variables, we mean that φ is a �rst order
formula where free(φ) are precisely the variables that occur in x, ordered in some �xed
linear order.

9

2 Preliminaries

Semantics
The semantics of FO is de�ned in terms of relational structures. In fact, many other objects
that we de�ne later on (like databases, conjunctive queries, ABoxes and interpretations)
can be regarded as relational structures.

A relational structure over Σ is a tuple A = (A,π), where A is a non-empty set called
the domain of A and π is a function that assigns to every k-ary relational symbol R ∈ Σ a
k-ary relation over A. A valuation for A is a function v that assigns to every variable an
element from A. Truth of an FO formula φ(x1, . . . ,xn) over Σ in A under the valuation v
is de�ned as follows:

(A,v) |= R(x1, . . . ,xk) if (v(x1), . . . ,v(xk)) ∈ π (R)
(A,v) |= ¬φ if not (A,v) |= φ
(A,v) |= φ ∧ψ if (A,v) |= φ and (A,v) |= ψ
(A,v) |= ∃xφ if there exists a ∈ A such that (A,v[x/a]) |= φ
(A,v) |= x = y if v(x) = v(y)

In the fourth line, v[x/a] is the valuation de�ned by v[x/a](x) = a and v[x/a](y) = v(y) for
all other variables y. If a = (a1, . . . ,an) is a tuple of elements from A and φ(x1, . . . ,xn) is
an FO formula, we write A |= φ(a) if (A,v) |= φ(x), where v(xi) = ai for all i ∈ {1, . . . ,n}.

A Σ-homomorphism from a relational structure A = (A,πA) to a relational structure
B = (B,πB) is a function h : A→ B such that for every R ∈ Σ and a a tuple of elements
from A, a ∈ πA(R) implies h(a) ∈ πB(R). If Σ contains all symbols from the signature of A,
then we drop the Σ and call h a homomorphism. If a = (a1, . . . ,an) is a tuple from A and
b = (b1, . . . ,bn) is a tuple from B, we write h : (A, a) → (B, b) if h is a homomorphism
from A to B with h(ai) = bi for all i ∈ {1, . . . ,n}. Since ABoxes, interpretations and
conjunctive queries (de�ned later) can all be regarded as relational structures, they
all inherit the notion of (Σ-)homomorphisms, also between objects of di�erent kinds,
like homomorphisms from ABoxes to interpretations or from conjunctive queries to
interpretations.

2.2 Horn Description Logic TBoxes
Description Logics (DLs) are a large family of fragments of FO that are used for knowledge
representation and reasoning. Unlike in FO, reasoning problems (such as satis�ability,
validity, consequence, query answering) for DLs are usually decidable. A wide range
of Description Logics has been considered in the literature, ranging from very small,
inexpressive fragments of FO where the reasoning problems can be decided e�ciently,
up to very expressive DLs with higher computational complexity.

This thesis is only concerned with Horn Description Logics, which are on the lower end
of the scale regarding both expressive power and complexity. Roughly stated, Horn DLs
do not allow any kind of disjunction.

We introduce DL-Lite, EL, ELI, ELHI, Horn-ALC and Horn-ALCI. First, we
de�ne the syntax for all these DLs, and after that, we de�ne the semantics. Throughout

10

2.2 Horn Description Logic TBoxes

the whole thesis, let NC and NR be two �xed countably in�nite sets of concept names and
role names, respectively. A role is either a role name r or an inverse role r− where r is a
role name.

Syntax of the EL Family
An EL-concept C is built according to the following context free grammar:

C ::= A | > | C uC | ∃r .C
Here, A ranges over NC and r ranges over NR. An ELI-concept is built according to the
same grammar, but with r ranging over roles instead of just roles names. (The I in ELI
stands for ‘inverse’).

An EL-TBox (resp. ELI-TBox) is a �nite set of concept inclusions (CI) of the form
C v D, where C and D are EL-concepts (resp. ELI-concepts).

A role inclusion (RI) takes the form r v s where r and s are roles. An ELHI-TBox is
a �nite set of CIs and RIs, where the CIs form an ELI-TBox.

Syntax of the DL-Lite Family
DLs from the DL-Lite family are speci�cally designed so that ontology-mediated queries
(de�ned later) are always rewritable into FO. We only de�ne one representative of the
DL-Lite family, namely DL-LiteRhorn. A DL-LiteRhorn-ontology is a �nite set of concept
inclusions and role inclusions. The concept inclusions are of the form

B u · · · u B v B

where B is build according to the rule

B ::= A | > | ⊥ | ∃r .> | ∃r−.>
and A ranges over concept names. The role inclusions take one of the forms

r v s r v s− r1 u · · · u rn v ⊥

where r , s, r1, . . . , rn range over role names.

Syntax of the Horn-ALC Family
The Horn-ALC family, introduced in [KRH13], is the most expressive description logic
we deal with in this thesis. Compared to the DL-Lite and the EL family, the syntax of
the Horn-ALC family is more complex, which is due to the fact that it is the result
of carefully extending the expressive power of the EL family with disjunctions and
negations at the right places without losing important properties like the existence of
universal models, introduced in Section 2.6.

11

2 Preliminaries

To de�ne the syntax of Horn-ALCI, we use the following context free grammar:

L ::= > | ⊥ | A | L u L | L t L | ∃r .L
R ::= > | ⊥ | A | ¬A | R u R | ¬L t R | ∃r .R | ∀r .R

Again, A ranges over NC. A Horn-ALC-TBox is a �nite set of concept inclusions of the
form L v R, where r ranges over role names. If we let r range over roles instead of role
names, a �nite set of concept inclusions of the form L v R is a Horn-ALCI-TBox.

The size of a TBox, a concept, or any other syntactic object O , denoted |O |, is the
number of symbols needed to write O , with each concept and role name counting as one
symbol.

Semantics

All concept inclusions from the DL-Lite family and the EL family are also concept
inclusions in Horn-ALCI. The semantics of Horn-ALCI-TBoxes are given in terms
of interpretations. An interpretation is a tuple I = (∆I, ·I), where ∆I is a non-empty set,
called the domain of I, and ·I is a function that assigns to every concept name A a set
AI ⊆ ∆I and to every role name r a binary relation rI ⊆ ∆I × ∆I . The function ·I can
be inductively extended to assign to every Horn-ALCI concept a subset of ∆I in the
following way.

(C1 uC2)
I = CI1 ∩C

I
2

(C1 tC2)
I = CI1 ∪C

I
2

(∃r .C)I = {d ∈ ∆I | ∃ e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}
(∃r−.C)I = {e ∈ ∆I | ∃d ∈ ∆I : (d, e) ∈ rI ∧ d ∈ CI}
(∀r .C)I = {d ∈ ∆I | ∀ e ∈ ∆I : (d, e) ∈ rI → e ∈ CI}

(∀r−.C)I = {e ∈ ∆I | ∀d ∈ ∆I : (d, e) ∈ rI → d ∈ CI}

(¬C)I = ∆I \CI

>I = ∆I

⊥I = ∅

An interpretation I satis�es a role inclusion of the form r v s if rI ⊆ sI . It satis�es a
role inclusion of the form r1 u · · · u rn v ⊥ if rI1 ∩ . . . ∩ r

I
n = ∅. It satis�es a concept

inclusion C1 v C2 if CI1 ⊆ CI2 . An interpretation I is a model of a TBox T if it satis�es
all concept inclusions and all role inclusions from T . If C1 and C2 are concepts, we write
T |= C1 v C2 if for every model I of T , we haveCI1 ⊆ CI2 . A T -type t is a set of concept
names from T that is closed under T -consequence, that is, if T |= ut v A, then A ∈ t .
Every interpretation can be seen as a relational structure, so it inherits the notions of
(Σ−)homomorphisms.

12

2.3 Databases, ABoxes and Knowledge Bases

2.3 Databases, ABoxes and Knowledge Bases
Relational databases are the classical formalism to store data. In the context of databases,
we call the signature Σ a schema. A Σ-database D is a set of facts R(a1, . . . ,an) where
R ∈ Σ is a relation name of arity n and a1, . . . ,an are from a �xed in�nite set NI of
constants. We use adom(D) to denote the set of constants that occur in D. Every database
can be seen as a relational structure over the domain adom(D) in a straightforward way.

An ABox is the standard formalism to store data in the �eld of DLs. ABoxes can be
thought of as databases that have only unary and binary relations. A DL-signature is a
signature using only symbols from NC ∪ NR, where every A ∈ NC is unary and every
r ∈ NR is binary. If Σ is a DL-signature, a Σ-ABox is a �nite non-empty set of concept
assertions of the formA(a) and role assertions of the form r (a,b), whereA ∈ Σ is a concept
name, r ∈ Σ is a role name and a,b ∈ NI are constants, but we call them individuals
in the context of ABoxes. The ABox signature plays the same role as a schema in the
database literature [AHV95]. We write ind(A) for the set of all individuals that appear
in some assertion in A. Every ABox A can be seen as a relational structure over the
domain ind(A) in a straightforward way and homomorphisms between ABoxes and
interpretations are de�ned accordingly.

A pair K = (T ,A) that consists of a TBox and an ABox is called a knowledge base
(KB). If the TBox is formulated in the description logic L, then K is called an L-KB.

An interpretation is a model of an ABox A if ind(A) ⊆ ∆I , a ∈ AI for every concept
assertionA(a) ∈ A and (a,b) ∈ rI for every role assertion r (a,b) ∈ A. It is a model of the
knowledge base (T ,A) if it is a model of T and a model of A at the same time. We call
a KB (T ,A) consistent if (T ,A) has a model. By ind(A) ⊆ ∆I we are adopting the so
called standard name assumption, which also implies the unique name assumption. The
latter means that in a model I of A, it is not allowed that di�erent individuals of A are
identi�ed to a single element in I.

The indegree of an individual a ∈ ind(a) is the number of assertions r (b,a) ∈ A for
some role name r and the outdegree is the number of assertions r (a,b) ∈ A. The degree
of a is the sum of its indegree and its outdegree. The degree of an ABox is the maximum
degree of its individuals. Every ABox A is associated with a directed graph GA with
vertices ind(A) and edges {(a,b) | r (a,b) ∈ A}. A directed graph G is a tree if it is
acyclic, connected and has a unique vertex with indegree 0, which is then called the
root of G. An ABox A is tree-shaped if GA is a tree and there are no multi-edges, that is,
r (a,b) ∈ A implies s(a,b) < A for all s , r and s(b,a) < A for all role names s . The root
of a tree-shaped ABoxA is the root of GA and we call an individual b a descendant of an
individual a if a , b and the unique simple path from the root to b contains a.

2.4 Query Languages
A conjunctive query (CQ) is an expression of the form

q(x) ← R1(y1) ∧ R2(y2) ∧ . . . ∧ Rn(yn)

13

2 Preliminaries

where x and y1, . . . , yn are tuples of variables, R1, . . . ,Rn are relational symbols and the
length of yi is the arity of Ri .1 We call q(x) the head of the CQ and R1(y1) ∧ . . . ∧ Rn(yn)
the body. The variables that appear in x are called answer variables of q and all other
variables are called quanti�ed variables. We further require the so-called safety condition:
Every answer variable is required to appear in the body. We refer to a CQ just as q, or as
q(x) if we want to emphasize that x is the tuple of answer variables. By var(q) we denote
the set of all variables that appear in (the head or the body of) q. The arity of q, denoted
ar(q), is the length of x and q is Boolean if ar(q) = 0. If V ⊆ var(q), then we use q |V to
denote the restriction of q to the atoms that only use variables from V (this may change
the arity of q). Abusing notation, we sometimes interpret q as the set of atoms in its body
and write e.g. R1(y1) ∈ q.

The safety-condition, that every answer variable has to appear in the body, will some-
times be relaxed for technical reasons, usually making proofs more uniform and obtaining
stronger results. We introduce vocabulary to distinguish this kind of CQ. A CQ is called
unsafe if not every answer variable appears in the body and it is called safe if every
answer variable appears in the body. So unless stated otherwise, every CQ is safe.

We introduce some important subclasses of CQs. First, we need some vocabulary to
describe the structure of a CQ. For every CQ q, one can consider the undirected graph Gq

whose nodes are var(q) and the edge {x ,y} exists if and only if x and y appear together in
an atom in the body q. We call q connected ifGq is a connected graph and we call q rooted
if every connected component of Gq contains at least one answer variable. Every CQ q
that formulated in a DL-signature can be viewed as an ABoxAq by viewing (answer and
quanti�ed) variables as individual names. A CQ q is tree-shaped if Aq is.

An atomic query (AQ) is a unary CQ of the form q(x) ← A(x), where the body consists
of a single unary atom A(x). A union of conjunctive queries (UCQ) is a �nite non-empty
set of CQs that all have the same arity. A potentially in�nite UCQ is a (not necessarily
�nite) non-empty set of CQs that all have the same arity. If q is a UCQ, the CQs in q are
called the disjuncts of q. The arity of a UCQ is the arity of its CQs. A UCQ is rooted if
every of its disjuncts is rooted.

We denote by AQ the set of all AQs, by CQ the set of all CQs, by rCQ the set of all
rooted CQs, by conCQ the set of all connected CQs and by rUCQ the set of all rooted
UCQs. Note that AQ ⊆ rCQ ⊆ CQ ⊆ UCQ. For a given signature Σ and a query language
Q, we denote with QΣ the set of all queries in Q that use only names from Σ.

Every k-ary (U)CQ q de�nes a function, which we also call query, that takes a database
D as an input and returns a relation ansq(D) ⊆ adom(D)k in the following way. A
homomorphism from a CQ q(x) to a database D is a function h : var(q) → adom(D) such
that R(h(y)) ∈ D for every R(y) ∈ q. A tuple a ∈ adom(D)ar(q) is an answer to q on D,
denoted D |= q(a), if there is a homomorphism h from q(x) to D with h(x) = a. We denote

1This de�nition of CQs, called the rule based de�nition [AHV95], is one of several equivalent ways to
de�ne CQs and it is the most suitable de�nition for the purposes of this thesis. These CQs have the same
expressive power as CQs de�ned by an FO formula of the form ∃yφ(x, y), where φ is a conjunction of
relational atoms and equality atoms.

14

2.5 Ontology-Mediated Queries

by ansq(D) the set of all answers to q on D. If q is a UCQ, we de�ne:

ansq(D) =
⋃
p∈q

ansp(D)

The analogue notions of A |= q(a), I |= q(a), ansq(A) and ansq(I) for ABoxes A and
interpretations I are de�ned accordingly, by seeing the ABox or the interpretation as a
database.

All queries we de�ned correspond to FO(=) formulas, and in fact, every FO(=) formula
φ also de�nes a query: a tuple a is an answer to φ on D if and only if D |= φ(a). We denote
the set of all FO queries by FO and the set of all FO queries with equality by FO(=).

2.5 Ontology-Mediated Queries
An ontology mediated query (OMQ) is a triple Q = (T , Σ,q) of a TBox T , a DL-signature
Σ and a query q. If A is an ABox and a is a tuple over ind(A), we say that a is a certain
answer toQ onA, denotedA |= Q(a), if for every model I of the knowledge base (T ,A),
we have a ∈ ansq(I). If we want to emphasize which TBox is used in the OMQ, we write
T ,A |= q(a) instead of A |= Q(a). The set of all certain answers to Q on A is denoted
as certQ (A).

If L is an ontology language (such as EL, ELI, . . .) and Q is a query language (such
as CQ, conCQ, UCQ, FO, . . .), we de�ne (L,Q) to be the set of all OMQs Q = (T , Σ,q)
where T is formulated in L, Σ is any DL-signature, and q ∈ Q.

A rewriting of an OMQ Q = (T , Σ,q) is a query qr over Σ of the same arity as q such
that for all Σ-ABoxesA, ansqr (A) = certQ (A). We speak of a FO rewriting and call Q FO
rewritable if qr ∈ FO(=). We speak of a UCQ rewriting if qr is a UCQ, of an in�nitary UCQ
rewriting if qr is a potentially in�nite UCQ. Basically all OMQs that we are concerned
with in this thesis lie in (FO,UCQ) and we remark that for these OMQs, there always
exists a canonical in�nitary UCQ rewriting that is obtained by taking all Σ-ABoxes A
and answers a ∈ certQ (A) and including (A, a) viewed as a CQ as a disjunct, that is,
the assertions in A become the body of the rule and a the tuple of answer variables,
using individuals as variables. In fact, this follows from the de�nition of rewritings
and the fact that OMQs with T formulated in FO without equality are preserved under
homomorphisms [Bie+14].

Parts of this thesis are concerned with the complexity of evaluating OMQs. One way
to look at this problem is to receive as input an OMQ Q , an ABox A and a tuple a from
ind(A) and ask whetherA |= Q(a). However, de�ning the problem in this way gives only
an approximate impression on the complexity of the problem, because the complexity is
usually measured relative to the size of the input, and the database usually accounts for
the biggest part of the input, while the query and the ontology are relatively small and
often static. So there is a di�erent, more re�ned way to measure the complexity, called
data complexity as opposed to the former, which is called combined complexity. For every
OMQ Q = (T , Σ,q) we de�ne the problem eval(Q) as follows:

15

2 Preliminaries

eval(Q)
Input: A Σ-ABox A and a tuple a ∈ ind(A)ar(q)

Question: A |= Q(a)?

2.6 Universal Models
In Horn-DLs, data complexity of the evaluation problem is usually lower compared to
their non-Horn counterparts. This is closely related to the fact that for every knowledge
base (T ,A) with T formulated in a Horn-DL such as Horn-ALCI, there exists an inter-
pretation that is a model for (T ,A) and that has several nice properties, as summarized
by the following lemma:

Lemma 2.1. Let T be an Horn-ALCI-TBox and A an ABox. Then there is an interpre-
tationUA,T such that

1. UA,T is a model of A and T ;

2. for every model I ofA and T , there is a homomorphism fromUA,T to I that is the
identity on ind(A);

3. for all UCQs q and a ∈ ind(A)ar(q), A,T |= q(a) if and only ifUA,T |= q(a).

We present two well known ways to construct a model UA,T . One is based on a
standard chase procedure, which constructsUA,T as the limit of a process of extending
A with new assertions. The other way is a direct construction, which is sometimes more
convenient to use. Note however that point 1 and 2 of Lemma 2.1 imply that each two
universal models of a knowledge base are homomorphically equivalent.

TBox Normal Form
For both constructions, we assume that the TBox is in a normal form, which means it
only uses concept inclusions of a certain restricted form. An ELHI-TBox is in normal
form if every of its concept inclusions takes one of the forms

∃r .A1 v A2 > v A1 A1 uA2 v A3 A1 v ∃r .A2 ,

where all Ai are concept names and r is a role. An EL-TBox is in normal form if it only
uses concept inclusions of this form, but with r a role name. A Horn-ALCI-TBox is
in normal form if every of its concept inclusions is of one of these forms or the form
A1 v ⊥.

It is well-known that every EL (resp. ELHI, Horn-ALCI) ontology T can be
converted into an EL (resp. ELHI, Horn-ALCI) ontology T ′ in normal form in
linear time [BBL05; Baa+17; Eit+08; Bie+16]. This process introduces new concept names.
The resulting TBox T ′ is a conservative extension of T , that is, every model of T ′ is
a model of T and, conversely, every model of T can be extended to a model of T ′ by

16

2.6 Universal Models

interpreting the fresh concept names. Consequently, when T is replaced in an OMQ
Q = (T , Σ,q) with T ′, resulting in an OMQ Q′, then Q and Q′ are equivalent in the sense
that they give the same answers on all Σ-ABoxes. Thus, conversion of the TBox in an
OMQ into normal form does not impact its data complexity nor rewritability into any
other query language. We use TBox normal form in many proofs throughout the thesis.

Universal Model for ELHI Using the Chase Procedure
We give a construction of UA,T for ELHI-TBoxes using a (lazy) chase procedure.2
Thus, let T be an ELHI-TBox in normal form and A an ABox. It is convenient to
use ABox notation for the construction, so we de�ne an in�nite sequence of ABoxes
A0 ⊆ A1 ⊆ . . . and de�ne UA,T to be the interpretation corresponding to the limit⋃∞

i=0Ai . We set A0 = A and then let Ai+1 be Ai extended as follows:

(i) If ∃r .B v A ∈ T , r (a,b),B(b) ∈ Ai and A(a) < Ai , then add A(a) to Ai+1.
(ii) If ∃r−.A v B ∈ T , r (a,b),A(a) ∈ Ai and B(b) < Ai , then add B(b) to Ai+1.

(iii) If > v A ∈ T and a ∈ ind(Ai), then add A(a) to Ai+1.
(iv) If B1 u B2 v A ∈ T and B1(a),B2(a) ∈ Ai , then add A(a) to Ai+1.
(v) If A v ∃r .B ∈ T , A(a) ∈ Ai and there is no b ∈ ind(Ai) such that r (a,b) and B(b),

then take a fresh individual b and add r (a,b) and B(b) to Ai+1.
(vi) If B v ∃r−.A ∈ T , B(b) ∈ Ai and there is no a ∈ ind(Ai) such that r (a,b) and A(a),

then take a fresh individual a and add r (a,b) and A(a) to Ai+1.
(vii) If r v s ∈ T and r (a,b) ∈ Ai , then add s(a,b) to Ai+1.

LetAω =
⋃

i≥0Ai and de�neUA,T to beAω seen as an interpretation. This does actually
not de�neUA,T in a unique way since the order of applying the above rules may have an
impact on the shape of Aω . However, all resulting Aω are homomorphically equivalent
and it does not matter for the constructions in this thesis which order we use. Slightly
sloppily, we thus live with the fact thatUA,T is not uniquely de�ned. Note thatUA,T can
be in�nite and that its shape is basically the shape of A, but with a (potentially in�nite)
tree attached to every individual inA. The domain elements in these trees are introduced
by Rules (v) and (vi), and we refer to them as anonymous elements. The properties in
Lemma 2.1 are standard to prove, see for example [BO15; Baa+17] for similar proofs.

Using this construction ofUA,T , we can also prove the following lemma, which allows
us to concentrate on ABoxes of small degree.

Lemma 2.2. Let Q = (T , Σ,q) ∈ (ELHI,UCQ) be an OMQ and A a Σ-ABox such that
A |= Q(a). Then there exists A′ ⊆ A of degree at most |T | such that A′ |= Q(a).

2 This version of the chase is called lazy, since rules (v) and (vi) are only applied when the consequence is
not satis�ed. This is in contrast to the oblivious chase, where these rules are also applied when the
consequence is already satis�ed. The reason we use the lazy chase is that the oblivious chase produces
a model with in�nite outdegree, which is sometimes inconvenient for technical reasons.

17

2 Preliminaries

Proof. (sketch) Assume A |= Q(a) and let Aω be the ABox produced by the chase proce-
dure described above. Since A |= Q(a), by Lemma 2.1, A(a) ∈ Aω . Let A′ be obtained
from A by removing all assertions r (a,b) that did not participate in any application of
rule (i), (ii), (v) or (vi) and let A′c be the result of chasing A′. Clearly, we must have
A(a) ∈ A′c . Moreover, it is easy to verify that the degree of A′ is at most |T |.

Universal Model for Horn-ALCI Using a Direct Construction
For Horn-ALCI-TBoxes, we give a direct construction for a modelUA,T that satis�es
the properties from Lemma 2.1. This direct construction is more convenient to use in
some proofs in Chapter 4. Let (T ,A) be a consistent Horn-ALCI KB and T in normal
form. Assume w.l.o.g. that every concept or role name from A also appears in T . When
a ∈ ind(A), t , t ′ are types for T , and r is a role, we write

• a T ,Ar t if T ,A |= ∃r .. t(a) and t is ⊆-maximal with this condition, and
• t Tr t ′ if T |=

.
t v ∃r .. t ′ and t ′ is ⊆-maximal with this condition.

A path for A and T is a �nite sequence π = ar0t1 · · · tn−1rn−1tn, n ≥ 0, with a ∈ ind(A),
r0, . . . , rn−1 roles, and t1, . . . , tn types for T such that

(i) a T ,Ar0 t1 and (ii) ti Tri ti+1 for every 1 ≤ i < n.

We use tail(π) to denote the last element of a path π . Let Paths be the set of all paths for
A and T and note that paths with n = 0 correspond to ind(A). The universal model
UT ,A of (T ,A) is de�ned as follows:

∆UT,A = Paths

AUT,A = {a ∈ ind(A) | T ,A |= A(a)} ∪

{π ∈ Paths \ ind(A) | A ∈ tail(π)}

rUT,A = {(a,b) ∈ ind(A)2 | r (a,b) ∈ A} ∪
{(π ,πrt) | πrt ∈ Paths} ∪
{(πr−t ,π) | πr−t ∈ Paths}

It is well-known that the resulting interpretationUT ,A is a universal model [BO15].

2.7 Pseudo Tree-Shaped ABoxes
Throughout the thesis, we often concentrate on ABoxes that take a restricted, almost tree-
shaped form. These are called pseudo tree-shaped ABoxes, introduced in [Bie+16]. An
ABox A is a pseudo tree-shaped ABox of core size n if there exist ABoxes C,A1, . . . ,Ak

such thatA = C∪
⋃k

i=1Ai , |ind(C)| = n, and allAi are tree-shaped ABoxes with pairwise
disjoint individuals and ind(C) ∩ ind(Ai) consists precisely of the root of Ai . We call C
the core ofA. The tree-shaped ABoxesA1, . . . ,Ak that are part of a pseudo tree-shaped
ABox should not be confused with the anonymous trees that are added when chasing a

18

2.8 Derivation Trees

pseudo tree-shaped ABox to construct a universal model. Note that every tree-shaped
ABox is pseudo tree-shaped with core size 1.

The following lemma, which is an adaptation of Proposition 23 in Appendix B of
[Bie+16], describes the central property of pseudo tree-shaped ABoxes. It essentially says
that if a is an answer to an OMQ Q based on a connected CQ q on an ABox A, then one
can unravelA into a pseudo tree-shaped ABoxA′ that homomorphically maps toA and
such that a is an answer to Q on A′, witnessed by a homomorphism from q toUA ′,T
that satis�es the additional property of being within or at least ‘close to’ the core of A′.

Lemma 2.3. LetQ = (T , Σ,q) ∈ (ELHI,UCQ) an OMQ,A an ABox and a ∈ certQ (A).
Then there is a pseudo tree-shaped Σ-ABox A′ of core size at most |q | and a tuple a′ in the
core of A′ such that

1. the degree of A′ is not larger than |T |;

2. a′ ∈ certQ (A′);

3. there is a homomorphism h from A′ to A with h(a′) = a.

The statement remains true if Condition 2 is replaced with the following Condition 2′, where
C′ denotes the core of A′.

2′. a′ ∈ certQ (C′ ∪ {A(a) | A′,T |= A(a), a ∈ ind(C′)}).

Condition 2′, which is strictly stronger than Condition 2, essentially says that there is
a homomorphism h from a disjunct of q to the universal model of A′ and T that only
involves elements from the core and anonymous elements below them.

Proof. (sketch) Assume that A |= Q(a). By Lemma 2.1, there is a homomorphism д from
q(x) toUA,T with д(x) = a. Let I ⊆ ind(A) be the set of all individuals b that are either
in the range of д or such that an anonymous element in the chase-generated tree below b
is in the range of h. We can unravelUA,T into a potentially in�nite pseudo tree-shaped
ABox A0 with core I , see [Bie+16] for details. Then A0 |= Q(a) and this is witnessed by
a homomorphism required for Condition 2′. However, A0 does not have to be �nite. By
the compactness theorem of �rst order logic, there exists a �nite subset A1 ⊆ A0 such
that A1 |= Q(a). Let A′ be the restriction of A1 to those individuals that are reachable
in GA ′ from an individual in I . It can be veri�ed that A′ is as required.

2.8 Derivation Trees
Entailment of AQs under TBoxes formulated in Horn DLs can be characterized in terms
of so-called derivation trees [BLW13]. A derivation tree is a tree-shaped structure that
encodes a proof of a statement of the form A,T |= A(a). Several decision procedures in
this thesis rely on the following characterization.

Let T be an ELHI-TBox in normal form andA and ABox, A0 ∈ NC and a0 ∈ ind(A).
A derivation tree for a fact A0(a0) in A is a �nite ind(A) × NC-labelled tree (T ,V) that
satis�es the following conditions:

19

2 Preliminaries

1. V (ε) = (a0,A0);

2. if V (x) = (a,A), then one of the following holds:

• x is a leaf and additionally, A(a) ∈ A or > v A ∈ T ;
• x has successors y1, . . . ,yk , k ≥ 1 with V (yi) = (a,Bi) for 1 ≤ i ≤ k and
T |= B1 u · · · u Bk v A;

• x has a single successor y with V (y) = (b,B) and there is an ∃s .B v A ∈ T
and an r (a,b) ∈ A such that T |= r v s .

Note that the second item of Point 2 above requires T |= A1 u · · · u An v A instead
of A1 uA2 v A ∈ T to ‘shortcut’ anonymous parts of the universal model. In fact, the
derivation of A from A1 u · · · u An by T can involve the introduction of anonymous
elements. The following lemma is proved in [Bie+16] for the stronger logic ELIHF ∩−lhs

⊥ ,
whereas we only need it for ELHI.

Lemma 2.4. Let T be a ELHI-TBox, A and ABox, A ∈ NC and a ∈ ind(A). Then
A,T |= A(a) if and only if there is a derivation tree for A(a) in A.

2.9 Two-way Alternating Parity Automata (TWAPA)
Tree automata are a versatile tool that we use throughout the thesis to obtain upper
bounds for the complexities of di�erent decision problems. A tree automaton receives a
labelled tree as an input, performs some algorithmic steps on it, and �nally accepts or
rejects the tree. We usually encode (pseudo) tree-shaped ABoxes as labelled trees and use
tree automata for questions like whether a certain concept name is derived at a certain
individual, whether an OMQ is entailed, and much more complicated questions. The kind
of tree automata we use are two-way alternating parity automata on �nite trees (TWAPA),
introduced in [Var98].

De�nition of TWAPA
Let N = {1, 2, 3, . . .}. A tree is a non-empty (and potentially in�nite) set T ⊆ N∗ closed
under pre�xes.3 We say thatT ism-ary ifT ⊆ {1, . . . ,m}∗. For an alphabet Γ, a Γ-labelled
tree is a pair (T ,L) withT a tree and L : T → Γ a node labelling function. An in�nite path
P of a treeT is a pre�x-closed set P ⊆ T such that for every i ≥ 0, there is a unique x ∈ P
with |x | = i .

For any set X , let B+(X) denote the set of all positive Boolean formulas over X ,
i.e., formulas built using conjunction and disjunction over the elements of X used as
propositional variables, and where the special formulas true and false are allowed as well.

De�nition 2.5 (TWAPA). A two-way alternating parity automaton (TWAPA) on �nitem-
ary trees is a tuple A = (S, Γ,δ , s0, c) where S is a �nite set of states, Γ is a �nite alphabet,

3The ∗ is the Kleene star, so N∗ are all �nite sequences of natural numbers, including the sequence of
length 0, denoted ε .

20

2.10 Computational Complexity

δ : S × Γ → B+(tran(A)) is the transition function with tran(A) = {〈i〉s, [i]s | −1 ≤ i ≤
m and s ∈ S} the set of transitions of A, s0 ∈ S is the initial state, and c : S → N is the
parity condition that assigns to each state a priority.

Intuitively, a transition 〈i〉s with i > 0 means that a copy of the automaton in state s is
sent to the i-th successor of the current node, which is then required to exist. Similarly,
〈0〉s means that the automaton stays at the current node and switches to state s , and
〈−1〉s indicates moving to the predecessor of the current node, which is then required to
exist. Transitions [i]s mean that a copy of the automaton in state s is sent on the relevant
successor if that successor exists (which is not required).

De�nition 2.6 (Run, Acceptance). Let A = (S, Γ,δ , s0, c) be a TWAPA and (T ,L) a �nite
Γ-labelled tree. A con�guration is a pair from T × S . A run of A on (T ,L) from the
con�gurationγ is aT ×S-labelled tree (Tr , r) such that the following conditions are satis�ed:

1. r (ε) = γ ;

2. if y ∈ Tr , r (y) = (x , s), and δ (s,L(x)) = φ, then there is a (possibly empty) set
S ⊆ tran(A) such that S (viewed as a propositional valuation) satis�es φ as well as
the following conditions:

a) if 〈i〉s′ ∈ S , then x ·i ∈ T and there is a nodey · j ∈ Tr such that r (y · j) = (x ·i, s′);

b) if [i]s′ ∈ S and x ·i ∈ T , then there is a nodey · j ∈ Tr such that r (y · j) = (x ·i, s′).

We say that (Tr , r) is accepting if on all in�nite paths of Tr , the maximum priority that
appears in�nitely often on this path is even. A �nite Γ-labelled tree (T ,L) is accepted by
A if there is an accepting run of A on (T ,L) from the con�guration (ε, s0). We use L(A) to
denote the set of all �nite Γ-labelled tree accepted by A.

It is known (and easy to see) that TWAPAs are closed under complementation and
intersection, and that these constructions involve only a polynomial blowup. In particular,
complementation boils down to dualizing the transitions and increasing all priorities by
one. The emptiness problem of TWAPA is the problem to decide whether a given TWAPA
accepts at least one tree. The following lemma is implicit in [Var98].

Lemma 2.7. The emptiness problem of TWAPA can be solved in time single exponential
in the number of states and in the highest occurring priority, and polynomial in all other
components of the TWAPA.

This lemma and the fact that all TWAPA we construct only use priorities 1 and 2, allow
us to only explicitly analyse the number of states, but only implicitly take care that all
other components are of the allowed size for the complexity result that we aim to obtain.

2.10 Computational Complexity
The largest part of this thesis is concerned with pinpointing the computational complexity
of reasoning problems. The following �gure gives an overview of all relevant complexity
classes that appear in this thesis.

21

2 Preliminaries

AC0 (LogSpace ⊆ NL ⊆ PTime
⊆

⊆

NP

coNP

⊆

⊆

Π
p
2 ⊆ PSpace ⊆ ExpTime

⊆

⊆

NExpTime

coNExpTime

⊆

⊆

2-ExpTime

The least familiar classes here might be AC0 and Π
p
2. The class AC0 is de�ned to be the

set of all problems that can be solved using a family of Boolean circuits of polynomial
size and logarithmic depth, where the fan-in of AND-gates and OR-gates is not restricted.
The signi�cance of AC0 comes from the fact that the evaluation problem of a �xed FO
formula on a given input structure lies in AC0. Thus, if an OMQ is FO rewritable, its data
complexity lies in AC0. This class plays a role in Chapter 3, where we classify the data
complexity of OMQs from (EL,CQ).

The class Πp
2 is situated in the second level of the polynomial hierarchy and can be

alternatively de�ned as coNPNP, the class of problems solvable by a coNP-machine using
an oracle for an NP-complete problem, see [AB09]. A complete problem for this class is
∀∃sat, which asks whether a given formula of the form

φ = ∀x1 · · · ∀xn∃y1 · · · ∃ym ψ (x1, . . . ,xn,y1, . . . ,ym)

is true, whereψ is a formula in propositional logic. In Chapter 5, we encounter a problem
that can encode ∀∃sat and turns out to be Π

p
2-complete.

We remind the reader that completeness for all relevant complexity classes above
PTime is usually de�ned in terms of PTime many-one reductions. For classes below
PTime (including the class PTime itself), one de�nes completeness via LogSpace many-
one reductions. However, whenever possible, we will prove completeness results under
the even weaker notion of FO reductions. Roughly said, an FO reduction is a many-one
reduction given by a single FO formula, which de�nes the output structure in terms of
the input structure, see [Imm99] for more details. Every FO reduction is also a LogSpace
reduction, so if we prove hardness under FO reductions, this is a stronger result than
proving hardness under LogSpace reductions.

22

3 A complete classi�cation of complexity
and rewritability for (EL,CQ)

Prominent choices for ontology languages in OMQs include DLs like EL, Horn-SHIQ,
and ALC [Baa+17], while the most common choices for query languages in OMQs are
CQs, UCQs and AQs. Substantial research e�orts have been invested into understanding
the properties of the resulting OMQ languages, with two important topics being

1. the data complexity of OMQ evaluation [HMS05; KL07; Ros07; Cal+13; Bie+14;
LW17], where data complexity means that only the data is considered the input
while the OMQ is �xed, and

2. the rewritability of OMQs into more standard database query languages such as
SQL (which in this context is often equated with �rst-order logic) and Datalog
[Eit+12; BLW13; Bie+14; KNG14; FKL19].

PTime data complexity is often considered a necessary condition for e�cient query
evaluation in practice. Questions about rewritability are also motivated by practical
concerns: Since most database systems are unaware of ontologies, rewriting OMQs into
standard database query languages provides an important avenue for implementing OMQ
execution in practical applications [Cal+09; Han+15; PMH10; Tri+15]. Both subjects are
thoroughly intertwined since rewritability into �rst-order logic (FO) is closely related
to AC0 data complexity while rewritability into Datalog is closely related to PTime data
complexity. We remark that FO rewritability of an OMQ implies rewritability into a UCQ
and thus into Datalog [Bie+14]. In this chapter, when speaking about complexity we
always mean data complexity.

Regarding compexity and rewritability, modern DLs can roughly be divided into two
families: ‘expressive DLs’ such as ALC and SHIQ that result in OMQ languages with
coNP complexity and where rewritability is guaranteed neither into FO nor into Datalog
[Bie+14; Tri+15; FKL19], and ‘Horn DLs’ such as EL and Horn-SHIQ which typically
have PTime complexity and where rewritability into (monadic) Datalog is guaranteed,
but FO rewritability is not [BLW13; Han+15; Bie+16]. In practical applications, however,
ontology engineers often need to use language features that are only available in expres-
sive DLs, but they typically do so in a way such that one may hope for hardness to be
avoided by the concrete ontologies that are being designed.

Initiated in [LW12; Bie+14], this has led to studies of data complexity and rewritability
that are much more �ne-grained than the analysis of entire ontology languages, see
also [ZKG18; LSW15]. The ultimate aim is to understand, for relevant OMQ languages
(L,Q), the exact complexity and rewritability status of every OMQ from (L,Q). For

23

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

expressive DLs, this turns out to be closely related to the complexity classi�cation of
constraint satisfaction problems (CSPs) with a �xed template [FV98; All+09]. Very
important progress has recently been made in this area with the proof that CSPs enjoy
a dichotomy between PTime and NP [Bul17; Zhu17]. Via the results in [Bie+14], this
implies that OMQ evaluation in languages such as (ALC,UCQ) enjoys a dichotomy
between PTime and coNP. However, the picture is still far from being fully understood.
For example, neither in CSP nor in expressive OMQ languages it is known whether there
is a dichotomy between NL and PTime, and whether containment in NL coincides with
rewritability into linear Datalog [Dal05].

We remark that rewritability into linear Datalog might also be interesting from a
practical perspective. In fact, the equation “SQL = FO” often adopted in ontology-mediated
querying ignores the fact that SQL contains linear recursion from its version 3 published
in 1999 on, which exceeds the expressive power of FO. We believe that, in the context of
OMQs, linear Datalog might be a natural abstraction of SQL that includes linear recursion,
despite the fact that it does not contain full FO. Indeed, the fact that all OMQs from
(EL,CQ) that are FO rewritable are also UCQ-rewritable shows that the expressive
power of FO that lies outside of linear Datalog is not useful when using SQL as a target
language for OMQ rewriting.

Contribution and Structure of the Chapter
The aim of this chapter is to carry out an ultimately �ne-grained analysis of the data
complexity and rewritability of OMQs from the languages (EL,CQ) and (EL,AQ). In
fact, we completely settle the complexity and rewritability status of each OMQ from
(EL,CQ). Our �rst main result is a trichotomy: Every OMQ from (EL,CQ) is in AC0,
NL-complete, or PTime-complete, and all three complexities actually occur already in
(EL,AQ). We consider this a remarkable sparseness of complexities. Let us illustrate the
trichotomy using an example.
Example 3.1. Consider an ontology that represents knowledge about genetic diseases,
where Disease1 is caused by Gene1 and Disease2 by Gene2. A patient carries Gene1
if both parents carry Gene1, and the patient carries Gene2 if at least one parent carries
Gene2 (dominant and recessive inheritance, respectively). Let T consist of the following
concept inclusions:

Gene1 v Disease1,
Gene2 v Disease2

∃father.Gene1 u ∃mother.Gene1 v Gene1
∃father.Gene2 v Gene2

∃mother.Gene2 v Gene2

For Σ = {Gene1,Gene2,mother, father}, the OMQ Q1 = (T , Σ,Disease1(x)) is PTime-
complete, whileQ2 = (T , Σ,Disease2(x)) isNL-complete. To see why it is harder to evaluate
Q1 compared to Q2, note that for evaluating Q1, one might have to verify the existence of a
certain binary tree in the ABox whose leaves belong to Gene1, while for evaluatingQ2, it is
enough to verify the existence of a path to an individual belonging to Gene2.

24

Our second main result is that for OMQs from (EL,CQ), evaluation in NL coincides
with rewritability into linear Datalog. It is known that evaluation in AC0 coincides with
FO rewritability [Bie+16] and thus each of the three occurring complexities coincides with
rewritability into a well-known database language: AC0 corresponds to FO, NL to linear
Datalog, and PTime to monadic Datalog. We also show that there is no constant bound
on the arity of IDB relations in linear Datalog rewritings, that is, we �nd a sequence
of OMQs from (EL,CQ) (and in fact, even from (EL,AQ)) that are all rewritable into
linear Datalog, but require higher and higher arities of IDB relations.

The second main result is proved using a characterization of linear Datalog rewritability
in terms of bounded pathwidth that may be of independent interest. It is easiest to state for
(EL,AQ): an OMQ Q is rewritable into linear Datalog (equivalently: can be evaluated in
NL) if the classMQ of the following ABoxesA has bounded pathwidth: A is tree-shaped,
delivers the root as an answer to Q , and is minimal w.r.t. set inclusion regarding the latter
property. For (EL,CQ), we have to replace inMQ tree-shaped ABoxes with pseudo
tree-shaped ones in which the root is an ABox that can have any relational structure,
but whose size is bounded by the size of the actual query in q. These results are closely
related to results on bounded pathwidth obstructions of CSPs, see for example [Dal05;
DK08; CDK10].

Finally, we consider the meta problems associated to the studied properties of OMQs,
such as whether a given OMQ is rewritable into linear Datalog, NL-hard, PTime-hard,
etc. Each of these problems turns out to be ExpTime-complete, both in (EL,CQ) and
in (EL,AQ). In the case of linear Datalog rewritability, our results provide a way of
constructing a concrete rewriting when it exists.

We introduce the chapter-speci�c preliminaries in Section 3.1 and then start with
considering the OMQ language (EL, conCQ). In Section 3.2, we show that (EL, conCQ)
enjoys a dichotomy between AC0 and NL, using a notion of bounded depth that was
introduced in [Bie+16]. In particular, it was shown in [Bie+16] that when the ABoxes in
MQ have bounded depth, then Q can be evaluated in AC0. We prove that otherwise, we
�nd certain gadget ABoxes (we say that Q has the ability to simulate reach) that allow
us to reduce the reachability problem in directed graphs, thus showing NL-hardness. In
Section 3.3, we prove a dichotomy between NL and PTime, still for (EL, conCQ). We �rst
show that ifMQ has unbounded pathwidth, then we can �nd certain gadget ABoxes (we
say that Q has the ability to simulate psa) that allow us to reduce the path accessibility
problem, thus showing PTime-hardness. This result is similar to, but substantially more
di�cult than the NL-hardness result in Section 3.2. We then proceed by showing that
if MQ has bounded pathwidth, then we can construct a two-way alternating word
automaton that accepts suitable representations of pairs (A, a) where A is an ABox
of low pathwidth and a and answer to Q on A. We further show how to convert this
automaton into a linear Datalog rewriting, which yields NL complexity. Section 3.4 is
concerned with extending both of our dichotomies to potentially disconnected CQs. In
Section 3.5, we prove that there is an in�nite family of OMQs that are linear Datalog
rewritable but for which the width of IDB relations in linear Datalog rewritings is not
bounded by a constant. This strengthens a result by [DK08] who establish an analogous
statement for CSPs. In Section 3.6 we prove decidability and ExpTime-completeness of

25

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

the meta problems. The upper bounds are established using the ability to simulate psa
from Section 3.3 and alternating tree automata.

This chapter is an extended version of [LS17b]. The main di�erences are that [LS17b]
only treats atomic queries but no conjunctive queries, does not provide characterizations
in terms of bounded pathwidth, and achieves less optimal bounds on the width of IDB
relations in constructed linear Datalog programs.

3.1 Preliminaries
We introduce the pathwidth of ABoxes, some notions regarding CQs that homomorphi-
cally map into a tree, and a fundamental glueing construction for ABoxes.

Pathwidth
The pathwidth of a graph is a number that measures how similar the graph is to a path,
where a lower pathwidth means the graph is more similar to a path. For instance, every
path has pathwidth 1, and the complete graph with k nodes has pathwidth k − 1. Several
di�erent measures from graph theory turn out to be equivalent or closely related to the
pathwidth, namely the vertex separation number, the interval thickness and the node
search number. Furthermore, pathwidth can be characterized in terms of certain games
played on the graph. Details on these notions can be found in [Bod98].

The pathwidth of a graph can be de�ned using path decompositions. A path decompo-
sition of a (directed or undirected) graph G = (V ,E) is a sequence V1, . . . ,Vn of subsets of
V , such that

• Vi ∩Vk ⊆ Vj for 1 ≤ i ≤ j ≤ k ≤ n and
•

⋃n
i=1Vi = V .

A path decomposition V1, . . . ,Vn is an (`,k)-path decomposition if ` = max{|Vi ∩Vi+1 | |
1 ≤ i ≤ n − 1} and k = max{|Vi | | 1 ≤ i ≤ n}. The pathwidth of G, denoted pw(G),
is the smallest integer k , such that G has a (`,k + 1)-path decomposition for some `.
For an ABox A, a sequence V1, . . . ,Vn of subsets of ind(A) is a path decomposition of
A if V1, . . . ,Vn is a path decomposition of GA . We assign a pathwidth to A by setting
pw(A) := pw(GA).

An important result we are going to use is that the full binary tree of depth k has
pathwidth dk2 e, so the pathwidth grows with the depth of the tree [Sch89].

Linear Datalog
Datalog is a rule-based query language that supports recursive queries. When we are
interested in rewritability of OMQs, Datalog is an interesting target language for OMQs
that are not FO rewritable. In this chapter, we also characterize rewritability of OMQs
into a certain fragment of Datalog, called linear Datalog.

26

3.1 Preliminaries

A Datalog rule ρ has the form S(x) ← R1(y1) ∧ . . .∧Rn(yn), n > 0, where S,R1, . . . ,Rn
are relational symbols of any arity and x, yi denote tuples of variables. We refer to S(x)
as the head of ρ and to R1(y1) ∧ . . . ∧ Rn(yn) as the body. Every variable that occurs in
the head of a rule is required to also occur in its body. Thus, syntactically, a datalog rule
is the same as a CQ.

A Datalog program Π is a �nite set of Datalog rules with a selected goal relation goal
that does not occur in rule bodies.

The arity of Π, denoted ar(Π), is the arity of the goal relation. Relation symbols that
occur in the head of at least one rule of Π are intensional (IDB) relations, and all remaining
relation symbols in Π are extensional (EDB) relations. In our context, EDB relations must
be unary or binary and are identi�ed with concept names and role names. Note that,
by de�nition, goal is an IDB relation. A Datalog program is linear if each rule body
contains at most one IDB relation. The width of a Datalog program is the maximum arity
of non-goal IDB relations used in it and its diameter is the maximum number of variables
that occur in a rule in Π.

For an ABoxA that uses no IDB relations from Π and a tuple a ∈ ind(A)ar(Π), we write
A |= Π(a) if a is an answer to Π on A, de�ned in the usual way [AHV95]: A |= Π(a)
if goal(a) is a logical consequence of A ∪ Π viewed as a set of �rst-order sentences (all
variables in rules quanti�ed universally). We also admit body atoms of the form >(x)
that are vacuously true. This is just syntactic sugar since any rule with body atom >(x)
can equivalently be replaced by a set of rules obtained by replacing >(x) in all possible
ways with an atom R(x1, . . . ,xn) where R is an EDB relation and where xi = x for some i
and all other xi are fresh variables.

A Datalog program Π over EDB signature Σ is a rewriting of an OMQ Q = (T , Σ,q) if
for all Σ-ABoxes A and all a ∈ ind(A), A |= Q(a) if and only if A |= Π(a). We say that
Q is (linear) Datalog rewritable if there is a (linear) Datalog program that is a rewriting
of Q . It is well-known that all OMQs from (ELI,CQ) are Datalog rewritable.

Similarly to the derivations introduced in Section 2.8, we introduce derivations for
Datalog, which are tree-shaped structures that encode a proof for a fact of the form
goal(a).

Let Π be a Datalog program, A an ABox and a a tuple from ind(A). A derivation of
Π(a) in A is a labelled directed tree (V , `) where

1. `(x0) = goal(a) for x0 the root node;

2. for each x ∈ V with children y1, . . . ,yk , k > 0, there is a rule S(y) ← p(x) in Π and
a substitution σ of variables by individuals from A such that `(x) = S(σy) and
`(y1), . . . , `(yk) are exactly the facts in p(σx);

3. if x is a leaf, then `(x) ∈ A.

It is well known that A |= Π(a) if and only if there is a derivation of Π(a) in A.
We associate with each derivation D = (V , `) of Π(a) in A an ABox AD . In fact, we

�rst associate an instance Ax with every x ∈ V and then set AD := Ax0 for x0 the root
of D. If x ∈ V is a leaf, then `(x) ∈ A and we set Ax = {`(x)}. If x ∈ V has children

27

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

y1, . . . ,yk , k > 0, such that y1, . . . ,y` are non-leafs and y`+1, . . . ,yk are leafs, then Ax is
obtained by starting with the assertions from `(y`+1), . . . , `(yk) and then adding a copy
of Ayi , for 1 ≤ i ≤ `, in which all individuals except those in `(x) are substituted with
fresh individuals.

The following lemma is well known [AHV95] and easy to verify.

Lemma 3.2. Let Π be a linear Datalog program and let D be a derivation of Π(a) in A
and Π of diameter d . Then

1. AD |= Π(a);

2. there is a homomorphism h from AD to A with h(a) = a;

3. AD has pathwidth at most d .

Treeifying CQs.
A Boolean CQ q is treei�able if there exists a homomorphism from q into a tree-shaped
interpretation. With every treei�able Boolean CQ q, we associate a tree-shaped CQ
qtree that is obtained by starting with q and then exhaustively eliminating forks, that
is, identifying x1 and x2 whenever there are atoms r (x1,y) and r (x2,y). Informally, one
should think of qtree as the least constrained treei�cation of q. It is known that a CQ
q is treei�able if and only if the result of exhaustively eliminating forks is tree-shaped
[Lut08]. Consequently, it can be decided in polynomial time whether a Boolean CQ is
treei�able. Figure 3.1 shows an example for a query that is treeifyable.

One reason for why treei�cation is useful is that every tree-shaped Boolean CQ q can
be viewed as an EL-concept Cq in a straightforward way. If, for example,

q() ← r (x ,y) ∧ s(y, z) ∧ r (y,w) ∧A(y) ∧ B(w),

then Cq = ∃r .(A u ∃s .> u ∃r .B).
A pair of variables (x ,y) from a CQ q is guarded if q contains an atom of the form

r (x ,y). For every guarded pair (x ,y) and every i ≥ 0, de�ne reachi(x ,y) to be the smallest
set such that

1. x ∈ reach0(x ,y) and y ∈ reach1(x ,y);

2. if z ∈ reachi(x ,y), i > 0, and r (z,u) ∈ q, then u ∈ reachi+1(x ,y);

3. if u ∈ reachi+1(x ,y), i > 0 and r (z,u) ∈ q, then z ∈ reachi(x ,y).

Moreover, reach(x ,y) =
⋃

i reachi(x ,y). We use trees(q) to denote the set of all (tree-
shaped) CQs ptree such that p = q |reach(x ,y) for some guarded pair (x ,y) with p treei�able.

It is easy to verify that the number of CQs in trees(q) is linear in |q |. We brie�y argue
that trees(q) can be computed in polynomial time. The number of guarded pairs is linear
in |q |. For each guarded pair (x ,y), reach(x ,y) can clearly be computed in polynomial
time. Moreover, exhaustively eliminating forks on p = q |reach(x ,y) takes only polynomial
time, which tells us whether p is treei�able and constructs ptree if this is the case.

28

3.1 Preliminaries

q

r r r r

s s t

r s

qtree

r

s t

r s

Figure 3.1: The left side shows a CQ q that is treeifyable. The right side shows qtree, the
unique CQ obtained from q by carrying out fork elimination.

Minimal Pseudo Tree-Shaped ABoxes
As mentioned in the introduction to this chapter, we shall often be interested in pseudo
tree-shaped ABoxesA that give an answer a to an OMQQ and that are minimal with this
property regarding set inclusion, that is, no strict subset of A supports a as an answer to
Q . We introduce some convenient notation for this. Let Q = (T , Σ,q) ∈ (EL,CQ). We
useMQ to denote the set of all pseudo tree-shaped Σ-ABoxes A of core size at most |q |
such that for some tuple a in the core ofA,A |= Q(a) whileA′ 6 |= Q(a) for anyA′ (A.

A Useful Lemma for Glueing ABoxes Together
We introduce a fundamental construction for merging ABoxes. Let T be an ELI-TBox.
For an ABox A and a ∈ ind(A), we use tpA,T (a) to denote the set of concept names A
from T such that A,T |= A(a), which is a T -type. The following lemma allows us to
glue together ABoxes under certain conditions.

Lemma 3.3. Let A1,A2 be Σ-ABoxes and let T an ELI-TBox such that tpA1,T
(a) =

tpA2,T
(a) for all a ∈ ind(A1) ∩ ind(A2). Then tpA1∪A2,T

(a) = tpAi ,T
(a) for all a ∈

ind(Ai), i ∈ {1, 2}.

Proof. Let A1, A2, and T be as in the lemma. It su�ces to show that tpA1∪A2,T
(a) ⊆

tpAi ,T
(a) for all a ∈ ind(Ai), i ∈ {1, 2}. We show the contrapositive. Thus, assume that

Ai ,T 6|= A(a) for some i ∈ {1, 2}. We have to show that A1 ∪ A2,T 6|= A(a). Let I be
the universal model of T and A1 ∪ A2 and for each j ∈ {1, 2}, let Ij be the a universal
model of T and Aj . We can assume w.l.o.g. that ∆I1 ∩ ∆I2 = ind(A1) ∩ ind(A2). By
assumption and since tpA1,T

(a) = tpA2,T
(a), we must have a < AI1 and a < AI2 . Consider

the (non-disjoint) union I of I1 and I2. Clearly, I is a model of A1 ∪ A2 and a < AI . To
showA1 ∪A2,T 6|= A(a), it thus remains to prove that I is a model of T . To do this, we
argue that all concept inclusions from T are satis�ed:

• Consider ∃r .A1 v A2 ∈ T and a,b ∈ ∆I such that (a,b) ∈ rI and b ∈ AI1 . Then
there exist i, j ∈ {1, 2} such that (a,b) ∈ rIi and b ∈ A

Ij
1 . If i = j , then a ∈ AI2 , since

Ii is a model of T . Otherwise b ∈ ∆I1∩∆I2 = ind(A1)∩ ind(A2), so by assumption,

29

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

tpA1,T
(b) = tpA2,T

(b). It follows that A1 ∈ tpAi ,T
(b) and thus, b ∈ AIi1 . Together

with (a,b) ∈ rIi and because Ii is a model of T , it follows that a ∈ AIi2 ⊆ AI2 . Thus,
the inclusion ∃r .A1 v A2 is satis�ed in I.

• Consider > v A1 ∈ T and a ∈ ∆I . Then a ∈ ∆Ii for some i ∈ {1, 2}. Since Ii is a
model of T , we have a ∈ AIi1 , so a ∈ AI1 and the inclusion > v A1 is satis�ed in I.

• Consider A1 uA2 v A3 ∈ T and a ∈ AI1 ∩A
I
2 . Then there are i, j ∈ {1, 2} such that

a ∈ AIi1 and a ∈ AIj2 . If i = j , then a ∈ AI3 follows, sinceIi is a model ofT . Otherwise
a ∈ ∆I1 ∩ ∆I2 = ind(A1) ∩ ind(A2), so by assumption, tpA1,T

(a) = tpA2,T
(a). For

sure we have A1,A2 ∈ tpA1,T
(a), so we have a ∈ AI11 ∩A

I1
2 and since I1 is a model

of T , we conclude a ∈ AI13 ⊆ AI3 , so the inclusion A1 uA2 v A3 is satis�ed in I.

• Consider A1 v ∃r .A2 ∈ T and a ∈ AI1 . Then a ∈ AIi1 for some i ∈ {1, 2}. Since Ii is
a model of T , we have b ∈ ∆Ii and (a,b) ∈ rIi , hence also b ∈ ∆I and (a,b) ∈ rI
and thus, A1 v ∃r .A2 is satis�ed in I.

3.2 AC0 versus NL for Connected CQs
We prove a dichotomy between AC0 and NL for (EL, conCQ) and show that for OMQs
from this language, evaluation in AC0 coincides with FO rewritability. The dichotomy
does not depend on assumptions from complexity theory since it is known that AC0 , NL
[FSS81]. We generalize the results obtained here to potentially disconnected CQs in
Section 3.4.

FO rewritability of OMQs in (EL,CQ) has been characterized in [Bie+16] by a property
called bounded depth. Informally, an OMQQ has bounded depth if it looks only boundedly
far into the ABox. To obtain our results, we show that unbounded depth implies NL-
hardness. Formally, bounded depth is de�ned as follows. The depth of a tree-shaped
ABoxA is the largest number k such that there exists a directed path of length k starting
from the root in GA . The depth of a pseudo tree-shaped ABox is the maximum depth of
its trees. We say that an OMQ Q ∈ (EL,CQ) has bounded depth if there is a k such that
every A ∈ MQ has depth at most k . If there is no such k , then Q has unbounded depth.

Theorem 3.4. Let Q ∈ (EL, conCQ). The following are equivalent:

(i) Q has bounded depth.

(ii) Q is FO-rewritable.

(iii) eval(Q) is in AC0.

If these conditions do not hold, then eval(Q) is NL-hard under FO reductions.

30

3.2 AC0 versus NL for Connected CQs

The equivalence (ii)⇔ (iii) is closely related to a result in CSP. In fact, every OMQ of
the form (T , Σ,∃xA(x)) with A a concept name and T formulated in ELI is equivalent
to the complement of a CSP [Bie+14] and it is a known result in CSP that FO rewritability
coincides with AC0 [BKL08]. Conjunctive queries, however, go beyond the expressive
power of (complements of) CSPs and thus we give a direct proof for (ii)⇔ (iii).

The equivalence (i)⇔ (ii) follows from Theorem 9 in [Bie+16]. Further, the implication
(ii)⇒ (iii) is clear because �rst order formulas can be evaluated in AC0. What remains to
be shown is thus the implication (iii)⇒ (i) and the last sentence of the theorem. We show
that unbounded depth implies NL-hardness, which establishes both since AC0 , NL.

We �rst give a rough sketch of how the reduction works. We reduce from reach,
the reachability problem in directed graphs, which is NL-complete under FO reductions
[Imm99]. An input for this problem is a tuple G = (V ,E, s, t) where (V ,E) is a directed
graph, s ∈ V a source node and t ∈ V a target node. Such a tuple is a yes-instance if there
exists a path from s to t in the graph (V ,E). We further assume w.l.o.g. that s , t and
that the indegree of s and the outdegree of t are both 0, which simpli�es the reduction.

Let Q = (T , Σ,q) ∈ (EL, conCQ) be an OMQ of unbounded depth. The reduction has
to translate a tuple G = (V ,E, s, t) into a Σ-ABox AG and a tuple a such that AG |= Q(a)
if and only if there is a path from s to t . We show that any ABox fromMQ of su�ciently
large depth can be used to construct ABoxes Asource, Aedge and Atarget that can serve as
gadgets in the reduction. More precisely, the ABoxAG has (among others) one individual
av for every node v ∈ V , the edges of (V ,E) will be represented using copies of Aedge,
and the source and target nodes will be marked using the ABoxes Asource and Atarget,
respectively. We identify two T -types t0 and t1 such that tpAG ,T

(av) = t1 ifv is reachable
from s via a path in G and tpAG ,T

(av) = t0 otherwise. The tuple a is then connected to at
in a way such that AG ,T |= q(a) if and only if tpAG ,T

(at) = t1.
We next de�ne a property of Q , called the ability to simulate reach, that makes the

properties ofAsource, Aedge, andAtarget precise, as well as those of the T -types t0 and t1.
We then show that Q having unbounded depth implies the ability to simulate reach and
that this, in turn, implies NL-hardness via a reduction from reach.

If M is a set of concept names, then M(a) denotes the ABox {A(a) | A ∈ M}. We write
A,T |= M(a) to mean that A,T |= A(a) for all A ∈ M . For every pseudo tree-shaped
ABox A and a non-core individual a ∈ ind(A), we use Aa to denote the tree-shaped
ABox rooted at a. Note that every tree-shaped ABox is trivially pseudo tree-shaped with
only one tree and where the core consists only of the root individual, so this notation can
also be used if A is tree-shaped. Moreover, we use Aa to denote the pseudo tree-shaped
ABoxA \Aa , that is, the ABox obtained fromA by removing all assertions that involve
descendants of a (making a a leaf) and all assertions of the form A(a). We also combine
these notations, writing for example Aa

bc
for ((Aa)b)c .

Boolean queries require some special attention in the reduction since they can be made
true by homomorphisms to anywhere in the universal model of AG and T , rather than
to the neighborhood of the answer tuple a (recall that we work with connected CQs).
We thus have to build AG such that the universal model does not admit unintended
homomorphisms. Let A be a pseudo tree-shaped Σ-ABox of core size |q | and a a tuple
from ind(A). We call a homomorphism h from q to UA,T core close if there is some

31

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

x ∈ var(q) such that h(x) ∈ ind(A) is either in the core of A or h(x) is an element in an
anonymous tree rooted at a core individual. If ar(q) > 0 and a is from the core ofA, then
every homomorphism from q toUA,T is core close, but this is not true if q is Boolean.

Lemma 3.5. Let Q = (T , Σ,q) ∈ (EL, conCQ) be Boolean and A ∈ MQ . Then every
homomorphism from q toUA,T is core close.

Proof. (sketch) SinceA ∈ MQ ,A is minimal with the property thatA |= Q . Assume that
there is a homomorphism h from q toUA,T that is not core close. Since the anonymous
trees in a universal model under an EL TBox are directed, there is no path inUA,T from
any element in the range of h to any individual in the core of A (though a path in the
converse direction might exist). Thus, we can remove all assertions in A that involve a
core individual and the resulting ABoxA′ satis�esA′ |= Q , contradicting the minimality
of A. Formally, this can be proved by using Lemma 2.3 and showing that UA,T and
UA ′,T are isomorphic when restricted to non-core individuals and all elements reachable
from them on a path.

For the rest of this section, we assume w.l.o.g. that in any OMQ Q = (T , Σ,q) ∈
(EL, conCQ), the TBox T has been modi�ed as follows: for every p ∈ trees(q), introduce
a fresh concept name Ap and add the concept inclusion Cp v Ap to T where Cp is p
viewed as an EL-concept. Finally, normalize T again. It is easy to see that the OMQ
resulting from this modi�cation is equivalent to the original OMQ Q . The extension
is useful since T -types become more informative, now potentially containing also the
freshly introduced concept names. We are now ready to de�ne the ability to simulate
reach.

De�nition 3.6. An OMQQ = (T , Σ,q) ∈ (EL, conCQ) has the ability to simulate reach
if there exist

• a pseudo tree-shaped Σ-ABox A of core size at most |q |,
• a tuple a from the core of A of length ar(q),
• a treeAi ofA with two distinguished non-core individuals b, c from ind(Ai), where
b has distance more than |q | from the core, c is a descendant of b, and c has distance
more than |q | from b and

• T -types t0 (t1

such that

1. A |= Q(a),

2. t1 = tpA,T (b) = tpA,T (c),

3. tpAc∪t0(c),T
(b) = t0,

4. Ab ∪ t0(b) 6|= Q(a) and

5. if q is Boolean, then every homomorphism h from q toUA,T is core close.

32

3.2 AC0 versus NL for Connected CQs

We de�ne Atarget = Ab , Aedge = A
b
c , and Asource = A

c .

To understand the essence of De�nition 3.6, it is worthwhile to consider the special
case where q is an AQ A(x). In this case, Q has the ability to simulate reach if there
is a tree-shaped Σ-ABox A with root a = a, two distinguished non-root individuals
b, c ∈ ind(A), c a descendant of b, and T -types t0 (t1 such that Conditions (1)-(4)
of De�nition 3.6 are satis�ed. All remaining parts of De�nition 3.6 should be thought
of as technical complications induced by replacing AQs with CQs. The OMQ Q2 from
Example 3.1 has the ability to simulate reach.

In Lemma 3.7 we show that unbounded depth implies the ability to simulate reach
and in Lemma 3.8 we show that the ability to simulate reach enables a reduction from
the reachability problem for directed graphs.

Lemma 3.7. Let Q ∈ (EL, conCQ). If Q has unbounded depth, then Q has the ability to
simulate reach.

Proof. We use a pumping argument. Let Q = (T , Σ,q) ∈ (EL, conCQ) have unbounded
depth. There must be a pseudo tree-shaped ABox A ∈ MQ and a tuple a from its
core such that A |= Q(a) and such that one of its trees, say Ai , has depth at least
k := (|q | + 2) · 3|T | + |q | + 2. Consider a path of length at least k from the root of Ai to a
leaf. Let A′ denote the ABox obtained from A by removing all assertions that involve
the leaf in this path. Since A is minimal, A′ 6 |= Q(a). Now, every individual b on the
remaining path that has distance more than |q | from the core is colored with the pair
(t ′
b
, tb) where t ′

b
= tpA ′,T (b) and tb = tpA,T (b). Observing t ′

b
⊆ tb , we obtain 3|T | as

an upper bound for the number of di�erent colors (t ′
b
, tb) that may occur on the path.

But the number of individuals on this path with distance more than |q | from the core is
k − |q | − 1 = (|q | + 2) · 3|T | + 1, so by the pigeonhole principle there is one color (t ′, t)
that appears |q | + 2 times on the path. Then there must be distinct individuals b and c
that have distance more than |q | from each other and such that (t ′

b
, tb) = (t

′
c , tc). W.l.o.g.,

let c be a descendant of b. We set t0 = t ′
b

and t1 = tb .
For this choice of A, a, b, c , t0 and t1, Conditions 1 and 2 from De�nition 3.6 are

immediately clear. With Lemma 3.3, we can replace Ac in A′ by t0(c), so Condition 3
holds. Furthermore, we have A′ 6 |= Q(a) and tpA ′,T (b) = t0, so again by Lemma 3.3, if
we replace Ab with t0(b), the types derived in the remaining ABox do not change, thus
Condition 4 holds. Condition 5 follows from Lemma 3.5.

Now for the reduction from reach to eval(Q) when Q has the ability to simulate
reach.

Lemma 3.8. Let Q ∈ (EL, conCQ). If Q has the ability to simulate reach, then Q is
NL-hard under FO reductions.

Proof. Let Q = (T , Σ,q) ∈ (EL, conCQ) have the ability to simulate reach. Then there
is a pseudo tree-shaped ABox A, a tuple a in its core, distinguished individuals b and c ,
and types t0 (t1 as in De�nition 3.6. We reduce reach to eval(Q). Let G = (V ,E, s, t)
be an input tuple for reach. We construct a Σ-ABox AG that represents G. Reserve an

33

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

individual av for every node v ∈ V . For every (u,v) ∈ E, include in AG a copy Au,v of
Aedge that uses fresh individuals, identifying (the individual that corresponds to) c with
au and b with av . Further include in AG one copy of Atarget that uses fresh individuals,
identifying b with at , and one copy of Asource that uses fresh individuals, identifying c
with as . W.l.o.g., we assume that the individuals in a, added to AG as part of the copy of
Atarget, retain their original name. It can be veri�ed that AG can be constructed from G
using an FO query, see [Imm99] for more information on FO reductions. It thus remains
to show the following.

Claim 1. t is reachable from s in G if and only if AG |= Q(a).

For the more straightforward “⇒” direction, let t be reachable from s . Then there is a
path s = v0, . . . ,vn = t in G . By de�nition ofAG , there is a copy ofAsource whose root is
as , so Condition 2 from De�nition 3.6 yields t1 ⊆ tpAG ,T

(as). Between any two avi ,avi+1
there is a copy of Aedge, so we inductively obtain t1 ⊆ tpAG ,T

(avi) for all i . In particular,
t1 ⊆ tpAG ,T

(at). Finally, there is a copy of Atarget in which b is identi�ed with at . By
Condition 1, we have AG |= Q(a).

The “⇐” direction is more laborious. Assume that t is not reachable from s . Set

A′G := AG ∪ {t0(av) | v ∈ V is not reachable from s}

∪ {t1(av) | v ∈ V is reachable from s}.

We show that A′G 6 |= Q(a), which implies AG 6 |= Q(a).
We have de�ned A′G as an extension of AG . Alternatively and more suitably for what

we aim to prove, we can construct A′G by starting with an ABox A0 that contains only
the assertions t0(av) for all unreachable nodes v ∈ V as well as t1(av) for all reachable
nodes v ∈ V and then exhaustively applying the following rules in an unspeci�ed order,
obtaining a sequence of ABoxes A0,A1, . . . ,Am with Am = A

′
G :

1. Choose an edge (u,v) ∈ E that has not been chosen before, take a copy Au,v
edge of

Aedge that uses fresh individuals names, with c renamed to au and b to av , and add
the assertions treach(x)(ax) for x ∈ {u,v} where reach(x) = 1 if x is reachable from
s and reach(x) = 0 otherwise. Set Ai+1 = Ai ∪ A

u,v
edge.

2. Introduce a copyAs
source ofAsource that uses fresh individual names, withb renamed

to as , and add the assertions t1(as). Set Ai+1 = Ai ∪ A
s
source.

3. Introduce a copyAt
target ofAtarget that uses fresh individual names with b renamed

to at , and add the assertions t0(at). Set Ai+1 = Ai ∪ A
t
target.

Clearly, rule application terminates after |E | + 2 steps and results in the ABox A′G . Note
that we add assertions ti(a), i ∈ {0, 1} to the ABoxes constructed in the rules to enable
application of the ABox glueing lemma, Lemma 3.3.

Claim 2. tpAi ,T
(au) = t0 if u ∈ V is unreachable and tpAi ,T

(au) = t1 otherwise, for all
i ≥ 0.

The proof is by induction on i . For i = 0, the statement is clear. Now assume that the

34

3.2 AC0 versus NL for Connected CQs

statement is true for some i and considerAi+1. IfAi+1 was obtained by Rule 1, it follows
from Conditions 2 and 3 of De�nition 3.6 that tpAu,v

edge,T
(ax) = treach(x) for all x ∈ {u,v}. So

with Lemma 3.3 and since Ai and Au,v
edge share only the individuals au ,av , the statement

follows. If Ai+1 was obtained by Rule 2, we can use Condition 2 of De�nition 3.6 and
Lemma 3.3. In the case of Rule 3, it is clear that tpAt

target,T
(at) = t0 and thus it remains to

apply Lemma 3.3. This �nishes the proof of Claim 2.
It remains to show that A′G ,T 6|= q(a). Assume to the contrary that A′G ,T 6|= q(a),

that is, there is a homomorphism h from q(x) toUA ′G ,T such that h(x) = a. There can be
at most one individual of the form av in the range of h by construction ofA′G since b and
c have distance exceeding |q |.

If there is no individual av in the range of h, then h only hits individuals from a single
copy ofAsource,Aedge, orAtarget as well as anonymous elements in the trees below them
(since q is connected). First assume that this is Atarget. By Claim 2 and since reach(t) =
0, tpA ′G ,T (at) = t0. It can be shown that the identity function is a homomorphism
fromUA ′G ,T |∆, ∆ the individuals from Atarget and anonymous elements below them, to
UAtarget∪t0(b),T . By composing homomorphisms, it follows that Atarget ∪ t0(b),T |= q(a),
contradicting Condition 4.

Now assume that h only hits individuals from a copy of Asource or Aedge as well as
anonymous elements in the trees below them. Then the restrictionU ofUA ′G ,T to the
range of h is tree-shaped. Moreover, q must be Boolean since the distance between a
and the elements ofU exceeds |q | and q is treei�able because h is a homomorphism to a

tree-shaped interpretation. We have d ∈ C
UA′G ,T

q for the root d ofU. From Claim 2 and
Lemma 3.3, it follows that some element ofUAsource∪t1(c),T or ofUAedge∪t1(b)∪t1(c)∪t1(d),T also
satis�es Cq . By Condition 2 and Lemma 3.3, the same is true for an element fromUA,T
that is ‘below’ b (reachable from b by a directed path). Since the distance from the core
to b in A exceeds |q |, this homomorphism is not core close, contradicting Condition 5.

Now assume that the range of h contains the individual av . Let X0 = {x ∈ var(q) |
h(x) = av} and letX ↓ (resp.X ↑) be the set of x ∈ var(q) such thath(x) is some a ∈ ind(AG)

or in an anonymous tree below such an a such that there exists a path of length at least
one from a to av in AG (resp. from av to a). We distinguish three cases.
Case 1: v = t , the target node. Since we assume that t has outdegree 0 in G, h(x) is

from the copy of Atarget or the attached anonymous trees for all x ∈ X ↑ and h(x) is from
(potentially multiple) copies ofAedge or the attached anonymous trees for all x ∈ X ↓. It is
thus possible to construct a homomorphismд from q toUA,T such that ifh(x) ∈ ind(AG),
then д(x) is the individual h(x) in A that h(x) is a copy of. Then av being in the range of
h implies that д is not core close.

Case 2: v = s , the source node. Since we assume that s has indegree 0 in G, h(x) is
from the copy of Asource or the attached anonymous trees for all x ∈ X ↓ and h(x) is from
(potentially multiple) copies ofAedge or the attached anonymous trees for all x ∈ X ↑. We
can proceed as in the previous case.

Case 3: v < {s, t}. Then h hits (potentially multiple) copies of Aedge and the attached
anonymous trees. It is possible to construct a homomorphism д from q |X ↑∪X0 toUA,T

35

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

such that if h(x) ∈ ind(AG) and x ∈ X ↑ ∪X0, then д(x) is the individual inA that h(x) is
a copy of and, in particular, д(x) = c for all x ∈ X0. It remains to extend д to all of q. Let
q′ be obtained from q by identifying x1,x2 ∈ var(q) whenever r (x1,y), r (x2,y) ∈ q and
x1,x2 ∈ X0 ∪ X

↓. It can be veri�ed that the restriction of AG to all elements between
av and {h(x) | x ∈ X ↓} is a directed tree. Consequently, h is also a homomorphism
from q′ to UAG ,T . Moreover, q′ \ q |X ↑∪X0 is the union of tree-shaped CQs q1, . . . ,qn
that all share the same root x0 and are otherwise variable disjoint. Each qi can be
viewed as an EL-concept ∃r .C such that ∃r .C v A∃r .C is in T and we must thus have
A∃r .C ∈ tpAG ,T

(av) ⊆ tpA,T (b). Since tpA,T (b) = tpA,T (c), we �nd a homomorphism
from qi toUA,T that maps x0 to c , for 1 ≤ i ≤ n. Combining all these homomorphisms
allows us to extend д to q′, thus to q.

This �nishes the proof of Theorem 3.4.

3.3 NL versus PTime for Connected CQs
We prove a dichotomy between NL and PTime for (EL, conCQ) and show that for OMQs
from this language, evaluation in NL coincides with rewritability into linear Datalog.
We also show that the latter two properties coincide with the OMQ having unbounded
pathwidth, as de�ned below. We generalize our results to potentially disconnected CQs
in Section 3.4.

Let Q = (T , Σ,q) ∈ (EL,CQ). We say that Q has pathwidth at most k if for every
Σ-ABoxA and tuple a withA |= Q(a), there is a Σ-ABoxA′ of pathwidth at most k such
thatA′ |= Q(a) and a homomorphism fromA′ toA that is the identity on a. Now Q has
bounded pathwidth if it has pathwidth at most k for some k . If this is the case, we use
pw(Q) to denote the smallest k such that Q has pathwidth at most k .

Theorem 3.9 (NL/PTime dichotomy). Let Q ∈ (EL, conCQ). The following are equiva-
lent (assuming NL , PTime):

(i) Q has bounded pathwidth.

(ii) Q is rewritable into linear Datalog.

(iii) eval(Q) is in NL.

If these conditions do not hold, then eval(Q) is PTime-hard under FO reductions.

Remark 3.10. Without the assumption NL , PTime, Conditions (i) and (ii) are still equiv-
alent to each other and they still imply (iii).

The equivalence (i) ⇔ (ii) is closely related to a result in CSP. In fact, it is proved
in [Dal05] that a CSP has an obstruction set of bounded pathwidth if and only if its
complement is expressible in linear Datalog. From the viewpoint of the connection
between OMQs and CSPs [Bie+14], obstructions correspond to homomorphic preimages
of ABoxes and thus the result in [Dal05] implies (i)⇔ (ii) for OMQs of the form (T , Σ,q),

36

3.3 NL versus PTime for Connected CQs

where q is a Boolean AQ of the form q() ← A(x) and T formulated in ELI. We give a
direct proof of (i)⇔ (ii) in Section 3.3.2 to capture also CQs.

The implication (ii)⇒ (iii) is clear since every linear Datalog program can be evaluated
in NL. It thus remains to prove the converse and the last sentence of the theorem. To
achieve both and since we assume NL , PTime, it su�ces to show that unbounded
pathwidth implies PTime-hardness. The structure of the proof is similar to the one for
the dichotomy between AC0 and NL in Section 3.2, but more sophisticated.

3.3.1 Unbounded Pathwidth Implies PTime-hardness
We reduce from the well-known PTime-complete problem path systems accessibility
(psa) [Imm99], closely related to alternating reachability on directed graphs and to the
evaluation of Boolean circuits. An instance of psa takes the form G = (V ,E, S, t) where
V is a �nite set of nodes, E is a ternary relation on V , S ⊆ V is a set of source nodes, and
t ∈ V is a target node. A node v ∈ V is accessible if v ∈ S or there are accessible nodes
u,w with (u,w,v) ∈ E. G is a yes-instance if the target node t is accessible. We assume
w.l.o.g. that t does not appear in the �rst and second component of a triple in E, that no
s ∈ S appears in the third component of a triple in E, and that t < S .

The main di�erence to the NL-hardness proof in Section 3.2 is that instead of a gadget
Aedge that transports a selected type t1 from its input individual to its output individual,
we now need a gadget A∧ with two input individuals and one output individual that
behaves like a logical AND-gate. We formalize this as the ability to simulate psa. Instead
of proving directly that unbounded pathwidth of an OMQ Q implies that Q has the
ability to simulate psa, we �rst prove that unbounded pathwidth of Q implies unbounded
branching of Q , that is, for any depth bound n, there is a pseudo tree-shaped ABox in
MQ that contains the full binary tree of depth n as a minor. In a second step, we then
show that unbounded branching of Q implies that Q has the ability to simulate psa. In
fact, the ability to simulate psa is actually equivalent to unbounded pathwidth and this is
useful for the complexity analysis of the meta problems carried out in Section 3.6. We
thus prove the converse directions as well. Finally, we show that the ability to simulate
psa implies PTime-hardness.

We start with the formal de�nition of unbounded branching. Let A be a tree-shaped
ABox. The full binary tree of depth k is the directed graph G = (V ,E) with V = {w ∈
{1, 2}∗ | 0 ≤ |w | ≤ k} and (v,w) ∈ E if w = v1 or w = v2. A has the full binary tree of
depth k as a minor if there is a mapping f from the nodes of the full binary tree of depth
k to ind(A) such that if (v,w) ∈ E, then f (w) is a descendant of f (v). We do usually not
make the mapping f explicit but only say which individuals lie in the range of f . We
are mostly interested in the largest k such that A has the full binary tree of depth k as a
minor. This number, which we call the branching number of A, denoted by br(A), can
be easily computed by the following algorithm. Label every leaf of A with 0 and then
inductively label the inner nodes as follows: If a is an inner node whose children have
already been labeled andm is the maximum label of its children, label a withm if at most
one child of a is labeled with m and label a with m + 1 if at least two children of a are
labeled withm. It can be easily proved by induction on the co-depth of an individual that

37

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

the label of a is equal to br(Aa). In particular, br(A) is the label of the root ofA. We say
that Q ∈ (EL,CQ) is boundedly branching if there exists a k such that for every pseudo
tree-shaped ABox A ∈ MQ and every tree Ai in A, we have br(Ai) ≤ k . In that case,
we de�ne br(Q) to be the smallest such k . Otherwise, we call Q unboundedly branching.

Lemma 3.11. Let Q ∈ (EL,CQ). Then Q has unbounded pathwidth if and only if Q is
unboundedly branching.

Proof. The “⇐” direction is clear since the full binary tree of depth k has pathwith dk2 e,
see [Sch89]. For the “⇒” direction, we start by showing that for tree-shaped ABoxes, the
branching number gives an upper bound on the pathwidth.
Claim. Let A be a tree-shaped ABox. Then there exists a (j,k)-path decomposition
V1, . . . ,Vn of A with k ≤ br(A) + 2 and j ≤ k − 1 such that the root of A is an element
of Vn.
We prove the claim by induction on the depth of A. If A has depth 0, then A has only
one individual, br(A) = 0, and there is a trivial (0, 1)-path decomposition. IfA has depth
1, then the root a of A has children a1, . . . ,an with n ≥ 1. We have br(A) ≤ 1 and there
is a (1, 2)-path decomposition V1, . . . ,Vn, where Vi = {a,ai}.

If A has depth at least 2, let the root of A be called a and its children a1, . . . ,am. Let
V i
1 , . . . ,V

i
ni be the path decomposition of Aai that exists by induction hypothesis, for

1 ≤ i ≤ m. We distinguish two cases:

• If br(A) = max{br(Aai) | 1 ≤ i ≤ m}, then by de�nition of br, there is pre-
cisely one child ai of a with br(Aai) = br(A). W.l.o.g. assume that ai = a1. Then
V 1
1 , . . . ,V

1
n1, {a,a1}, {a}∪V

2
1 , . . . , {a}∪V

2
n2, {a}∪V

3
1 , . . . , {a}∪V

3
n3, . . . , {a}∪V

m
1 , . . . ,

{a} ∪Vm
nm is a path decomposition of A that ful�ls the condition from the claim.

• If br(A) = 1 + max{br(Aai) | 1 ≤ i ≤ m}, then {a} ∪ V 1
1 , . . . , {a} ∪ V

1
n1, {a} ∪

V 2
1 , . . . , {a} ∪V

2
n2, . . . , {a} ∪V

m
1 , . . . , {a} ∪V

m
nm is a path decomposition of A that

ful�ls the condition from the claim.

This �nishes the proof of the claim.
We next show that for every OMQ Q = (T , Σ,q) ∈ (EL,CQ), br(Q) = k implies

pw(Q) ≤ k + 2 + |q |. Let Q be such an OMQ. Take a Σ-ABox A and a ∈ ind(A) with
A |= Q(a). We have to show that there is a Σ-ABox A′ of pathwidth at most k such
that A′ |= Q(a) and there is a homomorphism from A′ to A that is the identity on
a. By Lemma 2.3, we obtain from A a pseudo tree-shaped Σ-ABox A′ such that there
is a homomorphism from A′ to A that is the identity on a. Clearly, MQ contains a
subset A′′ of A′. We show that A′′ is as required, that is, the pathwidth of A′′ is at
most k . From br(Q) = k , A′′ |= Q(a), and A′′ ∈ MQ , it follows that br(A′′) ≤ k . Let
A′ have core C and trees A1, . . . ,Am. By the claim, every Ai has a (j,k + 2)-path
decompositionV i

1 , . . . ,V
i
ni . Then we �nd a (j + |q |,k + 2 + |q |)-path decomposition ofA′:

ind(C) ∪V 1
1 , . . . , ind(C) ∪V 1

n1, . . . , ind(C) ∪Vm
1 , . . . , ind(C) ∪Vm

nm .

Our next goal is to identify suitable gadgets for the reduction from psa. To achieve
this, it is convenient to extend the TBox of the OMQ Q = (T , Σ,q) involved in the

38

3.3 NL versus PTime for Connected CQs

reduction. Recall that we have also used such an extension in the NL-hardness proof in
Section 3.2 and that it has helped us to avoid unintended homomorphisms from the CQ
to the (universal model of the) reduction ABox AG , in case the CQ is Boolean. Avoiding
such homomorphisms is more complicated in the reduction of psa which leads us to a
di�erent TBox extension that introduces ELI-concepts. This is unproblematic since, as
in Section 3.2, the OMQ based on the extended TBox is equivalent to the original one.

First assume that T is Boolean and treei�able. A role path between variables x and y in
q is a sequence of role names r1 · · · rn such that for distinct variables x = x0, . . . ,xn = y,
q contains the atoms r1(x1,x2), . . . , rn(xn−1,xn). If q is treei�able, then there are only
polynomially many role paths in qtree: the paths that occur in qtree, the least constrained
treei�cation of q de�ned in Section 3.1. Let Cq denote the set of ELI-concepts of the
form ∃r−n . · · · .∃r−1 .C where r1 · · · rn is a (potentially empty) role path in qtree and C is >
or a concept name from q or a CQ from trees(q) viewed as an EL-concept. Extend T
with C v AC , AC a fresh concept name, for all C ∈ Cq . Finally, normalize again. Clearly,
the number of concept inclusions added to T is polynomial in |q | and the resulting OMQ
is equivalent to the original one.

Now assume that T is not Boolean and treei�able. Then unintended homomorphisms
are ruled out automatically. To prepare for the complexity analysis of the meta problems
carried out in Section 3.6, however, we still carry out the same modi�cation that we have
also used in Section 3.2: For every p ∈ trees(q), view p as an EL-concept C and extend
T with C v AC , AC a fresh concept name.

The following lemma captures the use of the concepts Cq later on and gives an idea of
why we use this particular set of concepts.

Lemma 3.12. Let q ∈ conCQ be Boolean and treei�able, I1,I2 tree-shaped interpretations,
and di ∈ ∆Ii for i ∈ {1, 2} such that d1 ∈ CI1 implies d2 ∈ CI2 for all C ∈ Cq . If there is a
homomorphism from q to I1 with d1 in its range, then there is a homomorphism from q to
I2 with d2 in its range.

Proof. Assume that there is a homomorphism h1 from q to I1 with d1 in its range. Since
I1 is tree-shaped, this homomorphism factors into h1 = д1 ◦ hq , where hq is the obvious
homomorphism from q to qtree and д1 is a homomorphism from qtree to I1. It clearly
su�ces to show that there is a homomorphism д2 from qtree to I2 with d2 in its range.

Let X0 = д
−1
1 (d1). In a �rst step, we set д2(x) = d2 for all x ∈ X0 and extend д2 upwards

as follows. Whenever д2(y) is already de�ned and there is an atom r (x ,y) in qtree, de�ne
д2(x) to be the (unique) predecessor of д2(y) in I2. We show that д2 is a homomorphism
from qtree |dom(д2) toI2, dom(д2) the domain ofд2. If r (x ,y) ∈ qtree withд2(x),д2(y) de�ned,
then qtree contains a role path r1 · · · rn from x1 to xn ∈ X0 with r1 = r . Thus, there is a
concept C = ∃r−n . . . ∃r−1 .> ∈ Cq such that d1 ∈ CI1 . It follows that d2 ∈ CI2 and since I2
is tree-shaped and by construction of д2, this yields (д2(x),д2(y)) ∈ rI2 . The argument for
atoms A(x) ∈ qtree where д2 has been de�ned on x is similar, using concepts of the form
C = ∃r−n . . . ∃r−1 .A ∈ Cq .

In a second step, we de�ne д2 on all the remaining variables. Whenever д2(z) is still
unde�ned for some z ∈ var(qtree), there must be some r (x ,y) ∈ qtree such that д2(x) is
already de�ned, д2(y) is not yet de�ned, and z is in qtree |reach(x ,y). Since q is connected,

39

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

there must be a (potentially empty) role path r1 · · · rn in qtree from x to a variable x0 ∈ X0.
Thus, Cq contains C = ∃r−n . · · · ∃r−1 .D ∈ Cq where D is the EL concept that corresponds
to qtree |reach(x ,y) and since д1(x0) = d1, we have d1 ∈ CI1 . Consequently, d2 ∈ CI2 . Since I2
is tree-shaped, this implies д2(x) ∈ DI2 and thus there is a homomorphism from q |reach(x ,y)
to I2 that maps x to д2(x). We use this homomorphism to extend д2 to all variables in
reach(x ,y).

If A is a pseudo tree-shaped ABox and b ∈ ind(A) has distance at least n from the
core, we de�ne the ancestor path of b up to length n to be the unique sequence r1r2 . . . rn
of role names such that r1(b1,b2), r2(b2,b3), . . . rn(bn,b) ∈ A.

De�nition 3.13. Let Q = (T , Σ,q) ∈ (EL, conCQ). We say that Q has the ability to
simulate psa if there exist

• T -types t0 (t1,
• a pseudo tree-shaped Σ-ABox A of core size |q |,
• a tuple a from the core of A of length ar(q),
• a treeAi inA with three distinguished non-core individuals b, c and d from ind(Ai)

where c and d are incomparable descendants of b and such that b has distance more
than |q | from the core and the individuals b, c and d have pairwise distance more
than |q | from each other

such that

1. A,T |= q(a);

2. t1 = tpA,T (b) = tpA,T (c) = tpA,T (d);

3. Ab ∪ t0(b),T 6|= q(a);

4. tpAc∪t0(c),T
(b) = tpAd∪t0(d),T

(b) = t0,

5. if q is Boolean, then every homomorphism from q toUA,T is core close and

6. if q is Boolean, then b, c and d have the same ancestor path up to length |q |.

We de�ne Atarget := Ab , A∧ := Ab
cd

and Asource := Ac .

With c and d being ‘incomparable’ descendants of b, we mean that neither d is a
descendant of c nor vice versa.

To understand the essence of De�nition 3.13, it is worthwhile to consider the special
case where q is an AQ with body A(x). In this case, Q has the ability to simulate psa if
there is a tree-shaped Σ-ABoxA with root a = a, three distinguished non-root individuals
b, c,d ∈ ind(A), c and d incomparable descendants of b, and T -types t0 (t1 such that
Conditions (1)-(4) of De�nition 3.13 are satis�ed. Figure 3.2 shows an ABox witnessing
the ability to simulate PSA for such an OMQ. All remaining parts of De�nition 3.13
should be thought of as technical complications induced by replacing AQs with CQs. As
a preliminary for showing that unbounded branching implies the ability to simulate psa,
we give the following combinatorial lemma.

40

3.3 NL versus PTime for Connected CQs

a

b

c

A

r

A

s

r
d

A

r

A

s

s

r

A

s

r

A

s

Figure 3.2: A witness ABox for the abilty to simulate PSA for the OMQ Q = (T , Σ,A(x)),
where T = {∃r .A v B,∃s .A v C,B uC v A} and Σ = {r , s,A}.

Lemma 3.14. Let T be a full binary tree of depth n · k · d whose nodes are colored with
n colors, k ≥ 0 and n,d ≥ 1. Then T has as a minor a monochromatic full binary tree of
depth k such that any two distinct nodes of the minor have distance at least d from each
other in T .

Proof. Let T be a full binary tree of depth k whose nodes are colored with n colors. We
assoicate T with a tuple (m1, . . . ,mn) by letting, for 1 ≤ i ≤ m, mi be the minimum
integer such that T does not have the color i monochromatic full binary tree of depth mi

as a minor. We prove the following.

Claim.
∑n

i=1mi ≥ k + 1.

We proof the claim by induction on k . For k = 0, there is only one node, say of color i .
Then clearly

∑n
i=1mi = 1 ≥ 1 = k + 1.

Now assume that the claim holds for k and consider a tree T of depth k + 1, with
associated tuple (m1, . . . ,mn). Let a be the root of T and let the children of a root the
subtreesT1 andT2, (mj

1, . . . ,m
j
n) the tuple associated withTj for j ∈ {1, 2}. We distinguish

two cases.
First assume that there exists a color j such thatm1

j ,m
2
j . W.l.o.g. letm1

j < m
2
j . Then

mj = max{m1
j ,m

2
j } > m1

j and mi ≥ m1
i for all i , j. By the claim,

∑n
i=1m

1
i ≥ k + 1. It

follows that
∑n

i=1mi ≥ k + 2, as required.
Now assume that there is no such color j. Let i0 be the color of a. From m1

i0
= m2

i0
,

it follows that mi0 > m1
i0

and thus we can proceed as before with i0 in place of j. This
�nishes the proof of the claim.

The statement of the lemma now follows easily for d = 1: Let T be a full binary
tree of depth n · k whose nodes are colored with n di�erent colors. If there is no full
monochromatic binary tree of depth k as a minor in T , then mi ≤ k for all colors i , in
contradiction to

∑n
i=1mi ≥ n · k + 1.

Now consider the case where d > 1. From the case d = 1, T contains as a minor a full
monochromatic binary tree T ′ of depth d · k . To obtain the desired full monochromatic
binary treeT ′′ of depth k whose nodes have distance at least d from each other, we choose
appropriate nodes from T ′. Recall that the nodes of T ′ are V = {1, 2}k . Then T ′′ can be
constructed by choosing the nodes V ∩ {1d , 2d}∗. Clearly, T ′′ is as required.

Lemma 3.15. LetQ ∈ (EL, conCQ). ThenQ has the ability to simulate psa if and only if
Q is unboundedly branching.

41

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

Proof. “⇒”. Assume that Q = (T , Σ,q) ∈ (EL, conCQ) has the ability to simulate psa.
Then there are A, a,b, c,d, t0, and t1 as in De�nition 3.13. Let k ≥ 1. We have to show
that there is a pseudo tree-shaped Σ-ABox A ∈ MQ that has a tree Ai that has the full
binary tree of depth k as a minor. We start with constructing an ABox A0 built up from
the following set of ABoxes:

• one copy of Atarget;
• for every w ∈ S , one copy A∧,w of A∧;
• for every w ∈ {0, 1}k , one copy Asource,w of Asource.

We identify the individual b of Atarget with the individual b of A∧,ε . For every w0 ∈
{0, 1}k−1, we identify the individual b of A∧,w0 with the individual c of A∧,w and for
every w1 ∈ {0, 1}k−1, we identify the individual b of A∧,w1 with the individual d of
A∧,w . Finally, for every w0 ∈ {0, 1}k , we identify the individual b of Asource,w0 with the
individual c ofA∧,w and for every w1 ∈ {0, 1}k , we identify the individual b ofAsource,w1
with the individual d of A∧,w . Since all A∧ and Asource are tree-shaped, the resulting
ABox is A0 pseudo tree-shaped with the same core as Atarget.

It is clear that A0 has the full binary tree of depth k as a minor, formed by the set of
roots of all A∧,w and Asource,w . From Conditions 1 and 2 from De�nition 3.13, it follows
that A0 |= Q(a). But there is no guarantee that A0 is minimal with this property, thus
A0 need not be fromMQ . LetA0, . . .A` be the sequence of ABoxes obtained by starting
withA0 and exhaustively removing assertions such thatAi |= Q(a) still holds. We argue
that the resulting ABox still has the full binary tree of depth k as a minor.

It su�ces to show that role assertions connecting two individuals that lie on the same
path from the core to a root of a Asource,w are never removed. Assume to the contrary
that such a role assertion is removed when transitioning fromAi toAi+1. We distinguish
three cases:

• The removed role assertion lies inA∧,w on the path from b to c . Then tpAi+1,T
(b) ⊆

tpAb
c ∪t0(c),T

(b). By Condition 4 from De�nition 3.13, the latter type is t0. By itera-
tively using Conditions 3 and 4, it follows that tpAi+1,T

(b) = t0, withb the individual
from the copy of Atarget. With Conditions 2 and 5, it follows that Ak 6 |= Q(a). Con-
tradiction.

• The removed role assertion lies inA∧,w on the path from its b to its d . The proof is
analogous.

• The removed role assertion lies in Atarget on the path from the core to b. It follows
that tpAi+1,T

(a) ⊆ tpAb∪t0(b),T
(a) for every individual a in the copy ofAtarget. With

Condition 3, it again follows that Ak 6 |= Q(a).

“⇐”. Assume that Q = (T , Σ,q) ∈ (EL, conCQ) is not boundedly branching. Let TP
denote the set of all T -types and set m = 2|T | . Clearly, |TP| ≤ m. Set k =m · 2m · |T | |q | ·
(2mm + 1) · |q |. Since Q is not boundedly branching, we �nd a Σ-ABox A ∈ MQ and a
tuple a from its core such thatA,T |= q(a) and one the treesAi ofA has the full binary
tree of depth k as a minor. We show that A and a can serve as the ABox and tuple in
De�nition 3.13, that is, as a witness for Q having the ability to simulate psa.

42

3.3 NL versus PTime for Connected CQs

To identify the distinguished individuals b, c,d , we use a suitable coloring of the
individuals of Ai and Lemma 3.14. In fact, we color every b ∈ ind(Ai) with the color
(tpA,T (b), Sb , r

b
1r

b
2 . . . r

b
|q |
) where TP ⊇ Sb = {t ∈ Sb | Ab ∪ t(b),T |= q(a)} and where

rb1r
b
2 . . . r

b
|q |

is the ancestor path of b up to length |q |. There are no more thanm · 2m · |T | |q |

colors, so from Lemma 3.14 we know thatA has as a minor a monochromatic full binary
treeT of depth 2mm + 1 whose nodes have distance at least |q | from each other. Let b be a
child of the root ofT (to make sure that b has depth at least |q | from the core) andT ′ ⊆ T
the subtree of T rooted at b, so T ′ is a full binary tree of depth 2mm. We color every
c ∈ T ′ with the function fc : TP→ TP that is de�ned by fc(t) = tpAc∪t(c),T

(b). There are
at most mm such functions, so again by Lemma 3.14, there will be the monochromatic
binary tree of depth 2 as a minor. In particular, we �nd two incomparable individuals c
and d in T ′ that are colored with the same function. We show that A we can �nd types
t1 and t0 such that with the distinguished nodes b, c,d , A and a satisfy Conditions 1-6
from De�nition 3.13.

Condition 1 is true by choice of A. Set t1 := tpA,T (b). Then Condition 2 is satis�ed
because b, c and d were colored with the same color by the �rst coloring. For the same
reason, Conditon 6 is ful�lled. Condition 5 follows from Lemma 3.5.

To de�ne t0, we �rst de�ne a sequence t ′0, t
′
1, . . . of T -types where t ′0 = ∅ and t ′i+1 =

tpAc∪t
′
i (c),T
(b). It is clear that t ′i ⊆ t ′i+1 for all i . Let t0 be the limit of the sequence. Since c

and d were colored with the same function fc = fd , Condition 4 holds. It thus remains to
argue that Condition 3 holds.

We show by induction on i that Ac ∪ t ′i (c),T 6|= q(a) for all i ≥ 0. It is clear that
Ac ∪ t ′0(c),T 6|= q(a) since A is minimal with A,T |= q(a). Now assume that Ac ∪

t ′i (c),T 6|= q(a) for some i . Then Ac ∪ t
′
i+1(b),T 6|= q(a). Since Sb = Sc has been assured

by the �rst coloring, we obtain Ac ∪ t
′
i+1(c),T 6|= q(a) which completes the induction.

Thus Ac ∪ t0(c),T 6|= q(a) and using again that Sb = Sc , we obtain Condition 3.

It remains to show that the ability to simulate psa implies PTime-hardness.

Lemma 3.16. IfQ ∈ (EL, conCQ) has the ability to simulate psa, then eval(Q) is PTime-
hard under FO reductions.

Proof. Let Q = (T , Σ,q) ∈ (EL, conCQ) have the ability to simulate psa. Then there is a
pseudo tree-shaped Σ-ABox A, a tuple a in its core, distinguished individuals b, c and d ,
and types t0 (t1 as in De�nition 3.13. We reduce psa to eval(Q).

Let G = (V ,E, S, t) be an input for psa. We construct a Σ-ABox AG that represents G.
Reserve an individual av for every node v ∈ V . For every (u,v,w) ∈ E, include in AG a
copyAu,v,w ofA∧ that uses fresh individuals, identifying (the individual that corresponds
to) c with au , d with av and b with aw . For every s ∈ S include inAG one copy ofAsource
that uses fresh individuals, identifying c with as . Finally, include in AG the ABox Atarget
identify b with at . (Note that we do not use a ‘copy’ ofAtarget, so individuals fromAtarget
except for b retain their name.) It can be veri�ed that AG can be constructed from G
using an FO query. It thus remains to show the following.

Claim 1. t is accessible in G if and only if AG |= Q(a).

43

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

For the “⇒” direction, assume that t is accessible in G. De�ne a sequence S = S0 ⊆ S1 ⊆
· · · ⊆ V by setting

Si+1 = Si ∪ {w ∈ V | there is a (u,v,w) ∈ E such that u,v ∈ Si}

and let the sequence stabilize at Sn. Clearly, the elements of Sn are exactly the accessible
nodes. It can be shown by induction on i that whenever v ∈ Si , then t1 ⊆ tpAG ,T

(av).
In fact, the induction start follows from t1 = tpA,T (b) and the induction step from
Condition 2 of De�nition 3.13. It follows from Conditions 1 and 2 that Atarget ∪ t1(b) |=
Q(a), thus AG |= Q(a) as required.

The “⇐” direction is more laborious. Assume that t is not accessible in G. Set

A′G := AG ∪ {t0(av) | v ∈ V is not accessible}
∪ {t1(av) | v ∈ V is accessible}.

We show that A′G 6 |= Q(a), which implies AG 6 |= Q(a).
We have de�ned A′G as an extension of AG . Alternatively and more suitable for what

we want to prove, A′G can be obtained by starting with an ABox A0 that contains only
the assertions t0(av) for all inaccessible nodes v ∈ V as well as t1(av) for all accessible
nodes v ∈ V , and then exhaustively applying the following rules in an unspeci�ed order,
obtaining a sequence of ABoxes A0,A1, . . . ,Am with Am = A

′
G :

1. Choose a triple (u,v,w) ∈ E that has not been chosen before, take a copyAu,v,w
∧ of

A∧ using fresh individual names, with c renamed to au , d to av , and b to aw , and
add the assertions tacc(x)(ax) for x ∈ {u,v,w} where acc(x) = 1 if x is accessible
and acc(x) = 0 otherwise. Set Ai + 1 = Ai ∪ A

u,v,w
∧ .

2. Choose a node s ∈ S that has not been chosen before, introduce a copy As
source of

Asource that uses fresh individuals, with c renamed to as , and add the assertions
t1(as). Let the resulting ABox be called As

source. Set Ai+1 = Ai ∪ A
s
source.

3. Set Ai+1 = Ai ∪ A
′
target, where A′target is obtained from Atarget by renaming b to

at and adding the assertions t0(at).

Clearly, rule application terminates after �nitely many steps and results in the ABox A′G .
Note that we add assertions ti(a), i ∈ {0, 1} to the ABoxes constructed in the rules to
enable application of Lemma 3.3.

Claim 2. tpAi ,T
(au) = t0 if u ∈ V is inaccessible and tpAi ,T

(au) = t1 otherwise, for all
i ≥ 0.

The proof is by induction on i . For i = 0, the statement is clear since t0 and t1 are
T -types. Now assume the statement is true for some i and consider Ai+1. If Ai+1 was
obtained by Rule 1, it can be veri�ed using Conditions 2 and 4 from De�nition 3.13 that
tpAu,v,w

∧ ,T (ax) = tacc(x) for all x ∈ {u,v,w}. So with Lemma 3.3 and since Ai and Au,v,w
∧

share only the individuals u,v,w , the statement follows. If Ai+1 was obtained by Rule 2,
we can use Condition 2 and Lemma 3.3. If Ai+1 was obtained by Rule 3, using acc(t) = 0

44

3.3 NL versus PTime for Connected CQs

it can be veri�ed that tpA ′target,T
(at) = t0 and with Lemma 3.3, the statement follows. This

�nishes the proof of the Claim 2.

It remains to show that A′G ,T 6|= q(a). Assume to the contrary that A′G ,T |= q(a),
that is, there is a homomorphism h from q(x) toUA ′G ,T such that h(x) = a. There can be
at most one individual of the form av in the range of h by construction of A′G and since
b, c,d have distance more than |q | from each other in A.

If there is no individual av in the range of h, then h only hits individuals from a
single copy of Asource, A∧, or A′target as well as anonymous elements in the trees below
them (since q is connected). First assume that this is A′target. By Claim 2 and since
acc(t) = 0, tpA ′G ,T (at) = t0. It can be shown that the identity function is a homomorphism
fromUA ′G ,T |∆, ∆ the individuals from A′target and anonymous elements below them, to
UAtarget∪t0(b),T . By composing homomorphisms, it follows that Atarget ∪ t0(b),T |= q(a),
contradicting Condition 3.

Now, assume that h only hits individuals from a copy of Asource or A∧ as well as
anonymous elements in the trees below them. Then the restrictionU ofUA ′G ,T to the
range of h is tree-shaped. Moreover, q must be Boolean since the distance between the
core and the elements ofU exceeds |q | and q is treei�able because h is a homomorphism

to a tree-shaped interpretation. SinceUA ′G ,T is a model of T , we have d ∈ C
UA′G ,T

q for
the root d ofU, where Cq is qtree seen as an EL-concept. From Claim 2 and Lemma 3.3,
it follows that some element of UAsource∪t1(c),T or of UA∧∪t1(b)∪t1(c)∪t1(d),T also satis�es
Cq . By Condition 2 and Lemma 3.3, the same is true for an element fromUA,T that is
‘below’ b (reachable from b by a directed path). Since the distance from the core to b in
A exceeds |q |, this homomorphism is not core close, contradicting Condition 5.

Next, assume that the range of h contains av . Then q is Boolean since it is connected
and the distance between the core inA′target and av exceeds |q |. LetU be the restriction of
UA ′G ,T to all elements within distance at most |q | from av . ThenU is almost tree-shaped
except that av can have multiple predecessors. By Condition 6, however, there is a unique
sequence of roles rn · · · r1 such that in each path dmsm · · ·d2s2d1s1av in U, sm · · · s1 is
a post�x of rn · · · r1. We can thus obtain a tree-shaped interpretation U′ from U by
exhaustively identifying elements d1,d2 whenever (d1, e), (d2, e) ∈ rI for some e and r .
Clearly, we can �nd a homomorphism h′ from q toU′. Consequently, q is treei�able and
the TBox has been extended with C v AC for all C ∈ Cq .
Claim 3. av ∈ CU

′ if and only if av ∈ CU for all C ∈ Cq .
The “⇐” direction is immediate. For “⇒”, assume to the contrary of what we aim to show
that that av ∈ CU

′ but av < CU for some C ∈ Cq . Then C has the form ∃r−n . · · · ∃r−1 .C
where r1 · · · rn is a (potentially empty) role path in qtree andC is> or a concept name from
q or a CQ from trees(q) viewed as an EL-concept. In the former two cases, we clearly
have av ∈ CU by construction of U′. In the latter case, C is of the form ∃r .D. Since
av ∈ C

U ′, there is a path d1r1d2 · · · rn−1dn−1rnav inU′ and d1 ∈ (∃r .D)U ′. If there is an
e , d2 with (d1, e) ∈ rU

′ and e ∈ DU ′ , then again av ∈ C
U by construction ofU′. Assume

that this is not the case, that is, d1 ∈ (∃r .D)U ′ is true only because r1 = r and d2 ∈ D
U ′.

We may assume w.l.o.g. thatC was chosen so that n is minimal, that is, there is no concept

45

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

C′ ∈ Cq with a shorter existential pre�x than C such that av ∈ C′U
′

but av < C′U . Let
D = A1 u · · · u An1 u ∃s1.E1 · · · u ∃sn2 .En2 . Then ∃r−n . · · · ∃r−2 .Ai and ∃r−n . · · · ∃r−2 .∃sj .Ej
are also in Cq for all relevant i and j. Let Γ be the set of all these concepts. We have
av ∈ G

U ′ for all G ∈ Γ and, since n is minimal, av ∈ GU for all G ∈ Γ. By Claim 2, we
have tpA ′G ,T (av) ∈ {t0, t1}. Let B = A if tpA ′G ,T (av) = t1 and B = Ac if tpA ′G ,T (av) = t0.

Then it follows from tpB,T (b) = tpA ′G ,T (av) that av ∈ A
UA′G ,T

C if and only if b ∈ AUB,TC for
all C ∈ Cq . Since bothUA ′G ,T andUB,T are universal models and by construction of T ,
av ∈ C

UA′G ,T if and only if b ∈ CUB,T for allC ∈ Cq . By choice ofU, the same is true when
UA ′G ,T is replaced withU. Thus, b satis�es all concepts from G as well as ∃r−n . · · · ∃r−1 .>
inUB,T . SinceUB,T is tree-shaped, b ∈ CUB,T and, consequently, av ∈ CU as desired.
This �nishes the proof of Claim 3.

By Claims 2 and 3 and since both UA ′G ,T and UA,T are universal models and by
construction of T , av ∈ CU

′ implies b ∈ CUA,T for all C ∈ Cq . The same is true if we
replaceUA,T with its restrictionU′′ to all elements that have distance at most |q | from
b. Note thatU′′ is tree-shaped. We can apply Lemma 3.12 withU′,av in place of I1,d1
and U′′,b in place of I2,d2, obtaining a homomorphism from q to UA,T with b in its
range. Since the distance from the core to b in A exceeds |q |, this homomorphism is not
core close, contradicting Condition 5.

3.3.2 Bounded Pathwidth Implies Linear Datalog Rewritability
We prove the equivalence (i)⇔ (ii) from Theorem 3.9. Our proof works even for OMQs
from (ELI,CQ), that is, when inverse role are admitted in the TBox and when the
conjunctive queries are not necessarily connected. We thus establish our result for this
more general class of OMQs right away.

Lemma 3.17. Let Q = (T , Σ,q) ∈ (ELI,CQ). Then Q has bounded pathwidth if and
only ifQ is rewritable into linear Datalog. In the positive case, there exists a linear Datalog
program of width pw(Q) + ar(q).

The “⇐” direction of Lemma 3.17 is easy to prove. Assume that Q ∈ (ELI,CQ) is
rewritable into a linear Datalog program Π. We show that pw(Q) is at most the diameter
d of Π. Take any pair (A, a) such that A |= Q(a). Since Π is a linear Datalog rewriting
of Q , there exists a derivation of Π(a) in A. By Lemma 3.2, there exists an ABox AD of
pathwidth at most d such that AD |= Q(a) and a homomorphism from AD to A that is
the identity on a. Hence, Q has pathwidth at most d .

The rest of this section takes care of the “⇒” direction of Lemma 3.17. Assume that
Q has bounded pathwidth, say pw(Q) = k . We obtain a linear Datalog program in the
following way: We encode pairs (A, a) of an ABoxA of pathwidth at most k and a tuple
a fromA as words over a �nite alphabet, where one symbol of the word encodes one bag
of the path decomposition of A. We then construct an alternating two-way automaton
on �nite words that accepts precisely those words that encode a pair such thatA |= Q(a).
Such an automaton can always be transformed into a deterministic one-way automaton

46

3.3 NL versus PTime for Connected CQs

that accepts the same language [GO14]. From the latter automaton, we then construct
the linear Datalog program that is equivalent to Q .
Two way alternating �nite state automata. We introduce two way alternating �nite
state automata (2AFAs). For any set X , let B+(X) denote the set of all positive Boolean
formulas over X , i.e., formulas built using conjunction and disjunction over the elements
of X used as propositional variables, and where the special formulas true and false are
admitted as well. A 2AFA is a tuple A = (S, Γ,δ , s0), where S is a �nite set of states, Γ
a �nite alphabet, δ : S × (Γ ∪ {`, a} → B+({le�, right, stay} × S) the transition function
and s0 ∈ S the initial state. The two symbols ` and a are used as the left end marker
and right end marker, respectively, and it is required that δ (s, `) ∈ B+({right} × S) and
δ (s, a) ∈ B+({le�} × S) for all s ∈ S so that the 2AFA can never leave the space of the
input word.

For an input word w = w1 . . .wn ∈ Γ
n, de�ne w0 = ` and wn+1 = a. A con�guration is

a pair (i, s) ∈ {0, . . . ,n + 1} × S . An accepting run of a 2AFA A = (S, Γ,δ , s0) on w is a
pair (T , r) that consists of a �nite tree T and a labeling r that assigns a con�guration to
every node in T such that

1. r (ε) = (1, s0), where ε is the root of T and

2. if m ∈ T , r (m) = (i, s), and δ (s,wi) = φ, then there is a (possibly empty) set
V ⊆ {le�, right, stay}×S such thatV (viewed as a propositional valuation) satis�es
φ and for every (le�, s′) ∈ V there is a successor of m in T labeled with (i − 1, s′),
for every (right, s′) ∈ V there is a successor of m in T labeled with (i + 1, s′) and
for every (stay, s′) ∈ V there is a successor ofm in T labeled with (i, s′).

The language accepted by a 2AFA A, denoted by L(A), is the set of all words w ∈ Γ∗

such that there is an accepting run of A on w . Note that there is no set of �nal states,
acceptance is implicit via the transition function δ by using the formulas true and false.
In particular, if there is a leaf labeled (i, s) in an accepting run, then δ (s,wi) = true.
Construction of the 2AFA. Let Q = (T , Σ,q) ∈ (ELI,CQ) with pw(Q) = k , and let
x = x1 · · · xar(q) be the answer variables in q. We encode pairs (A, a) with A a Σ-ABox
of pathwidth at most k and a ∈ ind(A)ar(q) as words over a suitable �nite alphabet Γ.
Reserve a set N ⊆ NI of 2k + 2 individual names. Then Γ consists of all tuples (b,B, c, f),
where

• B is a Σ-ABox with |ind(B)| ≤ k that uses only individual names from N,
• b and c are tuples over ind(B) of arity at most k , and
• f is a partial function from x to ind(B).

Let (A, a) be a pair as described above with a = a1 · · ·aar(q) and letV1, . . . ,Vn be a (j,k+1)
path decomposition of A. We encode (A, a) by a word (b1,B1, c1, f1) · · · (bn,Bn, cn, fn)
from Γn, as follows:

• As B1, we use a copy of A|V1 that uses only individual names from N.

47

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

• For 1 < i ≤ n, Bi is a copy of A|Vi that uses the same individual names as Bi−1 on
ind(A|Vi−1) ∩ ind(A|Vi) and otherwise only individual names from N \ ind(Bi−1).
Since bags have size at most k + 1, |N| = 2k + 2 individual names su�ce.

• b1 = cn is the empty tuple.
• For 1 < i ≤ n, bi−1 = ci is the tuple that contains every individual from ind(Bi−1) ∩

ind(Bi) exactly once, ascending in some �xed order on N.
• For 1 ≤ i ≤ n, fi is de�ned as follows. IfVi contains a copy a′i of ai , then fi(xi) = a′i ;

otherwise fi(xi) is unde�ned.

It is easy to see that (A, a) can be recovered from w , and in particular a from f . Note that
di�erent words over Γ might encode the same pair (A, a), for example because we can
choose di�erent path decompositions, and there are words over Γ that do not properly
encode a pair (A, a). Neither of this is problematic for the remaining proof.

We now construct a 2AFA A that accepts a word that encode a pair (A, a) if and only
if A |= Q(a). The idea is that an accepting run of the automaton has one main path on
which it traverses the word from left to right, while guessing a homomorphism h from q
toUA,T with h(x) = a in a stepwise fashion. The truth of all concept memberships in
UA,T that are necessary to realize this homomorphism is then checked by partial runs
that branch o� from the main path.

We now describe the set S of states of A. For the main path, we use states sдV ,W where
V ⊆ var(q), д : V → N is a partial function, andW is a subset of the binary atoms in q.
Informally, the meaning of the state sдV ,W is that the variables from V have already been
mapped to individuals in bags seen before, the binary atoms fromW are already satis�ed
via this mapping, and д describes how variables are mapped to individuals that are in the
intersection of the previous and the current bag. The initial state of A is sд

∅,∅
with д the

empty map. We also use states saA that make sure that the concept name A can be derived
at a ∈ N.

We have to take care of the fact that a homomorphism from q to UA,T can map
existentially quanti�ed variables to anonymous individuals, which are not explicitly
represented in the input word. Let B be a Σ-ABox. A partial q-match in B is a partial
function h : var(q) → ind(B)× {named, anon} such that if x ,y ∈ dom(h), r (x ,y) ∈ q and
h2(x) = h2(y) = named, then r (h1(x),h1(y)) ∈ B, where h1 and h2 are the projections
of h to the �rst and second component, respectively. Informally, a partial q-match h
partially describes a homomorphism д from q toUB,T where h(x) = (a, named) means
that д(x) = a and h(x) = (a, anon) means that д(x) is some element in the subtree below
a generated by the chase. Whether a part of the query can map into the anonymous
part below some individual a only depends on the type realized at a. De�ne a relation
R ⊆ TP × 2var(q) × 2var(q) by putting (t ,V1,V2) ∈ R if and only if V1 ⊆ V2, V2 ∩ x ⊆ V1 and
there is a homomorphism from q |V2 to the universal model of the ABox {A(a) | A ∈ t}
and T that maps precisely the variables fromV1 to the root of the (tree-shaped) universal
model.

An explanation set for a partial q-match h : var(q) → ind(B) × {named, anon} is a set
Z of concept assertions that uses only individuals from ind(B) and satis�es the following
conditions:

48

3.3 NL versus PTime for Connected CQs

1. if h(x) = (a, named), then B ∪ Z ,T |= A(h(x)) for all A(x) ∈ q and

2. if h(x) = (a, anon), then ({A | A(a) ∈ Z },h−1(a, named),h−11 (a)) ∈ R.

Next, we describe the transition function δ . The following transitions are used for the
main branch of automata runs:

δ (s
д
V ,W , (b,B, c, f)) =

∨
h∈H

©­«(right, sдhVh ,Wh
) ∧

∨
Z∈Zh

©­«
∧

A(a)∈Z

(stay, saA)
ª®¬ª®¬

where H is the set of all partial q-matches h for B such that dom(д) ⊆ dom(h), h1 and д
agree on the intersection of their domains, and so do h1 and f , and where

• дh is h1 restricted to answer variables xi with h1(xi) in c,
• Vh = V ∪ dom(h),
• V ∩ dom(h) = dom(д),
• Wh is the union ofW and all binary atoms from q that only use variables from h,

and
• Zh is the set of all explanation sets for h.

When the automaton reads the right end marker a and is in a state signifying that a
complete homomorphism from q toUA,T has been found, then we accept the input using
the transition δ (sдV ,W , a) = true where V = var(q),W is the set of all binary atoms of q,
and д is the empty map.

The following transitions are used to verify the required concept memberships by
checking for the existence of a suitable derivation tree (Lemma 2.4). Consider a state saA
and a symbol (b,B, c, f) such thata ∈ ind(B). IfA(a) ∈ B, we set δ (saA, (b,B, c, f)) = true.
If a appears neither in b nor in c:

δ (saA, (b,B, c, f)) =
∨
Z

B∪Z ,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

If a appears in b but not in c:

δ (saA, (b,B, c, f)) = (le�, saA) ∨
∨
Z

B∪Z ,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

If a appears in c but not in b:

δ (saA, (b,B, c, f)) = (right, saA) ∨
∨
Z

B∪Z ,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

If i appears in both b and c:

δ (saA, (b,B, c, f)) = (le�, saA) ∨ (right, saA) ∨
∨
Z

B∪Z ,T |=A(a)

∧
B(b)∈Z

(stay, sbB)

Set δ (·, ·) = false for all pairs from S × Γ that were not mentioned.
The automaton is now de�ned as A = (S, Γ,δ , s0).

49

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

Lemma 3.18. Let A be an ABox of pathwidth at most k , a ∈ ind(A)ar(q), and w ∈ Γ∗ a
word that encodes (A, a). Then A |= Q(a) if and only ifw ∈ L(A).

Proof. We start by proving that the states of the form saA, used for checking the existence
of a derivation for A(a), work as in intended.

Claim. Let a ∈ Vi and a′ the name of its copy in the Bi . Then there exists a successful
run starting from the con�guration (sa′A , i) if and only if A,T |= A(a).

First, assume that A,T |= A(a). We have to construct a successful run starting from
the con�guration (i, sa′A). By Lemma 2.4, there exists a derivation tree for A(a). The
statement can be proved by induction on the minimal number k such that A(a) has a
derivation tree of depth k . If k = 0, then A(a) ∈ A, so A(a′) ∈ Bi , and in this case we
have δ (saA, (bi ,Bi , ci , fi)) = true, which means the run is successful. Now let k > 0 and
consider a derivation tree for A(a) of depth k .

• If the children of the root are of the form B1(a), . . . ,Bn(a) such that T |= B1 u . . .u
Bn v A, then choose the set Z = {B1(a

′), . . . ,Bn(a
′)} in the transition, so in the run,

we add the children labeled with (i, sa′Bj) for all 1 ≤ j ≤ n. By induction hypothesis,
from all these con�gurations there exists a successful run, so these runs can be
combined to obtain a successful run for (i, sa′A).

• If the root has one child labeled B(b) and we have T |= ∃r .B v A, then there exist
b ∈ ind(A) and r (a,b) ∈ A. This individual b does not necessarily lie in Bi , but by
the properties of a path decomposition, there exists a bagVj such that a,b ∈ Vj and,
since a ∈ Vi , we also have a ∈ Vk for all k between i and j. We extend the run as
follows: If j < i , then use the transition (le�, sa

′

A) for i − j times. If j > i , then use
the transition (right, sa

′

A) for j − i times. Then we are in the con�guration (j, sa′A)
and if we choose Z = {B(b′)}, we can extend the run successfully by the induction
hypothesis.

For the other direction, assume that there is a successful run starting from the con-
�guration (i, sa′A). We have to argue that A,T |= A(a). The proof is by induction on
the depth of the run. If the run has depth 0, i.e. the con�guration (i, sa′A) does not have
any successors, then we must have δ (sa′A , (bi ,Bi , ci , fi)) = true. This is only the case if
A(a′) ∈ Bi , so A(a) ∈ A and clearly, T ,A |= A(a). Now assume the run has depth k > 0.
If the root node has a successor labeled (i − 1, sa′A) or (i + 1, sa′A), by induction hypothesis
we have A,T |= A(a). If the root node does not have a successor of this kind, then there
exists a setZ and successors (i, sb ′B) for all B(b′) ∈ Z such thatB∪Z |= A(a′). By induction
hypothesis, we have A,T |= B(b) for all B(b′) ∈ Z . Together, this gives A,T |= A(a).
This �nishes the proof of the claim.

Now we are ready to prove the lemma.
“⇒”. Let A |= Q(a) and let (b1,B1, c1, f1) . . . (bn,Bn, cn, fn) be an encoding of (A, a)

based on some (j,k+1) path decompositionV1, . . . ,Vn ofA. There exists a homomorphism
h0 from q toUA,T that maps the answer variables to a. We use h0 to guide the accepting
run of A on the word encoding (A, a). In the i-th step of the main branch of the run,
always choose the partial q-match h ∈ H according to h0, i.e. if h0(x) = a ∈ ind(A) ∩Vi

50

3.3 NL versus PTime for Connected CQs

then h(x) = (a′, named), and if h0(x) = b for some anonymous individual b that lies in
the subtree below some c ∈ ind(A) then h(x) = (c′, anon). As the explanation set for h
we can just choose Zh = {A(a

′) | a ∈ Vi and T ,A |= A(a)}.
We argue that following these choices, the main path will be successful, i.e. the leaf of

the main branch is labeled with (sдV ,W , a) such that V = var(q),W is the set of all binary
atoms of q and д the empty map. Let x ∈ var(q). Then either h0(x) ∈ ind(A) or h0(x)
is an anonymous individual below some b ∈ ind(A). If h0(x) ∈ ind(A), then let Vi be
the �rst bag such that h0(x) ∈ Vi and thus there is a copy of h0(x) in ind(Bi). Thus, in
the i-th step of the main branch, x is added to V . Similarly, if h0(x) is an anonymous
individual below some b ∈ ind(A), then let Vi be the �rst bag such that b ∈ Vi . Again,
one can conclude that x is added to V in the i-th step of the main branch. Overall, it
follows that V = var(q). Now, let r (x ,y) be a binary atom from q. If both h0(x) and h0(y)
are in ind(A), then, since V1, . . . ,Vn is a path decomposition of A, there exists a bag Vi
such that h0(x),h0(y) ∈ Vi , so there exists a copy of r (h0(x),h0(y)) in Bi and in the i-th
step of the main branch, r (x ,y) is added toW . If at least one of h0(x) and h0(y) is not in
ind(A), but is an anonymous individual below some b ∈ ind(A), then either both h0(x)
and h0(y) are mapped to anonymous individuals below b or one of them is mapped to b.
In any case, r (x ,y) is added toW in the i-th step of the main branch. Overall, it follows
thatW is the set of all binary atoms of q. Finally, д must be the empty map, since cn = ∅.

It follows immediately from the claim above that the other paths will be successful
as well, i.e. whenever A,T |= A(a) for some a ∈ Vi , then there is a successful run that
starts at (sa′A , i). This concludes the proof of the �rst direction.

“⇐”. Assume there is a successful run of A on w = (b1,B1, c1, f1) . . . (bn,Bn, cn, fn).
The run must have one main path with states of the form s

д
V ,W . In every step of the

main path, one partial q-match h together with an explanation set Zh is chosen. From
these partial q-matches we can construct a map h0 from var(q) to the universal model
of A and T in the following way: Whenever a partial q-match h maps a variable x
to (a, named), we set h0(x) = a. Whenever a partial q-match h maps a variable x to
(a, anon), then consider the explanation set Zh . By the de�nition of the explanation set,
we have ({B | B(a) ∈ Zh},h

−1(a, named),h−11 (a)) ∈ R, so there exists a homomorphism
from h−11 (a) to the canonical model of {B | B(a) ∈ Zh} that maps precisely the variables
from h−1(a, named) to the root, which is the homomorphism we use to build h0. From
the condition V ∩ dom(h) = dom(д) it follows that a partial q-match chosen later in the
run will not assign a di�erent image to a variable that has appeared earlier in the domain
of a partial q-match, so h0 is well de�ned.

We show that h0 is indeed a homomorphism from q to UA,T with q(x) = a. Since
the main branch ends in a con�guration (sдV ,W , a), where V = var(q), we know that
dom(h0) = var(q). We argue that every atom of q is satis�ed by h0.

• Let A(x) be a unary atom from q such that h0(x) ∈ ind(A). Let h be the partial
q-match that determined h0(x), so h(x) = (a′, named) for some a′ ∈ ind(B), and
let Zh be the explanation set chosen in the run, so the con�guration has children
labeled (i, sbB) for every B(b) ∈ Zh . Since the run is successful and we know from the
claim above that a partial run starting from the con�guration (i, sb ′B) is successful

51

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

if and only if T ,A |= B(b), we have T ,A |= B(b) for all B(b′) ∈ Zh and thus,
T ,A |= A(a).

• Let r (x ,y) be a binary atom from q such that both h0(x) and h0(y) are in ind(A).
Since the main branch ends in the state sдV ,W , whereW is the set of all binary atoms
from q, there must be one step in the main branch, where r (x ,y) has been added
to W , say the i-th step. This means that both x and y lie in dom(h), where h is
the partial q-match chosen in the i-th step. Since h respects role atoms, we have
r (h0(x),h0(y)) ∈ A.

• Let A(x) be a unary atom from q such that h0(x) is an anonymous individual
below some a ∈ ind(A). Let h be the partial q-match that determined h0(x), so
h(x) = (a′, anon), and let Zh be the explanation set chosen in the run. By de�nition
of an explanation set, there is a partial homomorphism from q with x in its domain
to the universal model of {B(a) | B(a) ∈ Zh}, which was used to de�ne h0 on x , so
we have T ,A |= A(h0(x)).

• Let r (x ,y) be a binary atom from q such that at least one of h0(x) and h0(y) is an
anonymous individual. Then the argument is similar to the previous case.

Construction of the linear Datalog program. Since every 2AFA can be transformed
into an equivalent deterministic �nite automaton (DFA) [GO14], Lemma 3.18 also ensures
the existence of a DFA A = (Q, Σ,δ , s0, F) that a word that encodes a pair (A, a) if and
only if A |= Q(a). We use A to construct the desired linear Datalog rewriting of Q .

The idea for the program is to guess a tuple a ∈ ind(A)ar(q) up front and then verify
that A |= Q(a) by simulating A. The program uses the states of A as IDBs. Each of
these IDBs can appear in any arity between ar(q) and ar(q) + k with k the pathwidth of
Q—technically, this means that we have k + 1 di�erent IDBs for every state, but we use
the same symbol for all of them since the arity will always be clear from the context.
The �rst ar(q) components of each IDB are used to store the tuple a while the other
components are used to store the individuals that occur in both of two consecutive bags
of a path decomposition of A.
Start rules: Given the ABox A, the program starts by guessing a tuple a ∈ ind(A)ar(q)

using the following rule:

s0(x1, . . . ,xn) ← >(x1) ∧ >(x2) ∧ · · · ∧ >(xn).

Transition rules: Consider any transition δ (s1, (b,B, c, f)) = s2. Let φB be B viewed as a
conjunction of atoms with individual names viewed as variables and let x′ be obtained
from x by replacing every variable xi ∈ dom(f) by the individual name f (xi) ∈ ind(B),
also here viewed as a variable. We then include the following rule:

s2(x′, c) ← s1(x′, b) ∧ φB .

This rule says that if the DFA is in state s1, the intersection between the last bag and the
current bag is b, and we see a homomorphic image of B, then the DFA can transition into

52

3.4 The Trichotomy for Disconnected CQs

state s2 and remember the tuple c. Applying such a rule leaves the tuple a stored in the
�rst ar(q) components unchanged, but some of the variables in x′ can appear in φB to
enforce that a is compatible with the mapping of the answer variables that is prescribed
by f and used in the simulated run of A.
Goal rules: If s ∈ F , then include the following rule:

goal(x) ← s(x).

Lemma 3.19. Π is a rewriting of Q .

Proof. Let A be a Σ-ABox and let a ∈ ind(A)ar(q). First assume that A |= Q(a). Since
Q is of pathwidth k , there must be a Σ-ABox A′ of pathwidth at most k such that
A′ |= Q(a) and there is a homomorphism from A′ to A that is the identity on a. Let
w = w1 . . .wn ∈ Γ∗ encode the pair (A′, a) where wi = (bi ,Bi , ci , fi), and assume that
w ∈ L(A). There is an accepting run of A on w and thus we �nd states s0, . . . , sn of
A such that δ (si ,wi) = si+1 for 0 ≤ i < n and sn is an accepting state. This yields a
derivation of Π(a) inA′, as follows. First, use the start rule to derive s0(a). For the next n
steps, use the rule introduced for the transitions δ (si ,wi) = si+1. In this way, we derive
sn(a) since the individuals in the �rst ar(q) components do not change when using the
transition rules. Because sn ∈ F , a goal rule can be applied to derive goal(a) and thus
A′ |= Π(a). It is well-known that answers to Datalog programs are preserved under
ABox homomorphisms [AHV95] and there is a homomorphism from A′ to A that is the
identity on a, we obtain A |= Π(a) as desired.

For the converse direction, assume that A |= Π(a). Then there is a derivation D of
Π(a) in A. Since Π is of diameter at most k , AD has pathwidth at most k . Consider
the encoding of (AD, a) as a word w ∈ Γ∗, based on the path decomposition induced
by D in the obvious way. By construction of Π, D must use a start rule for a, then a
number of transition rules, and then a goal rule. Using the way in which these rules
are constructed, it can be veri�ed that this yields an accepting run of A on w . Thus
AD |= Q(a). It remains to recall that there is a homomorphism from AD to A that is the
identity on a, and that answers to OMQs from (ELI,CQ) are preserved under ABox
homomorphisms [Bie+14].

3.4 The Trichotomy for Disconnected CQs
We now lift the trichotomy result that is provided by Theorems 3.4 and 3.9 from connected
CQs to unrestricted CQs. To achieve this, we show that the complexity of an OMQ
Q = (T , Σ,q) with q a disconnected CQ is precisely the complexity of the hardest OMQ
(T , Σ,q′) with q′ a maximal connected component (MCC) of q, provided that we �rst
have removed redundant MCCs from q.

Let Q = (T , Σ,q) ∈ (EL,CQ). We say that Q is empty if A 6|= Q(a) for all Σ-ABoxes
A and tuples a. Every empty OMQ is trivially FO rewritable. An MCC of q is Boolean
if it contains no answer variables. We call Q redundant if there is a Boolean MCC of q
such that the OMQ obtained from Q by dropping that MCC from q is equivalent to Q .

53

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

For proving the intended trichotomy result, it is clearly su�cient to consider OMQs that
are non-empty and non-redundant.

Theorem 3.20. Let Q ∈ (EL,CQ). Then either

1. Q is FO rewritable and thus eval(Q) is in AC0 or

2. Q is not FO rewritable and eval(Q) is NL-hard under FO reductions.

Proof. Let Q = (T , Σ,q) ∈ (EL,CQ) be a non-redundant and non-empty OMQ and let
q1(x1), . . . ,qn(xn) be the MCCs of q(x).

If every OMQ Qi = (T , Σ,qi) is FO rewritable, then the conjunction of all these FO
rewritings is an FO rewriting of Q . It thus su�ces to show that otherwise, Q is NL-hard.
Thus assume that some Qi is not FO rewritable. Since qi is connected, eval(Qi) is NL-
hard under FO reductions by Theorem 3.4. We prove that eval(Q) is NL-hard under FO
reductions by giving an FO reduction from eval(Qi). Let Ai be a Σ-ABox and ai a tuple
from ind(Ai)

ar(qi). Since Q is non-empty and non-redundant, for every j , i we �nd a
Σ-ABox Aj and a tuple aj such that

1. T ,Aj |= qj(aj) and

2. if qi is Boolean, then T ,Aj 6 |= qi .

De�ne A to be the disjoint union of A1, . . . ,An and a = a1 · · · an. Clearly, A and a can
be de�ned by an FO query, so this is an FO reduction.

We have to show that Ai |= Qi(ai) if and only if A |= Q(a). The “⇒” direction is clear
by construction ofA and a. For “⇐”, assume thatA |= Q(a). This impliesA |= Qi(ai), so
there is a homomorphism h from qi toUA,T with h(xi) = ai . The universal modelUA,T
is the disjoint union of the universal models UAj ,T , 1 ≤ j ≤ n. Since qi is connected,
the range of h lies completely inside one of theUAj ,T . In fact, it must lie inUAi ,T . If
qi is not Boolean, this is the case because h(xi) = ai is a tuple from Ai . If qi is Boolean,
then this follows from T ,Aj 6 |= qi which impliesUAj ,T 6 |= qi . We have thus shown that
UAi ,T |= qi(ai), implying Ai |= Qi(ai) by Lemma 2.1, as desired. We have shown that
(T , Σ,q) is NL-hard. It follows that (T , Σ,q) is not FO rewritable [FSS81].

To lift the dichotomy between NL and PTime dichotomy including the equivalence of
NL and linear Datalog rewritability, we �rst give a helpful lemma aboutlinear Datalog
programs.

Lemma 3.21. Let Π1, . . . ,Πn be linear Datalog programs. Then there exists a linear Dat-
alog program Π of arity Σni=1ar(Πi) such that for all ABoxes A and tuples a1, . . . , an,

A |= Πi(ai) for 1 ≤ i ≤ n if and only if A |= Π(a1, . . . , an) .

Proof. It su�ces to give a proof for the case n = 2, the general case follows by repeatedly
applying the lemma for n = 2. So let Π1, Π2 be linear Datalog programs. We assume
w.l.o.g. that Π1 and Π2 use disjoint sets of variables. De�ne a program Π that contains
the following rules:

54

3.5 Width Hierarchy for Linear Datalog Rewritability

• for all rule Si(xi) ← φi(xi , yi) ∈ Πi , i ∈ {1, 2}, such that neither φ1 not φ2 contains
an EDB relation, the rule

(S1, S2)(x1, x2) ← φ1(x1, y1) ∧ φ2(x2, y2);

• for each rule Si(xi) ← φi(xi , yi) ∈ Πi and each IDB relation S3−i from Π3−i , i ∈ {1, 2},
the rule

(S1, S2)(x1, x2) ← φi(xi , yi) ∧ S3−i(x3−i)

where x3−i is a tuple of fresh variables;
• the rule

goal(x1, x2) ← (goal, goal)(x1, x2).

It can be veri�ed thatA |= Π(a1, a2) if and only if bothA |= Π1(a1) andA |= Π2(a2), for
all Σ-ABoxes A and tuples a1, a2.

Theorem 3.22. LetQ ∈ (EL,CQ). The following are equivalent (assuming NL , PTime):

1. Q has bounded pathwidth;

2. Q is linear Datalog rewritable;

3. eval(Q) is in NL.

If these conditions do not hold, then eval(Q) is PTime-hard under FO reductions.

Proof. The equivalence of (1) and (2) has been shown in Lemma 3.17 and the implication
(2)⇒ (3) is clear. To �nish the proof, we show that if (2) does not hold, then eval(Q) is
PTime-hard, proving the implication (3)⇒ (2) as well as the last sentence of the theorem.

Let Q = (T , Σ,q) ∈ (EL,CQ) and assume that Q is not rewritable into linear Datalog.
As before, we can assume Q to be non-empty non-redundant. Let q1(x1), . . . ,qn(xn) be
the connected components of q(x). By Theorem 3.9, every OMQ Qi = (T , Σ,qi) is either
rewritable into linear Datalog or PTime-hard. By Lemma 3.21, every (T , Σ,qi) being
rewritable into linear Datalog implies that also (T , Σ,q) is linear Datalog rewritable.
Since this is not the case, there must be some Qi that is not rewritable into linear Datalog
and thus PTime-hard.

Now we can show PTime-hardness of eval(Q) by an FO reduction from eval(Qi),
exactly as in the proof of Theorem 3.20.

3.5 Width Hierarchy for Linear Datalog Rewritability
The width of the linear Datalog rewritings constructed in Section 3.3 depends on pw(Q),
so if Q has high pathwidth, then we end up with a linear Datalog rewriting of high
width. We aim to show that this is unavoidable, that is, there is no constant bound on the
width of linear Datalog rewritings of OMQs from (EL,CQ) and in fact not even from
(EL,AQ). It is interesting to contrast this with the fact that every OMQ from (EL,CQ)

55

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

can be rewritten into a monadic (non-linear) Datalog program [Baa+17]. Our result
strengthens a result by [DK08] who establish an analogous statement for CSPs. This
does not imply our result: While every OMQ from (EL,AQ) is equivalent to a CSP up to
complementation [Bie+14], the converse is false and indeed the CSPs used by Dalmau
and Krokhin are not equivalent to an OMQ from (EL,AQ). Our main aim is to prove the
following.

Theorem 3.23. For every k > 0, there is an OMQ Qk ∈ (EL,AQ) that is rewritable into
linear Datalog, but not into a linear Datalog program of width k .

When constructing the OMQs Q1,Q2, . . . for Theorem 3.23, we would like the ABoxes
inMQk to contain more and more branching. Now that we only work with (EL,AQ),
MQk consists of tree-shaped ABoxes rather than of pseudo tree-shaped ones. Intuitively,
if the ABoxes fromMQk have a lot of branching, then a linear Datalog rewriting of Qk

needs large width to simultaneously collect information about many di�erent branches.
However, we want Qk to be linear Datalog rewritable so by Lemma 3.11 the ABoxes from
MQk must still branch only boundedly. We thus construct Qk such that br(A) ≤ k for all
A ∈ MQk while for every n ≥ 1,MQk contains an ABoxAn

k
that takes the form of a tree

of outdegree 2 and of depth n such that br(An
k
) = k andAn

k
has the maximum number of

leaves that any such ABox can have. To make the latter more precise, let `k
d
(n) denote the

maximum number of leaves in any tree that has degree d , depth n, and does not have the
full binary tree of depth k + 1 as a minor, d,k,n ≥ 0. We then want An

k
to have exactly

`k2 (n) leaves, which ensures that it is maximally branching.
We now construct Qk . For every k ≥ 1, let Qk = (Tk , Σ,Ak(x)) where Σ = {r , s, t ,u}

and
Tk = {> v A0} ∪

{∃x .Ai v Bx ,i | x ∈ {r , s, t ,u}, 0 ≤ i ≤ k − 1} ∪
{∃x .Bx ,i v Bx ,i | x ∈ {r , s, t ,u}, 0 ≤ i ≤ k − 1} ∪
{Br ,i u Bs,i v Ai+1 | 0 ≤ i ≤ k − 1} ∪
{Bt ,i u Bu,i+1 v Ai+1 | 0 ≤ i ≤ k − 1}.

Each concept name Ai represents the existence of a full binary tree of depth i , that is,
if Ai is derived at the root of a tree-shaped Σ-ABox A, then A contains the full binary
tree of depth i as a minor. The concept inclusions ∃x .Bx ,i v Bx ,i in Tk ensure that Qk is
closed under subdivisions of ABoxes, that is, if A ∈ MQk and A′ is obtained from A by
subdividing an edge into a path (using the same role name as the original edge), then
A |= Qk(a) if and only if A′ |= Qk(a) for all a ∈ ind(A). Informally spoken, subdivision
will allow us to assume that every (connected) rule body in a linear Datalog rewriting
can only ‘see’ a single branching.

To provide a better understanding of the four role names used, we now explicitly de�ne
the ABoxes An

k
mentioned above. We refer to non-leaf individuals by the combination

of role names of their outgoing edges, e.g. an rs-individual is an individual that has one
outgoing r -edge, one outgoing s-edge and no other outgoing edges. Let n,k ≥ 1. If n ≤ k ,
then An

k
is the full binary tree of depth n, where every non-leaf is an rs-individual. If

56

3.5 Width Hierarchy for Linear Datalog Rewritability

r s

r

r s

s

u

r s

u t

t

u

r s

u t

u t

t

Figure 3.3: The ABoxA4
2 , which has depth 4, branching number 2 and lies inMQ2 . Since

4 > 2, A4
2 is composed of one copy of A3

2 and one copy of A3
1 and a new

tu-individual as root. This ABox has 11 leaves, which is the largest number of
leaves that a binary tree of depth 4 can have, unless it contains the full binary
tree of depth 3 as a minor.

n > k = 1, thenAn
k

consists of a root that is a tu-individual where the t-successor is a leaf
and the u-successor is the root of a copy of An−1

k
. Finally, for n > k > 1, take the disjoint

union of An−1
k−1 and An−1

k
and introduce a new tu-individual as the root, the t-successor

being the root of An−1
k−1 and the u-successor the root of An−1

k
. As an example, Figure 3.3

shows A4
2 .

Lemma 3.24. For all n,k ≥ 1,

1. An
k
∈ MQk ;

2. br(An
k
) = k ;

3. An
k
has exactly `k2 (n) leaves.

All three points can be proved by induction on n.
The following lemma establishes the �rst part of Theorem 3.23.

Lemma 3.25. For every k ≥ 1, Qk is rewritable into linear Datalog.

Proof. We show that br(Qk) = k , which implies rewritability into linear Datalog by
Lemma 3.11 and Theorem 3.9.

Let A ∈ MQk . We show that br(A) = k . First, let us analyse the types tpA,Tk (a),
a ∈ ind(A), and the structure of A. Since > v A0 ∈ Tk , none of the types tpA,Tk (a) is
empty. It is easy to verify that Tk |= Ai v Ai−1 and Tk |= Bx ,i v Bx ,i−1 for 1 ≤ i ≤ k and
x ∈ {r , s, t ,u}. We say that a is of type i if i is the largest integer such that Ai ∈ tpA,Tk (a)
and that a is of x-type jx if jx is the largest integer such that Bx ,jx ∈ tpA,Tk (a).

Claim 1. Every individual in A has degree at most two and every individual of degree
two is an rs-individual or a tu-individual.

We �rst argue that every individual has at most one x-successor for every x ∈ {r , s, t ,u}.
Assume to the contrary that there exist three distinct individuals a,b, c and assertions
x(a,b),x(a, c) ∈ A for some x ∈ {r , s, t ,u}. Let b have type j and x-type ` and c have type
m and x-type n. Then Bx ,j , Bx ,` , Bx ,m and Bx ,n are derived at a, but since Tk |= Bx ,i v Bx ,i−1

57

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

for 1 ≤ i ≤ k , these four concept names are already implied by Bx ,max{j,`,m,n}. Thus one
of the individuals b, c can be removed without altering the result of the query.

Now we argue that every individual with degree greater than one is either an rs-
individual or a tu-individual. All other combinations do not appear due to the minimality
of A. For example, assume that there is an rst-node a. Then some Br ,j ,Bs,`,Bt ,m are
derived at a, assume that j, `,m are maximal with this property. If a is the root ofA, then
the t-edge can be removed. If a is not the root, it must be connected to its parent by a
t-edge, since otherwise, the t-edge below a can be removed. So assume, a is a t-successor
of its parent. If nowm ≤ min(j, `), the t-edge below a can be removed. Ifm > min(j, `),
but then both the r -edge and the s-edge can be removed. In either case,A is not minimal.
This �nishes the proof of Claim 1.

Using minimality ofA, it can be argued that for every x-individual a (an indiviual with
only one outgoing edge) with x ∈ {r , s, t ,u}, there is some b ∈ ind(A) with x(b,a) ∈ A
and it follows that a path from one branching point to the next is always a chain of the
same role.

Claim 2. a is of type i if and only if br(Aa) = i for all a ∈ ind(A) that are leaves or of
degree two.

We prove the claim by induction on the number n of leaves Aa . If n = 1, then a is a leaf
itself, thus of type 0, and the statement follows. Now let n > 1 and let a be an individual of
degree two with n leaves below it. We only argue the ‘if’ direction, the ‘only if’ direction
can be argued similarly. So assume that br(Aa) = i for some i ≥ 1. Then by Claim 1, a
has two outgoing paths that both reach two nodes b and c that are a leaf or of degree
two. Let j = br(Ab) and ` = br(Ac) and w.l.o.g. assume j ≥ `. By induction hypothesis,
b is of type j and c is of type `. There are two possibilities: Either j = `, which implies
i = j + 1 = `+ 1, or j > `, which implies i = j . In case j = `, a must be an rs-individual. In
fact, assuming a was a tu-individual, then Ai(a) would be derived using Bt ,i−1 u Bu,i v Ai ,
so a full binary tree of depth i below the t-successor of a is not needed and one could
remove any leaf below the t-successor of a (contradicting minimality of A), decreasing
the depth of the largest binary tree minor by at most one. So since a is an rs-individual,
Br ,i−1 u Bs,i−1 v Ai applies and a has type i . In case j > `, one can argue in a similar way
that a must be a tu-individual and j = ` + 1, and it follows that a has type i .

SinceA |= Qk(a) for the root a ofA, we know that a is of type k , so Claim 2 says that
br(A) = k .

The following proofs rely on an estimate of `k
d
(n), namely on the fact that `k

d
(n) as a

function of n grows like a polynomial of degree k . This is established by the following
lemma.

Lemma 3.26. (d − 1)k(n − k)k ≤ `k
d
(n) ≤ (k + 1)(d − 1)knk for all d,k ≥ 0 and n ≥ 2k .

Proof. We aim to show that for all d,k ≥ 0 and n ≥ 2k ,

`kd (n) =
k∑
i=0
(d − 1)i

(
n

i

)
(∗)

58

3.5 Width Hierarchy for Linear Datalog Rewritability

From (∗), the lower bound stated in the lemma is obtained by considering only the
summand for i = k and the upper bound is obtained by replacing every summand with
the largest summand, which is the one for i = k if n ≥ 2k .

Towards proving (∗), we �rst observe that for all n ≥ 1 and k ≥ 1:

`kd (n) = `
k
d (n − 1) + (d − 1)`

k−1
d (n − 1) (∗∗)

Let T be a tree with degree d and depth n that does not contain the full binary tree of
depth k + 1 as a minor and that has the largest possible number of leaves. It can easily be
seen that the root of T has degree d and that T contains the full binary tree of depth k as
a minor. Consider the subtrees T1, . . . ,Td whose roots are the children of the root of T .
There must be one of them that also has the full binary tree of depth k as a minor and all
of them must have the full binary tree of depth k − 1 as a minor, otherwise T would not
have the maximum number of leaves. Moreover, there cannot be two subtrees that both
have the full binary tree of depth k as a minor, since then T would have a minor of depth
k + 1. Since the number of leaves of T is the sum of the leaves of all Tj , (∗∗) follows.

Now we prove (∗) by induction on n. First observe that `k
d
(0) = `0

d
(n) = 1 for all d,k,n,

thus (∗) holds for all cases where k = 0 or n = 0. Now let k ≥ 1 and n ≥ 1 and assume
that (∗) holds for `k

d
(n) and for `k−1

d
(n). We show that it also holds for `k

d
(n + 1):

`kd (n + 1) = `
k
d (n) + (d − 1) · `

k−1
d (n)

=

k∑
i=0
(d − 1)i

(
n

i

)
+ (d − 1)

k−1∑
i=0
(d − 1)i

(
n

i

)
=

k∑
i=0
(d − 1)i

(
n

i

)
+

k∑
i=1
(d − 1)i

(
n

i − 1

)
= 1 +

k∑
i=1
(d − 1)i

(
n + 1
i

)
=

k∑
i=0
(d − 1)i

(
n + 1
i

)
Remark 3.27. The numbers `k2 (n) are an interesting family of sequences that appear in
several di�erent settings in combinatorics [OEI]. The following table shows the values of
`k2 (n) for small k and n.

k
n

0 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10
2 1 2 4 7 11 16 22 29 37 46
3 1 2 4 8 15 26 42 64 93 130
4 1 2 4 8 16 31 57 99 163 256
5 1 2 4 8 16 32 63 120 219 382

59

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

Notice how every row starts with powers of two and, for values n ≤ k , pretends to be the
function 2n. This makes sense, since these are the number of leaves in a binary tree of
depth n, where the depth of the forbidden minor is larger than n. After the k-th column,
the forbidden minor comes into play, so the next tree is an almost full binary tree with only
one leaf missing, resulting in a number of the form 2n − 1. In the end, the k-th row does not
grow polynomially, but like a polynomial of degree k , as proven in Lemma 3.26.

To show that linear Datalog rewritings of the de�ned family of OMQs require un-
bounded width, we �rst show that they require unbounded diameter and then proceed
by showing that the width of rewritings cannot be signi�cantly smaller than the required
diameter. To make the latter step work, we actually show the former on an in�nite family
of classes of ABoxes of restricted shape. More precisely, for all i ≥ 0 we consider the
class Ci of all forest-shaped Σ-ABoxes in which the distance between any two branching
individuals exceeds i (where a forest is a disjoint union of trees and a branching individual
is one that has at least two successors). Since the queriesQk are closed under subdivisions
of ABoxes, each class Ci contains ABoxes whose root is an answer to the query.

The idea for proving that any linear Datalog rewriting of Qk requires high diameter is
then as follows. We assume to the contrary that there is a linear Datalog rewriting Π of
Qk that has low diameter and consider the linear Datalog derivation of Qk(a) in someAn

k
with root a. A careful analysis shows that AD contains a tree-shaped sub-ABox of depth
n that has as many leaves asAn

k
and thus by Lemma 3.26 contains a deep full binary tree

as a minor. Thus AD has high pathwidth which contradicts the assumption that Π has
low diameter.

Lemma 3.28. For any i ≥ 0, Q2k+3 is not rewritable into a linear Datalog program of
diameter k on the class of ABoxes Ci .

Proof. Let i ≥ 0. For n ≥ k ≥ 1, denote by Bn
k

the ABox obtained fromAn
k

by subdividing
every edge into a path of length i + 1 of the same role. Note that Bn

k
∈ Ci . Using

Lemma 3.24, it is easy to see that Bn
k
∈ MQk and Bn

k
has `k2 (n) leaves, so from Lemma 3.26

it follows that Bn
k

has at least (n − k)k leaves.
For the sake of contradiction, assume that there is a k ≥ 1, such thatQ2k+3 is rewritable

into a linear Datalog program Π of diameter k on the class Ci . Choose n very large (we
will make this precise later) and let A = Bn

2k+3, so A ∈ MQ2k+3 , it has depth n(i + 1) and
at least (n − 2k − 3)2k+3 leaves.

Let a0 be the root of A. We have A,T |= Π(a0) and thus there is a derivation D of
Π(a0) in A. Consider the ABox AD . By Lemma 3.2, we have the following:

1. AD |= Π(a0);

2. there is a homomorphism from AD to A that is the identity on a0;

3. AD has pathwidth at most k .

We manipulate AD as follows:

• restrict the degree to |T | by taking a subset according to Lemma 2.2;

60

3.5 Width Hierarchy for Linear Datalog Rewritability

• remove all assertions that involve an individual a that is not reachable from a0 in
GA by a directed path.

We use B to denote the resulting ABox. It can be veri�ed that Conditions 1 to 3 still hold
whenAD is replaced with B. In particular, this is true for Condition 1 sinceAD |= Π(a0)
i�AD |= Qk(a0) i� B |= Qk(a0) i� B |= Π(a0). The second equivalence is easy to establish
by showing how a model witnessing B 6|= Qk(a0) can be transformed into a model that
witnesses AD 6 |= Qk(a0).

Choose a homomorphism h from B to A that is the identity on a0. Then h must be
surjective since otherwise, the restriction A− of A to the individuals in the range of h
would satisfy A−,T |= A0(a0), contradicting the minimality of A. Let a1, . . . ,am be the
leaves of A, m ≥ (n − 2k − 3)2k+3. For each ai , choose a bi with h(bi) = ai . Clearly, all
individuals in b1, . . . ,bm must be distinct.

By construction, B is connected. Since there is a homomorphism from B toA, B must
be a DAG (directed acyclic graph). We proceed to exhaustively remove assertions from B
as follows: whenever r (c1, c), r (c2, c) ∈ B with c1 , c2, then choose and remove one of
these two assertions. Using the fact that every individual in B is reachable from a0, it
can be proved by induction on the number of edge removals that the obtained ABoxes

(i) remain connected and

(ii) contain the same individuals asB, that is, edge removal never results in the removal
of an individual.

Point (i) and the fact that we start from a DAG-shaped ABox means that the ABox Bt
ultimately obtained by this manipulation is tree-shaped. By construction of Bt , h is still a
homomorphism from Bt toA, Bt has pathwidth at most k , and the individuals b1, . . . ,bm
are leaves in Bt (and thus Bt has at least (n − 2k − 3)2k+3 leaves). From the former, it
follows that the depth of Bt is at most n(i + 1).

Assume that Bt does not contain the full binary tree of depth 2k + 3 as a minor. Then
by Lemma 3.26, the number of leaves of Bt is at most

(2k + 3)(|T | − 1)2k+2(n(i + 1))2k+2,

which is a polynomial in n of degree 2k + 2. So if we choose n such that

(n − 2k − 3)2k+3 > (2k + 3)(|T | − 1)2k+2(n(i + 1))2k+2

in the beginning, this leads to a contradiction. Hence, Bt must contain as a minor the full
binary tree of depth at least 2k + 3. But it is well-known that any such tree has pathwidth
at least k + 1, in contradiction to Bt having pathwidth at most k .

We are now ready to establish the hierarchy.

Proposition 3.29. Q8`+13 is not rewritable into a linear Datalog program of width `.

61

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

Proof. Assume to the contrary of what we have to show that Q8`+13 is rewritable into a
linear Datalog program Π0 of width `. Let k be the diameter of Π0. Clearly, Π0 is also a
rewriting of Q8`+13 on the class of ABoxes Ck . We show that Π0 can be rewritten into a
linear Datalog rewriting Π′ of Q8`+13 of diameter 4` + 5, in contradiction to Lemma 3.28.

We carry out a sequence of three rewriting steps. Informally, in the �rst rewriting
we normalize the shape of rule bodies, in the second one we control the number of
disconnected components in the rule body (or rather its restriction to the EDB relations),
and in the third one we actually bound the diameter to 4` + 5.

In the �rst step, let Π1 be obtained from Π0 by replacing every rule S(x) ← q(y) in
Π0 with the set of all rules S(x′) ← q(y′) that can be obtained from the original rule by
consistenly identifying variables in the rule body and head such that the restriction of
q(y′) to EDB relations (that is, concept and role names in Σ) takes the form of a forest
in which every tree branches at most once. This step preserves equivalence on Ck since
every homomorphism from the body of a rule in Π into an ABox from Ck (and also to
the extension of such an ABox with IDB relations) induces a variable identi�cation that
identi�es a corresponding rule produced in the rewriting.

In the next step, we rewrite Π1 into a linear Datalog program Π2, as follows. Let
S(x) ← q(y) be a rule in Π1 and call a variable in q(y) special if it occurs in x or in the
IDB atom in q(y), if existent. We obtain a new rule body q′(y′) from q(y) in the following
way:

1. remove the IDB atom (if existent), obtaining a forest-shaped rule body;

2. remove all trees that do not contain a special variable;

3. re-add the IDB atom (if existent).

In Π2, we replace S(x) ← q(y) with S(x) ← q′(y′).
We argue that, on the class of ABoxes Ck , Π2 is equivalent to Π1. Thus, let A be an

ABox from Ck and a ∈ ind(A) such that A |= Π2(a). We have to show that A |= Π1(a).
Let q1(x1), . . . ,qm(xm) be all trees that have been removed from a rule body during the
construction of Π2. Let Ai be qi(xi) viewed as a Σ-ABox, 1 ≤ i ≤ m. Note that each
Ai must be in Ck . Let B be the disjoint union of the ABoxes A,A1, . . . ,Am, assuming
that these ABoxes do not share any individual names, and note that B is in Ck . Since
A |= Π2(a), we must have B |= Π2(a). By construction of B, this clearly implies
B |= Π1(a). Consequently, B |= Q8`+13(a). Since answers to OMQs from (EL,AQ)
depend only on the reachable part of ABoxes, we obtain that A |= Q8`+13(a), thus
A |= Π1(a) as required.

At this point, let us sum up the most important properties of the linear Datalog
program Π2: it is a rewriting of Q8`+13 on Ck , has width at most ` and diameter at most k ,
and

(∗) the restriction of the rule body to EDB relations is a forest that consists of at most
2` trees.

62

3.5 Width Hierarchy for Linear Datalog Rewritability

Figure 3.4: The body q(y) of a rule from Π2 consists of one or several such trees, where at
most one variable is branching. The branching variable and special variables
are circled and they divide the body into �ve paths qi(yi).

Note that the upper bound of 2` is a consequence of the fact that, by construction of Π2,
each of the relevant trees contains at least one special variable.

We now rewrite Π2 into a �nal linear Datalog program Π3 that is equivalent to Π2, has
width at most 4` + 2, and diameter at most 4` + 5. Thus Π3 is a rewriting of Q8`+13 on Ck
of diameter 4` + 5, which is a contradiction to Lemma 3.28.

It thus remains to give the construction of Π3. Let ρ = S(x) ← q(y) be a rule in Π2
and let y′ ⊆ y be the set of variables x that are special or a branching variable where
the latter means that q(y) contains atoms of the form r (x ,y1), s(x ,y2) with y1 , y2. Due
to (∗), y′ contains at most 4` variables. Let q′(y′) be the restriction of q(y) to the variables
in y′; we can assume that each variable y from y′ occurs in q′(y′) since if this is not the
case, we can add an atom >(y). By construction of Π2, it can be veri�ed that q(y) is the
union of q′(y′) and path-shaped q1(y1), . . . ,qn(yn) such that for 1 ≤ i ≤ n

• qi(yi) contains only EDB atoms,
• each qi(yi) contains at most two variables from y′ and each such variable is an end

point of the path, and
• the queries q1(y1), . . . ,qn(yn) only share variables from y′.

The structure of q(y) is illustrated in Figure 3.4. We thus �nd linear Datalog programs
Γ1, . . . , Γn that are at most binary, of width at most two and diameter at most three such
that for any Σ-ABoxA and a ⊆ ind(A),A |= Γi(a) if and only if there is a homomorphism
hi from qi(yi) to A such that hi(yi) = a. Let the goal relations of Γ1, . . . , Γn be G1, . . . ,Gn

and assume that Gi occurs in Γi only once, in a rule head Gi(xi). We assume w.l.o.g. that
the programs Γ1, . . . , Γn do not share variables or IDB relations, and neither do they share
variables or IDB relations with Π2. In Π3, we replace ρ = S(x) ← q(y) with the following
rules:

• for any rule P(w) ← p(z) in Γ1 where p(z) contains only EDB atoms, the rule
X P
ρ (y′,w) ← q′(y′) ∧ p(z);

• for any rule P(w) ← p(z) in Γi , 1 ≤ i ≤ n, where p(z) contains the IDB atom R(u),
the rule X P

ρ (y′,w) ← XR
ρ (y′, u) ∧ p(z);

• for any rule P(w) ← p(z) in Γi , 1 < i ≤ n, where p(z) contains only EDB atoms, the
rule X P

ρ (y′,w) ← XGi−1
ρ (y′, xi−1) ∧ p(z);

• the rule S(x) ← XGn
ρ (y′, xn),

where the goal relations of Γ1, . . . , Γn become standard (non-goal) IDB relations. It can be
veri�ed that Π3 is as required.

63

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

3.6 Decidability and Complexity
We study the meta problems that emerge from the results in the previous sections such as
deciding whether a given OMQ is in NL, PTime-hard, or rewritable into linear Datalog. We
show that all these problems are ExpTime-complete. Apart from applying and adapting
known lower and upper bounds, the central ingredient is giving a single exponential
time decision procedure for deciding whether an OMQ from (EL, conCQ) has the ability
to simulate psa. We start with lower bounds, which hold already for (EL,AQ).

Theorem 3.30. Given an OMQQ ∈ (EL,AQ), the following problems are ExpTime-hard:

(1) Is Q FO rewritable?

(2) Is Q rewritable into linear Datalog?

(3) Is eval(Q) ∈ AC0?

(4) Is eval(Q) ∈ NL? (unless NL = PTime)

(5) Is eval(Q) NL-hard?

(6) Is eval(Q) PTime-hard?

Proof. ExpTime-hardness of (1) is proved in (the appendix of) [BLW13]. By our Theo-
rem 3.20, (1) and (3) are equivalent, so (3) is also ExpTime-hard.

For (2), (4), (5) and (6), we analyse the mentioned hardness proof from [BLW13] a
little closer. The proof is by a reduction from the word problem of a polynomially space
bounded alternating Turing machine (ATM) M that solves an ExpTime-complete problem.
The reduction exhibits a polynomial time algorithm that constructs, given an input w
to M , an OMQ Q = (T , Σ,B(x)) ∈ (EL,AQ) such that Q is not FO rewritable if and only
if M accepts w . A careful inspection of the construction of Q and of the “⇐” part of the
proof reveals that

(∗) if M accepts w , then Q is unboundedly branching, thus (by Lemma 3.11 and
Theorem 3.22) not linear Datalog rewritable, PTime-hard, and not in NL (unless
NL = PTime) and (by Theorem 3.20 and since no PTime-hard problem can be in
AC0) NL-hard.

If M does not accept w , then FO rewritability of Q implies that Q is

• in AC0 and thus in NL and neither NL-hard nor PTime-hard;
• linear Datalog rewritable (because every FO rewritable OMQ from (EL,AQ) is

rewritable into a UCQ [BLW13]).

The stated hardness results for (2), (4), (5) and (6) follow.

The following theorem summarizes the corresponding upper bounds.

Theorem 3.31. GivenQ ∈ (EL,CQ), the following properties can be decided in ExpTime:

64

3.6 Decidability and Complexity

(1) Is Q FO rewritable?

(2) Is Q rewritable into linear Datalog?

(3) Is eval(Q) ∈ AC0?

(4) Is eval(Q) ∈ NL? (unless NL = PTime)

(5) Is eval(Q) NL-hard?

(6) Is eval(Q) PTime-hard? (unless NL = PTime)

In [Bie+16], it was shown that (1) is in ExpTime. By Theorem 3.20, the same algorithm
decides (3) and (5). By Theorem 3.22, the remaining (2), (4) and (6) come down to a single
decision problem. We concentrate on deciding (6). We �rst argue that it su�ces to decide
(6) for OMQs from (EL, conCQ), that is, to restrict our attention to connected CQs.

Let Q = (T , Σ,q) ∈ (EL,CQ). To decide whether eval(Q) is PTime-hard (unless
NL = PTime), we can �rst check whether Q is empty. This can be done in ExpTime
[Bie+16]) and an empty OMQ is clearly not PTime-hard. Otherwise, we make Q non-
redundant (see Section 3.4) by exhaustively removing Boolean MCCs that cause non-
redundancy. This can also be done in exponential time since containment of OMQs from
(EL,CQ) is in ExpTime [Bie+16]. The resulting OMQ Q′ = (T , Σ,q′) is equivalent to Q
and as seen in the proof of Theorem 3.22, eval(Q′) is PTime-hard if and only if there is
an MCC q′i of q′ such that (T , Σ,q′i) ∈ (EL, conCQ) is PTime-hard.

Therefore, it remains to show how (6) can be decided in ExpTime for OMQs Q from
(EL, conCQ). For such Q , it follows from Lemmas 3.11, 3.15, 3.16, and 3.17 and Theo-
rem 3.9 that (6) is equivalent to deciding whether Q has the ability to simulate psa. In the
remainder of this section, we reduce the question whether a given OMQQ ∈ (EL, conCQ)
has the ability to simulate psa to the (non-)emptiness problem of TWAPA (introduced in
Section 2.9), which is in ExpTime. In fact, we construct a TWAPA that accepts precisely
those (encodings of) pseudo tree-shaped ABoxes that witness the ability to simulate psa
and then check non-emptiness.
Encoding pseudo tree-shaped ABoxes. To check the ability to simulate psa using
TWAPAs, we build one TWAPA At0,t1 for every pair (t0, t1) of T -types. An input tree for
the TWAPA encodes a tuple (A, a,b, c,d) of a pseudo tree-shaped ABox A of core size
at most |q |, a tuple a from the core and three distinguished individuals b, c and d . The
TWAPA At0,t1 should accept a tree that encodes (A, a,b, c,d) if and only if t0, t1,A, a,b, c
and d witness the ability to simulate psa according to De�nition 3.13. The ExpTime
decision procedure is obtained by checking whether at least one of the (exponentially
many) At0,t1 accepts a non-empty language.

We encode tuples (A, a,b, c,d) as �nite (|T | · |q |)-ary Γε ∪ ΓN -labeled trees, where
Γε is the alphabet used for labeling the root node and ΓN is for non-root nodes. These
alphabets are di�erent because the root of a tree encodes the entire core of a pseudo
tree-shaped ABox whereas each non-root node represents a single non-core individual.

Let Ccore ⊆ NI be a �xed set of size |q |. De�ne Γε to be the set of all tuples (B, a), where
B is a Σ-ABox over Ccore and a a tuple of length ar(q) from ind(B). Let ROL be the set of

65

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

roles that appear in T or Σ and let CN by the set of all concept names that appear in T
or Σ. Let S = ROL ∪ CN ∪ Ccore ∪ {b, c,d}. The alphabet ΓN is de�ned to be the set of all
subsets of S that contain exactly one element from ROL, at most one element from Ccore
and at most one element of {b, c,d}. We call a (Γε ∪ ΓN)-labeled tree (T ,L) proper if

• L(ε) ∈ Γε and L(x) ∈ ΓN for all x , ε ,

• L(x) contains an element of Ccore if and only if x is a child of ε ,

• there is exactly one node xb ∈ T with b ∈ L(xb), exactly one node xc ∈ T with
c ∈ L(xc) and exactly one node xd ∈ T with d ∈ L(xd),

• the nodes xc and xd are incomparable descendants of xb ,

• the nodes ε , xb , xc and xd have pairwise distance more than |q | from each other.

A proper tree (T ,L) encodes a tuple (A, a,b, c,d) in the following way. If L(ε) = (B, a),
then

A = B ∪ {A(x) | A ∈ L(x),x , ε}

∪ {r (a,x) | {a, r } ⊆ L(x) with a ∈ Ccore}

∪ {r (x ,y) | r ∈ L(y),y is a child of x ,x , ε}

with xb replaced with b, xc with c , and xd with d . It is easy to see that there is a TWAPA
Aproper that accepts a (Γε ∪ ΓN)-labeled tree if and only if it is proper.

From now on, let t0 and t1 be �xed. We construct the TWAPA At0,t1 as the intersection
of Aproper and TWAPAs A1, . . . ,A6 where each Ai accepts a proper input tree (T ,L) if
and only if the tuple (A, a,b, c,d) encoded by (T ,L) satis�es Condition (i) from De�ni-
tion 3.13. We make sure that all Ai can be constructed in exponential time and have only
polynomially many states in the size of Q .
Derivation of concept names. Before describing any of the Ai in detail, we describe
one capability of TWAPAs that most of the Ai will make use of, namely to check whether
a certain concept name is derived at a certain individual. We thus construct a TWAPA
Aderive with states Sderive =

{dA | A ∈ CN} ∪ {daA | A ∈ CN ∧ a ∈ Ccore} ∪ {dr | r ∈ ROL} ∪ {da | a ∈ Ccore}

such that

• ifAderive is started on a proper input tree encoding (A, a,b, c,d) from a con�guration
(a,dA), then it accepts if and only if T ,A |= A(a);

• ifAderive is started on a proper input tree encoding (A, a,b, c,d) from a con�guration
(daA, ε), then it accepts if and only if T ,A |= A(a).

By Lemma 2.4, T ,A |= A(a) if and only if there is a derivation tree for A(a). We give
the straightforward construction of Aderive, that checks for the existence of a derivation
tree of A(a). For brevity, let ` = |T | + |q |. Let σ ∈ ΓN not contain an element of Ccore

66

3.6 Decidability and Complexity

and let r be the unique role name in σ . If A ∈ σ or > v A ∈ T , we set δ (dA,σ) = true.
Otherwise, set

δ (dA,σ) =
(∨
T |=A1u...uAnvA

n∧
i=1
〈0〉dAi

)
∨

(∨
∃s .BvA∈T

∨̀
i=1
〈i〉(dB ∧ ds)

)
∨

(∨
∃r−.BvA

〈−1〉dB
)

Now let σ ∈ ΓN contain a ∈ Ccore and let again r be the unique role name in σ . If A ∈ σ
or > v A ∈ T , we set δ (dA,σ) = true. Otherwise, set

δ (dA,σ) =
(∨
T |=A1u...uAnvA

n∧
i=1
〈0〉dAi

)
∨

(∨
∃s .BvA∈T

∨̀
i=1
〈i〉(dB ∧ ds)

)
∨

(∨
∃r−.BvA

〈−1〉daB
)

Next, let σ = (B, a) ∈ Γε . If A(a) ∈ B or > v A ∈ T , we set δ (daA,σ) = true. Otherwise,
set

δ (daA,σ) =
(∨
T |=A1u...uAnvA

n∧
i=1
〈0〉daAi

)
∨

(∨
∃s .BvA∈T

∨̀
i=1
〈i〉(dB ∧ ds ∧ da)

)
∨

(∨
∃s .BvA,s(a,b)∈B

〈0〉dbB
)
∨

(∨
∃s−.BvA,s(b,a)∈B

〈0〉dbB
)

Finally, let σ ∈ ΓN and a ∈ Ccore. Set δ (da,σ) = true if a ∈ σ and δ (da,σ) = false if
a < σ .
Construction of A1. This TWAPA checks whether A |= Q(a). Since by Condition 5
of the ability to simulate psa, every homomorphism from q to UA,T is core close, we
only need to check whether A |= Q(a) via a core close homomorphism. The existence of
such a homomorphism, in turn, depends only on the core of A and on which concept
names are derived at core individuals. If, in fact, h is a core close homomorphism from q
toUA,T , then h hits at least one core individual or an element in an anonymous subtree
below a core individual. Of course, h might also hit individuals and anonymous elements
outside the core. However, outside the coreUA,T is tree-shaped. Take any z ∈ var(q)
such that h(z) lies outside of the core. Then there is a unique a ∈ Ccore such that h(z) lies
in a tree below a. Since q is connected, there is an atom r (x ,y) ∈ q such that h(x) = a,
h(y) lies in the tree below a, and z ∈ reach(x ,y). But then Cq contains q |reach(x ,y) viewed
as an EL-concept C , T |= C v AC , and AC(a) ∈ UA,T . Thus, the concept names AC

derived at core individuals completely represent the restriction of h to the variables in q
that are mapped to outside the core.

Let A be a pseudo tree-shaped Σ-ABox with core B, ind(B) ⊆ Ccore, and a a tuple
from Ccore. If A |= Q(a), then the set {A(a) | a ∈ Ccore and a ∈ AUA,T } is a completion
for (B, a). Let Comp(B, a) be the set of all completions for (B, a). Using the arguments
above, one can show the following.

67

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

Lemma 3.32. Let A be a pseudo tree-shaped Σ-ABox with core B, ind(B) ⊆ Ccore, and a
a tuple from Ccore. Then, A |= Q(a) if and only if there is an M ∈ Comp(B, a) such that
A |= A(a) for all A(a) ∈ M .

Each set Comp(B, a) has at most exponentially many completions and can be computed
in exponential time. Moreover, there are only exponentially many choices for (B, a). The
strategy of A1 = (Sderive ∪ {s0}, Γε ∪ ΓN ,δ , s0, c) is as follows: Guess a match completion
set M for Q regarding (B, a), where (B, a) ∈ Γε is the label of the root of the input tree
and then check whether all A(a) ∈ M can be derived inA. The parity condition c assigns
1 to every state, so precisely the �nite runs are accepting. The transition function δ for
states in Sderive is de�ned as before, and additionally we set

δ (s0, (B, a)) =
∨

M∈Comp(B,a)Q

∧
A(a)∈M

daA.

Construction of A2. This TWAPA checks that t1 = tpA,T (b) = tpA,T (c) = tpA,T (d).
Using Aderive and its dualization, this is straightforward: send a copy to the nodes in the
input tree that are marked with b, c , and d , and then use Aderive to make sure that all
A ∈ t1 are derived there and the dual of Aderive to make sure that no A < t1 is derived
there.
Construction of A3. This TWAPA checks that Ab ∪ t0(b),T 6|= q(a). It is constructed
in the same way as A1, but using Ab ∪ t0(b) instead of A for de�ning completions and
modifying Aderive to that it assumes all concept names from t0 to be true at the node of
the input tree marked with b and disregards the subtree below. Also, we complement the
constructed TWAPA at the end.
Construction of A4. Similar to A3.
Construction of A5. This TWAPA checks that every homomorphism from q toUA,T is
core close and this condition is only required if q is Boolean. The condition is always true
when q is not treei�able, since every homomorphism from a query that is not treei�able
intoUA,T hits the core. Thus, ifQ is not Boolean or not treei�able, we de�ne A5 to be the
TWAPA that accepts every input. If Q is Boolean and treei�able, we de�ne a TWAPA A′5
that checks the negation of Condition 5 and then de�ne A5 to be the complement of A′5.
LetCq be the EL-concept that corresponds to qtree. The TWAPA A′5 has to check whether
Cq is derived at any non-core individual a or at an anonymous individual below a non-
core individual. To check whether Cq gets derived at an anonymous individual, de�ne
MQ be the set of all T -types t with t(a),T |= ∃x Cq(x). The set MQ can be computed in
exponential time. Now A′5 guesses a non-core individual a and t ∈ MQ and checks that
tpA,T (a) = t using Aderive and its dualization.
Construction of A6. Condition 6 is only required when q is Boolean. If q is Boolean, this
TWAPA checks that b, c and d all have the same ancestor path up to length |q |. The idea
is to guess an ancestor path r1r2 . . . r |q | up front and then verify that b, c and d all have
this ancestor path. To achieve this using only polynomially many states, the guessed path

68

3.7 Conclusion

is not stored in a single state. Instead, we use |q | copies of the automaton, the i-th copy
guessing states of the form si,r which stands for ri = r . This copy then further spawns
into three copies that visit the nodes labeled b, c , and d , travels upwards from there n − i
steps, and checks that the node label there contains r .

3.7 Conclusion
We have established a complexity trichotomy between AC0, NL, and PTime for OMQs
from (EL,CQ). We have also proved that linear Datalog rewritability coincides with
OMQ evaluation in NL and that deciding all these (and related) properties is ExpTime
complete with the lower bounds applying already to (EL,AQ).

There are several natural directions in which our results can be generalized. One is to
transitions from CQs to unions of CQs (UCQs), that is, to consider the OMQ language
(EL,UCQ). We conjecture that this generalization is not di�cult and can be achieved by
replacing CQs with UCQs in all of our proofs; where we work with connected CQs, one
would then work with UCQs in which every CQ is connected. In fact, we only refrained
from doing so since it makes all proofs more technical and distracts from the main ideas.

An important direction for future work is to extend our analysis to more expressive
ontology languages. A natural choice would be ELI, that is, to add inverse roles. Even
the case of (ELI,AQ) appears to be challenging. In the �nal section of this chapter, we
elaborate on this extension.

3.8 Towards a Classi�cation for (ELI,AQ)
When trying to generalize the results from (EL,AQ) to (ELI,AQ), one notices several
di�culties and characterizations from the EL case fail to hold in the ELI case. In fact,
it can be seen that a complexity classi�cation of (ELI,AQ) is equivalent to a complexity
classi�cation of all CSPs that have tree obstructions. In this section we point out these
di�culties, give counter examples to theorems from this chapter when EL is replaced
with ELI, and formulate a conjecture on the complexity classi�cation in (ELI,AQ).

LogSpace and Symmetric Datalog
First, one notices that (ELI,AQ) contains OMQs that are complete for LogSpace. The
following OMQ is easily seen to be equivalent (under FO reductions) to the reachability
problem in undirected graphs (ureach), which is known to be LogSpace complete [Rei04].

Example 3.33. Let Q = (T , Σ,A(x)) with T = {∃r .A v A, ∃r−.A v A} and Σ = {r ,A}.
Intuitively, this OMQ asks for an undirected r -path to an individual labeled with A. The
reductions between eval(Q) and ureach are straightforward: An undirected graph G =
(V ,E)with start node s and target node t is encoded as the ABox {r (a,b) | {a,b} ∈ E}∪A(s)
and we ask whetherA |= Q(t). Conversely, a pair (A, t) of a Σ-ABoxA and an individual

69

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

t ∈ ind(A) is translated into the instance G = (V ,E, s, t) with V = ind(A) ∪ {s} and
E = {{a,b} | r (a,b) ∈ A} ∪ {{s,a} | A(a) ∈ A}.

Using a variation of the techniques from Section 3.2 and the technique of transfer
sequences from [Bie+16], it should not be too hard to establish a dichotomy between AC0

and LogSpace in (ELI,AQ). This dichotomy is not surprising, since it also holds for
CSPs, as established in [LT09].

Furthermore, there is another natural fragment of Datalog, even of linear Datalog,
called symmetric Datalog, introduced in [ELT07], that we conjecture to coincide with
LogSpace data complexity in the same way that linear Datalog corresponds to NL data
complexity (which we conjecture to hold still for (ELI,AQ)). A linear Datalog program
is called symmetric if for every rule

P1(x1) ← P2(x2) ∧ R1(y1) ∧ . . . ∧ Rn(yn)

with IDBs P1 and P2, the program also contains the rule

P2(x2) ← P1(x1) ∧ R1(y1) ∧ . . . ∧ Rn(yn) .

It is proved in [ELT07] and easy to see that evaluating a symmetric Datalog program is
in LogSpace regarding data complexity, by reducing the problem to ureach. There are
indications that for CSPs, the opposite might hold, that is, that all CSPs in LogSpace can
be expressed in symmetric Datalog [ELT08].

The intuition says that OMQs asking for undirected reachability, like the OMQ in
Example 3.33, are LogSpace-complete, while OMQs that ask for directed reachability are
NL-complete. But what if we try to construct OMQs that have features of both directed
and undirected reachability? Can we construct an OMQ with data complexity strictly
inbetween LogSpace and NL? Consider the following example, which will be the running
example for the rest of this section.

Example 3.34. Let Q = (T , Σ,B(x)) with Σ = {r , s, t ,A} and

T = {∃t .A v A,∃t−.A v A,

∃s .A v B,

∃r .B v B,∃r−.B v B} .

Intuitively, this OMQ asks for an undirected r -path to an individual which has an outgoing
s-edge to an individual that has an undirected t-path to an individual labeled A. While the
t-path and the r -path are undirected, the s-edge has to be directed. Even though mixing
features of directed and undirected reachability, this OMQ is both in LogSpace and also
rewritable into symmetric Datalog.

It is relatively easy to see that eval(Q) is in LogSpace. To check whetherA |= Q(a), a
LogSpace algorithm can iterate over all s-edges and then check for an undirected r -path
from a to the start of the s-edge and then check for an undirected t-path from the end
of the s-edge to an individual labeled A. However, it is not so easy to see how Q can

70

3.8 Towards a Classi�cation for (ELI,AQ)

a

c

e

d

b

f

A

r

s s

r

s
t

Figure 3.5: The symmetric Datalog program Π derives not only goal(b), but also goal(a),
whereas A 6|= Q(a). The reason is that after deriving PB(d), the program does
not ‘remember’ that the IDB fact used to derive PB(d) was PA(f) and not PA(e).
Thus, the rule (∗) can be used to derive PA(e), and then we obtain PB(c), PB(a)
and goal(a).

be rewritten into a symmetric Datalog program. The naive way of translating T into a
linear Datalog program and then closing the rules under symmetry does not work. This
would yield the following program Π:

PA(x) ← A(x)
PA(x) ← PA(y) ∧ t(x ,y)
PA(y) ← PA(x) ∧ t(x ,y)
PB(x) ← PA(y) ∧ s(x ,y)
PA(y) ← PB(x) ∧ s(x ,y) (∗)

PB(x) ← PB(y) ∧ r (x ,y)
PB(y) ← PB(x) ∧ r (x ,y)

goal(x) ← PB(x)

The rule labeled with (∗) is the rule added to close the program under symmetry. But
precisely this rule causes problems, as seen in Figure 3.5.

The question remains whether Q is rewritable into symmetric Datalog. In fact, we can
�nd a simple strati�ed symmetric Datalog program. A linear Datalog program Π is called
strati�ed symmetric, if there is a functiond that assigns a natural number, called the degree,
to every IDB predicate such that for every rule P1(x1) ← P2(x2) ∧ R1(y1) ∧ . . . ∧ Rn(yn)
from Π with IDB predicates P1 and P2, either

• d(P1) = d(P2) and the symmetric rule P2(x2) ← P1(x1) ∧ R1(y1) ∧ . . . ∧ Rn(yn) is
also in Π or

• d(P1) > d(P2).

One can then prove the following:

Lemma 3.35. For every strati�ed symmetric Datalog program, there exists an equivalent
symmetric Datalog program.

71

3 A complete classi�cation of complexity and rewritability for (EL,CQ)

In fact, the rule (∗) can be removed from the program Π above and de�ning the degrees
d(PA) = 1, d(PB) = 2 and d(goal) = 3. Using Lemma 3.35, one can settle the status of our
example OMQ Q to be rewritable into symmetric Datalog.

We do not give a full proof of Lemma 3.35 here, but just an idea: Let Π be a strati�ed
symmetric Datalog program. By some simple syntactic manipulations, we can transform
Π into a program of the following form: The degrees of IDBs in Π are {1, . . . ,n} for some
n ∈ N. The goal predicate is the only IDB of degree n. There are no rules with the goal
predicate in the body. All non-recursive rules have an IDB of degree 1 in the head. If
P1(x) ← P2(y) ∧ . . . is a recursive rule and d(P1) > d(P2), then d(P1) = d(P2) + 1. Let Tj
be the set of all IDBs from Π with degree j. The set of IDBs of the symmetric Datalog
program Π′ that should be equivalent to Π is (

∏n
j=1Tj) × {1, . . . ,n} ∪ {goal}. The arity

of an IDB (P1, P2, . . . , Pn, j) is the sum of the arities of P1, P2, . . . , Pn. Intuitively, such an
IDB remembers not just one IDB fact from Π, but also a part of the history how this IDB
fact was derived in Π: Whenever we go from an IDB fact of degree i to an IDB fact of
degree i + 1, we remember the fact of degree i and the integer in the last component
remembers which IDB is currently active. Using these IDBs, it is possible to construct a
program that deals with the problem shown in Figure 3.5.

Besides the OMQ from Example 3.34, we also considered more complicated examples.
The analysis of these examples showed that every of these OMQs was either rewritable
into (strati�ed) symmetric Datalog or NL-hard. We thus conjecture that (ELI,AQ) has
a dichotomy between LogSpace and NL and that symmetric Datalog coincides with
LogSpace complexity. The same is actually conjectured for CSPs, but it seems di�cult to
approach the dichotomy between LogSpace and NL without �rst solving the NL versus
PTime case. In this context, it is interesting to point out that for CSPs, the following
conditional result is known [Kaz15]: if rewritability into linear Datalog coincides with
NL, then rewritability into symmetric Datalog coincides with LogSpace.

NL versus PTime
Lifting our dichotomy between NL and PTime to (ELI,AQ) is also non-trivial. In fact,
we give below an example which shows that unbounded branching no longer coincides
with bounded pathwidth and thus our proof strategy, which uses unbounded branching
in central places, has to be revised.

Example 3.36. Consider the OMQQ = (T , Σ,A(x)) ∈ (ELI,AQ) with Σ = {r , s,B,E,L}
and

T = {B v M1,∃s .M1 v M1,∃rM1 v M′1,∃s−M′1 v M2,

∃r−M2 v M2,M2 u L v M1,M2 u E v A,∃s .A v A} .

Q is unboundedly branching, as witnessed by the ABox in Figure 3.8 and generalizations
thereof to arbitrary depth. A derivation of the query starts at B, the beginning marker, then
it uses markersM1 andM2 to visit all the leafs from left to right in sequence, until it reaches
E, the end marker, to derive the queried concept name A.

72

3.8 Towards a Classi�cation for (ELI,AQ)

B

r

L

s

r

L

r

L

s

s

r

L

r

L

s

r

L

r

E

s

s

s

Figure 3.6: An ABoxA withA |= Q(a), where a is the root ofA and Q is the OMQ from
Example 3.36.

At the same time, Q is rewritable into linear Datalog and thus eval(Q) ∈ NL, showing
that unbounded branching and PTime-hardness no longer coincide.

This example shows that unbounded branching alone is not su�cient for PTime-
hardness and one has to �nd a di�erent approach to go from unbounded pathwidth to
PTime-hardness. Another task is to �nd a suitable ELI version of the ability to simulate
psa, because it is essential in the proof of Lemma 3.16 that we deal with the directed
derivation of EL.

Conjecture
Based on our observations, we conjecture that every OMQ from (ELI,AQ) is complete
for either AC0, LogSpace, NL, or PTime. We also believe that LogSpace-completeness
coincides with rewritability into symmetric Datalog, and that NL-completeness still
coincides with rewritability into linear Datalog.

73

4 Query-by-Example for Expressive Horn
Description Logic Ontologies

In this chapter, we introduce the query-by-example (QBE) paradigm for query answering
in the presence of ontologies. Intuitively, QBE permits non-expert users to explore and
understand knowledge bases by providing examples of data from the ABox they want
and examples they do not want, which the system then generalizes into a query that,
evaluated as an OMQ, returns all positive but none of the negative examples. We focus
on knowledge bases with ontologies formulated in ELI and Horn-ALC and (unions
of) conjunctive queries.

In recent times, the success of OBDA has led not only to the development of a vast
amount of foundational results, but also of optimized systems, so-called ontology-enriched
systems (OES) which are used in real-life scenarios, see e.g. [RKZ13; Kha+15; Cal+16;
Hov+17] and references therein. For instance, the OES Ontop is currently being used to
access exploration data generated by the petroleum company Equinor ASA (formerly
Statoil) [Kha+15]. In these OES, users access the data through queries usually formulated
in powerful query languages such as conjunctive or path queries. Unfortunately, in real
life, casual non-expert users are often not able to specify queries using these formalisms
(e.g., Statoil geologists [Hov+17]), clearly hampering the usability of OES.

The same problem even occurs in the context of traditional databases (without on-
tology), when a non-expert user tries to become familiar with a big database using a
complicated schema. In this context, an alternative approach for querying was proposed
to alleviate this problem: query-by-example (QBE), where users give positive and negative
examples from the database which the system should reverse-engineer into a query con-
forming with the examples [Zlo75]. When working with big data, this problem becomes
even more relevant, since working with a number of di�erent data sources using di�erent
schemas makes it more di�cult to formulate the correct query [Bon+14; Mot+17]. Thus,
the QBE approach has lately gained a lot of attention; indeed, even expert users might
�nd it useful to explore the data using this paradigm as follows: They provide positive
and negative examples of data, the system generalizes these into a query or reports that
there is no such query. If there such a query exists, it might be the case that it is still
not equivalent to the intended query. The user then adds more positive or negative
examples, until the intended query is obtained. As a result, QBE has been investigated
for di�erent query languages and data representations, e.g., conjunctive queries over
relational data [TCP14; CD15; BCS16; BR17], SPARQL queries over RDF data [ADK16],
and path queries over graph databases [BCL15].

The query-by-example problem in the presence of ontologies is closely related to the
area of learning DL concepts from examples, [LH10; Lis12; Tra+14; Fan+18; Fun+19;

75

4 Query-by-Example for Expressive Horn Description Logic Ontologies

Fun19] and to the problem of �nding least common subsumers [BST07; Col+16]. A related
question is whether two given knowledge bases or two given TBoxes can be distinguished
by an OMQ. This question has been studied for ALC ontologies [Bot+19]. A di�erent
learning setting, where a learner can pose queries to an omniscient teacher with the goal
to learn a regular language or certain kinds of formulas in propositional logic [Ang87] or,
in the �eld of description logics, an ontology [Kon+17] has been considered as well.

The goal of this chapter is two-fold. First, we aim at initiating research on the QBE
approach to querying in the context of ontology-enriched systems. We mainly focus
on establishing foundational results for QBE over OES with the ontology formulated in
Horn DLs. Formally, we introduce and study the following problem qbe(L,Q) for an
ontology language L and some query language Q: given an L-KB and sets of positive
and negative examples of query answers, decide whether there is a query q ∈ Q such
that all positive examples are certain answers to q over K , and none of the negative is.
As query language Q, we consider CQs and UCQs. We also consider the case where
a signature Σ is given and the query has to be formulated over Σ, which is a common
feature in many OES. As a simple example, consider the knowledge base consisting of

T = {Human v Vertebrate,Vertebrate v ∃hasPart.Spine},

A = {Human(ax), hasPart(an, sp), Spine(sp),Bug(buд)}.

If the positive examples are ax ,an and the negative example is buд, then

q(x) ← hasPart(x ,y) ∧ Spine(y)

is a witnessing CQ. However, there is no witnessing CQ for the positive examples an,buд
if ax is to be avoided.

The second aim is to continue bridging the gap between DL and machine learning
research. Indeed, QBE over knowledge bases can be viewed as an instantiation of the
inductive logic programming (ILP) framework [NW97; Kie02], where background knowl-
edge rules should be learned by observing the data.

The main contributions of this chapter are model-theoretic characterizations, al-
gorithms, and complexity bounds for qbe(L,Q) for L ∈ {ELI,Horn-ALC} and
Q ∈ {CQ,UCQ}. In Section 4.2, we start with providing model-theoretic characteri-
zations for qbe(Horn-ALCI,Q) for Q ∈ {CQ,UCQ} by lifting characterizations known
from the relational database setting [CD15] by replacing the database with the universal
model of the knowledge base. Unfortunately, the characterizations do not give immediate
rise to a decision procedure because the universal model is typically in�nite. In Section 4.3,
we exploit the fact that roles in the anonymous parts of universal models for Horn-ALC
are always directed into the same direction and prove coNExpTime-completeness for
Horn-ALC. We then proceed by proving the surprising result that adding inverse roles
leads to undecidability, that is qbe(ELI,CQ) and qbe(Horn-ALCI,CQ) are undecid-
able.

We obtain the same results for the variant qdef of qbe, the problem to decide whether
some q ∈ Q returns precisely the positive examples (no negative examples are given).

76

4.1 Problem De�nition and Basic Observations

In Section 4.4, we investigate the size of witness queries for the decidable case, Horn-
ALC. This is of course vital for practical purposes since at the end the user is interested
in obtaining a (witness) query to further explore the data. In particular we show that if a
witness query exists, then there is always a witness query of at most double exponential
size, and that there are cases where this size is unavoidable. This result is in contrast to
the database case, where witness queries only become exponentially large in the worst
case.

In Section 4.5, we discuss related work and lay out directions for future work.

4.1 Problem De�nition and Basic Observations
We study the following decision problem Query-by-Example for some ontology language
L and query language Q:

qbe(L,Q)
Input: A tuple (T ,A, S+, S−, Σ), where (T ,A) is an L-KB,

S+ and S− are n-ary relations over ind(A) for some n ≥ 1
and Σ a signature

Question: Is there a query q(x) ∈ QΣ such that
• T ,A |= q(a) for all a ∈ S+, and
• T ,A 6|= q(b), for all b ∈ S−?

We call S+ and S− the positive examples and the negative examples, respectively. A closely
related problem is the query de�nability problem qdef(L,Q), which takes as input a tuple
(T ,A, S+, Σ) and asks whether there is a query q(x) ∈ QΣ such T ,A |= q(a) if and only
if a ∈ S+. If a tuple (T ,A, S+, S−, Σ) is a yes-instance of qbe(L,Q), then we call the query
q(x) a witness. We further de�ne the variant qbef (L,Q) (f standing for full signature)
as the problem of deciding for a given tuple (T ,A, S+, S−) whether (T ,A, S+, S−, Σ∗) ∈
qbe(L,Q), where Σ∗ is the set of all concept and role names occurring in (T ,A). The
problem qdeff (L,Q) receives only a triple (T ,A, S+) and is de�ned analogously. We
always assumeT to be in normal form and it is easy to verify that ifT ′ is the normalization
of T , then (T ,A, S+, S−, Σ) ∈ qbe(L,Q) if and only if (T ′,A, S+, S−, Σ) ∈ qbe(L,Q),
for Q ∈ {CQ,UCQ} and L ∈ {ELI,Horn-ALC,Horn-ALCI} and the same holds for
the variant qdef and the variants with full signature. Besides the decision problems, we
will also be interested in the size of witness queries (if they exist). Table 4.1 summarizes
the results on the decision problems.

From the practical application point of view, the CQ case is arguably more interesting
than the UCQ case, since a CQ separating the positive from the negative examples is
a generalization of the positive examples, it points out a property that all the positive
examples have in common. A witness UCQ, however, can use di�erent disjuncts for the
di�erent positive examples, which then do not need to have anything in common. This
observation coincides with the picture seen in Table 4.1, that the UCQ case is easier in
general. This is illustrated in the following example.

77

4 Query-by-Example for Expressive Horn Description Logic Ontologies

L → ELI and Horn-ALCI Horn-ALC

qbe(L,CQ) undecidable coNExpTime-comp.

qbef (L,CQ) undecidable coNExpTime-comp.

qbe(L,UCQ) 2-ExpTime-comp. [GJS18b] ExpTime-comp.

qbef (L,UCQ) ExpTime-comp. [GJS18b] ExpTime-comp.

Table 4.1: The table gives an overview over the complexity results on qbe obtained in
this chapter. The complexity of qdef is the same as the complexity of qbe in
all these cases.

Example 4.1. Consider the example knowledge base from the introduction with

T = {AlzheimerDisease v DementiaDisorder,

DementiaDisorder v ∃ hasFindingSite.BrainPart,

BrainConcussion v ∃ hasFindingSite.BrainPart}

A = {hasFinding(patient12, finding345),

hasFinding(patient45, finding257),

AlzheimerDisease(finding345),

BrainConcussion(finding257)}

and let S+ = {patient12, patient45} with no negative examples. A witness UCQ is:

q(x) ← hasFinding(x ,y)∧AlzheimerDisease(y) ∨ hasFinding(x ,y)∧BrainConcussion(y)

Arguably more interesting, however, is the following CQ, which reveals something that both
patients have in common:

q(x) ← hasFinding(x ,y) ∧ hasFindingSite(y, z) ∧ BrainPart(z)

We deal with two special cases of the qbe problem up front: We always assume that the
input knowledge base (T ,A) is consistent and that S+ is not empty. Both conditions can
be e�ectively checked and if one of them isn’t satis�ed the reasoning problems become
easier. We justify these assumptions in detail.
KB Consistency. We consider �rst the case where (T ,A) happens to be inconsistent.
In that case, we have T ,A |= q(a) for every n-ary CQ q(x) and every a ∈ ind(A)n, thus
there is a witness if and only if S− = ∅ (and then, every n-ary CQ is a witness). Hence,
one could check (T ,A) for inconsistency �rst, which can be done in ExpTime if T is
formulated in Horn-ALCI [KRH13].
No Positive Examples. The second case we discuss is S+ = ∅, that is, the question
whether there is a QΣ-query q(x) with n answer variables such that (T ,A) 6|= q(b) for all

78

4.1 Problem De�nition and Basic Observations

b ∈ S−. A natural candidate for such a query is

q(x , . . . ,x) ←
∧
A∈Σ

A(x) ∧
∧
r∈Σ

r (x ,x) .

It is easy to see that q(x , . . . ,x) is the most restrictive query in the sense that if T ,A |=
q(a) then T ,A |= q′(a) for every n-ary query q′(x), so the instance has a witness if and
only if q(x) is such a witness. Hence, an algorithm for deciding qbe in this special case
has to check whether (T ,A) 6|= q(b) for all b ∈ S−. For Horn-ALCI TBoxes, this can
be done in ExpTime [KRH13].
Variant with constants. We remark that allowing individual names in witness queries
might be desirable in some applications, where the user knows some ‘special’ individuals
which are relevant for her query. Formally this means that a CQ is allowed to contain
individual names instead of variables both in the body and in the head. A homomorphism
h from a CQ into a model is only valid if h(a) = a for all individual names a that appear
in the CQ.

Example 4.2. Let T = ∅, A = {r (a,b), r (c,d)}, S− = {(a,b)}, S− = {(c,d)} and Σ =
{A, r }. Without using individual names in the query, the pairs (a,b) and (c,d) are obviously
indistinguishable, so this is a no-instance of qbe. However, if we allow the individual name
a, then q(a,y) ← r (a,y) is a witness. If we allow the individual name b, then q(x ,b) ←
r (x ,b) is a witness.

Let qbec(L,Q) be the generalization of qbe(L,Q) that takes another input I ⊆ ind(A)
and allows the witness query to use individual names from I . We then have:

Lemma 4.3. qbec(L,Q) and qdefc(L,Q) reduce in polynomial time to qbe(L,Q) and
qdef(L,Q), respectively, for Q ∈ {CQ,UCQ}, for any L.

Proof. We prove it for Q = CQ, for UCQs it is similar. Let (T ,A, S+, S−, Σ, I) be an
instance of qbec(L,Q). De�ne Σ′ = Σ ∪ {Xa | a ∈ I }, where all Xa are fresh concept
names, and A′ = A ∪ {Xa(a) | a ∈ I }. It is routine to verify correctness of the reduction:
Claim. (T ,A, S+, S−, Σ, I) ∈ qbec(L,Q) if and only if (T ,A′, S+, S−, Σ′) ∈ qbe(L,Q).
For the ‘only if’ direction, let q(x) be a witness for (T ,A, S+, S−, Σ, I) ∈ qbec(L,Q).
Obtain a query q′ ∈ LΣ′ from q as follows: For every a ∈ I , replace all occurrences of a
in body and head with a fresh variable xa and add the conjunct Xa(xa) to the body.

It should be clear that T ,A′ |= q′(a) for all a ∈ S+. Assume now that T ,A′ |= q′(a)
for some a ∈ S−, and let I be an arbitrary model of (T ,A). Obviously, the extension I′
of I interpreting every fresh concept Xa with XI

′

a = {a} is a model of (T ,A′). Let h be
a homomorphism from q′(a) to I′. By construction, h is also a homomorphism from q(a)
into I. Hence, we obtain T ,A |= q(a), a contradiction.

For the ‘if’ direction, let q(x) be a witness for (T ,A′, S+, S−, Σ′) ∈ qbe(L,Q). Note
that it cannot be the case that there is a variable z such that bothXa(z) andXb(z) for a , b
appear in the body of q, since this implies S+ = ∅, contradicting our assumption about S+.
Obtain a query q′ from q as follows: For every variable z such that Xa(z) appears in the
body of q, replace all occurrences of z in the body or the head of q with a. It is routine to
verify that q′(x) witnesses that (T ,A, S+, S−, Σ, I) ∈ qbec(L).

79

4 Query-by-Example for Expressive Horn Description Logic Ontologies

4.2 Model-Theoretic Characterizations
In this section, we provide model-theoretic characterizations of qbe and qdef, setting the
foundations for the development of the decision procedures later on. The characterization
is based on the notion of direct products. Let I1, . . . ,In be interpretations. The direct
product

∏n
i=1 Ii is the interpretation de�ned by

∆
∏n

i=1 Ii = ∆I1 × . . . × ∆In ,

A
∏n

i=1 Ii = AI1 × . . . ×AIn ,

r
∏n

i=1 Ii = {((a1, . . . ,an), (b1, . . . ,bn)) | (ai ,bi) ∈ r
Ii for all i ∈ {1, . . . ,n}},

for all concept names A and role names r . For interpretations with a distinguished tuple
(I1, a1), . . . , (In, an), where all ai have length k , the direct product is again an interpreta-
tion with a distinguished tuple of length k , de�ned by

∏n
i=1(Ii , ai) = (

∏n
i=1 Ii ,

∏n
i=1 ai),

where
∏n

i=1 ai = ((a
1
1, . . . ,a

1
n), . . . , (a

k
1, . . . ,a

k
n)), assuming ai = (a1i , . . . ,a

k
i). For a direct

product of only two interpretations (with distinguished tuple), we write (I1, a1) ⊗ (I2, a2)
instead of

∏2
i=1(Ii , ai). Given Σ, a product

∏n
i=1(Ii , ai) is called Σ-safe if every element

of the tuple
∏n

i=1 ai appears in the extension of some concept or role name from Σ in∏n
i=1(Ii , ai); again, we drop Σ in case it is trivial. Note that this de�nition of safety is

consistent with the safety of CQs, de�ned in Section 2.4, when the the CQ is seen as an
interpretation with the tuple of answer variables being the distinguished tuple.

Let us recall the characterization for qbe with CQs over relational databases [CD15;
BR17]. For the sake of simplicity, we state it here in our terminology, that is, consider
ABoxes instead of databases. Given an ABoxA and sets S+, S− of examples overA, there
is a CQ distinguishing S+ and S− if and only if

1.
∏

a∈S+(IA, a) is safe, and

2.
∏

a∈S+(IA, a)9 (IA, b) for every b ∈ S−,

where IA is A viewed as an interpretation. The intuition behind this characterization is
as follows: the constructed product can be viewed as CQ with answer variables

∏
a∈S+ a;

in fact, this CQ is the least general generalization, a well known concept in machine
learning [Plo70], of the positive examples. Condition 1 ensures that this CQ is safe and
Condition 2 ensures that no negative examples are returned.

We argue, however, that this simple characterization does not apply to the case with
ontologies. In fact, the example from the introduction to this chapter does not satisfy
Condition 1, but there exists a witness query. We lift the characterization to take into
account non-empty TBoxes using universal models, introduced in Section 2.6. We start
with the characterization for Q = CQ.

Theorem 4.4. For every Horn-ALCI-KB (T ,A), all n-ary relations S+ and S− over
ind(A), and signature Σ, we have:

• (T ,A, S+, S−, Σ) ∈ qbe(Horn-ALCI,CQ) if and only if

80

4.2 Model-Theoretic Characterizations

1.
∏

a∈S+(UA,T , a) is Σ-safe, and

2.
∏

a∈S+(UA,T , a)9Σ (UA,T , b) for all b ∈ S−.
• (T ,A, S+, Σ) ∈ qdef(Horn-ALCI,CQ) if and only if

1.
∏

a∈S+(UA,T , a) is Σ-safe, and

2.
∏

a∈S+(UA,T , a)9Σ (UA,T , b) for all b ∈ ind(A)n \ S+.

Proof. The characterization for qdef(Horn-ALCI,CQ) follows immediately from the
characterization for qbe(Horn-ALCI,CQ), so we only need to prove the characteriza-
tion for qbe(Horn-ALCI,CQ).
(⇒) Let (T ,A, S+, S−, Σ) ∈ qbe(Horn-ALCI,CQ) with S+ = {a1, . . . , am} and let

q(x) be a Σ-CQ witnessing this. By Lemma 2.1, for every i , there is a homomorphism
hi from q(x) intoUA,T with hi(x) = ai . De�ne h by taking h(z) = (h1(z), . . . ,hm(z)), for
every variable z in q(x). By construction, h is a homomorphism from q(x) to

∏
a∈S+UA,T

andh(x) = a1⊗ . . .⊗am, which is thus Σ-safe. Assume that Condition 2 does not hold, that
is, there is a b ∈ S− such that there is a homomorphismд :

∏
a∈S+(UA,T , a) →Σ (UA,T , b).

Then the composition h′ = д ◦ h is a homomorphism from q(x) toUA,T with h′(x) = b.
Hence, T ,A |= q(b), a contradiction.
(⇐) For the other direction, let Conditions 1 and 2 be ful�lled. We show that there is a

witness for (T ,A, S+, S−, Σ) ∈ qbe(Horn-ALCI,CQ). Let (I, a∗) be the Σ-restriction
of

∏
a∈S+(UA,T , a), and let q(x) be (I, a∗) viewed as a (possibly in�nite) CQ; in particular,

a∗ becomes the tuple of answer variables x. By Condition 1, q(x) has the right number of
answer variables. Clearly, every a ∈ S+ is a certain answer to q(x), using the projection
mappings, and none of the b ∈ S− is a certain answer by Condition 2 and universality
ofUA,T . If q(x) is �nite, we are done. If q(x) is in�nite, we show that there is a �nite
subquery of q(x) which is a witness. Denote with qi(x), i ≥ 0, the restriction of q(x) to
variables that have distance at most i to the answer variables x in q(x). SinceUA,T has
�nite degree, so has

∏
a∈S+(UA,T , a) and also q(x). Thus, qi(x) is �nite for every i ≥ 1.

Since every qi is a restriction of q and since T ,A |= q(a) for all a ∈ S+, we also have
T ,A |= qi(a) for all a ∈ S+ and all i .

We show that one of the qi must be a witness. To obtain a contradiction, assume that qi
is not a witness for every i ≥ 1, that is, there are homomorphisms hi from qi(x) toUA,T
with hi(x) = bi for some bi ∈ S−. Since S− is �nite, there is some b ∈ S− such that b = bi
for in�nitely many i . Thus, there are homomorphisms hi , i ≥ 1, from qi(x) toUA,T with
hi(x) = b. We construct a sequence of homomorphisms (h′i)i≥1 such that for all j ≥ 1, we
have

(∗) for all k ∈ {1, . . . , j − 1}, h′
k
(z) = h′j(z) for all z ∈ var(qi).

Start with setting h′1 = h1, obviously satisfying (∗). To de�ne h′j , assume that h′
k

are
de�ned for all k ∈ {1, . . . , j − 1}. Let Vj = var(qj) \ var(qj−1), and de�ne, for all k ≥ j, дk
as the restriction of hk to Vj . By construction Vj is �nite. Moreover, asUA,T has �nite
outdegree, there are only �nitely many di�erent дk . Choose some д such that д = дk for
in�nitely many k ≥ j. Then obtain a new sequence of homomorphisms by dropping all
hk such that дk , д. Setting h′j = д ∪ h

′
j−1 �nishes the construction and satis�es (∗).

81

4 Query-by-Example for Expressive Horn Description Logic Ontologies

It remains to note that ĥ =
⋃

i≥0 h
′
i is a homomorphism from q(x) to UA,T with

ĥ(x) = b. Thus,
∏

a∈S+(UA,T , a) →Σ (UA,T , b), contradicting Condition 2.

Theorem 4.4 shows that the characterization is the same as in the database setting,
but with IA replaced byUA,T . Note thatUA,T is possibly in�nite, so the product is, in
contrast to the database case, not the witness. In fact, the proof for direction (⇐) merely
shows that there is a witness, but in a non-constructive way. Hence, Theorem 4.4 does
not give immediate bounds on the size of witness queries and does not immediately yield
a decision procedure.

In case of UCQs the additional expressive power leaves us with a simpler characteriza-
tion, the product in each second point is compensated for by the use of disjunction in the
query language and is thus not necessary anymore.

Theorem 4.5. For every Horn-ALCI-KB (T ,A), all n-ary relations S+ and S− over
ind(A), and signatures Σ, we have:

• (T ,A, S+, S−, Σ) ∈ qbe(Horn-ALCI,UCQ) if and only if

1. (UA,T , a) is Σ-safe and

2. (UA,T , a)9Σ (UA,T , b), for all a ∈ S+ and b ∈ S−.
• (T ,A, S+, Σ) ∈ qdef(Horn-ALCI,UCQ) if and only if

1. (UA,T , a) is Σ-safe and

2. (UA,T , a)9Σ (UA,T , b) for all a ∈ S+ and b ∈ ind(A)n \ S+.

Proof. (⇒) Let (T ,A, S+, S−, Σ) ∈ qbe(Horn-ALCI,UCQ), witnessed by a Σ-UCQ q(x).
By universality, for every a ∈ S+, there is a disjunct q′(x) of q(x) such that there is a
homomorphism h from q′(x) toUA,T with h(x) = a. Since q′ is a Σ-query, (UA,T , a) is
Σ-safe. Suppose now that there are a ∈ S+, b ∈ S− such that there is a Σ-homomorphism
д : (UA,T , a) →Σ (UA,T , b). As a ∈ S+ andUA,T is universal, there is a homomorphism
h from a disjunct q′(x) of q into UA,T with h(x) = a. Composing д and h yields a
homomorphism from q′(x) to (UA,T , b), thus T ,A |= q(b), a contradiction to b ∈ S−.
(⇐) For the other direction, let (UA,T , a) be Σ-safe and (UA,T , a) 9Σ (UA,T , b),

for all a ∈ S+ and b ∈ S−. We show that there is witness for (T ,A, S+, S−, Σ) ∈
qbe(Horn-ALCI,UCQ).

For the sake of simplicity, we abbreviateUA,T just with I. Further, we denote with
qI,a(x) the interpretation (I, a) viewed as (possibly in�nite) CQ with the answer variables
x being the distinguished tuple a. For a (U)CQ q, denote with qΣ(x) the restriction of
q(x) to symbols from Σ, and with qi(x) the UCQ obtained from q(x) by restricting every
disjunct to variables that have distance at most i to the answer variables of that disjunct.

We now de�ne a UCQ q where the disjuncts can possibly be of in�nite size: Let
q =

∨
a∈S+ q

Σ
I,a. By Σ-safety and universality of I, every a ∈ S+ is a certain answer to this

query and none of the b ∈ S− is a certain answer. Thus, if all disjuncts of q are �nite, then
q is the required witness. If q this is not the case, we show we can restrict every disjunct
to a �nite subset of to obtain a witness for (T ,A, S+, S−, Σ). Assume the opposite, that is,
qi(x) is not a witness for every i ≥ 1. To reach a contradiction, we show that there exist

82

4.3 Complexity of qbe and qdef

a ∈ S+, b ∈ S− with (I, a) →Σ (I, b), contradicting Condition 1. Clearly, for every such
qi(x) we still have T ,A |= qi(a) for all a ∈ S+. However, by our assumption, for every i ,
there is a bi ∈ S− such that T ,A |= qi(bi). Since S− is �nite and q(x) consists of �nitely
many disjuncts, there have to be a ∈ S+ and b ∈ S− such that, for in�nitely many i:

• b = bi , and
• the disjunct pi = qΣ,iI,a of qi corresponding to a, satis�es T ,A |= pi(bi).

We can then proceed as in the proof of Theorem 4.4 and construct a homomorphism
(I, a) →Σ (I, b).

4.3 Complexity of qbe and qdef
Based on the characterizations in Theorems 4.4 and 4.5, we now pinpoint the complexity
for the introduced decision problems. We start with observing that Σ-safety (in both
theorems) can be checked in exponential time by computing �rstUA,T up to depth 1,
computing the product (only in case of Theorem 4.4), and directly checking the condition.

Lemma 4.6. Given (T ,A, S+, S−, Σ) with T formulated in Horn-ALCI, it is ExpTime-
complete to decide whether

∏
a∈S+UA,T is Σ-safe.

Proof. It su�ces to compute
∏

a∈S+(UA,T , a) restricted to elements of
∏

a∈S+ a and all
neighbours of such elements. This can be done by computing the universal model of∏

a∈S+(UA,T , a) up to depth one, which can be done in ExpTime [KRH13].
For the lower bound, we reduce from the subsumption problem in ELI, which is

ExpTime-hard [BLB08]. Let A1,A2 ∈ NC be concept names and T an ELI-TBox. The
question is whether T |= A1 v A2. We construct an instance (T ,A, S+, S−, Σ), where T
is the same ELI-TBox, A = {A1(a)}, S+ = {a}, S− = ∅ and Σ = {A2}. Now it is clear
thatUA,T is Σ-safe if and only if T |= A1 v A2.

Checking the other conditions of Theorems 4.4 and 4.5 comes down to �nding an
algorithm for deciding the following for a given b ∈ S−:∏

a∈S+
(UA,T , a) →Σ (UA,T , b) (4.1)

An algorithm deciding (4.1) can also be used for the homomorphism checks in Theorem 4.5
by treating the elements a ∈ S+ individually. By Lemma 4.6, safety can be decided in
ExpTime, but as Table 4.1 shows, the complexity of qbe is usually higher than ExpTime, so
Table 4.1 shows the complexity of deciding (4.1), which varies for the di�erent variations
of the qbe problem.

If T is formulated in Horn-ALC, then
∏

a∈S+(UA,T , a) is a pseudo tree-shaped struc-
ture with core

∏
a∈S+ ind(A) and we can �nd coNExpTime or ExpTime algorithms for

deciding (4.1). For qbe(ELI,CQ) however, the problem becomes undecidable. Intu-
itively, this is due to the fact that the product of universal models with inverse roles can

83

4 Query-by-Example for Expressive Horn Description Logic Ontologies

from complex structures that are not pseudo tree-shaped any more. For the variations
qbe(Horn-ALCI,UCQ) and qbef (Horn-ALCI,UCQ), we do not have to construct a
product, which is why these variations are decidable again.

Remark 4.7. In the conference paper [GJS18b], the paper on which this chapter is based,
it was claimed that qbe(Horn-ALCI,CQ) and qbef (Horn-ALCI,CQ) are decidable
and 2-ExpTime-complete. This result is incorrect. The mistake was caused by our false
assumption that even for Horn-ALCI TBoxes, the anonymous parts of the product of
universal models are still regular trees.

4.3.1 Horn-ALC
Let us �x an input (T ,A, S+, S−, Σ), where T is formulated in Horn-ALC. We develop a
decision procedure for (4.1). Let k = |S+ | and denote withUk

A,T
the product

∏k
i=1UA,T .

Observe that Uk
A,T

is pseudo tree-shaped with core ind(A)k , which is due to the fact
that edges in the anonymous part ofUA,T are always directed away from the core when
T is formulated in Horn-ALC. The productUk

A,T
might be disconnected and for our

purposes it su�ces to consider the substructure P ofUk
A,T

containing all elements from
ind(A)k and everything that is reachable from there; thus, the domain ∆P of P is the
smallest set such that:

• ind(A)k ⊆ ∆P and

• whenever p ∈ ∆P and (p, p′) ∈ rU
k
A,T , then also p′ ∈ ∆P

It is easy to show that for a∗ =
∏

a∈S+ a, we have:

Lemma 4.8. Let b ∈ S−. Then (Uk
A,T
, a∗) →Σ (UA,T , b) if and only if (P, a∗) →Σ

(UA,T , b).

Proof. The direction (⇒) is trivial since P is a sub-interpretation ofUk
A,T

.
For (⇐), let h : (P, a∗) →Σ (UA,T , b). Note that, by de�nition, P is the union of all

maximal connected sub-interpretations containing individuals from ind(A)k . We can
extend the homomorphism h to the remaining connected components I , P ofUk

A,T

by taking the projection of ∆I to an arbitrary (but �xed) component.

For what follows, it is convenient to characterize rP in terms of (tuples of) types,
similar to the de�nition of UA,T . For doing so, let TP be the set of all T -types and
∆ = ind(A) ∪ TP. Then de�ne, for each role r , a binary relation ↪→T ,Ar on ∆k by taking
c ↪→T ,Ar d if and only if c = (c1, . . . , ck) and d = (d1, . . . ,dk) and for each 1 ≤ i ≤ k we
have:

• if ci ,di ∈ ind(A), then r (ci ,di) ∈ A;
• if ci ∈ ind(A),di ∈ TP, then ci

T ,A
r di ;

• if ci ,di ∈ TP, then ci
T
r di .

84

4.3 Complexity of qbe and qdef

For p = (π1, . . . ,πk) ∈ ∆P , denote with tail(p) the tuple (tail(π1), . . . , tail(πk)). It should
be clear that we have (p, p′) ∈ rP if and only if tail(p) ↪→T ,Ar tail(p′).

We give a characterization for (P, a∗)→Σ (UA,T , b), which will be the basis of the deci-
sion procedure. Intuitively, we decompose P into the core part with domain N = ind(A)k

and the tree-shaped subinterpretations below each c ∈ N , which are characterized alone
by their roots. For c ∈ ∆k , we denote the tree-shaped subinterpretation rooted at c by
Pc. Moreover, we use the notationUt for a T -type t as an abbreviation for the universal
model UA,T , where A = {B(at) | B ∈ t} and denote with at its root. We de�ne a
relation Hom ⊆ ∆k × TP that contains the information about which subtrees of Pc can be
mapped to which subtrees ofUA,T . Given a tuple c ∈ ∆k , and a type t ∈ TP, we de�ne
(c, t) ∈ Hom if there is a homomorphism д from Pc to Ut which maps the root to the
root. (Note that both interpretations are tree-shaped.) For c ∈ ∆k , t ∈ TP we write c→Σ t
if there is a Σ-homomorphism from an element of type c to an element of type t . We
further denote with tpUA,T (π) the type of π inUA,T and with P|N the restriction of P
to domain N . We establish the following characterization.

Lemma 4.9. (P, a∗) →Σ (UA,T , b) if and only if there exists a Σ-homomorphism h :
(P|N , a∗) →Σ (UA,T , b) and a labelling L(π) ⊆ ∆k for every π ∈ range(h) ∪ ind(A) such
that:

1. for every p ∈ N , we have p ∈ L(h(p));

2. for every c ∈ L(π), we have c→Σ tpUA,T (π);

3. for every π ∈ range(h) ∪ ind(A), every c ∈ L(π), and every d with c ↪→T ,Ar d one
of the following is true:

a) there is π ′ ∈ range(h) ∪ ind(A) such that (π ,π ′) ∈ rUA,T and d ∈ L(π ′), or

b) π A,Tr t ′ and (d, t ′) ∈ Hom.

Proof. For the ‘only if’ direction, let д : (P, a∗) →Σ (UA,T , b). We de�ne h = д |N and,
for a ∈ range(h) ∪ ind(A), we set

L(a) = {tail(p) | p ∈ ∆P ∧ д(p) = a}.

We verify h and T satisfy Conditions 1–3.
Condition 1. Let p ∈ N . We have p ∈ h−1(h(p)) ⊆ д−1(h(p)), which implies p ∈ L(h(p)).
Condition 2. Let π ∈ range(h) ∪ ind(A), c ∈ L(π) and A ∈ Σ. Since c ∈ L(π), there
exists a p ∈ ∆P such that д(p) = π and tail(p) = c. Since A ∈ c, by the de�nition of P,
we have p ∈ AP . Since д is a Σ-homomorphism, π = д(p) ∈ AUK .
Condition 3. Let π ∈ range(h) ∪ ind(A), c ∈ L(π) and d ∈ ∆k with c ↪→T ,Ar d. Since
c ∈ L(π), there exists a p ∈ ∆P such that д(p) = π and tail(p) = c. We distinguish two
cases, depending on b := д(prd):

• If b ∈ range(h) ∪ ind(A), then it is clear that (a,b) ∈ rUK and d ∈ T (b). In this
case, Condition 3(a) holds.

85

4 Query-by-Example for Expressive Horn Description Logic Ontologies

• If b < range(h) ∪ ind(A), then b is an anonymous element inUA,T , introduced via
π A,Tr t ′ for some t ′ ∈ TP. Since both Pd andUt ′ have the shaped of a directed
tree, д maps the subtree rooted at d completely into to subtree rooted at b. Thus,
(t ′, d) ∈ Hom.

For the ‘if’ direction, let h : (P|N , a∗) →Σ (UK , b) and L : range(h) ∪ ind(A) → 2∆k such
that Conditions 1 to 3 are ful�lled.

For constructing the homomorphism д : (P, a∗) →Σ (UK , b), we construct a series
д0,д1, . . . of homomorphisms with increasing domains N = dom(д0) ⊆ dom(д1) ⊆ . . .,
such that every дi+1 extends дi and

⋃∞
i=0 dom(дi) = ∆P , and we will then set д =

⋃∞
i=0 дi .

Set д0 = h. If дi has been de�ned and dom(дi) (∆P , we de�ne дi+1 in the following
way: Choose a leaf pc ∈ dom(дi) such that there exists pcrd < dom(дi) for some role r
and some d ∈ ∆k . If Condition 3(a) is ful�lled, we set дi+1(d) = π ′ for the π ′ guaranteed
by that Condition. Otherwise, Condition 3(b) is ful�lled and we de�ne дi+1 for the whole
subtree rooted at d according to the homomorphism guaranteed by (d, t ′) ∈ Hom.

If the leafs pc are chosen in a fair way, i.e. ensuring that every such leaf gets chosen at
some point, it follows that

⋃∞
i=0 dom(дi) = ∆P , since P is connected. Since all functions

used to construct д are Σ-homomorphisms, д is a Σ-homomorphism from (P, a∗) to
(UK , b).

To obtain a decision procedure for qbe(Horn-ALC,CQ) from Lemma 4.9, we need to
decide the relation Hom.

Lemma 4.10. Given (T ,A, S+, S−, Σ), where T is formulated in Horn-ALC, the problem
of deciding Hom is in ExpTime.

Proof. We give an ExpTime procedure for computing the relation Hom. We de�ne a
sequence of relations Homi ⊆ ∆k × TP that approximates Hom from above. Let c =
(π1, . . . ,πk). By tp(πi) we denote the set of concept names that are true at πi , i.e. if πi = a
for some a ∈ ind(A), then tp(πi) = tpT ,A(a) and otherwise, tp(πi) = tail(πi). Let Hom0

contain all pairs (c, t) such that
⋂k

i=1 tp(πi) ⊆ t . A pair (c, t) is in Homi+1 if it is in Homi

and for every d ∈ ∆k and r ∈ Σ with c ↪→T ,Ar d there exists a type t ′ such that t T ,Ar t ′

and (d, t ′) ∈ Homi .

Claim: Hom =
⋂∞

i=0 Homi .
Proof of the Claim. (⊆): First we show by induction on i:

Hom ∩ Homi ⊆ Homi+1 (*)

−We begin by showing Hom ⊆ Hom0 ∩ Hom1, which implies the induction start. Let
(c, t) ∈ Hom, so there exists h : (Pc, c) →Σ (Ut(a),T ,a). Since h(c) = t , we have for every
concept name A ∈ Σ that c ∈ APc implies A ∈ t and it follows that (c, t) ∈ Hom0. Let
r ∈ Σ and d ∈ ∆k such that c ↪→T ,Ar d. Since h is de�ned for d, it follows that there is a
t ′ ∈ TP with t T ,Ar t ′ and it follows that (d, t ′) ∈ Hom0. Therefore, (c, t) ∈ Hom1.
− For the induction step, assume Hom ∩ Homi ⊆ Homi+1. We need to show that
Hom ∩Homi+1 ⊆ Homi+2. Let (c, t) ∈ Hom ∩Homi+1. Thus, for every r ∈ Σ and d ∈ ∆k

86

4.3 Complexity of qbe and qdef

with c T ,Ar d, there exists a td ∈ TP such that t T ,Ar td and (d, td) ∈ Homi . But we
also have (Pd, d) →Σ (Utd(a),T ,a) by restricting h to the subtree rooted at d, and thus,
(d, td) ∈ Hom. Using the induction hypothesis, we conclude that (d, td) ∈ Homi+1. Hence,
(c, t) ∈ Homi+2, which �nishes the proof of (*).

Now we can show that Hom ⊆ Homi for all i , again by induction on i . The case i = 0
has been shown above, and the induction step follows from (*).
(⊇): Let (c, t) ∈

⋂∞
i=0 Homi . We construct a homomorphism h : (Pc, c) →Σ (Ut(a),T ,a)

level by level, i.e. we inductively de�ne a sequence hj : (Pc |j , c) →Σ (Ut(a),T ,a), where
Pc |j denotes the restriction of Pc to the �rst j levels. While constructing the hj , we will
keep the following invariants:

• hj is a Σ-homomorphism on its domain.
• For every leaf p of Pc |j we have (tail(p), tp(hj(p)) ∈

⋂∞
i=0 Homi .

We have dom(h0) = {c} and set h0(c) = a. Note that h0 is a homomorphism, since
(c, t) ∈ Hom0 and the second invariant is also true. Now assume hj has been de�ned.
To de�ne hj+1, consider any leaf prd ∈ ∆Pc |j+1 . From the second invariant we know that
(p, tp(hj(p))) ∈ Homi for all i . So for every i we have a type ti such that (d, ti) ∈ Homi .
Since there are only �nitely many types, there must be a type t ′ that appears in�nitely
many times among the ti . Clearly t T ,Ar t ′, so we can choose this type as the image of d,
i.e. we set hj+1(prd) = hj(p)rt ′. Since t ′ appeared in�nitely many times in the sequence ti ,
and since the sequence Homi is descending, we have (d, t ′) ∈

⋂∞
i=0 Homi , i.e. the second

invariant holds for hj+1. The �rst invariant follows from the fact that (d, t ′) ∈ Hom0 and
because hj is a Σ-homomorphism on its domain.

Finally, we set h =
⋃∞

i=0 hj . Since Pc is connected, we have dom(h) = ∆Pc and the �rst
invariant assures that h is a Σ-homomorphism (Pc, c) →Σ (Ut(a),T ,a), so (c, t) ∈ Hom.
This �nishes the proof of the claim.

Now we argue the time complexity of computing Hom. Since Homi+1 ⊇ Homi for all i
and since Hom0 contains at most |∆k × TP| many elements, which is single exponential
measured in the size of (T ,A, S+, S−, Σ), the sequence Homi stabilizes after exponentially
many steps. Computing Hom0 and computing Homi+1 from Homi can also be done in
exponential time. Hence, Hom can be decided in ExpTime.

Now we are ready to settle the complexity of qbe(Horn-ALC,CQ).

Theorem 4.11. For L = Horn-ALC and Q = CQ, the problems qbe(L,Q), qbef (L,Q),
qdef(L,Q) and qdeff (L,Q) are all coNExpTime-complete.

Proof. Given T ,A, S+ and possibly S− and/or Σ (depending on the variation of the
problem), we need to check the two conditions listed in Theorem 4.4. By Lemma 4.6,
we can focus on deciding the second condition. By Lemma 4.8 and Lemma 4.9, this
can be done as follows: Guess a b ∈ S− (or in the case of qdef, a b ∈ ind(A)n \ S+),
a Σ-homomorphism h : (P|N , a∗) →Σ (UA,T , b) and a labelling L(π) ⊆ ∆k for every
π ∈ range(h) ∪ ind(A). This can be done by a nondeterministic Turing machine in
exponential time. Verify that Conditions 1 to 3 are ful�lled. For Conditions 1, 2 and

87

4 Query-by-Example for Expressive Horn Description Logic Ontologies

3a), it is clear that this can be done in exponential time. Condition 3b) can be decided
in exponential time by Lemma 4.10. If all conditions are ful�lled, then the instance
no-instance, otherwise it is a yes-instance. Thus, we have a coNExpTime algorithm.

A matching coNExpTime lower bound for all four variations is inherited from the
database setting [CD15].

For UCQs, a careful analysis of Lemma 4.9 yields an ExpTime upper bound; the match-
ing lower bound is obtained by a reduction from subsumption in Horn-ALC [KRH13].

Theorem 4.12. ForL = Horn-ALC andQ = UCQ, the problems qbe(L,Q), qbef (L,Q),
qdef(L,Q) and qdeff (L,Q) are all ExpTime-complete.

The ExpTime-completeness follows immediately from the following two lemmas.

Lemma 4.13. Both qbef (Horn-ALC,UCQ) and qdeff (Horn-ALC,UCQ) are ExpTime-
hard.

Proof. We reduce from (the complement of) the subsumption problem in Horn-ALC,
which is the problem of deciding, given a Horn-ALC-TBox T and concept names A,B,
whether T 6|= A v B. The problem is ExpTime-complete [KRH13].

Given a TBox T and concept names A,B, de�ne an input (T ,A, S+, S−) for qbef , by
taking A = {A(a),B(b)}, S+ = {b} and S− = {a}. We now argue correctness of the
reduction. It is easy to see that T |= A v B if and only if there is a homomorphism
h : U{B(b)},T → U{A(a)},T with h(b) = a. By Theorem 4.5, this is that case if and only
if (T ,A, S+, S−) < qbef . (Note that the constructed instance is always safe and that
both S+ and S− contain only one individual each.) Thus, we have T 6|= A v B if and
only if (T ,A, S+, S−) ∈ qbef . The ExpTime-hardness of qdeff is obtained by the same
reduction, ignoring S−.

Lemma 4.14. Both qbe(Horn-ALC,UCQ) and qdef(Horn-ALC,UCQ) are in ExpTime.

Proof. We only describe an exponential time algorithm for qbe(Horn-ALC,UCQ); the
arguments for qdef are essentially the same. By Theorem 4.4, we need to check Σ-safety
of (UA,T , a) for every a ∈ S+ and whether (UA,T , a) 9 (UA,T , b) for all a ∈ S+ and
b ∈ S−. The former can be checked in ExpTime by Lemma 4.6. For the latter, we loop
over all (polynomially many) pairs (a, b) ∈ S+×S− and use Lemma 4.9 for every such pair
individually, that is, in the de�nition of P we use k = 1. In this case, there are only single
exponentially many candidates for the homomorphism h and the labeling T , so we can
loop over all possible h andT and check Conditions 1 to 3. Clearly, Conditions 1, 2 and 3a
can be checked in ExpTime, whereas 3b can be checked in ExpTime by Lemma 4.10.

4.3.2 ELI (Undecidability)
In this section, we prove that by allowing inverse roles in the TBox, qbe becomes unde-
cidable. In particular, we show the following:

88

4.3 Complexity of qbe and qdef

Theorem 4.15. For L = ELI and Q = CQ, the problems qbe(L,Q), qbef (L,Q),
qdef(L,Q) and qdeff (L,Q) are all undecidable.

As noted earlier, this theorem refutes the claim in [GJS18b] that these problems are
decidable. The proof is very similar to the undecidability result for the problem concept-
by-example for ELI knowledge bases [Fun+19], where the questions is whether two
individuals can be distinguished by an ELI concept.

The proof is by reduction of the rectangle tiling problem. An instance of the rectangle
tiling problem is a tuple (T ,H ,V , tI , tF) where T is a �nite set of tile types, H ,V ⊆ T ×T
are the horizontal and vertical compatibility relations, and tI , tF ∈ T are the initial and
�nal tile. A solution consists of a tiling τ of some n ×m-grid, n,m ≥ 1, that is, a function
τ : {1, . . . ,n} × {1, . . . ,m} → T such that the following conditions are satis�ed:

1. τ (1, 1) = tI and τ (n,m) = tF ;

2. (τ (i, j),τ (i + 1, j)) ∈ H for 1 ≤ i < n and 1 ≤ j ≤ m;

3. (τ (i, j),τ (i, j + 1)) ∈ V for 1 ≤ i ≤ n and 1 ≤ j < m.

We assume that T is partitioned into T0]T1]T2 and that the following conditions are
satis�ed:

C1 if (t , t ′) ∈ H and t ∈ Ti , i ∈ {0, 1, 2}, then t ′ ∈ Ti+1mod 3;
C2 if (t , t ′) ∈ V and t ∈ Ti , i ∈ {0, 1, 2}, then t ′ ∈ Ti ;
C3 tI ∈ T0 and tF ∈ T2.
C4 tF can only be used in the upper right corner, that is neither H nor V contains a

pair of the form (tF , t);
C5 there is a unique tile t ′F that must be placed to the left of tF and cannot be used

anywhere else, that is, (t ′F , tF) ∈ H , (t ′F , t) ∈ H implies t = tF , and (t , tF) ∈ H implies
t = t ′F .

We brie�y argue why the rectangle tiling problem is undecidable. Given a Turing machine,
one constructs a set of tiles which can be used to describe the computation tableau of the
Turing machine. Every tile describes the content of a tape cell at a certain time, a row of
a solution corresponds to a con�guration of the Turing machine. The tile tF indicates
the last (right-most) cell of a halting con�guration. Thus, the constructed instance of the
rectangle tiling problem has a solution if and only if the Turing machine halts. It is easy
to show that Conditions C1 to C5 can be assumed as well. To avoid dealing with special
cases, we also assume that if there is a tiling of some n ×m-grid, then there is a tiling
of an n ×m-grid with m > 2. Note that, due to the assumed conditions, all tiles on the
left-most column must be fromT0 and all tiles on the right-most column must be fromT2.
Moreover, n must be divisible by 3.

We focus on undecidability of qbef (ELI,CQ), undecidability of the other three
problems will follow easily. Let P = (T ,H ,V , tI , tF) be an instance of the rectangle
tiling problem. We construct an instance (T ,A, S+, S−) such that P has a solution

89

4 Query-by-Example for Expressive Horn Description Logic Ontologies

if and only if (T ,A, S+, S−) is a yes-instance of qbe, if and only if, by Theorem 4.4,∏
a∈S+(UA,T , a) → (UA,T , b) for some b ∈ S−. (We guarantee safety of

∏
a∈S+(UA,T , a)

in our construction.) For the rest of this section, letU denoteUA,T .

Set A = {P1(a1), P2(a2),N1(b),N (a1),N (a2),N (b)}, S+ = {a1,a2}, and S− = {b}. The
concept names P1, P2,N1 trigger the construction of di�erent trees below a1,a2,b inU,
via the TBox T that is at the heart of the construction. The concept name N asserted at
all three individuals has technical reasons that can be ignored for now. Roughly speaking,
certain paths in the product (U,a1) ⊗ (U,a2) starting at (a1,a2) should correspond to
solutions of the tiling. We �rst explain the symbols used in T :

• a single re�exive and symmetric role name S , represented via the role composition
r−; r ; that is, we use ∃S .C as an abbreviation for ∃r−.∃r .C;

• for each tile type t ∈ T , three concept names B0
t ,B

1
t ,B

2
t ; additionally, concept names

B0
d
,B1

d
,B2

d
where d < T is a dummy tile;

• a concept name E that marks the last node of the �rst row in a row by row traversal
of the grid, from bottom to top;

• a concept name N that marks intermediate nodes inserted between any two rows
in the traversal;

• to avoid interaction between the di�erent trees and control the construction of the
universal model, auxiliary concept names I , F and X , which only appear in the tree
below a1, and auxiliary concept name G, which only appears in the tree below a2.

We start with the tree rooted at a1, writing i ⊕ k as an abbreviation for i + k mod 3:

1. P1 v
/
(tI ,t)∈V

∃S .(N u ∃S .(B0
tI u B

1
t u I))

2. for all t1, t2 ∈ Tj \ {tF }, j ∈ {0, 2}:

B0
t1 u B

1
t2 u I v

/
(t1,t3)∈H ,(t3,t4)∈V

∃S .(B0
t3 u B

1
t4 u I)

3. for all t1, t2 ∈ T1:

B0
t1
u B1

t2
u I v

/
(t1,t3)∈H ,
(t3,t4)∈V

∃S .(B0
t3 u B

1
t4 u I) u/

(t1,t3)∈H ,
(t3,t4)∈V

∃S .(B0
t3 u B

1
t4 u E)

4. for all t1, t2 ∈ T2 \ {tF }:

B0
t1 u B

1
t2 u E v

/
t3∈T0,(t3,t4)∈V

∃S .(N u ∃S .(B1
t3 u B

2
t4 u X))

90

4.3 Complexity of qbe and qdef

5. for all i ∈ {0, 1, 2} and t1, t2 ∈ Tj , j ∈ {0, 1}:

Bit1 u B
i⊕1
t2 u X v

/
(t1,t3)∈H ,(t3,t4)∈V

∃S .(Bit3 u Bi⊕1t4 u X)

6. for all i ∈ {0, 1, 2} and t1, t2 ∈ T2 \ {tF }:

Bit1 u B
i⊕1
t2
u X v

/
(t1,t3)∈H ,
(t3,t4)∈V

∃S .(Bit3 u Bi⊕1t4 u X) u/
t3∈T0,
(t3,t4)∈V

∃S .(N u ∃S .(Bi⊕1t3 u B
i⊕2
t4 u X))

7. for all i ∈ {0, 1, 2} and t ∈ T2:

Bit u B
i⊕1
tF
u X v

/
t ′∈T0

∃S .(N u ∃S .(Bi⊕1t ′ u F))

8. for all i ∈ {0, 1, 2} and t ∈ T \ {t ′F , tF }:

Bit u F v
/
(t ,t ′)∈H

∃S .(Bit ′ u F)

9. for all i ∈ {0, 1, 2}:
Bi
t ′F
u F v Bi

d
u ∃S .BitF

A tiling word is a word over the alphabet T ∪ {N }. Let τ be the tiling of some n ×m-grid.
The row by row unfolding of τ is the tiling word

τ (1, 1) · · · τ (n, 1)N · · ·Nτ (1,m) · · · τ (n,m).

Note that we use the symbol N to separate the rows. The concept inclusions above
generate a tree in which for every tiling τ of some n ×m-grid, we we �nd a path p
that describes the row by row unfolding of τ . This is even true if the third condition of
tilings is not satis�ed. Here and in what follows, a path is a sequence of domain elements
p = d0 · · ·dn such that

(di ,di+1) ∈ S
U := (r−)U ◦ rU

for all i < n. Each element d on p is labelled with N or with two concept names Bit and
Bi⊕1t ′ with (t , t ′) ∈ V to indicate that the grid position represented by d carries tile t ′ and
that the grid position directly below the position represented by d carries tile t . The �rst
part of p (between the �rst two occurrences of N) uses concept names B0

t and B1
t ′ and

gives the tiling of rows 0 and 1. It’s last element satis�es the concept name E. The next
part of p uses concept names B1

t and B2
t ′ and gives the tiling of (row 1 once again and of)

row 2. And so on, modulo 3. The horizontal tiling condition is satis�ed on the entire path.

91

4 Query-by-Example for Expressive Horn Description Logic Ontologies

After the last part of the path, which gives the tiling of the topmost row and repeats the
tiling of the row below it, there is another segment that is labelled with F and in which
each node is labelled only with a single concept name Bit , repeating the labelling of the
topmost row. A notable di�erence is that the position before the last one is not only
labelled with a concept name Bi

t ′F
, but also with Bi

d
. The last element on that segment is a

leaf, that is, it has no successors.
We next de�ne the tree rooted at a2:

10. P2 v E u
/
t∈T0

∃S .(N u ∃S .(B1
t uG))

11. for all i ∈ {0, 1, 2} and t ∈ Tj \ {t
′
F }, j ∈ {0, 1}:

Bit uG v
/

t ′∈Tj+1

∃S .(Bit ′ uG)

12. for all i ∈ {0, 1, 2} and t ∈ T2 \ {tF }:

Bit uG v
/
t ′∈T0

∃S .(Bit ′ uG) u/
t ′∈T0

∃S .(N u ∃S .(Bi⊕1t ′ uG))

13. for all i ∈ {0, 1, 2}:

Bit ′F
uG v ∃S .(BitF u ∃S .(N u

/
t∈(T∪{d})\{tF ,t

′
F }

Bit))

The generated tree contains every path p on which every element is labelled with N
or with a single concept names Bit , subject to the following conditions. The path starts
with an N . The part between the �rst two occurrences with N is labelled with concept
names B1

t , the part between the second two occurrences with concept names B2
t , and so

on. Moreover, Condition C1 must be respected. Nodes labelled with a concept Bi
t ′F

are
special. They have a successor d that we call a pre-cycle node and that satis�es BitF (and
no other successor). The pre-cycle node d has as its (only) successor a leaf node d′ that
we call a cycle node that satis�es Bit for all t ∈ T except tF and t ′F , and also N and Bi

d
. This

part of the TBox also labels a2 with E. Informally, the E-labeling in the tree below a2 is
o�set by −1 row compared to the E-labeling in the tree below a1, and this plays a central
role in the reduction.

For the tree rooted at b, de�ne a set C of concept names as

C = {N } ∪ {Bj
t | j ∈ {0, 1, 2} and t ∈ T ∪ {d}}.

and include the following concept inclusion in T :

92

4.3 Complexity of qbe and qdef

14.
N1 v ∃S . (/

A∈C

A u ∃S .∃S .(E u
/
A∈C

A)
)

The universal model generated below b, shown in Figure 4.1, has the property the every
path d0 . . .dn where every individual on the path satis�es a concept name from C can be
homomorphically embedded by a homomorphism that maps all di to the S-successor of b,
remember that S is re�exive and symmetric. A path d0 . . .dn containing the concept name
E however, say dj is labelled with E, can be embedded if and only if the path contains a
hole before the E, that is, an individual di on the path, i < j, such that di does not satisfy
any concept name.

The correctness of the reduction is based on the idea that a solution for the tiling
problems exists if and only if we can �nd a path d0 . . .dn in U × U such that d0 is a
successor of (a1,a2), dn is labelled with E and the path does not contain a hole, that is,
every individual on the path is labelled with some concept name. The following lemma
says that we can in fact limit our attention to path-shaped CQ witnesses.

Lemma4.16. If the constructed instance (T ,A, S+, S−) is a yes-instance of qbe(ELI,CQ),
then there exists a witnessing CQ q′(x) with the following properties:

• q′(x) is takes the form of an S-path from x to a variable labelled with E.
• No variable on the S-path q′(x) is a hole.

Proof. Let (T ,A, S+, S−) be a yes-instance of qbe(ELI,CQ), so there exists a CQ q(x)
with T ,A |= q(ai) for i ∈ {1, 2} and T ,A 6|= q(b). We identify an S-path-shaped subset
q′(x) of the body of q(x) that ful�ls the conditions from the lemma.

Towards a contradiction, assume that there is no such subset q′(x) of q(x). We show
that this would give a homomorphism h from q(x) to U with h(x) = b, contradicting
T ,A 6|= q(b). We can assume q to be connected, and by construction of the universal
model below a1 and below a2, q can only use concept names from C and the concept
name E, since these are the only concept names that appear both below a1 and below
a2. Further, we can assume w.l.o.g. that all S-neighbours of x are labelled with N , since
all S-neighbours of (a1,a2) inU are labelled with N . This means that no S-neighbour of
x is a hole, a fact that we need soon. In fact, this is the only reason why we de�ned A
to contain N (a1),N (a2),N (b). We partition all variables in q(x) that are reachable by an
S-path from x (but excluding x itself) into three sets B1,B2,B3, as follows:

• B1 is the set of all non-holes y for which there is an S-path from x to y that does
not have a hole;

• B2 is the set of all holes that are S-neighbours of elements in B1;
• B3 is the set of all y such that all S-paths from x to y have a hole di�erent from y.

Note that B1,B2,B3 indeed form a partition of all elements reachable via an S-path from
x . Moreover, B2 separates B1 and B3 in the sense that every S-path from an element in B1
to an element in B3 must pass an element of B2; in the same way, B1 separates x and B2,
because no S-neighbour of x is a hole.

De�ne h for elements from Bi and x as follows:

93

4 Query-by-Example for Expressive Horn Description Logic Ontologies

• h(x) = b;
• for all i ∈ {1, 2, 3} and all y ∈ Bi , set h(y) = bi , where bi is the anonymous i-times
S-successor of b, see Figure 4.1.

It should be clear that A(y) ∈ q implies h(y) ∈ AU for every concept name A ∈ C ∪ {E}
due to the construction of the universal model below b. In particular this is true for the
concept name E, since our assumption is that every path from the answer variable to a
variable labelled with E contains a hole, so all variables labelled with E have to be in B3.
Moreover, we have that

(∗) S(y1,y2) ∈ q implies (h(y1),h(y2)) ∈ SU .

It remains to de�ne h on the intermediate variables of S-paths, that is, r−-successors
of variables reachable via an S-path from x . Let y be such a variable. Consider the set
Y of all r -successors of y. Note that h is already de�ned for all variables from Y , and
we have S(y1,y2) ∈ q, for all y1,y2 ∈ Y . By (∗), we have (h(y1),h(y2)) ∈ SU , for all
y1,y2 ∈ Y . Thus Y is completely contained in one of the sets {b,b1}, {b1,b2} or {b2,b3}.
Depending on which case applies, we complete the de�nition of h by setting h(y) to the
intermediate nodes between b and b1, b1 and b2, and b2 and b3, respectively. This yields
a homomorphism h witnessing T ,A |= q(b), a contradiction. Thus, there must be an
S-path in q as claimed.

We are now ready to prove correctness of the reduction. We give a brief explanation of
this proof up front. If there is a witness CQ, then there is also a S-path-shaped witness CQ
ful�lling the conditions of Lemma 4.16. The construction assures that the labelling of such
a path in the productU ×U, starting at (a1,a2), must describe a row by row unfolding
of a solution of the rectangle tiling problem. In particular, to reach an individual labelled
with E in the product, via an S-path without holes, we are forced to walk downwards from
both individuals a1 and a2 for a while, then cycle below a2 while walking down further
below a1, and then walking upwards in both trees again. The row by row unfolding of
the solution is already contained in the part of the path where we walk downwards in
both components. The cycling in the second component is done to obtain an o�set of 1
row between the two components, so that the part of the path where we walk upwards
(and still have no holes) guarantees that the rows are of the same length and that the
vertical matching condition for the rows is ful�lled. This is the reason why the elements
in the tree below a1 are always labelled with two vertically matching tiles.

Lemma 4.17. The tiling problem P has a solution if and only if (T ,A, S+, S−) is a yes-
instance of qbe(ELI,CQ).

Proof. Consider two elements d,d′ ∈ ∆U that are both part of the subtree inU rooted
at ai , i ∈ {1, 2}, and such that (d,d′) ∈ SU . We call d′ a successor of d if d′ is further away
from ai than d , and the predecessor of d if d is further away from ai than d′.

“if”. Let (T ,A, S+, S−) be a yes-instance. Using Lemma 4.16, let q(x) be a CQ of the
kind assured in the lemma. The matches of q into U that witness T ,A |= q(ai) for

94

4.3 Complexity of qbe and qdef

P1, Na1
N
I , B0

t , B1
t...

I , B0
t , B1

t
E, B0

t , B1
t

N
B1
t , B2

t...
B1
t , B2

t

N
B2
t , B0

t...
...
B1
t , B2

t ′F
B1
t , B2

tF
N
F , B2

t...
F , B2

t ′F
, B2

d

B2
tF

P2, E, Na2
N
B1
t...

...
B1
t

N
B2
t...

B2
t

N
B2
t...

...
B2
t ′F

B2
tF

N , all B2
t , B2

dcycle node
without B2

tF
, B2

t ′F

b N1, N
all Bit , Nb1

b2 ‘hole’
b3 all Bit , N , E

Figure 4.1: The image shows two paths inU. Every drawn edge is an S-edge.

i ∈ {1, 2} yield the existence of a path p = (d0, e0) · · · (dn, en) inU ×U that starts at an
S-successor of (a1,a2) and such that (dn, en) satis�es E inU ×U and p has no holes, that
is, for all i < n, (di , ei) satis�es inU ×U at least one concept name from C. We might
clearly assume that p is a simple path, that is, i , j implies (di , ei) , (dj , ej).

By construction of the trees below a1 and a2, every node (di , ei) on p satis�es a unique
concept name from C. We will later show how to read o� from this unique labelling of p
a tiling word that is a row by row unfoldung of a tiling of some �nite grid.

It is important to carefully analyse how p lies withinU ×U. We say that (di+1, ei+1)
is a ↓↓-successor of (di , ei) if di+1 is a successor of di and ei+1 is a successor of ei , and
likewise for ↓↑-successors, ↓	-successors, and so on, with ↑ indicating the transition to a
predecessor in the respective component and	 indicating identity of the component
(recall that S is re�exive).

We make one observation about the very beginning of the path p: We can assume
w.l.o.g. that (d0, e0) and (d1, e1) are both ↓↓-successors, which can be argued as follows:
By the construction, (d0, e0) must be labelled with N . Consider the largest number j such
that (d0, e0) . . . (dj , ej) are all labelled with N . Every di and ei , 0 ≤ i ≤ j must be either a1,
a2 or an S-successor of a1 or of a2. Also, dj , a1 and ej , a2, since otherwise, (dj+1, ej+1)
also had to be labelled with N . If now j > 0, instead of p, we could consider the path
p′ = (d′0, e

′
0)(d

′
1, e
′
1) . . . with (d′i , e

′
i) = (di+j , ei+j) for all i ≥ 2, which is a path without

holes starting from a ↓↓-successor of (a1,a2) to an element labelled with E. Figuratively
speaking, p′ cuts short the initial part of p labelled with unnecessary N s. So from now,

95

4 Query-by-Example for Expressive Horn Description Logic Ontologies

we assume that p is such a path.
Next, we observe that several kinds of successors cannot occur on p:

(i) ↑↓-successors (di+1, ei+1) with ei+1 not a cycle node.
Towards a proof by contradiction, assume that (di+1, ei+1) is an ↑↓-successor with
ei+1 not a cycle node. We know that (di , ei) satis�es a concept name from C. Since
ei+1 is not a cycle node, this concept name is not of the form Bj

d
. First assume that

it has the form Bj
t , t ∈ T . Let t ∈ Tw . Both di and ei also satisfy Bj

t . By construction
of the trees below a1 and a2 and since (di+1, ei+1) is an ↑↓-successor of (di , ei),

• di+1 satis�es N or some B`t ′ with t ′ ∈ Tw	1, but no other tile from C except
possibly B`

d
;

• ei+1 satis�es N or some B`
′

t ′ with t ′ ∈ Tw⊕1 and no other concept name from
C;

• di+1 and ei+1 do not both satisfy N (as there are at least three non-N -nodes
between any two consecutive N -nodes inU).

As a consequence, (di+1, ei+1) is a hole. Contradiction.
Now assume that (di , ei) satis�es N . Then so do di and ei . By construction of the
trees below a1 and a2 and since ei+1 is not a cycle node, di+1 satis�es some B`t ′
with t ′ ∈ T2 and no other concept name from C, and ei+1 satis�es some B`

′

t ′ with
t ′ ∈ T0 and no other concept name from C. As a consequence, (di+1, ei+1) is a hole.
Contradiction.

(ii) 	∗-successors.
First for the	↓ case. Towards a proof by contradiction, assume that (di+1, ei+1)
is a 	↓-successor of (di , ei). First assume that ei+1 is not a cycle node. Then ei
and ei+1 satisfy unique but di�erent concept names from C that are not of the
form B`

d
. The �rst such concept name is also satis�ed by (di , ei), thus by di , and

the second concept name is also satis�ed by (di+1, ei+1), thus by di+1 = di . But by
construction of the tree below a1, di does not satisfy two such di�erent concept
names. Contradiction.
Now assume that ei+1 is a cycle node. By construction of the subtree below a2, ei
satis�es a concept name of the form Bj

tF
, and thus so does di . Moreover, (di+1, ei+1)

satis�es a concept name from C also satis�ed by ei+1 and since ei+1 is a cycle node,
this concept name cannot be of the form Bj

tF
or Bj

t ′F
. Thus di+1 = di satis�es both

concept names, which is not possible by the construction of the tree below a1.
The case	↑ is similar. Furthermore, there are no		-successors since p is simple.

(iii) ↑	-successors (di+1, ei+1) with (di , ei) not an ↑↓-successor.
Towards a proof by contradiction, assume that (di+1, ei+1) is a ↑	-successor of
(di , ei) with (di , ei) not an ↑↓-successor, and that it is the �rst such node on p. If
ei is not a cycle node, then we can argue as in (ii) above. Thus assume that ei
is a cycle node. Consider the successor type of (di , ei). Since ei is a cycle node,

96

4.3 Complexity of qbe and qdef

it is a leaf in U. Together with Point (ii) above and since (di , ei) is the �rst ↑	-
successor, (di , ei) can thus only be a ↓	-successor or a ↓↓-successor. The former
implies (di−1, ei−1) = (di+1, ei+1) in contradiction to p being simple. In the latter
case, di−1 = di+1 and ei−1 is the predecessor of ei inU. By construction of the tree
below a1, the latter implies that ei−1 is labelled with some concept name Bj

tF
. Since

(di−1, ei−1) is not a hole in p, di−1 is also labelled with Bj
tF

and thus so is di+1 = di−1.
However, by construction of the subtree below a2, the cycle node ei+1 is not labelled
with Bj

tF
and thus (di+1, ei+1) is a hole in p. Contradiction.

(iv) ↓↑-successors (di+1, ei+1) with ei not a cycle node.

Similar to the the proof of (i).

(v) ↓	-successors (di+1, ei+1) with ei not a cycle node.

Similar to the proof of (ii).

The remaining kinds of successors are ↓↓, ↑↑, ↑↓, ↑	, ↓↑, ↓	, and Points (i) to (v) impose
strong restrictions on the latter four types of successors. We aim to show that p must
follow the pattern

↓↓+↓	+↓↑ ↑↑+

with the ↓	+-subpath having a cycle node in the second component and the ↓↑ ↑↑-
subpath escaping from that cycle node and its pre-cycle node back to a regular node.1

We already argued that p must start with a ↓↓+-pre�x. Assume towards a proof by
contradiction that the ↓↓+-pre�x is followed by an ↑↓-successor (di0+1, ei0+1). By Point (i),
ei0+1 is a cycle node. By construction of the tree below a2, ei0 must be labelled with a
concept name Bj

tF
. Thus, di0 is also labelled with Bj

tF
and by construction of the subtree

below a1, di0+1 = di0−1 is labelled with Bj
t ′F

. In fact, di0−1 is the �rst element on the path
d0, . . . ,di0−1 inU that is labelled with a concept name of the form B`

t ′F
: if some ds with

s < i0 − 1 was the �rst element on the path d0, . . . ,di0−1 labelled with B`
t ′F

, then es+2 is
a cycle node due to the construction of the tree below a2 and since we travel ↓↓2 from
(ds , es) to (ds+2, es+2); this contradicts the fact that ei0 is reachable from es by traveling
downwards. As di0−1 is the �rst element of its kind, it is not labelled with B`

d
and in fact

B`
t ′F

is the only concept name from C satis�ed by di0−1 = di0+1. However, the cycle node

ei0+1 is not labelled with Bj
t ′F

, thus (di0+1, ei0+1) is a hole in p. Contradiction.
Now assume that the ↓↓+-pre�x is followed by a ↓↑-successor (di0+1, ei0+1). Then, ei0

is a cycle node by Point (iv) and thus ei0+1 is a pre-cycle node and actually ei0+1 = ei0−1.
Thus (di0−1, ei0−1) and (di0+1, ei0+1) both satisfy a concept name Bj

tF
and also di0−1 and di0+1

both satisfy Bj
tF

. This, however, is impossible by construction of the subtree below a1 and
in particular due to the partitioning of T into T0]T1]T2.

1This also implies that neither ↑↓- nor ↑	-successors occur at all, but we are not yet in a position to
show this directly.

97

4 Query-by-Example for Expressive Horn Description Logic Ontologies

We have thus shown that p starts with a ↓↓+↓	+-pre�x. By Point (v), the �rst ↓	-
successor (di0+1, ei0+1) is such that ei0 is a cycle node. By construction of the subtree below
a2, (di0−1, ei0−1) satis�es a concept name Bj

tF
and (di0−2, ei0−2) satis�es Bj

t ′F
. This will be

used later.
Since ei0 is a leaf in U, this pre�x can only be followed by a successor of type ↓↑,
↑↑, and ↑	, say (di1+1, ei1+1). However, ↑	 is impossible by Point (iii). Moreover, ↑↑ is
impossible too. Assume to the contrary that (di1+1, ei1+1) is an ↑↑-successor. We know
that (di1−1, ei1−1) satis�es a unique concept name from C. Since ei1−1 = ei1 is a leaf node,
this concept name is not of the form Bj

tF
, and it is also satis�ed by di1−1. But ei1+1 is a

pre-cycle node and thus the only concept name it satis�es is of the form Bj
tF

; the same
concept name must be satis�ed by di1+1 = di1−1. But no element in the subtree below a1
satis�es two such concept names.

It follows that (di1+1, ei1+1) is a ↓↑-successor. It thus satis�es a concept name Bj
tF

. In
fact, we have only moved downwards in the �rst component so far, and thus di1+1 is the
second node on a path inU that satis�es a concept name Bj

tF
, the �rst one being di0−1.

As a consequence and by construction of the tree below a1, di1+1 is a leaf inU and di1
satis�es both Bj

t ′F
and Bj

d
. This will be used later.

We next analyze the type of successor that (di1+2, ei1+2) is. Since di1+1 is a leaf and by
Point (iii), the only options are ↑↑ and ↑↓. The latter, however is impossible since p is
simple. We have shown that p starts with a ↓↓+↓	+↓↑ ↑↑-pre�x.

We can proceed to travel ↑↑. We argue that we can never switch to any other kind
of successor again. ↑↓, ↓↑, and ↓	 are ruled out by Points (i), (iv), and (v) and since we
can never reach a cycle node in the second component while traveling upwards. ↑	 is
ruled out by Point (iii). The only remaining candidate is ↓↓. But we can never switch to
↓↓ before reaching a1 in the �rst component or a2 in the second component because p
is simple. The former cannot happen since a1 satis�es neither E nor any concept name
from C and p has no holes. The latter can (and in fact does) only happen at the �nal
element of p since a2 satis�es (E but) no concept name from C and thus seeing a2 before
the end means that p has a hole. We have thus shown that p indeed follows the pattern

↓↓+↓	+↓↑ ↑↑+ .

Moreover the last element (dn, en) of p must be such that en = a2 because by construction
of the tree below a2 and what we have said about the structure of p, this is the only way
for (dn, en) to satisfy E.

To proceed, consider the pre�x

p′ = (d0, e0), . . . , (di0−1, ei0−1)

of p. As already pointed out, each node on p is associated with a unique concept name
from C. For the nodes on p′, this concept name cannot be of the form Bj

d
(recall that d is

the dummy tile) since d0, . . . ,di0−1 constitutes a path inU that travels purely downwards
and sees only one concept name of the form Bj

tF
at the very end. In fact, we have

98

4.3 Complexity of qbe and qdef

already argued that di0−1 satis�es a concept name Bj
tF

. No earlier node does so since by
construction of the tree below a2 we would otherwise have reached a cycle node in the
second component earlier than at ei0 .

We can thus read o� from p′ a unique tiling word t0 · · · ti0−1. By construction of the
trees below a1 and a2, t0 = N . Let t1 · · · tn1 be the longest pre�x of t1 · · · ti0−1 that does not
contain N . Since (d1, e1) is a ↓↓-successor and again by construction of the trees below a1
and a2, this pre�x is not empty. Moreover, each node di with 1 ≤ i ≤ n1 satis�es a concept
name of the form B0

t and a concept name of the form B1
t . It is the latter concept that is

also satis�ed by (di , ei) and thus de�nes the tiles t1 · · · tn1 . We obtain another sequence of
tiles t (0)1 · · · t

(0)
n1 from the B0

t labeling. We aim to show that

t (0)1 · · · t
(0)
n1 t0 · · · ti0−1

is a row by row unfolding of a tiling of some n1 ×m-grid. By construction of the tree
below a1, the following is not hard to verify:

1. t (0)1 = tI ;

2. the horizontal matching condition is satis�ed; more formally, whenever tt ′ is a
subword of t (0)0 · · · t

(0)
n1 t0 · · · ti0−1 and none of t and t ′ is N , then (t , t ′) ∈ H ;

3. the �rst two rows in t (0)0 · · · t
(0)
n1 Nt0 · · · tn−1 are of the same lengthn1 and all vertically

neighboring tiles on these two rows satisfy V (because the double labeling with B0
t

and B1
t ′ in the tree below a1 respects V).

It remains to show that the vertical matching condition is satis�ed beyond the �rst two
rows and that all rows rather than only the �rst two have the intended length n1.

We associate an o�set with each (di , ei) on p, de�ned as the di�erence D2 − D1 where
D1 is the distance of di from a1 inU and D2 the distance of ei from a2 inU. Clearly, the
o�set of (d0, e0) is 0. By construction of the tree below a1 and choice of n1, dn1 satis�es
E and no other element among d0, . . . ,di0−1 does. Moreover, since we �rst travel only
downwards and then only upwards in the �rst component and dn satis�es E, we must
have dn = dn1 . By construction of the tree below a2, the only element among e0, . . . , en
satisfying E is en = a2. Consequently, the o�set of (dn, en) is n1 + 1.

Since the o�set of (d0, e0) is 0 and until (di0, ei0) we have only seen ↓↓-successors, the
o�set of (di0, ei0) must also be 0. Likewise, the o�set of (dn, en) being n1 + 1 and the
fact that from (di1+1, ei1+1) on we have only seen ↑↑-successors implies that the o�set of
(di1+1, ei1+1) must also be n1 + 1. Consequently and since the single ↓↑-step adds an o�set
of 2, the ↓	+-subpath of p has length n1 − 1. Clearly, the distance of di0−1 from a1 is i0.
To reach (di1+1, ei1+1) from (di0−1, ei0−1), we make one ↓↓-step, n1 − 1 ↓	-steps, and one
↓↑-step. As a consequence, the distance of di1+1 from a1 inU is i0 + n1 + 1. Since from
(di1+1, ei1+1) we make only ↑↑-steps and ei1+1 = ei0−1, this implies the following crucial
conditions:

(a) if (di , ei) is a node in p with i < i0, then (di+n1+1, ei) is also a node in p;

99

4 Query-by-Example for Expressive Horn Description Logic Ontologies

(b) if (di , ei) is a node in p with n1 < i < i0, then (di−(n1+1), ei) is also a node in p.

This, in turn, implies that all rows are of the same length and that the vertical matching
condition is satis�ed, as follows.

We start with row length. Consider the tiling word t (0)1 · · · t
(0)
n1 t0 · · · ti0−1. We already

know by choice of n1 that t0 = tn1+1 = N . We have to show that

1. t`·(n1+1) = N for 1 < ` < i0−1
n1+1 and

2. for no other ti , ti = N .

For Point 1, we concentrate on t2(n1+1), the same argument can be applied inductively
for ` > 2. The argument is in fact easy based on (a). We know that tn1+1 = N , thus the
unique concept name from C satis�ed by (dn1+1, en1+1) is N . It follows from (a) that the
unique concept name from C satis�ed by (d2(n1+1), en1+1) is also N , and thus the same
is true for (d2(n1+1), e2(n1+1)). Consequently, t2(n1+1) = N . The proof of Point 2 is similar,
using (b) instead of (a) and showing that if ti = N for some ti not covered by Point 1, then
ti = N for some i ∈ {1, . . . ,n1} which we know is not the case.

Now for the vertical matching condition. Take any ti , N from t (0)1 · · · t
(0)
n1 t0 · · · ti0−1

that is neither on the bottommost nor on the topmost row. We know that (di , ei) satis�es
a unique concept name Bj

ti
from C. By (a), (di+n1+1, ei) is a node on p. It must clearly

also satisfy Bj
ti

and no other concept name from C, and the same is true for di+n1+1. By
construction of the tree below a1, di+n1+1 satis�es, apart from Bj

ti
, also a concept name

Bj⊕1
t ′ with (ti , t ′) ∈ V . Using the construction of the subtree below a1 and a2 and the fact

that the pre�x p′ of p has only ↓↓-successors, it can be seen that ti+n1+1 = t ′, which is
exactly what we had to show.

“only if”. Assume that P has a solution, that is, there is a tiling τ of some n ×m-grid,
n,m ≥ 1. By our assumption on P, we may assume that m ≥ 2. Let w be a tiling word
that is a row by row unfolding of τ , with an additional leading N symbol (that is, every
row in w is pre�xed by N). The length of w is (n + 1) ·m. We start with showing thatU
contains a path p1 that starts at an S-successor of a1 and whose labeling with the concept
names from C gives rise to w .

The length of p1 will be k := (n + 1) · (m − 1); we shall explain later why p1 is short of
one row. We number the columns of the grid from 0 to n − 1 and the rows of the grid
from 0 tom − 1. For all positions i ≤ k on p1, let

• row(i) = (i div(n + 1)) + 1 and
• col(i) = i − 1mod(n + 1) if i mod(n + 1) > 0 while col(i) is unde�ned otherwise.

The ‘+1’ in the �rst item ensures that the �rst elements of p1 corresponds to row 1 rather
than to the bottommost row 0. The extra condition in the second items avoids assigning
a column to positions in w that carry the symbol N .

By construction of the tree inU below a1, we can �nd a path p1 = d0 · · ·dk that satis�es
the following conditions for all i ≤ k :

100

4.3 Complexity of qbe and qdef

1. (a1,d0) ∈ SU ;

2. dn ∈ EU (this corresponds to the last position of the �rst row represented by p1);

3. if τ (col(i), row(i)) = t , then di ∈ (B
row(i)mod 3
t)U ;

4. if τ (col(i), row(i) − 1) = t , then di ∈ (B
row(i)−1mod 3
t)U ;

5. if col(i) is unde�ned, then di ∈ N
U .

Note that the �rst n + 1 elements on p1 represent the tiling of row 0 via concept names
B0
t and the tiling of row 1 via concept names B1

t . The next n + 1 elements represent row 1
via concept names B1

t and the tiling of row 2 via concept names B2
t , and so on.

Once again by construction of the tree below a1, we can extend p1 into a path p+1 =
d0 · · ·dk+(n+1) that repeats the topmost row m − 1 in the sense that the following are
satis�ed for k < i ≤ k + (n + 1):

1. (dk ,dk+1) ∈ SU ;

2. if τ (col(i),m − 1) = t , then di ∈ (B
m−1mod 3
t)U ;

3. dk+n ∈ (Bm−1mod 3
d

)U (this corresponds to the second last position of the repeated
rowm − 1).

So p+1 simply repeats the representation of the topmost row from the end of p1, using the
same concept name. The only di�erence is the labeling with the dummy tile described in
Point 3, which is not present in p1.

By construction of the tree below a2,U contains a path p2 = e0 · · · ek+1 that starts at
an S-successor of a2 ∈ EU and satis�es the following conditions for all i < k :

1. (a2, e0) ∈ SU ;

2. if τ (col(i), row(i) + 1) = t , then ei ∈ (B
row(i)+1mod 3
t)U ;

3. if col(i) is unde�ned, then di ∈ N
U ;

4. ek+1 is a cycle node.

Note that the labeling in Point 2 of p2 is exactly the same as the labeling in Point 3 of p1.
Now consider the following path in U ×U that starts at the S-successor (d0, e0) of
(a1,a2):

• �rst follow p+1 and p2 snychronously:

(d0, e0) · · · (dk+1, ek+1)

• then proceed to follow p+1 while remaining stationary in the cycle node at the end
of p2:

(dk+2, ek+2) · · · (dk − 1, ek+1)

101

4 Query-by-Example for Expressive Horn Description Logic Ontologies

• then make a single step downwards in p1+, reaching the end of this path, while
making a single step upwards in p2:

(dk , ek)

• then synchronously follow both paths backwards, even stepping up to a2:

(dk−1, ek−1) · · · (dn,a2).

By what was said above, it can be veri�ed that (i) the end of this path (dn,a2) is in EU×U

and (ii) every element of the path satis�es a concept name from C. The only slightly
subtle point for the latter is the element (dk−1, ek+1), which is the predecessor of (dk , ek)
on the constructed path. It satis�es a concept name of the form Bj

d
and in fact achieving

this is the reason for introducing the dummy tile (as no other concept name from C is
satis�ed by (dk , ek)).

However, there is no path inU that starts at an S-successor of b and satis�es Properties
(i) and (ii); in fact, every path that starts at an S-successor of b and whose end is in EU

must pass an element that does not satisfy any concept name in C. Consequently,
(U,a1) ⊗ (U,a2) 9 (U,b), and in fact, the identi�ed S-path yields the witnessing
CQ.

4.4 Size of Witness Queries
In this section, we investigate the size of witness queries. We show that for yes-instances
of qbe(Horn-ALC, (U)CQ), there is always a witness query of at most double exponential
size, and that there are instances where this double exponential size is unavoidable. The
following lemma establishes the lower bound.

Lemma 4.18. There is a family of Horn-ALC knowledge bases (Tn,An)n≥1, sets of exam-
ples S+ and S−, a signature Σ, and a polynomial p(n) such that, for all n ≥ 1, |Tn ∪ An | ≤

p(n), (Tn,An, S
+, S−, Σ) ∈ qbe(Horn-ALC, (U)CQ) and every (U)CQ witnessing this is of

size Ω(22n).

The main idea for the the proof is to give Horn-ALC knowledge bases (Tn,An) over
two individuals a,b such that inUAn ,Tn the trees below a and b are Σ-homomorphically
equivalent to I2n and J2n , respectively, where In,Jn are given by recursive ‘de�nitions’
shown in Figure 4.2. It can be shown that (In,a)9Σ (Jn,b), but that (I′,a) →Σ (Jn,b)
for any connected proper sub-interpretation I′ of In with a ∈ ∆I

′. Thus, the smallest
Σ-(U)CQ distinguishing between a and b in (Tn,An) is (I2n ,a) viewed as CQ, whose size
is Ω(22n).

Proof. Given some n ≥ 1, we construct a Horn-ALC-KB (Tn,An) using concept names
A,B,G,H ,U ,X1,X 1,C1,C1, . . . ,Xn,Xn,C1,Cn and a single role name r . The concept

102

4.4 Size of Witness Queries

I0 =

In =

A

In−1

B

In−1

J1 =
A B

Jn =

A

In−1

B

Jn−1

A

Jn−1

B

In−1

Figure 4.2: The construction shows interpretations such that for every n ≥ 1, (In,a)9Σ

(Jn,b), but (I′,a) →Σ (Jn,b) for any proper sub-interpretation I′ of In,
where a is the root of In and b is the root of Jn.

names Xi ,X i are used to implement an exponential counter. The ABox An is given
by

An = {G(a),X 1(a), . . . ,Xn(a)} ∪

{H (b),X 1(b), . . . ,Xn(b)}

For the construction of the TBox, we start with including the following CIs:

X i v U , for all 1 ≤ i ≤ n

X i v U
′, for all 1 ≤ i < n

G uU v ∃r . (∃r .(G uA) u ∃r .(G u B))
H uU ′ v ∃r . (∃r .(G uA) u ∃r .(H u B)) u

∃r . (∃r .(G u B) u ∃r .(H uA))
H uU v ∃r .∃r .A u ∃r .∃r .B

Note that U and U ′ are enforced if the counter value is smaller than 2n − 1 and 2n − 2,
respectively. It remains to implement the counter:

X1 v ∀r .∀r .(X 1 uC1)

X 1 v ∀r .∀r .(X1 uC1)

Xi v ∀r .∀r .(¬Ci−1 t (X i uCi)), for all 2 ≤ i ≤ n

X i v ∀r .∀r .(¬Ci−1 t (Xi uCi)), for all 2 ≤ i ≤ n

Xi v ∀r .∀r .(¬Ci−1 t (Xi uCi)), for all 2 ≤ i ≤ n

X i v ∀r .∀r .(¬Ci−1 t (X i uCi)), for all 2 ≤ i ≤ n

Obviously, the size of both An and Tn is bounded by some polynomial in n. Note that
by construction, the connected component of a in (UAn ,Tn ,a) (that is, with domain
{π ∈ ∆UAn,Tn | π starts with a}) restricted to signature Σ = {r ,A,B} is isomorphic to
the interpretation I2n−1 described in Figure 4.2 and the connected component of b in
(UAn ,Tn ,b) restricted to Σ is isomorphic to J2n−1 , for every n ≥ 1. Let I denote the subtree
ofUAn ,Tn starting at a restricted to signature Σ. De�ne qn(x) as (I,a), viewed as CQ. By

103

4 Query-by-Example for Expressive Horn Description Logic Ontologies

construction, qn is a �nite binary tree of exponential depth, thus of double exponential
size. We verify the following claim:
Claim. Tn,An 6 |= qn(b), but Tn,An |= q

′(b) for every proper subquery q′ of qn.
Proof of the Claim. For the �rst part of the claim it su�ces to note that, by construction,
(Ik ,a) 9Σ (Jk ,b) for every k ≥ 1. For the second part, we show that for every proper
sub-interpretation I′ of Ik , there is a homomorphism (I′,a) → (Jk ,b). We show this by
induction on k . The case k = 1 is clear, so let k > 1 and we assume the statement is true
for k − 1. We distinguish cases on which assertion is missing in I′.

• If an atom is removed inside one of the two subtrees that are copies of Ik−1 that
were used to construct Ik , then by induction hypothesis, this subtree can be homo-
morphically mapped to Jk−1 and it is easy to see that (I′,a) → (Jk ,b).

• If one of the three r -atoms (rooted at a or at the r -successor of a) is removed, it is
also easy to see that (I′,a) → (Jk ,b).

• If theA-atom (resp. the B-atom) at depth 2 is removed, thenI′ has a homomorphism
into itself which maps the element of the removed A-atom (resp. B-atom) to the
other element at depth 2, so I′ is homomorphically equivalent to the interpretation
where the root has an outgoing r -path of length 2 to an element that is labelled
with B (resp. A) and where there is a copy of Ik−1 is rooted at that element. The
latter interpretation clearly maps into Jk , which implies (I′,a) → (Jk ,b).

This �nishes the proof of the claim. Now we set S+ = {a} and S− = {b}, which �nishes
the construction of the instance claimed in the lemma. In particular, the claim shows that
every UCQ q of size smaller |I2n−1 | with Tn,An |= q(a) also satis�es Tn,An |= q(b), so no
such query can be a witness for the constructed instance.

The following lemma establishes the matching upper bound.

Lemma 4.19. If (T ,A, S+, S−, Σ) ∈ qbe(Horn-ALC, (U)CQ), then there is a witness
query of at most double exponential size.

Proof. We focus on the CQ case, the UCQ case is similar. Let T ,A, S+, S−, Σ be given.
Recall from Section 4.3 that (P, a∗) denotes the sub-interpretation of (Uk

A,T
, a∗) restricted

to elements reachable from N = ind(A)k . We prove that if there is a Σ-homomorphism
from an exponentially deep initial part of (P, a∗) to (UA,T , b) for some b ∈ S−, then
there is also a Σ-homomorphism from (P, a∗) to (UA,T , b), and thus by Lemmy 4.8 also
(Uk
A,T
, a∗) →Σ (UA,T , b). Conversely, this means that if there is no Σ-homomorphism

from (P, a∗) to (UA,T , b) for any b ∈ S−, then an exponentially deep (and thus, doubly
exponentially large) initial piece of P is a witness CQ.

Remember that P is pseudo tree-shaped with core N and de�ne P̂ to be P restricted to
the core and all individuals in the trees of P that have distance at most |TP| · (|ind(A)| +
|TP|) + 1 from the core. Assume there is a homomorphism h from (P̂, a∗) to (UA,T , b)
for some b ∈ S−. By the pigeonhole principle, on every path p1 . . . pn of length |TP| ·

104

4.5 Discussion and Future Work

(|ind(A)|+ |TP|)+1 in a tree of P̂ starting from the root of that tree going only downwards,
there must be at least one pj such that there is a pi with i < j and

tail(pi) = tail(pj) and tail(h(pi)) = tail(h(pj)) , (∗)

since there are only |TP| many di�erent possibilities for tail(pj) and only |ind(A)| + |TP|

many di�erent possibilities for tail(h(pj)). Let D ⊆ ∆P̂ be the set that contains the �rst
such pj on every path, that is, for every such path p1 . . . pn, D contains the element pj
such that j is the smallest number such that there exists a i < j with (∗).

We inductively de�ne a homomorphism from (P, a∗) to (UA,T , b) via an in�nite
sequence h0,h1, . . . of homomorphisms with increasing domains. In the following, when
we speak of a leaf in dom(h`), we mean an element of dom(h`) \N such that no successor
of that element is in dom(h`). While de�ning the h` , we maintain the following induction
hypothesis:

(IH) h` is a partial Σ-homomorphism from (P, a∗) to (UA,T , b) whose domain is con-
nected, includes N and for every leaf pj in dom(h`), there is a pi on the path from
N to pj such that (∗) holds for h` . Furthermore, for every p ∈ dom(h`) that is not a
leaf in dom(h`), h` is de�ned for all successors of p.

Let h0 be the restriction of h such that dom(h0) is the smallest connected set that includes
N and D, which means that all elements in D are leaves in dom(h0). Clearly, (IH) holds
for h0.

Ifh` is already constructed, we constructh`+1 by extendingh` to all successors of leaves
of dom(h`), as follows. For every leaf p ∈ dom(h`), let c = tail(p) and let p′ ∈ dom(h`) the
tuple on the path from N to p that ful�ls (∗), as guaranteed by (IH), and let c′ = tail(p′).
For every successor of p, introduced via c ↪→T ,Ar d for some role name r and some tuple
d, there is also a r -successor of p′, introduced via c′ ↪→T ,Ar d, since c = c′. By (IH), h` is
de�ned for all successors of p′, in particular, h` is de�ned for p′rd. If h`(p′rd) ∈ ind(A),
we set h`+1(prd) = h`(p′rd). Otherwise, h`(p′rd) lies in the anonymous part of UA,T ,
say h`(p′rd) = h`(p′)rt for some t ∈ TP, and we set h`+1(prd) = h`(p)rt .

It is now easy to see that h`+1 is again a Σ-homomorphism that ful�ls (IH) and that in
the limit, the h` de�ne a Σ-homomorphism from (P, a∗) to (UA,T , b), as required.

4.5 Discussion and Future Work
We have initiated the research on the query-by-example approach for querying in the
context of OES. Based on model-theoretical characterizations relying on universal models,
we have given foundational theoretical results for qbe(L,CQ) and qdef(L,CQ) for
L ∈ {ELI,Horn-ALCI,Horn-ALC}, and we have determined tight bounds for the
size of witness CQs in the worst case. A surprising result is that for Horn-ALC, the
extension with inverse roles makes the di�erence between coNExpTime-completeness
and undecidability.

The undecidability result suggests that problems where inverse roles play a role in
combination with products of models lead to complicated e�ects and can easily result in

105

4 Query-by-Example for Expressive Horn Description Logic Ontologies

the undecidability of these problems. In [Fun+19], several related problems were proven
to be undecidable using the same proof strategy.

Our investigation opens a whole new research avenue towards improving the usability
of ontology-enriched systems. From the theoretical perspective, the most natural next
step is to broaden the understanding to di�erent ontology and query languages.

Given the state of the art of OES, we are particularly interested in ‘lightweight’ DLs,
such as DL-Lite and EL; the model-theoretic characterizations already provide a solid
basis for these logics. For non-Horn or Datalog± ontologies it will be more challenging – a
good starting point for non-Horn DLs might be [Bot+19]. As for the query language, one
could also consider regular path queries. From the practical perspective, one can develop
systems for QBE over KBs which not only implement reverse-engineering algorithms,
but also guide the user in an interactive process to �nd the desired query, as done
in [BCS14; DAB16]. Given the high complexity of QBE, it will be also important to
design heuristics [TCP14; Mot+16] or approximations [BR17], as for relational databases.
Another possible way to approximate the problem is to bound the size of the witness
queries.

The conference paper [GJS18b], on which this chapter is based on, also includes results
on the combination qbe(Horn-ALCI,UCQ), which we have not covered in this chapter,
but which are included in Table 4.1. We refrained from presenting these results here,
since obtaining these results is rather technical and involved, while the query-by-example
problem for UCQs is also less interesting from a practical point of view. From a theoretical
perspective, however, this problem seems very natural, since by Theorem 4.5, it comes
down to checking the existence of a Σ-homomorphism between two universal models
of knowledge bases. Another unsolved problem concerns the sizes of witness queries
in qbe(Horn-ALCI,UCQ). In [GJS18b], we give a fourfold-exponential upper bound,
but it is unclear whether a triple-exponential or double-exponential upper bound can be
established, or if there are cases that require such large witnesses.

Related within DL research is the study of query conservative extensions (QCE), where
the question is whether two given ontologies or two knowledge bases can be distinguished
by a query (without providing examples). Indeed, in the context of QCE, characterizations
based on homomorphisms and universal models have been devised and inverse roles also
tend to increase the complexity, see [Bot+16] for a recent survey, and references therein.
We are, however, not aware of any direct reductions between QBE and QCE.

Within the broader context of machine learning, we believe that the results in this
chapter lay the foundations for questions related to learnability of queries, see [CP95]
for an overview. In this line, one could investigate an ILP inspired variant: if an instance
(T ,A, S+, S−, Σ) of QBE does not have a witness, is there an extension T ′ ⊇ T such that
there is a witness? In the context of active learning, one would be interested in learning
a (conjunctive) query with membership and/or equivalence queries over a DL knowledge
base. Finally, it would be interesting to extend the recently introduced framework of
learning concepts over background structures of small degree and having only local access
to the data [GR17] with an ontology.

106

5 Query Expressibility and Veri�cation in
the Data Integration Setting

In large enterprises that maintain huge amounts of data, it is often the case that the
data comes from multiple sources and is stored across several databases using di�erent
schemata. Nevertheless, it is crucial for these companies to have the ability to query data
e�ciently. Data integration is a classical approach to this problem, where the data sources
are kept untouched and a new, global schema is created. One formulates mappings, which
relate the vocabulary of the global schema to the vocabulary of the original data sources.
The global schema then becomes the only intended point of access.

In Ontology based data access (OBDA), one goes one step further. The distinguishing
feature here is the presence of an ontology formulated in the global schema, which
enables the formulation of OMQs over the global schema and thus, additional query
answers can be derived via logical reasoning. Queries over the global schema are then
translated back into queries over the data sources and executed in the existing database
systems.

In practice, OBDA is often approached in an incremental manner [TLN99; Kha+15;
SM17]. One starts with a small set of important source queries (typically hand crafted
by experts from the enterprise’s IT department) and builds mappings for the involved
sources and an initial ontology that support these queries, manually or with the help of
extraction tools [Jim+15; Pin+18]. The outcome of this �rst step is then evaluated and,
when considered successful, ontology and mappings are extended to support additional
queries. This process may proceed for several rounds and in fact forever since new data
sources and queries tend to appear as the enterprise develops and existing data sources
or the ontology need to be updated [Lem+17].

When data sources are numerous, data integration is often a considerable investment,
since the construction of both the mappings and the ontology is non-trivial and labour
intensive. Nevertheless, the OBDA data integration setting is already used in practice.
The energy company Equinor ASA (formerly Statoil) uses such a system [Kha+15], and
the system Optiqe is developed with a focus on real time OBDA for data streams.

Reasoning problems
In this chapter, we study two problems that occur in OBDA. The expressibility problem
asks whether a given source query qs is already expressible as a target query (that is, over
the global schema) and the veri�cation problem asks, additionally given a candidate target
query qt , whether qt expresses qs . We consider (U)CQs as source and target queries and
GAV (global-as-view) mappings, which are mappings that relate a symbol from the global

107

5 Query Expressibility and Veri�cation in the Data Integration Setting

vocabulary to one ore more CQs over the sources. As ontology languages we consider
DL-Lite and description logics between EL and ELHI, which are all very common
choices in OBDA. It follows from results in [NSV10; Afr11] that, even without ontologies,
additional source UCQs become expressible when full �rst-order logic (FO) is admitted
for the target query rather than only UCQs. In OBDA, however, going beyond UCQs
quickly results in undecidability of query answering [Baa+17] and thus we stick with
UCQs.

Possible reasons for non-expressibility include that the mappings do not transport all
data required for answering qs to the global schema and that the ontology ‘blurs’ the
distinction between di�erent relations from the sources. If qs is not expressible, one
might decide to add more mappings or to rework the ontology. The following example
illustrates this process.

Example 5.1. Assume the data sources contain a binary relation Man with Man(m,d)
meaning that the managermmanages the departmentd and a ternary relation Emp(e,d,o)
meaning that employee e works for department d in o�ce o.1 We start with a global schema
that consist of one concept name Employee and a binary relation manages, de�ned by the
following two mappings:

Man(x , z) ∧ Emp(y, z,u) → manages(x ,y)
Emp(x ,y, z) → Employee(x)

Then the source query qs(x) ← Man(x ,y) is not expressible because the mappings do not
provide su�cient data from the source. In particular, the queryqt (x) ← manages(x ,y) does
not express qs , since the source might contain an entry like Man(smith, legalDepartment)
but no entries for employees in the legal department, so that the �rst mapping does not
‘bite’. It trivially becomes expressible as qt (x) ← Manager(x) when we add the mapping

Man(x ,y) → Manager(x).

Next, we further add the following EL-ontology T :

Manager v Employee
Manager v ∃manages.Secretary

Then the source query qs(x) ← Emp(x ,y, z), which formerly was expressible as qt (x) ←
Employee(x), is no longer expressible due to the �rst CI in T . Informally, all the re-
quired data is there, but it is mixed with other data and we have no way to separate. The
source query qs(x ,y) ← Man(x , z) ∧ Emp(y, z,u), however, is expressible as qt (x ,y) ←
manages(x ,y) despite the second CI in T , intuitively because the additional data mixed
into manages by that CI always involves an anonymous constant introduced through the
existential quanti�er and is thus never returned as a certain answer.

1Note that relations in the data sources can have large arity, but the arity of symbols in the global schema
is at most binary, since it is a DL schema.

108

The expressibility problem is interesting especially when new queries should be imple-
mented into the system. The veri�cation problem is useful for example when a complex
query qt has been manually constructed to express qs and when the ontology, map-
pings, or source schemas have been updated, with an unclear impact on whether qt still
expresses qs .

Related Work

The expressibility problem and the veri�cation problem have been considered in the
context of open data publishing, there called �nding and recognition of source-to-target
rewritings [Cim17]. There, the general framework is described and algorithms for the
the two problems are given for the case of DL-Lite ontologies.

Besides this, the expressibility problem in OBDA is closely related to the problem of
query expressibility over views, which has been intensively studied in database theory,
see for example [Lev+95; DG97; Cal+02; NSV10; Afr11] and references therein. The
problem has occasionally also been considered in a DL context [CDL00; HM05; BLR97;
Cal+12]. These papers, however, study setups di�erent from the one we consider, both
regarding the rôle of the ontology and the description logics used.

Contribution and Structure of the Chapter

Our main results are that within the setup described above, expressibility and veri�cation
are Π

p
2-complete in DL-LiteRhorn and in many other dialects of DL-Lite, coNExpTime-

complete in DLs between EL and ELHI when the source UCQ is rooted, and 2-ExpTime-
complete in the unrestricted case. There are some surprises here. First, the Π

p
2 lower

bound already applies when the ontology is empty and the source query is a CQ which
means that, in the database theory setting, it is Πp

2-hard to decide the fundamental problem
whether a source CQ is expressible as a (U)CQ over a set of UCQ views. For this problem,
an NP upper bound was claimed without proof in [Lev+95], but our results show that
the problem is actually Π

p
2-complete. A second surprise is that 2-ExpTime- respectively

coNExpTime-hardness applies already in the case where the ontology is formulated in
EL (and when queries are UCQs). We are not aware of any other reasoning problem for
EL that has such a high complexity whereas there are several such problems known for
ELI [Bie+16].

In Section 5.1, we introduce the chapter-speci�c notions and formally de�ne the two
reasoning problems. In Section 5.2, we prove a characterization for expressibility that
we use throughout the rest of the chapter. In Section 5.3, we prove Π

p
2-completeness

for DL-Lite. The upper bounds for expressibility in ELHI are proved in Section 5.4
for rooted source queries and in Section 5.5 for unrestricted source queries. The upper
bounds for the veri�cation problem in ELHI are proved in Section 5.6. In Section 5.7,
we prove the matching lower bounds for expressibility and veri�cation problems in EL
and we give a conclusion in Section 5.8.

109

5 Query Expressibility and Veri�cation in the Data Integration Setting

5.1 Preliminaries
We introduce databases, GAV mappings, OBDA speci�cations, OBDA languages and
formally de�ne the expressibility problem and the veri�cation problem.

Since OBDA combines the �eld of description logics with classical database theory, we
are facing a clash of notation from both areas in this chapter concerning databases and
ABoxes. We introduce databases while brie�y describing how they relate to ABoxes and
what vocabulary we use.

Let S be a signature. A fact over S is an expression of the form R(a1 . . . an), where R ∈ S
is an n-ary symbol and ai ∈ NI. A S-database is a �nite non-empty set D of facts over
S. Thus, the syntactical di�erence between an ABox and a database is that in an ABox
we only have relations of arity one and two, while in a database, any arity is allowed.
While we formally de�ned the ai to come from the set of individuals, when they appear
in databases they are traditionally called constants. The active domain of a database D,
denoted adom(D), is the set of all constants that appear in some fact in D, so adom is the
analogue of ind for ABoxes.

To avoid dealing with special cases, we work with a slightly more general de�nition
of CQs in this chapter. For a conjunctive query q(x) ← R1(y1) ∧ . . . ∧ Rn(yn) over the
schema S, we do not require that all answer variables actually occur in some yi . All
further de�nitions for CQs and UCQs introduced in Section 2.4 are now to be understood
with this version of CQs. In particular, var(q) is the set of all variables that occur in q,
including answer variables that do not occur in the body of q, a UCQ is now a set of such
CQs, where as usual, every disjunct has the same arity, and a homomorphism from a CQ
q to a database D has to be de�ned also for answer variables that do not occur in the
body (but there are no restrictions put on where these variables are mapped to).

Let q1(x1),q2(x2) be UCQs of the same arity and over the same schema S. We say that
q1 is contained in q2, denoted q1 ⊆S q2, if for every S-database D, ansq1(D) ⊆ ansq2(D).
It is well-known that, when q1 and q2 are CQs, then q1 ⊆S q2 if and only if there is
a homomorphism from q2 to q1, that is, a function h : var(q2) → var(q1) such that
R(h(x)) ∈ q1 for every relational atom R(x) ∈ q2 and h(x2) = x1. We indicate the
existence of such a homomorphism with q2 → q1. When q1 and q2 are UCQs, then
q1 ⊆S q2 if and only if for every disjunct p1 ∈ q1 there is a disjunct p2 ∈ q2 such that
p2 → p1.

We shall frequently view CQs as databases whose facts are the body of the CQ, just
using variables as individuals. Conversely, we shall also view a tuple (D, a) with D a
database and a = a1 · · ·an ∈ adom(D)n as an n-ary CQ; note that repeated elements are
admitted in a. We do this by using the facts of D as the body of q (now using individuals
as variables) and adding the head q(a).

A global as view (GAV) mapping over a schema S takes the form φ(x, y) → ψ (x) where
φ(x, y) is a conjunction of relational atoms over S andψ (x) is of the form A(x), r (x ,y), or
r (x ,x) with A a concept name and r a role name. We call φ(x, y) the body of the mapping
andψ (x) its head. Every variable that occurs in the head must also occur in the body, so
a single GAV mapping corresponds to a unary or binary CQ over the source schema. Let
M be a set of GAV mappings over a schema S. For every S-database D, the mappings in

110

5.2 Characterizations and Basic Observations

M produce an ABox M(D), de�ned as follows:

M(D) = {R(a) | D |= φ(a, b) and φ(x, y) → R(x) ∈ M}.

This ABox can be physically materialized or left virtual; we do not make any assumptions
regarding this issue. Also note that there can be several mappings with the same head in
M, which means that the concept names and roles are de facto de�ned in terms of UCQs
over the source schema.

An OBDA speci�cation is a triple S = (T ,M, S)where S is the source schema, M a �nite
set of mappings over S, and T a TBox.2 By sch(M) we denote the schema that consists of
all relation names that occur in the heads of mappings in M. Informally, S is addressing
source data in schema S, translated into an sch(M)-ABox via mappings from M and then
evaluated under the ontology T . Note that T can use the relation names in sch(M) as
well as additional concept and role names, and so can queries that are posed against the
ABox.

We use [L,M] to denote the set of all OBDA speci�cations (T ,M, S) where T is
formulated in the ontology language L and all mappings in M are formulated in the
mapping languageM and call [L,M] an OBDA language. An example of an OBDA
language is [ELHI,GAV]. In this thesis, we shall concentrate on GAV mappings. While
other types of mappings such as LAV and GLAV are also interesting [Pog+08; Cim17],
they are outside the scope of this thesis.

De�nition 5.2. Let Qs and Qt be query languages and [L,M] an OBDA language.

1. The Qs-to-Qt veri�cation problem in [L,M] is to decide, given an OBDA spec-
i�cation S = (T ,M, S) ∈ [L,M], a source query qs ∈ Qs , and a target query
qt ∈ Qt of the same arity, whether qt is a realization of qs in S, that is, whether
ansqs (D) = certQ (M(D)) for all S-databases D, where Q = (T , sch(M),qt).

2. The Qs-to-Qt expressibility problem in [L,M] is to decide, given an OBDA spec-
i�cation S = (T ,M, S) ∈ [L,M] and a source query qs ∈ Qs , whether there is a
realization qt of qs in Qt . In the positive case, we say that qs is Qt -expressible in S.

Note that we quantify over all S-databases and not only those where D∪T is satis�able.
This however does not make a di�erence for most setups studied in this chapter, since
EL and ELHI cannot express inconsistency.

Table 5.1 gives an overview over all complexity results obtained in this chapter.

5.2 Characterizations and Basic Observations
In many classical cases of query expressibility over views, informally stated, qs is express-
ible over a set of mappings M (representing views) if and only if the natural candidate
M(qs) is a realization of qs , where M(qs) is the UCQ obtained from qs (seen as a databse)

2For readability, we consider a single data source, only. Multiple source databases can be represented as a
single one by assuming that their schemas are disjoint and taking the union.

111

5 Query Expressibility and Veri�cation in the Data Integration Setting

rUCQ-to-UCQ UCQ-to-UCQ CQ-to-CQ
empty ontology
and DL-Lite (*) Π

p
2-comp. Π

p
2-comp. Π

p
2-comp.

between EL and ELHI coNExpTime-comp. 2-ExpTime-comp. in 2-ExpTime

Table 5.1: The table shows the complexity of both the expressibility problem and the veri-
�cation problem under GAV mappings. (*) The result holds for various dialects
of DL-Lite, namely all dialects that ful�l the conditions listed in Theorem 5.12.

by applying the mappings. Furthermore, a query qt is a realization for qs if and only
if M−(qt) ≡ qs , where M−(qt) is the UCQ obtained from qt by applying the mappings
‘backwards’ [NSV10; Afr11]. Our starting point for proving decidability and upper com-
plexity bounds for expressibility in OBDA are the following two observations: First, if qs
is expressible, then M(qs) is a realization of qs , so M(qs) is still the natural candidate for a
realization, even in the presence of an ontology. Second, to see whether qs is expressible,
we need to check whether M−(qr) is contained in qs where qr is a (potentially in�nitary)
UCQ-rewriting of the UCQ M(qs) under the ontology. Veri�cation can be characterized in
a very similar way. These characterizations also show that expressibility can be reduced
to veri�cation in polynomial time and that if qs is expressible, then it is expressed by the
polynomial size UCQ M(qs).

Applying Mappings to Queries, Forwards and Backwards
Let S = (T ,M, S) be an OBDA speci�cation and A an ABox that uses only concept and
role names from sch(M). We say that a mapping φ(x, y) → ψ (x) from M is suitable for a
fact α ∈ A if ψ (x) and α are uni�able, that is, if there exists a function σ : x ∪ y→ NI
such thatψ (σ (x)) = α .

We write M−(A) to denote the set of S-databases D obtained from A as follows: for
every fact α ∈ A, choose a suitable mapping φ(x, y) → ψ (x) from M and include R(σ (z))
in D whenever R(z) is an atom in φ(x, y) and where σ : x ∪ y→ NI is chosen such that
ψ (σ (x)) = α and every variable from y is mapped to a fresh constant. Note that M−(A)
can contain many databases, one for every set of choices of suitable mappings for the
facts in A.

Example 5.3. Let A = {r (a,a),A(a)} and M contains the four mappings

S(x ,y) → r (x ,y) (1)
R(x ,y, z) → r (x ,y) (2)
S(x ,y) → A(x) (3)
T (x) → A(x) (4)

There are two suitable mappings for each fact in A, which gives 2 · 2 = 4 databases
in M−(A). Choosing mappings (1) and (3) results in D13 = {S(a,a), S(a,b)}. Choosing

112

5.2 Characterizations and Basic Observations

mappings (1) and (4) results in D14 = {S(a,a),T (a)}. Choosing mappings (2) and (3) re-
sults in D23 = {R(a,a,b), S(a, c)} and choosing mappings (2) and (4) results in D24 =

{R(a,a,b),T (a)}. Thus,M−(A) = {D13,D14,D23,D24}.

Both M and M− lift to sets of databases and ABoxes as expected, that is, if S is a set of
S-databases, then M(S) = {M(D) | D ∈ S} and if S is a set of ABoxes over sch(M), then
M−(S) =

⋃
A∈S M−(A).

In what follows, we shall often apply M to a CQ q(x) viewed as a database, and view
the result (which formally is an ABox) again as a CQ. In this case, the tuple of answer
variables is again x. Notice that it might be the case that not all variables from x appear
in the body of M(q(x)), so in general, M(q(x)) is an what we called an unsafe CQ, see
Section 2.4. The same applies to UCQs and sets of databases, and to M−(q). Note that
M−(q) gives a UCQ even when q was a CQ, as seen in Example 5.3.

Example 5.4. Consider the CQ q(x ,x ,y) ← R(x ,x) ∧ S(x ,y) ∧ S(y, z) and let M consist
of the single mapping R(x ,y) → r (x ,y), that is, the relation R is simply copied and the
relation S is dropped. Then M(q) viewed as a CQ is p(x ,x ,y) ← r (x ,x), where the answer
variable y does not occur in the body, so M(q) is unsafe.

The following fundamental lemma describes the (non)-e�ect of applying M and M−

on query containment. It is explicit or implicit in many papers concerned with query
rewriting under views or with query determinacy, see for example [NSV10; Afr11].

Lemma 5.5. Let M be a set of GAV mappings, q, q1 and q2 UCQs over S and r , r1 and r2
UCQs over sch(M). Then:

1. If q1 ⊆S q2, then M(q1) ⊆sch(M) M(q2).

2. If r1 ⊆sch(M) r2, thenM−(r1) ⊆S M−(r2).

3. q ⊆S M−(r) if and only if M(q) ⊆sch(M) r .

Proof. We prove all statements for CQs, it is straightforward to generalize to UCQs: one
only needs to employ the characterization of UCQ in terms of homomorphisms instead
of the one for CQs.

1. Since q1 ⊆ q2, we have q2 → q1. Let h be a homomorphism witnessing this. It
can be veri�ed that restricting h to var(M(q2)) yields a homomorphism from M(q2)
to M(q1), thus M(q1) ⊆sch(M) M(q2). In fact, let R(x) be a relational atom in M(q2).
Then R(x) was produced by some mapping φ(y) → R(z) ∈ M and homomorphism
h′ from φ(y) to q2 with h′(z) = x. Composing h′ with h enables an application of
the same mapping in q1 that delivers R(h(x)) ∈ M(q1), as required. Furthermore,
since h maps the tuple of answer variables of q2 to the tuple of answer variables of
q1, so does the restriction of h to var(M(q2)).

113

5 Query Expressibility and Veri�cation in the Data Integration Setting

2. From r1 ⊆sch(M) r2, we obtain r2 → r1. Let h be a witnessing homomorphism. We
need to show that for each disjunct p1 in the UCQ M−(r1), there is a disjunct p2 in
the UCQ M−(r2) such that p2 → p1. Thus let p1 be from M−(r1). By construction
of M−(r1), p1 is obtained from r1 by choosing a suitable mapping from M for each
relational atom in r1 and ‘applying it backwards’. We identify p2 by choosing for
every atom R(y) of r2 the mapping chosen for R(h(y)) ∈ r1 in the construction of
p1. We can then straightforwardly de�ne a homomorphism h′ from p2 to p1 by
extending h to the fresh variables in p2.

3. For the “only if” direction, assume p → q for some disjunct p in the UCQ M−(r) and
let h be a witnessing homomorphism. Let h′ be the restriction of h to var(r). It can
be veri�ed thath′ is a homomorphism from r to M(q). In fact, let R(x) be a relational
atom in r . Then by construction of M−(r) there is a mapping φ(y) → R(z) ∈ M that
was ‘applied backwards’ in the construction of p and thus there is a homomorphism
д from φ(y) to M−(r) with д(z) = x. Composing д with h enables an application of
the same mapping in q that delivers R(h(x)) ∈ M(q), as required.

For the “if” direction, assume that there is a homomorphism h from r to M(q).
We need to show that there is a disjunct p in the UCQ M−(r) such that p → q.
By construction, every atom R(x) in M(q) is produced by some mapping φ(y) →
R(z) ∈ M and homomorphism д from φ(y) to q with д(z) = x. We identify p by
choosing for every atom R(y) of r the mapping that produced R(h(y)) ∈ M(q). We
can then straightforwardly de�ne a homomorphism h′ from p to q by extending h
to the fresh variables in p.

Characterization for Veri�cation
The following theorem characterizes realizations in terms of UCQ rewritings and M−. It
can thus serve as a basis for deciding the veri�cation problem.

Theorem 5.6. Let S = (T ,M, S) be an OBDA speci�cation from [FO(=),GAV], qs a
UCQ over S, qt a UCQ over sch(M), and qr an in�nitary UCQ rewriting of the OMQ
Q = (T , sch(M),qt). Then qt is a realization of qs if and only if qs ≡S M−(qr).

Proof. “if”. Assume that qs ≡S M−(qr). We have to show that qt is a realization of qs . Since
qr is a rewriting of Q , it su�ces to prove that ansqs (D) = ansqr (M(D)) for all S-databases
D.

For “⊆”, assume that a ∈ ansqs (D). Let p be (D, a) viewed as a CQ. From a ∈ ansqs (D),
we obtain p ⊆ qs , and qs ⊆S M−(qr) yields p ⊆S M−(qr). With Point 3 of Lemma 5.5, it
follows that M(p) ⊆S qr , which by construction of p implies a ∈ ansqr (M(D)).

For “⊇”, assume that a ∈ ansqr (M(D)). Let p be (M(D), a) viewed as a UCQ. Then,
p ⊆sch(M) qr and Point 3 of Lemma 5.5 yields p′ ⊆S M−(qr) where p′ is (D, a) viewed as a
CQ. Together with M−(qr) ⊆S qs , we obtain p′ ⊆S qs , which implies that a ∈ ansqs (D).

114

5.2 Characterizations and Basic Observations

For the “only if” direction, assume that qt is a realization of qs . We have to show that
qs ≡S M−(qr). Thus, let D be an S-database and a a tuple from adom(D) whose length
matches the arity ofqs . Further, letp be (D, a) viewed as a database. Sinceqt is a realization
of qs and qr a rewriting of the OMQ Q , a ∈ ansqs (D) if and only if a ∈ ansqr (M(D)). The
latter is the case if and only if M(p) ⊆sch(M) qr which by Point 3 of Lemma 5.5 holds if
and only if p ⊆S M−(qr). This in turn is the case if and only if a ∈ ansM−(qr)(D).

Characterization for Expressibility
The next theorem characterizes the expressibility of source queries in an OBDA spec-
i�cation. It has several interesting consequences. First, it implies that the UCQ M(qs)
is a realization of a UCQ qs over S if there is any such realization. This is well known
in the case without an ontology [NSV10; Afr11] and is implicit in [Cim17] for a rather
special case of OBDA. Second, the theorem provides a polynomial time reduction of
expressibility to veri�cation: qs is expressible in S if and only if M(qs) is a realization
of qs in S. And third, it shows that if qs is a CQ, then CQ-expressibility coincides with
UCQ-expressibility. Thus, all lower bounds for CQ-to-CQ expressibility also apply to
(U)CQ-to-UCQ expressibility and all upper bounds for UCQ-to-UCQ veri�cation and
expressibility also apply to the corresponding CQ-to-(U)CQ case.

To prove the characterization for expressibility, we need the following lemma, which
states that an in�nitary UCQ rewriting (which is usually evaluated without the ontology)
does not give more answers if it is evaluated as an OMQ.

Lemma 5.7. Let Q = (T , Σ,q) be an OMQ with T formulated in FO(=), q a UCQ, and qr
an in�nitary UCQ rewriting of Q . Then (T , Σ,qr) ⊆Σ qr .

Proof. For brevity, let Q′ = (T , Σ,qr). Take a Σ-ABox A and an a ∈ ind(A) such that
a ∈ certQ ′(A). We show that a ∈ certQ (A), which implies a ∈ ansqr (A) as desired since
qr is a rewriting of Q . Let I be a model of A and T . We have to show that a ∈ ansq(I).

From a ∈ certQ ′(A), we obtain a ∈ ansqr (I). This clearly implies that there is an
interpretation If that is obtained by restricting I to a �nite subset of the domain and
satis�es a ∈ ansqr (If). Let AI be If viewed as an ABox, restricted to the symbols
in Σ. Since qr uses only symbols from Σ, a ∈ ansqr (AI). As qr is a rewriting of Q ,
a ∈ certQ (AI). Observe that I is a model of T and AI , and thus it follows that
a ∈ ansq(I), as required.

We are now ready to state the characterization for expressibility.

Theorem 5.8. Let S = (T ,M, S) be an OBDA speci�cation from (FO(=),GAV), qs a UCQ
over S, and qr an in�nitary UCQ rewriting of the OMQQ = (T , sch(M),M(qs)). Then qs is
UCQ-expressible in S if and only if M−(qr) ⊆S qs . Moreover, if this is the case, then M(qs)
is a realization of qs in S.

Proof. We �rst observe that

115

5 Query Expressibility and Veri�cation in the Data Integration Setting

(a) if M−(qr) ⊆S qs , then M(qs) is a realization of qs in S.

This actually follows from Theorem 5.6 because qs ⊆S M−(qr) always holds. In fact, since
M(qs) is the actual query in Q and since qr is a rewriting of Q , we have M(qs) ⊆sch(M) qr ;
applying Point 3 of Lemma 5.5 then yields qs ⊆S M−(qr).

Note that (a) establishes the “if” part of Theorem 5.8. In view of Theorem 5.6 and by
(a), we can prove both the “only if” and the “Moreover” part by showing that if there is
any realization qt of qs in S, then M(qs) is a realization of qs .

Thus assume that qt is such a realization and let Q′ be the OMQ (T , sch(M),qt) and q′r
a UCQ-rewriting of Q′. We aim to show that

(b) M−(qr) ⊆S M−(q′r).

This su�ces since Theorem 5.6 yields M−(q′r) ⊆S qs and composing (b) with this contain-
ment gives M−(qr) ⊆S qs that yields the desired result because of (a).

To establish (b), by Point 2 of Lemma 5.5 it su�ces to show qr ⊆sch(M) q
′
r . From

Theorem 5.6, we get qs ⊆S M−(q′r). Point 3 of Lemma 5.5 gives M(qs) ⊆sch(M) q
′
r . By

the semantics of certain answers, this implies (T , sch(M),M(qs)) ⊆sch(M) (T , sch(M),q′r).
Since the former OMQ is justQ andqr is a rewriting ofQ , we getqr ⊆sch(M) (T , sch(M),q′r).
It thus remains to show (T , sch(M),q′r) ⊆ q′r , which is exactly the statement of Lemma 5.7.

M(qs) is the Strongest Over-Approximation
We have seen that M(qs) is a realization of qs if qs is expressible. But the natural candidate
M(qs) has an even stronger property: For a given S = (T ,M, S) ∈ [FO(=),GAV] and
qs a UCQ over S, we call a query qt over sch(M) an over-approximation if ansqs (D) ⊆
certQt (M(D)) for all S-databases D, where Qt = (T , sch(M),qt). In this section, we show
that even if qs is not realizable, M(qs) is still the strongest over-approximation of qs , that
is, it is smallest (regarding OMQ containment) over-approximation of qs . However, this
is under the following condition:

For every database D and a ∈ ansqs (D), we have a ⊆ ind(M(D)). (5.1)

This condition says that all relevant constants to answer qs have to be exported. Of
course, if this is not the case, then there can not be any OMQ over the global scheme that
returns all answers to qs . It is easy to see that this condition is related to safety of M(qs):

Lemma 5.9. LetS = (T ,M, S) ∈ [FO(=),GAV] and qs a UCQ over S. Then Condition (5.1)
holds if and only ifM(qs) is safe.

Proof. Assume Condition (5.1) holds. Let (D, a) be qs(x) seen as a database with the
distinguished tuple a = x. Then a ∈ ansqs (D) and by Condition (5.1), a ⊆ ind(M(D)), so
every constant from a is exported to M(D) via some mapping from M. This means that
every variable from x appears in the body of M(qs), so M(qs) is safe.

116

5.2 Characterizations and Basic Observations

Now assume that M(qs) is safe and let D be a S-database and a = a1 . . . an ∈ ansqs (D).
Then there is a homomorphismh from qs to D withh(xi) = ai for 1 ≤ i ≤ n. Since M(qs) is
safe, every xi appears in the body of M(qs), so for every i there is a homomorphismдi from
the body of a view toqs with xi in its range. The compositionh◦дi yields a homomorphism
from the body of a view to D with ai in its range and thus, a ⊆ ind(M(D)).

The following lemma states that if Condition (5.1) is ful�lled, then M(qs) is indeed the
strongest over-approximation of qs .

Lemma 5.10. Let S = (T ,M, S) ∈ [FO(=),GAV] and qs a S-UCQ that ful�ls Condi-
tion (5.1). Let Qs = (T , sch(M),M(qs)) and Q = (T , sch(M),q) for some sch(M)-UCQ
q.

1. ansqs (D) ⊆ certQs (M(D)) for all S-databases D.

2. If ansqs (D) ⊆ certQ (M(D)) for all S-databases D, then Qs ⊆sch(M) Q .

Proof. For Point 1, let a ∈ ansqs (D). Let p be (D, a) seen as a CQ, so we have p ⊆S qs . By
Condition (5.1), we have a ⊆ ind(M(D)). In particular, a ∈ ansp(M(D)) by the identity
homomorphism on M(D). From Point 1 of Lemma 5.5 it follows that M(p) ⊆sch(M) M(qs),
so a ∈ ansM(qs)(D), which implies a ∈ certQs (D).

For Point 2, assume ansqs (D) ⊆ certQ (M(D)) holds for all S-databases D. We show that
Qs ⊆sch(M) Q . For every disjunct p(x) of qs , let (Dp, ap) be p(x) seen as a database with a
distinguished tuple ap = x. Of course, we have ap ∈ ansqs (Dp) for every such disjunct
p, so by assumption, ap ∈ certQ (M(Dp)). Let qr be a in�nitary UCQ rewriting of Q , so
ap ∈ ansqr (M(Dp)). By de�nition of Dp , this implies M(qs) ⊆sch(M) qr . This implies the
containment of the OMQs Qs ⊆sch(M) (T , sch(M),qr), where by Lemma 5.7, the latter is
contained in qr , which is equivalent to Q . Thus, Qs ⊆sch(M) Q .

Together, Lemma 5.9 and Lemma 5.10 imply that it can be checked in polynomial time
whether there exists a UCQ over-approximating qs by computing M(qs) and checking
whether it is safe. Additionally, in the positive case, this already computes the smallest
over-approximation, which is just M(qs).

The E�ect of the Ontology on Expressibility
The following corollary of Theorem 5.8 shows that while making the ontology logically
stronger might make some source queries inexpressible (as seen in Example 5.1), it
never results in additional such queries becoming expressible. Intuitively this is the case
because facts that are newly entailed by the ontology are mixed with facts that were
directly produced by a mapping, so it might become unclear what the raw result from
the mappings was.

Corollary 5.11. Let Si = (Ti ,M, S), i ∈ {1, 2}, be OBDA speci�cations from [FO,GAV]
with T1 |= T2, Q ∈ {CQ,UCQ} and qs from Q. Then Q-expressibility of qs in S1 implies
Q-expressibility of qs in S2.

117

5 Query Expressibility and Veri�cation in the Data Integration Setting

Proof. Assume that qs is Q-expressible in S1. Then Theorem 5.8 gives that M(qs) is a
realization, and this query is also from Q. We show that M(qs) is also a realization of qs in
S2. Letqr ,i be the canonical in�nitary UCQ rewriting of the OMQQi = (Ti , sch(M),M(qs)),
i ∈ {1, 2}. By Theorem 5.6, qs ≡S M−(qr ,1). Since T1 |= T2, we have Q2 ⊆sch(M) Q1.
This clearly implies that every CQ in qr ,2 is also in qr ,1. Thus qs ≡S M−(qr ,1) implies
qs ⊇S M−(qr ,2). It remains to argue that qs ⊆S M−(qr ,2). Since qr ,2 is a rewriting of Q2, we
have Q2 ⊆sch(M) qr ,2. By the semantics and de�nition of Q2, M(qs) ⊆sch(M) Q2 and thus
M(qs) ⊆sch(M) qr ,2. Point 3 of Lemma 5.5 yields qs ⊆S M−(qr ,2) as desired.

5.3 Expressibility and Veri�cation in DL-Lite
We consider OBDA speci�cations in which the ontology is formulated in a dialect of
DL-Lite. The distinguishing feature of logics from this family is that �nite UCQ rewritings
of OMQs always exist. Therefore, Theorems 5.6 and 5.8 immediately imply decidability of
the veri�cation and expressibility problem, respectively. It is, however, well known that
UCQ rewritings can become exponential in size [Got+14] and thus optimal complexity
bounds are not immediate.

We consider the dialect DL-LiteRhorn as a typical representative of the DL-Lite family of
logics. However, our results also apply to many other dialects since their proof rests only
on the following properties, established in [Art+09].

Theorem 5.12. In DL-LiteRhorn,

1. all OMQs Q have a UCQ-rewriting in which all CQs are of size polynomial in |Q |;

2. OMQ evaluation is in NP in combined complexity.

We remark that the results presented in this section are related to those obtained in
[Cim17], where the DL-LiteA,id dialect of DL-Lite is considered, mappings are GLAV,
and queries CQs. A main di�erence is that Cima’s technical results concern rewritings
that are complete but not necessarily sound, which corresponds to replacing ‘ansqs (D) =
certQ (M(D))’ in De�nition 5.2 with ‘ansqs (D) ⊆ certQ (M(D))’. Some of his technical
constructions are similar to ours. Note that DL-LiteA,id also satis�es the conditions from
Theorem 5.12 and thus our results apply to [DL-LiteA,id ,GAV] as well.

For an OMQ Q = (T , S,q), with T formulated in FO(=) and q a UCQ, the canonical
UCQ-rewriting of size n is the UCQ qc that consists of all pairs (A, a) viewed as a CQ
where a ∈ certQ (A) and |A| ≤ n. The following lemma is interesting in connection with
Point 1 of Theorem 5.12 as it allows us to concentrate on canonical UCQ rewritings of
polynomial size.

Lemma 5.13. Let Q = (T , Σ,q) be an OMQ with T formulated in FO(=) and q a UCQ.
If Q has a UCQ-rewriting qr in which all CQs are of size at most n, then the canonical
UCQ-rewriting qc of size n is also a rewriting of Q .

118

5.3 Expressibility and Veri�cation in DL-Lite

Proof. We show that qc ≡Σ qr . Since qr is a UCQ-rewriting of Q , it follows that qc is also
a UCQ-rewriting of Q . We consider the two directions of the equivalence separately.
qc ⊇Σ qr . This holds because every CQ q in qr is also an element in qc . In fact, q(x)

being in qr means that it is of size at most n. Viewing q as an ABox and x as a candidate
answer, we trivially have x ∈ ansqr (q) and thus x ∈ certQ (q) because qr is a rewriting of
Q . As a consequence, the pair (q, x) gives rise to a CQ in qc .
qc ⊆Σ qr . Let q in qc . We have to show that there is a CQ q′ in qr such that q′→ q. By

de�nition of qc , q is a pair (A, a) viewed as a CQ such that a ∈ certQ (A). Because qr is
a rewriting of Q , it follows from the latter that a ∈ ansqr (A). This means that there is
some q′ in qr with a homomorphism h from q′ to A that maps the answer variables of q′
to a. As q is just A with a as the answer variables, h shows q′→ q.

We are now ready to establish the upper bound.

Theorem 5.14. In [DL-LiteRhorn,GAV], the UCQ-to-UCQ expressibility and veri�cation
problems are in Π

p
2.

Proof. As remarked before Theorem 5.8, expressibility polynomially reduces to veri�ca-
tion and thus it su�ces to consider the latter. Hence let the following be given: an OBDA
speci�cation S = (T ,M, S) from [DL-LiteRhorn,GAV], a UCQ qs over schema S, and a UCQ
qt over the schema sch(M). Let n be the size of this input.

Let Q = (T , sch(M),qt) and note that the size of Q is polynomial in n. By Point 1 of
Theorem 5.12, we can assume that Q has a UCQ-rewriting in which all CQs are of size
P(n), P a polynomial. By Lemma 5.13, we can even assume that this rewriting is the
canonical UCQ-rewriting qc of size P(n). By Theorem 5.6, qt is thus a realization of qs
if and only if qs ≡S M−(qc). We show that both inclusions of this equivalence can be
checked in Π

p
2.

First, consider the inclusion qs ⊆S M−(qc). It holds if and only if for every q in qs , there
is a p in M−(qc) and a homomorphism p → q. This condition can be checked even in NP:
iterate over all CQs q in qs (of which there are at most n), guess a disjunct p from M−(qc),
and verify in NP that p → q.

To guess a p in M−(qc), it su�ces to guess a pair (A, a) in qc and suitable mappings
from M for every fact in A, which determine p. Then, p can be computed in polynomial
time from A and these suitable mappings. We guess the pair (A, a) from qc by guessing
an arbitrary ABoxA of size at most P(n) and then verifying that a ∈ certQ (A). By Point 2
of Theorem 5.12 this veri�cation is possible in NP.

We next consider the inclusion M−(qc) ⊆S qs . This holds if and only if for every p
in M−(qc), there is a CQ q in qs such that q → p. We can thus universally guess a p in
M−(qc), then iterate over all CQs q in qs , and for each such q check in NP whether q → p.
For universally guessing p, we actually guess a CQ p of size at most P ′(n) and then verify
that it is in M−(qc). It has already been argued above that this is possible in NP. Overall,
we obtain a Π

p
2-algorithm, as desired.

We next show that the expressibility problem in [DL-LiteRhorn,GAV] is Πp
2-hard, and

thus the same holds for the veri�cation problem. Interestingly, the lower bound already

119

5 Query Expressibility and Veri�cation in the Data Integration Setting

applies when the ontology is empty and the source query is a CQ. As noted in the
introduction to this chapter, this shows that expressibility of a source CQ as a (U)CQ
over UCQ views is Πp

2-hard, and in fact it is Πp
2-complete by Theorem 5.14. This corrects

a (very likely) erroneous statement of NP-completeness in [Lev+95].

Theorem 5.15. The CQ-to-CQ expressibility problem is Πp
2-hard for GAV mappings and

the empty ontology.

The proof is by reduction of validity of ∀∃-3SAT formulas. By Theorem 5.8, expressibil-
ity in the absence of an ontology amounts to checking the containment M−(M(qs)) ⊆ qs ,
which is equivalent to the ∀∃-statement that for all p ∈ M−(M(qs)) there exists a homo-
morphism qs → p. Hence, we encode a ∀∃-3SAT formula such that the outer universal
quanti�ers correspond to the di�erent choices of mappings when taking a p ∈ M−(M(qs)),
whereas the inner existential quanti�ers of the formulas correspond to homomorphisms
qs → p.

In preparation for the proof, let us recall the standard representation of 3SAT as a
constraint satisfaction problem (CSP) and sketch how this can be used to show that the
CQ-to-CQ expressibility problem is NP-hard for GAV mappings and the empty ontology.
Let φ(y1, . . . ,ym) be a propositional logic formula in 3CNF. Let S be the schema that
consists of all ternary relation names Cu1u2u3 with u1u2u3 ∈ {n, p}3. Every clause in φ
can be viewed as a fact over signature S by letting the ui represent the polarities of the
variables in the clause (n stands for negative, p stands for positive) and using the variables
fromφ as constants. For example, ¬y2∨y1∨¬y3 gives the factCnpn(y2,y1,y3). Thus, φ can
be viewed as a database Dφ . What’s more, we can build a database D that is independent
of φ and such that Dφ → D if and only if φ is satis�able. Using CSP parlance, we call
D the template for 3SAT. It is actually easy to �nd D: use two constants 0 and 1 that
represent truth values and add the fact Cu1u2u3(t1, t2, t3) if the truth assignment t1, t2, t3 to
the three variables of a clause with polarities u1u2u3 makes the clause true. For example,
Cnpn(t1, t2, t3) is added for every t1t2t3 ∈ {0, 1}3 \ {101}.

How does this relate to the expressibility problem? Let qs be Dφ viewed as a Boolean
CQ and take the mappings Dφ → A(x) and D → A(x)where Dφ and D are viewed as CQs
with x an arbitrary but �xed variable. Then M−(M(qs)) is (equivalent to) Dφ ∨D with Dφ

and D viewed as a Boolean CQs. By applying Theorem 5.8 where qr is now simply M(qs)
since the ontology is empty, we obtain the following: qs is CQ-expressible if and only if
qs → Dφ ∨ D, which is the case if and only if qs → Dφ and qs → D, which in turn is the
case if and only if qs → D, since qs → Dφ always holds.

We now lift this simple reduction to ∀∃-3SAT. Thus let

φ = ∀x0 · · · ∀xn∃y0 · · · ∃ymψ (x0, . . . ,xn,y0, . . . ,ym)
be a quanti�ed Boolean formula withψ in 3CNF. We construct an OBDA speci�cation
(∅,M, S) with M a set of GAV mappings as well as a Boolean CQ qs over schema S such
that φ is true if and only if qs is CQ-expressible in (∅,M, S).

The universally quanti�ed variables have a di�erent status in the reduction as, un-
like the existentially quanti�ed variables, they are not represented by variables in qs .

120

5.3 Expressibility and Veri�cation in DL-Lite

For example, the clause (y1 ∨ ¬x0 ∨ ¬y1) gives rise to the atom Cp¬x0n(y1,y1). This is
compensated by constructing the mappings in M so that M−(M(qs)) is now essentially a
disjunction of (qs and) exponentially many versions of the template Dφ , one for every
truth assignment to the universally quanti�ed variables. For example, such a template
includes Cp¬x0n(t1, t2) for all t1t2 ∈ {0, 1}2 if it represents a truth assignment that makes
x0 true and otherwise it includes Cp¬x0n(t1, t2) for all t1t2 ∈ {0, 1}2 except 01. To achieve
this, we use binary relations in the head of mappings instead of unary ones. In fact,
we want M(qs) to be of the form M(qs) =

∧n
i=0 ri(y0,y1) and there will be two ways to

translate each ri(y0,y1) backwards in the construction of M−(M(qs)), corresponding to
the two possible truth values of the universally quanti�ed variable xi .

We now make the reduction precise. LetU = {x0, . . . ,xn,¬x0, . . . ,¬xn, n, p}. For every
triple u1u2u3 ∈ U 3 we include a relation Cu1u2u3 in S. The arity of Cu1u2u3 is the number of
positions in u1u2u3 that are n or p. Additionally, S contains a binary relation Z which
helps us to achieve that M(qs) is of the intended form even when qs admits non-trivial
automorphisms.

We de�ne qs to encode φ. The existentially quanti�ed variables of qs are y0, . . . ,ym.
For every clause `1 ∨ `2 ∨ `3 in ψ , we introduce an atom in qs with the symbol Cu1u2u3 ,
where ui = `i if `i contains a universally quanti�ed variable, ui = p if `i is a positive
literal with an existentially quanti�ed variable and ui = n if `i is a negative literal with an
existentially quanti�ed variable. The variables that occur in this atom are the existentially
quali�ed variables of the clause in the order of their appearance in the clause, see above
for an example. Moreover, we add the atom Z (y0,y1) to qs , assuming w.l.o.g. that there
are at least two existentially quanti�ed variables in φ.

We now construct the GAV mappings in M. For every universally quanti�ed variable
xi of φ, we introduce three mappings with the same head ri(z0, z1):

1. In the �rst mapping q′s(z0, z1) → ri(z0, z1), the body is qs with y0 and y1 renamed
to z0 and z1.

2. The body of the second mapping τ 0i (z0, z1) → ri(z0, z1) generates the part of the
template that must be there when xi is assigned truth value 0. The variables z0 and
z1 represent the two elements of the template.

The body τ 0i only contains the variables z0 and z1. For every u1u2u3 ∈ U 3 and
sequence v = v1v2 · · · over {z0, z1} of the same length as the arity of Cu1u2u3 , we
add the atom Cu1u2u3(v) to τ 0i if at least one of the following holds:

a) ¬xi is among u1, u2 and u3,

b) vj = z0 and the j-th appearance of n or p in u1u2u3 is n for some j,

c) vj = z1 and the j-th appearance of n or p in u1u2u3 is p for some j.

We also add the atoms Z (z0, z0), Z (z0, z1), Z (z1, z0) and Z (z1, z1) to τ 0i .

(For example in τ 03 we add the atoms Cpx3n(z0, z0), Cpx3n(z1, z0), and Cpx3n(z1, z1),
but not Cpx3n(z0, z1). We add all Cp¬x3n(z0, z0), Cp¬x3n(z0, z1), Cp¬x3n(z1, z0) and
Cp¬x3n(z1, z1). Also, we add Cx2x3p(z1) but not Cx2x3p(z0).)

121

5 Query Expressibility and Veri�cation in the Data Integration Setting

3. The body τ 1i (z0, z1) of the third mapping τ 1i (z0, z1) → ri(z0, z1) is dual to τ 0i (z0, z1)
in that it encodes the case where xi is true. This means the de�nition is as above
with the di�erence that in Condition 2a, the literal xi , and not ¬xi , is required to be
among u1, u2 and u3.

Lemma 5.16. φ is true if and only if qs is CQ-expressible in (∅,M, S).

Proof. By Theorem 5.8, it su�ces to show that φ is true if and only if M−(M(qs)) ⊆ qs ,
that is, if and only if there is a homomorphism from qs to every disjunct of M−(M(qs)).

We �rst describe the UCQ M−(M(qs)). First observe that M(qs) is indeed
∧n

i=0 ri(y0,y1):
The mapping q′s → ri(z0, z1) has a match at (y0,y1) for every i and it has no other matches
since Z (z0, z1) is in q′s and Z (y0,y1) is the only atom in qs the contains Z . The mappings
τki (z0, z1) → ri(z0, z1) do not match anywhere inqs fork ∈ {0, 1}, since the atomsZ (z0, z0),
Z (z0, z1), Z (z1, z0) and Z (z1, z1) all appear in the body of these mappings. There are 3n+1
disjuncts in M−(M(qs)), one for every combination of n + 1 choices of the three di�erent
mappings with head ri(z0, z1), for every i ∈ {0, . . . ,n}. We now prove the lemma.

“⇒”. Assume that φ is true. We want to show that there is a homomorphism from
qs into every CQ in M−(M(qs)). Pick an arbitrary CQ p in M−(M(qs)). Such a disjunct
corresponds of a choice of one of the bodies q′s , τ 0i , or τ 1i for each i ∈ {0, . . . ,n}.

First consider the case where for some i we choose q′s . In that case p contains an
isomorphic copy of qs and thus we are done.

Now consider the case where for no i we choose a mapping with body q′s , that is, for
every i we choose τ 0i or τ 1i . This corresponds to an assignment t of the truth values 0
and 1 to the variables x0, . . . ,xn. Because φ = ∀x0, . . . ,xn∃y0, . . . ,ymψ is true we can
extend t to an assignment for x0, . . . ,xn,y0, . . . ,ym that makes ψ true. We de�ne the
homomorphism h from qs to p such that h(yj) = yt(yj) for all j ∈ {0, . . . ,m}. We need
to verify that h is a homomorphism. All atoms with the symbol Z are preserved as by
de�nition of the τ 0i and τ 1i , there is a Z atom in p for any pair over {y0,y1}. Consider
then any atomCu1u2u3(y) from qs . There is a corresponding clause `1 ∨ `2 ∨ `3 inψ that is
true under the assignment t . It follows that one of the literals `1, `2, `3 is true under t . Let
`k be this literal. We make a case distinction:

If `k = xi is a universally quanti�ed variable, then t(xi) = 1 and hence p contains τ 1i .
By (the implicit) Condition 3a, from the de�nition of M, it follows that τ 1i contains the
atom Cu1u2u3(yt(y)).

In the case where `k = ¬xi , we use the same argument and Condition 2a.
If `k = yj is an existentially quanti�ed variable, then uk = p and t(yj) = 1. Hence,

h(yj) = y1 and from Condition (2c) or (3c), the atom Cu1u2u3 is in τ 00 and in τ 10 , thus in p
(since we can assume w.l.o.g. that there is at least one universally quanti�ed variable).

The case where `k = ¬yj is analogous, using Conditions (2b) or (3b).
“⇐”. Assume that there is a homomorphism from qs into every disjunct of M−(M(qs)).

We want to show that φ is true. So take any assignment t for x0, . . . ,xn. We need to
extend t to an assignment t ′ for x0, . . . ,xn,y0, . . . ,ym that makes ψ true. Consider the
disjunct pt of M−(M(qs)) that arises from choosing the mapping τ t(xi)i (z0, z1) → ri(z0, z1)

122

5.4 Expressibility in ELHI: Upper Bound for Rooted Queries

for each i = 0, . . . ,n. By assumption, there is a homomorphism h from qs to pt . Clearly,
pt contains only the variables y0 and y1. We de�ne t ′ such that t ′(xi) = t(xi), t ′(yj) = 0 if
h(yj) = y0, and t ′(yj) = 1 if h(yj) = y1.

It remains to be shown thatψ is true under t ′. Take an arbitrary clause `1 ∨ `2 ∨ `3 inψ .
Consider the corresponding atom Cu1u2u3(y) in qs . As h is a homomorphism, Cu1u2u3(h(y))
is in pt . By de�nition of pt this means that Cu1u2u3(h(y)) is contained in τ t(xi)i for some i .
Hence one of the conditions (a), (b) or (c) from Point 2 or 3 of the construction of M is
satis�ed.

If (a) is satis�ed and t(xi) = 0, then ¬xi is among u1,u2,u3. It follows that then ¬xi is a
literal in `1 ∨ `2 ∨ `3 and hence the clause is true under t ′ because t ′(xi) = t(xi). In case
(a) is satis�ed and t(xi) = 1, we can reason analogously.

If (b) is satis�ed, then h(yi) = y0 for some yi in y, and the i-th appearance of either n or
p in u1u2u3 is n. Hence ¬yi is a literal in `1 ∨ `2 ∨ `3 which makes the clause true because
t ′(y1) = 0 since h(yi) = y0. We reason analogously in the case where (c) is satis�ed.

5.4 Expressibility in ELHI: Upper Bound for Rooted
Queries

We show that the expressibility problem in [ELHI,GAV] is in coNExpTime when the
source query is a rooted UCQ.

Theorem 5.17. The rUCQ-to-UCQ expressibility problem for [ELHI,GAV] is solvable
in coNExpTime.

To prepare for lifting the result from expressibility to veri�cation later, we actually
establish a slightly more general result as needed. Note that the following implies
Theorem 5.17 since, by Theorem 5.8, we can simply use M(qs) for qt .

Theorem 5.18. Given an OBDA setting S = (T ,M, S) from [ELHI,GAV], an rUCQ qs
over S, and a UCQ qt over sch(M), it is in coNExpTime to decide whether M−(qr) ⊆S qs ,
where qr is an in�nitary UCQ-rewriting of the OMQ Q = (T , sch(M),qt).

To prove Theorem 5.18, we now describe a NExpTime algorithm for deciding the
complement of the problem described there: we want to check whether M−(qr) * qs ,
that is, whether there is a CQ p in the UCQ M−(qr) such that q 9 p for all CQs q in
qs . Because all rewritings of Q are equivalent, it su�ces to prove the theorem for any
particular in�nitary UCQ-rewriting qr of Q . We choose to work with the canonical one
introduced at the beginning of the characterizations section. The algorithm is as follows:

1. Guess a sch(M)-ABox A such that |ind(A)| ≤ |qt | + |qt | · |T | |qs |+1 and a tuple a in
A of the same arity as qt .

2. Verify that a ∈ certQ (A) to make sure that (A, a) viewed as a CQ is in the UCQ
qr . This can be done by an algorithm that is exponential in |T | and |qt |, but only
polynomial in |A|; see for example [KL07]. Hence, the overall running time is
single exponential in the size of the original input.

123

5 Query Expressibility and Veri�cation in the Data Integration Setting

3. Guess a disjunct p from the UCQ M−(A, a) by guessing, for each fact α in A, a
suitable mapping from M. Note that both A and p are of single exponential size.

4. Verify that q 9 p for all CQs q in the rUCQ qs . This can be done in single
exponential time using brute force.

This is clearly a NExpTime algorithm.

Lemma 5.19. The algorithm decides the complement of the problem in Theorem 5.18.

Proof. It is easy to verify the soundness part: a successful run of the algorithm identi�es
p as a CQ in M−(qr) such that for any disjunct q of qs , q 9 p, which yields M−(qr) *S qs .

For the completeness direction assume that M−(qr) *S qs . This means there is an ABox
A and tuple a such that (A, a) is in the canonical rewriting qr of Q and there is p in
M−(A, a) such that for all q in qs we have q 6→ p. We show how to obtain an ABox A′′
that the algorithm can choose in step 1 in order to accept.

By Lemma 2.3, there exists an pseudo tree-shaped ABox A′ of core-size |qt | and
branching degree at most |T | and tuple a′ in the core ofA′ such that a′ ∈ certQ (A′) and
there is a homomorphism (A′, a′) → (A, a).

De�ne A′′ to be obtained from the pseudo tree-shaped ABox A′ by removing all
assertions that contain at least one individual that has a distance larger than |qs | from the
core. Furthermore, we add all assertions A(b) and r (b,b) for all A and r in sch(M) and for
all individuals b that have exactly distance |qs | from the core.

The size of the resulting ABox A′′ is at most |qt | + |qt | · |T | |qs | , so A′′ can be chosen
in Step 1.

Claim: Step 2 succeeds, that is, a′ ∈ certQ (A′′).

Proof of claim: De�ne a homomorphism h : A′→ A′′ that is the identity on individuals
of distance at most |qs | from the core and maps an individual b of distance more than |qs |
from the core to the unique b′ of distance precisely |qs | such that b is in the subtree rooted
at b′. This indeed de�nes a homomorphism because inA′′ all symbols in sch(M) are true
at each individual with distance |qs |. Now a′ ∈ certQ (A′′) follows from a′ ∈ certQ (A′)
because h is a homomorphism that �xes the tuple a′.

We describe the query p′ in M−(A′′) that can be chosen in step 3. For every fact in A′′
that is also in A′ choose the same mapping that was chosen to obtain p from A. For all
other facts we choose an arbitrary suitable mapping.

Claim: Step 4 succeeds, that is, q 6→ p′ for all q in qs .

Proof of claim: Assume towards a contradiction that there is a homomorphism д′ : q → p′

for some q in qs . Because A′′ and A′ are equal when restricted to variables of distance
less than |qs | from a′ it follows that p and p′ are equal when restricted to variables of
distance less than |qs | from a′. This is due to the fact that the distance of two variables
from A cannot decrease in p in M−(A), and similarly for A′′ and p′.

Because |q | ≤ |qs | and q is rooted it follows that all constants in the image ofд′ : q → p′

have distance less than |qs | from a in p. Since a lies in the core, these constants have

124

5.5 Expressibility in ELHI: Upper Bound for Unrestricted Queries

also distance less than |qs | from the core. Because p and p′ are equal when restricted to
constants of distance less than |qs | from the core, there is a homomorphism д : q → p,
which contradicts our assumption on p.

5.5 Expressibility in ELHI: Upper Bound for Unrestricted
Queries

We consider the UCQ-to-UCQ expressibility problem in [ELHI,GAV], that is, we drop
the assumption from the previous section that the source query is rooted. This increases
the complexity from coNExpTime to 2-ExpTime. Note that similar e�ects have been
observed in the context of di�erent reasoning problems in [Lut08; Bie+16]. In this section,
we show the upper bound.

Theorem5.20. In [ELHI,GAV], the UCQ-to-UCQ expressibility problem is in 2ExpTime.

As in the rooted case, we again prove a slightly more general result that can be reused
when studying the veri�cation problem. We can obtain Theorem 5.20 from the following
by setting qt = M(qs) and applying Theorem 5.8.

Theorem 5.21. Given an OBDA settingS = (T ,M, S) from [ELHI,GAV] a UCQ qs over
S, and a UCQ qt over sch(M), it is in 2ExpTime to decide whether M−(qr) ⊆S qs , where qr
is an in�nitary UCQ-rewriting of the OMQ Q = (T , sch(M),qt).

To prove Theorem 5.21, we start by choosing a suitable UCQ-rewriting qr . Instead of
working with the canonical in�nitary UCQ-rewriting, here we prefer to use the UCQ
that consists of all pairs (A, a) viewed as a CQ and where A is a pseudo tree-shaped
sch(M)-ABox that satis�es a ∈ certQ (A) and is of the dimensions stated in Lemma 2.3,
that is, the core of A is not larger than |q | and the outdegree of A is not larger than |T |.
Due to that lemma, qr clearly is an in�nitary UCQ-rewriting of Q .

We give a decision procedure for the complement of the problem in Theorem 5.21.
We thus have to decide whether there is a pseudo-tree shaped sch(M)-ABox A of the
mentioned dimensions, an a ∈ certQ (A), and a CQ p in the UCQ M−(A,a) such that
q 9 p for all CQs q in qs . This can be done by constructing a TWAPA A on �nite
trees (introduced in Section 2.9) that accepts precisely those trees that represent a triple
(A, a,p) with the components as described above, and then testing whether the language
accepted by A is empty.

In the following, we detail this construction. We reuse some encodings and notation
from a TWAPA construction that is employed in [Bie+16] to decide OMQ containment
as this saves us from redoing certain routine work. We encode triples (A, a,p) as �nite
(|T | · |qt |)-ary Σε ∪ ΣN -labeled trees, where Σε is the alphabet used for labeling the root
node and ΣN is for non-root nodes. These alphabets are di�erent because the root of a
tree represents the core part of a pseudo tree-shaped ABox whereas each non-root node
represents a single constant of the ABox that is outside the core. Let Ccore be a �xed set
of |qt | constants. Formally, the alphabet Σε is the set of all triples (B, a, µ) where B is a

125

5 Query Expressibility and Veri�cation in the Data Integration Setting

sch(M)-ABox of size at most |qt | that uses only constants from Ccore, a is a tuple over Ccore
whose length matches the arity of qs , and µ associates every fact α in B with a mapping
µ(α) ∈ M that is suitable for α . The alphabet ΣN consists of all triples (Θ,M, µ) where
Θ ⊆ (NC ∩ sch(M))] {r , r− | r ∈ NR ∩ sch(M)}] Ccore contains exactly one (potentially
inverse) role and at most one element of Ccore, M ∈ M is a mapping suitable for the
fact r (a,b) with r the unique role name in Θ, and µ assigns to each A ∈ Θ a mapping
µ(A) ∈ M suitable for the fact A(a).3 In the following, a labeled tree generally means a
(|T | · |qt |)-ary Σε ∪ ΣN -labeled tree.

A labeled tree is proper if

(i) the root node is labeled with a symbol from Σε ,

(ii) each child of the root is labeled with a symbol from ΣN that contains an element of
Ccore

(iii) every other non-root node is labeled with a symbol from ΣN that contains no
constant name

(iv) every non-root node has at most |T | successors and

(v) for every a ∈ Ccore, the root node has at most |T | successors whose label includes a.

A proper labeled tree (T ,L) with L(ε) = (B, a, µ) encodes the triple (A, a,p) where

A = B ∪ {A(x) | A ∈ Θ(x)}

∪ {r (b,x) | {b, r } ⊆ Θ(x)} ∪ {r (x ,b) | {b, r−} ⊆ Θ(x)}

∪ {r (x ,y) | r ∈ Θ(y),y is a child of x ,Θ(x) ∈ ΣN }

∪ {r (y,x) | r− ∈ Θ(y),y is a child of x ,Θ(x) ∈ ΣN },

Θ(x) denoting Θ when L(x) = (Θ,M, µ) (and unde�ned otherwise), and where p is the CQ
from M−(A) that can be obtained by choosing for every fact in A the suitable mapping
from M assigned to it by L.

The desired TWAPA A is obtained as the intersection of two TWAPA A1 and A2,
where A1 accepts exactly the proper labeled trees (T ,L) that encode a pair (A, a,p) with
a ∈ certQ (A) and A2 is obtained as the complement of an automaton A2 that accepts
a proper labeled tree (T ,L) encoding a pair (A, a,p) if and only if q → p for some CQ
q in qs . In fact, the automaton A1 is what we can reuse from [Bie+16], see Point 1 in
Proposition 13 there. The only di�erence is that our trees are decorated in a richer way, so
in our case the TWAPA ignores the part of the labeling that is concerned with mappings
from M. The number of states of A1 is single exponential in |qt | and |T |.

We sketch the construction of the automaton A2 for a single CQ q of qs (the general
case can be dealt with using union). Let q1, . . . ,qk be the maximal connected components
of q. We de�ne automata A2,1, . . . ,A2,k where A2,i accepts (T ,L) encoding (A, a,p) if and
only if qi → p, and then intersect to obtain A2. Let (T ,L) be a proper labeled tree. A

3Here, a and b are arbitrary but �xed constants.

126

5.6 Veri�cation in ELHI: Upper Bounds

set T ′ ⊆ T is a subtree of T if for any s, t ∈ T ′, all nodes from T that are on the shortest
(undirected) path from s to t are in T ′. We use (T ′,L) to denote the restriction of (T ,L)
to T ′ and M−(T ′,L) to denote the subquery of p which contains only the atoms in p that
can be derived from the part of A generated by the subtree (T ′,L) of (T ,L).

To de�ne A2,i , let C denote the set of all labeled trees (T ′,L) of size at most |qi | such that
there is a proper labeled tree (T ,L) and qi → M−(T ′,L) with a homomorphism that only
needs to respect the answer variables from q that actually occur in qi (if there are any,
thenT ′must thus contain the root ofT). The automaton A2,i is then constructed such that
it accepts a proper labeled tree (T ,L) if and only if it contains a subtree from C. It should
be clear that such an automaton can be constructed using only single exponentially many
states. Moreover, it can be veri�ed that A2,i accepts exactly the desired trees. We obtain
an overall automaton with single exponentially many states which together with the
ExpTime-complete emptiness problem of TWAPA gives Theorem 5.21.

5.6 Veri�cation in ELHI: Upper Bounds
We show that in [ELHI,GAV], the complexity of the veri�cation problem is not higher
than the complexity of the expressibility problem both in the rooted and in the unrestricted
case.

Theorem 5.22. In [ELHI,GAV],

1. the rUCQ-to-UCQ veri�cation problem can be decided in coNExpTime.

2. the UCQ-to-UCQ veri�cation problem can be decided in 2ExpTime.

Recall the characterization of realizations from Theorem 5.6: a UCQ qt is a realization
of qs if and only if qs ≡ M−(qr), where qr is a rewriting of the OMQ (T , sch(M),qt). The
inclusion qs ⊇ M−(qr) is already treated by Theorems 5.18 and 5.21 and thus it remains
to show that the converse inclusion can be decided in the relevant complexity class. We
show that this is actually possible in ExpTime, even in the unrestricted case. We thus
aim to prove the following.

Theorem 5.23. Given an OBDA setting S = (T ,M, S) from [ELHI,GAV], a UCQ qs
over S, and a UCQ qt over sch(M), it is in ExpTime to decide whether qs ⊆S M−(qr), where
qr is an in�nitary UCQ-rewriting of the OMQ Q = (T , sch(M),qt).

For what follows, it is convenient to assume that the TBox T is in normal form, see
Section 2.6. It is easy to verify that for the veri�cation problem, we can w.l.o.g. assume
the involved ontology to be in normal form.

We again start by choosing a suitable concrete in�nitary UCQ-rewriting to use for qr .
As in the previous section, we would like to use CQs derived from pseudo tree-shaped
ABoxes of certain dimension that entail an answer to the OMQ Q , as sanctioned by
Lemma 2.3. This time, we use the stronger version of said lemma, so we use for qr the set

127

5 Query Expressibility and Veri�cation in the Data Integration Setting

of all pairs (A, a) viewed as a CQ where A is a pseudo tree-shaped sch(M)-ABox with
core C that satis�es

a ∈ certQ (C ∪ {A(a) | A,T |= A(a), a ∈ ind(C)}) (5.2)

and is of the dimensions stated in Lemma 2.3.
For deciding qs ⊆S M−(qr), we need to show that for every disjunct q in qs there is a

disjunct p in M−(qr) such that p → q. We can do this for every disjunct q of qs separately.
Hence let q be such a disjunct. To �nd a CQ p in M−(qr) with p → q, we again aim to
utilize TWAPA. As in the previous section, let Ccore be a �xed set of |qt | individuals. A
homomorphism pattern for qt is a function λ that maps every variable y in qt to a pair
(a,o) ∈ Ccore×{core, subtree}. Informally, λ is an abstract description of a homomorphism
h from qt to the universal model of a pseudo-tree ABox A and T (assume that the core
of A uses only constants from Ccore) such that h(x) = a when λ(x) = (a, core) and h(x)
is an element in the anonymous subtree below a when λ(x) = (a, subtree).

We build one TWAPA Aλ for every homomorphism pattern λ (there are single expo-
nentially many). These TWAPA again run on (|T | · |qt |)-ary Σε ∪ ΣN -labeled trees that
encode a triple (A, a,p), de�ned exactly as in the previous section and from now on are
only referred to as labeled trees. We also use the same notion of properness as in the
previous section. The TWAPA Aλ shall accept exactly those labeled trees (T ,L) that are
proper and encode a triple (A, a,p) such that

1. there is a homomorphism h from qt (x) to the universal model of A and T that
satis�es h(x) = a and follows the homomorphism pattern λ, which means that
λ(y) = (h(y), core) if h(y) ∈ Ccore and λ(y) = (c, subtree), if h(y) lies in an anony-
mous subtree of the universal model of A and T whose root is c ∈ Ccore, and

2. p → q.

Note that it would be su�cient to demand in Point 1 that a ∈ certQ (A) and recall that, in
the previous section, we have reused an automaton from [Bie+16] which checks exactly
this condition. That automaton, however, has exponentially many states because it is
built using a construction known under various names such as query splitting, forest
decomposition, and squid decomposition. To attain an ExpTime upper bound, though,
the automaton Aλ can only have polynomially many states. This is in fact the reason
why we use the stronger version of Lemma 2.3. It is easy to see that Condition 1 here
holds for some λ if and only if Condition (5.2) holds.

Hence Condition 1 guarantees that (A, a) is in the rewriting qr . Together with the
second point and the conditions on the encoded tuples (A, a,p) this then means that
there is a λ such that Aλ accepts a tree encoding (A, a,p) if and only if p is a disjunct in
M−(qr) such that p → q.

We construct the automaton Aλ as the intersection of three automata Aproper, Aλ1 , and
A2, where Aproper accepts if the input tree is proper, Aλ1 accepts trees that encode a triple
(A, a,p) that satisfy Condition 1 for λ and A2 accepts trees that encode a triple (A, a,p)
that satisfy Condition 2. We obtain single exponentially many automata Aλ, one for

128

5.6 Veri�cation in ELHI: Upper Bounds

every homomorphism pattern λ, with polynomially many states each and we answer
‘yes’ if any of the automata recognizes a non-empty language. By Theorem 2.7, this gives
an ExpTime algorithm, �nishing the proof of Theorem 5.23. It remains to construct the
automata and prove their correctness. The construction of Aproper is easy, we leave out
the details.
De�nition of Aλ1 . To de�ne Aλ1 , we �rst introduce some notation. Let ROL be the set of
roles that appear in T or sch(M). Let CN the set of concept names that appear in T or
sch(M) and let tp = 2CN. Let U be the set of all partial functions from the variables in
qt to the set {core, subtree}. We de�ne a relation R ⊆ tp ×U such that (t , f) ∈ R if and
only if there is a homomorphism д from qt restricted to variables in the domain of f to
the universal model of T and {A(a) | A ∈ t} such that д(y) = a if and only if f (y) = core.
The relation R can be computed in exponential time, since for every pair (t , f) ∈ tp ×U ,
one can construct a simple TWAPA with polynomially many states, that checks whether
(t , f) ∈ R. We do not detail the construction, but give a rough sketch instead: The input
tree encodes a tree-shaped ABox. The TWAPA guesses a homomorphism from qt to the
input tree in a top-down fashion that respects f , that is, a homomorphism that maps
every x ∈ var(qt) with f (x) = core to the root of the encoded input tree and every other
variable to a non-root individual. It then checks whether all assertions in the range of
the homomorphism can be traced back to assertions of the form A(a), where A ∈ t and a
is the root of the input tree.

Let Aλ1 = (S,δ , Σε] ΣN , s0, c) where

S = {s0}] {s
A
b | A ∈ CN and b ∈ Ccore}

] {sAr ,b | A ∈ CN and r ∈ ROL and b ∈ Ccore}

] {sAr | A ∈ CN and r ∈ ROL}

] {sA | A ∈ CN}

and c(s) = 1 for every s ∈ S , i.e. precisely the �nite runs are accepting. All states besides
s0 are used to check whether a certain factA(a) is entailed in the universal model ofA and
T . Following Lemma 2.4, this can be done by checking the existence of an appropriate
derivation tree. The state sA

b
checks whether A,T |= A(b). The state sA

r ,b
checks whether

we are in an r -child d of b such that A,T |= A(d). The state sAr checks whether the
current node d is an r -child such that A,T |= A(d). The state sA checks whether for the
current node d we have A,T |= A(d).

We now describe the transition function δ . To de�ne δ (s0, l), where l = (B, a, µ) ∈ Σε
we distinguish cases depending on whether B and a are compatible with the homomor-
phism pattern λ. That is we check whether the following two conditions are ful�lled:

• λ(xi) = (ai , core) for all i ∈ {1, . . . , ar(qt)}.
• For every r (z1, z2) in qt such that λ(zi) = (bi , core) we have that r (b1,b2) ∈ B.

If these conditions are not ful�lled then we set δ (s0, l) = false, meaning that the automaton
Aλ1 immediately rejects the input tree. If these conditions are ful�lled then de�ne δ (s0, l)

129

5 Query Expressibility and Veri�cation in the Data Integration Setting

to be: ∧
z∈var(qt)

λ(z)=(b,core)

∧
A(z)∈qt

〈0〉sAb ∧ (5.3)

∧
Z⊆var(qt)

Z=λ−1({b}×{core,subtree})
Z,∅

∨
t∈tp
(t ,f)∈R
f =π2◦λ |Z

∧
A∈t

〈0〉sAb (5.4)

Here the λ |Z denotes the restriction of λ to the variables inZ and π2 denotes the projection
to the second component. The conjunction in the �rst line makes sure that the concept
names needed for variables of qt that are mapped to Ccore are derived. The second line
assures that for all variables of qt that are mapped to a fresh subtree generated in the
universal model of A and T , there is actually a type t derived at the root b ∈ Ccore that
generates a suitable tree.

The following transitions are then used to check for derivations of concept names.
For l ∈ Σε , let:

δ (sAb , l) =
∨

T |=B1u···uBnvA

〈0〉qB1
b
∧ . . . ∧ 〈0〉sBn

b
∨∨

∃s .BvA∈T
T |=rvs

∨
b ′∈Ccore
r (b,b ′)∈B

〈0〉sBb ′ ∨

∨
∃s .BvA∈T
T |=rvs

∨
1≤i≤|T |·|qt |

〈i〉sBr ,b

For l ∈ ΣN and {r ,b} ⊆ l let:

δ (sAr ,b , l) = 〈0〉s
A.

For l ∈ ΣN and r ∈ l let

δ (sAr , l) = 〈0〉s
A.

For l ∈ ΣN with role r ∈ l such that l contains no constant of Ccore, let:

δ (sA, l) =
∨

T |=B1u···uBnvA

〈0〉sB1 ∧ . . . ∧ 〈0〉sBn ∨∨
∃s−.BvA∈T
T |=rvs

〈−1〉sB ∨

∨
∃s .BvA∈T
T |=uvs

〈1〉sBu ∨ . . . ∨ 〈|T |〉s
B
u

130

5.6 Veri�cation in ELHI: Upper Bounds

For l ∈ ΣN with {r ,b} ⊆ l for a role r and b ∈ Ccore, let:

δ (sA, l) =
∨

T |=B1u···uBnvA

〈0〉sB1 ∧ . . . ∧ 〈0〉sBn ∨∨
∃s−.BvA∈T
T |=rvs

〈−1〉sBb ∨∨
∃s .BvA∈T
T |=uvs

〈1〉sBu ∨ . . . ∨ 〈|T |〉s
B
u

All pairs (s, l) ∈ S × Σε] ΣN that have not been mentioned yet will never occur in a run
on a proper tree, so for those we just de�ne δ (s, l) = false.
Correctness of Aλ1 . We now argue that Aλ1 accepts a tree if and only if it encodes a tuple
(A, a,p) such that Condition 1 is ful�lled.

Let Condition 1 be ful�lled. We show that the automation accepts. This entails that the
homomorphism pattern λ is compatible with the B and a that encoded in the label l at the
root node of the tree. Hence, Aλ1 does not reject immediately. Let h be the homomorphism
from Condition 1. Since h is a homomorphism for all variables z of qt that are mapped to
the core ofA and all atomsA(z) fromqt , we have thatA,T |= A(h(z)), so the conjunction
(5.3) will succeed. For the second conjunction, consider a set of variables Z ⊆ var(qt)
described by the �rst conjunction when considering a core individual b. Let t be the set
of concept names derived at b in the universal model of T and A. We argue that that
(t , f) ∈ R: By the de�nition of λ, the homomorphism h maps every variable from Z either
to b or to the subtree below b. Since T is assumed to be in normal form, the subtree
generated below b only depends on t and we can de�ne д to be the restriction of h to Z .
This function д witnesses that (t , f) ∈ R. For this set t , the last conjunction will of course
succeed, since t was chosen to be the set of all concept names derived at b.

For the other direction, let (T ,L) be a proper tree that is accepted byAλ1 and that encodes
the tuple (A, a,p). We need to construct the homomorphism h such that Condition 1 is
ful�lled. Since the automaton does not reject immediately and the conjunction in (5.4) is
ful�lled, there areb1, . . . ,bn ∈ Ccore such that the setsZi = λ

−1({bi}×{core, subtree}) , ∅
form a partition of var(qt) and for every i there is a type ti derived at bi in the universal
model of T andA such that (ti ,π2 ◦ λ |Zi) ∈ R. The latter means that there is a homomor-
phism дi from qt restricted to Zi to the tree that is generated below bi in the universal
model of T and A. The homomorphism h is obtained by combining the дi for all i . The
second condition in the de�nition of Σε guarantees that h also preserves roles between
variables that lie in di�erent Zi .
De�nition of A2. The automaton A2 checks Condition 2 by traversing the input tree
once from the root to the leaves and guessing the homomorphism from p to q along the
way. Some care is required since p is represented only implicitly in the input.

To de�ne A2, we precompute three relations R, R′ and R′′. Let R be a ternary relation
between ABoxesB over Ccore, disjunctsd ∈ M−(B) and functions f from ind(B) to var(q).
A triple (B,d, f) is in R if and only if there exists a homomorphism h : d → q such

131

5 Query Expressibility and Veri�cation in the Data Integration Setting

that h(b) = f (b) for all b ∈ ind(B). Let R′ be a binary relation between unary mappings
from M and variables from q. A pair (φ(x) → A(x),y) is in R′ if and only if there is a
homomorphism h : φ(x) → q such that h(x) = y. Let R′′ be a binary relation between
binary mappings from M and pairs of variables from q. A triple (φ(x ,x′) → r (x ,x′),y,y′)
is in R′′ if there is a homomorphism h : φ(x ,x′) → q such that h(x) = y and h(x′) = y′. All
three relations can be computed in ExpTime, since they all only check for homomorphisms
between structures of polynomial size.

Let A2 = (S,δ , Σε] ΣN , s0, c) where

S = {s0}] {s
b
y | b ∈ Ccore and y ∈ var(q)}

] {sy | y ∈ var(q)}

and c(s) = 0 for every s ∈ S , but the actual value of c(s) does not matter since all runs of
A2 on proper trees will be �nite.

For l ∈ Σε and B ∈ l and d ∈ M−(B) the disjunct de�ned by the mappings in l , we
de�ne:

δ (s0, l) =
∨

f :ind(B)→var(q)
(B,d,f)∈R

∧
b∈ind(B)

∧
i∈{1,...,|Ccore |·|T |}

[i]sbf (b)

For l ∈ ΣN we de�ne:

δ (sby , l) =

{
true if b < l
〈0〉sy if b ∈ l

For l = (Θ,M, µ) ∈ ΣN and y ∈ var(q) let Yy
l

be the set of all y′ ∈ var(q) such that
(φ(x ,x′) → r (x ,x′),y,y′) ∈ R′′, where φ(x ,x′) → r (x ,x′) is the mapping M correspond-
ing to the unique role in Θ, and such that (φ(x) → A(x),y′) ∈ R′ for every concept name
A ∈ Θ, where φ(x) → A(x) is the mapping µ(A). Then we de�ne:

δ (sy, l) =
∨
y ′∈Y

y
l

∧
i∈{1,...,|T |}

[i]sy ′

Correctness of A2. We now argue that A2 accepts a tree (T ,L) if and only if it encodes
a tuple (A, a,p) such that p → q.

Assume there is homomorphism h : p → q. We use h to describe a run of A2 on
(T ,L) that traverses the tree once from the root to the leaves. At the root, the automaton
chooses as f the restriction of h to ind(B), which is possible because (B,d, f) ∈ R. If the
run is in a con�guration (t , sy), where t ∈ T corresponds to an individual a in A, then
we choose h(a) as y′. Because h is a homomorphism, one can check that y′ ∈ Yy

L(t)
. Thus,

A2 accepts (T ,L).
For the other direction, let (T ,L) be a tree encoding a tuple (A, a,p) that is accepted

by A2. Let ρ be an accepting run of A2 on (T ,L). We obtain a homomorphism h : p → q
by gluing together all of the following homomorphisms:

132

5.7 Expressibility and Veri�cation in EL: Lower Bounds

• The homomorphism from p restricted to facts generated by facts in B to q that
exists by the choice of f in the root node.

• All homomorphisms h′ obtained as follows: Consider any non-core fact α from A.
This fact appears in the label L(t) of some t in (T ,L). Since ρ is accepting, it will
visit t in some state of the form sy and chooses y′ ∈ Yy

L(t)
. Because α is encoded in

L(t), it follows by the de�nition of Yy
L(t)

that there is a homomorphism from the
body of the mapping corresponding to α to q, which we choose as h′.

The information that is passed along in the states of the automaton guarantees that all
these homomorphisms can be glued together to obtain a single homomorphism h : p → q.

5.7 Expressibility and Veri�cation in EL: Lower Bounds
We establish lower bounds that match the upper bounds obtained in the previous three
sections and show that they even apply to [EL,GAV], that is, neither inverse roles nor
role hierarchies are required.

Theorem 5.24.

1. For [EL,GAV], the rUCQ-to-UCQ expressibility and veri�cation problems are both
coNExpTime-hard.

2. For [EL,GAV], the UCQ-to-UCQ expressibility and veri�cation problems are both
2-ExpTime-hard

By Theorem 5.8, it su�ces to establish the lower bounds for the expressibility problem.
We prove both points of Theorem 5.24 by a reduction from certain OMQ containment
problems. For Point 1, we reduce from the following problem.

Theorem 5.25. [Bie+16] Given Q1 = (T , Σ,q1) and Q2 = (T , Σ,q2) with T an ELI-
ontology,q1 anAQ, andq2 a rooted UCQ, it is coNExpTime-hard to decide whetherQ1 ⊆Σ Q2,
even when

1. q2(x) uses only symbols from Σ and

2. no symbol from Σ occurs on the right-hand side of a CI in T .

We �rst give some justi�cation of Theorem 5.25. The hardness proof in [Bie+16]
actually produces as q2 a rooted CQ, but does not satisfy Condition 2. However, the
only exception to Condition 2 are CIs of the form D v Cq where Cq is a specially crafted
ELI-concept that uses only symbols from Σ and is designed to ‘make the query q2 true’,
that is, whenever d ∈ CIq in an interpretation I, then I |= q2(d). It can be veri�ed that
the reduction in [Bie+16] still works when replacing the rooted CQ q2 with the rooted
UCQ q2 ∨

∨
DvCq∈T

qD , where qD is the concept D viewed as a unary CQ in the obvious
way, and then deleting all CIs of the form D v Cq from T . Arguably, this modi�cation

133

5 Query Expressibility and Veri�cation in the Data Integration Setting

even yields the more natural reduction, avoided in [Bie+16] to ensure that q2 is a CQ
rather than a UCQ.

To prove Point 1 of Theorem 5.24, we �rst establish it for [ELI,GAV] instead of for
[EL,GAV] and in a second step show how to get rid of inverse roles. To reduce the
containment problem in Theorem 5.25 to rUCQ-to-UCQ expressibility in [ELI,GAV],
let Q1 = (T , Σ,A0(x)) and Q2 = (T , Σ,q) be as in that theorem. We de�ne an OBDA-
speci�cation S = (T ′,M, S) and a query qs over S as follows. Let B be a fresh concept
name and de�ne:

T ′ = T ∪ {A0 v B}

S = Σ ∪ {B}

qs(x) = B(x) ∨ q(x)

Note that qs is a rooted UCQ, as required. Moreover, the set M of mappings contains
A(x) → A(x) for all concept names A ∈ S and r (x ,y) → r (x ,y) for all role names r ∈ S,
which means we have q = M(q) and q = M−(q) for all S-queries q. Informally, the CI
A0 v B ‘pollutes’ B, potentially preventing the disjunct B(x) of qs to be expressible, but
this is not a problem if (and only if) Q1 ⊆ Q2.

The following lemma establishes the correctness of the reduction and �nishes the
proof of Point 1 of Theorem 5.24 for [ELI,GAV] instead of [EL,GAV].

Lemma 5.26. Q1 ⊆ Q2 if and only if qs is UCQ-expressible in S.

In short, Q1 * Q2 if and only if there is a tree-shaped Σ-ABox witnessing this if and
only if such an ABox, viewed as a CQ, is a disjunct of an in�nitary UCQ-rewriting qr of
the OMQ Q = (T ′, S,qs) if and only if qr * qs . The latter is the case if and only if qs is
not UCQ-expressible in S by Theorem 5.8 and since M(qs) = qs and M−(qr) = qr .

Proof. Consider the OMQ Q = (T ′, S,M(qs)) and the in�nitary UCQ qr that consists of
the following CQs:

1. B(x),

2. each CQ from q(x),

3. for every tree-shaped Σ-ABox A with root a ∈ certQ1(A), (A,a) viewed as a CQ.

It is easy to verify that qr is a rewriting of Q . In particular, by Point 2 of Theorem 5.25,
q(x) uses only symbols from Σ which cannot be derived using the ontology and the
restriction to tree-shaped ABoxes in Point 3 is sanctioned by Lemma 2.3.

“if”. Assume that Q1 * Q2. We need to show that qs is not UCQ-expressible. By
Theorem 5.8, it is su�cient to show qr * qs . Since Q1 * Q2, there exists a pair (A,a)
such that a ∈ certQ1(A) and a < certQ2(A). By Lemma 2.3 and as already observed in
[Bie+16], we can assume that A is tree-shaped with root a. Furthermore, we can assume
that B does not occur in A: Since B is a fresh concept name, no B-assertion is needed to
derive A0(a). Let p be (A,a) viewed as a CQ. Clearly, a ∈ ansqr (A), since p is a disjunct
in qr . On the other hand, a < ansqs (A): From none of the CQs in the UCQ qs there is a
homomorphism to p. This is true for B(x), since B does not occur in p. It is also true for

134

5.7 Expressibility and Veri�cation in EL: Lower Bounds

the disjuncts of q(x), since a < certQ2(A) and q does not use symbols that occur on the
right-hand side of CIs in T .

“only if”. Assume that Q1 ⊆ Q2. We have to show that qr ⊆S qs , or in other words,
that for every CQ p in qr , there is a CQ p′ ∈ qs with p′ → p. This is clear for the CQs
from Points 1 and 2 of the construction of qr , since all of them appear as a CQ also in
qs(x). For Point 3, let p be obtained from a pair (A,a) for a tree-shaped Σ-ABox with
root a ∈ certQ1(A). From Q1 ⊆ Q2, we obtain a ∈ certQ2(A). With Point 1 and 2 of
Theorem 5.25, this yields a ∈ ansq(A), so there exists a disjunct p′ of q such that p′→ p,
as required.

Now we describe how to replace the ELI-ontology T with an EL-ontology. The
crucial observation is that the hardness proof from [Bie+16] uses only a single symmetric
role S implemented as a composition r−0 ; r0 with r0 a role name, and that it is possible to
replace this composition with a normal role name r in T when reintroducing it in M−(qr)
via mappings r0(x ,y) ∧ r0(x , z) → r (y, z) where qr is an in�nitary UCQ-rewriting of the
OMQ Q mentioned above.

It can be veri�ed that query Q1 from Theorem 5.25 is ‘one-way’, that is, T veri�es
the existence of a (homomorphic image of a) certain tree-shaped sub-ABox from the
bottom up and then Q1 makes q1 = A0(x) true at the root when the tree-shaped ABox
was found. This one-way behaviour can be made formal in terms of derivations of A0 by
T , introduced in Section 2.8.

If A is tree-shaped with root a and (T ,V) is a derivation tree for the fact A0(a), then
we say that (T ,V) is bottom-up if the following condition is satis�ed: if y is a successor of
x in T , V (x) = (ax ,Ax), and V (y) = (ay,Ay), then ax = ay or ay is a successor (but not a
predecessor) of ax inA, that is, ay is further away from the root ofA than ax is. The OMQ
Q1 is one-way in the sense that if A is a tree-shaped Σ-ABox with root a ∈ certQ1(A),
then all derivations of A0(a) in A are bottom-up. Note that a corresponding statement
for Q2 makes little sense since by Conditions 1 and 2 of Theorem 5.25, answers to Q2 on
an ABox A are independent of T .

We can exploit the one-way property of Q1 as follows. In the hardness proof in
[Bie+16], all involved ontologies, signatures, and queries use only a single role name
S that is interpreted as a symmetric role, and in fact represented via the composition
r−0 ; r0 where r0 is a �xed ‘standard’ (non-symmetric) role name. We can replace S with a
standard role name r in T and in Σ, turning the ELI-ontology T into an EL-ontology.
The mapping r0(x ,y) → r0(x ,y) from M in the original reduction is then replaced with
r0(x ,y) ∧ r0(x , z) → r (y, z); note that, in qs , we keep the composition r−0 ; r0 from the
original reduction. We claim that, again, the following holds.

Lemma 5.27. Q1 ⊆ Q2 if and only if qs is UCQ-expressible in S.

Proof. (sketch) Let the UCQqr be de�ned as before except that the CQs fromq are replaced
with those from M(q). It can be veri�ed that qr is a rewriting of Q = (T ′, S,M(qs)).
Moreover, it is easy to see that M−(M(q)) = q. This and the fact that Q1 is one-way can
be used to verify that M−(qr) is identical to the query qr from the original reduction (the

135

5 Query Expressibility and Veri�cation in the Data Integration Setting

one-way property is needed to see that the CQs from Point 3 of the de�nition of qr are
identical in both cases, except that S is replaced with r). From there, the proof proceeds
as in Lemma 5.26 to show that Q1 ⊆ Q2 if and only if for every CQ p in M−(qr), there is a
CQ p′ ∈ qs with p′→ p.

Next, we prove Point 2 of Theorem 5.24. We identify a suitable containment problem
proved 2-ExpTime in [Bie+16] and then proceed very similarly to the case of Point 1.

Theorem 5.28. [Bie+16] Containment between OMQsQ1 = (T , Σ,q1) andQ2 = (T , Σ,q2)
with T an ELI-ontology, q1 of the form ∃x A0(x), and q2 a UCQ is 2-ExpTime-hard even
when

1. q2(x) uses only symbols from Σ and

2. no symbol from Σ occurs on the right-hand side of a CI in T .

Again, the actual hardness proof from [Bie+16] needs to be slightly modi�ed to actually
achieve what is stated in Theorem 5.28. In particular, CIs of the form D v Cq again have to
be turned into additional disjuncts of the UCQ q2. This requires an additional modi�cation
of the reduction since there are CIs of the form D v Cq where D uses symbols that are
not from Σ and occur on the right-hand side of CIs in T . In a nutshell and speaking in
terms of the notation from [Bie+16], the concept names H andW ′ need to be added to
Σ and their presence at the intended places must be ‘veri�ed in the input’ rather than
‘enforced by the ontology’. After this is done, the only (minor) problem remaining is that
the concept name G is used (exactly twice) in a (single) CQ p in q2, but it does occur on
the right-hand side of two CIs which are G1 v G and G2 v G. Here, G1,G2 are from Σ
and do not occur on the right-hand side of a CI. This can be �xed by replacing p with
four CQs in the UCQ q2, replacing the two occurrences of G with G1 or G2 in all possible
ways.

Point 2 of Theorem 5.24 is again �rst proved for [ELI,GAV] instead of for [EL,GAV].
This is done by reduction from the containment problem in Theorem 5.28. Let Q1 =

(T , Σ,∃x A0(x)) andQ2 = (T , Σ,q). We de�ne an OBDA-speci�cation S = (T ′,M, S) and
a query qs() over S as follows. Let B be a fresh concept name and de�ne:

T ′ = T ∪ {A0 v B}

S = Σ ∪ {B}

qs() = ∃x B(x) ∨ q()
The set M of mappings again contains A(x) → A(x) for all concept names A ∈ S and
r (x ,y) → r (x ,y) for all role names r ∈ S. The proof of correctness is essentially identical
to the the proof of Lemma 5.26.

The approach to eliminating inverse roles is also exactly identical to the coNExpTime
case. In fact, the OMQ (T , Σ,A0(x)) is again one-way and all involved ontologies, signa-
tures and queries again only use the single symmetric role name S represented as the
composition r−0 ; r0. Consequently, the same arguments apply.

136

5.8 Conclusion

5.8 Conclusion
We believe that several interesting questions remain. For example, our lower bounds only
apply when the source query is a UCQ and it would be interesting to see whether the
complexity drops when source queries are CQs. It would also be interesting to consider
ontologies formulated in more expressive DLs such asALC. As a �rst observation in this
direction, we note the following undecidability result, where ALCF is ALC extended
with (globally) functional roles.

Theorem 5.29. In [ALCF ,GAV], the AQ-to-Q expressibility and veri�cation problems
are undecidable for any Q ∈ {AQ,CQ,UCQ}.

Proof. We provide a reduction from the emptiness of AQs w.r.t. ALCF -ontologies,
which is undecidable [Baa+16]. Let (T , S,A0) be an OMQ with T in ALCF and A0(x)
an AQ. Let B0 be a fresh concept name and de�ne an OBDA-speci�cation S = (T ′,M, S′)
where T ′ = T ∪ {A0 v B0}, S′ = S ∪ {B0}, and M consists of the mappings A(x) → A(x)
for all concept names A in S′ and r (x ,y) → r (x ,y) for all role names r in S′. We consider
expressibility of the AQ B0(x). In fact, it is possible to verify the following:

1. if A0 is empty w.r.t. T , then B0(x) is a realization of B0(x) in S;

2. ifA0 is non-empty w.r.t. T , then there is a S-databaseD and a constant a ∈ adom(D)
such that a ∈ certQ (D). De�ne the S′-database D′ = D ∪ {B0(a)}. Now, B0(x) is
not determined in S in the sense that a ∈ ansB0(D

′) \ ansB0(D) but every model of
M(D) and T ′ is also a model of M(D′) and T ′, and vice versa. Consequently, B0(x)
is not Q-expressible in S for any Q ∈ {AQ,CQ,UCQ} or, in fact, any other query
language.

Regarding the expressibility problem, we note that the realization M(qs) identi�ed by
Theorem 5.8 does not use any symbols introduced by the ontology and, in fact, is also
a realization regarding the empty ontology. It would be interesting to understand how
to obtain realizations that make better use of the ontology and to study setups where it
can be unavoidable to exploit the ontology in realizations. This is the case, for example,
when source queries are formulated in Datalog, the ontology is formulated in (some
extension of) EL, and target queries are UCQs. Finally, we note that it would be natural
to study maximally contained realizations instead of exact ones and to take into account
constraints over the source databases.

137

6 Conclusion
In this thesis, we have investigated the complexity of several problems in the �eld of
ontology-mediated querying with Horn-DL ontologies. We summarize our results and
put them into context.

• The objective of Chapter 3 was to deepen the understanding of �ne-grained data
complexity and rewritability questions about OMQs. We have classi�ed data
complexity of OMQ from (EL,CQ) in the most �ne-grained way. We showed that
every such OMQ is either in AC0 or NL-complete or PTime-complete. We also
showed that containment in NL coincides with rewritability into linear Datalog and
that there is not constant bound on the width of the rewritings. Furthermore, we
gave characterizations for the di�erent cases and used these to show that all related
the meta problems, like deciding linear Datalog rewritability, is ExpTime-complete.
We think these results are an important step towards the formulated goal. We
notice the proofs in Chapter 3 are rather technical, even though we deal with the
rather simple description logic EL. The observations from Section 3.8 suggest that
going to ELI would be a step into the territory of long standing open questions
in the world of CSPs.

• In Chapter 4, we initiated the research on query-by-example and the query de�n-
ability problem in the presence of ontologies formulated in Horn-DLs. We showed
that �nding a distinguishing CQ is coNExpTime-complete for ontologies in Horn-
ALC and undecidable for ontologies in Horn-ALCI, even for ontologies in ELI.
We also determined tight upper and lower bounds on the size of witness queries in
the Horn-ALC case.
The goal of this chapter was to improve usability of ontology enriched systems
and to understand what di�erence an ontology can make in the query-by-example
problem. The undecidability result may sound disappointing regarding usability,
but it points out an interesting category of undecidable problems that have to
do with products of universal models in the presence of inverse roles, which is
interesting from a theoretical perspective. On the practical side, this result suggests
that considering less expressive DLs like the DL-Lite family is a good direction to
pursue.

• In Chapter 5, we investigated the expressibility problem and the veri�cation prob-
lem for queries in the OBDA context with Horn DLs. We proved that these problems
are Π

p
2-complete DL-Lite and all weaker ontology languages. For ontology lan-

guages between EL and ELHI, we proved coNExpTime-complete for rooted
source queries and 2-ExpTime-completeness for unrestricted queries.

139

6 Conclusion

Like Chapter 4, the objective of this chapter was also to improve usability of
ontologies in practice, and in fact, the Π

p
2-completeness results show that in the

OBDA setting, DL-Lite ontologies can be added in the data integration setting
without having a negative e�ect on the complexity, compared to the situation
without ontologies.

We already addressed concrete open questions and opportunities for future work in the
main chapters, so we con�ne ourselves to more general remarks here. In this thesis, we
only considered a few reasoning problems in combination with a few description logics.
There is still a huge number of interesting combinations that have not been considered
or fully understood yet. Also, the popularity of ontologies gives rise to new reasoning
problems over time, so we think there are still a lot of interesting questions waiting to be
solved in this �eld.

One thing we remark regarding all chapters of the thesis has to do with inverse roles.
It seems like a useful feature for designing ontologies to add inverse roles, but we have
seen that adding inverse roles to an ontology language can have an immense e�ect of the
complexity of a reasoning problem, even in two ways: First, we have seen examples where
the computational complexity of a reasoning problem increases when inverse roles are
added. This e�ect has been known before, consider for example the subsumption problem
in EL and in ELI, where the complexity jumps from PTime to ExpTime [BBL05]. But
secondly, inverse roles can have complex and unforeseen e�ects that make these problems
technically harder to tackle. Of course, these two e�ects often go hand in hand. We
suspect there might be more things to discover and to understand regarding inverse
roles, things that might help to solve the open problem of Chapter 3, that is, a complete
classi�cation of data complexity of OMQs from (ELI,CQ).

Of all the open questions in this thesis, the classi�cation of data complexity of OMQs
from (ELI,CQ) is de�nitely the most intriguing to us. Perhaps it is also the most di�cult
one, since the result would have implications on open problems in the CSP world. In
fact, classifying these OMQs corresponds to classifying CSPs with tree obstructions, and
the model-theoretic characterizations and questions like rewritability into symmetric
Datalog are theoretically interesting, as explained in Section 3.8.

140

Bibliography
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-

proach. Cambridge University Press, 2009. isbn: 978-0-521-42426-4.
[ADK16] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. “Reverse Engineering

SPARQL Queries”. In: Proc. of WWW. 2016, pp. 239–249.
[Afr11] Foto N. Afrati. “Determinacy and query rewriting for conjunctive queries

and views”. In: Theor. Comput. Sci. 412.11 (2011), pp. 1005–1021.
[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995. isbn: 0-201-53771-0.
[All+09] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Herib-

ert Vollmer. “The complexity of satis�ability problems: Re�ning Schaefer’s
theorem”. In: J. Comput. Syst. Sci. 75.4 (2009), pp. 245–254.

[Ang87] Dana Angluin. “Queries and Concept Learning”. In: Machine Learning 2.4
(1987), pp. 319–342.

[Art+09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. “The DL-Lite Family and Relations”. In: J. Artif. Intell. Res. 36
(2009), pp. 1–69.

[Baa+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. 2nd. Cambridge Univ. Press, 2007.

[Baa+16] Franz Baader, Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. “Query
and Predicate Emptiness in Ontology-Based Data Access”. In: J. Artif. Intell.
Res. 56 (2016), pp. 1–59.

[Baa+17] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction
to Description Logics. Cambride University Press, 2017.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL Enve-
lope”. In: Proc. of IJCAI. 2005, pp. 364–369.

[BCL15] Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. “Learning Path Queries
on Graph Databases”. In: Proc. of EDBT. 2015, pp. 109–120.

[BCS14] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. “Interactive Inference
of Join Queries”. In: Proc. of EDBT. 2014, pp. 451–462.

[BCS16] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. “Learning Join Queries
from User Examples”. In: ACM Trans. Database Syst. 40.4 (2016), 24:1–24:38.

141

Bibliography

[Bie+14] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. “Ontology-
Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP”.
In: ACM Trans. Database Syst. 39.4 (2014), 33:1–33:44.

[Bie+16] Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. “First
Order-Rewritability and Containment of Conjunctive Queries in Horn De-
scription Logics”. In: Proc. of IJCAI. 2016, pp. 965–971.

[BKL08] Andrei A. Bulatov, Andrei A. Krokhin, and Benoit Larose. “Dualities for Con-
straint Satisfaction Problems”. In: Complexity of Constraints - An Overview
of Current Research Themes [Result of a Dagstuhl Seminar]. Vol. 5250. LNCS.
Springer, 2008, pp. 93–124.

[BLB08] Franz Baader, Carsten Lutz, and Sebastian Brandt. “Pushing the EL Envelope
Further”. In: Proc. of OWLED Workshop on OWL. Vol. 496. CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[BLR97] Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. “Rewriting Queries
Using Views in Description Logics”. In: Proc. of PODS. ACM Press, 1997,
pp. 99–108.

[BLW13] Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. “First Order-Rewritability
of Atomic Queries in Horn Description Logics”. In: Proc. of IJCAI. IJCAI/AAAI,
2013, pp. 754–760.

[BO15] Meghyn Bienvenu and Magdalena Ortiz. “Ontology-Mediated Query An-
swering with Data-Tractable Description Logics”. In: Proc. of Reasoning Web.
Vol. 9203. LNCS. Springer, 2015, pp. 218–307.

[Bod98] Hans L. Bodlaender. “A Partial k-Arboretum of Graphs with Bounded Treewidth”.
In: Theor. Comput. Sci. 209.1-2 (1998), pp. 1–45.

[Bon+14] Angela Bonifati, Radu Ciucanu, Aurélien Lemay, and Slawek Staworko. “A
Paradigm for Learning Queries on Big Data”. In: Proc. of Data4U@VLDB.
2014, p. 7.

[Bot+16] Elena Botoeva, Boris Konev, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. “Inseparability and Conservative Extensions of
Description Logic Ontologies: A Survey”. In: Proc. of RW. 2016.

[Bot+19] Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and Michael
Zakharyaschev. “Query inseparability for ALC ontologies”. In: Artif. Intell.
272 (2019), pp. 1–51.

[BR17] Pablo Barceló and Miguel Romero. “The Complexity of Reverse Engineering
Problems for Conjunctive Queries”. In: Proc. of ICDT. 2017.

[BST07] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. “Computing the least
common subsumer w.r.t. a background terminology”. In: J. Applied Logic 5.3
(2007), pp. 392–420.

[Bul17] Andrei A. Bulatov. “A Dichotomy Theorem for Nonuniform CSPs”. In: Proc.
of FOCS. 2017, pp. 319–330.

142

[Cal+02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. “Lossless Regular Views”. In: Proc. of PODS. ACM, 2002, pp. 247–258.

[Cal+09] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. “On-
tologies and Databases: The DL-Lite Approach”. In: Proc. of Reasoning Web.
2009, pp. 255–356.

[Cal+12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. “View-based query answering in Description Logics: Semantics and
complexity”. In: J. Comput. Syst. Sci. 78.1 (2012), pp. 26–46.

[Cal+13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. “Data complexity of query answering in descrip-
tion logics”. In: Artif. Intell. 195 (2013), pp. 335–360.

[Cal+16] Diego Calvanese, Pietro Liuzzo, Alessandro Mosca, José Remesal, Martin Rezk,
and Guillem Rull. “Ontology-based data integration in EPNet: Production
and distribution of food during the Roman Empire”. In: Eng. Appl. of AI 51
(2016), pp. 212–229.

[CD15] Balder ten Cate and Víctor Dalmau. “The Product Homomorphism Problem
and Applications”. In: Proc. of ICDT. 2015, pp. 161–176.

[CDK10] Catarina Carvalho, Víctor Dalmau, and Andrei A. Krokhin. “CSP duality
and trees of bounded pathwidth”. In: Theor. Comput. Sci. 411.34-36 (2010),
pp. 3188–3208.

[CDL00] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. “Answering
Queries Using Views over Description Logics Knowledge Bases”. In: Proc. of
IAAI. AAAI Press / The MIT Press, 2000, pp. 386–391.

[CGP12] Andrea Calì, Georg Gottlob, and Andreas Pieris. “Towards more expressive
ontology languages: The query answering problem”. In: Artif. Intell. 193
(2012), pp. 87–128.

[Cim17] Gianluca Cima. “Preliminary Results on Ontology-based Open Data Publish-
ing”. In: Proc. of DL. Vol. 1879. CEUR Workshop Proceedings. CEUR-WS.org,
2017.

[Col+16] Simona Colucci, Francesco M. Donini, Silvia Giannini, and Eugenio Di Scias-
cio. “De�ning and computing Least Common Subsumers in RDF”. In: J. Web
Semant. 39 (2016), pp. 62–80.

[CP95] William W. Cohen and C. David Page. “Polynomial Learnability and Induc-
tive Logic Programming: Methods and Results”. In: New Generation Comput.
13.3&4 (1995), pp. 369–409.

[DAB16] Gonzalo I. Diaz, Marcelo Arenas, and Michael Benedikt. “SPARQLByE: Query-
ing RDF data by example”. In: PVLDB 9.13 (2016), pp. 1533–1536.

[Dal05] Víctor Dalmau. “Linear datalog and bounded path duality of relational struc-
tures”. In: Logical Methods in Computer Science 1.1 (2005).

143

Bibliography

[DG97] Oliver M. Duschka and Michael R. Genesereth. “Answering Recursive Queries
Using Views”. In: Proc. of PODS. ACM Press, 1997, pp. 109–116.

[DK08] Víctor Dalmau and Andrei A. Krokhin. “Majority constraints have bounded
pathwidth duality”. In: Eur. J. Comb. 29.4 (2008), pp. 821–837.

[Eit+08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Simkus. “Query
Answering in the Description Logic Horn-SHIQ”. In: Proc. of JELIA. 2008,
pp. 166–179.

[Eit+12] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guo-
hui Xiao. “Query Rewriting for Horn-SHIQ Plus Rules”. In: Proc. of AAAI.
AAAI Press, 2012.

[ELT07] László Egri, Benoit Larose, and Pascal Tesson. “Symmetric Datalog and Con-
straint Satisfaction Problems in LogSpace”. In: Electronic Colloquium on Com-
putational Complexity (ECCC) 14.024 (2007), p. 1.

[ELT08] László Egri, Benoit Larose, and Pascal Tesson. “Directed st-Connectivity Is
Not Expressible in Symmetric Datalog”. In: Proc. of ICALP. Vol. 5126. LNCS.
Springer, 2008, pp. 172–183.

[Fan+18] Nicola Fanizzi, Giuseppe Rizzo, Claudia d’Amato, and Floriana Esposito.
“DLFoil: Class Expression Learning Revisited”. In: Proc. of EKAW. 2018, pp. 98–
113.

[FKL19] Cristina Feier, Antti Kuusisto, and Carsten Lutz. “Rewritability in Monadic
Disjunctive Datalog, MMSNP, and Expressive Description Logics”. In: Logical
Methods in Computer Science (2019).

[FSS81] Merrick L. Furst, James B. Saxe, and Michael Sipser. “Parity, Circuits, and the
Polynomial-Time Hierarchy”. In: Proc. of FOCS. 1981, pp. 260–270.

[Fun+19] Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank
Wolter. “Learning Description Logic Concepts: When can Positive and Nega-
tive Examples be Separated”. In: Proc. of IJCAI. 2019.

[Fun19] Maurice Funk. “Concept-By-Example in EL Knowledge Bases”. MA thesis.
University of Bremen, 2019.

[FV98] Tomás Feder and Moshe Y. Vardi. “The Computational Structure of Monotone
Monadic SNP and Constraint Satisfaction: A Study through Datalog and
Group Theory”. In: SIAM J. Comput. 28.1 (1998), pp. 57–104.

[GJS18a] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. “Query-
by-Example for Expressive Horn Description Logics”. In: Proceedings of DL-
workshop. 2018.

[GJS18b] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. “Reverse
Engineering Queries in Ontology-Enriched Systems: The Case of Expressive
Horn Description Logic Ontologies”. In: Proceedings of IJCAI. 2018, pp. 1847–
1853.

144

[GO14] Viliam Ge�ert and Alexander Okhotin. “Transforming Two-Way Alternating
Finite Automata to One-Way Nondeterministic Automata”. In: Proc. of MFCS.
2014, pp. 291–302.

[Got+14] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii,
Thomas Schwentick, and Michael Zakharyaschev. “The price of query rewrit-
ing in ontology-based data access”. In: Artif. Intell. 213 (2014), pp. 42–59.

[GR17] Martin Grohe and Martin Ritzert. “Learning �rst-order de�nable concepts
over structures of small degree”. In: Proc. of LICS. 2017, pp. 1–12.

[Han+15] Peter Hansen, Carsten Lutz, Inanç Seylan, and Frank Wolter. “E�cient Query
Rewriting in the Description Logic EL and Beyond”. In: Proc. of IJCAI. AAAI
Press, 2015, pp. 3034–3040.

[HM05] Peter Haase and Boris Motik. “A mapping system for the integration of
OWL-DL ontologies”. In: Proc. of IHIS’05. ACM, 2005, pp. 9–16.

[HMS05] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. “Data Complexity of Reason-
ing in Very Expressive Description Logics”. In: Proc. of IJCAI. Professional
Book Center, 2005, pp. 466–471.

[Hov+17] Dag Hovland, Roman Kontchakov, Martin G. Skjæveland, Arild Waaler, and
Michael Zakharyaschev. “Ontology-Based Data Access to Slegge”. In: Proc.
of ISWC. 2017, pp. 120–129.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999. isbn: 978-1-4612-6809-3.

[Jim+15] Ernesto Jiménez-Ruiz, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ian Hor-
rocks, Christoph Pinkel, Martin G. Skjæveland, Evgenij Thorstensen, and
José Mora. “BootOX: Practical Mapping of RDBs to OWL 2”. In: Proc. of ISWC.
Vol. 9367. LNCS. Springer, 2015, pp. 113–132.

[Kaz15] Alexandr Kazda. “n-permutability and linear Datalog implies symmetric
Datalog”. In: CoRR abs/1508.05766 (2015).

[Kha+15] Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide Lanti, Hall-
stein Lie, Christoph Pinkel, Martín Rezk, Martin G. Skjæveland, Evgenij
Thorstensen, Guohui Xiao, Dmitriy Zheleznyakov, and Ian Horrocks. “Ontol-
ogy Based Access to Exploration Data at Statoil”. In: Proc. of ISWC. Vol. 9367.
LNCS. Springer, 2015, pp. 93–112.

[Kie02] Jörg-Uwe Kietz. “Learnability of Description Logic Programs”. In: Proc. of
ILP. 2002, pp. 117–132.

[KL07] Adila Krisnadhi and Carsten Lutz. “Data Complexity in the EL family of
Description Logics”. In: Proc. of LPAR. Vol. 4790. LNAI. Springer, 2007, pp. 333–
347.

[KNG14] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. “Datalog Rewritabil-
ity of Disjunctive Datalog Programs and its Applications to Ontology Rea-
soning”. In: Proc. of AAAI. AAAI Press, 2014, pp. 1077–1083.

145

Bibliography

[Kon+17] Boris Konev, Carsten Lutz, Ana Ozaki, and Frank Wolter. “Exact Learning of
Lightweight Description Logic Ontologies”. In: Journal of Machine Learning
Research 18 (2017), 201:1–201:63.

[KRH13] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. “Complexities of
Horn Description Logics”. In: ACM Trans. Comput. Logic 14.1 (2013), 2:1–2:36.

[Lem+17] Domenico Lembo, Riccardo Rosati, Valerio Santarelli, Domenico Fabio Savo,
and Evgenij Thorstensen. “Mapping Repair in Ontology-based Data Access
Evolving Systems”. In: Proc. of IJCAI. ijcai.org, 2017, pp. 1160–1166.

[Lev+95] Alon Y Levy, Alberto O Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.
“Answering Queries Using Views”. In: Proc of PODS. 1995, pp. 95–104.

[LH10] Jens Lehmann and Pascal Hitzler. “Concept learning in description logics
using re�nement operators”. In: Machine Learning 78.1-2 (2010), pp. 203–250.

[Lis12] Francesca A. Lisi. “A Formal Characterization of Concept Learning in De-
scription Logics”. In: Proc. of DL Workshop. 2012.

[LMS18] Carsten Lutz, Johannes Marti, and Leif Sabellek. “Query Expressibility and
Veri�cation in Ontology-Based Data Access”. In: Proceedings of KR. AAAI
Press, 2018, pp. 389–398.

[LS17a] Carsten Lutz and Leif Sabellek. “Ontology-Mediated Querying with EL: Tri-
chotomy and Linear Datalog Rewritability”. In: Proceedings of DL-workshop.
2017.

[LS17b] Carsten Lutz and Leif Sabellek. “Ontology-Mediated Querying with the De-
scription Logic EL: Trichotomy and Linear Datalog Rewritability”. In: Proc.
of IJCAI. 2017, pp. 1181–1187.

[LS19] Carsten Lutz and Leif Sabellek. “A Complete Classi�cation of the Complexity
and Rewritability of Ontology-Mediated Queries based on the Description
Logic EL”. submitted to AI Journal. 2019.

[LSW15] Carsten Lutz, Inanç Seylan, and Frank Wolter. “Ontology-Mediated Queries
with Closed Predicates”. In: Proc. of IJCAI. AAAI Press, 2015, pp. 3120–3126.

[LT09] Benoit Larose and Pascal Tesson. “Universal algebra and hardness results
for constraint satisfaction problems”. In: Theor. Comput. Sci. 410.18 (2009),
pp. 1629–1647.

[Lut08] Carsten Lutz. “The Complexity of Conjunctive Query Answering in Expres-
sive Description Logics”. In: Proc. of IJCAR2008. Vol. 5195. LNCS. Springer,
2008, pp. 179–193.

[LW12] Carsten Lutz and Frank Wolter. “Non-Uniform Data Complexity of Query
Answering in Description Logics”. In: Proc. of KR. AAAI Press, 2012.

[LW17] Carsten Lutz and Frank Wolter. “The Data Complexity of Description Logic
Ontologies”. In: Logical Methods in Computer Science 13.4 (2017).

146

[Mot+16] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.
“Exemplar queries: a new way of searching”. In: VLDB J. 25.6 (2016), pp. 741–
765.

[Mot+17] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.
“New Trends on Exploratory Methods for Data Analytics”. In: PVLDB 10.12
(2017), pp. 1977–1980.

[NSV10] Alan Nash, Luc Segou�n, and Victor Vianu. “Views and queries: Determinacy
and rewriting”. In: ACM Trans. Database Syst. 35.3 (2010), 21:1–21:41.

[NW97] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, eds. Foundations of Induc-
tive Logic Programming. Vol. 1228. LNCS. Springer, 1997.

[OEI] The On-Line Encyclopedia of Integer Sequences OEIS Foundation Inc. (2019).
Maximal number of regions obtained by joining n points around a circle by
straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.
url: https://oeis.org/A000127 (visited on 05/03/2019).

[Pin+18] Christoph Pinkel, Carsten Binnig, Ernesto Jiménez-Ruiz, Evgeny Kharlamov,
Wolfgang May, Andriy Nikolov, Ana Sasa Bastinos, Martin G. Skjæveland,
Alessandro Solimando, Mohsen Taheriyan, Christian Heupel, and Ian Hor-
rocks. “RODI: Benchmarking relational-to-ontology mapping generation
quality”. In: Semantic Web 9.1 (2018), pp. 25–52.

[Plo70] Gordon D. Plotkin. “A Note on Inductive Generalization”. In: Machine Intel-
ligence 5 (1970), pp. 153–163.

[PMH10] Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. “Tractable query an-
swering and rewriting under description logic constraints”. In: Journal of
Applied Logic 8.2 (2010), pp. 186–209.

[Pog+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. “Linking Data to Ontologies”. In:
Journal on Data Semantics 10 (2008), pp. 133–173.

[Rei04] Omer Reingold. “Undirected ST-Connectivity in Log-Space”. In: Electronic
Colloquium on Computational Complexity (ECCC) 094 (2004).

[Rei77] Raymond Reiter. “On Closed World Data Bases”. In: Proc. of Symposium on
Logic and Data Bases. Advances in Data Base Theory. Plemum Press, 1977,
pp. 55–76.

[RKZ13] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.
“Ontology-Based Data Access: Ontop of Databases”. In: Proc. of ISWC. 2013,
pp. 558–573.

[Ros07] Riccardo Rosati. “The Limits of Querying Ontologies”. In: Proc. of ICDT.
Vol. 4353. LNCS. Springer, 2007, pp. 164–178.

147

https://oeis.org/A000127

Bibliography

[Sch89] Petra Sche�er.Die Baumweite vonGraphen als einMass für die Kompliziertheit
algorithmischer Probleme. Report (Karl-Weierstrass-Institut für Mathematik).
Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathe-
matik, 1989.

[SM17] Juan F. Sequeda and Daniel P. Miranker. “A Pay-As-You-Go Methodology
for Ontology-Based Data Access”. In: IEEE Internet Computing 21.2 (2017),
pp. 92–96.

[TCP14] Quoc Trung Tran, Chee Yong Chan, and Srinivasan Parthasarathy. “Query
reverse engineering”. In: VLDB J. 23.5 (2014), pp. 721–746.

[TLN99] Stefano Trisolini, Maurizio Lenzerini, and Daniele Nardi. “Data Integration
and Warehousing in Telecom Italia”. In: Proc. of SIGMOD. ACM Press, 1999,
pp. 538–539.

[Tob01] Stephan Tobies. “Complexity results and practical algorithms for logics in
knowledge representation”. PhD thesis. RWTH Aachen University, Germany,
2001.

[Tra+14] Thanh-Luong Tran, Quang-Thuy Ha, Thi-Lan-Giao Hoang, Linh Anh Nguyen,
and Hung Son Nguyen. “Bisimulation-Based Concept Learning in Description
Logics”. In: Fundam. Inform. 133.2-3 (2014), pp. 287–303.

[Tri+15] Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos B.
Stamou. “Optimising resolution-based rewriting algorithms for OWL ontolo-
gies”. In: J. Web Sem. 33 (2015), pp. 30–49.

[Var98] Moshe Y. Vardi. “Reasoning about The Past with Two-Way Automata”. In:
Proc. of ICALP. Vol. 1443. LNCS. Springer, 1998, pp. 628–641.

[Zhu17] Dmitriy Zhuk. “A Proof of CSP Dichotomy Conjecture”. In: Proc. of FOCS.
2017, pp. 331–342.

[ZKG18] Michael Zakharyaschev, Stanislav Kikot, and Olga Gerasimova. “Towards a
Data Complexity Classi�cation of Ontology-Mediated Queries with Cover-
ing”. In: Proc. of DL. Vol. 2211. CEUR Workshop Proceedings. CEUR-WS.org,
2018.

[Zlo75] Moshé M. Zloof. “Query-by-Example: the Invocation and De�nition of Tables
and Forms”. In: Proc. of VLDB. 1975, pp. 1–24.

148

	Introduction
	Structure of the Thesis
	Summary of Publications

	Preliminaries
	First-order Logic
	Horn Description Logic TBoxes
	Databases, ABoxes and Knowledge Bases
	Query Languages
	Ontology-Mediated Queries
	Universal Models
	Pseudo Tree-Shaped ABoxes
	Derivation Trees
	Two-way Alternating Parity Automata (TWAPA)
	Computational Complexity

	A complete classification of complexity and rewritability for (EL,CQ)
	Preliminaries
	AC0 versus NL for Connected CQs
	NL versus PTime for Connected CQs
	Unbounded Pathwidth Implies PTime-hardness
	Bounded Pathwidth Implies Linear Datalog Rewritability

	The Trichotomy for Disconnected CQs
	Width Hierarchy for Linear Datalog Rewritability
	Decidability and Complexity
	Conclusion
	Towards a Classification for (ELI,AQ)

	Query-by-Example for Expressive Horn Description Logic Ontologies
	Problem Definition and Basic Observations
	Model-Theoretic Characterizations
	Complexity of qbe and qdef
	Horn-ALC
	ELI (Undecidability)

	Size of Witness Queries
	Discussion and Future Work

	Query Expressibility and Verification in the Data Integration Setting
	Preliminaries
	Characterizations and Basic Observations
	Expressibility and Verification in DL-Lite
	Expressibility in ELHI: Upper Bound for Rooted Queries
	Expressibility in ELHI: Upper Bound for Unrestricted Queries
	Verification in ELHI: Upper Bounds
	Expressibility and Verification in EL: Lower Bounds
	Conclusion

	Conclusion
	Bibliography

