
Model Comparison Games for Horn Description
Logics

Jean Christoph Jung
Universität Bremen

Germany
jeanjung@uni-bremen.de

Fabio Papacchini and Frank Wolter
Department of Computer Science

University of Liverpool, UK
{papacchf,wolter}@liverpool.ac.uk

Michael Zakharyaschev
Department of Computer Science

and Information Systems
Birkbeck, University of London, UK

michael@dcs.bbk.ac.uk

Abstract—Horn description logics are syntactically defined
fragments of standard description logics that fall within the
Horn fragment of first-order logic and for which ontology-
mediated query answering is in PTIME for data complexity. They
were independently introduced in modal logic to capture the
intersection of Horn first-order logic with modal logic. In this
paper, we introduce model comparison games for the basic Horn
description logic hornALC (corresponding to the basic Horn
modal logic) and use them to obtain an Ehrenfeucht-Fraı̈ssé
type definability result and a van Benthem style expressive
completeness result for hornALC. We also establish a finite
model theory version of the latter. The Ehrenfeucht-Fraı̈ssé
type definability result is used to show that checking hornALC
indistinguishability of models is EXPTIME-complete, which is
in sharp contrast to ALC indistinguishability (i.e., bisimulation
equivalence) checkable in PTIME. In addition, we explore the
behavior of Horn fragments of more expressive description and
modal logics by defining a Horn guarded fragment of first-order
logic and introducing model comparison games for it.

I. INTRODUCTION

Description logics (DLs) [1], [2] have been introduced as
knowledge representation formalisms supported by efficient
reasoning tools. The basic DL, called ALC, is a notational
variant of the classical multi-modal logic. In fact, numerous
applications have led to the development of a large family
of DLs with different features. DLs serve as the logical un-
derpinning of ontologies, finitely axiomatized theories known
as TBoxes. Two main reasoning problems have to be solved
efficiently for TBoxes, often containing thousands of axioms:

Deduction: does a formula follow from a TBox?
Query answering: is a tuple d in a database D a certain

answer to an ontology-mediated query (T , q(x))
comprising a TBox T and a query q(x)? In other
words, does q(d) follow from T ∪D?

As the data is typically much larger than both TBox and query,
the appropriate efficiency measure for ontology-mediated
query answering is data complexity, under which the database
is the only input to the problem, while the TBox and query
are regarded as fixed [3]. For ALC, deduction is EXPTIME-
complete and ontology-mediated query answering with con-
junctive queries is CONP-complete [2].

Horn DLs have been introduced as syntactically defined
fragments of standard DLs that fall within the Horn fragment

of first-order logic (henceforth Horn FO) and for which
ontology-mediated query answering is in PTIME for data
complexity [4], [5]. The Horn fragment of ALC is called
hornALC. The modal logic corresponding to hornALC was
introduced independently, actually five years earlier, with the
aim of capturing the intersection of Horn FO and modal
logic [6].1 The introduction of Horn DLs had an enormous
impact on description logic research and applications: while
the weaker Horn DLs of the EL [7] and DL-Lite [8], [9]
families gave rise to two Web Ontology Language OWL 2
profiles (trading expressiveness for high efficiency), the more
expressive Horn DLs starting at hornALC have also been used
extensively, and investigated in depth for ontology-mediated
query answering [10]–[15]. Moreover, despite the fact that
deduction in many expressive Horn DLs, including hornALC,
is EXPTIME-hard, it turned out that efficient reasoners ca-
pable of coping with very large real-world TBoxes could be
developed [16], [17]. The complexity of reasoning in various
types of Horn DLs has been investigated in [18]. It also turned
out that basic questions relevant for ontology-mediated query
answering, such as query-inseparability and conservative ex-
tensions, query emptiness, and query by example, admit more
elegant solutions and are easier to solve computationally for
Horn DLs than in the classical case [19]–[22]. The relationship
between Horn DLs and PTIME query answering is by now
well-understood [23], [24].

In contrast, the model theory for expressive Horn DLs
remains largely undeveloped. Even very basic questions such
as whether hornALC indeed captures the intersection of
ALC (or modal logic) and Horn FO are still unanswered.
The aim of this paper is to lay foundations for a model-
theoretic understanding of Horn DLs (and Horn modal logic)
by developing model comparison games and using them to
obtain Ehrenfeucht-Fraı̈ssé type definability and van Benthem
style expressive completeness results. In a first application
of these results, we show that concept learning and model
indistinguishability in hornALC are EXPTIME-complete and
that hornALC does not capture the intersection of ALC and
Horn FO.

1The results obtained in this paper could have been presented as a
contribution to modal rather than description logic. The only reason why
we have chosen the DL environment is that the impact of Horn fragments in
description logic has so far been much more significant than in modal logic.978-1-7281-3608-0/19/$31.00 c©2019 IEEE

The original definition of Horn DLs [4] was based on the
polarity of concepts, as used in automated theorem proving.
The equivalent definition given for modal logic [6] (and also
for DLs [23]) is more similar to the classical definition of Horn
FO as the closure of Horn clauses ϕ1 ∧ · · · ∧ ϕn → ϕn+1,
with atomic ϕi, under ∧, ∃, and ∀. The obvious analogue of
this definition in description (modal) logic is the closure of
Horn clauses A1 u · · · u An → An+1, with concept names
(propositional variables in modal logic) Ai, under u, ∃R,
∀R (respectively, ∧, ♦, �). However, in contrast to the first-
order case, this definition leaves out the substitution instances
C1 u · · · u Cn → C with positive existential Ci and Horn
C (understood recursively), which have thus been explicitly
included in hornALC. It is easy to show that hornALC is a
fragment of Horn FO under the standard translation.

As the first contribution of the paper, we introduce
model comparison games for characterizing hornALC. These
Horn simulation games differ from standard bisimulation or
Ehrenfeucht-Fraı̈ssé games in the following respects:

(1) the Horn simulation relations underlying Horn simula-
tion games are non-symmetric (which reflects that Horn
languages are not closed under negation);

(2) positions in the games consist of pairs (X, b) with a
set X of nodes and a node b (which reflects that Horn
languages are not closed under disjunction);

(3) Horn simulation games use as a subgame the basic
simulation game for checking indistinguishability by
positive existential ALC formulas (which reflects that
the left-hand side of hornALC implications are such).

Both (2) and (3) have important consequences. The latter
means that Horn simulation games are modular as far as the
characterization of the left-hand side of implications is con-
cerned. For example, by dropping the subgames entirely, we
characterize the positive fragment of ALC and by restricting it
to depth 0, we characterize the weaker Horn fragment of ALC
discussed above. We will use this modularity to characterize a
proper extension, hornALC∇, of hornALC with the operators
∇R.C = ∃R.>u∀R.C (or ∇p = ♦>∧�p in modal logic) on
the left-hand side of hornALC implications, which also lies
in Horn FO.

The consequences of (2) are three-fold. First, using sets
rather than nodes in positions implies that the obvious algo-
rithm checking the existence of Horn simulations containing
a pair ({a}, b) of nodes runs in exponential time. Thus,
using Horn simulation games to check whether two nodes
a and b satisfy the same hornALC-concepts or whether two
models satisfy the same TBox axioms yields exponential
time algorithms. We show that this is unavoidable by prov-
ing corresponding EXPTIME lower bounds. The EXPTIME-
completeness results are in sharp contrast to the typical
complexity of indistinguishability in modal-like languages.
For example, as bisimilarity of nodes can be checked in
polynomial time, deciding whether two nodes satisfy the same
ALC-concepts is in PTIME; similarly, since one can check in
polynomial time whether there is a standard simulation be-

tween two nodes, deciding whether they satisfy the same EL-
concepts is in PTIME as well. Thus, hornALC sits between
languages for which definability questions are computationally
and model-theoretically much more straightforward.

Second, as player 2 does not have a winning strategy in
position (X, b) in the Horn simulation game if, and only if,
there exists a hornALC-concept that is true at all nodes in X
but not true at b, our complexity results are directly applicable
to the concept learning by example (CBE) problem: given a
data set, and sets P and N of positive and negative examples,
does there exist a hornALC-concept C separating P from N
over the data? The goal of this supervised learning problem is
to automatically derive new concept descriptions from labelled
data. It has been investigated before in DL [25]–[27] and
for many logical languages, in particular in databases [28]–
[31]. Horn DLs are of particular interest as target languages
for CBE as they can be regarded as ‘maximal DLs without
disjunction,’ and the unlimited use of disjunction in derived
concept descriptions is undesirable as it leads to overfitting:
learnt concepts enumerate the positive examples rather than
generalize from the examples [26]. The complexity analysis
for Horn simulation games shows that the CBE problem for
hornALC is EXPTIME-complete, again in contrast to ALC,
where CBE is in PTIME. We regard the increased complexity
as the price for obtaining proper generalizations.

Finally, the presence of sets in positions of the Horn simu-
lation games has an impact on the standard infinitary saturated
model approach to proving van Benthem style expressive
completeness results [32], [33]. For example, we aim to prove
that an FO-formula with one free variable is equivalent to
(the standard translation of) a hornALC-concept just in case
it is preserved under Horn simulations. Then, for the infinitary
proof method, not only do the structures showing that non-
equivalence to a hornALC-concept implies non-preservation
under Horn simulations have to satisfy appropriate saturated-
ness conditions, but also the substructures induced by the sets
X chosen by the players have to be saturated. However, sat-
urated structures do not enjoy the latter property for arbitrary
subsets X of their domain. In fact, it currently seems that
the only way to obtain expressive completeness results with
an infinitary approach is to restrict the moves of players to
‘saturated sets,’ say sets definable as the intersection of FO-
definable sets.

In this paper, we prove van Benthem style expressive com-
pleteness results for hornALC-concepts and TBoxes via Horn
simulation games by developing appropriate finitary methods
which do not require saturated structures. As a consequence,
the results hold both in the classical and the finite model
theory setting, and without any restrictions on the moves of
players. In fact, we show that preservation under `-round Horn
simulation games coincides with preservation under infinitary
Horn simulation games for ALC-concepts and TBoxes of nest-
ing depth `. We thus also obtain decidability of the problem
whether anALC-concept or TBox is equivalent to a hornALC-
concept or TBox, respectively. The finitary approach to van
Benthem style expressive completeness results was first used

by Rosen [34] to obtain a bisimulation characterization of
ALC in the finite model theory setting, and has been further
developed and applied with great success by Otto et al. [33],
[35]–[37]. The lifting of our results from expressive complete-
ness for hornALC within ALC to expressive completeness for
hornALC within FO relies on these earlier results.

It is straightforward to extend the Horn simulation games
for hornALC to games providing Ehrenfeucht-Fraı̈ssé type
definability results for the Horn fragments of many popular
extensions of ALC, such as the extension by inverse roles or
the universal role. Instead of going through those extensions
step-by-step, however, we consider the guarded fragment, GF,
of FO and introduce its Horn fragment, hornGF, by gener-
alizing the definition of Horn DLs in the obvious way. We
remind the reader that GF has been introduced as an extension
of multi-modal logic to predicates of arbitrary arity, which
still has many of the fundamental properties of modal and
description logics [32], [38]–[41]. Like hornALC, hornGF is
contained in Horn FO and ontology-mediated query answering
using conjunctive queries is in PTIME for data complexity.
The latter can be shown by establishing a close relationship
between hornGF and guarded tuple-generating dependencies
(guarded tgds), a popular member of the Datalog± family for
which query answering is in PTIME [42], [43]. In fact, guarded
tgds can be seen as normal forms for hornGF, and deduction
and query answering in hornGF can both be polynomially
reduced to the same problem for guarded tgds, and vice
versa. To study the model theory of hornGF, we generalize
Horn simulations to guarded Horn simulations, and show an
Ehrenfeucht-Fraı̈ssé type definability result for hornGF. This
result is used to prove an EXPTIME upper bound for model
indistinguishability in hornGF and to explore the expressive
power of hornGF. In particular, we show that hornGF captures
more of the intersection of ALC and Horn FO than hornALC
but does not capture the intersection of GF and Horn FO.
We then show expressive completeness of hornGF: an FO-
formula is equivalent to a hornGF-formula just in case it is
preserved under guarded Horn simulations. Our proof uses
infinitary methods and thus the moves of player 1 are restricted
to intersections of FO-definable sets. It remains open whether
the expressive completeness holds without this restriction and
whether it holds in the finite model theory setting.

The emerging landscape of the fragments of Horn FO and
GF we considered in this paper is discussed in the conclusion.

Related Work. Here we briefly review the related work not
yet discussed. The definition of Horn simulations is inspired
by games used to provide van Benthem style characterizations
of concepts in weak DLs such as FL− [44]. Van Benthem
style characterizations of DLs in the EL and DL-Lite fam-
ilies are given in [45]. Bisimulations have been studied for
the guarded fragment and many variations [33], [38], [46].
Bisimulations have also been studied recently for coalgebraic
modal logics [47], [48] and fuzzy modal logics [49].

This paper contributes to the model theory of languages
obtained by taking the intersection of Horn FO with modal

and description logic. Horn FO was originally introduced in
classical model theory [50], [51] with the aim of understanding
FO-formulas that are preserved under products of models. As
it turned out, an FO-formula is equivalent to a Horn formula iff
it is preserved under reduced products; for details consult [52],
[53]. A complicated recursive characterization of FO-sentences
preserved under direct products is given in [54].

There have been other attempts to define Horn modal and
temporal logics [55]–[58] with a focus on the complexity of
reasoning and not on model theory.

II. PRELIMINARIES

Description logics (DLs) are fragments of first-order logic
with unary and binary predicates. However, the standard
notation for DL ‘formulas’ is more succinct and does not use
individual variables explicitly [1], [2]. Let τ be a vocabulary
consisting of unary and binary predicate names only. In DL
parlance, they are called concept names (denoted A, B, etc.)
and role names (denoted R, S, etc.), respectively. The ALC[τ]-
concepts, C, are defined by the following grammar:

C,D ::= A | > | ⊥ | ¬C | C tD | C uD |
C → D | ∃R.C | ∀R.C,

where A ∈ τ is unary, R ∈ τ binary, > is the universal and ⊥
the empty concept. If not relevant, we drop τ and simply talk
about ALC-concepts. An ALC[τ]-concept inclusion (or CI)
takes the form C v D, where C and D are ALC[τ]-concepts.
An ALC[τ]-TBox, T , is a finite set of ALC[τ]-CIs.
ALC[τ] is interpreted in usual τ -structures

A = (dom(A), (AA)A∈τ , (R
A)R∈τ)

with dom(A) 6= ∅, AA ⊆ dom(A) and RA ⊆ dom(A)2. The
semantics of ALC can be defined via the standard translation
† of ALC-concepts to FO-formulas with one free variable x:

A† = A(x), >† = (x = x), ⊥† = ¬(x = x),
†commutes with the Booleans (changing u to ∧ and t to ∨),

(∃R.C)† = ∃y (R(x, y) ∧ C†[y/x]),

(∀R.C)† = ∀y (R(x, y)→ C†[y/x]).

The extension CA of a concept C in a structure A is defined as

CA = {a ∈ dom(A) | A |= C†(a)},

and the CI C v D is regarded as a shorthand for the FO-
sentence ∀x (C†(x) → D†(x)). We write T |= C v D to
say that the CI C v D follows from the TBox T , that is,
CA ⊆ DA holds in every model A of T . Concepts C and D
are equivalent if ∅ |= C v D and ∅ |= D v C.
ALC-concepts that are built from concept names using >,
u, t, and ∃R.C only are called ELU-concepts; ELU-concepts
without t are called EL-concepts. The FO-translation C† of
any ELU-concept C is clearly a positive existential formula.

Definition 1 (Horn ALC-concept). We define hornALC[τ]-
concepts, H , by the grammar

H,H ′ ::= ⊥ | > | A | H uH ′ | L→ H | ∃R.H | ∀R.H,

where L is an ELU [τ]-concept. A hornALC-CI takes the form
L v H . A hornALC-TBox is a finite set of hornALC-CIs.

Our definition of hornALC-concepts is from [23]. We
show in the appendix that both polarity-based definition of
hornALC-concepts from [4] and Horn modal formulas (appro-
priately adapted to the DL syntax) defined in [6] are equivalent
to our definition.

To put hornALC-concepts into the context of classical
Horn FO-formulas, we recall that a basic Horn formula is
a disjunction ϕ1 ∨ · · · ∨ϕn of FO-formulas, with at most one
of them being an atom and the remaining ones negations of
atoms [52]. A Horn formula is constructed from basic Horn
formulas using ∧, ∃, and ∀.

Theorem 1. (i) Every hornALC-concept is equivalent to a
Horn formula with one free variable and every hornALC-CI
is equivalent to a Horn sentence.

(ii) There exists an ALC-concept (TBox) that is equivalent
to a Horn formula (Horn sentence), but not equivalent to any
hornALC-concept (TBox).

Proof. (i) is proved by a straightforward induction on the
construction of hornALC-concepts. To prove (ii), consider
first the ALC-concept

C∇ = (∃R.> u ∀R.A)→ B.

It is not hard to check that C†∇ has the same models as

∃y R(x, y)→ ∃z (R(x, z) ∧ (A(z)→ B(x))),

which is equivalent to a Horn formula. Example 1 below shows
that C∇ is not equivalent to any hornALC-concept.

Next, consider the ALC-TBox Thorn with the following CIs:

E v A1 tA2 t ∃R.(¬B1 u ¬B2), ∃R.(B1 uB2) v ⊥,
E v ∃R.>, ∃R.B1 v ∃R.B2, ∃R.B2 v ∃R.B1.

The FO-translations of all of them but the first one are obvi-
ously (equivalent to) Horn sentences. We take a conjunction
of these translations together with the sentence

∀x
[
E(x)→ ∃y (R(x, y) ∧

(B1(y)→ A1(x)) ∧ (B2(y)→ A2(x)))
]
,

which is also equivalent to a Horn one. One can check that the
resulting sentence is equivalent to Thorn. On the other hand,
Example 1 below shows that Thorn is not equivalent to any
hornALC-TBox.

Given Theorem 1, a natural question arises whether it is
possible to design a syntactic extension of hornALC that
captures the intersection of ALC and Horn FO. We discuss
this problem in the conclusion of this paper.

We remind the reader of two usual operations on structures.
The product

∏
i∈I Ai of a family of τ -structures Ai, i ∈ I ,

is defined as follows: its domain dom(
∏
i∈I Ai) is the set of

functions f : I →
⋃
i∈I dom(Ai) with f(i) ∈ dom(Ai), for

i ∈ I , and

A
∏

i∈I Ai = {f ∈ dom(
∏
i∈I

Ai) | ∀i ∈ I f(i) ∈ AAi},

R
∏

i∈I Ai = {(f, g) ∈ (dom(
∏
i∈I

Ai))
2 |

∀i ∈ I (f(i), g(i)) ∈ RAi}.

Horn formulas are preserved under products in the sense that

∀i ∈ I Ai |= ϕ(f1(i), . . . , fn(i)) ⇒
∏
i∈I

Ai |= ϕ(f1, . . . , fn)

for all Horn formulas ϕ. Note that an FO-formula is equivalent
to a Horn formula iff it is preserved under the more general
reduced products (modulo filters over I) [52].

The disjoint union A of a family Ai, i ∈ I , of structures
has domain

⋃
i∈I dom(Ai)× {i} and

AA = {(a, i) | a ∈ AAi},
RA = {((a, i), (b, i)) | (a, b) ∈ RAi}.

ALC-TBoxes T are invariant under disjoint unions, that is:

∀i ∈ I Ai |= T ⇔ A |= T .

By the depth of a concept C we mean the maximal number
of nestings of ∃R and ∀R in C. For example, the concepts
∃R.∃R.A and ∃R.∀R.A are of depth 2. The depth of a TBox
is the maximum over the depths of the concepts occurring in
it. By a pointed structure we mean a pair A, X with a structure
A and a non-empty set X ⊆ dom(A). If X = {a}, we simply
write A, a.

Definition 2 (DL indistinguishability). For any DL L, τ -
structures A and B, a ∈ dom(A), X ⊆ dom(A), b ∈ dom(B),
and ` < ω, we write:

– A, X ≤(`)
L B, b if X ⊆ CA implies b ∈ CB, for any

L-concept C (of depth ≤ `);
– A, a ≡(`)

L B, b if A, a ≤(`)
L B, b and B, b ≤(`)

L A, a;
– A ≤L B if A |= C v D implies B |= C v D, for any
L-CI C v D;

– A ≡L B if A ≤L B and B ≤L A.

We now recall the model comparison games for indistin-
guishability in ELU that will be required as part of the model
comparison games for hornALC. The ELU case is rather
straightforward and folklore [59], but it will remind the reader
of the basics of model comparison games used in this paper.

Definition 3 (simulation). A relation S ⊆ dom(A)×dom(B)
is a simulation between τ -structures A and B if the following
conditions hold:

(atomf) for any A ∈ τ , if (a, b) ∈ S and a ∈ AA, then
b ∈ AB,

(forth) for any R ∈ τ , if (a, b) ∈ S and (a, a′) ∈ RA, then
there is b′ with (b, b′) ∈ RB and (a′, b′) ∈ S.

We write A, a �sim B, b if there exists a simulation S between
A and B with (a, b) ∈ S.

Simulations can be equivalently described as games between
two players on the disjoint union of A and B. A position in the
simulation game is a pair of nodes (a, b) ∈ dom(A)×dom(B),
marked by pebbles. The players move, in turns, the pebbles
along binary relations in τ . The first player chooses an R ∈ τ
and moves the pebble in A along RA, the second player must
respond in B complying with (atomf) and (forth). The second
player wins a game starting at (a, b) if she can always respond
to the first player’s moves, ad infinitum. One can show that
the second player has a winning strategy iff A, a �sim B, b.

Besides the infinitary simulation games corresponding to
Definition 3, we consider games with a fixed number ` of
moves. We write A, a �`sim B, b if the second player has a
winning strategy in the simulation game with ` rounds starting
from (a, b). We write A, a �ωsim B, b if A, a �`sim B, b for every
` < ω.

Theorem 2 (Ehrenfeucht-Fraı̈ssé game for ELU). For any
finite vocabulary τ , pointed τ -structures A, a and B, b, and
any ` < ω, we have

A, a ≤`ELU B, b iff A, a �`sim B, b.

Thus, A, a ≤ELU B, b iff A, a �ωsim B, b. If A and B are finite,
then

A, a ≤ELU B, b iff A, a �sim B, b.

In some proofs, we shall also be using bisimulations. Recall
that a relation S between A and B is a bisimulation if
S is a simulation between A and B, and its inverse is a
simulation between B and A. The notion of `-bisimilarity
is defined by restricting the corresponding bisimulation game
to ` moves. This notion characterizes indistinguishability in
ALC: pointed structures A, a and B, b are `-bisimilar iff
A, a ≡`ALC B, b [33].

III. SIMULATIONS FOR hornALC

We now define a new model comparison game, the Horn
simulation game, and prove that it provides an Ehrenfeucht-
Fraı̈ssé characterization of the relation A, a ≤hornALC B, b.
As hornALC is not closed under negation, Horn simulations
will be non-symmetric. Moreover, since hornALC is not
closed under disjunction, Horn simulations relate non-empty
sets of elements from dom(A) with elements from dom(B).
hus, rather than characterizing A, a ≤hornALC B, b only, we
actually characterize the relation A, X ≤hornALC B, b. To
define the relation between subsets of dom(A) along which the
pebble is moved in the Horn simulation game, we set XR↑Y ,
for a binary relation R and sets X,Y , if for any a ∈ X , there
exists b ∈ Y with (a, b) ∈ R, and we set XR↓Y if, for any
b ∈ Y , there exists a ∈ X with (a, b) ∈ R.

Definition 4 (Horn simulation). A Horn simulation between
τ -structures A and B is a relation Z ⊆ P(dom(A))×dom(B)
such that (X, b) ∈ Z implies X 6= ∅ and the following hold:

(atomh) for any A ∈ τ , if (X, b) ∈ Z and X ⊆ AA, then
b ∈ AB;

(forthh) for any R ∈ τ , if (X, b) ∈ Z and XRA↑Y , then there
exist Y ′ ⊆ Y and b′ ∈ dom(B) with (b, b′) ∈ RB

and (Y ′, b′) ∈ Z;
(backh) for any R ∈ τ , if (X, b) ∈ Z and (b, b′) ∈ RB, then

there is Y ⊆ dom(A) with XRA↓Y and (Y, b′) ∈ Z;
(sim) if (X, b) ∈ Z, then B, b �sim A, a for every a ∈ X .

We write A, X �horn B, b if there exists a Horn simulation Z
between A and B such that (X, b) ∈ Z.

Condition (atomh) ensures that concept names are preserved
under Horn simulations, and conditions (forthh), (backh), and
(sim) ensure, recursively, the preservation of concepts of the
form ∃R.H , ∀R.H and L→ H , respectively. Note that (sim)
implies that the converse of (atomh) holds as well, and so
A, X �horn B, b entails X ⊆ AA iff b ∈ AB, for all A ∈ τ ,
which reflects that A→ ⊥ is a hornALC-concept.

As we intend Horn simulations to characterize hornALC-
concepts, which are ALC-concepts, Horn simulations should
subsume bisimulations. The following lemma states that this
is indeed the case. It also shows that having sets as the first
component of positions in the Horn simulation games is the
defining difference between Horn simulations and bisimula-
tions. The (straightforward) proof is instructive to understand
Horn simulations.

Lemma 1. (i) If Z is a bisimulation between τ -structures
A and B, then {({a}, b) | (a, b) ∈ Z} is a Horn simu-
lation between A and B. (ii) Conversely, if Z is a Horn
simulation with a singleton X in every (X, b) ∈ Z, then
{(a, b) | ({a}, b) ∈ Z} is a bisimulation between A and B.

As the FO-translations of hornALC-concepts are Horn
formulas, and the Horn formulas are (almost) characterized
as the fragment of FO preserved under products, one could
expect products to be closely related to Horn simulations.
We now show this to be the case. Consider a family of τ -
structures Ai, i ∈ I , and let A be the disjoint union of the
Ai. Define a relation Z between P(dom(A)) and

∏
i∈I Ai by

setting (Y, f) ∈ Z if Y ⊆ dom(A), f ∈ dom(
∏
i∈I Ai), and

dom(Ai)∩Y = {f(i)} for all i ∈ I . The proof of the following
is again straightforward and instructive.

Lemma 2. Z is a Horn simulation between A and
∏
i∈I Ai.

The following examples illustrate that Horn simulations can
be seen as a proper generalization of both bisimulations and
products.

a

b c

d

e

¬B B

¬A A A

R R R

A0

a′

b′

¬B

A

R

B0

Z

Z

Example 1. (i) Let A0 and B0 be the structures shown above.
Z = {({a, d}, a′), ({e}, b′)} is a Horn simulation between
A0 and B0. For the concept C∇ from Theorem 1, we have
{a, d} ⊆ CA0

∇ but a′ 6∈ CB0

∇ . Thus, by Lemma 3 below, C∇
is not equivalent to any hornALC-concept.

(ii) Let A1 and B1 be the structures below. Then the relation

Z = {({a1, a2}, b), ({c1}, e), ({c2}, e), ({d1}, f), ({d2}, f)}

is a surjective Horn simulation between A1 and B1. Moreover,
we have A1 |= Thorn but B1 6|= Thorn for the TBox Thorn from
Theorem 1. By Theorem 4 below, Thorn is not equivalent to
any hornALC-TBox.

a1

c1

d1

E,A1

B1

B2

R

R

a2

c2

d2

E,A2

B1

B2

R

R

A1

b

e

f

R

R

E

B1

B2

B1

Given the notion of Horn simulation, we next introduce the
Horn simulation game between τ -structures A and B in the
expected way. In the infinite case, it consists of the following
nested games. Using simulation games, one can check whether
condition (sim) holds for a pair (X, b). Then, in the main
Horn simulation game, the second player must respond with
pairs (Y ′, b′) for (forthh) and sets Y for (backh) such that the
new position satisfies (sim) and the remaining conditions of
Definition 4. In the Horn simulation game with ` rounds, some
care must be taken: as we want to characterize the depth `
fragment of hornALC, we have to decompose condition (sim).
Thus, define pairs (X, b) satisfying (sim`) as those for which
player 2 has a winning strategy for the `-round simulation
game for all (b, a) with a ∈ X . Then, inductively, player 2
has a winning strategy in the (` + 1)-round Horn simulation
game at position (X, b) if (X, b) satisfies (sim`+1) and player 2
can react to player 1’s first move by choosing Y in such a way
that condition (sim`) holds for the resulting position and she
has a winning strategy in the resulting `-round game. A formal
definition is given in the appendix. We write A, X �`horn B, b
if player 2 has a winning strategy in the `-round game.

Theorem 3 (Ehrenfeucht-Fraı̈ssé game for hornALC). For
any finite vocabulary τ , pointed τ -structures A, a and B, b,
and any ` < ω, we have

A, a ≤`hornALC B, b iff A, a �`horn B, b.

Thus, A, a ≤hornALC B, b iff A, a �ωhorn B, b. If A and B are
finite, then

A, a ≤hornALC B, b iff A, a �horn B, b.

As discussed above, to prove Theorem 3, we actually show
the following stronger statement:

Lemma 3. For any finite vocabulary τ , pointed τ -structures
A, X and B, b, and any ` < ω,

A, X ≤`hornALC B, b iff ∃X0 ⊆ X A, X0 �`horn B, b.

If A and B are finite, then

A, X ≤hornALC B, b iff ∃X0 ⊆ X A, X0 �horn B, b.

Proof. (sketch) The second claim follows directly from the
first one, which we prove here. For any ` < ω and any pointed
τ -structure A, a, let λA,`,a be an ELU [τ]-concept of depth ≤ `
such that, for any pointed τ -structure B, b,

b ∈ λBA,`,a iff A, a �`sim B, b. (1)

The existence of λA,`,a follows immediately from the fact that
there are only finitely-many non-equivalent ELU [τ]-concepts
of any fixed depth `. Similarly, fix a finite set Horn` of
hornALC-concepts of depth ≤ ` such that every hornALC-
concept of depth ≤ ` is equivalent to some concept in Horn`.
For a pointed τ -structure A, X , let ρA,`,X be the conjunction
of all concepts C in Horn` with X ⊆ CA. Clearly, we have

b ∈ ρBA,`,X iff A, X ≤`hornALC B, b. (2)

To prove the implication (⇒) of the first claim, we define
relations Z` ⊆ P(dom(A)) × dom(B), ` < ω, by setting
(X, b) ∈ Z` if X 6= ∅ and the following two conditions hold:
(i) b ∈ ρBA,`,X ,

(ii) X ⊆ λAB,`,b.

Claim 1. For any ` < ω, ∅ 6= X ⊆ dom(A) and b ∈ dom(B),
if (X, b) ∈ Z`, then A, X �`horn B, b.

Proof of claim. We proceed by induction on ` < ω. The
basis ` = 0 holds by definition. So suppose that Claim 1
has been proved for ` and that (X, b) ∈ Z`+1. We show
A, X �`+1

horn B, b. Condition (atomh) holds by definition.
For (forthh), suppose player 1 moves the pebble to Y with
XRA↑Y . Then X ⊆ (∃R.ρA,`,Y)A. By the definition of Z`+1,
b ∈ (∃R.ρA,`,Y)B. Let player 2 respond with b′ and Y ′ such
that (b, b′) ∈ RB, b′ ∈ ρBA,`,Y , and

Y ′ = Y ∩ λAB,`,b′ .

We show that (Y ′, b′) is as required for (forthh). By IH, it
suffices to prove that (Y ′, b′) ∈ Z`. To show Y ′ 6= ∅, suppose
otherwise. Then Y ⊆ (λB,`,b′ → ⊥)A, so (λB,`,b′ → ⊥) is
equivalent to a conjunct of ρA,`,Y . By the construction of b′,
we have b′ ∈ (λB,`,b′ → ⊥)B. On the other hand, b′ ∈ λBB,`,b′ ,
which is impossible.

Condition (i) is proved similarly and condition (ii) holds
by the definition of Y ′.

For (backh), suppose player 1 moves the pebble to b′ with
(b, b′) ∈ RB. For every C ∈ Horn` with b′ 6∈ CB, take
some aC ∈ X and a′C with (aC , a

′
C) ∈ RA such that a′C ∈

(λB,`,b′ u ¬C)A. They exist since otherwise we would have
X ⊆ (∀R.(λB,`,b′ → C))A but b 6∈ (∀R.(λB,`,b′ → C))B,
which contradicts the definition of Z`+1. Now let player 2
respond with the set Y of all such a′C . Then XRA↓Y and

(Y, b′) ∈ Z` as b′ ∈ ρBA,`,Y and Y ⊆ λBB,`,b′ hold by the
construction of Y . By IH, A, Y �`horn B, b′, as required.

Finally, (sim`+1) follows from (1), which completes the
proof of Claim 1.

Now assume that A, X ≤`hornALC B, b. Then it suffices to
prove that if b ∈ ρBA,`,X , then there exists X0 ⊆ X with
(X0, b) ∈ Z`. But for X0 = X ∩ λAB,`,b this can be proved in
the same way as Claim 1 above.

The proof of the implication (⇐) of the first claim is by
induction on ` < ω.

Horn simulations can also characterize hornALC-TBoxes.
For ` < ω, we write A �(`)

horn B if, for every b ∈ dom(B),
there exists X ⊆ dom(A) such that A, X �(`)

horn B, b.

Theorem 4. For any finite vocabulary τ , τ -structures A and
B, and ` < ω, we have

A ≤`hornALC B iff A �`horn B.

If A and B are finite, then

A ≤hornALC B iff A �horn B.

IV. COMPLEXITY OF MODEL INDISTINGUISHABILITY

We next study the complexity of deciding the relations
≤hornALC and ≡hornALC and their restrictions ≤`hornALC and
≡`hornALC on the level of concepts. The related problems on the
TBox level (cf. Theorem 4) have the same complexity as shown
in the appendix. We refer to the respective decision problems
as (`)-entailment and (`)-equivalence; for instance, entailment
is the problem of deciding whether A, a ≤hornALC B, b for
input A,B, a, b, and `-equivalence is the problem of deciding
whether A, a ≡`hornALC B, b for input A,B, a, b, `.

As a second application of the Ehrenfeucht-Fraı̈ssé results
we investigate concept learning by example (CBE). CBE is a
supervised learning problem with applications in knowledge
engineering for automatically deriving new and potentially
interesting concept descriptions from labelled data. Intuitively,
given some relational data and sets of positive and negative
examples, the goal is to find a concept that generalizes the
positive examples, but avoids the negative ones. The associated
decision problem is formally defined as follows:

Input: structure A, positive and negative examples P,N .
Question: is there a hornALC-concept C with P ⊆ CA and

N ∩ CA = ∅?
The connection to Horn simulations is given by Lemma 3: an
input A, P,N is a yes-instance of CBE iff A, P 6�horn A, b for
all b ∈ N . We denote by `-CBE the variant of CBE restricted
to hornALC-concepts of depth `. This variant is important in
practice as the user is interested in small separating concepts.

Our main result in this section is the following theorem:

Theorem 5. Entailment, equivalence, and CBE are EXPTIME-
complete. Moreover, `-entailment, `-equivalence and `-CBE
are EXPTIME-complete if ` is given in binary and PSPACE-
complete if ` is given in unary.

It is worth mentioning the striking contrast between this
EXPTIME result and the fact that the same problems for ALC
are in PTIME. On the one hand, the EXPTIME lower bounds
provide evidence that the use of sets in the notion of Horn
simulations is inevitable. On the other hand, observe that
CBE for ALC is in PTIME because there is an ALC-concept
separating the positive and negative examples iff A, a and A, b
are not bisimilar, for any a ∈ P and b ∈ N . Consequently,
the positive examples can be treated essentially separately and
a naive application of this leads to overfitting, that is, the
intended generalization of the positive examples is not taking
place [26]. Thus, we can regard the EXPTIME result for CBE
in hornALC as the price for obtaining real generalizations.

To prove Theorem 5, we focus on the unrestricted case.
The following lemma gives complexity-theoretic reductions
between the mentioned problems and the problem HornSim
of deciding whether A, X �horn B, b for input A,B, X, b.

Lemma 4. (1) CBE ≤PT HornSim;
(2) HornSim ≤Pm CBE;
(3) HornSim ≤Pm Entailment;
(4) Entailment ≤Pm HornSim;
(5) Equivalence ≤PT Entailment;
(6) Entailment ≤Pm Equivalence.

Proof. Here, we only show the most interesting reduction (3).
Let A,B, X, b be the input to HornSim. Define A′ by adding

a new R-predecessor a to all nodes in X . Further, define B′

by taking the disjoint union of A and B and adding a new
R-predecessor d to b, and making d also a predecessor of all
nodes in (the copy of) X . Then we have

A, X �horn B, b iff A′, a �horn B′, d,

which is equivalent to A′, a ≤hornALC B
′, d by Theorem 3.

Thus, to prove Theorem 5, it suffices to show the following:

Lemma 5. HornSim is EXPTIME-complete.

For the upper bound, we observe that the Horn simulation
game can be implemented by an alternating Turing machine
(ATM) using only polynomial space. For the lower bound,
we carefully adapt a strategy from [60] for proving that
the simulation problem between two structures A and B is
EXPTIME-hard when A is given as a fair concurrent transition
system, that is, a certain synchronized product of structures.
More precisely, we reduce the word problem of polynomially
space-bounded ATMs. Let M be an s(n)-space bounded ATM
and w an input of length n. We construct structures A, B,
X ⊆ dom(A), and b ∈ dom(B) such that

M accepts w iff A, X �horn B, b.

The structure A can be thought of as the disjoint union of s(n)
structures A1, . . . ,As(n) and a single copy of B (plus some
connections from the Ai to B). Intuitively, each sub-structure
Ai is responsible for tape cell i of one of M ’s configurations
on input w; thus, the domain of each Ai consists of the
possible contents of a single cell. As usual, the challenge is

the synchronization. Here, different tape cells are synchronized
via the simulation conditions using different role names: one
role name Rq,a,i,d for every possible state q of M , current
head position i, read symbol a, and branching direction d (we
assume that M has binary branching). The extension of such
a role name Rq,a,i,d in a structure Aj is defined in the obvious
way, respecting M ’s transition relation. The set X consists of
M ’s initial configuration on input w.

The role of B (as the second structure) is to control M ’s
computation; its domain is independent of M and consists
of 20 elements only. It manages both the switch between
universal and existential states and the intended acceptance
value of the current configuration (1 if the configuration
leads to acceptance, 0 otherwise). Universal and existential
elements are fully interconnected with the mentioned role
names Rq,a,i,d. The initial element b for the reduction is a
universal element (without loss of generality M ’s initial state
is universal), and corresponds to acceptance value 1.

Now, conditions (atomh) and (forthh) are responsible for
simulating M ’s computation on input w and (atomh) ensures
that every reached set X in A corresponds to a valid configura-
tion. Conditions (sim) and (backh) do not have a real purpose
for the reduction, but need to be reflected in the mentioned
inclusion of (a copy of) B in A.

V. EXPRESSIVE COMPLETENESS FOR hornALC
In this section, we prove that an FO-formula with one free

variable is equivalent to a hornALC-concept just in case it is
preserved under Horn simulations, and that an FO-sentence is
equivalent to a hornALC-TBox just in case it is invariant under
disjoint unions and preserved under global (that is, surjective)
Horn simulations. We prove these results both in the classical
setting defined above and in the finite model theory setting
where the notions of equivalence, preservation, and invariance
are relativized to finite models.

In the concept case, by the van Benthem-Rosen characteri-
zation of ALC-concepts as the bisimulation invariant fragment
of FO and since preservation under Horn simulations implies
invariance under bisimulations (by Lemma 1), it suffices to
prove that an ALC-concept is equivalent to a hornALC-
concept iff it is preserved under Horn simulations (in the
classical and finite model theory setting). We will, therefore,
formulate the expressive completeness result within ALC. In
the TBox case, it is known that an FO-sentence is equivalent
to an ALC-TBox just in case it is invariant under disjoint
unions and preserved under bisimulations [35], [45]; thus,
again by Lemma 1, it suffices to show that an ALC-TBox is
equivalent to a hornALC-TBox iff it is preserved under global
Horn simulations. In both proofs, we employ Otto’s finitary
method [35] and show that, for ALC-concepts (TBoxes) of
depth ≤ `, preservation under (global) Horn simulations is
equivalent to preservation under (global) `-Horn simulations,
which is the same as equivalence to a hornALC-concept
(TBox) of depth ≤ `.

We start with the concept case. Say that an ALC-concept
C is preserved under (`)-Horn simulations if, for any pointed

structures A, X and B, b, whenever X ⊆ CA and A, X �(`)
horn

B, b then b ∈ CB.

Theorem 6 (expressive completeness: hornALC-concepts).
Let C be an ALC-concept of depth `. Then the following
conditions are equivalent (in the classical and finite model
theory setting):

(1) C is equivalent to a hornALC-concept,
(2) C is preserved under Horn simulations,
(3) C is preserved under `-Horn simulations,
(4) C is equivalent to a hornALC-concept of depth ≤ `.

Proof. (sketch) (1)⇒ (2) follows from Lemma 3; (4)⇒ (1)
is trivial; (3) ⇒ (4) is straightforward and proved in the
appendix. We thus focus on (2) ⇒ (3).

A structure A is called tree-shaped if the directed graph
GA = (dom(A), E) with E =

⋃
R∈τ R

A is a directed tree
and RA ∩ SA = ∅ for all distinct role names R and S. The
root of GA is called the root of A. The depth of a ∈ dom(A)
is the length of the path from the root of A to a; the root of A
has depth 0. The disjoint union of tree-shaped structures is a
forest. Recall that every pointed A, a can be unravelled into a
tree-shaped structure A∗ with root a such that A, a and A∗, a
are bisimilar [32]. Note that A∗ is infinite (even for finite A)
if GA contains a cycle. The finite model theory version of
Theorem 6 is not affected as one only needs the unravelled
tree-shaped structures up to a finite depth `.

Suppose C is an ALC-concept of depth ≤ ` preserved under
Horn simulations. Let A, X and B, b be pointed structures
such that A, X �`horn B, b and X ⊆ CA. We have to show that
b ∈ CB. For every a ∈ X , take a tree-shaped pointed structure
Aa, a bisimilar to A, a. Let B′, b be a tree-shaped pointed
structure bisimilar to B, b. Then A′, X �`horn B′, b for the
disjoint union A′ of Aa, a ∈ X . By bisimulation invariance of
ALC-concepts, we have X ⊆ CA′

and it suffices to prove that
b ∈ CB′

. Remove from A′ and B′ all nodes of depth > ` and
denote the resulting structures by A′′ and B′′, respectively. As
C is of depth ≤ `, we have X ⊆ CA′′

and it suffices to prove
that b ∈ CB′′

. Using A′, X �`horn B′, b, it is straightforward
to show that A′′, X �horn B′′, b. Then b ∈ CB′′

follows from
the preservation of C under Horn simulations.

For the finite model theory setting, observe that A′′ and B′′

are finite if A and B are finite.

We now consider the TBox case. We say that an ALC-TBox
is preserved under global (`)-Horn simulations if A |= T and
A �(`)

horn B imply B |= T .

Theorem 7 (expressive completeness: hornALC-TBoxes).
For any ALC-TBox T of depth `, the following conditions are
equivalent (in the classical and finite model theory setting):

(1) T is equivalent to a hornALC-TBox;
(2) T is preserved under global Horn simulations;
(3) T is preserved under global `-Horn simulations;
(4) T is equivalent to a hornALC-TBox of depth ≤ `.

Proof. (sketch) We use the notation from the previous proof
and focus on (2) ⇒ (3), showing (3) ⇒ (4) in the appendix.

We require injective `-Horn simulations, which are defined
as follows. Let A be a forest and B a tree-shaped structure.
A sequence H0, . . . ,H` of relations between P(dom(A)) and
dom(B) is called an injective `-Horn simulation if for each
(X, b) ∈ Hi all a ∈ X are of depth i in A and b is of depth
i in B, and the following conditions hold:

– if (X, b) ∈ Hi, then A, X �ihorn B, b, for 0 ≤ i ≤ `;
– if (X, b) ∈ Hi and XRA↑Y , then there are Y ′ ⊆ Y and
b′ ∈ dom(B) with (b, b′) ∈ RB and (Y ′, b′) ∈ Hi+1,
for all R ∈ τ and 0 ≤ i < `;

– if (X, b) ∈ Hi and (b, b′) ∈ RB, then there exists Y ⊆
dom(A) such that XRA↓Y and (Y ′, b′) ∈ Hi+1, for all
R ∈ τ and 0 ≤ i < `;

– if (X0, b), (X1, b) ∈ Hi, then X0 = X1, for 0 ≤ i ≤ `.
If A, X �`horn B, b, we can take, for a ∈ X , a tree-shaped
pointed structure Aa, a bisimilar to A, a and a tree-shaped
pointed structure B′, b bisimilar to B, b. Then A′, X �`horn
B′, b for the disjoint union A′ of the Aa, a ∈ X . By duplicat-
ing successors in B′ sufficiently often (possibly exponentially
many times), we obtain a tree-shaped pointed structure B′′, b
bisimilar to B′, b such that there is an injective `-Horn
simulation H0, . . . ,H` between A′ and B′′ with (X, b) ∈ H0.

Now suppose T is preserved under global Horn simulations.
Let B be a structure such that there exists a model A of
T with A �`horn B. We have to show that B is a model
of T . Let b0 ∈ dom(B) be arbitrary. It suffices to show
b0 ∈ (¬C t D)B for all C v D ∈ T . Since A �`horn B,
there is a set X ⊆ dom(A) with A, X �`horn B, b0. For
every a ∈ X , take a tree-shaped pointed structure Aa, a
bisimilar to A, a. By the observation above, we can take a
tree-shaped pointed interpretation B′, b0 bisimilar to B, b0 and
the disjoint union A′ of the Aa, a ∈ X , such that there is
an injective `-Horn simulation H0, . . . ,H` between A′ and
B′ with (X, b0) ∈ H0. By bisimulation invariance of ALC-
concepts, A′ is a model of T , and so it is enough to show that
b0 ∈ (¬C tD)B

′
for all C v D ∈ T .

Let B′|` be the structure obtained from B′ by dropping
all nodes of depth > `. We hook to every leaf b ∈ B′|` of
depth ` a structure Bb so that A′, X �horn B′′, b0 for the
resulting structure B′′. As T is preserved under global Horn
simulations, B′′ is a model of T . As T has depth ≤ `, we
have b0 ∈ (¬C tD)B

′
for all C v D ∈ T , as required. We

come to the construction of the Bb for b a leaf of depth `
in B′|`. Since H0, . . . ,H` is injective, there is a unique non-
empty Xb ⊆ dom(A′) such that (Xb, b) ∈ H`. Observe that
from (Xb, b) ∈ H` it follows that Xb ⊆ AA′

iff b ∈ AB′

for any A ∈ τ . Let A′a be the tree-shaped substructure of A′

rooted at a, for a ∈ Xb. Then we hook to b the structure
Bb =

∏
a∈Xb

A′a by identifying (a | a ∈ Xb) ∈
∏
a∈Xb

A′a
with b. Using Lemma 2, it is readily checked that the resulting
structure is as required.

In the finite model theory setting, we consider finite A and
B. Then we can assume that the structures B′|` and A′|` are
finite. Now, rather than hooking the (possibly infinite) Bb =∏
a∈Xb

A′a to every leaf b of depth ` in B′|` we (i) replace
all A′a with a of depth ` in A′ by finite models A′′a of T

satisfying the same subconcepts of T as A′a in a and (ii) hook∏
a∈Xb

A′′a to b. Then A′′, X �horn B′′′, b0 for the resulting
finite structures A′′ and B′′′, and A′′ is a model of T .

As there is only a finite number of hornALC-concepts and
TBoxes of bounded depth in a finite vocabulary τ , it follows
from Theorems 6 and 7 that it is decidable whether an ALC-
concept or TBox is equivalent to a hornALC-concept or TBox,
respectively.

VI. HORN GUARDED FRAGMENT hornGF OF FO

We extend hornALC to the Horn fragment, hornGF, of
the guarded fragment of FO in the obvious way. hornGF
contains numerous popular Horn DLs including those extend-
ing hornALC with inverse roles, the universal role, and role
inclusions [4], [5]. We then generalize the Horn simulation
games to guarded Horn simulation games for hornGF and
prove an Ehrenfeucht-Fraı̈ssé type definability theorem and a
van Benthem style expressive completeness result for hornGF.
Applications include an EXPTIME upper bound for model
indistinguishability.

Let τ be a vocabulary of predicate names R of arbitrary
arity rR ≥ 0. The guarded fragment GF[τ] of FO is defined
by the following rules:

– GF[τ] contains the constants > (truth) and ⊥ (falsehood);
– GF[τ] contains the atomic formulas R(x) and x = y with
R ∈ τ ;

– GF[τ] is closed under the connectives ∧, ∨, and ¬;
– if ϕ(xy) is in GF[τ] with free variables among xy and
G(xy) is an atomic formula containing all the variables
in xy, then

∀y (G(xy)→ ϕ(xy)), ∃y (G(xy) ∧ ϕ(xy))

are in GF[τ] (these are called the universal and existential
guarded quantifiers of GF[τ]).

If the particular vocabulary τ is not relevant, we simply write
GF for GF[τ]. The nesting depth of guarded quantifiers in a
formula ϕ in GF, or simply the depth of ϕ, is defined as the
number of nestings of guarded quantifiers in ϕ. The formulas
of the positive existential guarded fragment GF∃[τ] of GF[τ]
are constructed from atomic formulas using ∧, ∨, and the
guarded existential quantifiers.

Definition 5 (hornGF). The fragment hornGF[τ] of GF[τ] is
given by the following grammar:

ϕ,ϕ′ ::= ⊥ | > | x = y | R(x) | ϕ ∧ ϕ′ | λ→ ϕ

| ∃y(G(xy) ∧ ϕ(xy)) | ∀y(G(xy)→ ϕ(xy)),

where R ∈ τ , G(xy) are atomic formulas containing all the
variables in xy, and λ ∈ GF∃[τ].

hornGF is closely related to guarded tuple-generating de-
pendencies (guarded tgds), a member of the Datalog± fam-
ily of ontology languages for which query answering is in
PTIME [43]. Guarded tgds are FO-formulas of the form
∀x∀y (ψ(xy) → ∃zϕ(xz)) with conjunctions of atoms

ψ(xy) and ϕ(xz) such that ψ contains an atom G(xy)
guarding all the variables in xy. Thus, in contrast to hornGF,
guarded tgds have no quantifier alternation and can be regarded
as a normal form for hornGF. In the appendix, we give a
polynomial time reduction of deduction and query answering
in hornGF to the respective problems for guarded tgds by
introducing fresh predicate names for complex formulas. We
also provide a polynomial reduction in the converse direction.
We note that satisfiability in hornGF has the same complexity
as satisfiability in GF [39]: EXPTIME-complete if the arity of
predicates is bounded and 2-EXPTIME-complete otherwise.

Example 2. The Horn formulas equivalent to the concept C∇
and TBox Thorn from the proof of Theorem 1 are in hornGF.
Thus, there are ALC-concepts and TBoxes that are not equiv-
alent to any hornALC-concepts or TBoxes, respectively, but
nevertheless are equivalent to formulas in hornGF.

Theorem 8. (i) Every formula in hornGF is equivalent to a
Horn formula.

(ii) There exists a sentence in GF—in fact, an ALC-TBox—
that is equivalent to a Horn sentence, but not equivalent to any
hornGF sentence.

Proof. The proof of (i) is by a straightforward induction. For
(ii), consider the TBox

Tguard = {E v ∃R.> u ∃S.>, E u ∀R.A u ∀S.B v D }.

It is equivalent to the Horn sentence

∀x (E(x)→ ∃y1y2 (R(x, y1) ∧ S(x, y2) ∧
((A(y1) ∧B(y2))→ D(x))))

but, as shown in Example 4 below, Tguard is not equivalent to
any hornGF-sentence.

Let A = (dom(A), (RA)R∈τ) be a τ -structure. Denote by a
a tuple a1 . . . an of elements of A and set [a] = {a1, . . . , an}.
A set X ⊆ dom(A) is guarded in A if X is a singleton or
RA(a) for some R ∈ τ and X = [a]. A tuple a is guarded if
[a] is guarded.

Let A and B be structures. If a and b are tuples of the same
length in A and B, respectively, we use p : a 7→ b to denote
the map from [a] to [b] with p(ai) = bi. If a′ = ai1 . . . aik is a
subtuple of a, then p(a′) denotes the subtuple p(ai1) . . . p(aik)
of b. The map p is a homomorphism from A|[a] to B|[b] if
c ∈ RA implies p(c) ∈ RB for all R ∈ τ and c with [c] ⊆ [a].

In this section, by a pointed structure we mean a pair
A, X where X ⊆ dom(A) is a nonempty set of guarded
tuples, all of the same positive length. We again write A,a for
A, {a}. We give the straightforward Ehrenfeucht-Fraı̈ssé type
characterization for GF∃ needed for the charachterization of
hornGF. It is obtained from the standard guarded bisimulation
characterization of GF [33] by replacing partial isomorphisms
by homomorphisms and dropping the backward condition.

Definition 6 (guarded simulation). For τ -structures A and
B, a set Z of maps from guarded sets in A to guarded sets in

B is called a guarded simulation if the following conditions
hold for all p : a 7→ b in Z:

(atomg) p : A|[a] → B|[b] is a homomorphism;
(forthg) for every guarded tuple a′ in A, there exist a guarded

tuple b′ in B and p′ such that p′ : a′ → b′ is in Z
and p|[a]∩[a′] = p′|[a]∩[a′].

We write A,a �gsim B,b if there exists a guarded simulation
between A and B containing p : a 7→ b.

In the same way as for ELU , one can capture guarded simu-
lations by guarded simulation games between two players such
that player 2 has a winning strategy (can respond to any move
of player 1) iff A,a �gsim B,b. We write A,a �`gsim B,b
if player 2 has a winning strategy for the guarded simulation
game with ` rounds.

We write A,a ≤(`)

GF∃ B,b if, for all formulas λ in GF∃ (of
depth ≤ `), A |= λ(a) implies B |= λ(b).

Theorem 9 (Ehrenfeucht-Fraı̈ssé game for GF∃). For any
finite vocabulary τ , pointed τ -structures A,a and B,b, and
any ` < ω, we have2

A,a ≤`GF∃ B,b iff A,a �`gsim B,b.

If A and B are finite, then

A,a ≤GF∃ B,b iff A,a �gsim B,b.

A. Simulations for hornGF
We introduce guarded Horn simulation games and prove an

Ehrenfeucht-Fraı̈ssé type definability result for hornGF. A link
between structures A and B is a pair (P,b) with b a guarded
tuple in B and P a nonempty set of mappings p : b 7→ p(b)
such that each p is a homomorphism from B|[b] to A|[p(b)].
We denote by P [b] the set {p(b) | p ∈ P} and define the
analogue of XR↑Y for guarded Horn simulations. If (P,b) is
a link between A and B, and A, Y a pointed structure, R(x0y)
an atomic formula of the same arity as the tuples in Y , and
b0 a subtuple of b of the same length as x0, then we say that
Y is an R(b0y)-successor of (P,b) when, for any p ∈ P ,
there exists a tuple a with p(b0)a ∈ Y and A |= R(p(b0)a).

Definition 7 (guarded Horn simulation). A guarded Horn
simulation between structures A and B is a set Z of links
between A and B such that for all (P,b) ∈ Z, we have:

(atomgh) for all atomic formulas R(x) and tuples b′ with
[b′] ⊆ [b], if A |= R(p(b′)) for all p ∈ P , then
B |= R(b′);

(forthgh) for all sets Y of guarded tuples and atomic for-
mulas R(x0y), if Y is an R(b0,y)-successor of
(P,b), then there exists (P ′,b0b

′) ∈ Z such that
P ′[b0b

′] ⊆ Y ;
(backgh) for every guarded tuple b′ in B, there exists a link

(P ′,b′) in Z such that, for any p′ ∈ P ′, there exists
p ∈ P with p|[b]∩[b′] = p′|[b]∩[b′];

2Here and in what follows the assumption that the tuples considered
in Ehrenfeucht-Fraı̈ssé characterizations are guarded is not essential. It is
straightforward to modify the model comparison games in such a way that
the characterizations hold for arbitrary tuples.

(simgh) there exists a guarded simulation between (B,b)
and (A, p(b)) for every p ∈ P .

We write A, X �ghsim B,b if there exists a guarded Horn
simulation Z between A and B such that X = P [b] for some
P with (P,b) ∈ Z.

Lemma 1 linking Horn simulations with bisimulations can
be lifted to the guarded case. In fact, any guarded bisimulation
Z between A and B defines a guarded Horn simulation
Z ′ = {({p−1},b) | p : a 7→ b ∈ Z} and if Z is a guarded
Horn simulation with singleton P for every (P,b) ∈ Z, then
{p−1 | ({p},b) ∈ Z} is a guarded bisimulation (notice that,
by (atomgh) and (simgh), p is a partial isomorphism if P = {p}).

On the other hand, as the moves of player 1 are no longer
restricted to those along RA, R ∈ τ , the relationship to prod-
ucts is subtler than in the Horn simulation case (Lemma 2).

Example 3. For i = 1, 2, let Ai = ({ai}, AAi
1 , AAi

2), where
AA1

1 = {a1}, AA2
2 = {a2}, and AA1

2 = AA2
1 = ∅. Then

Z = {({a1, a2}, (a1, a2))} is a Horn simulation between the
disjoint union A of A1 and A2 and the product A1 × A2, but
it is not a guarded Horn simulation as Y = {a1} is a (y = y)-
successor of ({a1, a2}, (a1, a2)) (with empty b0) for which
there is no link with Y as the first component in Z. Clearly, it
is also not possible to expand Z to a guarded Horn simulation.
We will revisit the relationship to products below.

For ` < ω, we define the relations A, X �`ghsim B,b in the
obvious way following the definition Horn simulation games
with ` rounds. We write A, X ≤(`)

hornGF B,b if for all formulas
ϕ in hornGF (of depth ≤ `) the following holds: if A |= ϕ(a)
for all a ∈ X , then B |= ϕ(b).

Theorem 10 (Ehrenfeucht-Fraı̈ssé game for hornGF). For
any finite vocabulary τ , pointed τ -structures A,a and B,b,
and any ` < ω, we have

A,a ≤`hornGF B,b iff A,a �`ghsim B,b.

If A and B are finite, then

A,a ≤hornGF B,b iff A,a �ghsim B,b.

The proof of Theorem 10 is similar to that of Theorem 3
and given in the appendix. In particular, one has to prove again
a stronger version where the tuple a is replaced by a set X
of tuples. The existence of a winning strategy for player 2 in
the guarded Horn simulation game is decidable in exponential
time. Thus, it follows from Theorem 10 that entailment and
equivalence in hornGF are decidable in EXPTIME.

Theorem 11. In hornGF, entailment, equivalence, and CBE
are in EXPTIME. Moreover, `-entailment, `-equivalence, and
`-CBE are in EXPTIME for binary encoding of ` and in
PSPACE for unary encoding.

In contrast to hornALC, it remains open whether the
EXPTIME upper bound is tight. Using guarded Horn simu-
lations, we now show that the TBox Tguard from the proof of
Theorem 8 is not equivalent to any hornGF-sentence.

Example 4. Let A and B be the structures below. B is a copy
of A with the extra node f ; B refutes Tguard in f , but A is
a model of Tguard. A guarded Horn simulation Z between A
and B is given by adding to the set of singleton links

{({u}, u′) | u ∈ dom(A)}∪{({uv}, u′v′) | (u, v) ∈ RA∪SA}

the links ({b, c}, f), ({bd, cd}, fd′), and ({ba, ca}, fa′).

a

b

c

d

e

S

S

R R

R

B

E,D

E,¬D

A

¬A

A

a′

b′

f

c′

d′

e′

S

R

S

R

R

S

R

B

E,D

E,¬D
E,¬D

A

¬A

B

B. Expressive Completeness for hornGF
Our next aim is to show that an FO-formula ϕ is equivalent

to a hornGF-formula just in case it is preserved under guarded
Horn simulations. This statement needs qualification, however,
in two respects. First, our infinitary proof goes through only
if we require the sets Y where player 1 moves to in condi-
tion (forthgh) to be intersections of FO-definable sets. Second,
in contrast to hornALC, the language hornGF admits equality
guards and is not local in the sense that the truth of a hornGF-
formula ϕ(x) in A,a is not determined by some neighbour-
hood of a in the Gaifman graph of A. As a consequence, GF-
sentences such as ϕ = ∀xA1(x) ∨ ∀xA2(x) (with omitted
equality guards) are not equivalent to any hornGF-sentence
but preserved under guarded Horn simulations.

To deal with this issue, we lift the definition of guarded Horn
simulations from single structures to families of structures. Let
Ai, i ∈ I , be a family of disjoint structures. A set X of tuples
in
⋃
i∈I dom(Ai) intersects with all Ai, i ∈ I , if X contains

at least one tuple from each dom(Ai). For an open formula
ϕ(x), we write (Ai | i ∈ I) |= ϕ(a) if a is a nonempty tuple
in some dom(Ai) and Ai |= ϕ(a). For closed ϕ, we write
(Ai | i ∈ I) |= ϕ if Ai |= ϕ for all i ∈ I . A set X of tuples
is FO∞-definable in (Ai | i ∈ I) if there is a set Γ(x) of FO-
formulas with X = {a | ∀ϕ ∈ Γ(x) (Ai | i ∈ I) |= ϕ(a)}.

Definition 8 (generalized guarded Horn simulation). Let
Ai, i ∈ I , be a family of disjoint structures, A the disjoint
union of Ai, i ∈ I , and B a structure. A set Z of links between
A and B is a generalized guarded Horn simulation between
(Ai | i ∈ I) and B if all (P,b) ∈ Z satisfy conditions (atomgh)
and (backgh) from Definition 7 and
(forthggh) for all sets Y of guarded tuples in A and atomic

formulas R(x0y), if Y is an R(b0y)-successor of
(P,b) in A and

– b0 is not empty or
– b0 is empty and Y intersects with all Ai, i ∈ I ,

then there is (P ′,b0b
′) ∈ Z with P ′[b0b

′] ⊆ Y ;
(simggh) there exists a guarded simulation between (B,b) and

(Ai, p(b)) for every p ∈ P and p(b) in dom(Ai).
Z is FO-restricted if (forthggh) holds for all FO∞-definable
Y . We write (Ai | i ∈ I), X �FO

ghorn B,b if there exists an
FO-restricted generalized guarded Horn simulation Z between
(Ai | i ∈ I) and B such that X = P [b] for some (P,b) ∈ Z.

Note that, as we modified (forthgh), the set Z in Example 3 is
a generalized guarded Horn simulation. In fact, now Lemma 2
can be lifted to the guarded case: if Ai, i ∈ I , is a family of
structures, the set of all (P, f1 . . . fn) with f1 . . . fn a guarded
tuple in

∏
i∈I Ai and p ∈ P just in case there exists i ∈ I such

that p(fj) = fj(i), 1 ≤ j ≤ n, is a generalized guarded Horn
simulation between the disjoint union of the Ai and

∏
i∈I Ai.

A formula ϕ(x) is preserved under FO-restricted general-
ized guarded Horn simulations if (Ai | i ∈ I) |= ϕ(a) for all
a ∈ X and (Ai | i ∈ I), X �FO

ghorn B,b imply B |= ϕ(b).

Theorem 12 (expressive completeness: hornGF). An FO-
formula is equivalent to a hornGF-formula iff it is preserved
under FO-restricted generalized guarded Horn simulations.

Proof. (sketch) The implication (⇒) is straightforward. Con-
versely, suppose ϕ(x0) is preserved under FO-restricted gen-
eralized guarded Horn simulations. Let cons(ϕ) be the set of
all ψ(x0) in hornGF entailed by ϕ(x0). By compactness, it
suffices to show cons(ϕ) |= ϕ. Let B be an ω-saturated [52]
model satisfying cons(ϕ)(b0) for some tuple b0 in dom(B).
We show B |= ϕ(b0). For any tuple b and tuple x of variables
of the same length as b, we denote by λB,b(x) the set of
guarded existential positive λ(x) with B |= λ(b). Let C be
the set of all sets Γ(x0) of FO-formulas with B |= Γ(b0)
and such that Γ(x0) ∪ {ϕ(x0)} is satisfiable and take, for
any Γ(x0) ∈ C, an ω-saturated structure AΓ and tuple aΓ

with AΓ |= (Γ ∪ {ϕ})(aΓ). Let A be the disjoint union of
(AΓ | Γ ∈ C) and let Z be the set of pairs (X,b) such that
(a) for any ψ(x) ∈ hornGF, if (AΓ | Γ ∈ C) |= ψ(a) for all

a ∈ X , then B |= ψ(b);
(b) there exists a set Φ(x) ⊇ λB,b of FO-formulas such that

X is the set of all tuples a with (AΓ | Γ ∈ C) |= Φ(a).
Each (X,b) ∈ Z can be regarded as a link (P,b) with X =
P [b]. As we work with ω-saturated structures, one can show
that Z is an FO-restricted generalized guarded Horn simulation
between (AΓ | Γ ∈ C) and B. Since ϕ(x0) is preserved under
generalized guarded Horn simulations, B |= ϕ(b0).

VII. CONCLUSION AND OUTLOOK

We have introduced model comparison games for hornALC
and hornGF and obtained Ehrenfeucht-Fraı̈ssé type definabil-
ity and van Benthem style expressive completeness results.
For hornALC, our results are ‘complete’: the characterizations
hold in both classical and finite model theory settings without
any restrictions on the players’ moves, and the straightforward
EXPTIME upper bound for checking indistinguishability of

models and concept learnability using our model comparison
games is tight. For more expressive hornGF, it remains open
whether the characterization holds in the setting of finite model
theory and whether the moves of the players have to be
restricted to ‘saturated’ sets in the expressive completeness
result. In this case, it is also open whether the EXPTIME upper
bound for checking indistinguishability of models is tight.

A different line of open research problems arises from the
fact that hornALC and hornGF do not capture the intersections
of ALC (respectively, GF) and Horn FO. It is thus an open
problem to find out whether there exists a ‘neat’ syntactic
definition of the intersection of ALC and Horn FO such that, if
an ALC-concept or TBox is equivalent to a Horn FO formula,
then it is equivalent to a concept, or, respectively, TBox,
satisfying this definition. The analogous question is also open
for hornGF and Horn FO. The proofs of Theorems 1 and 8
suggest the following syntactic extension of hornALC.

Example 5. Denote by ELU∇ the extension of ELU with
the ∇-operator defined as ∇R.C = ∃R.> u ∀R.C and
let hornALC∇ be defined in the same way as hornALC
(Definition 1) with the exception that now L is an ELU∇-
concept. Then the concept C∇ from the proof of Theorem 1 (i)
and the TBox Tguard from the proof of Theorem 8 are clearly
a hornALC∇-concept and TBox, respectively. So hornALC∇
captures more from the intersection of ALC and Horn FO
than hornALC. One can also show by an inductive argument
that all hornALC∇-concepts and TBoxes are indeed equivalent
to Horn FO formulas (details are in the appendix). However,
again this language does not fully capture the intersection in
question as the TBox Thorn from the proof of Theorem 1 (ii)
is not equivalent to any hornALC∇-TBox. This can be shown
by introducing model comparison games for hornALC∇ (ob-
tained by replacing the simulation game for ELU with a game
capturing ELU∇) and showing that the Horn simulation from
Example 1 (ii) preserves hornALC∇.

Taking into account the examples given in this paper, we
arrive at the following lattice of languages and their intersec-
tions (modulo equivalence) where all inclusions are proper:

hornALC

hornALC∇ ∩ hornGF

hornALC∇

ALC ∩ Horn FO

ALC

GF

ALC ∩ hornGF

hornGF

GF ∩ Horn FO

Horn FO

ACKNOWLEDGEMENTS. F. Papacchini was supported by the
EPSRC UK grants EP/R026084 and EP/L024845. F. Wolter
and M. Zakharyaschev were supported by the EPSRC grants
EP/M012646 and EP/M012670. J.C. Jung was supported by
ERC consolidator grant 647289 CODA.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-
Schneider, The Description Logic Handbook: Theory, implementation
and applications. Cambridge University Press, 2003.

[2] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, An Introduction to
Description Logic. Cambridge University Press, 2017.

[3] M. Y. Vardi, “The complexity of relational query languages (extended
abstract),” in Proceedings of STOC. ACM, 1982, pp. 137–146.

[4] U. Hustadt, B. Motik, and U. Sattler, “Data complexity of reasoning in
very expressive description logics,” in Proceedings of IJCAI, 2005, pp.
466–471.

[5] ——, “Reasoning in description logics by a reduction to disjunctive
datalog,” J. Autom. Reasoning, vol. 39, no. 3, pp. 351–384, 2007.

[6] H. Sturm, “Modal Horn classes,” Studia Logica, vol. 64, no. 3, pp. 301–
313, 2000.

[7] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL envelope,” in
Proceedings of IJCAI. Professional Book Center, 2005, pp. 364–369.

[8] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Tractable reasoning and efficient query answering in description logics:
The DL-Lite family,” J. Autom. Reasoning, vol. 39, no. 3, pp. 385–429,
2007.

[9] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, “The
DL-Lite family and relations,” J. Artif. Intell. Res. (JAIR), vol. 36, pp.
1–69, 2009.

[10] T. Eiter, G. Gottlob, M. Ortiz, and M. Simkus, “Query answering in the
description logic Horn-SHIQ,” in Proceedings of JELIA, 2008, pp.
166–179.

[11] M. Ortiz, S. Rudolph, and M. Simkus, “Query answering in the
Horn fragments of the description logics SHOIQ and SROIQ,” in
Proceedings of IJCAI, 2011, pp. 1039–1044.

[12] M. Bienvenu and M. Ortiz, “Ontology-mediated query answering with
data-tractable description logics,” in Proceedings of Reasoning Web,
2015, pp. 218–307.

[13] B. C. Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik,
and Z. Wang, “Acyclicity conditions and their application to query
answering in description logics,” in Proceedings of KR, 2012.

[14] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter, “First order-rewritability
and containment of conjunctive queries in Horn description logics,” in
Proceedings of IJCAI, 2016, pp. 965–971.

[15] B. Glimm, Y. Kazakov, and T. Tran, “Ontology materialization by
abstraction refinement in Horn SHOIF ,” in Proceedings of AAAI,
2017, pp. 1114–1120.

[16] Y. Kazakov, “Consequence-driven reasoning for Horn-SHIQ ontolo-
gies,” in Proceedings of IJCAI, 2009, pp. 2040–2045.

[17] M. Krötzsch, Description Logic Rules, ser. Studies on the Semantic Web.
IOS Press, 2010, vol. 8.

[18] M. Krötzsch, S. Rudolph, and P. Hitzler, “Complexities of Horn descrip-
tion logics,” ACM Trans. Comput. Log., vol. 14, no. 1, pp. 2:1–2:36,
2013.

[19] F. Baader, M. Bienvenu, C. Lutz, and F. Wolter, “Query and predicate
emptiness in ontology-based data access,” J. Artif. Intell. Res. (JAIR),
vol. 56, pp. 1–59, 2016.

[20] E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, and M. Za-
kharyaschev, “Games for query inseparability of description logic knowl-
edge bases,” Artif. Intell., vol. 234, pp. 78–119, 2016.

[21] V. Gutiérrez-Basulto, J. C. Jung, and L. Sabellek, “Reverse engineering
queries in ontology-enriched systems: The case of expressive Horn
description logic ontologies,” in Proceedings of IJCAI-ECAI-18. AAAI
Press, 2018.

[22] E. Botoeva, C. Lutz, V. Ryzhikov, F. Wolter, and M. Zakharyaschev,
“Query inseparability for ALC ontologies,” Artif. Intell., 2019.

[23] C. Lutz and F. Wolter, “The data complexity of description logic
ontologies,” Logical Methods in Computer Science, vol. 13, no. 4, 2017.

[24] A. Hernich, C. Lutz, F. Papacchini, and F. Wolter, “Horn-rewritability vs
PTime query evaluation in ontology-mediated querying,” in Proceedings
of IJCAI-ECAI. AAAI Press, 2018.

[25] J. Lehmann, “DL-learner: Learning concepts in description logics,”
Journal of Machine Learning Research, vol. 10, pp. 2639–2642, 2009.

[26] L. Badea and S. Nienhuys-Cheng, “A refinement operator for description
logics,” in Proceedings of ILP, 2000, pp. 40–59.

[27] W. W. Cohen and H. Hirsh, “Learning the classic description logic:
Theoretical and experimental results,” in Proceedings KR, 1994, pp.
121–133.

[28] B. ten Cate and V. Dalmau, “The product homomorphism problem and
applications,” in Proceedings of ICDT, 2015, pp. 161–176.

[29] P. Barceló and M. Romero, “The complexity of reverse engineering
problems for conjunctive queries,” in Proceedings of ICDT, 2017, pp.
7:1–7:17.

[30] M. Arenas and G. I. Diaz, “The exact complexity of the first-order logic
definability problem,” ACM Trans. Database Syst., vol. 41, no. 2, pp.
13:1–13:14, 2016.

[31] M. Grohe and M. Ritzert, “Learning first-order definable concepts over
structures of small degree,” in Proceedings of LICS 2017, 2017, pp.
1–12.

[32] V. Goranko and M. Otto, “Model theory of modal logic,” in Handbook
of Modal Logic. Elsevier, 2007, pp. 249–329.

[33] E. Grädel and M. Otto, “The freedoms of (guarded) bisimulation,” in
Johan van Benthem on Logic and Information Dynamics, 2014, pp. 3–
31.

[34] E. Rosen, “Modal logic over finite structures,” Journal of Logic, Lan-
guage and Information, vol. 6, no. 4, pp. 427–439, 1997.

[35] M. Otto, “Modal and guarded characterisation theorems over finite
transition systems,” Ann. Pure Appl. Logic, vol. 130, no. 1-3, pp. 173–
205, 2004.

[36] A. Dawar and M. Otto, “Modal characterisation theorems over special
classes of frames,” Ann. Pure Appl. Logic, vol. 161, no. 1, pp. 1–42,
2009.

[37] M. Otto, “Highly acyclic groups, hypergraph covers, and the guarded
fragment,” J. ACM, vol. 59, no. 1, pp. 5:1–5:40, 2012.

[38] H. Andréka, I. Németi, and J. van Benthem, “Modal languages and
bounded fragments of predicate logic,” J. Philosophical Logic, vol. 27,
no. 3, pp. 217–274, 1998.

[39] E. Grädel, “On the restraining power of guards,” J. Symb. Log., vol. 64,
no. 4, pp. 1719–1742, 1999.

[40] V. Bárány, G. Gottlob, and M. Otto, “Querying the guarded fragment,”
Logical Methods in Computer Science, vol. 10, no. 2, 2014.

[41] A. Hernich, C. Lutz, F. Papacchini, and F. Wolter, “Dichotomies in
ontology-mediated querying with the guarded fragment,” in Proceedings
of PODS, 2017.

[42] A. Calı̀, G. Gottlob, and M. Kifer, “Taming the infinite chase: Query
answering under expressive relational constraints,” J. Artif. Intell. Res.
(JAIR), vol. 48, pp. 115–174, 2013.

[43] A. Calı̀, G. Gottlob, and T. Lukasiewicz, “A general datalog-based
framework for tractable query answering over ontologies,” in Proceed-
ings of PODS, 2009, pp. 77–86.

[44] N. Kurtonina and M. de Rijke, “Expressiveness of concept expressions
in first-order description logics,” Artif. Intell., vol. 107, no. 2, pp. 303–
333, 1999.

[45] C. Lutz, R. Piro, and F. Wolter, “Description logic TBoxes: Model-
theoretic characterizations and rewritability,” in IJCAI, 2011.

[46] V. Bárány, B. ten Cate, and L. Segoufin, “Guarded negation,” J. ACM,
vol. 62, no. 3, pp. 22:1–22:26, 2015.

[47] D. Gorı́n and L. Schröder, “Simulations and bisimulations for coalge-
braic modal logics,” in Proceedings of CALCO 2013, 2013, pp. 253–266.

[48] L. Schröder, D. Pattinson, and T. Litak, “A van Benthem/Rosen theorem
for coalgebraic predicate logic,” J. Log. Comput., vol. 27, no. 3, pp. 749–
773, 2017.

[49] P. Wild, L. Schröder, D. Pattinson, and B. König, “A van Benthem
theorem for fuzzy modal logic,” in Proceedings of LICS, 2018, pp. 909–
918.

[50] J. C. C. McKinsey, “The decision problem for some classes of sentences
without quantifiers,” J. Symb. Log., vol. 8, no. 2, pp. 61–76, 1943.

[51] A. Horn, “On sentences which are true of direct unions of algebras,” J.
Symb. Log., vol. 16, no. 1, pp. 14–21, 1951.

[52] C. C. Chang and H. J. Keisler, Model Theory. Elsevier, 1990.
[53] W. Hodges, Model Theory. Cambridge University Press, 1993.
[54] J. Weinstein, “First order properties preserved by direct product,” Ph.D.

dissertation, Univ. Wisconsin, Madison, 1965.
[55] L. A. Nguyen, “On the complexity of fragments of modal logics,” in

Proceedings of AiML. King’s College Publications, 2004, pp. 249–268.
[56] L. Fariñas del Cerro and M. Penttonen, “A note of the complexity of

the satisfiability of modal Horn clauses,” J. Log. Program., vol. 4, no. 1,
pp. 1–10, 1987.

[57] C. C. Chen and I. P. Lin, “The computational complexity of satisfiability
of temporal Horn formulas in propositional linear-time temporal logic,”
Information Processing Letters, vol. 45, no. 3, pp. 131–136, 1993.

[58] D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco, “On the expressive
power of sub-propositional fragments of modal logic,” in Proceedings
of GandALF, 2016, pp. 91–104.

[59] C. Lutz and F. Wolter, “Deciding inseparability and conservative exten-
sions in the description logic EL,” Journal of Symbolic Computation,
vol. 45, no. 2, pp. 194–228, 2010.

[60] D. Harel, O. Kupferman, and M. Y. Vardi, “On the complexity of
verifying concurrent transition systems,” Inf. Comput., vol. 173, no. 2,
pp. 143–161, 2002.

APPENDIX

We show that the definition of hornALC-concepts used in
this paper is equivalent to syntactically different definitions of
Horn-ALC concepts and Horn modal formulas given in the
literature.

A definition for Horn DLs based on polarity is given in [4].
This definition can be restricted to the ALC case as follows.
We say that an ALC-concept C is a p-hornALC-concept if
pol(C) ≤ 1, where pol(C) = pl+(C) with pl+ defined as
shown in the table below:

C pl+ pl−

> 0 0

⊥ 0 0

A 1 0

¬C ′ pl−(C ′) pl+(C ′)

u
i
Ci maxipl

+(Ci)
∑
i pl
−(Ci)

t
i
Ci

∑
i pl

+(Ci) maxipl
−(Ci)

∃R.C ′ max{1, pl+(C ′)} pl−(C ′)

∀R.C ′ pl+(C ′) max{1, pl−(C ′)}

Theorem 13. Every hornALC-concept is equivalent to a
p-hornALC-concept, and vice versa.

Proof. It is readily checked by induction on the construction
of a hornALC-concept C that pol(C) ≤ 1, and so C is also
a p-hornALC-concept.

For the converse direction, we define a translation sH
of p-hornALC-concepts to equivalent hornALC-concepts. To
ease the proof, we assume the p-hornALC-concepts to be
in negation normal form (NNF). Under this assumption, the
definition of p-hornALC-concepts can be simplified. Namely,
an ALC concept C in NNF is a p-hornALC-concept if
pol(C) ≤ 1, where pol(C) is defined as follows:

pol(C) =



0 if C = > | ⊥ | ¬A
1 if C = A

maxipol(Ci) if C = C1 u . . . u Cn∑
i pol(Ci) if C = C1 t . . . t Cn

max{1, pol(C ′)} if C = ∃R.C ′

pol(C ′) if C = ∀R.C ′

Claim. Any p-hornALC-concept C = C1 t . . . t Cn in NNF
is equivalent to a concept of the form L → D, where L is
an ELU-concept, and either D = ⊥ or D = Cj , for some j,
1 ≤ j ≤ n, and pol(Cj) = 1.

Proof of claim. As pol(C) ≤ 1, there exists at most one
disjunct Cj , 1 ≤ j ≤ n, with pol(Cj) = 1. We define a
p-hornALC-concept Ct tD equivalent to C in the following
way. If there exists a disjunct Cj of C with pol(Cj) = 1,
then Ct = C1 t . . . t Cj−1 t Cj+1 t . . . t Cn and D = Cj ;

otherwise Ct = C and D = ⊥. It follows that pol(Ct) = 0,
which implies that Ct is an ALC-concept built using >, ⊥,
¬A, t, u and ∀R only. Let L be the ELU-concept defined as
NNF(¬Ct). Then C is equivalent to L→ D, as required.

In the following definition of the translation sH, we use LC
and DC for a p-hornALC-concept C = C1t. . .tCn to denote
the equivalent concept LC → DC :

sH(C) =



C if C ::= > | ⊥ | A | ¬A
n

u
i=1

sH(Ci) if C = C1 u . . . u Cn
LC → sH(DC) if C = C1 t . . . t Cn
∃R.sH(C ′) if C = ∃R.C ′

∀R.sH(C ′) if C = ∀R.C ′

It is readily seen that sH(C) is a hornALC-concept equivalent
to C.

Horn modal formulas have been defined in various ways in
the literature [6], [55]–[58], and not all of the definitions are
equivalent. Sturm [6] defines Horn modal formulas with n-
ary modal operators. We show that, when restricted to unary
modal operators, his definition is equivalent to the definition
of hornALC-concepts given in this paper. We rephrase the
definition in [6] in the DL terms as follows. Let Hb be defined
by the grammar

H,H ′ ::= ⊥ | ¬A | H uH ′ | H tH ′ | ∀R.H,

where A is a concept name and R a role name. Then the
set H of s-hornALC-concepts is the smallest set containing
Hb ∪ NC , closed under u, ∃R, ∀R and such that whenever
C,C ′ ∈ H and C ∈ Hb or C ′ ∈ Hb, then C t C ′ ∈ H.
The set Hb can be seen as the set containing the negation of
ELU-concepts, and so the equivalence with our definition can
be obtained by an argument analogous to the one in the proof
of Theorem 13.

The remaining notions of Horn modal formulas [55]–[58]
are rather different from our definition of hornALC-concepts.
To illustrate, we focus on Nguyen’s definition [55], rephrasing
it in the DL parlance. A n-hornALC-concept G is defined by
the following grammar:

P, P ′ ::= > | ⊥ | A | P u P ′ | P t P ′ | ∃R.P | ∀R.P
G,G′ ::= A | ¬P | G uG′ | ∃R.G | ∀R.G | P → G

The crucial difference between n-hornALC-concepts and
hornALC-concepts lies in the definition of P , which allows
universal role restrictions ∀R.P . It is not hard to see that
the n-hornALC-concept ∀R.A → B is not preserved under
products, and so is not equivalent to any Horn FO formula.

DEFINITIONS AND PROOFS FOR SECTION: SIMULATIONS
FOR hornALC

We first give a rigorous definition of the relation A, X �`horn
B, b and then supply the missing details of the proof of
Lemma 3.

Definition 9 (`-Horn simulation). Let A and B be τ -
structures. Define relations �`horn, ` < ω, between pointed
structures A, X and B, b by induction:
• A, X �0

horn B, b if X 6= ∅ and X ⊆ AA implies b ∈ AB,
for all A ∈ τ , and B, b �0

sim A, a for all a ∈ X .
• A, X �`+1

horn B, b if the following conditions hold:
– A, X �0

horn B, b;
– if XRA↑Y , then there exist Y ′ ⊆ Y and b′ ∈

dom(B) such that (b, b′) ∈ RB and A, Y ′ �`horn
B, b′, for all R ∈ τ ;

– if (b, b′) ∈ RB, then there exists Y ⊆ dom(A) with
XRA↓Y and A, Y �`horn B, b′, for all R ∈ τ ;

– B, b �`+1
sim A, a for all a ∈ X .

Lemma 3 For any finite vocabulary τ , pointed τ -structures
A, X and B, b, and any ` < ω,

A, X ≤`hornALC B, b iff ∃X0 ⊆ X A, X0 �`horn B, b.

If A and B are finite, then

A, X ≤hornALC B, b iff ∃X0 ⊆ X A, X0 �horn B, b.

Proof. It remains to prove the direction from right to left of
the first claim. Thus we prove the following.

Claim 1. For any ` < ω, X ⊆ dom(A) and b ∈ dom(B), if
A, X �`horn B, b, then X ⊆ CA implies b ∈ CB for every
C ∈ Horn`.
Proof of claim. For ` = 0, Claim 1 is trivial. Suppose it has
been proved for ` and show that it holds for `+1 by induction
on the construction of C. Thus, suppose that Claim 1 has been
proved for C ′, C1, C2 ∈ Horn`, and that C ∈ Horn`+1 is of the
form C = ∀R.C ′, C = ∃R.C ′, C = C1uC2, or C = L→ C ′

with L a ELU concept of depth ≤ ` + 1. Suppose also that
A, X �`+1

horn B, b and X ⊆ CA.
Case C = ∀R.C ′. Suppose b 6∈ (∀R.C ′)B. Choose b′ with

(b, b′) ∈ RB and b′ 6∈ C ′B. By (backh), there is Y ⊆ dom(A)
with XRA↓Y and A, Y �`horn B, b′. We have C ′ ∈ Horn`,
and so, by IH for `, there exists a′ ∈ Y with a′ 6∈ C ′A. Then
there exists a ∈ X with a 6∈ (∀R.C ′)A, which is impossible.

Case C = ∃R.C ′. Suppose b 6∈ (∃R.C ′)B. We have
XRA↑Y for Y = C ′A. By (forthh) for Y , there exist Y ′ ⊆ Y
and b′ ∈ dom(B) with (b, b′) ∈ RB and A, Y �`horn B, b′.
Since C ′ ∈ Horn` and by IH, b′ ∈ C ′B. But then b ∈
(∃R.C ′)B, contrary to our assumption.

Case C = (L → C ′). Suppose b /∈ (L → C ′)B. Then
b ∈ LB and b 6∈ C ′B. By Theorem 2, X ⊆ LA, and by IH,
there exists a ∈ X with a 6∈ C ′A. Then X 6⊆ (L → C ′)A,
which is a contradiction.

The remaining case C = C1 u C2 is easy and left to the
reader.

PROOFS FOR SECTION IV

Lemma 4.
(1) CBE ≤PT HornSim;
(2) HornSim ≤Pm CBE;
(3) HornSim ≤Pm Entailment;

(4) Entailment ≤Pm HornSim;
(5) Equivalence ≤PT Entailment;
(6) Entailment ≤Pm Equivalence.

Proof. For (1), observe that the following are equivalent by
Lemma 3 for all A, P,N :
• there is some hornALC-concept C such that P ⊆ CA

and CA ∩N = ∅,
• A, P 6�horn A, b for all b ∈ N .
To see “⇒”, let C be such a concept. By Lemma 3, we

have have A, P 6�horn A, b, for all b ∈ N .
Conversely, suppose A, P 6�horn A, b for all b ∈ N . By

Lemma 3, we have A, P 6≤hornALC A, b, for all b ∈ N . Thus,
there is a hornALC-concept Cb such that P ⊆ CA

b and b /∈
CA
b , for all b ∈ N . Let C be the conjunction of the concepts

Cb, for all b ∈ N . Clearly, P ⊆ CA and CA ∩N = ∅.
For (2), observe that A, X �horn B, b iff in the disjoint union

A]B of A and B the positive examples P = X cannot be
distinguished from the negative examples N = {b}.

For (3), let A,B, X, b be an input to HornSim. Define A′

by adding a new R-predecessor a to all nodes in X . Further,
define B′ by taking the disjoint union of A and B and adding
a new R-predecessor d to b, and making d also a predecessor
of all nodes in (the copies of) X . Then we have:

A, X �horn B, b iff A′, a �horn B′, d,

and the latter is equivalent to A′, a ≤hornALC B′, d by
Theorem 3.

Theorem 3 implies (4).
For (5), observe that equivalence is just mutual entailment.
For (6), let A,B, a, b be an instance of entailment. Construct

a new structure A′ by adding two fresh elements a′ and b′ to
the disjoint union A ∪B of A and B and making a′ an R-
predecessor of both a and b, and b′ an R-predecessor of b. It
is routine to verify that:

A, a ≤hornALC B, b iff A′, a′ ≡hornALC A
′, b′.

Lemma 5. HornSim is EXPTIME-complete.

Proof. For the upper bound, we provide an alternating algo-
rithm which essentially implements the Horn simulation game
and requires only polynomial space. Let (X0, b0) be the input.
The algorithm proceeds in rounds and maintains a pair (X, d)
with X ⊆ dom(A) and d ∈ dom(B). At pair (X, d), the
algorithm proceeds as follows:
• For every R ∈ τ , and every Y with XRA↑Y , guess non-

empty Y ′ ⊆ Y and d′ with (d, d′) ∈ RB and proceed
with the pair (Y ′, d′).

• For every R ∈ τ , and every d′ with (d, d′) ∈ RB, guess
non-empty Y with XRA↓Y and proceed with the pair
(Y, d′).

Note the similarity of the two points above with proper-
ties (forthh) and (backh), respectively. The algorithm rejects

if (X, d) does not satisfy (atomh) or (sim) at some stage, or it
fails guessing Y ′ or Y , respectively, in the two points above; it
accepts after 2|dom(A)| ·|dom(B)| rounds. It remains to observe
that the algorithm obviously requires only polynomial space
and that both (atomh) and (sim) can be checked in polynomial
time.

For the lower bound, we reduce the word problem for poly-
nomially space-bounded, alternating Turing machines (ATMs),
similar to [60]. An ATM is a tuple M = (Qe, Qu,Σ,Γ, q0, 7→
, Frej , Facc) where Σ is the input alphabet, Γ is the tape
alphabet, Qe, Qu, Frej , and Facc are pairwise disjoint sets
of existential, universal, rejecting, and accepting states, re-
spectively. We denote the set of all states with Q, the set
of all rejecting and accepting states with F , and assume
that the initial state q0 is universal, that is, q0 ∈ Qu. The
transition relation 7→ ⊆ Q × Γ × Q × Γ × {L,R,H} has
binary branching degree for all q ∈ Qe ∪ Qu, that is, every
pair (q, a) has precisely two successors. Accordingly, we use
(q, a) 7→ 〈(ql, bl, dl), (qr, br, dr)〉 to indicate that after reading
symbol a in state q, the TM can branch left with (ql, bl, dl) and
right with (qr, br, dr). We further assume that, for all q ∈ F
and a ∈ Γ, we have (q, a) 7→ (q, a,H), that is, once a final
state q ∈ F is reached, M loops in the same configuration.

Acceptance of such TMs is defined as follows. The possible
computations of M on some input word w induce an AND-OR
graph whose nodes are M ’s configurations and whose edges
correspond to successor configurations. With each node in the
graph, we associate an acceptance value as follows:

• accepting (respectively, rejecting) configurations are as-
sociated with value 1 (respectively, 0);

• a universal configuration is associated with the minimum
value associated with one of its successor configurations;

• an existential configuration is associated with the maxi-
mum value associated with one of its successor configu-
rations.

It is well-known that we can assume that in M from every
possible start configuration, we always reach final configura-
tions, so the above is well-defined. The ATM M accepts an
input word w iff the initial configuration is associated with
value 1.

For the reduction, let M be an s(n)-space bounded ATM,
for some polynomial s(n) and w some input word of length
n. We construct structures A, B, a set X ⊆ dom(A), and
b ∈ dom(B) such that

M accepts w iff A, X �horn B, b.

The structure A can be thought of as a disjoint union of s(n)
structures A1, . . . ,As(n) and a single copy of B. Intuitively,
each sub-structure Ai is responsible for a tape cell of one
of M ’s configurations on input w, and different tape cells are
synchronized via the simulation conditions using different role
names. We include a copy B in A due to technical reasons
made clear below. The role of B (as the second structure) is
to control M ’s computation by enforcing the right association

of values with configurations in the AND-OR graph; it is
essentially independent of M .

The vocabulary consists of the following symbols:
• concept names U0, U1, U↙, U↘, V1, . . . , Vs(n), and
• role names Rid and Rq,a,i,d for every q ∈ Q, a ∈ Γ,
i ∈ {1, . . . , s(n)}, and d ∈ {↙,↘}.

We start with B. Its domain dom(B) consists of 20 el-
ements: 16 internal elements of shape (∗, l, r, val, d), where
∗ ∈ {∧,∨}, l, r, val ∈ {0, 1} satisfy l ∗ r ≡ val, and
d ∈ {↙,↘}, and final elements (val, d) with val ∈ {0, 1}
and d ∈ {↙,↘}. More precisely, we have for all d ∈ {↙,↘}
the following elements:

(∧, 0, 0, 0, d), (∧, 0, 1, 0, d), (∧, 1, 0, 0, d), (∧, 1, 1, 1, d),

(∨, 0, 0, 0, d), (∨, 0, 1, 1, d), (∨, 1, 0, 1, d), (∨, 1, 1, 1, d),

(0, d), (1, d).

Note that elements of the shape (∗, l, r, val, d) match the truth
table entries for the operator ∗ in the sense that l ∗ r ≡ val.
We refer with universal and existential elements to elements
of the shape (∧, · · ·) and (∨, · · ·), respectively.

For the concept names, we take

UB
↙ = {(∗, l, r, val, d) ∈ B | d =↙} ∪ {(0,↙), (1,↙)},

UB
↘ = {(∗, l, r, val, d) ∈ B | d =↘} ∪ {(0,↘), (1,↘)},

UB
0 = {(0,↙), (0,↘)},

UB
1 = {(1,↙), (1,↘)},

V B
i = ∅ for all i ∈ {1, . . . , s(n)}.

For the role names of shape Rq,a,i,d, we take
• ((∗, l, r, val, d), (∗′, l′, r′, val′, d′)) ∈ RB

q,a,i,d iff ∗ 6= ∗′
and either val′ = l and d′ =↙ or val′ = r and d′ =↘.

That is, we switch between existential and universal elements
and require that the next value val′ coincides with the current
l or r depending on the branch. Everything is independent of
the values of q, a, i, but depends on d. We further have
• ((∗, l, r, val, d), (val′, d′)) ∈ RB

q,a,i,d iff either val′ = l
and d′ =↙ or val′ = r and d′ =↘.

Finally, for the role name Rid, RB
id is the identity on the final

elements, that is, {(b, b) | b ∈ dom(B) of shape (val, d)}.
We continue with structures Ai, for each i ∈ {1, . . . , s(n)}.

The domain dom(Ai) of each Ai consists of all possible
contents of a cell, extended with a direction, that is,

dom(Ai) = (Γ ∪ (Q× Γ))× {↙,↘}.

For the concept names, we take:

UAi

↙ = (Γ ∪ (Q× Γ))× {↙},
UAi

↘ = (Γ ∪ (Q× Γ))× {↘},
UAi

0 = Frej × Γ× {↙,↘},
UAi

1 = Facc × Γ× {↙,↘},

V Ai
j =

{
dom(Ai) if i 6= j

∅ otherwise
for all j ∈ {1, . . . , s(n)}.

For a role name Rq,a,j,d, intuitively RAi

q,a,j,d contains all pairs
(γ, γ′) such that there is configuration α in state q, with
head position j, reading a, (and previous direction d), and a
successor configuration α′ of α, in which cell i with content γ
has been updated to γ′. More precisely, we include in RAi

q,a,j,d

for all (q, a)→ 〈(ql, bl, dl), (qr, br, dr)〉:
• if dl = L, the following pairs:

– if i = j, then ((q, a, d), (bl,↙)),
– if i = j + 1, then ((b, d), (ql, b,↙)) for all b ∈ Γ,
– if i /∈ {j, j + 1}, then ((b, d), (b,↙)) for all b ∈ Γ;

• if dl = H , the following pairs:
– if i = j, then ((q, a, d), (ql, bl,↙)),
– if i 6= j, then ((b, d), (b,↙)), for all b ∈ Γ;

• if dl = R, the following pairs:
– if i = j, then ((q, a, d), (bl,↙)),
– if i = j − 1, then ((b, d), (ql, b,↙)) for all b ∈ Γ,
– if i /∈ {j, j − 1}, then ((b, d), (b,↙)) for all b ∈ Γ;

• the cases for dr = L, dr = H , and dr = R are obtained
by replacing above ↙, bl, and ql with ↘, br, and qr,
respectively.

Finally, for the role name Rid, RAi

id is the identity relation on
the set Γ ∪ (F × Γ).

The structure A is now constructed by first taking the
disjoint union of all Ai, i ∈ {1, . . . , s(n)} and B, and then
adding connections between elements from Ai and B. For all
c ∈ dom(Ai), let us denote with (c, i) the corresponding copy
of c in dom(A). We add the following connections:
• ((a, d, i), b) ∈ RA, for every (a, d, i) ∈ dom(A), b ∈

dom(B), and every role name R;
• ((q, a, d, i), b) ∈ RA, for every for every role name R

and every (q, a, d, i) ∈ dom(A) and b ∈ dom(B) such
that either q ∈ Qe and b is universal or q ∈ Qu and b is
existential.

Let us point out two important properties of the structure A.
First, by the connections of the Ai with the copy of B in A,
we have that:

(P1) B, b �sim A, x for every universal element b ∈ dom(B)
and every element x of shape (a, d, i) ∈ dom(A) and
every element x = (q, a, d, i) ∈ dom(A) with q ∈ Qu,
and similarly, B, b �sim A, x for every existential element
b ∈ dom(B) and every x of shape (a, d, i) ∈ dom(A)
and every element x = (q, a, d, i) ∈ dom(A) with q ∈
Qe. Even more, the witnessing simulation is of the form
{((a, d, i), b)} ∪ {(b′, b′) | b′ ∈ dom(B)}.

The second property concerns the synchronization of the
different Ai. For formulating the property, it is convenient to
associate with a direction d ∈ {↙,↘} and some configuration
α of M a set Xα,d ⊆ dom(A) in the following natural way.
If α is the configuration b1 · · · bs(n), then Xα,d is the set

Xα,d = {(bi, d, i) | i ∈ {1, . . . , s(n)}}.

We now have the following property:
(P2) For every configuration α in state q with symbol a at

head position i, there are precisely two role names R such

that every (c, j) ∈ Xα,d (for any d) has an R-successor
in A, namely Rq,a,i,↙ and Rq,a,i,↘. Moreover, if we
move jointly to these successors, we arrive at Xαl,↙ and
Xαr,↘, respectively, where αl, αr are the two successor
configurations of α according to 7→.

Let α0 be M ’s initial configuration on input w and b̂ the ele-
ment (∧, 1, 1, 1,↙) in B. Based on the insights (P1) and (P2)
given above, we can verify correctness of the reduction.
Claim. M accepts w iff A, Xα0,↙ �horn B, b̂.
Proof of the Claim. “⇒” We define a Horn simulation Z
guided by the AND-OR graph induced by the computation
of M on input w. Let C be the set of all configurations of
M and denote with `(α) the associated acceptance value of a
configuration α ∈ C. Define Z as follows:
• Xα,dZ(∗, l, r, val, d) for all d ∈ {↙,↘} such that:

– either α is universal and ∗ = ∧ or α is existential
and ∗ = ∨,

– val = `(α) and α has a left successor configuration
αl with l = `(αl) and a right successor configuration
αr with r = `(αr).

• Xα,dZ(val, d) for all d ∈ {↙,↘} such that α is a final
configuration with val = `(α).

• {b′}Zb′ for all b′ ∈ dom(B),
Note that we clearly have Xα0,↙Zb̂. It thus remains to
verify that Z is indeed a Horn simulation, that is, it satisfies
Conditions (atomh), (sim), (forthh), and (backh).
• Condition (atomh) is satisfied due to the definition of UA

for the concept names U .
• Condition (forthh) is a consequence of (P1) above.
• For Condition (forthh), consider a pair
Xα,dZ(∗, l, r, val, d), that is, α is not a final
configuration; the other cases are similar. Further
assume that Xα,d(R

A)↑Y . By (P2), we know that R is
of shape Rq,a,i,d′ , d′ ∈ {↙,↘}, where q is the state
of α, i is its head position, and a is the symbol of
the head. Moreover, (P2) implies that Y = Xαl,↙ or
Y = Xαr,↘ (depending on d′), where αl, αr are left
and right successor configurations of α. It remains to
note that, by definition of Z, there is some b′ ∈ dom(B)
such that Y Zb′.

• Condition (backh) is also a consequence of (P1). In-
deed, let Xα,dZ(∗, l, r, val, d) and b some R-successor
of (∗, l, r, val, d) in B. By (P1), b is an R-successor x′

of some (actually: all) x ∈ Xα,d. By definition of Z, we
have {b}Zb.

“⇐” Let Z be a Horn simulation with Xα0,↙Zb̂. We show
that M accepts w by constructing the (relevant subset of the)
AND-OR graph induced by M ’s computation on input w. We
first show the following for all Xα,dZb:

1) α is an accepting (rejecting) configuration iff b is an
accepting (rejecting) element in B.

2) if α is not final, then also Xαl,↙Zbl and Xαr,↘Zbr
for some bl and br, where αl, αr are the left and right
successor configurations of α.

It follows from the definition of RA
id and RB

id and the fact
that Z satisfies Conditions (forthh) and (backh), that α is a
final configuration iff b is a final element. Property 1) then
follows from Condition (sim) and the definition of UB

0/1 for
final elements.

For Property 2), let Y be some set with Xα,d(R
A)↑Y for

some R. By (P2), we know that R is of shape Rq,a,i,d′ , d′ ∈
{↙,↘}, where q is the state of α, i is its head position,
and a is the symbol of the head. Moreover, Y = Xαl,↙ or
Y = Xαr,↘ (depending on d′). By Condition (forthh), there
is a non-empty Y ′ ⊆ Y and some b′ with (b, b′) ∈ RB such
that Y ′Zb′. By Condition (atomh) and the definition of V A

i

and V B
i , we have Y ′ = Y .

Now, Xα0,↙Zb̂ and Property 2) imply that for every con-
figuration α reachable from α0 we have XαZb for some b. We
claim that in this case the value val of b is the value associated
to the configuration α in the AND-OR graph. Indeed, for final
configurations this is a consequence of Property 1) above.
For the remaining configurations, this is a consequence of the
definition of RB

q,a,i,d. It remains to note that this implies that
α0 is associated with value 1 since the value val in b̂ is 1.
This finishes the proof of the Claim.

Since the construction of A and B can be carried out
in polynomial time, this establishes EXPTIME-hardness of
HornSim.

For the restricted problems `-entailment, `-equivalence, and
`-HornSim, we prove the following Lemma analogously to
Lemma 4.

Lemma 6. There are the following reductions:
(1) `-CBE ≤PT `-HornSim;
(2) `-HornSim ≤Pm `-CBE;
(3) `-HornSim ≤Pm `-Entailment;
(4) `-Entailment ≤Pm `-HornSim;
(5) `-Equivalence ≤PT `-Entailment;
(6) `-Entailment ≤Pm (`+ 1)-Equivalence.

Thus, it suffices to establish the following lemma for the
complexity of `-HornSim to finish the proof of Theorem 5.

Lemma 7. `-HornSim is PSPACE-complete for unary encod-
ing of ` and EXPTIME-complete for binary encoding.

Proof. For the upper bounds, observe that we can use the
alternating algorithm given in the proof of Lemma 5 and run
it for ` rounds. It remains to observe that it is an alternating,
polynomially time bounded procedure in case of unary encod-
ing, and an alternating, polynomially space bounded procedure
in case of binary encoding. The PSPACE and EXPTIME upper
bounds follow.

For the EXPTIME-lower bound, we take the same reduction
as in the proof of Theorem 5, but add an input ` specifying
the maximum time until a final state is reached. It is well-
known that we can assume without loss of generality that this
happens after 2O(s(n)) steps. Binary encoding of ` yields the
result.

The PSPACE lower bound follows a similar strategy. We
reduce the word problem for polynomially time (instead of
space) bounded ATMs. There is a fixed such ATM M with
a PSPACE-hard word problem; let p(n) be the polynomial
bound on the time of M . The reduction is now as in Lemma 5
except that we replace s(n) with p(n), and on input w, we
additionally set ` = p(|w|).

We finish this section with TBox distinguishability. Let us
denote with TBox entailment and TBox equivalence, the prob-
lems whether A ≤hornALC B and A ≡hornALC B, respectively,
for given structures A,B. Moreover, denote with GHornSim
the problem whether A �horn B. Finally, we refer with TBox
`-entailment and TBox `-equivalence to the restricted versions.

Theorem 14. TBox entailment and equivalence are EXPTIME-
complete. Moreover, TBox `-entailment and TBox `-
equivalence are EXPTIME-complete for binary encoding of
` and PSPACE-complete for unary encoding.

As we have the following relationships, it suffices to prove
Lemma 9 below.

Lemma 8. (1) TBox entailment is equivalent to GHornSim;
(2) TBox `-entailment is equivalent to `-GHornSim;
(3) TBox equivalence ≤PT TBox entailment;
(4) TBox `-equivalence ≤PT TBox `-entailment;
(5) TBox entailment ≤Pm TBox equivalence.
(6) TBox `-entailment ≤Pm TBox `-equivalence.

Proof. Properties (1) and (2) are a consequence of Theorem 4.
Properties (3) and (4) is due to the fact that equivalence is just
mutual entailment. Properties (5) and (6) follow from the fact
that A ≤(`)

hornALC B iff A ∪ B ≡(`)
hornALC B, for the disjoint

union A ∪B of A and B.

Lemma 9. GHornSim is EXPTIME-complete, and `-
GHornSim is EXPTIME-complete if ` is given in binary, and
PSPACE-complete if ` is given in unary.

Proof. The upper bound follows from the definition of A �horn

B and the complexity of Horn simulations and restricted Horn
simulations, see Lemma 5 and 7, respectively.

For the EXPTIME-lower bound for GHornSim, observe
that the proof of Lemma 5 is easily adapted so as to show
EXPTIME-hardness also in this case. Indeed, we can mark b̂
and all elements in Xα0 with a fresh concept name S∗. Now,
for every element d ∈ dom(B) \ {b̂} there is a copy d′ of d
in A, for which trivially A, d′ ≤ B, d. It remains to note that,
by construction, the only candidate set for b̂ is in fact Xα0

.
Finally, EXPTIME and PSPACE-hardness for the restricted

problem is obtained from the above result in the same way as
in Lemma 7.

PROOFS FOR SECTION: EXPRESSIVE COMPLETENESS FOR
hornALC

We provide proofs for the implications (3) ⇒ (4) of Theo-
rems 6 and 7.

Lemma 10. If an ALC-concept C of depth ≤ ` is preserved
under `-Horn simulations, then C is equivalent to a hornALC-
concept of depth ≤ ` (also in the setting of finite model theory).

Proof. Let C be an ALC concept of depth ≤ ` that is
preserved under `-Horn simulations. We use the set Horn`
of concepts and the concept ρB,`,b defined in the proof of
Lemma 3. Let D be the conjunction of all H ∈ Horn` with
∅ |= C v H . It suffices to show that ∅ |= D v C establishing
that D and C are equivalent. To this aim, observe that D is
equivalent to ρAu,`,X , where Au is the disjoint union of all
finite structures (up to isomorphisms) and X = CAu . To see
this, suppose first that H ∈ Horn` and ∅ |= C v H . Then
X = CA ⊆ HA for all structures A. Thus, H is a conjunct of
ρAu,`,X . Conversely, suppose H is a conjunct of ρAu,`,X . Then
X ⊆ HAu . Thus, CAu ⊆ HAu . But then ∅ |= C v H since
the latter is equivalent to the condition that CA ⊆ HA for all
finite structures A and ALC has the finite model property.

Now suppose B, b is a pointed structure with b ∈ DB. Then
b ∈ ρBAu,`,X

. By Lemma 3, there exists X0 ⊆ X such that
Au, X0 �`horn B, b. Then b ∈ CB follows from the assumption
that C is preserved under `-Horn simulations. The finite model
theory version follows directly using the finite model property
of ALC.

Lemma 11. Let T be an ALC TBox of depth ` preserved
under global `-Horn simulations. Then T is equivalent to a
hornALC TBox of depth ≤ ` (also in the setting of finite model
theory).

Proof. Let T ′ be the set of hornALC CIs > v H with H ∈
Horn` such that T |= > v H . We show that T ′ |= T . Take a
model B of T ′. Take for every hornALC CI > v H of depth
≤ ` and b ∈ dom(B) \HB a model Ab,H of T and ab,H ∈
dom(Ab,H) with ab,H 6∈ HAb,H . Such a model exists since
T ′ 6|= > → H and so, by the definition of T ′, T 6|= > → H .

Let A be the disjoint union of all Ab,H and let Xb be the
set of all ab,H . Then Xb ⊆ HA implies b ∈ HB, for every
hornALC-concept H of depth ≤ `. Thus, by Lemma 3, there
exists Yb ⊆ Xb such that A, Yb �`horn B, b. Then B is model
of T since A is a model of T and T is preserved under global
`-Horn simulations.

In the finite model theory setting it suffices to consider finite
models B of T ′ since ALC has the finite model property for
TBox reasoning. For the same reason one can always choose
finite Ab,H .

PROOFS FOR SECTION ON GUARDED FRAGMENT

A. Basic Properties of hornGF
Theorem 15. Satisfiability in hornGF[τ] is EXPTIME-
complete if the arity of predicate names in τ is bounded, and
2-EXPTIME-complete if not.

Proof. The upper bounds follow from the guarded fragment
GF [39]. The lower bound in the bounded arity case is
inherited from hornALC [18]. For the case of unbounded arity,
the lower bound is obtained as a straightforward adaptation of
the 2-EXPTIME lower bound for GF in [39].

Let us fix a vocabulary τ . A tuple-generating dependency
(tgd) over τ is an FO formula of the form

∀x∀y (ψ(x,y)→ ∃zϕ(x, z))

where ψ(x,y) and ϕ(x, z) are conjunctions of atoms over τ
and are called body and head of the tgd, respectively. A tgd is
guarded if there is an atom in the body ψ(x,y) which contains
all variables x∪y. We allow as special cases empty body and
head and denote this as > → ∃zϕ(z) and ∀x∀yψ(x,y)→ ⊥,
respectively.

The following theorem captures the relation between
hornGF and guarded tgds; essentially, satisfiability and query
answering can be interreduced in polynomial time.

Lemma 12. For every set Σ of guarded tgds over some
vocabulary τ , we can compute in polynomial time a hornGF
formula ϕΣ over a larger vocabulary τ ′ ⊇ τ such that Σ and
ϕΣ are equisatisfiable and, for every conjunctive query q and
database D over τ , we have Σ ∪D |= q iff {ϕΣ} ∪D |= q.

Conversely, every hornGF formula ϕ over τ can be trans-
lated in polynomial time into a set of guarded tgds Σϕ
over a larger vocabulary τ ′ ⊇ τ such that ϕ and Σϕ are
equisatisfiable and, for every conjunctive query q and database
D over τ , we have {ϕ} ∪D |= q iff Σϕ ∪D |= q.

Proof. The first statement follows from the arguments in [42].
We repeat the idea for the sake of completeness. Every guarded
tgd ∀x∀y (ψ(x,y) → ∃zϕ(x, z)) in Σ is replaced by two
guarded tgds

∀x∀y (ψ(x,y)→ ∃zR(x, z)),

∀x∀z (R(x, z)→ ϕ(x, z)),

for a fresh predicate name R of appropriate arity. Obviously,
the resulting set is a set of hornGF sentences; their conjunction
satisfies the requirements of the statement.

Conversely, we give a translation of hornGF sentences into
guarded tgds which can be used to reduce satisfiability and
query answering. Let ϕ0 be a hornGF sentence. Let us denote
with ϕ[y] the fact that a formula ϕ has precisely free variables
y. Further, if ϕ is a subformula of ϕ0, the guard of ϕ in ϕ0

is the atom G(xy) that guards all free variables of ϕ; in case
such an atom does not exist, we assume that the guard is >.
Introduce a fresh predicate name Rϕ (of matching arity) for
every complex subformula ϕ of ϕ0, and set Rα = α whenever
α is ⊥, >, or an atomic formula.

Now, let Σ0 be the set consisting of the following sentences:

• > → Rϕ0 ,
• for every subformula ψ[x] = ϕ[y]∧ϕ′[y′] of ϕ0, include

∀x (Rψ(x)→ Rϕ(y)), and
∀x (Rψ(x)→ Rϕ′(y′)),

• for every subformula ψ[x] = ∃y(G(x,y) ∧ ϕ[z]) of ϕ0,
include

∀x (Rψ(x)→ ∃yR(x,y)),

∀x∀y (R(x,y)→ G(x,y)), and
∀x∀y (R(x,y)→ Rϕ(z)),

where R is a fresh predicate name of appropriate arity,
• for every subformula ψ[x] = ∀y(G(xy)→ ϕ[z]) of ϕ0,

include

∀x∀y (G(xy) ∧Rψ(x)→ Rϕ(z)),

• for every subformula ψ[x] = λ[y]→ ϕ[y′] of ϕ0, include

∀x (Rψ(x) ∧Rλ(y)→ Rϕ(y′)).

Moreover, for every subformula λ′[v] = θ[z] ∧ θ′[z′] of
λ with guard G(z0), include

∀x (G(z0) ∧Rθ(z) ∧Rθ′(z′)→ Rλ′(v)),

for every subformula λ′[v] = θ[z]∨θ′[z′] of λ with guard
G(z0), include

∀x (G(z0) ∧Rθ(z)→ Rλ′(v)), and
∀x (G(z0) ∧Rθ′(z′)→ Rλ′(v)),

for every subformula λ′[v] = ∃zH(v, z)∧θ[z′] of λ with
guard G(z0), include

∀v∀z (H(v, z) ∧Rθ(z′)→ R(v)), and
∀z0 (G(z0) ∧R(v)→ Rλ′(v)),

for some fresh predicate name R of appropriate arity.
It is routine to verify that
(†) Σ0 is satisfiable iff ϕ0 is satisfiable and query answering

relative to ϕ0 is the same as query answering relative to
Σ0 (over databases in the vocabulary of ϕ0).

Notice that the sentences in Σ0 are guarded tgds whenever,
ϕ0 is equality-free, that is, it does not contain atoms of the
form x = y. Obtain Σ1 from Σ0 by removing all occurrences
of x = y on the left-hand side of some rule and, in such a case,
replacing all occurrences of y with x in the rule. Obviously,
Σ1 still satisfies (†). To remove equality atoms from the right-
hand side of the rules in Σ1, we observe first that there is only
one atom on the right-hand side of the rules in Σ1. Obtain a set
of rules Σ2 by replacing every x = y on the right-hand side by
E(x, y), for a new predicate name E, and adding the following
guarded tgds, for every predicate name R appearing in Σ1,
x = x1, . . . , xrR , and every i, j, k with 1 ≤ i < j < k ≤ rR:

∀x (R(x) ∧ E(xi, xj)→ E(xj , xi)),

∀x (R(x) ∧ E(xi, xj) ∧ E(xj , xk)→ E(xi, xk)),

∀x (R(x) ∧ E(xi, xj)→ R(x[xi/xj]) ∧R(x[xj/xi])).

Intuitively, these guarded tgds enforce that E behaves like a
congruence relation under each possible guard R. It is routine
to verify that ϕ0 is satisfiable iff Σ2 is satisfiable, and that

query answering relative to ϕ0 is the same as query answering
relative to Σ2.3

Consequently, we have:

Theorem 16. Query answering in hornGF is in PTIME data
complexity.

B. Ehrenfeucht-Fraı̈ssé games

The proof of Theorem 9 is standard and omitted. It is useful
to define an analogue of the formula λA,`,a (in ELU) for GF∃.
For a finite vocabulary τ , ` < ω, and variables x = x1 . . . xm
we fix a finite set GF∃` (τ,m) of formulas in GF∃[τ] of depth
≤ ` and free variables among x1, . . . , xm such that for every
GF∃[τ] formula λ of depth ≤ ` and free variables among
x1, . . . , xm there exists a formula λ′ in GF∃` (τ,m) such that
λ and λ′ are equivalent. For a structure A and tuple a of length
m we denote by λA,`,a the conjunction of all formulas λ in
GF∃` (τ,m) such that A |= λ(a). We then have for all pointed
structures A,a and B,b and ` < ω:

B |= λA,`,a(b) iff A,a �`gsim B,b. (3)

We now come to the proof of Theorem 10. As announced, we
are going to prove a stronger version in which the tuple a is
replaced by a set X of tuples.

Lemma 13. For any finite vocabulary τ , pointed τ -structures
A, X and B,b, and any ` < ω, we have

A, X ≤`hornGF B,b iff ∃X0 ⊆ X : A, X0 �`ghsim B,b

If A and B are finite, then

A, X ≤hornGF B,b iff ∃X0 ⊆ X : A, X0 �ghsim B,b

Proof. We first introduce an analogue of the formula ρA,`,X
(for hornALC) in hornGF. For a finite vocabulary τ , ` < ω,
and variables x = x1 . . . xm we fix a finite set hornGF`(m)
of formulas in hornGF of depth ≤ ` and free variables among
x1, . . . , xm such that for every hornGF formula ϕ of depth
≤ ` and free variables among x1, . . . , xm there exists a
formula ϕ′ in hornGF`(m) such that ϕ and ϕ′ are equivalent.
For a structure A and set X of tuples of the same length
m we denote by ρA,`,X the conjunction of all formulas ϕ
in hornGF`(m) such that A |= ϕ(a) for all a ∈ X . In
what follows, when using the formulas λA,`,a and ρA,`,X , the
number m of variables used will always be clear from the
context and not be mentioned explicitly.

As the second claim follows directly from the first claim,
we prove the first one only.

For the proof of the implication from left to right, let
the pointed structures A, X0 and B, b0 be given with X0

and b0 guarded tuples of the same length. Assume that
A, X0 ≤`hornGF B,b0. We show that there exists X ′0 ⊆ X0

such that A, X ′0 �`ghsim B,b0.

3The latter equivalence only holds in the case without the unique name
assumption (UNA). With UNA, the equivalence holds under the additional
condition that Σ2 ∪D 6|= E(a, b) for any distinct a, b ∈ dom(D).

Define sets Zk of pairs (X,b) by setting (X,b) ∈ Zk if
X 6= ∅ is a set of guarded tuples in A and b is a guarded
tuple in B of the same length as the tuples in X such that
(a) B |= ρA,k,X(b);
(b) A |= λB,k,b(a) for all a ∈ X .
Observe that if (X,b) ∈ Z0, then (P,b) with

P = {pa : b 7→ a | a ∈ X}

is a well-defined link (as A |= λ(a) implies B |= λ(b) for
all a ∈ X and λ(x) in GF∃0). In what follows we do not
distinguish between (X,b) and the corresponding link. We
show the following claim by induction over k < ω.

Claim 1. For all k < ω, non-empty sets X of tuples in A, and
tuples b in B: if (X,b) ∈ Zk, then A, X �kghsim B,b.

For k = 0, Claim 1 is proved as follows. Assume (X,b) ∈
Z0 and let (P,b) be the corresponding link. For Condi-
tion (atomgh), observe that if A |= p(bi) = p(bj) for all p ∈ P ,
then B |= bi = bj since B |= ρA,0,P b and (x = y) are
in hornGF0. Similarly, if R ∈ τ and A |= R(p(b)) for all
p ∈ P , then B |= R(b) since B |= ρA,0,P b and R(x) is
in hornGF0. Condition (simgh) follows from Theorem 9.

Assume Claim 1 has been proved for k and let (X,b) ∈
Zk+1. Denote by (P,b) the corresponding link. Condi-
tion (atomgh) can be proved in the same way as for k = 0.
For Condition (forthgh), assume Y is an R(b0,y)-successor
of (P,b). We have to construct a tuple b′ and set of tuples
Y ′ ⊆ Y with (Y ′,b0b

′) ∈ Zk. By definition,

A |= ∃y
(
R(p(b0)y) ∧ ρA,k,Y (p(b0)y)

)
,

for all p ∈ P . By Condition (a) and since ∃y(R(x0y) ∧
ρA,k,Y (x0y)) is of depth ≤ k + 1,

B |= ∃y
(
R(b0y) ∧ ρA,k,Y (b0y)

)
.

Thus, there exists a tuple b′ such that

B |= R(b0b
′) ∧ ρA,k,Y (b0b

′).

Let
Y ′ = {a ∈ Y | A |= λB,k,b0b′(a)}

To show that (Y ′,b0b
′) ∈ Zk it suffices to show that Y ′ is

non-empty and satisfies Condition (a) (Condition (b) holds by
definition).
• Assume Y ′ = ∅. Then A 6|= λB,k,b0b′(a) for any a ∈ Y .

Then (λB,k,b0b′ → ⊥) is equivalent to a conjunct of
ρA,k,Y . Then

B |= (λB,k,b0b′(b0b
′)→ ⊥)

by construction of b0b
′ and we have derived a contra-

diction.
• For Condition (a), assume that ψ is in hornGF and of

depth ≤ k and A |= ψ(a) for all a ∈ Y ′. We have to
show that B |= ψ(b0b

′). We have

A |= (λB,k,b0b′ → ψ)(a),

for all a ∈ Y . Then (λB,k,b0b′ → ψ) is a conjunct of
ρA,k,Y and so

B |= (λB,k,b0b′ → ψ)(b0b
′).

From
B |= λB,k,b0b′(b0b

′)

we obtain
B |= ψ(b0b

′),

as required.
To show Condition (backgh), assume that a guarded tuple b′ is
given. Consider w.l.o.g. an atomic formula R(x′) with B |=
R(b′). Let b′ = b0b1 where b0 and b1 are such that [b0] ⊆
[b] and [b1] ∩ [b] = ∅. Take for every ψ(x0x1) in hornGFk
with B |= ¬ψ(b0b1) a pψ ∈ P and tuple aψ such that A |=
(λA,k,b′ ∧ ¬ψ)(pψ(b0),aψ). They exist because otherwise

A |= ∀x1(R(x0x1)→ (λA,k,b′ → ψ))(p(b0),x1)

for all p ∈ P and so, by definition of Zk+1,:

B |= ∀x1(R(x0x1)→ (λA,k,b′ → ψ))(b0,x1))

and we have derived a contradiction. Now let (P ′,b′) consist
of all p′ : b′ 7→ pψ(b0)aψ with p′|[b0] = p|[b0]. Then (P ′,b′)
is as required for Condition (backgh).

Condition (simgh) follows from Theorem 9 and so Claim 1
is proved.

It remains to prove that there exists X ′0 ⊆ X0 with
(X ′0,b0) ∈ Z`. Set

X ′0 = {a ∈ X0 | A |= λB,`,b0
(a)}

Then (X ′0,b0) satisfies Conditions (a) and (b) by definition.
X ′0 6= ∅ can be proved in the same way as the proof of Y ′ 6= ∅
given above.

For the proof of the implication from right to left, we show
the following claim by induction over k < ω.

Claim 2. For all k < ω, if (P,b) ∈ Zk, then A |= ϕ(p(b)) for
all p ∈ P implies B |= ϕ(b), for all formulas ϕ in hornGF
of depth ≤ k.

For k = 0, Claim 2 follows from Condition (atomgh).
Assume Claim 2 has been proved for k. We prove Claim 2 for
k + 1 by induction over the construction of ϕ. Thus, assume
that Claim 2 has been proved for ϕ′, ϕ1, ϕ2 ∈ hornGFk, and
that ϕ ∈ hornGFk+1 is of the form ϕ = ∀y(G(xy) →
ϕ′(xy)), ϕ = ∃y(G(xy) ∧ ϕ′(xy)), ϕ = ϕ1 ∧ ϕ2, or
ϕ = λ → ϕ′, where λ is in GF∃k+1. Then we prove Claim 2
for ϕ. Assume (P,b) ∈ Zk+1 and A |= ϕ(p(b)) for all p ∈ P .
• Assume ϕ = ∀y(G(xy) → ϕ′(xy)) and for a proof

by contradiction that B 6|= ϕ(b). Choose b′ with B |=
G(bb′)∧¬ϕ′(bb′). By Condition (backgh), there exists a
link (P ′,bb′) in Zk such that for all p′ ∈ P ′ there exists
p ∈ P with p|[b] = p′|[b]. ϕ′ has depth ≤ k and thus,
as we assume that Claim 2 has been proved for k, there
exists p′ ∈ P ′ such that A 6|= ϕ′(p′(bb′)). There exists

p ∈ P with p|[b] = p′|[b] and so A 6|= ϕ(p(b)), and we
have derived a contradiction.

• Assume ϕ = ∃y(G(xy) ∧ ϕ′(xy)) and for a proof by
contradiction that B 6|= ∃y(G(by) ∧ ϕ′(by)). Let

Y = {a | A |= (G ∧ ϕ′)(a)}

Then Y is a G(b,y)-successor of (P,b) and so by
Condition (forthgh) there exists (P ′,bb′) ∈ Zk such that
P ′[bb′] ⊆ Y . Thus, by induction hypothesis, B |=
(G(bb′) ∧ ϕ′(bb′)). But then B |= ϕ(b) and we have
derived a contradiction.

• Assume ϕ = ϕ1 ∧ ϕ2 and for a proof by contradiction
that B 6|= (ϕ1 ∧ ϕ2)(b). We may assume w.l.o.g. that
B 6|= ϕ1(b). But A |= ϕ(p(b)) for all p ∈ P , and so
A |= ϕ1(p(b)), for all p ∈ P . By IH, B |= ϕ1(b), and
we have derived a contradiction.

• Assume ϕ = λ → ϕ′ and for a proof by contradiction
B 6|= (λ → ϕ′)(b). Then B |= λ(b) and B 6|= ϕ′(b).
By Theorem 9, A |= λ(p(b)) for all p ∈ P , and, by IH,
there exists p ∈ P such that A 6|= ϕ′(p(b)). Then there
exists p ∈ P with A 6|= ϕ(p(b)) and we have derived a
contradiction.

This finishes the proof.

C. Model indistinguishability in hornGF

We introduce decision problems entailment, equivalence,
CBE, and GuardedHornSim similar to Section IV. For exam-
ple, entailment is the problem of deciding A,a ≤hornGF B,b
on input A,B,a,b, and GuardedHornSim is the following
problem:
• Input: structures A, B and a set X of guarded tuples in

A, and b a guarded tuple in B
• Question: Is A, X �ghsim B,b?
The main theorem here is the following:

Theorem 11. In hornGF, entailment, equivalence, and CBE
are in EXPTIME. Moreover, `-entailment, `-equivalence, and
`-CBE are in EXPTIME for binary encoding of ` and in
PSPACE for unary encoding.

Proof. Since entailment, equivalence, and CBE can be reduced
to GuardedHornSim, it suffices to show that GuardedHornSim
can be decided in EXPTIME.

To this end, we start with noting that, for a given guarded
tuple b, the number of mappings p : b 7→ p(b) is bounded
by |A|: since b is a guarded tuple, there is some R ∈ τ and
a tuple a such that a ∈ RB|[b] and [a] = [b]. Every possible
mapping p maps this atom to a different atom R(a′) in A,
thus the number of mappings is bounded by |A|. Hence, the
size of a witnessing P with X = P [b] is bounded by |A| as
well, and we can try (in exponential time) all possible P .

It thus remains to check on input A,B, (P,b) whether
there is a guarded Horn simulation Z between A and B with
(P,b) ∈ Z. This can be realized using an alternating algorithm
which implements the guarded Horn simulation game. We
need an auxiliary notion and claim. Fix structures A, B over

some vocabulary τ and a link (P0,b0) between A and B.
Denote with ar(τ) the maximal arity of symbols in τ . We call
a guarded Horn simulation Z normal for (P0,b0) if, for every
(P,b) ∈ Z with (P,b) 6= (P0,b0), we have |b| ≤ ar(τ). The
following is routine to show:

Claim. There is a guarded Horn simulation Z with (P0,b0) ∈
Z iff there is a guarded Horn simulation Z with (P0,b0) ∈ Z
which is normal for (P0,b0).

Based on this claim, we can devise the alternating algorithm.
Let A,B, (P0,b0) be the input. The algorithm maintains links
and proceeds in rounds. At a link (P,b) it does the following:

1) Reject if (P,b) does not satisfy Condition (atomgh).
2) Reject if (P,b) does not satisfy Condition (simgh).
3) For every set of guarded tuples Y and every atomic

formula R such that Y is an R(b0,y) successor of
(P,b):

a) guess a link (P ′,b0b) with |b0b| ≤ ar(τ),
b) reject if P ′[b0b

′] 6⊆ Y ,
c) replace (P,b) with (P ′,b0b).

4) for every guarded tuple b′ with |b′| ≤ ar(τ):
a) guess a link (P ′,b′) with b′ ≤ ar(τ),
b) reject if for some p′ ∈ P ′, there is no p ∈ P with

p|[b]∩[b′] = p′|[b∩[b′]];
c) replace (P,b) with (P ′,b′).

The algorithm accepts after N := 2|A| ·(|dom(B)|ar(τ)+1)+1
where |A| is length of the representation of A, that is, roughly
the number of ground atoms. Note that steps 1) and 2)
correspond to Conditions (atomgh) and (simgh), respectively,
and steps 3) and 4) correspond to (forthgh) and (backgh),
respectively. Thus, to establish correctness it suffices to prove
that after N steps, we know that there is a normal guarded
Horn simulation Z with (P0,b0). This is a consequence of
the fact that there are at most N − 1 links:
• the number of possible tuples b is bounded by

dom(B)ar(τ) + 1, by normality;
• as argued in the beginning of the proof, for a fixed

guarded tuple b the number of possible sets P is bounded
by 2|A|.

Thus, after N steps, the algorithm has visited a link twice and
can stop. This argument also shows that the size of each link is
bounded by some polynomial in the size of the representations
of A and B. Moreover, we can count (in binary) up to N
in polynomial space. Overall, the algorithm is an alternating
PSPACE algorithm which suffices to show an EXPTIME upper
bound.

The upper bounds for the restricted problems are obtained
in the same way from the alternating algorithm as discussed
in Lemma 7 for hornALC.

D. Expressive Completeness

We remind the reader of the definition of ω-saturated
structures. Let τ be a finite vocabulary and assume that A
is a τ -structure. Then A is ω-saturated if for all tuples a in
dom(A) and all sets Γ(xy) of FO[τ]-formulas with y and a

of the same length, if A |= ∃x(
∧
ϕ∈Γ′ ϕ(xa)) for all finite

subsets Γ′ of Γ, then there exists a tuple b in dom(A) such
that A |= Γ(ba). Every satisfiable set of FO[τ]-formulas is
satisfiable in an ω-saturated structure [52].

Theorem 12 A FO-formula is equivalent to a hornGF-formula
just in case it is preserved under FO-restricted generalized
guarded Horn simulations.

Proof. The direction from left to right is straightforward.
Conversely, suppose ϕ(x0) is preserved under generalized
guarded Horn simulations. Let cons(ϕ) be the set of all ψ(x0)
in hornGF entailed by ϕ(x0). By compactness, it suffices
to show cons(ϕ) |= ϕ. Let B be an ω-saturated model
satisfying cons(ϕ)(b0) for some tuple b0 in dom(B). We
show B |= ϕ(b0). For any tuple b and tuple x of variables
of the same length as b, we denote by λB,b(x) the set of
guarded existential positive λ(x) with B |= λ(b). Let C be
the set of all sets Γ(x0) of FO-formulas with B |= Γ(b0)
and such that Γ(x0) ∪ {ϕ(x0)} is satisfiable and take, for
any Γ(x0) ∈ C, an ω-saturated structure AΓ and tuple aΓ

with AΓ |= (Γ ∪ {ϕ})(aΓ). Let A be the disjoint union of
(AΓ | Γ ∈ C) and let Z be the set of pairs (X,b) such that
(a) for any ψ(x) ∈ hornGF, if (AΓ | Γ ∈ C) |= ψ(a) for all

a ∈ X , then B |= ψ(b);
(b) there exists a set Φ(x) ⊇ λB,b of FO-formulas such that

X is the set of all tuples a with (AΓ | Γ ∈ C) |= Φ(a).
Each (X,b) in Z can be regarded as a link of the form (P,b)
with X = P [b]. We show that Z is an FO-restricted guarded
Horn simulation between (AΓ | Γ ∈ C) and B.

Assume (X,b) is given. Let ΓX be a set of FO-formulas
that defines X in (AΓ | Γ ∈ C). Let (P,b) be the link
corresponding to (X,b). We check the conditions.

The Condition (atomgh) follows from Condition (a).

To show that Condition (forthggh) holds, assume that Y is a set
of guarded tuples such that there is a set ΓY of FO-formulas
with free variables among x0y defining Y in (AΓ | Γ ∈ C).
Assume first that Y is an R(b0y)-successor of (P,b) and b0

is not empty. We have to show that there exists (P ′,b0b
′) ∈ Z

such that P ′[b0b
′] ⊆ Y . Let ρ(AΓ|Γ∈C),Y be the set of all

formulas ρ in hornGF with free variables among x0y such
that (AΓ | Γ ∈ C) |= ρ(a0a) for all a0a ∈ Y . For every
ρ(x0y) in ρ(AΓ|Γ∈C),Y , and p ∈ P :

(AΓ | Γ ∈ C) |= ∃y(R(p(b0),y) ∧ ρ(p(b0),y)).

Thus
B |= ∃y(R(b0y) ∧ ρ(b0y)),

for every ρ(x0y) in ρ(AΓ|Γ∈C),Y . By ω-saturatedness of B,
there exists a tuple b′ such that

B |= R(b0b
′), B |= ρ(AΓ|Γ∈C),Y (b0b

′).

Now we set

Y ′ = {a ∈ Y | (AΓ | Γ ∈ C) |= λB,b0b′(a)}

One can show that (Y ′,b0b
′) is as required. To show that

(Y ′,b0b
′) ∈ Z it suffices to show that Y ′ is not empty and

satisfies Conditions (a) and (b).
• Assume Y ′ = ∅. Then

(AΓ | Γ ∈ C) 6|= λB,b0b′(a)

for any a ∈ Y . Then (ΓY ∪λB,b0b′)(x0y) is not satisfied
in any AΓ. By compactness and ω-saturatedness of every
AΓ, there exist finite subsets Γ0 of ΓY and λ′B,b0b′ of
λB,b0b′ such that Γ0∪λ′B,b0b′ is not satisfied in any AΓ.
But then

(AΓ | Γ ∈ C) |= (λ′B,b0b′ → ⊥)(a),

for all a ∈ Y . (λ′B,b0b′ → ⊥) is then in hornGF and so

B |= (λ′B,b0b′ → ⊥)(b0b
′),

by construction of b0b
′, and we have derived a contra-

diction.
• For Condition (a), assume that ρ is in hornGF and A |=
ρ(a) for all a ∈ Y ′. We have to show that B |= ρ(b0b

′).
But this can be shown similarly to the non-emptiness
proof above.

• For Condition (b), observe that

Φ = (ΓY ∪ λB,b0b′)(x0y)

is as required.
Assume next that Y is an R(y)-successor of (P,b) and Y
intersects with all AΓ. We have to show that there exists
(P ′,b′) ∈ Z such that P ′[b′] ⊆ Y . As Y intersects with
every AΓ, it follows that

(AΓ | Γ ∈ C) |= ∃y(R(y) ∧ ρ(y))

for every ρ(y) in ρ(AΓ|Γ∈C),Y . Thus,

B |= ∃y(R(y) ∧ ρ(y)),

for every ρ(y) in ρ(AΓ|Γ∈C),Y . By ω-saturatedness of B, there
exists a tuple b′ such that

B |= R(b′), B |= ρ(AΓ|Γ∈C),Y (b′)

Consider λB,b′(y). We let

Y ′ = {a ∈ Y | (AΓ | Γ ∈ C) |= λB,b′(a)}

One can now show similarly to the previous case that (Y ′,b′)
is as required.

To show Condition (backgh), assume that a guarded tuple
b′ is given. Consider w.l.o.g. an atomic formula R(x′) with
B |= R(b′). Let b′ = b0b1, where b0 and b1 are such that
[b0] ⊆ [b] and [b1] ∩ [b] = ∅. Let X ′ denote the set of all
tuples a0a1 such that there exists Γ ∈ C with a0a1 in AΓ and
such that
• AΓ |= λA,b′(a0a1) and
• there exists a tuple a′′ with AΓ |= ΓX(a0a

′′).
Define ΓX′ as the set of all formulas

∃x1(λ(x0x1) ∧ ψ(x0))

where λ(x0x1) ∈ λA,b′(x0x1) and ψ(x0) = ∃x′′ψ′(x0x
′′)

for some ψ(x0x
′′) ∈ ΓX(x0x

′′). Then, by ω-saturatedness of
all AΓ with Γ ∈ C, we have that ΓX′ defines X ′:

X ′ = {a0a1 | (AΓ | Γ ∈ C) |= ΓX′(a0a1)}

We show that (X ′,b′) is as required. Condition (b) is satisfied
by definition. For Condition (a), assume ρ(x0x1) is in hornGF
and B 6|= ρ(b0b1). It suffices to show that there exists a0aρ ∈
X ′ such that (AΓ | Γ ∈ C) |= ¬ρ(a0aρ). But a0aρ exists
because otherwise there exists λ ∈ λ(AΓ|Γ∈C),b′ such that

(AΓ | Γ ∈ C) |= ∀x1(R(x0x1)→ (λ→ ρ))(p(b0)x1) (4)

for all p ∈ P and so, by definition of Z,

B |= ∀x1(R(x0x1)→ (λ→ ρ))(b0,x1),

and we have derived a contradiction. To prove (4), assume (4)
does not hold. Then, for every λ′ ∈ λ(AΓ|Γ∈C),b′ , there exists
p ∈ P such that

(AΓ | Γ ∈ C) |= ∃x1(λ′ ∧ ¬ρ)(p(b0),x1).

By definition, it follows that for every λ′ ∈ λ(AΓ|Γ∈C),b′ there
exists Γ ∈ C such that AΓ realizes

ΓX(x0x
′′) ∪ {(λ′ ∧ ¬ρ)(x0x1)}

But then, by ω-saturatedness, compactness, and the definition
of (AΓ | Γ ∈ C), there exists Γ ∈ C such that AΓ realizes

ΓX(x0x
′′) ∪ λ(AΓ|Γ∈C),b′(x0x1) ∪ {¬ρ(x0x1)}

which implies that there exists a0aρ ∈ X ′ such that (AΓ | Γ ∈
C) |= ¬ρ(a0aρ).

Finally, Condition (simggh) can be proved using ω-
saturatedness of B and all AΓ.

EXTENDING hornALC WITH THE ∇-OPERATOR

Denote by ELU∇ the extension of ELU with the∇-operator
defined by setting

∇R.C = ∃R.> u ∀R.C.

Thus, ELU∇-concepts are given by the grammar

C,D ::= A | > | C uD | C tD | ∃R.C | ∇R.C.

We define hornALC∇ in the same way as hornALC (see
Definition 1) with the exception that now L is an arbitrary
ELU∇-concept. The following lemma shows that, modulo the
standard translation, hornALC∇ is a fragment of Horn FO.

Lemma 14. Every hornALC∇-concept is equivalent to a
Horn formula.

Proof. We proceed by induction on the construction of
hornALC∇-concepts. The only non-trivial case is L → C,
where L is an ELU∇-concept and C† is equivalent to a Horn
formula. This case follows from the claim below.

Claim. If H(z) is any Horn formula and L†(x) is the standard
translation of an ELU∇-concept L, then L†(x) → H(z) is
equivalent to a Horn formula.

Proof of claim is by induction on the construction of L. The
basis of induction and the cases when L is A, > and C tD
are obvious.

Case (C† ∧ D†)(x) → H(z). This formula is equivalent
to C†(x) → (D†(x) → H(z)). By IH, D†(x) → H(z) is
equivalent to some Horn formula H ′(x, z), and by the same
reason C†(x)→ H ′(x, z) is also equivalent to a Horn formula.

Case (∃R.C)†(x) → H(z). This formula is equivalent to
∀y ((R(x, y) ∧ C†(y)) → H(z)) with a fresh y, which is
clearly equivalent to a Horn formula, by IH.

Case (∇R.C)† → H(z). Its standard translation is equiva-
lent to

∃y R(x, y)→ [∀y(R(x, y)→ C†(y))→ H(z)].

One can check that this formula has the same models as

∃y R(x, y)→ ∃y[R(x, y) ∧ (C†(y)→ H(z))],

which is equivalent to a Horn formula, by IH.

Definition 10 (ELU∇-simulation). An ELU∇-simulation be-
tween τ -structures A and B is a relation Z ⊆ dom(A) ×
dom(B) if the following conditions hold:

(atom) for any A ∈ τ , if (a, b) ∈ Z and a ∈ AA, then
b ∈ AB;

(forth) for any R ∈ τ , if (a, b) ∈ Z and (a, a′) ∈ RA, then
there exists b′ ∈ dom(B) with (b, b′) ∈ RB and
(a′, b′) ∈ Z;

(back) for any R ∈ τ , if (a, b) ∈ Z, a ∈ (∃R.>)A,
and (b, b′) ∈ RB, then there is a′ ∈ dom(A) with
(a, a′) ∈ RA and (a′, b′) ∈ Z.

We write A, a �∇ B, b if there exists a ELU∇-simulation Z
between A and B such that (a, b) ∈ Z.

Theorem 17 (Ehrenfeucht-Fraı̈ssé game for ELU∇). For
any finite vocabulary τ , pointed τ -structures A, a and B, b,
and any ` < ω, we have

A, a ≤`ELU∇
B, b iff A, a �`∇ B, b.

If A and B are finite, then

A, a ≤ELU∇ B, b iff A, a �∇ B, b.

Definition 11 (Horn∇-simulation). A Horn∇ simulation Z
between τ -structures A and B is a Horn simulation such that,
in addition,

(sim∇) if (X, b) ∈ Z, then B, b �∇ A, a for every a ∈ X .
We write A, X �horn∇ B, b if there exists a Horn∇ simulation
Z between A and B such that (X, b) ∈ Z.

Theorem 18 (Ehrenfeucht-Fraı̈ssé game for hornALC∇).
For any finite vocabulary τ , pointed τ -structures A, a and
B, b, and any ` < ω, we have

A, a ≤`hornALC∇ B, b iff A, a �`horn∇ B, b.

If A and B are finite, then

A, a ≤hornALC∇ B, b iff A, a �horn∇ B, b.

