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Abstract
Learning description logic (DL) concepts from pos-
itive and negative examples given in the form of la-
beled data items in a KB has received significant
attention in the literature. We study the fundamen-
tal question of when a separating DL concept ex-
ists and provide useful model-theoretic characteri-
zations as well as complexity results for the asso-
ciated decision problem. For expressive DLs such
as ALC and ALCQI, our characterizations show
a surprising link to the evaluation of ontology-
mediated conjunctive queries. We exploit this to
determine the combined complexity (between EX-
PTIME and NEXPTIME) and data complexity (Σp2)
of separability. For the Horn DL EL, separability is
EXPTIME-complete both in combined and in data
complexity while for its modest extension ELI it is
even undecidable. Separability is also undecidable
when the KB is formulated in ALC and the sepa-
rating concept is required to be in EL or ELI.

1 Introduction
An important challenge for adopting ontologies in practical
applications is the knowledge acquisition bottleneck, that is,
the significant time and effort it takes to build the required
ontologies. As a promising approach to help overcoming
this difficulty, the varied field of ontology learning has re-
ceived a lot of attention in the last two decades, see [Lehmann
and Völker, 2014] for a recent overview. A prominent line
of research within ontology learning is concept learning,
also called concept induction, where the aim is to learn a
structured class description (a concept) formulated in a rele-
vant ontology language from positive and negative examples,
given an already available ontology that contains background
knowledge [Lehmann et al., 2014]. Applications of concept
learning include the support of ontology development and
the construction of concept based classifiers [Bühmann et al.,
2016; Sarker et al., 2017].

Since description logics (DLs) form the basis for the OWL
family of ontology languages, DL concept learning has re-
ceived particularly much attention [Lehmann and Hitzler,
2010; Lisi, 2012; Tran et al., 2014; Fanizzi et al., 2018]. The
precise formulation is as follows. Given a knowledge base

(KB) K = (T ,A) where T is a TBox that is formulated in
a DL LT and serves as an ontology providing background
knowledge and A is an ABox in which individuals from des-
ignated sets P and N serve as positive and negative exam-
ples, respectively, find a concept C formulated in a DL LS
that separates the positive from the negative examples, that is,
K |= C(a) for all a ∈ P and K 6|= C(a) for all a ∈ N . In ad-
dition to separation, one also wants to achieve that the learned
concept C generalizes the positive examples in a meaningful
way, classifying new examples accordingly.

As a prominent system for DL concept learning, we men-
tion DL LEARNER. It encompasses several learning algo-
rithms that support a range of DLs, including expressive ones
such as ALC and ALCQ, Horn DLs such as EL, and even
full OWL 2 [Bühmann et al., 2018; Bühmann et al., 2016].
Like competing systems such as DL-FOIL, YINYANG, and
PFOIL-DL [Fanizzi et al., 2018; Iannone et al., 2007;
Straccia and Mucci, 2015], DL LEARNER uses a carefully
crafted refinement operator along with various heuristics to
learn concepts that provide an as good as possible generaliza-
tion of the given examples, avoiding overfitting. The study
of such operators originated in [Badea and Nienhuys-Cheng,
2000], see also [Lehmann and Haase, 2009; Lehmann and
Hitzler, 2010]. If possible, refinement operators are designed
so that the resulting algorithm terminates on any input and
is complete in the sense that whenever there is a concept that
separates the positive and negative examples in the input, then
such a concept is indeed learned.

The aim of this paper is to investigate the fundamental
question of when a separating concept exists for a learn-
ing instance (K, P,N), considering the most popular choices
of DLs for the TBox language LT and the separation lan-
guage LS . Our main contributions are model-theoretic char-
acterizations that give important insight into when this is the
case and a precise analysis of the computational complexity
of separability viewed as a decision problem, which we refer
to as (LT ,LS) concept separability and as L concept sep-
arability when LT = LS = L. We also consider concept
definability, the special case of concept separability in which
P ∪N comprises all individuals fromA. In fact, all our com-
plexity results hold for both separability and definability.

We believe that these problems are relevant both from a
practical and from a theoretical perspective. In fact, complex-
ity lower bounds for concept separability point to an inherent



complexity that no practical system that aims for complete-
ness can avoid. Undecidability results even mean that there
can be no practical learning system that is both terminating
and complete. From the viewpoint of machine learning the-
ory, a separating concept corresponds to a consistent hypoth-
esis and understanding the existence of such a hypothesis is
considered the most fundamental problem for exploring the
version space which in our setup is the space of all separating
concepts [Hirsh et al., 2004]. The associated decision prob-
lem is often called the consistency problem, and it is known to
be closely related to PAC learnability [Pitt and Valiant, 1988;
Kietz, 1993].

We cover the expressive DLs ALC, ALCI, ALCQ, and
ALCQI as well as the Horn DLs EL and ELI. For the
former, overfitting is a risk because the disjunction operator
available in such DLs enables the construction of separating
concepts that do not provide the desired generalization of the
positive examples. Nevertheless, most practical systems such
as DL LEARNER work with expressive DLs and avoid over-
fitting by using appropriate refinement operators. Horn DLs
do not admit disjunction and therefore are not prone to over-
fitting. On the other hand, they provide less separating power
and, as we show, tend to incur higher computational (worst-
case) cost for learning.

For expressive DLs, we start with initial characteriza-
tions in terms of (some form of) bisimulations and then im-
prove them to more refined characterizations based on ho-
momorphisms. Interestingly and unexpectedly to us, these
establish a tight link between concept separability and the
evaluation of ontology-mediated queries (OMQs) based on
unions of rooted conjunctive queries [Calvanese et al., 2013;
Bienvenu et al., 2014]. Here, ‘rooted’ means that queries
have at least one answer variable and are connected. We
use the OMQ connection to obtain complexity upper and
lower bounds. In fact, L concept separability is NEXPTIME-
complete for L ∈ {ALC,ALCI,ALCQ} while ALCQI
concept separability is only EXPTIME-complete. This refers
to combined complexity where all components of the learning
instance are part of the input. We also study data complexity
where the ABox is the only input while the TBox is fixed and
thus of constant size. In all expressive DLs mentioned above,
concept separability is Σp2-complete in data complexity.

The connection to OMQ evaluation does not extend to
Horn DLs, for which we use characterizations based on prod-
ucts of universal models and simulations. Based on these,
we show that (LT , EL) concept separability is EXPTIME-
complete for LT ∈ {EL, ELI}, both in combined complexity
and in data complexity. Rather surpsiringly, we also prove
that ELI concept separability is undecidable, thus ruling out
terminating and complete learning systems. The proof is by
a subtle reduction of a tiling problem. We finally consider
(LT ,LS) concept separability where LT is any of the ex-
pressive DLs mentioned above and LS is EL or ELI. These
problems also turn out to be undecidable.

A stronger version of concept separability that is also con-
sidered in the literature requires that K |= ¬C(a) for all
a ∈ N , rather than only K 6|= C(a). Clearly, this is a mean-
ingful notion only for DLs with negation. We present some
first results also for this version of concept separability, giving

model-theoretic characterizations for expressive DLs based
on bisimulations and proving that for L ∈ {ALC,ALCI},
L concept separability is EXPTIME-complete in combined
complexity and CONP-complete in data complexity.

The long version with appendix is available at http://www.
informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries
We introduce the basics of DLs as required for this paper,
for full details see [Baader et al., 2017]. Let NC be a set of
concept names and NR a set of role names, both countably
infinite. A role is either a role name or an inverse role r−,
r a role name. For uniformity, we identify (r−)− with r. An
ALCQI concept is formed according to the syntax rule

C,D ::= > | A | ¬C | C uD | (> n r C)

where A ranges over concept names, r over roles, and n
over N. We use ∃r.C as an abbreviation for (> 1 r C),
C tD for ¬(¬C u ¬D), ∀r.C for ¬∃r.¬C, and (6 n r C)
for ¬(> n+ 1 r C).

There are several fragments of ALCQI that are relevant
for this paper. An EL concept admits as constructors only the
top concept ‘>’, conjunction ‘u’, and existential restriction
‘∃r.C’ with r a role name (but not an inverse role). ALC
concepts additionally admit negation ‘¬’. Further construc-
tors are indicated by concatenation of a corresponding letter
where Q stands for at least restrictions ‘(> n r C)’ and I
for inverse roles. This explains the nameALCQI and allows
us to refer to fragments such as ELI and ALCI. We refer to
ALC and extensions thereof as expressive DLs and to EL and
ELI as Horn DLs.

For any of the DLs L introduced above, an L TBox is a fi-
nite set of concept inclusions (CIs) C v D, where C and D
are L concepts. Let NI be a countably infinite set of individ-
ual names. An ABox A is a finite set of concept assertions
A(a) and role assertions r(a, b) where A ∈ NC, r ∈ NR, and
a, b ∈ NI. We use ind(A) to denote the set of all individual
names that occur in A. An ABox is associated with a di-
rected graph GA = (ind(A), {(a, b) | r(a, b) ∈ A}). We use
graph theoretic terminology when speaking about ABoxes,
implicitly referring to the graph GA, speaking for example
about a being reachable from b for a, b ∈ ind(A). In techni-
cal constructions, we will sometimes use extended ABoxes in
which concept assertions take the more general form C(a),
C a concept of the DL under consideration. An L knowledge
base (KB) (T ,A) consists of an L TBox T and an ABox A,
and extended KBs admit extended ABoxes. We use sub(K)
to denote the set of subconcepts of concepts that occur in K.

As usual, the semantics of DLs is defined in terms of inter-
pretations I = (∆I , ·I), where ∆I is a non-empty set and
·I maps each concept name A ∈ NC to a subset AI of ∆I

and each role name r ∈ NR to a binary relation rI on ∆I .
We refer to [Baader et al., 2017] for details on how to extend
·I to compound concepts. An interpretation I satisfies a CI
C v D if CI ⊆ DI and is a model of a TBox T if it sat-
isfies all inclusions in T . An interpretation is a model of an
ABox A if it satisfies all assertions in A, that is, a ∈ AI if
A(a) ∈ A and (a, b) ∈ rI if r(a, b) ∈ A. We thus make

http://www.informatik.uni-bremen.de/tdki/research/papers.html
http://www.informatik.uni-bremen.de/tdki/research/papers.html


[Atom] for all (d, e) ∈ S: d ∈ AI iff e ∈ AJ

[AtomR] if (d, e) ∈ S and d ∈ AI , then e ∈ AJ

[Forth] if (d, e) ∈ S and d′ ∈ succIr (d), then
there is a e′ ∈ succJr (e) with (d′, e′) ∈ S.

[Back] dual of [Forth]
[QForth] if (d, e) ∈ S and D ⊆ succIr (d) finite,

then there is a E ⊆ succJr (e) such that S contains
a bijection between D and E.

[QBack] dual of [QForth]

Figure 1: Conditions on S ⊆ ∆I ×∆J .

the standard names assumption. An interpretation is a model
of a KB K if it is a common model of its TBox and ABox
and K is satisfiable if it has a model. The assertion C(a) is a
consequence of the KB K, in symbols K |= C(a), if a ∈ CI
for all models I if K.

We next recall model-theoretic characterizations of when
elements in interpretations are indistinguishable by concepts
formulated in one of the DLs L introduced above. A pointed
interpretation is a pair I, d with I an interpretation and
d ∈ ∆I . For pointed interpretations I, d and J , e, we write
I, d ≡L J , e and say that I, d and J , e are L-equivalent if
d ∈ CI iff e ∈ CJ for all L concepts C.

As for the model-theoretic characterizations, we start
with ALC. A relation S ⊆ ∆I × ∆J is a bisimulation if
conditions [Atom], [Forth] and [Back] from Figure 1 hold,
whereA ranges over all concept names, r over all role names,
succIr (d) = {d′ ∈ ∆I | (d, d′) ∈ rI}, and ‘dual’ refers to
swapping I, d, d′ and J , e, e′. We write I, d ∼ALC J , e
and call I, d and J , e bisimilar if there exists a bisimula-
tion S such that (d, e) ∈ S. For ALCQ, we define ∼ALCQ
by replacing bisimulations with counting bisimulations, de-
fined as bisimulations, but with [Forth] and [Back] replaced
by [QForth] and [QBack]. For ALCI and ALCQI, we de-
fine ∼ALCI and ∼ALCQI analogously, but now demanding
that in all conditions in Figure 1, r additionally ranges over
inverse roles.

For L ∈ {EL, ELI}, rather than characterizing ≡L we
consider the non-symmetric relation I, d ≤L J , e which
holds if d ∈ CI implies e ∈ CJ for all L concepts C. A
relation S ⊆ ∆I × ∆J is an EL simulation from I to J if
it satisfies [AtomR] and [Forth] from Figure 1 where again A
ranges over all concept names and r over all role names. ELI
simulations are defined in the same way, but with r ranging
also over inverse roles. We write I, d �L J , e if there exists
an L simulation S from I to J with (d, e) ∈ S.

The next lemma summarizes the model-theoretic charac-
terizations for all relevant DLs [Lutz et al., 2011; Goranko
and Otto, 2007]. An interpretation I has finite outdegree if
the directed graph GI = (∆I ,

⋃
r∈NR

rI) has.

Lemma 1 Let I, d and J , e be pointed interpretations and
let J have finite outdegree. Then

1. for L ∈ {ALC,ALCI,ALCQ,ALCQI}, I, d ≡L
J , e iff I, d ∼L J , e;

2. for L ∈ {EL, ELI}, I, d ≤L J , e iff I, d �L J , e.
The ‘if’ directions also hold if J is of infinite outdegree.

3 Separability and Definability
We introduce concept separability and concept definability,
the main notions studied in this paper. We also provide illus-
trating examples and give initial model-theoretic characteri-
zations in all relevant DLs.

Definition 1 Let LT ,LS be DLs. An LT learning instance is
a triple (K, P,N) with K = (T ,A) an LT KB and P,N ⊆
ind(A) non-empty sets of positive and negative examples. An
LS solution to (K, P,N) is an LS concept C such that

1. K |= C(a) for all a ∈ P and

2. K 6|= C(a) for all a ∈ N .

Any TBox language LT and separation language LS give
rise to a decision problem of concept separability.

PROBLEM : (LT ,LS) concept separability
INPUT : LT learning instance (K, P,N)
QUESTION : Does (K, P,N) have an LS solution?

We speak of L concept separability when LT = LS = L.
We also study (LT ,LS) concept definability, the special case
of (LT ,LS) concept separability in which P covers all posi-
tive examples in the KB, that is, inputs are learning instances
(K, P,N) such that N = ind(A) \ P . We now give illustrat-
ing examples. When we claim that there is no solution, this is
a direct consequence of the characterizations provided later.
In the following examples and also later in this paper, we as-
sume that K = (T ,A) unless explicitly stated otherwise.

Example 1 (1) Let (K, P,N) be defined by T = ∅,

A = {authorOf(ai, ci) | i = 1, 2, 3}∪
{IJCAIpub(c1),AIJpub(c2),GraphicNovel(c3)},

P = {a1, a2}, andN = {a3}. Then ∃authorOf.(IJCAIpubt
AIJpub) is an ALC solution, but there is neither an EL solu-
tion nor an ELI solution.

(2) Let (K, P,N) be as in (1), but with T replaced by the
EL TBox

T = {∃authorOf.IJCAIpub v AIResearcher,

∃authorOf.AIJpub v AIResearcher}.

Then AIResearcher is an EL solution.
(3) Let (K, P,N) be defined by T = ∅,

A = {authorOf(a, c1), authorOf(a, c2), authorOf(b, c3)},

P = {a}, and N = {b}. Due to the standard names assump-
tion, c1 and c2 are distinct objects and thus (> 2 authorOf >)
is an ALCQ solution. However, there is no ALCI solution,
even when T is replaced with any ALCI TBox.

(4) Let (K, P,N) be as in (3), but with P and N swapped.
There is no ALCQI solution even when T is replaced with
any ALCQI TBox. Note that (6 1 authorOf >) is not a so-
lution as the semantics does not rule out additional authorOf
successors in concrete models.
Observe that if LS is closed under conjunction, then
(LT ,LS) concept separability can be reduced in polynomial
time to the special case of (LT ,LS) concept separability
that admits only input instances (K, P,N) in which N is a



singleton. Indeed, if C is a solution to a learning instance
(K, P,N), then it is a solution to (K, P, {a}) for all a ∈ N .
If, conversely, Ca is a solution to (K, P, {a}) for all a ∈ N ,
then

d
a∈N Ca is a solution to (K, P,N). In what follows,

we will thus mostly restrict our attention to this special case.
We study both the combined complexity of concept separa-

bility and definability and the data complexity, where only the
ABox of the KB is regarded as the input to the decision prob-
lem while the TBox is fixed and thus of constant size. Note
that the sizes of P and N are dominated by the size of the
ABox. When not making explicit which complexity measure
we speak about, we mean combined complexity.

We now give the announced characterizations of (LS ,LT )
concept separability, starting with the case that LS is an ex-
pressive DL. The characterizations use the relations ∼L from
Lemma 1, L being the separation language. The correspond-
ing relation for the TBox language is not used.

Theorem 1 Let (K, P, {b}) be an ALCQI learning in-
stance. For LS ∈ {ALC,ALCI,ALCQ,ALCQI}, the fol-
lowing are equivalent:

1. (K, P, {b}) has an LS solution;

2. there exists a model I of K of finite outdegree such that
for all a ∈ P and all models J of K, J , a 6∼LS

I, b.
The proof of Theorem 1 is rather standard, based on Lemma 1
and compactness.

We now turn to the case where LS is a Horn DL. The main
difference to Theorem 1 is that a product construction is in-
volved. Interestingly, our characterization is rather flexible
regarding LT , which can even be ALCQI. Let Ii, di, i ∈ I ,
be a family of pointed interpretations. The (direct) product∏
i∈I Ii, d is the pointed interpretation defined by

∆
∏
Ii = {d : I →

⋃
i∈I ∆Ii | for i ∈ I : d(i) ∈ ∆Ii}

A
∏
Ii = {d ∈ ∆

∏
Ii | for i ∈ I : d(i) ∈ AIi}, A ∈ NC

r
∏
Ii = {(d, e) | for i ∈ I : (d(i), e(i)) ∈ rIi}, r ∈ NR

and d(i) = di, for all i ∈ I . We say that a setM of models
of a KB K is L complete if for every L concept C and every
a ∈ ind(K), K |= C(a) iff a ∈ CI for all I ∈ M. If,
for example, K is anALCQI KB, then the class of all ‘forest
models’ ofK of finite outdegree is well-known to beALCQI
complete.

Theorem 2 Let (K, P, {b}) be an ALCQI learning in-
stance. For LS ∈ {EL, ELI} and M a set of models of
K that is LS complete, the following are equivalent:

1. (K, P, {b}) has an LS solution;

2. there exists a model I of K of finite outdegree such that∏
a∈P (

∏
J∈M(J , a)) 6�LS

I, b.
The proof uses Lemma 1 and the fact that for any ELI
concept C and family of pointed interpretations (Ii, di)i∈I ,
d ∈ C

∏
i∈I Ii if and only if di ∈ CIi for all i ∈ I .

4 Characterizations for Expressive DLs
We establish characterizations of concept separability that are
more refined than the initial one presented in Theorem 1. The

refined characterizations establish a suprising connection be-
tween concept separability and (U)CQ-evaluation on KBs.
They also provide the foundation for decision procedures for
concept separability that we develop later on. We start with
ALCI and then proceed via ALCQI to ALC and ALCQ,
for which the characterizations are slightly more technical.

A homomorphism h from an ABox A to an interpretation
I is a mapping h from ind(A) to ∆I such that A(d) ∈ A
implies h(d) ∈ AI and r(c, d) ∈ A implies (h(c), h(d)) ∈
rI . We write A, a → I, b if there exists a homomorphism h
from A to I with h(a) = b.
Theorem 3 Let (K, P, {b}) be an ALCI learning instance.
Then the following conditions are equivalent:

1. (K, P, {b}) has an ALCI solution;
2. there exists a model I of K such that for all a ∈ P ,
A, a 6→ I, b.

Theorem 3 is proved by showing the equivalence of Condi-
tion 2 in Theorems 1 and 3. One first observes that it suf-
fices to consider models I that contain no distinct d, e with
I, d ∼ALCI I, e. Then the direction from Theorem 3 to The-
orem 1 follows as the restriction of a bisimulation between
J and I to the ABox individuals in A is a homomorphism
to I. For the converse direction, one carefully constructs the
required model J of K from I using the given homomor-
phism.

To adapt Theorem 3 from ALCI to ALCQI, we use ho-
momorphisms h from A to I that are locally injective for all
roles r, that is, the restriction of h to the set succAr (a) =
{b | r(a, b) ∈ A} is injective for all a ∈ ind(A). Now
A, a →i I, b is defined like A, a → I, b, but based on ho-
momorphisms that are locally injective for all roles r.
Theorem 4 Let (K, P, {b}) be an ALCQI learning in-
stance. Then the following conditions are equivalent:

1. (K, P, {b}) has an ALCQI solution;
2. there exists a model I of K such that for all a ∈ P ,
A, a 6→i I, b.

Now for the adaptation of Theorems 3 and 4 to DLs with-
out inverse roles. Let K = (T ,A) be an ALCQI KB and
a ∈ ind(A). We use A↓a to denote the set of assertions in A
that use only individual names from the set reachA(a) of in-
dividual names reachable from a in GA. Now A, a →r I, b
means that there is a homomorphism h from A↓a to I with
h(a) = b such that the extended KB KI,h, defined as

(T ,A ∪ {C(c) | C ∈ sub(K), c ∈ reachA(a), h(c) ∈ CI}),
is satisfiable. We define A, a →i

r I, b analogously, addition-
ally requiring that h is locally injective for all role names r
(but not necessarily for inverse roles).
Theorem 5 Let (K, P, {b}) be anALC (resp.ALCQ) learn-
ing instance. Then the following conditions are equivalent:

1. (K, P, {b}) has an ALC (resp. ALCQ) solution;
2. there exists a model I of K such that for all a ∈ P ,
A, a 6→r I, b (resp. A, a 6→i

r I, b).
The following example illustrates the reason for why the char-
acterization in Theorem 5 requires KI,h to be satisfiable.



Example 2 Consider A = {r(c, a), A(a), A(b)}, P = {a},
N = {b}, T = {> v ∀r.B}, and let K = (T ,A). Then
K |= B(a) and K 6|= B(b) and so B is an ALC solution
for (K, P,N). Observe that h : a 7→ b is a homomorphism
from A↓a to any model I of K, but for any model I of K with
b ∈ (¬B)I the extended KB KI,h is not satisfiable.
We observe a slightly surprising consequence of the above
characterizations. Concept separability is TBox anti-
monotone in a DL L if extending the TBox cannot result in a
solution for a learning instance to become available, that is,
for all L learning instances (K1, P,N) and (K2, P,N) with
T1 ⊆ T2 and A1 = A2, (K1, P,N) has an L solution if
(K2, P,N) has an L solution.
Theorem 6 Concept separability is TBox anti-monotone in
ALCI and ALCQI, but not in EL, ELI, ALC, and ALCQ.
Note that TBox anti-monotonicity inALCI andALCQI fol-
lows directly from Theorems 3 and 4. To show that concept
separability is not TBox anti-monotone in ALC and ALCQ
consider (K, P,N) from Example 2 and let K′ = (∅,A).
Then (K′, P,N) has no ALCQ solution (and thus no ALC
solution), but (K, P,N) has an ALC solution. Example 1 (1)
and (2) above shows that concept separability is not TBox
anti-monotone in EL and ELI.

5 Complexity: Expressive DLs
We clarify the complexity of concept separability and con-
cept definability in expressive DLs, which turn out to be
NEXPTIME-complete in ALC, ALCI, and ALCQ, and EX-
PTIME-complete in ALCQI. In data complexity, they are
Σp2-complete in all four DLs. In both lower and upper bound
proofs, we exploit a connection between separability and (ap-
propriate versions of) UCQ evaluation on KBs that is sug-
gested by the characterizations in the previous section.
Theorem 7 ALCI concept separability and ALCI concept
definability are NEXPTIME-complete.
The upper bound in Theorem 7 is proved by a polynomial
time reduction to the complement of rooted UCQ evaluation
on ALCI KBs and the lower bound is proved by a polyno-
mial time reduction from the complement of rooted CQ eval-
uation on ALCI KBs. Both problems are CONEXPTIME-
complete [Lutz, 2008] and rather well known, so we refrain
from giving definitions and only mention that a CQ is rooted
if it is connected and has at least one answer variable, and that
a UCQ is rooted if every CQ in it is.

For the first reduction, let (K, P, {b}) be an ALCI learn-
ing instance with K = (T ,A). For every a ∈ P , let qa be
the maximal connected component Aa of A that contains a,
viewed as a connected CQ with only answer variable a. Fur-
ther, let q be the UCQ

∨
a∈P qa. Then (K, P, {b}) has a solu-

tion iff K 6|= q(b). In fact, K 6|= q(b) iff there is a model I of
K such that I 6|= qa(b) for all a ∈ P , that is, Aa, a 6→ I, b.
This is equivalent to A, a 6→ I, b as required by Point 2 of
Theorem 3 since for all other connected componentsA′ ofA,
the identity is a homomorpshism to I.

For the second reduction, letK = (T ,A) be anALCI KB,
q(x) a unary rooted CQ, and a ∈ ind(A). LetAq be q viewed
as an ABox where now x is an individual name, and letA′ be

the disjoint union of A and Aq . Let further K′ = (T ,A′),
P = {x}, and N = {a}. Using similar arguments as above,
one can show that K 6|= q(a) iff (K′, P,N) has a solution.
Note that this establishes hardness already for learning in-
stances with a single positive example (and a single negative
example). The reduction can be modified to show hardness
of definability. In fact, the lower bound proof in [Lutz, 2008]
applies already if we restrict ABoxes to be of the simple form
{A0(a0)} and can easily be modified so that the CQ q(x)
used is such that only the individual x can be an answer to
q in Aq (by introducing a fresh concept name X , adding the
atom X(x) to q and the assertion X(a0) to the ABox). Then
we can set P = {x} as before and N is the set of all other
individuals in A′.

In the case ofALCQI, separability closely corresponds to
a version of unary rooted (U)CQ evaluation that is based on
locally injective homomorphisms from the CQ to models of
the KB. We introduce this problem in the appendix and prove
that, remarkably, it is only EXPTIME-complete. The intu-
itive reason is that the CONEXPTIME-lower bound for CQ
evaluation on ALCI KBs requires to ‘fold’ the CQ in expo-
nentially many different ways, which can only be done with
locally non-injective homomorphisms. In ALCQI, concept
separability is thus no harder than standard reasoning prob-
lems such as concept satisfiability w.r.t. a TBox—these are
EXPTIME-complete for all expressive DLs considered in this
paper [Baader et al., 2017].

Theorem 8 ALCQI concept separability andALCQI con-
cept definability are EXPTIME-complete.

For the case without inverse roles, we also introduce cor-
responding versions of (U)CQ evaluation, based on the kinds
of homomorphism used in Theorem 5. These turn out to be
CONEXPTIME-complete. The lower bound is proved by a
reduction of a suitable version of the tiling problem and cru-
cially exploits the satisfiability condition used in the homo-
morphisms in Theorem 5. We work with a single positive
example in the case of ALC while in ALCQ the number of
positive examples is not bounded by a constant.

Theorem 9 For L ∈ {ALC,ALCQ}, L concept separabil-
ity and L concept definability are NEXPTIME-complete.

We close this section with clarifying data complexity.

Theorem 10 For L ∈ {ALC,ALCQ,ALCI,ALCQI}, L
concept separability and L concept definability are Σp2-
complete in data complexity.

The upper bounds are proved by a ‘guess-coguess and
check’ style procedure. The lower bounds are proved by re-
duction of the problem to decide whether for a given undi-
rected graphG and k ≥ 1, there is a 2-coloring ofG that does
not generate a monochromatic k-clique [Rutenburg, 1986].
The proof requires two positive examples.

6 Complexity: Horn DLs
We study concept separability and concept definability in the
case that the separation language is one of the Horn DLs EL
and ELI. As the TBox language, we consider both Horn DLs
and expressive DLs. It turns out that these problems tend to be



undecidable, notable exceptions being the cases that the TBox
language is EL or ELI and the separation language is EL.

We first refine the characterization from Theorem 2. For
L ∈ {EL, ELI}, a model U of a knowledge base K is L
universal if K |= C(a) iff U |= C(a), for all L concepts C
and a ∈ ind(A).

Theorem 11 Let (K, P, {b}) be an ELI learning instance,
LS ∈ {EL, ELI}, and U an LS universal model for K of
finite outdegree. Then the following are equivalent:

1. (K, P, {b}) has an LS solution,

2. Πa∈P (U , a) 6�LS
U , b.

The absence of disjunction in Horn DLs forces the product
in Point 2, which captures the commonalities of the positive
examples and achieves true generalization, avoiding overfit-
ting. It is, however, also responsible for the high complexity
and even undecidability of concept separability in Horn DLs.
This is in fact rather surprising given that standard reasoning
problems such as subsumption are only PTIME-complete in
EL and EXPTIME-complete in ELI.

We start with the separation language EL, considering both
EL and ELI as the TBox language.

Theorem 12 Let LT ∈ {EL, ELI}. Then (LT , EL) concept
separability and definability are EXPTIME-complete, both in
combined complexity and in data complexity.

For the lower bound, we adapt a proof used in [Harel et al.,
2002] to prove that the simulation problem between I, d and
J , e is EXPTIME-hard when I is a synchronized product of
given interpretations and J is an explicitly given interpreta-
tion. Remarkably, the lower bound holds already for empty
TBoxes. The number of positive examples is not bounded by
a constant. For the upper bound, we build on Point 2 of The-
orem 11, constructing the product of (exponential size) EL
universal models of ELI knowledge bases and then deciding
EL similarity in polynomial time. The upper bound easily
extends to the case where the learned concept can use only
symbols from a given signature.

Surprisingly, separability and definability even become un-
decidable when we extend ELwith inverse roles. This implies
that no learning algorithm can be complete and terminating.

Theorem 13 ELI concept separability and definability are
undecidable.

The proof is by a rather subtle reduction of the tiling prob-
lem of rectangles of unbounded size, borrowing and extend-
ing some ideas from the proof given in [Botoeva et al., 2019]
that the CQ entailment problem between ALC KBs is unde-
cidable. It requires only two positive examples.

We remark that ELI concept separability is closely related
to the problem of learning conjunctive queries in the con-
text of ELI KBs (‘query by example’). That problem was
stated to be 2EXPTIME-complete in [Gutiérrez-Basulto et al.,
2018], but the proof of the upper bound turns out to be incor-
rect. In the appendix, we use a minor variation of our proof of
Theorem 13 to show that the problem is actually undecidable.

Another related problem is the existence of most
specific concepts (MSCs) and least common subsumers
(LCSs) [Baader, 2003; Lutz et al., 2010; Zarrieß and Turhan,

2013]. In fact, if (K, P, {b}) is a learning instance, MSCs
Ma exist of all a ∈ P , and a LCS C of the Ma exists, then
(K, P, {b}) has a solution if K 6|= C(b). We conjecture that
a variation of the proof of Theorem 13 can be used to show
that in ELI, the existence of the LCS is undecidable in the
presence of a TBox.

We now consider the case where the TBox is formulated in
an expressive DL and the separation language is a Horn DL.
For example, such a setup is natural if avoiding overfitting is a
concern. Also here, separability turns out to be undecidable.
Theorem 14 Let LT ∈ {ALC,ALCQ,ALCI,ALCQI}
and LS ∈ {EL, ELI}. Then (LT ,LS) concept separabil-
ity and (LT ,LS) concept definability are undecidable.

The proof is by reduction from the already mentioned CQ
entailment problem between ALC KBs which undecidable
already for (directed or undirected) tree-shaped CQs.

7 First Observations on Strong Separability
There is an alternative notion of concept learning that has
been proposed in the literature [Lehmann et al., 2014; Badea
and Nienhuys-Cheng, 2000; Fanizzi et al., 2018]. An L con-
cept C is a strong L solution to a learning instance (K, P,N)
if K |= C(a) for all a ∈ P and K |= ¬C(a) for all a ∈ N .
We then define strong L concept separability in the expected
way. While we leave a thorough investigation for future work,
we observe the following characterization.
Theorem 15 For LS ∈ {ALC,ALCI,ALCQ,ALCQI},
anALCQI learning instance (K, P,N) has a strong L solu-
tion iff for all models I and J of K, all a ∈ P and all b ∈ N ,
I, a 6∼LS

J , b.
Based on this result, one can show that forALC andALCI

there is a tight link between strong concept separability and
KB satisfiability (rather than to UCQ-evaluation on KBs)
which can be used to prove the following.
Theorem 16 ForL ∈ {ALC,ALCI}, strongL concept sep-
arability is EXPTIME-complete in combined complexity and
CONP-complete in data complexity.

Note the drop in complexity compared to the non-strong
version of concept separability, from NEXPTIME to EXP-
TIME and from Σp2 to CONP. For ALCQ and ALCQI, the
complexity of strong L concept separability remains open.

8 Discussion
This paper provides characterizations and complexity results
for concept separability in many important DLs. It would be
interesting to further add other popular DL features such as
role hierarchies, transitive roles, and nominals, and it might
also be relevant to consider cases of (LT ,LS) concept sepa-
rability in which LT is less expressive than LS . We also plan
to investigate strong separability in more detail. Finally, it
would be interesting to understand in how far the characteri-
zations given in this paper can be used or extended to analyse
the version space beyond emptiness and whether they can also
be used to analyse or craft refinement operators.
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A Proofs for Section 3
We prove Theorems 1 and 2. We associate every model I of
K = (T ,A) with an undirected graph G−I that has the set
of vertices ∆I and an edge {d, e} whenever (d, e) ∈ rI for
some role r with {e, d} 6⊆ ind(A). We call I a forest model
if G−I is a collection of trees and there are no reflexive loops
and multi-edges outside of A, that is,

1. (d, d) /∈ rI for all d ∈ ∆I \ ind(A) and role names r
and

2. if (e, d) ∈ rI ∩ sI , r and s roles, then {e, d} ⊆ ind(A)
or r = s.

The following result is well known.
Lemma 2 Let K be a ALCQI KB and C an ALCQI con-
cept. If K 6|= C(a), then there exists a forest model I of K of
finite outdegree with a 6∈ CI .

We show the following slightly more informative version
of Theorem 1.
Theorem 17 Let LS ∈ {ALC,ALCI,ALCQ,ALCQI}
and let (K, P, {b}) be a learning instance with K a ALCQI
KB. Then the following are equivalent:

1. (K, P, {b}) has a LS solution;
2. there exists a forest model I ofK of finite outdegree such

that for all a ∈ P and all modelsJ ofK,J , a 6∼LS
I, b;

3. there exists a model I of K of finite outdegree such that
for all a ∈ P and all models J of K, J , a 6∼LS

I, b.
Proof. (1) ⇒ (2). Suppose there exists an LS concept C
such that K � C(a) for all a ∈ P and K 2 C(b). Then there
exists a model I of K such that I 2 C(b). By Lemma 2, I
can be assumed to be a forest model of finite outdegree. For
all a ∈ P and any model J of K we have J � C(a). Thus,
J , a 6≡LS

I, b and, by Lemma 1, (J , a) �LS
(I, b), for all

a ∈ P .
(3)⇒ (1). For any interpretation I and d ∈ ∆I , we set

typeILS
(d) = {C LS concept | I � C(d)}.

Now assume there exists a model I of K such that for all
a ∈ P and all models J of K, J , a �LS

I, b. We prove that
there exists a finite

{C1, . . . , Cn} ⊆ typeILS
(b)

such that K �
∨

1≤i≤n ¬Ci(a) for all a ∈ P . Then we
are done as K 2

∨
1≤i≤n ¬Ci(b). For a proof by con-

tradiction, suppose this is not the case. Then, for some
a0 ∈ P , every finite subset {C1, . . . , Cn} of typeILS

(b) satis-
fies K 2

∨
1≤i≤n ¬Ci(a0). Then

K ∪ {C1(a0), . . . , Cn(a0)}
is satisfiable for all finite {C1, . . . , Cn} ⊆ typeILS

(b). By
compactness,

K ∪ {C(a0) | C ∈ typeILS
(b)}

is satisfiable. But any model J of {C(a0) | C ∈ typeILS
(b)}

satisfies J , a0 ≡LS
I, b. As I has finite outdegree, this im-

plies, by Lemma 1, J , a0 ∼LS
I, b. We have derived a con-

tradiction.
(2)⇒ (3). Immediate. o

For the proof of Theorem 2, first observe that for any family
of pointed interpretation Ii, di, i ∈ I , and ELI concept C
the following conditions are equivalent for d ∈ ∆

∏
i∈I Ii with

d(i) = di for all i ∈ I:
1. di ∈ CIi for all i ∈ I;
2. d ∈ C

∏
i∈I Ii .

(1) ⇒ (2). Let LS ∈ {EL, ELI}. Suppose there exists
an LS concept C such that K � C(a) for all a ∈ P and
K 2 C(b). Then there exists a model I of K such that I 2
C(b). By Lemma 2, I can be assumed to be a model of finite
outdegree. For all a ∈ P and any model J ofK we have J �
C(a). Denote by~a the element of

∏
a∈P (

∏
J∈M(J , a)) that

maps every pair (a,J ) ∈ P ×M to a. Then∏
a∈P

(
∏
J∈M

(J , a)) |= C(~a),

and it follows that∏
a∈P

(
∏
J∈M

(J , a)) 6≤LS
I, b

and, by Lemma 1, that∏
a∈P

(
∏
J∈M

(J , a)) 6�LS
I, b.

(2) ⇒ (1). Assume there exists a model I of K of finite
outdegree such that∏

a∈P
(
∏
J∈M

(J , a)) 6�LS
I, b.

By Lemma 1, ∏
a∈P

(
∏
J∈M

(J , a)) 6≤LS
I, b.

Thus, there exists a LS concept C with∏
a∈P (

∏
J∈M(J , a)) |= C(~a) and I 6|= C(b). Then

K 6|= C(b) and J |= C(a), for all J ∈ M and a ∈ P . By
completeness ofM, K |= C(a) for all a ∈ P and it follows
that (K, P, {b}) has an LS solution.

B Proofs for Section 4
We first introduce notation for speaking about the relations
∼L. Let I, d and J , e be pointed interpretations.
• A relation S ⊆ ∆I ×∆J is an i-bisimulation if condi-

tions [Atom], [Forth] and [Back] from Figure 1 hold,
where A ranges over all concept names and r ranges
over role names and inverse roles. Then I, d and J , e
are i-bisimilar, in symbols I, d ∼ALCI J , e, if there
exists an i-bisimulation S between I and J containing
(d, e).

• A relation S ⊆ ∆I × ∆J is a counting i-bisimulation
if conditions [Atom], [QForth] and [QBack] from Fig-
ure 1 hold, whereA ranges over all concept names and r
ranges over role names and inverse roles. Then I, d and
J , e are counting i-bisimilar, in symbols I, d ∼ALCQI
J , e, if there exists a counting i-bisimulation S between
I and J containing (d, e).



• A relation S ⊆ ∆I × ∆J is a counting bisimulation
if conditions [Atom], [QForth], and [QBack] from Fig-
ure 1 hold, whereA ranges over all concept names and r
ranges over role names. Then I, d and J , e are counting
bisimilar, in symbols I, d ∼ALCQ J , e, if there exists
a counting bisimulation S between I and J containing
(d, e).

Rather than proving the refined characterizations directly, we
first introduce new model-theoretic relations between pointed
ABoxes A, a and pointed interpretations I, b that bridge the
gap between the various types of bisimulations characteriz-
ing the existence of LS solutions and the existence of (vari-
ous types of) homomorphisms between pointed ABoxes and
interpretations used in the refined characterizations. In what
follows we often identify an ABox A with the interpretation
IA with domain ind(A) and
• d ∈ AIA if A(d) ∈ A, for all A ∈ NC, and
• (d, d′) ∈ rIA if r(d, d′) ∈ A, for all r ∈ NR.

Let A be an ABox and I an interpretation. For any DL L
and relation S ⊆ ind(A) × ∆I we consider the following
condition:

(∼L) if (d, d1), (d, d2) ∈ S, then d1 ∼L d2.

Then S is called
(1) an ALCI simulation if the conditions [AtomR] and

[Forth] hold for all concept names A and roles r and the con-
dition (∼ALCI) holds. We writeA, a �ALCI I, b if there ex-
ists anALCI simulation S betweenA and I with (a, b) ∈ S;

(2) an ALCQI simulation if the conditions [AtomR] and
[QForth] hold for all concept names A and all roles r and the
condition (∼ALCQI) holds. We write A, a �ALCQI I, b if
there exists an ALCQI simulation S between A and I with
(a, b) ∈ S;

(3) if S ⊆ reachA(a)×∆I , then S is called anALC simu-
lation if the following conditions hold: (a) ifA↓a 6= ∅, then the
conditions [AtomR] and [Forth] hold for all concept namesA
and all role names r and the condition (∼ALC) holds. (b) The
extended KB KI,S = (T ,AI,S) with AI,S defined as the
union of A and
{C(c) | C ∈ sub(K), c ∈ reachA(a), (c, c′) ∈ S, c′ ∈ CI}

is satisfiable. We writeA, a �ALC I, b if there exists anALC
simulation S between A and I with (a, b) ∈ S;

(4) if S ⊆ reachA(a)×∆I , then S is called anALCQ sim-
ulation if the following conditions hold: (a) if A↓a 6= ∅, then
the conditions [AtomR] and [QForth] hold for all concept
names A and all role names r and the condition (∼ALCQ)
holds. (b) The extended KB KI,S = (T ,AI,S) with AI,S
defined as the union of A and
{C(c) | C ∈ sub(K), c ∈ reachA(a), (c, c′) ∈ S, c′ ∈ CI}

is satisfiable. We write A, a �ALCQ I, b if there exists an
ALCQ simulation S between A and I with (a, b) ∈ S.

We are in the position now to formulate the bridge charac-
terizations.
Lemma 3 Let L ∈ {ALC,ALCQ,ALCI,ALCQI}. Let
(K, P, {b}) be a L learning instance. Then the following
conditions are equivalent for any model I of K of finite out-
degree:

1. there exists a ∈ P and a model J of K such that
J , a ∼L I, b;

2. there exists a ∈ P such that A, a �L I, b.
Proof. We first consider ALCI.

(1.) ⇒ (2.) Observe that the restriction S|ind(A) of any
i-bisimulation between models J and I of K with (a, b) ∈
S defines an ALCI simulation between A and I containing
(a, b).

(2.) ⇒ (1.) Assume thatA, a �ALCI I, b for some a ∈ P .
Let S ⊆ ind(A) × ∆I be an ALCI simulation between A
and I and assume (a, b) ∈ S. Take for every c in the maxi-
mally connected componentAa of a inA an element c′ ∈ ∆I

such that (c, c′) ∈ S. Let Ic be an isomorphic copy of I with
c′ replaced by c. Let Sc,c′ be the i-bisimulation between Ic
and I with (d, e) ∈ Sc,c′ iff d is a copy of e. In particular
(c, c′) ∈ S. Also, for any c′′ 6= c′ with (c, c′′) ∈ S let Sc,c′′
be an i-bisimulation between Ic and I with (c, c′′) ∈ Sc,c′′
witnessing Condition (∼ALCI). For A′ := A \Aa, let J ′ be
any model of T and A′ (for example, an isomorphic copy of
I). Now let J be defined by hooking to Aa the interpreta-
tions Ic, c ∈ Aa, at c and adding a copy of J ′. In detail, we
set

AJ =
⋃

c∈ind(Aa)

AIc ∪AJ
′
∪ {d | A(d) ∈ Aa}

for all A ∈ NC, and

rJ =
⋃

c∈ind(Aa)

rIc ∪ rJ
′
∪ {(d, d′) | r(d, d′) ∈ Aa}

for all r ∈ NR. Using the conditions [AtomR] and [Forth] for
S, it is not difficult to show that the maximal i-bisimulation
S′ between J and I contains

S ∪
⋃

(c,c′)∈S

Sc,c′

Moreover, as J ′ is a model of A′ and T , the domain of S′
contains ∆J \∆J

′
, and I is a model of K, it follows that J

is a model of K.

We now consider ALCQI. The i-unfolding J of an inter-
pretation I at node d ∈ ∆I is defined as follows. A path ρ
in I starting at d is any sequence d0r0d1 · · · rn−1dn such that
d0 = d, ri is a role for all 0 ≤ i < n, and (di, di+1) ∈ rIi ,
for all 0 ≤ i < n. We set tail(ρ) = dn. Then the domain ∆J

of J is the set of all path ρ = d0r0d1 · · · rn−1dn starting at d
such that ri 6= r−i+1 for 0 ≤ i < n, and

AJ = {ρ ∈ ∆J | tail(ρ) ∈ AI}

and

rJ = {(ρ, ρrd) | ρrd ∈ ∆I} ∪
{(ρr−d, ρ) | ρr−d ∈ ∆I}

It is folklore and easy to prove that I, d ∼ALCQI J , d. We
return to the proof of the equivalence.

(1.) ⇒ (2.) Observe that the restriction S|ind(A) of any
counting i-bisimulation between models J and I of K with



(a, b) ∈ S defines an ALCQI simulation between A and I
containing (a, b).

(2.) ⇒ (1.) Assume that A, a �ALCQI I, b for some a ∈
P . Let S ⊆ ind(A)×∆I be anALCQI simulation between
A and I with (a, b) ∈ S. We construct a model J of K such
that J , a ∼ALCQI I, b.

Take for every c in the maximally connected component
Aa of a in A an element c′ ∈ ∆I such that (c, d) ∈ S. Let
c1, . . . , cn be the set r-successors of c in A for some role
r. Let d1, . . . , dm be the r-successors of d in I. There ex-
ists a subset D of {d1, . . . , dm} such that S contains a bijec-
tion f between {c1, . . . , cn} and D. Assume without loss of
generality that f = {(c1, d1), . . . , (cn, dn)}. Now take for
n < i ≤ m the i-unfolding I∗di of I at di. Remove from
each I∗di the r−-successor dir−d together with the subtree
below dir

−d and denote the resulting interpretation by I ′di .
Now expand Aa by adding c to AJ for all concept names A
with d ∈ AI and connecting for every n < i ≤ m a fresh
copy of I ′di to Aa by adding (c, di) to rJ . This is done for
all c ∈ ind(Aa). It is not difficult to show that the maximal
counting i-bisimulation S′ between the resulting interpreta-
tion J0 and I contains (a, b). For A′ := A \ Aa, let J ′ be
any model of T and A′ and let J be defined by taking the
disjoint union of J0 and J ′. Then J is as required.

The now consider ALC.
(1.) ⇒ (2.) Consider the restriction S|ind(A↓a) of any bisim-

ulation S between models J and I of K with (a, b) ∈ S
to ind(A↓a). Then S satisfies condition (a). Moreover, the
extended KB KI,S = (T ,AI,S) from condition (b) is satisfi-
able as it is satisfied by J .

(2.) ⇒ (1.) A straightforward adaptation of the proof for
ALCI.

The proof for ALCQ is similar to the proof for ALCQI
and omitted. o

Lemma 4 Let L ∈ {ALC,ALCI,ALCQ,ALCQI} and let
(K, P, {b}) be a L learning instance. Then the following con-
ditions are equivalent:

1. there exists a model I of K such that for all a ∈ P ,
A, a 6�L I, b;

2. there exists a model I of K such that for all a ∈ P ,
A, a 6→L I, b,

where →ALCI :=→, →ALCQI :=→i, →ALC :=→r, and
→ALCQ :=→i

r. Moreover, one can choose in Conditions (1)
and (2) models I that coincide regarding their domain and
the interpretation of symbols used in K.

Proof. We give the proof forALCI. (1.)⇒ (2.) is trivial. (2.)
⇒ (1.). Assume I is a model of K such that for all a ∈ P ,
A, a 6→ I, b. Define I ′ by extending I by taking for every
d ∈ ∆I a fresh concept name Cd and setting CI

′

d = {d}. I ′
is as required for (1.) since any two i-bisimilar nodes in I ′
are identical. o

We are now in the position to prove Theorems 3, 4, and
5. As the proofs are similar, we only give the proof of Theo-
rem 3.

Proof of Theorem 3. Assume first that (K, P, {b}) has an
ALCI solution. By Theorem 17, there exists a model I of K
of finite outdegree such that for all a ∈ P and all models J
of K, J , a 6∼LS

I, b. By Lemma 3, A, a 6�ALCI I, b for all
a ∈ P . By Lemma 4, there exists a model I ′ of K such that
A, a 6→ I ′, b for all a ∈ P , as required. Conversely, assume
there exists a model I of K such that A, a 6→ I, b for all
a ∈ P . Clearly we may assume that I has finite outdegree.
By Lemma 4, there exists a model I ′ of K of finite outdegree
such that A, a 6�ALCI I ′, b for all a ∈ P . By Lemma 3,
for all model J of K and all a ∈ P , J , a 6∼ALCI I ′, b. By
Theorem 17, (K, P, {b}) has an ALCI solution.

C Proofs for Section 5
We start with introducing the syntax and semantics of con-
junctive queries and unions of conjunctive queries, as well
as the associated evaluation problems. A conjunctive query
(CQ) is of the form q = ∃yϕ(x,y), where x and y are tuples
of variables and ϕ(x,y) is a conjunction of atoms of the form
A(x) or r(x, y) with A a concept name, r a role name, and
x, y ∈ x ∪ y. We call x the answer variables of q and y the
quantified variables, writing q(x) to emphasize that the an-
swer variables of q are x. The CQ q gives rise to an ABoxAq
simply by viewing variables as individuals names and atoms
as assertions. This also associates q with the directed graph
GAq

and thus we can use standard terminology from graph
theory also for CQs. A CQ is rooted if it is connected and has
at least one answer variable.

A homomorphism from q to an interpretation I is a func-
tion h : x ∪ y → ∆I such that h(x) ∈ AI for every atom
A(x) of q(x) and (h(x), h(y)) ∈ rI for every atom r(x, y)
of q(x). We write I |= q(a) and call a an answer to q(x) on
I if there is a homomorphism from q(x) to I with h(x) = a.

A union of conjunctive queries (UCQ) is a disjunction of
one or more CQs that all have the same answer variables. The
arity of a (U)CQ is the number of answer variables in it and a
CQ is unary if it is of arity 1. A UCQ is rooted if every CQ in
it is. For a UCQ q and an interpretation I, we write I |= q(a)
if there is a CQ p in q with I |= p(a). For a KB K, we write
K |= q(a) if I |= q(a) for every model I of K.

Let L be a DL. With rooted (U)CQ evaluation on L KBs,
we mean the problem to decide, given an L KB K = (T ,A),
a rooted (U)CQ q, and a candidate answer a ⊆ ind(A),
whether K |= q(a). Theorem 3 and the remark made directly
after it closely relates ALCI concept separability to rooted
(U)CQ evaluation on ALCI KBs. This is crucially exploited
in the proof of Theorem 7 given in the main part of the pa-
per. In what follows we provide proofs for the other theo-
rems in Section 5. Our strategy will be to identify a version
of (U)CQ evaluation that corresponds to the concept separa-
bility problem at hand, determine its complexity, and finally
provide mutual reductions as in the proof of Theorem 7.

We start with Theorem 8, concerned with ALCQI.
ALCQI concept separability is related to rooted (U)CQ eval-
uation based on locally injective homomorphisms, introduced
next. Let q be a UCQ. For an interpretation I, we write
I |=i q(a) if there is a CQ p in q and a locally injective ho-
momorphism from p(x) to I with h(x) = a. For a KBK, we



write K |=i q(a) if I |=i q(a) for all models I of K. Let L
be a DL. Injective rooted (U)CQ evaluation on L KBs means
to decide, given an L KB K = (T ,A), a rooted (U)CQ q(x),
and a candidate answer a ⊆ ind(A), whether K |=i q(a).

We need some preliminaries. A concept C is satisfiable
w.r.t. a TBox T if T has a model with CI 6= ∅. We use
sub(T ) to denote the set of concepts that occur in T , closed
under subconcepts. Let K be an ALCQI KB. We associate
each model I of K an undirected graph G−I that has the set
of vertices ∆I and an edge {d, e} whenever (d, e) ∈ rI for
some role r with {e, d} 6⊆ ind(A). We call I a forest model
if G−I is a collection of trees and there are no reflexive loops
and multi-edges outside of A, that is,

1. (d, d) /∈ rI for all d ∈ ∆I \ ind(A) and role names r
and

2. if (e, d) ∈ rI ∩ sI , r and s roles, then {e, d} ⊆ ind(A)
or r = s.

The outdegree of forest model I is the outdegree of G−I .
The next theorem determines the complexity of injective

unary rooted CQ evaluation. Once it is established, we can
prove Theorem 8 in exactly the same way as Theorem 7,
based on Theorems 4 and 8. Details are omitted.

Theorem 18 Injective unary rooted CQ evaluation on
ALCQI KBs is EXPTIME-complete. The same is true for
UCQ evaluation.

Proof. The lower bound is easy by reduction from unsatisfi-
ability in ALC, which is EXPTIME-complete [Baader et al.,
2017]. Indeed, an ALC concept C is unsatisfiable w.r.t. an
ALC TBox T iff

(T ∪ {¬C v A}, {B(a)}) |=i A(a).

where A and B are fresh concept names.
For the upper bound, let an ALCQI KB K = (T ,A),

a unary rooted UCQ q0(x0), and a candidate answer a0 ∈
ind(A) be given.

We use Γ to denote the set of pairs (r(x1, x2), q2(x2)) such
that there exists a CQ q′ in q0 with r(x1, x2) an atom in q′ and
q2 a set of atoms in q′ with the following properties: the set
q′ \ {r(x1, x2)} consists of two (potentially empty) discon-
nected components q1 and q2 of atoms where

• xi does not occur in q3−i for i ∈ {1, 2},
• x0 6= x2 and x0 does not occur in q2, and

• qr,q2(x1) = r(x1, x2) ∪ q2 is a tree-shaped unary CQ
with root x1.

Clearly, the number of pairs in Γ is polynomial in the size of
q0. Define the following sets of unary tree-shaped CQs:

Γ0 = {q2(x2) | (r(x1, x2), q2) ∈ Γ}
Γ1 = {qr,q2(x1) | (r(x1, x2), q2) ∈ Γ}

Let con(T ) be the closure under single negation of the set
of subconcepts of concepts in T . A type is a maximal set
of concepts t ⊆ con(T ) such that

d
t is satisfiable w.r.t. T .

An extended type t additionally contains for every q(x) ∈ Γ0

either the expression isat(q(x)) or ¬isat(q(x)).

Let I be a forest model of K and d 6∈ ind(A) an r-
successor of some a ∈ ind(A). We say that isat(q(x)) is
satisfied in d in I if I |=i q(d) and this is witnessed by a lo-
cally injective homomorphism h into ∆I \ ind(A). Observe
that then h is locally injective if, and only if, it is injective.
An extended type t is satisfied in I in d if its concepts are
satisfied in d and isat(q(x)) is satisfied in d iff isat(q(x)) ∈ t,
for all q(x) ∈ Γ0. An extended type assignment for A is a
function µ that assigns to every a ∈ ind(A) a type µ(a) and
to every triple (a, r, t) with a ∈ ind(A), r a role from K, and
t an extended type, a natural number µ(a, r, t). An extended
type assignment is small if for every a and role r we have∑
t µ(a, r, t) ≤ |T |. An extended type assignment for A is

realized by a forest model I if for every a ∈ ind(A):

1. a satisfies µ(a) in I;

2. the number of r-successors of a in I outside ind(A) sat-
isfying an extended type t is µ(a, r, t).

An extended type assignment µ isK-realizable iff there exists
a forest model I of K that realizes it.

A forest decomposition of a CQ q in q0 is a partition

q̂ ∪ q1(x1) ∪ · · · ∪ qn(xn)

of (the set of atoms in) q such that qi(xi) ∈ Γ0. We as-
sume that the variables x1, . . . , xn all occur in q̂, which can
be achieved by adding ‘dummy atoms’ of the form >(xi). It
can be verified that q̂ and qi share only the variable xi, that x0
occurs in q̂, and that if x0 occurs in qi, then xi = x0. A forest
decomposition of the UCQ q0 is any forest decomposition of
any of its CQs.

Given a forest decompostion q̂∪q1∪· · ·∪qn and xi in q̂ and
a role r we obtain the tree-shaped CQ qr(xi) as the conjunc-
tion of all queries of the form r(xi, y)∪ q(y) in {q1, . . . , qn}.
For an extended type assignment µ we write K |=i

µ qr(a)

if I |=i qr(a) for some model (equivalently, all models) I
of K realizing µ and this is witnessed by an injective homo-
morphism from the variables of qr(xi) into the interpretation
induced by the subtree generated by a in I (so a is the only
individual in ind(A) in the range of h).

We say that an extended type assignment µ avoids q0 if for
every forest decomposition

q̂ ∪ q1(x1) ∪ · · · ∪ qn(xn)

there is no locally injective homomorphism h : q̂ → A ∪
{A(a) | A ∈ µ(a)} such that h(x0) = a0 and K |=i

µ

qr(h(xi)) for all roles r and for 1 ≤ i ≤ n.

Claim. K 6|=i q0(a0) iff there is a smallK realizable extended
type assignment that avoids q0.

We only sketch the proof of the claim. In the ‘if’ direction,
we are given a K realizable small extended type assignment
µ that avoids q0. Take any forest model I of K that realizes
µ. Then I 6|=i q0(a0). In the ‘only if’ direction, we can read
from any forest model I ofK such that I 6|=i q0(a0) first such
a model of small outdegree and then a small extended type
assignment that avoids q0 by simply using as µ(a) the type
realized at I at a and as µ(a, r, t) the number of r-successors
outside A that satisfy t, for every a ∈ ind(A).



It now remains to observe that the number of small ex-
tended types assigments for K is at most exponential in the
size of K, that it can be checked in exponential time in the
size ofK whether a small extended type assignment isK real-
izable, and that is can be checked in exponential time whether
a small K realizable extended type assignment avoids q0.

o

To treat ALC concept separability, we introduce a special
form of (U)CQ evaluation based on the kind of homomor-
phism also used in Theorem 5. Let q be a unary UCQ. For
an interpretation I, we write I |=r q(a) if there is a CQ p(x)
in q and a homomorphism from p↓x to I with h(x) = a, with
p↓x the restriction of p to the variables (directedly) reachable
from x, such that the extended ABox

Ap ∪ {C(y) | C ∈ sub(K), y ∈ var(q), h(y) ∈ CI}

is satisfiable w.r.t. T . For a KB K, we write K |=r q(a) if
I |=r q(a) for all models I of K. Let L be a DL. Reachable
unary rooted (U)CQ evaluation on L KBs means to decide,
given an L KB K = (T ,A), a unary rooted (U)CQ q(x), and
a candidate answer a ⊆ ind(A), whether K |=r q(a).
Theorem 19 Reachable unary rooted CQ evaluation on
ALC KBs is CONEXPTIME-complete. The same is true for
UCQ evaluation.
Proof. We start with the lower bound, which is by reduction
of a NEXPTIME-complete tiling problem. Since the reduc-
tion is rather similar to the one in [Lutz, 2008], we describe it
only on a high level of abstraction.

An (exponential torus) tiling problem P is a triple
(T,H, V ), where T = {0, . . . , k} is a finite set of tile types
and H,V ⊆ T × T represent the horizontal and vertical
matching conditions. An initial condition for P takes the
form c = (c0, . . . , cn−1) ∈ Tn. A mapping τ : {0, . . . , 2n −
1} × {0, . . . , 2n − 1} → T is a solution for P given c if for
all x, y < 2n, the following holds (where⊕i denotes addition
modulo i):
• if τ(x, y) = t1 and τ(x⊕2n 1, y) = t2, then (t1, t2) ∈ H
• if τ(x, y) = t1 and τ(x, y⊕2n 1) = t2, then (t1, t2) ∈ V
• τ(i, 0) = ci for all i < n.

There exists a tiling problem P such that, given an initial con-
dition c, it is NEXPTIME-complete to decide whether there
exists a solution for P given c. We fix such a P = (T,H, V ).

Let c be an initial condition for P . It is straightforward
to construct an ALC TBox T that achieves the following,
see [Lutz, 2008] for a similar but more complicated construc-
tion:1

• Below each instance of a distinguished concept name
A0, there is a binary tree of depth 2n whose edges are
represented by a role name r.

• The leaves of the tree correspond to the positions in the
2n×2n-torus and the position of each leaf is represented
in binary using the concept namesX1, . . . , Xn for the x-
coordinate and Y1, . . . , Yn for the y-coordinate.

1The construction is more complicated because it must use a
symmetric role for the edges of the tree, which is not the case here.

• Each ‘leaf’ has three additional successors, all attached
via the role name r, marked with the concept names H
(for ‘here’), U (for ‘up’), and R (for ‘right’).
• The three successors are also associated with torus posi-

tions represented via X1, . . . , Xn and Y1, . . . , Yn. If the
position of the leaf that the successors are attached to
is (i, j), then the H-successor also has position (i, h),
the U -successor has position (i, j ⊕2n 1) and the R-
successor has position (i⊕2n , j).
• At each of the successor nodes, disjunction is used to

‘guess’ a tile from T , where tilem is represented by con-
cept name Tm. The guess is compatible with the initial
condition c given and are ‘locally compatible’ with the
matching conditions, that is, if tiles i, j, ` are assigned to
the H-, U -, and R-successor of the same tree leaf, then
(i, j) ∈ V and (i, `) ∈ H .

Now define the CQ q to consist of the following atoms, where
x0 is the only answer variable:

r(x0, x1), . . . , r(x2n, x2n+1),

r(x0, x
′
1), r(x′1, x

′
2), . . . , r(x2n, x2n+1)

s1(y, x2n+1), s2(y, x′2n+1), B0(y)

and further extend T with the following, for 1 ≤ i ≤ n:

B0 v (∀s1.Xi u ∀s2.Xi) t (∀s1.¬Xi u ∀s2.¬Xi)

B0 v (∀s1.Y i u ∀s2.Yi) t (∀s1.¬Yi u ∀s2.¬Yi)
B0 v t

i,j∈T,i 6=j
(∀s1.Ti u ∀s2.Tj)

The construction of T and q can be implemented in polyno-
mial time.

Claim. (T , {A0(a)}) |= q(a) iff P has no solution given c.

For the ‘if’ direction, assume that P has no solution given c.
Let I be a model of T with a ∈ AI0 . Then T generates a tree
below a as described above. Since P has no solution given c,
this tree must contain a tiling defect, that is, there must be two
elements d1, d2 reachable from a along an r-path of length
2n+ 1 such that d1, d2

1. are associated with the same position, that is, d1 ∈ XIi
iff d2 ∈ XIi for 1 ≤ i ≤ n and d1 ∈ Y Ii iff d2 ∈ Y Ii for
1 ≤ i ≤ n; and

2. are tiled differently, that is, d1 ∈ T Ii and d2 ∈ T Ij , i 6= j.

Note that q↓x0
is the restriction of q to all variables except y.

Clearly, there is a homomorphism h from q↓x0
to I with

h(x2n+1) = d1 and h(x′2n+1) = d2. It can be verified that,
because d1, d2 satisfy Conditions 1 and 2 above, h satisfies
the required satisfiability condition.

For the (contrapositive of the) ‘only if’ direction, assume
that P has a solution given c. We can then find a model I
of T with a ∈ AI0 such that the tree enforced by T below a
represents that solution. In particular, there is no tiling defect.
Consequently, all homomorphisms from q↓x0

to I violate the
satisfiability condition.

We now give a sketch of the upper bound. The following is
well known for the standard semantics of (U)CQ evaluation,



see for example [Lutz, 2008]. The proof is by a straightfor-
ward unraveling construction which applies without changes
also to the special semantics that we are interested in here.

Claim. Let K = (T ,A) be anALC KB, q a unary UCQ, and
a ∈ ind(A). Then K |=r q(a0) iff for every forest model I
of K of outdegree at most |T |, I |=r q(a).

A NEXPTIME algorithm for the complement of reachable
unary rooted UCQ evaluation onALC KBs is now as follows.
LetK, q, and a be given as an input. We guess an initial piece
of a forest model I of K of outdegree at most |T | that is of
depth at most |q0|, that is, the maximum length of a (simple)
path in G−I is |q0|. Note that the number of elements in such
an initial piece is single exponential, more precisely bounded
by |A|+ |A| · |T ||q0|. Along with I, we guess an adornment
µ : ∆I → 2sub(T ) that specifies which subconcepts of T
are satisfied at wich element in I. It is required that for all
d ∈ ∆I ,

d
µ(d) is consistent w.r.t. T , which can be checked

in EXPTIME. The adornment must also be compatible with
I, that is

• d ∈ AI iff A ∈ µ(d) for all concept names A;

• if (d, e) ∈ rI , C ∈ µ(e) and ∃r.C ∈ sub(T ), then
∃r.C ∈ µ(d).

The adornment serves the purpose to ensure that the guessed
initial piece of I can be extended to a full forest model of K.
Since q(x) is rooted, however, only the guessed initial piece
can be in the range of a homomorphism h from q↓x to I that
maps x to an ABox individual. The number of homomor-
phisms from q↓x to I is single exponential, more precisely
bounded by |∆I ||q|, and thus we can iterate through all can-
didates. For each candidate that turns out to be a homomor-
phism, we additionally verify the required satisfiability con-
dition in EXPTIME. We accept if every homomorphism vio-
lates the satisfiability condition and reject otherwise. o

Theorem 9 For L ∈ {ALC,ALCQ}, L concept separabil-
ity and L concept definability are NEXPTIME-complete.

Proof. For ALC, we can prove this in exactly the same way
as Theorem 7, based on Theorems 5 and 19. In particular, we
can argue as in the proof of Theorem 7 that the lower bound
also applies to definability.

For ALCQ, we need a slight variation of Theorem 19. We
only sketch the required modifications. By Theorem 5, we
need a version of reachable unary rooted (U)CQ evaluation
in which the homomorphisms are locally injective. Note that,
in contrast to the ALCQI case, local injectivity here only
concerns role names, but not inverse roles. This has no impact
on the upper bound part of the proof of Theorem 19, which
goes through exactly as before.

For the lower bound, we need a minor modification be-
cause the homomorphisms used in the correctness proof of
the reduction for the tiling problem are not injective. The
problem is that the CQ q branches directly at the ‘root’ while
the corresponding ‘real branching’ in the tree might occur
on a deeper lever. Our solution is to replace q with a UCQ
q0 ∨ · · · ∨ q2n−1 that contains one CQ for each possible level

on which the branching occurs. In detail, we define qi to be
r(x0, x1), . . . , r(x2n, x2n+1),

r(xi, x
′
i+1), r(x′i+1, x

′
i+2), . . . , r(x2n, x2n+1)

s1(y, x2n+1), s2(y, x′2n+1), B0(y)

Note that we get the lower bound only for UCQ evaluation
rather than for CQ evaluation, but this is also sufficient for
obtaining Theorem 9. In fact, in the reduction from CQ eval-
uation to separability in the proof of Theorem 7, we can in-
clude in A′ an ABox Ap for every CQ p in the input UCQ q
and then choose P to contain all inviduals that correspond to
the answer variable in some Ap. o

Theorem 10 For L ∈ {ALC,ALCQ,ALCI,ALCQI}, L
concept separability and L concept definability are Σp2-
complete in data complexity.
Proof. As in the case of combined complexity, these re-
sults can be established via corresponding versions of (rooted
unary) UCQ evaluation, but now assuming that the TBox is
fixed and thus of constant size while both the ABox and the
query remain an input. All four upper bounds are obtained in
a uniform way, and so are all four lower bounds.

For the upper bounds, we establish Σp2 upper bounds for
all relevant versions of UCQ evaluation using the same algo-
rithm as in the NEXPTIME upper bound established in the
proof of Theorem 9. In particular, we also start with guess-
ing an initial piece I of a model of K which is now of poly-
nomial size since |T | is a constant. For verifying that the
adornment µ is as desired, we need to know whether con-
cepts of the form

d
µ(d) are satisfiable w.r.t. T . This, how-

ever, is now trivial since there are only constantly many con-
cepts of this form. We then coguess the homomorphisms
h from q↓x to I rather than enumerating all candidates. If
L ∈ {ALCI,ALCQI}, then this already yields the Σp2 upper
bound. ForL ∈ {ALC,ALCQ}, checking that the coguessed
homomorphisms h are as desired requires checking that cer-
tain ABox of polynomial size are inconsistent w.r.t. T . This
can be done by coguessing an adornment of A with a set of
types plus a set of types that are realized in a potential model
outside the ABox and then verifying that the guessed config-
uration does actually not give rise to a model. We need to
coguess only polynomially since |T | is constant. This gives
the Σp2 upper bound.

Now for the lower bounds. We prove these directly for
UCQ evaluation rather than for the complement, thus aiming
at Πp

2-hardness. The proof is by reduction from the follow-
ing Πp

2-complete problem [Rutenburg, 1986]. Given an undi-
rected graph G and a k ≥ 1, decide whether all 2-colorings
of (the vertices of) G contain a monochromatic k-clique. Let
T = {C v C1tC2}. GivenG = (V,E) and k, we construct
an ABox A and UCQ q as follows:
A = {r(au, av), r(av, au) | {u, v} ∈ E}∪

{C(av), r(a0, av), r(av, a0) | v ∈ V }
q(x) =

∧
1≤i,j≤k

(C1(yi) ∧ r(x, yi) ∧ r(yi, x) ∧ r(yi, yj))

∨
∧

1≤i,j≤k

(C2(yi) ∧ r(x, yi) ∧ r(yi, x) ∧ r(yi, yj))



where in both CQs in q, all variables except x are existentially
quantified. It is now easy to verify the following.

Claim. (T ,A) |= q(a0) iff all 2-colorings of G contain a
monochromatic k-clique. o

D Proofs for Section 6
We recall the standard ELI universal model, and additionally
introduce an EL universal model for ELI knowledge bases.
Let K = (T ,A) be a knowledge base and sub(T ) be the
set of all sub-concepts occurring in T . A type for T is a
subset t ⊆ sub(T ) closed under consequences from T , that
is, whenever T |=

d
t v D for some D ∈ sub(T ), then

D ∈ t. When a ∈ ind(A), t, t′ are types for T , and r is a
role, we write

• a  T ,Ar t if T ,A |= ∃r.
d
t(a) and t is maximal with

this condition, and

• t  Tr t′ if T |=
d
t v ∃r.

d
t′ and t′ is maximal with

this condition.

A path for K is a finite sequence π = ar0t1 · · · tn−1rn−1tn,
n ≥ 0, with a ∈ ind(A), r0, . . . , rn−1 roles, and t1, . . . , tn
types for T such that

(i) a T ,Ar0 t1 and (ii) ti  Tri ti+1 for every 1 ≤ i < n.

We use tail(π) to denote the last element of a path π. Let
Paths be the set of all paths forK, and define an interpretation
UK as follows:

∆UK = Paths

AUK = {a ∈ ind(A) | T ,A |= A(a)} ∪
{π ∈ Paths \ ind(A) | A ∈ tail(π)}

rUK = {(a, b) ∈ ind(A)2 | r(a, b) ∈ A} ∪
{(π, πrt) | πrt ∈ Paths} ∪
{(πr−t, π) | πr−t ∈ Paths}

Moreover, define an interpretation GK by taking:

∆GK = ind(A) ∪ {t, t′ | t is a type for T }
AGK = {a ∈ ind(A) | T ,A |= A(a)} ∪ {ta | A ∈ t}
rGK = {(a, b) ∈ ind(A)2 | r(a, b) ∈ A} ∪

{(a, t) | a T ,Ar t} ∪ {(t′, a) | a T ,Ar− t} ∪
{(t1, t2), (t′1, t

′
2) | t1  Tr t2} ∪

{(t′2, t′1), (t′2, t1) | t1  Tr− t2}

We have the following properties of UK and GK.

Lemma 5 For every ELI knowledge base K, we have:

1. UK is an ELI universal model for K and has finite out-
degree.

2. GK is an EL universal model for K and has finite outde-
gree.

Proof. Point 1 is well-known, so we concentrate on Point 2.
We show that GK is an EL universal model by constructing an
EL simulation from GK to UK that contains all (a, a) for all

a ∈ ind(A). UK is known to be ELI universal and therefore
EL universal. Let

S = {(tail(π), π) | π ∈ ∆UK}.
We will show that S is an EL simulation from GK to UK. Note
that for any path π we have that tail(π) ∈ ∆GK , however the
t′ ∈ ∆GK are not contained in S. For the condition [AtomR]
of simulations assume that t ∈ AGK and (t, π) ∈ S. It follows
that t = tail(π). Consider the first case of t ∈ ind(A), then
we have that T ,A |= A(t) and thus π ∈ AUK . Consider the
second case that t is a type for T , then we have that A ∈ t
and thus π ∈ AUK .

For the [Forth] condition on simulations, assume that
(t, u) ∈ rGK and (t, π) ∈ S. We need to show that there
is a π′ such that (π, π′) ∈ rUK and (u, π′) ∈ S. It follows
from construction of S that t = tail(π). We distinguish cases
on the shape of t and u. First, assume that (t, u) ∈ ind(A)2,
then we have that r(t, u) ∈ A and thus we can let π′ = u and
have (π, π′) ∈ rUK as well as (u, π′) ∈ S. For the second
case, assume that t ∈ ind(A) and u is a type for T . It follows
that t T ,Ar u and thus there is a path π′ = πru in ∆UK . By
construction we have that (u, π′) ∈ S and (π, π′) ∈ rUK by
construction of UK. For the final case we assume that both t
and u are types for T . It follows that t  Tr u and thus there
is a path π′ = πru in ∆UK . By construction, we have that
(u, π′) ∈ S and (π, π′) ∈ rUK by construction of UK.

Thus S is a simulation from GK to UK that by construction
contains all (a, a) for all a ∈ ind(A) and therefore GK is EL
universal. o

Theorem 12 Let LT ∈ {EL, ELI}. Then (LT , EL) concept
separability and definability are EXPTIME-complete, both in
combined complexity and in data complexity.

We start with the upper bound, that is, we provide an EXP-
TIME-algorithm for deciding whether (K, P, {b}) has an EL-
solution, based on Theorem 11. It consists of the following
steps:

1. Construct the exponentially sized EL-universal model
GK.

2. Construct the exponentially sized product∏
a∈P (GK, a).

3. Check if there exists a simulation from
∏
a∈P (GK, a) to

(GK, b) with a PTIME-algorithm for finding simulations
in finite structures.

Correctness is a direct consequence of the characterization
provided in Theorem 11.

For showing EXPTIME-hardness of (LT , EL) concept sep-
arability we adapt a proof of EXPTIME-hardness of the simu-
lation problem for concurrent transition systems [Harel et al.,
2002]. More precisely, we reduce the word problem for al-
ternating, linear space bounded Turing machines (TMs), that
is, given such a TM M with linear space bound s(n), we
construct an ABox A and sets of positive and negative exam-
ples P and N , such that ((∅,A), P,N) is EL concept sepa-
rable iff M does not accept w. It is well-known that there
is a fixed alternating TM whose word problem is EXPTIME-
complete [Chandra et al., 1981].



For our purposes, an alternating Turing machine M =
(Γ, Q∀, Q∃, 7→, q0, Facc , Frej ) consists of a finite set of tape
symbols Γ, a set of universal states Q∀, a set of existential
states Q∃, a set of accepting states Facc , a set of rejecting
states Frej (these sets of states are disjoint, their union is the
set of all states Q), an initial state q0 and a transition relation
7→ ⊆ Q × Γ × Q × Γ × {L,R,H}. L, R and H corre-
spond to the head moving to the left, to the right and staying
at the same cell, respectively. We call the accepting and re-
jecting states Facc ∪ Frej final states. In our model of alter-
nation, 7→ has a branching degree of 2. It is in an existential
state in even-numbered steps and in a universal state in odd-
numbered steps. We use (q, a) 7→ ((ql, bl,∆l), (qr, br,∆r))
when M is in state q ∈ Q∀ ∪ Q∃ reading symbol a to in-
dicate that it branches to the left with (ql, bl,∆l) and to the
right with (qr, br,∆r). These directions are not related to the
movement of the head which is determined by ∆l or ∆r. We
call ql the ↙-child of q and qr the ↘-child of q. Addition-
ally, we assume that once M reaches a final state, it loops
there forever and that it always reaches a final state.

The computation of M on an input word w can be repre-
sented as a graph, whose nodes are configurations ofM . With
each node in the graph we associate an acceptance value of 1
or 0 as follows. Configurations that are in an accepting state
have the acceptance value 1, configurations that are in a re-
jecting state have acceptance value 0. The acceptance value
of a configuration in a universal state is the minimum value
of its two children and the value of an configuration in an ex-
istential state is the maximum value of its children. A TM
accepts its input if the initial configuration has an acceptance
value of 1 and rejects its input if the initial configuration has
an acceptance value of 0.

Given a particular TM M and a word w, we construct an
ABox A consisting of two parts AM,w and BM . Let M =
(Γ, Q∀, Q∃, 7→, q0, Facc , Frej ) be the given TM, and let s(n)
be the space bound of M on the word w as input. We use
concept names Reject and Accept and role names rq,a,d,i, for
all q ∈ Q, a ∈ Γ, d ∈ {↙,↘} and 1 ≤ i ≤ s(n) in both
parts of the ABox.

We start with BM . The individuals in BM that correspond
to universal and existential states are (∀, 0, 0, 0), (∀, 0, 1, 0),
(∀, 1, 0, 0), (∀, 1, 1, 1). (∃, 0, 0, 0), (∃, 0, 1, 1), (∃, 1, 0, 1),
(∃, 1, 1, 1). The intuition is that an internal element (∗, l, r, v)
corresponds to a configuration of a TM with the following
properties: its ↙-child has acceptance value l, its ↘-child
has acceptance value r and its own acceptance value therefore
is v. Furthermore, there are two individuals that represent an
acceptance or a rejection state of the TM, they are called 1
and 0, which corresponds to their acceptance value. The only
concept assertions in BM are Reject(0) and Accept(1).

We add the following role assertions to BM in order to
represent the transitions between configurations. For left
branches, we have rq,a,↙,i(e, e′) ∈ BM for all q ∈ Q, a ∈
Γ, 1 ≤ i ≤ n and for e = (∗, l, r, v) if either e′ =
(∗′, l′, r′, v′), ∗ is the opposite type of state as ∗′, and l =
v′ or alternatively e′ = l. For right branches, we have
rq,a,↘,i(e, e

′) ∈ BM for all q ∈ Q, a ∈ Γ, 1 ≤ i ≤ n, and for
e = (∗, l, r, v) if either e′ = (∗′, l′, r′, v′), ∗ is the opposite
type of state as ∗′ and r = v′ or alternatively e′ = r. We

additionally, have r(0, 0), r(1, 1) ∈ BM for all role names r.
The second part AM,w has a number of concept and role

assertions for each of the s(n) tape cells. For every cell i
we have individuals of the form (q, a, i) and (a, i), for all
q ∈ Q, a ∈ Γ. An individual (a, i) represents that the content
of cell i is a and the head of the TM is not on cell i. An
individual (q, a, i) represents that the content of cell i is a,
that the head of the TM is on cell i and that the TM is in state
q. In the following description the cases i = 1 and i = s(n)
are not treated in a special way, since we can assume that that
M does not move its head beyond cell 1 or s(n).

Informally, a role assertion rq,a,d,i(e, e
′) is included in

AM,w if in state q with the head at cell i and reading tape
symbol a, M can change the tape cell represented by e to e′
by taking a d-branch. Note that e and e′ may be identical,
meaning that the TM transition does not affect the tape cell.

More formally, each transition (q, a) 7→
((ql, bl,∆l), (qr, br,∆r)) of M results in the following
role assertions for each tape cell i in AM,w:

1. Role assertions that correspond to the head moving from
cell i to cell i−1 or i+1. For each individual (q, a, i) ∈
ind(AM,w), we include:

rq,a,↙,i((q, a, i), (bl, i)), rq,a,↘,i((q, a, i), (br, i))

2. Role assertions that correspond to the head moving from
cell i − 1 or i + 1 to cell i. For each individual (b, i) ∈
ind(AM,w), we include:

rq,a,↙,i−1((b, i), (ql, b, i)), if ∆l = R

rq,a,↘,i−1((b, i), (qr, b, i)), if ∆r = R

rq,a,↙,i+1((b, i), (ql, b, i)), if ∆l = L

rq,a,↘,i+1((b, i), (qr, b, i)), if ∆r = L

3. Role assertions that correspond to the transition not
modifying the cell. For each (b, i) ∈ ind(AM,w), we
include:

rq,a,↙,j((b, i), (b, i)), for all j /∈ {i− 1, i} if ∆l = R

rq,a,↘,j((b, i), (b, i)), for all j /∈ {i− 1, i} if ∆r = R

rq,a,↙,j((b, i), (b, i)), for all j /∈ {i, i+ 1} if ∆l = L

rq,a,↘,j((b, i), (b, i)), for all j /∈ {i, i+ 1} if ∆r = L

rq,a,↙,j((b, i), (b, i)), for all j 6= i if ∆l = H

rq,a,↘,j((b, i), (b, i)), for all j 6= i if ∆r = H

4. Role assertions that modify the current cell without
moving the head. For each (q, a, i) ∈ ind(AM,w), we
include:

rq,a,↙,i((q, a, i), (ql, bl, i)), if ∆l = H

rq,a,↘,i((q, a, i), (qr, br, i)), if ∆r = H

Additionally, we need a number of role assertions for the
final transitions (q, a) 7→ (q, a,H), q ∈ Facc ∪ Frej of M .
For each such transition and each possible cell i, we include
the assertions

rq,a,↙,i((q, a, i), (q, a, i)), rq,a,↘,i((q, a, i), (q, a, i)).



It remains to add concept assertions that mark accepting
and rejecting states. We include, for all a ∈ Γ, 1 ≤ i ≤ n:

Reject((q, a, i)) ∈ AM , for all q ∈ Frej ,

Reject((a, i)) ∈ AM ,
Accept((q, a, i)) ∈ AM , for all q ∈ Facc ,

Accept((a, i)) ∈ AM .

This finishes the construction of AM,w. It remains to give
P and N . Intuitively, P is a set of individuals representing
the initial configuration of M on input w. Moreover, N con-
sists of a single individual b. Formally, let wk denote the k-th
symbol of w and β be the symbol for an empty tape cell. We
then define:

P = {(q0, w1, 1)} ∪ {(wk, k) | 2 ≤ k ≤ n} ∪
{(β, k) | n+ 1 ≤ k ≤ s(n)}

b = (∀, 1, 1, 1).

Lemma 6 (K, P, {b}) is EL concept separable for K =
(∅,AM ∪ BM ) iff M does not accept w.

Proof. By Theorem 11 and the construction of AM,w and
BM , it suffices to show that

M accepts w iff
∏
a∈P

(IAM,w
, a) �EL IBM

, b, (∗)

where, for any ABox A, IA is A viewed as interpretation.
Before we give the formal proof, we provide some insight
in the construction of AM,w. For this purpose, let us denote
with I the product

∏
a∈P IAM,w

, where we assume a fixed
order on the elements in P . Moreover, for a configuration
α of M , let xα denote the element of ∆I corresponding to
this configuration (in the natural way). We claim that ele-
ments of I that are reachable from P (read as an element of
∆I based on the order) correspond precisely to the configura-
tions in the computation of M on input w. Indeed, P = xα0

for the initial configuration α0 of M on input w. Moreover,
we observe that, for any (non-final) configuration α ofM , xα
has precisely two successors xαl

, xαr
in I where αl, αr are

the successor configurations of α according to M ’s transition
relation ∆. To see this, let q be the state, i be the head posi-
tion and a be the current tape symbol in α. By construction
of AM,w, the element (q, a, i) ∈ xα has precisely two suc-
cessors, one for rq,a,↙,i and one for rq,a,↘,i, and we have
(xα, x

′) ∈ rIq,a,↙,i if and only if x′ = xαl
is the ↙-child

of xα and (xα, x
′) ∈ rIq,a,↘,i if and only if x′ = xαr

is the
↘-child of xα.

We proceed with the proof of (∗).
(⇐) Suppose S is a simulation between

∏
a∈P (IAM,w

, a)
and IBM

, b. The goal is to show that the initial configuration
α0 of M on input w is accepting. For proving this, we asso-
ciate with every element d ∈ ind(BM ) a value vd by taking
vd = v if d is of the shape (∗, l, r, v) and vd = d if d ∈ {0, 1}.
Now, the desired statement is a consequence of the following
claim.

Claim. For every configuration α reachable from α0, we
have that, if (xα, d) ∈ S, then vd is the acceptance value
of α.

Proof of the Claim. We prove this by induction on the
length of the longest path from α to a final configuration.
First, consider the case when α is a final configuration. By
construction of AM,w, we have xα ∈ AcceptI if α is ac-
cepting and xα ∈ RejectI if α is rejecting. By definition of
BM and (xα, d) ∈ S, we know d = 1 or d = 0, respec-
tively. Consider now the case that α is not a final configu-
ration and (xα, d) ∈ S. By definition of the role assertions
in BM , we have that d is a universal (resp., existential) ele-
ment (∀, ∗, ∗, ∗) (resp., (∃, ∗, ∗, ∗)) if α is a universal (resp.,
existential) configuration. By what was said above, xα has
precisely two successors xαl

and xαr in I. By the simu-
lation condition [Forth], we know that (xαl

, dl) ∈ S and
(xαr

, dr) ∈ S for some elements dl, dr. By induction, we
know that vdl and vdr are the acceptance values of αl and αr.
By definition of BM , the acceptance value of α is vd. This
finishes the proof of the Claim.

(⇒) Suppose M accepts the word w. Define a relation S
from elements xα of I to individuals of BM . Let (xα, v) ∈ S
for configurations α that are final with acceptance value v
and (xα, (∗, l, r, v)) ∈ S for configurations α if and only if
∗ is the type of α, l is the acceptance value of the ↙-child
of α, r is the acceptance value of the ↘-child of α, v is
the acceptance value of α. We prove that S is a simulation
between I, P and IBM

, b. For condition [AtomR], we only
have to consider the final elements that are in the extensions
of Accept or Reject since there are no other concept names.
S fulfills [AtomR] since it relates final elements to final el-
ements in BM . For [Forth], consider an element xα with
(xα, d) ∈ S for some non-final configuration α; the argue-
ment for final configurations is similar. By the remark above,
we have to show that (xαl

, dl) ∈ S and (xαr
, dr) ∈ S for two

elements dl, dr and the possible successor configurations αl
and αr of α. But this is clear from the definition of S. o

EXPTIME-completeness of (LT , EL) concept separability
follows from the given EXPTIME-algorithm and the proof of
EXPTIME-hardness, LT ∈ {EL, ELI}. For concept defin-
ability, note first that the above reduction remains valid if we
add the assertionX(a) for every a ∈ P∪{b} to the ABox, for
some fresh concept name X . Let K′ be the updated knowl-
edge base. It can be verified that P is definable in K′ by an
EL concept iff P and {b} can be separated by an EL con-
cept in K. Thus we get the same hardness result for concept
definability.

Theorem 13 ELI concept separability and definability are
undecidable.

The proof is by reduction of the rectangle tiling prob-
lem. An instance of the rectangle tiling problem is a tu-
ple (T,H, V, tI , tF ) where T is a finite set of tile types,
H,V ⊆ T × T are the horizontal and vertical compatibil-
ity relations, and tI , tF ∈ T are the initial and final tile. A
solution consists of a tiling τ of some n×m-grid, n,m ≥ 1,
that is, a function τ : {1, . . . , n}×{1, . . . ,m} → T such that
the following conditions are satisfied:

1. τ(1, 1) = tI and τ(n,m) = tF ;

2. (τ(i, j), τ(i+1, j)) ∈ H for 1 ≤ i < n and 1 ≤ j ≤ m;



3. (τ(i, j), τ(i, j+ 1)) ∈ V for 1 ≤ i ≤ n and 1 ≤ j < m.
We assume that T is partitioned into T0]T1]T2 and that the
following conditions are satisfied:
C1 if (t, t′) ∈ H and t ∈ Ti, i ∈ {0, 1, 2}, then t′ ∈

Ti+1mod 3;
C2 if (t, t′) ∈ V and t ∈ Ti, i ∈ {0, 1, 2}, then t′ ∈ Ti;
C3 tI ∈ T0 and tF ∈ T2.
C4 tF can only be used in the upper right corner, that is

neither H nor V contains a pair of the form (tF , t);
C5 there is a unique tile t′F that must be placed to the left of

tF and cannot be used anywhere else, that is, (t′F , tF ) ∈
H , (t′F , t) ∈ H implies t = tF , and (t, tF ) ∈ H implies
t = t′F .

It is easy to show that this version of the tiling problem is
undecidable by reduction of the halting problem for Turing
machines. To avoid dealing with special cases, we also as-
sume that if there is a tiling of some n ×m-grid, then there
is a tiling of an n × m-grid with m > 2. Note that, due
to the assumed conditions, all tiles on the left-most column
must be from T0 and all tiles on the right-most column must
be from T2. Moreover, n must be divisible by 3.

Let P = (T,H, V, tI , tF ) be an instance of the rectangle
tiling problem. We aim to construct an ELI learning instance
(K, P,N), K = (T ,A), such that P has a solution if and
only Πa∈P (UK, a) 6�ELI UK, b. By Theorem 11, the latter is
the case if and only if (K, P,N) has a solution.

Set A = {P1(a1), P2(a2), N1(b)}, P = {a1, a2}, and
N = {b}. The concept names P1, P2, N1 trigger the con-
struction of different trees below a1, a2, b in UK, via the
TBox T that is at the heart of the construction. We define
it next, but first informally explain the symbols used in T :
• a single reflexive and symmetric role name S, repre-

sented via the role composition r−; r; that is, we use
∃S.C as an abbreviation for ∃r−.∃r.C;
• for each tile type t ∈ T , three concept names
B0
t , B

1
t , B

2
t ; additionally, concept names B0

d, B
1
d, B

2
d

where d /∈ T is a dummy tile;
• a concept name E that marks the last node of the first

row in a row by row traversal of the grid, from bottom to
top;
• a concept name N that marks intermediate nodes in-

serted between any two rows in the traversal;
• auxiliary concept names I to mark the bottom-most row
F to mark the top-most row, X to mark all intermediate
rows, and a further auxiliary concept name G.

We start with the tree rooted at a1, writing i⊕ k as an abbre-
viation for i+ k modulo 3:

1. P1 v
l

(tI ,t)∈V

∃S.(N u ∃S.(B0
tI uB

1
t u I))

2. for all t1, t2 ∈ Tj \ {tF }, j ∈ {0, 2}:

B0
t1 uB

1
t2 u I v

l

(t1,t3)∈H,(t3,t4)∈V

∃S.(B0
t3 uB

1
t4 u I)

3. for all t1, t2 ∈ T1:

B0
t1 uB

1
t2 u I v

l

(t1,t3)∈H,
(t3,t4)∈V

∃S.(B0
t3 uB

1
t4 u I) u

l

(t1,t3)∈H,
(t3,t4)∈V

∃S.(B0
t3 uB

1
t4 u E)

4. for all t1, t2 ∈ T2 \ {tF }:

B0
t1uB

1
t2uE v

l

t3∈T0,(t3,t4)∈V

∃S.(Nu∃S.(B1
t3uB

2
t4uX))

5. for all i ∈ {0, 1, 2} and t1, t2 ∈ Tj , j ∈ {0, 1}:

Bit1uB
i⊕1
t2 uX v

l

(t1,t3)∈H,(t3,t4)∈V

∃S.(Bit3uB
i⊕1
t4 uX)

6. for all i ∈ {0, 1, 2} and t1, t2 ∈ T2 \ {tF }:

Bit1 uB
i⊕1
t2 uX v

l

(t1,t3)∈H,
(t3,t4)∈V

∃S.(Bit3 uB
i⊕1
t4 uX) u

l

t3∈T0,
(t3,t4)∈V

∃S.(N u ∃S.(Bi⊕1t3 uBi⊕2t4 uX))

7. for all i ∈ {0, 1, 2} and t ∈ T2:

Bit uBi⊕1tF uX v
l

t′∈T0

∃S.(N u ∃S.(Bi⊕1t′ u F ))

8. for all i ∈ {0, 1, 2} and t ∈ T \ {t′F , tF }:

Bit u F v
l

(t,t′)∈H

∃S.(Bit′ u F )

9. for all i ∈ {0, 1, 2}:

Bit′F
u F v Bid u ∃S.BitF

A tiling word is a word over the alphabet T ∪ {N}. Let τ be
the tiling of some n×m-grid. The row by row unfolding of τ
is the tiling word

τ(1, 1) · · · τ(n, 1)N · · ·Nτ(1,m) · · · τ(n,m).

Note that we use the symbol N to separate the rows. The
concept inclusions above generate a tree in which for every
tiling τ of some n×m-grid, we we find a path p that describes
the row by row unfolding of τ . Here and in what follows, a
path is a sequence of domain elements p = d0 · · · dn such
that

(di, di+1) ∈ SUK := (r−)UK ◦ rUK

for all i < n. We now describe the path p in more detail, see
also the left-hand side of Figure 2. Each element d on p is
labeled with N or with two concept names Bit and Bi⊕1t′ with
(t, t′) ∈ V to indicate that the grid position represented by
d carries tile t′ and that the grid position directly below the
position represented by d carries tile t. The first part of p
(between the first two occurrences of N ) uses concept names



B0
t and B1

t′ and gives the tiling of rows 0 and 1. It’s last
element satisfies the concept name E. The next part of p uses
concept names B1

t and B2
t′ and once again gives the tiling of

row 1 and the tiling of row 2. The next part uses B2
t and B0

t′

to describe rows 2 and 3, and so on. The horizontal tiling
condition is satisfied on the entire path. After the last part
of the path, which gives the tiling of the topmost row and
repeats the tiling of the row below it, there is another segment
that is labeled with F and in which each node is labeled only
with a single concept name Bit , repeating the labeling of the
topmost row. A notable difference is that the position before
the last one is not only labeled with a concept name Bit′F (c.f.
condition C5 above), but also with Bid. The last element on
that segment is a leaf, that is, it has no S-successors. Note
that while the vertical matching condition is satisfied locally,
at this point we have no guarantee that the repeated row tilings
are actually identical or that all rows have the same length.

We next define the tree rooted at a2:

10. P2 v E u
l

t∈T0

∃S.(N u ∃S.(B1
t uG))

11. for all i ∈ {0, 1, 2} and t ∈ Tj \ {t′F }, j ∈ {0, 1}:

Bit uG v
l

t′∈Tj+1

∃S.(Bit′ uG)

12. for all i ∈ {0, 1, 2} and t ∈ T2 \ {tF }:

Bit uG v
l

t′∈T0

∃S.(Bit′ uG) u
l

t′∈T0

∃S.(N u ∃S.(Bi⊕1t′ uG))

13. for all i ∈ {0, 1, 2}:

Bit′F
uG v ∃S.(BitF u ∃S.(N u

l

t∈(T∪{d})\{tF ,t′F }

Bit))

The generated tree contains every path p on which every el-
ement is labeled with N or with a single concept names Bit ,
subject to the following conditions. The path starts with anN .
The part between the first two occurrences with N is labeled
with concept names B1

t , the part between the second two oc-
currences with concept namesB2

t , and so on. Moreover, Con-
dition C1 must be respected. Nodes labeled with a concept
Bit′F

are special. They have a successor d that we call a pre-
cycle node and that satisfies BitF (and no other successor).
The pre-cycle node d has as its (only) successor a leaf node
d′ that we call a cycle node and that satisfies Bit for all t ∈ T
except tF and t′F , and also N and Bid. See the middle part
of Figure 2. The name ‘cycle node’ refers to the fact that, as
explained in more detail later, it is crucial that (like any other
node) this node can reach itself via S. This part of the TBox
also labels a2 with E. Informally, the E-labeling in the tree
below a2 is offset by −1 row compared to the E-labeling in
the tree below a1, and this plays a central role in the reduc-
tion.

For the tree rooted at b, define a set C of concept names as

C = {N} ∪ {Bjt | j ∈ {0, 1, 2} and t ∈ T ∪ {d}}.
and include the following concept inclusion in T :

14.

N1 v ∃S.
( l

A∈C
A u ∃S.∃S.(E u

l

A∈C
A)
)

The tree generated below b is actually a path of length three,
see the right-hand side of Figure 2. The first node b1 on the
path makes true all relevant concept names except E, the sec-
ond one b2 is a ‘hole’, meaning that it makes no concept
names true, and the leaf b3 makes true all relevant concept
names including E.

We now describe the main idea behind the construc-
tion. Recall that we aim to show that P has a solution
iff Πi∈{1,2}(UK, ai) 6�ELI UK, b where UK is the univer-
sal model of K. Since we deal with simulations, we can as
well replace Πi∈{1,2}(UK, ai) with its unraveling into a tree.
In what follows, we will this generally assume UK × UK to
be tree-shaped. A crucial observation is that the subtree in
UK × UK rooted at (a1, a2) admits a simulation to the tree
below b in UK if and only if the former does not contain an S-
path in which every node satisfies at least one concept name
from C (we say that the path has no ‘holes’) and whose last
node satisfiesE. It thus suffices to argue that P has a solution
if and only if there is such a path in UK ×UK that starts at an
S-successor of (a1, a2).

If P has a solution, then this solution gives rise to a path
in UK that starts at a successor of a1, as described above, and
proceeds all the way to the second node on the path labeled
with some concept name of the form BitF , i ∈ {0, 1, 2}. We
find a corresponding path in UK that starts at a successor of
a2 and carries Bit labels that are identical to the ‘larger super-
script’ labeling of the a1-path (see Figure 2). It only follows
that path up to the first node labeled with a concept name
of the form BitF and then enters a cycle node. These two
synchronous paths give rise to an initial piece of a path p in
UK × UK that starts at (a1, a2). We call this the ‘downwards
part’ of p. We can extend the initial piece by following the
a1-path until the second node labeled with some BitF while
‘cycling’ reflexively at the cycle node of the second path. Af-
terwards, we synchronously follow both paths upwards, giv-
ing rise to an ‘upwards part’ of p . In this way, p is extended
to a hole free path whose end node satisfies E. Consequently,
Πi∈{1,2}(UK, ai) 6�ELI UK, b.

The other direction is more laborious. We carry out a care-
ful case analysis to show that any hole free path in UK × UK
that starts at a successor of (a1, a2) and ends in an E-node
must follow the pattern described above. To avoid holes in
the upwards part of p, the labeling of the a2-path must match
up with the ‘smaller superscript’ labeling of the a1-path. This
ensures that the repeated labelings of each row in the a1-path
(c.f. the description of the tree in UK below a1) actually co-
incide. Since the vertical matching condition is satisfied ‘lo-
cally’ on the a1-path, it is thus also satisfied ‘globally’ in the
tiling described by that path. Moreover, when an N -node d
of the a2-path was paired with someN -node of the a1-path in
the downwards part of p, then d is now paired with the subse-
quent N -node on the a1-path. This ensures that all rows have
the same length. All this guarantees that we can read off a
solution to P from the a1-path.
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Figure 2: The image shows two paths in UK. Every drawn edge is an S-edge.

In order to establish another undecidability result later on,
we show a slightly stronger statement than the actual cor-
rectness; for this, we need to introduce homomorphisms. As
usual, a homomorphism from I to J is a map h : ∆I → ∆J

such that d ∈ AI implies h(d) ∈ AJ , and (d, e) ∈ rI im-
plies (h(d), h(e)) ∈ rJ , for all d, e ∈ ∆I and all concept
names A and role names r. For pointed interpretations I, d
and J , e, we write I, d → J , e if there is a homomorphism
h from I to J with h(d) = e.

Lemma 7 The following are equivalent:

(1) P has a solution;

(2) Πi∈{1,2}(UK, ai) 6�ELI UK, b;

(3) Πi∈{1,2}(UK, ai) 6→ UK, b.

Proof. (2) ⇒ (3) is trivial, so we prove only (3) ⇒ (1) and
(1)⇒ (2). Consider two elements d, d′ ∈ ∆UK that are both
part of the subtree in UK rooted at ai, i ∈ {1, 2}, and such
that (d, d′) ∈ SUK . We call d′ a successor of d if d′ is further
away from ai than d, and the predecessor of d if d is further
away from ai than d′.

(3) ⇒ (1). Assume that Πi∈{1,2}(UK, ai) 6→ UK, b.
We claim that UK × UK must contain a path p =
(d0, e0) · · · (dn, en) that starts at an S-successor of (a1, a2)
and such that (dn, en) satisfies E in UK × UK and p has no
holes, that is, for all i < n, (di, ei) satisfies in UK × UK at
least one concept name from C.

In order to prove the existence of such a path, let B be the
set of all nodes different from (a1, a2) that can be reached by

an S-path starting at (a1, a2). We define subsets B1, B2, B3

of B as follows:
• B1 contains all direct S-neighbors of (a1, a2) differ-

ent from (a1, a2), and the set of all non-holes (d, e) 6=
(a1, a2) for which there is a S-path from (a1, a2) to
(d, e) that does not have a hole;
• B2 is the set of all holes that are S-neighbors of elements

in B1, but not in B1;
• B3 is B \ (B1 ∪B2).

Note that B1, B2, B3 is a partition of B. Moreover, B2 sep-
arates B1 and B3 in the sense that every S-path from an ele-
ment in B1 to an element in B3 must pass an element of B2.
Similarly, B1 separates (a1, a2) and B2.
Claim. There is an S-path in UK × UK from (a1, a2) to an
element satisfying E that visits only elements in B \B2.
Proof of Claim. Suppose this is not the case, that is, every
S-path from (a1, a2) to an element satisfying E visits some
element in B2. We construct a homomorphism h showing
Πi∈{1,2}(UK, ai)→ UK, b. It suffices to define h on elements
in B ∪{(a1, a2)}; for unreachable elements, we can just take
the projection to the first component (the second would also
work). We start to define h by setting:
• h(a1, a2) = b;
• for all i ∈ {1, 2, 3} and all (d, e) ∈ Bi, h(d, e) = bi,

where b1, b2, b3 are the elements from the path in UK below
b, as shown in Figure 2.

Recall that the nodes in B can only make true concept
names from C, that b1 makes true all these concept names



except E, and that b3 makes true all concept names from C.
When (d, e) ∈ B3, it is thus clear that (d, e) ∈ AUK×UK

for some concept name A implies h(d, e) ∈ AUK . When
(d, e) ∈ B2, then it is a hole and thus this condition is vacu-
ously true. When (d, e) ∈ B1, then (d, e) does not satisfy E
due the definition of B1 and our assumption that every path
to an element satisfying E visits some element in B2. More-
over, we have that
(∗) ((d, e), (d′, e′)) ∈ SUK×UK implies

(h(d, e), h(d′, e′)) ∈ SUK .
It remains to define h on the intermediate elements of S-
paths, that is, r−-successors of elements reachable via an
S-path. Let (d, e) be such an element. Since (d, e) is an
intermediate element, it has at precisely four r-neighbors
(d1, e1), . . . , (d4, e4). Note that h is already defined for all
of them, and we have ((di, ei), (dj , ej)) ∈ SUK×UK , for all
i, j ∈ {1, . . . , 4}. By (∗), we have (h(di, ei), h(dj , ej)) ∈
SUK , for all i, j ∈ {1, . . . , 4}. Thus, one of the following is
the case:
• {h(d1, e1), . . . , h(d4, e4)} ⊆ {b, b1};
• {h(d1, e1), . . . , h(d4, e4)} ⊆ {b1, b2};
• {h(d1, e1), . . . , h(d4, e4)} ⊆ {b2, b3}.

Depending on which case applies, we complete the definition
of h by setting h(d, e) to the intermediate node between b
and b1, b1 and b2, and b2 and b3, respectively. This finishes
the proof of the Claim.

Let (d0, e0), . . . , (dn, en) be some S-path from (a1, a2) to
an element satisfying E which does not visit any element
from B2. Moreover, let i ∈ {1, . . . , n} be the largest in-
dex such that (di, ei) is an S-neighbor of (a1, a2). We claim
that (di, ei) is an ↑↑-successor of (a1, a2). Indeed, if this is
not the case, then di = a1 or ei = a2. In both cases we
derive that (di+1, ei+1) is not an S-neighbor of (a1, a2) (due
to the choice of i), and thus a hole (due to the construction
of K), a contradiction. Since the path does not visit any ele-
ment from B2 and B2 separates B1 from B3, it does also not
visit any element from B3. By definition of B1 and choice of
i, there are no holes on the path p = (di, ei), . . . , (dn, en).
Hence, this path satisfies all the required conditions. We
might clearly assume that p is a simple path, that is, i 6= j
implies (di, ei) 6= (dj , ej).

By construction of the trees below a1 and a2, every node
(di, ei) on p satisfies a unique concept name from C. We will
later show how to read off from this unique labeling of p a
tiling word that is a row by row unfoldung of a tiling of some
finite grid.

It is important to carefully analyse how p lies within
UK × UK. We say that (di+1, ei+1) is a ↓↓-successor of
(di, ei) if di+1 is a successor of di and ei+1 is a successor of
ei, and likewise for ↓↑-successors, ↓	-successors, and so on,
with ↑ indicating the transition to a predecessor in the respec-
tive component and 	 indicating identity of the component
(recall that S is reflexive). We observe that several kinds of
successors cannot occur on p:

(i) ↑↓-successors (di+1, ei+1) with ei+1 not a cycle node.
Towards a proof by contradiction, assume that
(di+1, ei+1) is an ↑↓-successor with ei+1 not a cycle

node. We know that (di, ei) satisfies a concept name
from C. Since ei+1 is not a cycle node, this concept
name is not of the form Bjd. First assume that it has the
form Bjt , t ∈ T . Let t ∈ Tw. Both di and ei also satisfy
Bjt . By construction of the trees below a1 and a2 and
since (di+1, ei+1) is an ↑↓-successor of (di, ei),
• di+1 satisfies N or some B`t′ with t′ ∈ Tw	1, but

no other tile from C except possibly B`d;

• ei+1 satisfies N or some B`
′

t′ with t′ ∈ Tw⊕1 and
no other concept name from C;

• di+1 and ei+1 do not both satisfy N (as there are at
least three non-N -nodes between any two consec-
utive N -nodes in UK).

As a consequence, (di+1, ei+1) is a hole. Contradiction.
Now assume that (di, ei) satisfies N . Then so do di
and ei. By construction of the trees below a1 and a2
and since ei+1 is not a cycle node, di+1 satisfies some
B`t′ with t′ ∈ T2 and no other concept name from C, and
ei+1 satisfies some B`

′

t′ with t′ ∈ T0 and no other con-
cept name from C. As a consequence, (di+1, ei+1) is a
hole. Contradiction.

(ii) 	∗-successors.
First for the 	↓ case. Towards a proof by contradiction,
assume that (di+1, ei+1) is a 	↓-successor of (di, ei).
First assume that ei+1 is not a cycle node. Then ei and
ei+1 satisfy unique but different concept names from C
that are not of the form B`d. The first such concept name
is also satisfied by (di, ei), thus by di, and the second
concept name is also satisfied by (di+1, ei+1), thus by
di+1 = di. But by construction of the tree below a1,
di does not satisfy two such different concept names.
Contradiction.
Now assume that ei+1 is a cycle node. By construc-
tion of the subtree below a2, ei satisfies a concept
name of the form BjtF , and thus so does di. Moreover,
(di+1, ei+1) satisfies a concept name from C also satis-
fied by ei+1 and since ei+1 is a cycle node, this concept
name cannot be of the formBjtF orBjt′F . Thus di+1 = di
satisfies both concept names, which is not possible by
the construction of the tree below a1.
The case 	↑ is similar. Furthermore, there are no 		-
successors since p is simple.

(iii) ↑	-successors (di+1, ei+1) with (di, ei) not an ↑↓-
successor.
Towards a proof by contradiction, assume that
(di+1, ei+1) is a ↑	-successor of (di, ei) with (di, ei)
not an ↑↓-successor, and that it is the first such node on
p. If ei is not a cycle node, then we can argue as in (ii)
above. Thus assume that ei is a cycle node. Consider
the successor type of (di, ei). Since ei is a cycle node,
it is a leaf in UK. Together with Point (ii) above and
since (di, ei) is the first ↑	-successor, (di, ei) can thus
only be a ↓	-successor or a ↓↓-successor. The former
implies (di−1, ei−1) = (di+1, ei+1) in contradiction to
p being simple. In the latter case, di−1 = di+1 and



ei−1 is the predecessor of ei in UK. By construction of
the tree below a1, the latter implies that ei−1 is labeled
with some concept name BjtF . Since (di−1, ei−1) is not
a hole in p, di−1 is also labeled with BjtF and thus so is
di+1 = di−1. However, by construction of the subtree
below a2, the cycle node ei+1 is not labeled with BjtF
and thus (di+1, ei+1) is a hole in p. Contradiction.

(iv) ↓↑-successors (di+1, ei+1) with ei not a cycle node.
Similar to the the proof of (i).

(v) ↓	-successors (di+1, ei+1) with ei not a cycle node.
Similar to the proof of (ii).

The remaining kinds of successors are ↓↓, ↑↑, ↑↓, ↑	, ↓↑,
↓	, and Points (i) to (v) impose strong restrictions on the
latter four types of successors. We aim to show that p must
follow the pattern

↓↓+↓	+↓↑ ↑↑+

with the ↓	+-subpath having a cycle node in the second com-
ponent and the ↓↑ ↑↑-subpath escaping from that cycle node
and its pre-cycle node back to a regular node.2

We first note that p must start with a ↓↓+-prefix. In
fact, (d1, e1) cannot be a ↓	- or ↓↑-successor of (d0, e0) by
Points (iv) and (v) and since (d0, e0) cannot be a cycle node.
It cannot be an ↑↓-successor by Point (i) and since we can-
not reach a cycle node from e0 in one step. It cannot be an
↑	-successor by Point (iii). And it cannot be an ↑↑-successor
as then p would contain the hole (a1, a2). By construction of
the trees below a1 and a2, the ↓↓+-prefix of p cannot contain
an element that satisfies E. Thus the ↓↓+-prefix must be fol-
lowed by some other kind of successor (di0+1, ei0+1). This
cannot be an ↑↑-successor since p is simple and not an ↑	-
successor by Point (iii). The remaining candidates are ↑↓, ↓	,
and ↓↑. We show that the first and last option are impossible.

Assume towards a proof by contradiction that the ↓↓+-
prefix is followed by an ↑↓-successor (di0+1, ei0+1). By
Point (i), ei0+1 is a cycle node. By construction of the tree be-
low a2, ei0 must be labeled with a concept name BjtF . Thus,
di0 is also labeled withBjtF and by construction of the subtree
below a1, di0+1 = di0−1 is labeled with Bjt′F . In fact, di0−1
is the first element on the path d0, . . . , di0−1 in UK that is la-
beled with a concept name of the form B`t′F

: if some ds with
s < i0 − 1 was the first element on the path d0, . . . , di0−1 la-
beled withB`t′F , then es+2 is a cycle node due to the construc-
tion of the tree below a2 and since we travel ↓↓2 from (ds, es)
to (ds+2, es+2); this contradicts the fact that ei0 is reachable
from es by traveling downwards. As di0−1 is the first ele-
ment of its kind, it is not labeled with B`d and in fact B`t′F is
the only concept name from C satisfied by di0−1 = di0+1.
However, the cycle node ei0+1 is not labeled with Bjt′F , thus
(di0+1, ei0+1) is a hole in p. Contradiction.

Now assume that the ↓↓+-prefix is followed by a ↓↑-
successor (di0+1, ei0+1). Then, ei0 is a cycle node by

2This also implies that neither ↑↓- nor ↑	-successors occur at
all, but we are not yet in a position to show this directly.

Point (iv) and thus ei0+1 is a pre-cycle node and actually
ei0+1 = ei0−1. Thus (di0−1, ei0−1) and (di0+1, ei0+1) both
satisfy a concept name BjtF and also di0−1 and di0+1 both
satisfy BjtF . This, however, is impossible by construction of
the subtree below a1 and in particular due to the partitioning
of T into T0 ] T1 ] T2.

We have thus shown that p starts with a ↓↓+↓	+-prefix.
By Point (v), the first ↓	-successor (di0+1, ei0+1) is such
that ei0 is a cycle node. By construction of the subtree
below a2, (di0−1, ei0−1) satisfies a concept name BjtF and
(di0−2, ei0−2) satisfies Bjt′F . This will be used later.

Since ei0 is a leaf in UK, this prefix can only be followed
by a successor of type ↓↑, ↑↑, and ↑	, say (di1+1, ei1+1).
However, ↑	 is impossible by Point (iii). Moreover, ↑↑ is
impossible too. Assume to the contrary that (di1+1, ei1+1)
is an ↑↑-successor. We know that (di1−1, ei1−1) satisfies a
unique concept name from C. Since ei1−1 = ei1 is a leaf
node, this concept name is not of the form BjtF , and it is also
satisfied by di1−1. But ei1+1 is a pre-cycle node and thus the
only concept name it satisfies is of the form BjtF ; the same
concept name must be satisfied by di1+1 = di1−1. But no
element in the subtree below a1 satisfies two such concept
names.

It follows that (di1+1, ei1+1) is a ↓↑-successor. It thus sat-
isfies a concept name BjtF . In fact, we have only moved
downwards in the first component so far, and thus di1+1 is
the second node on a path in UK that satisfies a concept name
BjtF , the first one being di0−1. As a consequence and by con-
struction of the tree below a1, di1+1 is a leaf in UK and di1
satisfies both Bjt′F and Bjd. This will be used later.

We next analyze the type of successor that (di1+2, ei1+2)
is. Since di1+1 is a leaf and by Point (iii), the only options are
↑↑ and ↑↓. The latter, however is impossible since p is simple.
We have shown that p starts with a ↓↓+↓	+↓↑ ↑↑-prefix.

We can proceed to travel ↑↑. We argue that we can never
switch to any other kind of successor again. ↑↓, ↓↑, and ↓	
are ruled out by Points (i), (iv), and (v) and since we can never
reach a cycle node in the second component while traveling
upwards. ↑	 is ruled out by Point (iii). The only remaining
candidate is ↓↓. But we can never switch to ↓↓ before reach-
ing a1 in the first component or a2 in the second component
because p is simple. The former cannot happen since a1 sat-
isfies neither E nor any concept name from C and p has no
holes. The latter can (and in fact does) only happen at the
final element of p since a2 satisfies (E but) no concept name
from C and thus seeing a2 before the end means that p has a
hole. We have thus shown that p indeed follows the pattern

↓↓+↓	+↓↑ ↑↑+ .

Moreover the last element (dn, en) of p must be such that
en = a2 because by construction of the tree below a2 and
what we have said about the structure of p, this is the only
way for (dn, en) to satisfy E.

To proceed, consider the prefix

p′ = (d0, e0), . . . , (di0−1, ei0−1)



of p. As already pointed out, each node on p is associated
with a unique concept name from C. For the nodes on p′, this
concept name cannot be of the form Bjd (recall that d is the
dummy tile) since d0, . . . , di0−1 constitutes a path in UK that
travels purely downwards and sees only one concept name of
the form BjtF at the very end. In fact, we have already argued
that di0−1 satisfies a concept nameBjtF . No earlier node does
so since by construction of the tree below a2 we would oth-
erwise have reached a cycle node in the second component
earlier than at ei0 .

We can thus read off from p′ a unique tiling word
t0 · · · ti0−1. By construction of the trees below a1 and a2,
t0 = N . Let t1 · · · tn1 be the longest prefix of t1 · · · ti0−1
that does not contain N . Since (d1, e1) is a ↓↓-successor and
again by construction of the trees below a1 and a2, this pre-
fix is not empty. Moreover, each node di with 1 ≤ i ≤ n1
satisfies a concept name of the form B0

t and a concept name
of the form B1

t . It is the latter concept that is also satisfied by
(di, ei) and thus defines the tiles t1 · · · tn1

. We obtain another
sequence of tiles t(0)1 · · · t

(0)
n1 from the B0

t labeling. We aim to
show that

t
(0)
1 · · · t(0)n1

t0 · · · ti0−1
is a row by row unfolding of a tiling of some n1×m-grid. By
construction of the tree below a1, the following is not hard to
verify:

1. t(0)1 = tI ;
2. the horizontal matching condition is satisfied;

more formally, whenever tt′ is a subword of
t
(0)
0 · · · t

(0)
n1 t0 · · · ti0−1 and none of t and t′ is N ,

then (t, t′) ∈ H;

3. the first two rows in t(0)0 · · · t
(0)
n1 Nt0 · · · tn−1 are of the

same length n1 and all vertically neighboring tiles on
these two rows satisfy V (because the double labeling
with B0

t and B1
t′ in the tree below a1 respects V ).

It remains to show that the vertical matching condition is sat-
isfied beyond the first two rows and that all rows rather than
only the first two have the intended length n1.

We associate an offset with each (di, ei) on p, defined as
the difference D2 −D1 where D1 is the distance of di from
a1 in UK and D2 the distance of ei from a2 in UK. Clearly,
the offset of (d0, e0) is 0. By construction of the tree below
a1 and choice of n1, dn1

satisfies E and no other element
among d0, . . . , di0−1 does. Moreover, since we first travel
only downwards and then only upwards in the first component
and dn satisfies E, we must have dn = dn1

. By construction
of the tree below a2, the only element among e0, . . . , en sat-
isfying E is en = a2. Consequently, the offset of (dn, en) is
n1 + 1.

Since the offset of (d0, e0) is 0 and until (di0 , ei0) we have
only seen ↓↓-successors, the offset of (di0 , ei0) must also
be 0. Likewise, the offset of (dn, en) being n1+1 and the fact
that from (di1+1, ei1+1) on we have only seen ↑↑-successors
implies that the offset of (di1+1, ei1+1) must also be n1 + 1.
Consequently and since the single ↓↑-step adds an offset of 2,
the ↓	+-subpath of p has length n1 − 1. Clearly, the dis-
tance of di0−1 from a1 is i0. To reach (di1+1, ei1+1) from

(di0−1, ei0−1), we make one ↓↓-step, n1 − 1 ↓	-steps, and
one ↓↑-step. As a consequence, the distance of di1+1 from
a1 in UK is i0 + n1 + 1. Since from (di1+1, ei1+1) we make
only ↑↑-steps and ei1+1 = ei0−1, this implies the following
crucial conditions:

(a) if (di, ei) is a node in p with i < i0, then (di+n1+1, ei)
is also a node in p;

(b) if (di, ei) is a node in p with n1 < i < i0, then
(di−(n1+1), ei) is also a node in p.

This, in turn, implies that all rows are of the same length and
that the vertical matching condition is satisfied, as follows.

We start with row length. Consider the tiling word
t
(0)
1 · · · t

(0)
n1 t0 · · · ti0−1. We already know by choice of n1 that

t0 = tn1+1 = N . We have to show that

1. t`·(n1+1) = N for 1 < ` < i0−1
n1+1 and

2. for no other ti, ti = N .

For Point 1, we concentrate on t2(n1+1), the same argument
can be applied inductively for ` > 2. The argument is in
fact easy based on (a). We know that tn1+1 = N , thus the
unique concept name from C satisfied by (dn1+1, en1+1) is
N . It follows from (a) that the unique concept name from C
satisfied by (d2(n1+1), en1+1) is also N , and thus the same is
true for (d2(n1+1), e2(n1+1)). Consequently, t2(n1+1) = N .
The proof of Point 2 is similar, using (b) instead of (a) and
showing that if ti = N for some ti not covered by Point 1,
then ti = N for some i ∈ {1, . . . , n1} which we know is not
the case.

Now for the vertical matching condition. Take any ti 6= N

from t
(0)
1 · · · t

(0)
n1 t0 · · · ti0−1 that is neither on the bottommost

nor on the topmost row. We know that (di, ei) satisfies a
unique concept name Bjti from C. By (a), (di+n1+1, ei) is
a node on p. It must clearly also satisfy Bjti and no other con-
cept name from C, and the same is true for di+n1+1. By con-
struction of the tree below a1, di+n1+1 satisfies, apart from
Bjti , also a concept name Bj⊕1t′ with (ti, t

′) ∈ V . Using the
construction of the subtree below a1 and a2 and the fact that
the prefix p′ of p has only ↓↓-successors, it can be seen that
ti+n1+1 = t′, which is exactly what we had to show.

(1) ⇒ (2). Assume that P has a solution, that is, there is
a tiling τ of some n×m-grid, n,m ≥ 1. By our assumption
on P , we may assume thatm ≥ 2. Let w be a tiling word that
is a row by row unfolding of τ , with an additional leading N
symbol (that is, every row in w is prefixed by N ). The length
of w is (n+ 1) ·m. We start with showing that UK contains a
path p1 that starts at an S-successor of a1 and whose labeling
with the concept names from C gives rise to w.

The length of p1 will be k := (n + 1) · (m − 1); we
shall explain later why p1 is short of one row. We number
the columns of the grid from 0 to n − 1 and the rows of the
grid from 0 to m− 1. For all positions i ≤ k on p1, let

• row(i) = (i div(n+ 1)) + 1 and

• col(i) = i − 1mod(n + 1) if imod(n + 1) > 0 while
col(i) is undefined otherwise.



The ‘+1’ in the first item ensures that the first elements of p1
corresponds to row 1 rather than to the bottommost row 0.
The extra condition in the second items avoids assigning a
column to positions in w that carry the symbol N .

By construction of the tree in UK below a1, we can find a
path p1 = d0 · · · dk that satisfies the following conditions for
all i ≤ k:

1. (a1, d0) ∈ SUK ;

2. dn ∈ EUK (this corresponds to the last position of the
first row represented by p1);

3. if τ(col(i), row(i)) = t, then di ∈ (B
row(i)mod 3
t )UK ;

4. if τ(col(i), row(i) − 1) = t, then di ∈
(B

row(i)−1mod 3
t )UK ;

5. if col(i) is undefined, then di ∈ NUK .

Note that the first n + 1 elements on p1 represent the tiling
of row 0 via concept names B0

t and the tiling of row 1 via
concept names B1

t . The next n+ 1 elements represent row 1
via concept names B1

t and the tiling of row 2 via concept
names B2

t , and so on.
Again by construction of the tree below a1, we can extend

p1 into a path p+1 = d0 · · · dk+(n+1) that repeats the topmost
row m − 1 in the sense that the following are satisfied for
k < i ≤ k + (n+ 1):

1. (dk, dk+1) ∈ SUK ;

2. if τ(col(i),m− 1) = t, then di ∈ (Bm−1mod 3
t )UK ;

3. dk+n ∈ (Bm−1mod 3
d )UK (this corresponds to the second

last position of the repeated row m− 1).

So p+1 simply repeats the representation of the topmost row
from the end of p1, using the same concept name. The only
difference is the labeling with the dummy tile described in
Point 3, which is not present in p1.

By construction of the tree below a2, UK contains a path
p2 = e0 · · · ek+1 that starts at an S-successor of a2 ∈ EUK
and satisfies the following conditions for all i < k:

1. (a2, e0) ∈ SUK ;

2. if τ(col(i), row(i) + 1) = t, then ei ∈
(B

row(i)+1mod 3
t )UK ;

3. if col(i) is undefined, then di ∈ NUK ;

4. ek+1 is a cycle node.

Note that the labeling in Point 2 of p2 is exactly the same as
the labeling in Point 3 of p1.

Now consider the following path in UK × UK that starts at
the S-successor (d0, e0) of (a1, a2):

• first follow p+1 and p2 snychronously:

(d0, e0) · · · (dk+1, ek+1)

• then proceed to follow p+1 while remaining stationary in
the cycle node at the end of p2:

(dk+2, ek+2) · · · (dk − 1, ek+1)

• then make a single step downwards in p1+, reaching the
end of this path, while making a single step upwards
in p2:

(dk, ek)

• then synchronously follow both paths backwards, even
stepping up to a2:

(dk−1, ek−1) · · · (dn, a2).

By what was said above, it can be verified that (i) the end of
this path (dn, a2) is in EUK×UK and (ii) every element of the
path satisfies a concept name from C. The only slightly subtle
point for the latter is the element (dk−1, ek+1), which is the
predecessor of (dk, ek) on the constructed path. It satisfies a
concept name of the form Bjd and in fact achieving this is the
reason for introducing the dummy tile (as no other concept
name from C is satisfied by (dk, ek)).

However, there is no path in UK that starts at an S-
successor of b and satisfies Properties (i) and (ii); in fact, ev-
ery path that starts at an S-successor of b and whose end is in
EUK must pass an element that does not satisfy any concept
name in C. Consequently, Πi∈{1,2}(UK, ai) 6�ELI UK, b.

o

We show now that also query by example (QBE) over ELI
knowledge bases is undecidable, as claimed in the main text
and in contrast to what is claimed in [Gutiérrez-Basulto et al.,
2018]. Formally, QBE is the following problem:

• Input: ELI knowledge base K = (T ,A), sets of posi-
tive and negative examples P,N ⊆ ind(A)n

• Question: Is there a conjunctive query q with n free
variables that separates P and N over K, that is:

– K |= q(a), for all a ∈ P , and
– K 6|= q(a), for all a ∈ N?

It has been shown in [Gutiérrez-Basulto et al., 2018] that
there is a separating conjunctive query for an instance
(K, P,N) with P,N ⊆ ind(A) iff

∏
a∈P (UK, a) 6→ UK, b,

for every b ∈ N . Thus, Lemma 7 establishes that the reduc-
tion to concept separability is also a reduction to query-by-
example. Hence, we obtain:

Theorem 20 Query-by-example over ELI knowledge bases
is undecidable.

Theorem 14 Let LT ∈ {ALC,ALCQ,ALCI,ALCQI}
and LS ∈ {EL, ELI}. Then (LT ,LS) concept separabil-
ity and (LT ,LS) concept definability are undecidable.

Proof. As indicated in the main paper, the proof is by
reduction from the CQ entailment problem between ALC
KBs, proved undecidable already for (directed or undirected)
tree-shaped CQs in [Botoeva et al., 2019]. For our pur-
poses, the undecidable problem can be stated as follows, for
L ∈ {EL, ELI}: given an ABox A using a single individ-
ual a and ALC KBs K1 = (T1,A) and K2 = (T2,A), does
K1 |= C(a) imply K2 |= C(a), for all L concepts C?



For the reduction, we define the relativisation CA of an
ALCQI concept C to a concept name A by induction as fol-
lows:

>A = A

CA = C uA, C a concept name

(¬C)A = A u ¬CA

(C uD)A = CA uDA

(> n r C)A = A u (> n r CA)

Define the relativization T A of a TBox T to A as

T A := {CA v DA | C v D ∈ T }.

We use the following property of relativizations: for any in-
terpretation I and d ∈ ∆I , d ∈ (CA)I if, and only if,
d ∈ CI|A , where I|A denotes the restriction of I to AI .

Now assume that L ∈ {EL, ELI} and assume that ALC
KBs K1 = (T1,A) and K2 = (T2,A) using a single individ-
ual a are given. Let A1, A2, and B be fresh concept names
and set

T = T A1
1 ∪ T A2

1 ∪ T B2
Define A′ to be the union of copies Ac of A in which a is
replaced with c ∈ {a1, a2, b}, extended with the assertions
A1(a1), A2(a2), B(b). Let K = (T ,A′). We show that the
following two conditions are equivalent:

• (K, P,N) has an L solution for P = {a1, a2} and N =
{b};
• there exists an L concept C such that K1 |= C(a) and
K2 6|= C(a).

To prove the equivalence we make three observations.

Claim 1. The following hold for any ELI concept C:

1. if K � C(a1), then C does not contain A2 or B;

2. if K � C(a2), then C does not contain A1 or B;

3. if K � C(b), then C does not contain A1 or A2.

We only show Item (1). Let I1 be a model of (T A1
1 ,Aa1), I ′1

a model of (T A2
1 ,Aa2), and I2 a model of (T B2 ,Ab). Assume

without loss of generality that

• a2, b 6∈ ∆I1 , a1, b 6∈ ∆I
′
1 , and a1, a2 6∈ ∆I2 ;

• AI12 = BI1 = ∅, AI
′
1

1 = BI
′
1 = ∅, and AI21 = AI22 = ∅.

Now define I as the disjoint union of I1, I ′1, and I2. Then
I is a model of K and I 6|= C(a1) if A2 or B occur in C
because no node in AI2 or BI is reachable from a1 in I and
C is an ELI concept. This finishes the proof of Claim 1.

The following claim can also be proved using the same reach-
ability argument for ELI concepts.

Claim 2. The following hold for any ELI concept C:

1. K � C(a1) if and only if (T A1
1 ,Aa1) � C(a1);

2. K � C(a2) if and only if (T A2
1 ,Aa2) � C(a2);

3. K � C(b) if and only if (T B2 ,Ab) � C(b).

Finally, the following follows from the properties of rela-
tivizations.

Claim 3. The following hold for any ELI concept C:

1. if C does not contain A1, then K1 � C(a) iff
(T A1

1 ,Aa1) � C(a1);

2. if C does not contain A2, then K1 � C(a) iff
(T A2

1 ,Aa2) � C(a2);

3. if C does not containB, thenK2 � C(a) iff (T B2 ,Ab) �
C(b).

We now prove the equivalence. First suppose there is an
L concept C such that K � C(a1) and K � C(a2) but
K 2 C(b). By Claim 1, C does not contain A1, A2 or B.
By Claims 2 and 3, K1 � C(a) and K2 2 C(a), as re-
quired. Conversely, suppose K1 � C(a) and K2 2 C(a).
Since A1, A2, B do not occur in K1, they do not occur in C
either. Then Claims 2 and 3 yield K � C(a1) and K � C(a2)
as well as K 2 C(b) from K2 2 C(a). o

E Proofs for Section 7
We first give detailed definitions of strong solutions to learn-
ing instances and the strong separability problem.

Definition 2 Let LT ,LS be DLs and (K, P,N) a learning
instance with K = (T ,A) an LT KB. A strong LS solution
to (K, P,N) is an LS concept C such that

1. K |= C(a) for all a ∈ P and

2. K |= ¬C(a) for all a ∈ N .

Any TBox language LT and separation language LS give rise
to an associated strong concept separability problem.

PROBLEM : strong (LT ,LS) concept separability
INPUT : LT learning instance (K, P,N)
QUESTION : Does (K, P,N) have a strong LS solution?

We simply speak of strong L concept separability when
LT = LS = L.

Theorem 15 For LS ∈ {ALC,ALCI,ALCQ,ALCQI},
anALCQI learning instance (K, P,N) has a strong L solu-
tion iff for all models I and J of K, all a ∈ P and all b ∈ N ,
I, a 6∼LS

J , b.
Proof. The implication (⇒) follows directly from

Lemma 1. For the converse direction, assume (K, P,N) has
no strong LS solution. Let

ΓP = {C ∈ LS | ∀a ∈ P : K |= C(a)}
ΓN = {C ∈ LS | ∀a ∈ N : K |= C(a)}

In what follows we use the fact that ΓP and ΓN are closed
under conjunction. We say that a set Γ of concepts is satisfi-
able in a ∈ ind(A) w.r.t. a KB K = (T ,A) if the extended
(possibly infinite) KB

K′ = (T ,A ∪ {C(a) | C ∈ Γ})

is satisfiable.



Claim 1. (1) There exists a ∈ P such that ΓP ∪ ΓN is satisfi-
able in a w.r.t. K. (2) There exists a ∈ N such that ΓP ∪ ΓN
is satisfiable in a w.r.t. K.

We prove Condition (1). The proof of Condition (2) is dual.
Assume ΓP ∪ ΓN is not satisfiable in any a ∈ P w.r.t. K.
Then ΓN is not satisfiable in any a ∈ P w.r.t. K. By com-
pactness, there exist Da ∈ ΓN such that K |= ¬Da(a), for
all a ∈ N . Thus, K |= ¬(

d
b∈P Db)(a) for all a ∈ P and

K |= (
d
b∈P Db)(a) for all a ∈ N . We have derived a con-

tradiction. to the assumption that (K, P,N) has no strong LS
solution.

Now let Γ0 = ΓP ∪ ΓN and consider an enumeration
C1, C2, . . . of the remaining concepts in LS . Then we set
inductively, Γi+1 = Γi ∪ {Ci+1} if there exist a ∈ P and
b ∈ N such that Γi ∪ {Ci+1} is satisfiable in both a and b
w.r.t. K. Set Γi+1 = Γi ∪ {¬Ci+1}, otherwise.

Claim 2. For all i > 0: there are a ∈ P and b ∈ N such that
Γi ∪ {Ci+1} is satisfiable in both a and b w.r.t. K or there are
a ∈ P and b ∈ N such that Γi ∪ {¬Ci+1} is satisfiable in
both a and b w.r.t. K.

Assume Claim 2 has been proved for i − 1. Let w.l.o.g.,
Γi = ΓP ∪ Γn ∪ {C1, . . . , Ci}. Assume Claim 2 does not
hold for i. Then, again w.l.o.g., there is no a ∈ P such that
Γi ∪ {Ci+1} is satisfiable in a w.r.t. K and there is no b ∈
N such that Γi ∪ {¬Ci+1} is satisfiable in b w.r.t. K. By
compactness, there exists D ∈ ΓN such that K |= D′(a) for
all a ∈ P and

D′ = ((D u C1 u · · · u Ci)→ ¬Ci+1).

Then, by definition, we have D′ ∈ ΓP . Then D′ ∈ Γi and so
there is no b ∈ N such that Γi is satisfiable in b w.r.t. K. We
have derived a contradiction.

Let Γ =
⋃
i>0 Γi. Then there exist models I and J of

K and a ∈ P and b ∈ P such that I |= C(a) for all C ∈
Γ and J |= C(b) for all C ∈ Γ. Thus, I, a ≡LS

J , b.
We may assume that I and J are ω-saturated in the sense of
classical model theory. Then I, a ∼LS

J , b, as required. For
ω-saturated interpretations and the implication I, a ≡LS

J , b
⇒ I, a ∼LS

J , b for ω-saturated interpretations, see [Lutz et
al., 2011; Goranko and Otto, 2007] and references therein.

o

Theorem 16 ForL ∈ {ALC,ALCI}, strongL concept sep-
arability is EXPTIME-complete in combined complexity and
CONP-complete in data complexity.

Proof. We give the proof for ALCI. The proof for ALC
is the same and omitted. By Theorem 15, we have to decide
whether there exist pointed models I, a and J , b of K with
a ∈ P and b ∈ N such that I, a ∼ALCI J , b. A K-type
t is a maximal subset of the closure of sub(K) under single
negation that is satisfiable. We prove that the following are
equivalent for any a, b ∈ ind(A):

1. there exist I, a and J , b with I, a ∼ALCI J , b;
2. there exists aK-type t such that bothK∪{C(a) | C ∈ t}

and K ∪ {C(b) | C ∈ t} are satisfiable.

The direction (1)⇒ (2) is trivial. Conversely, take a K-type
t such that for some a ∈ P and b ∈ N the extended KBs
K ∪ {C(a) | C ∈ t} and K ∪ {C(b) | C ∈ t} are satisfiable.
Take models Ia and Jb of K ∪ {C(a) | C ∈ t} and K ∪
{C(b) | C ∈ t}, respectively. Define new models I and J as
follows: obtain I by hooking Jb to Ia by identifying a and
b (and replacing all individual names of ∆Jb \ {b} by fresh
non individuals names) and obtain J by hooking Ia to Jb
by identifying b and a (and replacing all individual names of
∆Ia \ {a} by fresh non individuals names). Then both I and
J are models ofK and, modulo renaming of individuals, I, a
and J , b are isomorphic, and so I, a ∼ALCI J , b. We give
the explicit construction of I. Take for any c ∈ ∆Jb \ {b} a
fresh individual c′. Then set

∆I = ∆Ia ∪ {c′ | c ∈ ∆Jb \ {b}}

and
AI = AIa ∪ {c′ | c ∈ AJb \ {b}}

and

rI = rIa ∪
{(c′1, c′2) | (c1, c2) ∈ rJb , b 6∈ {c1, c2}} ∪
{(a, c′) | (b, c) ∈ rJb , c 6= b} ∪
{(c′, a) | (c, b) ∈ rJb , c 6= b} ∪
{(a, a) | (b, b) ∈ rJb}

The EXPTIME upper bound now follows from the fact that
satisfiability of ALCI KBs can be decided in EXPTIME and
the coNP-upper bound is immediate.

For the lower bounds, recall that the satisfiability ofALCI
KBs is EXPTIME-complete in combined complexity and NP-
complete in data complexity. Let for anyALCI KB K, K′ =
K ∪ {A(a), A(b)} with a, b fresh individual names and A a
concept name. Then K is satisfiable iff (K′, P,N) has no
strong ALCI solution, where P = {a} and N = {b}. The
EXPTIME-lower bound in combined complexity and CONP-
lower bound in data complexity now follow by polynomial
reduction of the ALCI KB unsatisfiability problem.

The lower bound proof above is slightly unsatisfactory as it
is based on having learning instances with unsatisfiable KBs.
Here is an argument that uses satisfiable KBs only. The prob-
lem whether T |= A v ¬B for ALCI TBoxes T and con-
cept names A,B is well known to be EXPTIME-complete.
Now let K = (T ,A), A = {A(a), B(b)}, P = {a}, and
N = {b}. Then (K, P,N) has a strong ALCI solution iff
T |= A v ¬B.

For the CONP-lower bound note that it is well known that
it is CONP-hard in data complexity to decide K |= ¬B(a)
for a ALCI KB K = (T ,A) and concept name B. Now let
K′ = (T ,A∪ {B(b)}) for a fresh individual names b and set
P = {a} and N = {b}. Then (K′, P,N) has a strong ALCI
solution iff K |= ¬B(a). o
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