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Abstract
The unary negation fragment of first-order logic (UNFO) has recently been proposed as a general-
ization of modal logic that shares many of its good computational and model-theoretic properties.
It is attractive from the perspective of database theory because it can express conjunctive quer-
ies (CQs) and ontologies formulated in many description logics (DLs). Both are relevant for
ontology-mediated querying and, in fact, CQ evaluation under UNFO ontologies (and thus also
under DL ontologies) can be ‘expressed’ in UNFO as a satisfiability problem. In this paper, we
consider the natural extension of UNFO with regular expressions on binary relations. The result-
ing logic UNFOreg can express (unions of) conjunctive two-way regular path queries (C2RPQs)
and ontologies formulated in DLs that include transitive roles and regular expressions on roles.
Our main results are that evaluating C2RPQs under UNFOreg ontologies is decidable, 2ExpTime-
complete in combined complexity, and coNP-complete in data complexity, and that satisfiability
in UNFOreg is 2ExpTime-complete, thus not harder than in UNFO.
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1 Introduction

In ontology-mediated querying, queries against incomplete and heterogeneous data are
supported by an ontology that provides domain knowledge and assigns a semantics to the
data [15, 19, 37, 41]. The ontologies are often formulated in a specialized language such as a
description logic [4, 5] or an existential rule language [6, 7, 22, 33] while the actual query
is typically a conjunctive query (CQ) or a mild extension thereof such as a union of CQs
(UCQ). However, it can also be useful to consider more expressive decidable fragments of
first-order logic (FO) as an ontology language as this serves to explore the limits of the
ontology-mediated querying approach, to provide maximum expressive power for ontology
formulation, and to put ontology-mediated querying into a more general logical perspective.
Notably, this has been done in [8, 9, 19], where the guarded fragment (GF), the unary
negation fragment (UNFO), and the guarded negation fragment (GN) of FO have been used
as ontology languages. These fragments originate from the attempt to explain the good
computational behaviour of modal and description logics and to extend their expressive
power in a natural way. While GF and UNFO are orthogonal in expressive power, GN
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15:2 Querying the Unary Negation Fragment with Regular Path Expressions

subsumes both of these fragments [9] and all of them subsume many common modal and
description logics. It is an important result that, for all these fragments, ontology-mediated
querying with UCQs remains decidable and that the complexity stays within the expected,
namely 2ExpTime combined and coNP data.

From the perspective of database theory, it is an attractive property of both UNFO
and GN (but not of GF) that they can express CQs and UCQs. In ontology-mediated
querying, this allows to ‘express’ the evaluation of ontology-mediated queries in terms of
satisfiability in a natural way. It is easiest to state this for Boolean queries: if (O,Σ, q) is
an ontology-mediated query (OMQ) where O is an ontology, Σ a set of predicate symbols
(that is, relation names) that may occur in the data, and q a UCQ, and D is a Σ-database,
then D |= (O,Σ, q) iff O ∧D ∧ ¬q is unsatisfiable. When O is formulated in UNFO or in
GN, then so is O ∧D ∧ ¬q. What is more, the containment of OMQs can also be ‘expressed’
as a satisfiability problem in the natural case where both OMQs contain the same ontology
and Σ is the set of all predicates symbols; from now on, we generally mean this case when
speaking of OMQ containment. But also beyond ontology-mediated querying, we believe
that the ability to express UCQs makes UNFO and GN attractive as an expressive logical
backdrop for database theory.

In this paper, we study the natural extension UNFOreg of UNFO with regular path
expressions on binary relations. The resulting logic has the attractive property that it allows
to express regular path queries [29] and conjunctive two-way regular path queries (C2RPQs)
[25] as well as unions thereof (UC2RPQs). Such queries play a central role in the area of graph
databases [2, 10] and they have also received considerable attention in ontology-mediated
querying [12, 17, 18, 26, 27, 28, 40]. An additional reason to consider UNFOreg is provided by
the observation that transitive roles are an important feature of many common description
logics (a role is a binary relation), but that transitive roles cannot be expressed in UNFO. In
UNFOreg, even transitive closure of roles and regular expressions on roles are expressible,
two features that are provided by several expressive description logics [3, 24]. As a concrete
example, every ontology formulated in ALCIreg, the extension of the common description
logic ALCI with regular expressions on roles [44], can be expressed in UNFOreg and thus
the evaluation of ontology-mediated queries (O,Σ, q) where O is formulated in ALCreg and q
is a UC2RPQ can be ‘expressed’ as a satisfiability problem in UNFOreg; of course, the same
is true when O is formulated in UNFOreg itself. We remark that transitive roles cannot be
expressed in GF and GNF either, and that adding transitive relations to GF without losing
decidability requires to impose rather strong syntactical restrictions [46], especially so in an
ontology-mediated querying context [34]. Adding transitive relations to GNF has, to the
best of our knowledge, not yet been studied.

The main problem that we are interested in is evaluating OMQs in which the ontology
is formulated in UNFOreg and the actual query is a UC2RPQ. We show that this problem
is decidable, 2ExpTime-complete in combined complexity and coNP-complete in data
complexity. We further consider the OMQ containment problem and show that it is 2Ex-
pTime-complete as well. We additionally show that the complexity of model checking in
UNFOreg is the same as in UNFO, namely complete for PNP[O(log2 n)].

As explained above, both OMQ evaluation and OMQ containment can be reduced to
satisfiability in polynomial time. For studying the combined complexity of the former and
the complexity of the latter, we thus concentrate on the satisfiability problem and prove a
2ExpTime upper bound. Note that the addition of regular expressions does thus not increase
the complexity of this problem as satisfiability in UNFO is also 2ExpTime-complete [47]
and that the lower bound holds already when the arity of predicates is bounded by two,
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as a consequence of the results in [39]. Our proof proceeds by first showing that every
satisfiable UNFOreg formula ϕ has a model whose treewidth is bounded by the size of ϕ,
then establishing a characterization of the satisfaction of C2RPQs (that occur as a building
block in ϕ) in such models in terms of certain witness trees, and finally showing that this
infrastructure gives rise to a decision procedure based on two-way alternating tree automata.
This ‘direct approach’ is in contrast to the reduction to satisfiability in the µ-calculus used
for UNFO in [47] which seems unwieldy in the presence of regular path expressions. Note
in particular that an important reason for the relative simplicity of the reduction in [47] is
that there is always a model of bounded treewidth in which any two bags overlap in at most
one element; this is no longer true in UNFOreg. To establish the coNP upper bound on
data complexity, we first observe that it suffices to consider a database satisfiability problem
(given a database D, is there a model of the fixed UNFOreg sentence ϕ that extends D?) and
then establish a certain kind of decoration of D as a witness for D being a positive instance,
in a way such that witnesses can be guessed and verified in polynomial time.

Related work. For general background on ontology-mediated querying, we refer to
[15, 19, 37, 41] and the references therein. OMQ containment was considered in [11, 13, 14, 21].
UNFO was introduced and studied by ten Cate and Segoufin in [47] and it was considered
as an ontology language for OMQs in [19]. Regular path queries, C2RPQs, and variations
thereof emerge from graph databases, see the surveys [2, 10] and references therein. We use
C2RPQs that admit nesting via node tests, as considered in [16], see also [20]. Sometimes,
this is referred to as ‘nested’ C2RPQs. There are several further extensions of C2RPQs that
are not considered in this paper. We still mention two of them. A more powerful form of
nesting is obtained by allowing to use C2RPQs with two answer variables in place of binary
predicates in regular expressions, giving rise to regular queries [42]. Another expressive
extension of C2RPQs is defined by monadically defined queries, which implement a certain
‘flag and check’ paradigm [43]. OMQs in which the actual query is some form of regular
path queries are considered in [12, 17, 18, 26, 27, 28, 40]. As discussed in more detail later,
UNFOreg is also related (but orthogonal in expressive power) to propositional dynamic logic
with intersection and converse (ICPDL) [31] and to UNFO extended with fixed points [47].

2 Preliminaries

We assume that a countably infinite supply of predicate symbols of each arity is available.
In the unary negation fragment of first-order logic extended with regular path expressions
(UNFOreg), formulas ϕ are formed according to the following grammar:

ϕ ::= P (x) | E(x, y) | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ¬ϕ(x)
E ::= R | R− | E ∪ E | E · E | E∗ | ϕ(x)?

where P ranges over predicate symbols, R over binary predicate symbols, and, in the ¬ϕ(x)
clause, ϕ has no free variables besides (possibly) x. Expressions E formed according to the
second line are called (regular) path expressions and expressions ϕ(x)? according to the last
clause in that line are called tests. Tests are similar to the test operator in propositional
dynamic logic (PDL) [30] and to node tests in XPath [32] and in some versions of regular
path queries [16, 20]. When we write ϕ(x), we generally mean that the free variables of ϕ
are among x, but not all variables from x need actually be free in ϕ. For a UNFOreg formula
ϕ(x), we use ∀xϕ to abbreviate ¬∃x¬ϕ(x).

I Example 1. The following are UNFOreg formulas: ∀x
(
∃yR(x, y) ∧ ¬(R · R∗)(x, x)

)
and

∃y
(
R∗(x, y) ∧ S∗(x, y)

)
.
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15:4 Querying the Unary Negation Fragment with Regular Path Expressions

A structure A takes the form (A,RA
1 , R

A
2 , . . . ) where A is a non-empty set called the domain

and Ri is an ni-ary relation over A if Ri is a predicate symbol of arity ni.Whenever convenient,
we use dom(A) to refer to A. Every path expression E is interpreted as a binary relation EA

over A: RA is part of A, (R−)A is the converse of RA, (E1 ∪E2)A = EA
1 ∪EA

2 , (E1 ◦E2)A =
EA

1 ◦EA
2 , (E∗)A is the reflexive-transitive closure of EA, and (ϕ(x)?)A = {(a, a) | A |= ϕ(a)}.

UNFOreg formulas are then interpreted under the standard first-order semantics with path
expressions being treated in the same way as binary predicates. A UNFOreg sentence ϕ(x) is
satisfiable if there is a structure A such that A |= ϕ. Such an A is called a model of ϕ(x).

I Example 2. Reconsider the UNFOreg formulas from Example 1. It can be verified that
the first sentence is satisfiable, but not in a finite model. Thus, in contrast to UNFO (and to
propositional dynamic logic), UNFOreg lacks the finite model property. The second sentence
expresses a property that cannot be expressed in UNFO extended with fixed points, as
studied in [47], which can formally be shown using UN-bisimulations, also defined in [47].
In fact, UNFOreg and UNFO with fixed points are orthogonal in expressive power. Another
related logic is ICPDL, that is, PDL extended with intersection and converse [31]. This
logic, too, is orthogonal in expressive power to UNFOreg. For example, the existence of a
4-clique can be expressed as a UNFO sentence, but not in ICPDL since every satisfiable
ICPDL formula is satisfiable in a structure of tree width two.

The expressive power of UNFOreg is closely related to that of conjunctive 2-way regular
path queries. A database D is a finite structure such that for every a ∈ dom(D), there
is an a ⊆ dom(D) and a predicate symbol P such that a ∈ a ∈ PD. Since a database
is a syntactic object, we refer to the elements of dom(D) as constants whereas we speak
about elements in the context of (semantic) structures. A conjunctive 2-way regular path
query (C2RPQ) is a formula of the form q(x) = ∃yϕ(x,y) where ϕ(x,y) is a conjunction of
atoms of the form R(z) and E(z1, z2), R a predicate symbol and E a two-way regular path
query, that is, an expression formed according to the second line of the syntax definition of
UNFOreg, but allowing only formulas ϕ(x) that are C2RPQs in tests. The variables x are
the answer variables of q(x) and q(x) is Boolean if x = ∅. A union of C2RPQs (UC2RPQ) is
a disjunction of C2RPQs that all have the same answer variables. A conjunctive query (CQ)
is a C2RPQ that does not use atoms of the form E(z1, z2). The answers to a UC2RPQ q(x)
on a database D, denoted ans(q,D), are defined in the standard way, see for example [42].
Note that every UC2RPQ is a UNFOreg formula.

I Example 3. Consider the following database about family relationships, using binary
predicates Child and Spouse, and written as a set of facts.

D = {Child(Nívea,Clara), Child(Clara,Blanca), Child(Blanca,Alba),
Spouse(Nívea,Severo), Spouse(Esteban,Clara) }

The following C2RPQ asks for all pairs (x, y) such that x is an ancestor of y in a line of only
married ancestors (using the shorthand R+ = R ·R∗).

q(x, y) = (m(z)? · Child)+(x, y) where m(z) = ∃z′ (Spouse ∪ Spouse−)(z, z′)

We have ans(q,D) = {(Nívea,Clara), (Nívea,Blanca), (Clara,Blanca)}.

Let q(x) = ∃yϕ(x,y) be a C2RPQ. We use var(q) to denote the variables that occur in q
outside of tests, that is, x ∪ y. We do not distinguish between q(x) and the set of all atoms
in ϕ, writing e.g. R(x, y, z) ∈ q(x) to mean that R(x, y, z) is an atom in ϕ. For simplicity,
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we treat an atom E(x, x) in a C2RPQ q(x) where E is the test ϕ(y)? as an atom of the form
ϕ(x); that is, w.l.o.g. we use tests not only in path expressions but also directly as atoms of
a C2RPQ. A C2RPQ q(x) can be viewed as a finite hypergraph in the expected way, that is,
every atom R(z) and E(z1, z2) is viewed as a hyperedge. We say that q(x) is connected if the
Gaifman graph of this hypergraph is connected. It is interesting to observe that foundational
problems concerning UC2RPQs can be phrased as (un)satisfiability problems in UNFOreg.

I Example 4.

1. The problem whether a Boolean UC2RPQ q() evaluates to true on a database D (i.e.,
whether the empty tuple is in ans(q,D)) corresponds to the unsatisfiability of ϕD()∧¬q()
where ϕD() is D viewed as a Boolean CQ in the obvious way.

2. The problem whether a Boolean UC2RPQ q1() is contained in a Boolean UC2RPQ q2()
(defined in the usual way) corresponds to the unsatisfiability of q1() ∧ ¬q2().

Both reductions extend to the case of non-Boolean queries by simulating answer variables
using fresh unary predicates, see the proof of Lemma 6 below.

An ontology-mediated query (OMQ) is a triple (O,Σ, q) where O is a logical sentence called
the ontology, Σ is a set of predicate symbols called the data signature, and q is a query. In
this paper, we shall primarily be interested in the case where O is an UNFOreg sentence
and q is a UC2RPQ. We use (UNFOreg,UC2RPQ) to denote the set of OMQs of this form
and similarly for other ontology languages and query languages. Let Q = (O,Σ, q) be from
(UNFOreg,UC2RPQ) and D a database that uses only symbols from Σ. We call a ⊆ dom(D)
a certain answer to Q on D if a ∈ ans(q,A) for every structure A that extends D and is
a model of O, where A extends D if dom(D) ⊆ dom(A) and PD ⊆ PA for all predicate
symbols P . Note that this semantics embodies a ‘standard names assumption’, that is,
constants in D are interpreted as themselves. The set of all certain answers to Q on D is
denoted cert(Q,D). We say that Q is Boolean if q is. For a Boolean OMQ Q, we write
D |= Q to indicate that Q is true on D, meaning that the empty tuple is in cert(Q,D).

I Example 5. Consider the OMQ Q = (O,Σ, q′) based on an extension of the C2RPQ q

from Example 3, where O defines a single mother as an unmarried woman who has a child,
using additional unary predicates Female and SingleMother, and q′ has an additional conjunct
requiring that y is a single mother, that is:

O = ∀x
(
SingleMother(x)↔ Female(x) ∧ Single(x) ∧ ∃y Child(x, y)

)
q′(x, y) = q(x, y) ∧ SingleMother(y)

Σ = {Child,Spouse,Female,Single}

Note that O is equivalent to a UNFOreg (even plain UNFO) formula obtained by eliminating
↔ in the usual way. Let D′ = D∪{Female(Blanca), Single(Blanca)}, where D is the database
from Example 3. Then cert(Q,D′) = {(Nívea,Blanca), (Clara,Blanca)}, but cert(Q,D) = ∅.

OMQ evaluation in (UNFOreg,UC2RPQ) is the problem to decide, given an OMQ Q from
(UNFOreg,UC2RPQ), a database D, and an a ⊆ dom(D), whether a ∈ cert(Q,D). This is a
relevant problem since ontologies formulated in many logics used as ontology languages can be
translated into an equivalent UNFOreg sentence in polynomial time. In particular, this is the
case for the basic description logicsALC andALCI [19] and for their extensions with transitive
closure of roles [3] and with regular expressions over roles [24]. For any of these logics L, this of
course also yields a polynomial time reduction of OMQ evaluation in (L,UC2RPQ) to OMQ
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15:6 Querying the Unary Negation Fragment with Regular Path Expressions

evaluation in (UNFOreg,UC2RPQ). Even UNFO itself has occasionally been considered as
an ontology language [19].

For the rather common extension of the description logic ALC with transitive roles [5], an
equivalence preserving translation of ontologies into UNFOreg sentences is not possible since
UNFOreg cannot enforce that a binary predicate is transitive. However, a transitive role can
be simulated using the transitive closure of a binary predicate R (and never using R without
transitive closure). In this way, one still obtains the desired polynomial time reduction
of OMQ evaluation. The same reduction can be applied even to UNFOreg extended with
transitive relations. We use UNFOreg

trans to denote the extension of UNFOreg where sentences
take the form ϕtrans ∧ ϕ with ϕtrans a conjunction of atoms of the form trans(R), R a binary
predicate symbol, and ϕ a UNFOreg sentence. An atom trans(R) is satisfied in a structure A

if RA is transitive.
Evaluation of Boolean OMQs in (UNFOreg

trans,UC2RPQ) reduces in polynomial time to
satisfiability in UNFOreg

trans since D |= (O,Σ, q) iff ϕD() ∧ O ∧ ¬q() is unsatisfiable. The
reduction can be extended to non-Boolean queries by simulating answer variables using fresh
unary predicates. Because of this observation, in the main body of the paper we concentrate
on deciding satisfiability rather than OMQ evaluation.

I Lemma 6. OMQ evaluation in (UNFOreg
trans,UC2RPQ) reduces in polynomial time to

satisfiability in UNFOreg, and so does satisfiability in UNFOreg
trans.

Together with Theorem 14 it thus follows that UNFO can be extended with transitive
relations without losing decidability or affecting the complexity of satisfiability and of OMQ
evaluation. This is in contrast to the guarded fragment, where in both cases decidability
can only be obtained by adopting additional syntactic restrictions. While for satisfiability it
suffices to assume that transitive relations are only used in guard positions, even stronger
restrictions are necessary for OMQ evaluation [35, 46, 34].

There are also other interesting reasoning problems that can be reduced to satisfiability
in UNFOreg. Here we consider OMQ containment, leaving out transitive roles for simplicity.
Let Q1 = (O,Σfull, q1) and Q2 = (O,Σfull, q2) be OMQs from (UNFOreg,UC2RPQ) with the
same number of answer variables and where Σfull is the full data signature, that is, the set of
all predicate symbols. We say that Q1 is contained in Q2 and write Q1 ⊆ Q2 if for every
database D, cert(Q1, D) ⊆ cert(Q2, D). We observe that OMQ containment can also be
reduced to satisfiability in polynomial time.

I Lemma 7. OMQ containment in (UNFOreg,UC2RPQ) reduces in polynomial time to
satisfiability in UNFOreg.

There are also versions of OMQ containment that admit different ontologies in the two
involved OMQs and more restricted data signatures in place of Σfull [11, 13, 14, 21]. These are
computationally harder and a polynomial time reduction to satisfiability cannot be expected.
In fact, it follows from results in [21] that this more general form of OMQ containment is
2NExpTime-hard already when the ontologies are formulated in the description logic ALCI,
a fragment of UNFO, and when the actual queries are CQs. Decidability remains an open
problem. We remark that when the actual queries in OMQs are CQs, then OMQ containment
under the full data signature can be reduced to query evaluation in a straightforward way,
essentially by viewing the query from the left-hand OMQ as a database. In the presence of
regular path queries, however, this does not seem to be easily possible.

We next introduce a normal form for UNFOreg sentences, similar but not identical to the
normal form used for UNFO in [47]. For a set L of UNFOreg formulas with one free variable,
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a C2RPQ extended with L-formulas is a C2RPQ in which all tests ϕ(x)? in atoms E(z1, z2)
have been replaced with tests ψ(x)?, ψ(x) a formula from L. The set of normal UNFOreg

formulas is the smallest set of formulas such that
1. every connected C2RPQ with exactly one free variable, extended with normal UNFOreg

formulas, is a normal UNFOreg formula;
2. if ϕ(x) and ψ(x) are normal UNFOreg formulas, then ¬ϕ(x), ϕ(x) ∨ ψ(x), and ∃xϕ(x)

are normal UNFOreg formulas.
Observe that Item 1 serves as an induction start since every connected C2RPQ without
tests (and with one free variable) is a normal UNFOreg formula. Note that normal formulas
are closed under conjunction in the sense that the conjunction of normal formulas ϕ1(x)
and ϕ2(x) is a C2RPQ extended with normal UNFOreg formulas and thus a normal formula.
Thus, unary disjunction could be eliminated, but for our purposes it is more convenient to
keep it. We note in passing that using this normal form, it is easy to observe that UNFOreg

has the same expressive power as C2RPQs that admit both tests and negated tests.
The width of a normal UNFOreg formula is the maximal number of variables in a C2RPQ

that occurs in it (not counting the variables that occur in the C2RPQ only inside tests).
The atom width is defined analogously, but referring to the number of atoms instead of the
number of variables. In the context of normal UNFOreg formulas, for brevity we speak of
C2RPQs when meaning C2RPQs extended with normal UNFOreg formulas. The size of a
UNFOreg formula is the number of symbols needed to write it, with variable symbols and
predicate symbols being counted as a single symbol.

I Lemma 8. Every UNFOreg sentence ϕ can be transformed into an equivalent normal
UNFOreg sentence ϕ′ in single exponential time. Moreover, the width and the atom width
of ϕ′ are at most polynomial in the size of ϕ and the path expressions that occur in ϕ′ are
exactly those in ϕ.

In the following sections, we replace atoms E(z1, z2) in the C2RPQs that occur in a normal
UNFOreg formula with atoms of the form A(z1, z2) where A is a nondeterministic automaton
on finite words (NFA) over a suitable alphabet; we call such atoms NFA atoms. Formally,
an NFA is a tuple (Q,Σ,∆, q0, F ) where Q is a finite set of states, Σ a finite alphabet,
∆ ⊆ Q × Σ × Q a transition relation, q0 ∈ Q an initial state and F ⊆ Q a set of final
states. When deciding the satisfiability of a UNFOreg sentence ϕ0, we will generally take Σ
to be {R,R− | R a binary predicate in ϕ0} ∪ {ϕ(x)? | ϕ(x)? a test in ϕ0}. Clearly, all path
expressions in ϕ0 are regular expressions over this alphabet. Since every regular expression
can be converted into an equivalent NFA in polynomial time, we can thus w.l.o.g. assume
the NFA-based presentation. Let A = (Q,Σ,∆, q0, F ) be an NFA. Then we use A[F/F ′]
to denote the NFA obtained from A by replacing F with F ′ ⊆ Q and A[q0/q] for the NFA
obtained from A by replacing q0 with q ∈ Q. For a structure A, an NFA A, and a, b ∈ A, we
write A |= A(a, b) if there are a1, . . . , an ∈ A and a word w ∈ L(A) of length n− 1 such that
a = a1, an = b, (ai, ai+1) ∈ RA if the ith symbol in w is R, (ai+1, ai) ∈ RA if the ith symbol
in w is R−, and ai = ai+1 and A |= ϕ(ai) if the ith symbol in w is ϕ(x)?. This gives a
semantics to NFA atoms. The size of a normal UNFOreg formula with NFA atoms is defined
in the same way as the size of a UNFO formula, where every NFA A = (Q,Σ,∆, q0, F )
contributes the cardinality of Q plus the cardinality of ∆ plus the cardinality of F .

3 Tree-like Structures and Witness Trees

We give a characterization of satisfiability in UNFOreg that is tailored towards implementation
by tree automata. In particular, we show that every satisfiable UNFOreg formula ϕ has

ICDT 2018



15:8 Querying the Unary Negation Fragment with Regular Path Expressions

a model whose treewidth is bounded by the width of ϕ, introduce a representation of
such models in terms of labeled trees, and characterize the satisfaction of C2RPQs in
models represented in this way in terms of tree-shaped witnesses. To simplify the technical
development, in this section and the subsequent one we disallow predicates of arity zero.
Note that an atom P () can be simulated by the formula ∃xP (x), so this assumption is
w.l.o.g. We work with normal UNFOreg sentences throughout the section.

A (directed) tree is a prefix-closed subset T ⊆ (N \ {0})∗. A node w ∈ T is a successor of
v ∈ T and v is a predecessor of w if w = v · i for some i ∈ N. Moreover, w is a neighbor of v
if it is a successor or predecessor of v. A tree-like structure is a pair (T, bag) where T is a
tree and bag a function that assigns to every w ∈ T a finite structure bag(w) such that

the set of nodes {w ∈ T | a ∈ dom(w)} is connected in T , for each a ∈
⋃
w∈T

dom(w)

where, here and in the remainder of the paper, dom(w) is a shorthand for dom(bag(w)). The
width of (T, bag) is the maximum domain size of structures that occur in the range of bag. Its
outdegree is the outdegree of T . A tree-like structure (T, bag) defines the associated structure
A(T,bag) which is the (non-disjoint) union of all structures bag(w), w ∈ T . We use dom(T, bag)
as a shorthand for dom(A(T,bag)). As witnessed by its representation (T, bag), the treewidth
of the structure A(T,bag) is bounded by the maximum cardinality of dom(bag(w)), w ∈ T .
We will show that every satisfiable UNFOreg sentence ϕ0 is satisfiable in a tree-like structure
whose width is bounded by the width of ϕ0. In UNFO, it suffices to consider structures of
this form in which bags overlap in at most one element; this is not the case in UNFOreg.

Let ϕ0 be a normal UNFOreg sentence. We use sub(ϕ0) to denote the subformulas of ϕ0
with at most one free variable, and where the free variable is renamed to x. Then cl(ϕ0)
denotes the smallest set of normal UNFOreg formulas that contains sub(ϕ0) and is closed
under single negation. A 1-type for ϕ0 is a subset t ⊆ cl(ϕ0) that satisfies the following
conditions:
1. ϕ ∈ t iff ¬ϕ /∈ t for all ¬ϕ ∈ cl(ϕ0);
2. ϕ ∨ ψ ∈ t iff ϕ ∈ t or ψ ∈ t for all ϕ ∨ ψ ∈ cl(ϕ0).
We use TP(ϕ0) to denote the set of all 1-types for ϕ0.

A type decorated tree-like structure for ϕ0 is a triple (T, bag, τ) with (T, bag) a tree-like
structure such that only predicates from ϕ0 occur in the range of bag and τ : dom(T, bag)→
TP(ϕ0). Let (T, bag, τ) be such a structure, A an NFA, and a, b ∈ dom(T, bag). We write
A(T,bag), τ |= A(a, b) if A(T,bag) |= A(a, b) with the semantics of tests reinterpreted: instead
of demanding that A |= ϕ(a′) for a test ϕ0(x)? to hold at an element a′, we now require that
ϕ ∈ τ(a′). Let ϕ(x) = ∃yψ(x,y) be a C2RPQ and a ∈ dom(T, bag). A homomorphism from
ϕ(x) to (T, bag, τ) is a function h : {x}∪y→ dom(T, bag) such that the following conditions
are satisfied:

h(x) ∈ RA(T,bag) for each R(x) ∈ ϕ(x);
A(T,bag), τ |= A(h(y), h(z)) for each A(y, z) ∈ ϕ(x).

A type decorated tree-like structure (T, bag, τ) for ϕ0 is proper if:
1. for all ∃xϕ(x) ∈ cl(ϕ0), ∃xϕ(x) ∈ τ(a) iff there is a b ∈ dom(T, bag) with ϕ(x) ∈ τ(b);
2. for all C2RPQs ϕ(x) ∈ cl(ϕ0), ϕ(x) ∈ τ(a) iff there is a homomorphism h from ϕ(x) to

(T, bag, τ) such that h(x) = a.
The following lemma establishes proper type decorated tree-like structures for ϕ0 as witnesses
for the satisfiability of ϕ0. The proof of the ‘only if’ direction is via an unraveling procedure
that constructs a type decorated tree-like structure in a top-down manner, introducing
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fresh bags to satisfy C2RPQs and to implement a step-by-step chase of paths that witness
satisfaction of NFA atoms in C2RPQs.

I Lemma 9. A normal UNFOreg sentence ϕ0 of size n and width m is satisfiable iff there is
a proper type decorated tree-like structure (T, bag, τ) for ϕ0 of width at most m and outdegree
at most n2 + n such that ϕ0 ∈ τ(a) for some a.

As the next step, we take a closer look at Point 2 of properness, that is, we characterize
carefully the existence of a homomorphism h from ϕ(x) to (T, bag, τ) such that h(x) = a

in a way that is tailored towards implementation by tree automata. This gives rise to the
notion of a witness tree below. We start with introducing the notions of subdivisions and
splittings which shall help us to take care of the fact that the homomorphic image of a query
q(x) may be spread over several bags of a tree-like structure, and in fact this might even be
the case for a single NFA atom.

An instantiated C2RPQ is a C2RPQ in which all free variables have been replaced
with constants. We write ϕ(a) to indicate that the constants in the instantiated C2RPQ
are exactly a. When working with instantiated C2RPQs, we drop existential quantifiers,
assuming that all variables are implicitly existentially quantified. For brevity, we often omit
the word ‘instantiated’ and only speak of C2RPQs. We speak of terms to mean both variables
and constants, and we denote terms with t.

Let ϕ(a) be a connected C2RPQ, ∆ be a domain, and s ≥ 1. A (∆, s)-subdivision of of
an atom A(t, t′) ∈ ϕ(a) is a set of atoms

A[F/{q1}](t, b1),A[q0/q1, F/{q2}](b1, b2), . . . ,A[q0/qk−1, F/{qk}](bk−1, bk),A[q0/qk](bk, t′)

where q1, . . . , qk are states of A, k ≤ s, and b1, . . . , bk are constants from ∆. A C2RPQ
ψ(a′) is a (∆, s)-subdivision of ϕ(a) if it is obtained from ϕ(a) by replacing zero or more
NFA atoms with (∆, s)-subdivisions. Let ψ(a′) be a (∆, s)-subdivision of ϕ(a). A splitting
of ψ(a′) is a sequence ψ0(a0), . . . , ψ`(a`), ` ≥ 0, of C2RPQs that is a partition of ψ(a′)
(viewed as a set of atoms) where we also allow the special case that ψ0(a0) is empty (and
thus ψ1(a1), . . . , ψ`(a`) is the actual partition). We require that the following conditions are
satisfied:
1. ψ1(a1), . . . , ψ`(a`) are connected;
2. var(ψi(ai)) ∩ var(ψj(aj)) ⊆ var(ψ0(a0)) for 1 ≤ i < j ≤ `;
3. each of ψ1(a1), . . . , ψ`(a`) contains at most one atom from each subdivision of an atom

in ϕ(a).
Intuitively, the ϑ0(a) component of a splitting is the part of ψ(a′) that maps into a bag that
we are currently focussing on while the other components are pushed to neighboring bags.

I Example 10. Consider q(a) = {A(a, y), T (a, z), Q(a, y, z)} with A = 0 1
R

R,S .

Let ∆ = {a, b, c} and Aij = A[0/i, F/j]. An example for a (∆, 2)-subdivision of A(a, y)
is {A01(a, b),A11(b, b),A11(b, y)}, which yields the following (∆, 2)-subdivision of ϕ(a):
ψ(a, b) = {A01(a, b),A11(b, b),A11(b, y), T (a, z), Q(a, y, z)}. ψ(a, b) admits a splitting into
ψ0, ψ1 as follows: ψ0(a, b) = {A01(a, b),A11(b, b), T (a, z)} and ψ1(a, b) = {A11(b, y), Q(y, z, a)}.

The query closure qcl(ϕ0,∆, s) is defined as the smallest set such that the following conditions
are satisfied:

if ϕ(x) ∈ cl(ϕ0) is a C2RPQ and a ∈ ∆, then ϕ(a) ∈ qcl(ϕ0,∆, s);
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if ϕ(a) ∈ qcl(ϕ0,∆, s), ψ(a′) is a (∆, s)-subdivision of ϕ(a), ψ0(a0), . . . , ψ`(a`) is a
splitting of ψ(a′), 1 ≤ i ≤ `, and ψ′i(a′i) is obtained from ψi(ai) by consistently replacing
zero or more variables with constants from ∆, then ψ′i(a′i) ∈ qcl(ϕ0,∆, s).

I Lemma 11. The cardinality of qcl(ϕ0,∆, s) is bounded by p · (a2dm)m′ , where p is the
number of C2RPQs in ϕ0, a the maximal number of states in an NFA in ϕ0, d the cardinality
of ∆, m the width of ϕ0, and m′ the atom width of ϕ0.

We are almost ready to define witness trees. The following notion of a homomorphism is
more local than the ones used so far as it only concerns a single bag rather than the entire
tree-like structure. Let (T, bag, τ) be a type decorated tree-like structure, w ∈ T , A an NFA,
and a, b ∈ dom(w). We write bag(w), τ |= A(a, b) if bag(w) |= A(a, b) with the semantics
of tests reinterpreted: instead of demanding bag(w) |= ϕ(a′) for a test ϕ(x)? to hold at an
element a′, we now require that ϕ(x) ∈ τ(a′). Let ϕ(a) be a C2RPQ. A homomorphism
from ϕ(a) to bag(w) given τ is a function h : a ∪ var(ϕ)→ dom(w) such that the following
conditions are satisfied:

h(a) = a for each a ∈ a;
h(t) ∈ Rbag(w) for each R(t) ∈ ϕ(a);
bag(w), τ |= A(h(t), h(t′)) for each A(t, t′) ∈ ϕ(a).

Let n be the size of ϕ0, a ∈ dom(T, bag), and ϕ(x) ∈ cl(ϕ0) a C2RPQ. A witness tree for
ϕ(a) in (T, bag, τ) is a finite labeled tree (W,σ) with σ : W → T × qcl(ϕ0, dom(T, bag), n2)
such that the root is labeled with σ(ε) = (w,ϕ(a)) for some w ∈ T with a ∈ dom(w) and the
following conditions are satisfied for all u ∈W :
(∗) if σ(u) = (w,ψ(a)), then there is a (dom(w), n2)-subdivision ϑ′(a) of ψ(a), a splitting

ϑ0(a0), . . . , ϑ`(a`) of ϑ′(a), a homomorphism h from ϑ0(a0) to bag(w) given τ , and
successors u1, . . . , u` of u such that σ(ui) = (wi, ϑ′i(a′i)) for 1 ≤ i ≤ `, where each wi is a
neighbor of w in T with a′i ⊆ dom(wi) and ϑ′i(a′i) is obtained from ϑi(ai) by replacing
each variable x in the domain of h with the constant h(x).

Informally, a witness tree decomposes a homomorphism h from ϕ(x) to AT,bag into local
‘chunks’, each of which concerns only a single bag. In particular, the splitting ϑ0(a0), . . . , ϑk(ak)
in (∗) breaks the current C2RPQ down into components that are satisfied in different parts of
the tree-like structure.We need to first subdivide since satisfaction of NFA atoms is witnessed
by an entire path, and this path can pass through the current node several times. Fortunately,
the number of points introduced in a subdivision can be bounded: we can w.l.o.g. choose a
shortest path and such a path can pass through w at most once for each element in dom(w)
and each state of the automaton A, thus we need at most n2 points in subdivisions.

I Lemma 12. Let (T, bag, τ) be a type decorated tree-like structure, ϕ(x) ∈ cl(ϕ0) a C2RPQ,
and a ∈ dom(T, bag). Then there is a homomorphism h from ϕ(x) to (T, bag, τ) with h(x) = a

iff there is a witness tree for ϕ(a) in (T, bag, τ).

4 Automata-Based Decision Procedure

We now reduce satisfiability of UNFOreg sentences to the nonemptiness problem of two-way
alternating tree automata. We start with recalling this automata model and discuss the
encoding of tree-like structures as an input to automata.
Two-way alternating tree automata. A tree is k-ary if each node has exactly k successors.
As a convention, we set w · 0 = w and wc · (−1) = w, leave ε · (−1) undefined, and for any
k ∈ N, set [k] = {−1, 0, . . . , k}. Let Σ be a finite alphabet. A Σ-labeled tree is a pair (T, L)
with T a tree and L : T → Σ a node labeling function.
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An alternating 2-way tree automaton (2ATA) over Σ-labeled k-ary trees is a tuple
A = (Q,Σ, q0, δ, F ) where Q is a finite set of states, q0 ∈ Q is an initial state, δ is the
transition function, and F is the (parity) acceptance condition, that is, a finite sequence
G1, . . . , Gk with G1 ⊆ G2 ⊆ . . . ⊆ Gk = Q. The transition function maps a state q and
an input letter a ∈ Σ to a positive Boolean formula over the constants true and false, and
variables from [k]×Q. The semantics is given in terms of runs in the appendix of the long
version. As usual, L(A) denotes the set of trees accepted by A. The nonemptiness problem
for 2ATAs is the problem to decide, given a 2ATA A, whether L(A) is nonempty. It can
be solved in time single exponential in the number of states and the number of sets in the
parity condition, and linear in the size of the transition function [48].
Encoding of tree-like structures. Let ϕ0 be a normal UNFOreg sentence whose satisfiability
we want to decide. By Lemma 9, this corresponds to deciding the existence of a proper type
decorated tree-like structure for ϕ0 (of certain dimensions) and thus our aim is to build a
2ATA A such that L(A) 6= ∅ if and only if there is such a structure. 2ATAs cannot run
directly on tree-like structures because the labeling of the underlying trees is not finite: we
have already shown that UNFOreg does not have the finite model property and thus it might
be necessary that infinitely many elements occur in the bags. We therefor use an appropriate
encoding that ‘reuses’ element names so that we can make do with finitely many element
names overall, similar to what has been done, for example, in [36, 1].

Let R1, . . . , R` be the predicate symbols that occur in ϕ0 and let m be the width
of ϕ0. Fix a finite set ∆ with 2m elements and define Σ to be the set of all pairs (bag, τ)
such that bag = (A,Rbag

1 , . . . , Rbag
` ) is a structure that satisfies A ⊆ ∆ and |A| ≤ m, and

τ : A→ TP(ϕ0) is a map that assigns a 1-type to every element in bag.
Let (T, L) be a Σ-labeled tree. For convenience, we use bagw to refer to the first component

of L(w) and τw to refer to the second component, that is, L(w) = (bagw, τw). Moreover, domw

is shorthand for dom(bagw). For an element d ∈ ∆, we say that v, w ∈ T are d-equivalent
if d ∈ domu for all u on the unique shortest path from v to w. Informally, this means that
d represents the same element in bagv and in bagw. In case that d ∈ domw, we use [w]d to
denote the set of all v that are d-equivalent to w. We say that (T, L) is type consistent if, for
all d ∈ ∆ and all d-equivalent v, w ∈ T , τv(d) = τw(d). Each type consistent (T, L) represents
a type decorated tree-like structure (T, bag′, τ ′) of width at most m as follows. The domain of
A(T ′,bag′) is the set of all equivalence classes [w]d with w ∈ T and d ∈ domw. The function τ ′
maps each domain element [w]d to τw(d), which is well-defined since (T, L) is type consistent.
Finally, for every w ∈ T , the structure bag′(w) = (A(w), Rbag(w)

1 , . . . , R
bag(w)
` ) is defined by:

A(w) = {[w]d | d ∈ domw},

R
bag′(w)
i = {([w]d1 , . . . , [w]dj ) | (d1, . . . , dj) ∈ Rbagw

i } for 1 ≤ i ≤ `.

Conversely, for every type decorated tree-like structure (T, bag, τ) of width m, there is a
Σ-labeled tree (T, L) that represents a type decorated tree-like structure (T, bag′, τ ′) such
that there is an isomorphism π between A(T,bag) and A(T,bag′) that satisfies τ(d) = τ ′(π(d)),
for all d ∈ dom(T, bag). In fact, since ∆ is of size 2m, it is possible to select a mapping
π : dom(T, bag)→ ∆ such that for each w ∈ T \ {ε} and each d ∈ dom(w) \ dom(w · −1), we
have π(d) /∈ {π(e) | e ∈ dom(w · −1)}. Define the Σ-labeled tree (T, L) by setting, for all
w ∈ T , bagw to the image of bag(w) under π and τw to the map defined by τw(h(d)) = τ(d),
for all d ∈ domw. Clearly, π satisfies the desired properties.

The notion of a witness tree carries over straightforwardly from type decorated tree-like
structures to type consistent Σ-labeled trees. In fact, one only needs to replace τ with τw
in Condition (∗). Then, there is a witness tree for ϕ(a) in a type consistent (T, L) iff there
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is a witness tree for ϕ(a) in the type decorated tree-like structure (T, bag′, τ ′) represented
by (T, L). The notion of properness also carries over straightforwardly. For easier reference,
we spell it out explicitly below, and also replace the homomorphisms from the original
formulation by witness trees as suggested by Lemma 12. A type consistent Σ-labeled tree
(T, L) is proper if for all w ∈ T and a ∈ domw,
1′. for all ∃xϕ(x) ∈ cl(ϕ0), ∃xϕ(x) ∈ τw(a) iff there is a v ∈ T , b ∈ domv with ϕ(x) ∈ τv(b);
2′. for all C2RPQs ϕ(x) ∈ cl(ϕ0), ϕ(x) ∈ τw(a) iff there is a witness tree for ϕ(a) in (T, L).
It is straightforward to verify that (T, L) is proper iff the type decorated tree-like structure
(T, bag′, τ ′) represented by (T, L) is proper. Thus, our aim is to build a 2ATA A that accepts
exactly the proper type consistent Σ-labeled trees (T, L) such that ϕ0 ∈ τw(a) for some
w ∈ T and a ∈ domw.
Automata construction. Let n be the size of ϕ0, k = n2 + n the bound on the outdegree
from Lemma 9, and assume from now on that the automata run over k-ary Σ-labeled trees.
It is straightforward to construct a 2ATA A0 that accepts (T, L) iff it is type consistent and
satisfies Condition 1′ of properness and the condition that ϕ0 ∈ τw(a) for some w ∈ T and
a ∈ domw. The number of states of the automaton is linear in the size of ϕ0; details are
omitted. We next show how to construct a 2ATA A1 = (Q,Σ, q0, δ, F ) that accepts a type
consistent (T, L) iff Condition 2′ is satisfied. The automaton uses the set of states

Q = {q0} ∪ {ϕ(a), ϕ(a) | ϕ(a) ∈ qcl(ϕ0,∆, n2)}.

where states of the form ϕ(a) are used to verify the ‘only if’ part of Condition 2′ while states
of the form ϕ(a) are used to verify the contrapositive of the ‘if’ part, that is, whenever a
C2RPQ ϕ(x) ∈ cl(ϕ0) is not in τw(a), then there is no witness tree for ϕ(a) in (T, L).

Starting from the initial state, A1 loops over all nodes and domain elements using the
following transitions, for all (bag, τ) ∈ Σ:

δ(q0, (bag, τ)) =
∧

1≤i≤k
(i, q0) ∧

∧
a∈dom(bag)

( ∧
ϕ(x)∈τ(a),

ϕ(x) a C2RPQ

ϕ(a) ∧
∧

¬ϕ(x)∈τ(a),
ϕ(x) a C2RPQ

ϕ(a)
)

We next give transitions for states of the form ϕ(a) ∈ qcl(ϕ0,∆, n2). Informally, if the
automaton visits a node w in state ϕ(a), then this is an obligation to show that there is
a witness tree whose root is labeled with (w,ϕ(a)). In particular, the automaton has to
demonstrate that there are suitable successors for the root of the witness tree, implement-
ing Condition (∗). For a more concise definition of the transitions, we first establish a
suitable notation. Let ϕ(a), ϑ1(a1), . . . , ϑ`(a`) ∈ qcl(ϕ0,∆, n2) and (bag, τ) ∈ Σ. We write
ϕ(a) →(bag,τ) ϑ1(a1), . . . , ϑ`(a`) if there is a (∆, n2)-subdivision ϑ(a′) of ϕ(a), a splitting
ϑ′0(a′0), . . . , ϑ′`(a′`) of ϑ(a′), a homomorphism h from ϑ′0(a′0) to bag given τ , and ϑi(ai) is
obtained from ϑ′i(a′i) by replacing each variable x in the domain of h with the constant
h(x); please note that this is an essential part of Condition (∗). Then, we include for each
ϕ(a) ∈ qcl(ϕ0,∆, n2) and each (bag, τ) ∈ Σ the transition

δ(ϕ(a), (bag, τ)) =
∨

ϕ(a)→(bag,τ)ϑ1(a1),...,ϑ`(a`)

∧
1≤i≤`

∨
j∈[k]\{0}

(j, ϑi(ai))

if a ⊆ dom(bag) and set δ(ϕ(a), (bag, τ)) = false otherwise. States of the form ϕ(a) are
treated dually, that is, using the transitions

δ(ϕ(a), (bag, τ)) =
∧

ϕ(a)→(bag,τ)ϑ1(a1),...,ϑ`(a`)

∨
1≤i≤`

∧
j∈[k]\{0}

(j, ϑi(ai))
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if a ⊆ dom(bag) and setting δ(ϕ(a), (bag, τ)) = true otherwise.
To ensure that the witness trees constructed by the states of the form ϕ(a) are finite,

we use the parity condition F = G1, G2 with G1 = qcl(ϕ0,∆, n2) and G2 = Q. From an
accepting run of A1 on an input tree (T, L), one can extract the witness trees that are
required to show that the ‘only if’ direction of Condition 2′ is satisfied. Moreover, the run
demonstrates that the witness trees forbidden by the ‘if’ direction do not exist. We thus
obtain the following.

I Lemma 13. The UNFOreg sentence ϕ0 is satisfiable iff L(A0) ∩ L(A1) is not empty.

Putting together Lemmas 8, 11, and 13, it follows that satisfiability in UNFOreg is in
2ExpTime. The corresponding lower bound is inherited from UNFO [47].

I Theorem 14. In UNFOreg, satisfiability is 2ExpTime-complete.

5 OMQ Evaluation and Containment

We study the complexity of OMQ evaluation and OMQ containment in (UNFOreg,UC2RPQ).
Recall that the complexity of OMQ evaluation can be measured in different ways. In combined
complexity, both the OMQ and the database on which it is evaluated are considered to be
an input. In data complexity, the OMQ is fixed and the database is the only input. We
first state our main result regarding the combined complexity of OMQ evaluation and the
complexity of OMQ containment.

I Theorem 15. In (UNFOreg,UC2RPQ),
1. OMQ evaluation is 2ExpTime-complete in combined complexity and
2. OMQ containment is 2ExpTime-complete.
The upper bounds in Theorem 15 are a consequence of Lemmas 6 and 7 and Theorem 14. The
lower bounds hold already when predicates are at most binary. For Point 1 this follows from
the fact that OMQ evaluation is 2ExpTime-hard even for OMQs from the class (ALCI,CQ)
where the ontology is formulated in the description logic ALCI, a fragment of UNFO with
only unary and binary predicates, and the actual query is a CQ [39]. The same is true for
Point 2 since in (ALCI,CQ), OMQ evaluation can be reduced in polynomial time to OMQ
containment in a straightforward way.

We next study the data complexity of (UNFOreg,UC2RPQ). A coNP lower bound is
again inherited from (rather small) fragments of (UNFOreg,C2RPQ) [38, 23]. We give a
coNP upper bound, thus establishing the following.

I Theorem 16. OMQ evaluation in (UNFOreg,UC2RPQ) is coNP-complete in data com-
plexity.

Instead of directly considering OMQ evaluation, we work with a problem that we call
database satisfiability. A database D is satisfiable with an UNFOreg sentence ϕ if there
is a model of ϕ that extends D. Let ϕ be an UNFOreg sentence and Σ a set of predicate
symbols. The database satisfiability problem associated with ϕ and Σ is to decide, given a
Σ-database D, whether D is satisfiable with ϕ. Note that OMQ evaluation can be reduced
in polynomial time to Boolean OMQ evaluation as in the proof of Lemma 6. Moreover, for a
Boolean OMQ Q = (O,Σ, q) and a Σ-database D, D 6|= Q iff D is satisfiable with O ∧ ¬q.
Consequently, a coNP upper bound for OMQ evaluation in (UNFOreg,UC2RPQ) can be
proved by establishing an NP upper bound for database satisfiability in UNFOreg.
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Let ϕ0 be an UNFOreg formula and Σ a set of predicate symbols. We may assume w.l.o.g.
that ϕ0 is normal and that every symbol from Σ occurs in ϕ0. Subdivisions and splittings,
defined as in Section 3, shall again play an inportant role. However, instead of subdividing
an atom A(t, t′) into at most n2 many atoms, we use at most two intermediary points.
Informally, this splits a witnessing path for A(t, t′) into three parts: the first part is from t

to the first element from D that appears on the path, the third subdivision atom represents
the part from the last element from D that appears on the path to t′, and the second atom
represents the remaining middle part of the path.

We use ecl(ϕ0) to denote the union of cl(ϕ0) and qcl(ϕ0), closed under single negation,
where qcl(ϕ0) is qcl(ϕ0, {x}, 2) extended with the set of all A[q0/s, F/{s′}](x, x) such that A
is an NFA that occurs in ϕ0 and s, s′ are states in A. An extended 1-type for ϕ0 is a subset
t ⊆ ecl(ϕ0) such that t satisfies the conditions for being a 1-type from Section 3. We denote
with eTP(ϕ0) the set of all extended 1-types for ϕ0.

Let D be a Σ-database. A type decoration for D is a mapping τ : dom(D)→ eTP(ϕ0).
We write D, τ |= A(a, b) if D |= A(a, b) with the semantics of tests reinterpreted: instead
of demanding D |= ϕ(a′) for a test ϕ(x)? to hold at an element a′, we now require that
ϕ(x) ∈ τ(a′). Let ϕ(a) be an (instantiated) C2RPQ. A homomorphism from ϕ(a) to D
given τ is a function h : a ∪ var(ϕ) → dom(D) such that the following conditions are
satisfied: h(a) = a, h(t) ∈ RD for each R(t) ∈ ϕ(a), and for each A(t, t′) ∈ ϕ(a), there are
a1, . . . , an ∈ dom(D) and states s0, . . . , sn from A, and a word ν1 · · · νn−1 from the alphabet
of A such that
(a) a1 = h(t), an = h(t′), s0 = q0, and sn ∈ F ,
(b) (ai, ai+1) ∈ RD if νi = R, (ai+1, ai) ∈ RD if νi = R−, and θ(x) ∈ τ(ai) and ai+1 = ai if

νi = θ(x)?, for 1 ≤ i < n, and
(c) (s, νi, si+1) ∈ ∆ for some s with A[q0/si, F/{s}](x, x) ∈ τ(ai+1), for 0 ≤ i < n.
Note that Condition (c) admits the spontaneous change from state si to state s at ai+1,
without reading any of the νj symbols, when the atom A[q0/si, F/{s}](x, x) is contained in
τ(ai+1), asserting that we can indeed get from si to s starting at ai+1 and cycling back there
while reading some unknown subword.

A type decoration τ is called proper if for all a ∈ dom(D), the following hold:
1.
∧
ψ(x)∈τ(a) ψ(a) is satisfiable;

2. ∃xϕ(x) ∈ τ(a) iff ∃xϕ(x) ∈ τ(b), for all a, b ∈ dom(D) and all ∃xϕ(x) ∈ cl(ϕ0);
3. if ¬ψ(x) ∈ τ(a) for some ψ(x) ∈ qcl(ϕ0), then for each (dom(D), 2)-subdivision ϑ(a) of

ψ(a) and each splitting ϑ0(a0), ϑ1(a1), . . . , ϑ`(a`) of ϑ(a) such that there is a homomorph-
ism h from ϑ0(a0) to D given τ , there is an i ∈ {1, . . . , k} such that ¬ϑi(x) ∈ τ(ai).

Our NP procedure for database satisfiability is, given a Σ-database D, to guess a type
decoration τ for D and to then verify in deterministic polynomial time that D is proper.
Note that the size of a type decoration is O(c · |D|) for some constant c. The satisfiability
checks in Point 1 of properness concern sentences whose size is independent of D, thus they
need only constant time. Point 2 can be checked in time quadratic in the size of D. For
Point 3, note that there are only polynomially many (dom(D), 2)-subdivisions and splittings
(in the size of D). To check the existence of the required homomorphism h, we can go
through all candidates, directly verifying the homomorphism condition for relational atoms
and proceedings as follows for NFA atoms: first extend D by exhaustively adding ‘implied
facts’ of the form A(a, b), also taking into account assertions of the form A[q0/si, F/{s}](x, x)
that occur in τ -labels, as in Condition (c) above, and then treat NFA atoms like relational
atoms. The following lemma finishes the proof of Theorem 16.
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I Lemma 17. D is satisfiable with ϕ0 iff D has a proper type decoration τ such that
ϕ0 ∈ τ(a0) for some a0 ∈ dom(D).

6 Model Checking

We show that model checking in UNFOreg is complete for PNP[O(log2 n)], the class of problems
that can be solved in polyniomial time given access to an NP oracle, but with only O(log2 n)
many oracle calls admitted. It thus has the same complexity as model checing in UNFO.
Formally, the model checking problem for UNFOreg is as follows: given a finite structure A

and a UNFOreg sentence ϕ, does A |= ϕ hold? Without tests in path expressions, UNFOreg

model checking can easily be reduced to model checking in UNFO: simply extend the input
structure by exhaustively adding ‘implied facts’ of the form A(a, b) and then replace every A
with a fresh binary relation symbol in both ϕ and A, obtaining an instance of UNFO model
checking. With tests, this does not work. We would need multiple calls to UNFO model
checking, essentially one call for every subformula inside a test in the input formula, but this
bring us outside of PNP[O(log2 n)]. We thus resort to expanding the PNP[O(log2 n)]upper bound
proof from [47], which is by reduction to a PNP[O(log2 n)]-complete circuit value problem.

I Theorem 18. The UNFOreg model checking problem is PNP[O(log2 n)]-complete.

7 Conclusion

We have proved that OMQ evaluation in (UNFOreg,UC2RPQ) is decidable, 2ExpTime-
complete in combined complexity, and coNP-complete in data complexity, and that OMQ
containment and satisfiability are also 2ExpTime-complete. There are several interesting
topics for future work. First, in contrast to UNFO, UNFOreg does not have the finite model
property and thus it would be interesting to study OMQ evaluation over finite models as well
as finite satisfiability. Second, there are various natural directions for further increasing the
expressive power. For example, one could allow any UNFOreg formula with two free variables
as a base case in regular path expressions instead of only atomic formulas. Such a logic
would be strictly more expressive than propositional dynamic logic (PDL) with converse
and intersection [31] and it would push the expressive power of UNFOreg into the direction
of regular queries, which have recently been proposed as an extension of C2RPQs [42].
Another natural extension was proposed by a reviewer of this paper: replace C2RPQs
with linear Datalog to remove the asymmetry between binary relations and relations of
higher arity in UNFOreg. Additional relevant extensions could arise from the aim to capture
additional description logics. From this perspective, it would for example be natural to
extend UNFOreg with constants, with fixed points, and with so-called role inclusions, please
see [5]. Since functional relations and similar forms of counting play an important role in
description logics, we remark that it is implicit in [47] that satisfiability (and thus OMQ
evaluation) is undecidable in UNFO extended with two functional relations. Finally, it would
be interesting to inverstigate the complexity of OMQ containment in (UNFOreg,C2RPQ)
without the restriction to a single ontology and to the full data signature. For (UNFO,CQ), a
2NExpTime upper bound can be proved by a slight adaptation of the technique in [21], also
using (a slightly refined version of) the translation from (UNFO,CQ) to monadic disjunctive
Datalog from [19]. However, accommodating C2RPQs in this approach seems nontrivial.
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A Proofs for Section 2

I Lemma 6. OMQ evaluation in (UNFOreg
trans,UC2RPQ) reduces in polynomial time to

satisfiability in UNFOreg, and so does satisfiability in UNFOreg
trans.

Proof. We proceed in three steps: first, we reduce evaluation of Boolean OMQs in (UNFOreg
trans,

UC2RPQ) to satisfiability in UNFOreg
trans; second, we reduce satisfiability in UNFOreg

trans to
satisfiability in UNFOreg; third, we reduce evaluation of (general) OMQs to the Boolean case.
For the sake of a convenient notation, we denote structures (and thus databases) as sets of
facts.

(1) For the reduction from Boolean OMQ evaluation to satisfiability, let D be a database
and Q = (O,Σ, q) an OMQ with O a UNFOreg

trans formula and q a Boolean UC2RPQ. We
show that

D |= Q iff ϕD ∧ O ∧ ¬q is unsatisfiable,

where ϕD is D viewed as a Boolean CQ in the obvious way.
The ‘if’ direction is immediate. To prove ‘only if’, assume A |= ϕD() ∧ O ∧ ¬q for some

structure A. In particular, A |= ϕD() is witnessed by a homomorphism h from D to A. If h
is injective, then A is an extension of D and thus witnesses D 6|= Q as desired. If h is not
injective, we have to extend A iteratively, in each step taking an element a that has two
distinct preimages b1, b2 under h, creating a fresh copy a′, duplicating all tuples in which
a participates, and updating h such that it maps b1 to a and b2 to a′. After exhaustive
application of this step, we obtain a structure A′ that homomorphically embeds into A and
is UN-bisimilar [47] to A, plus an injective homomorphism h′ from D to A′. Together with
the assumption, this implies that A′ |= O ∧ ¬q and A′ extends D; hence D 6|= Q as desired.

(2) Let ϕ be UNFOreg
trans sentence with transitivity atoms trans(R1), . . . , trans(Rn). Transform

ϕ into a UNFOreg sentence ϕ′ by dropping the transitivity atoms and replacing each atom
Ri(x, y) with the (regular expression) atom R+

i (x, y). It is straightforward to show that ϕ is
satisfiable if and only if ϕ′ is.

(3) For the reduction from (general) OMQ evaluation to the Boolean case, let Q = (O,Σ, q(x))
be an OMQ in (UNFOreg

trans,UC2RPQ) with q(x) = q1(x) ∨ · · · ∨ qn(x) such that qi(x) =
∃yi ϕi(x,yi) and x = x1, . . . , xn, D a database, and a ⊆ dom(D) with a = a1, . . . , an. We
construct a new OMQ Q′ and database D′ by taking fresh unary predicates P1, . . . , Pn and
setting:

D′ = D ∪ {P1(a1), . . . , Pn(an)}
Q′ =

(
O,Σ, q′()

)
, where

q′() = q′1() ∨ · · · ∨ q′n(), with
q′i() = ∃xyi

(
ϕi(x,yi) ∧ P1(x1) ∧ · · · ∧ Pn(xn)

)
It suffices to prove the following claim, which is nearly straightforward.

Claim. a ∈ cert(Q,D)⇔ () ∈ cert(Q′, D′)

Proof of Claim. We proceed via contraposition in both directions.
‘⇒’ Assume () /∈ cert(Q′, D′). Then there is a structure A that extends D′ and is a

model of O with () /∈ ans(q′,A). Since A extends D′ it also holds that a /∈ ans(q,A)
(because otherwise the witnessing homomorphism would also witness () ∈ ans(q′,A), a
contradiction). Hence a /∈ cert(Q,D).
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‘⇐’ Suppose a /∈ cert(Q,D). Then there is a structure A that extends D and is a model of O
with a /∈ ans(q,A). Consider the structure A′ = A ∪ {P1(a1), . . . , Pn(an)}, which extends
A and is a model of O (since the Pi were fresh). In addition, it holds that () /∈ ans(q′,A′)
(because otherwise the witnessing homomorphism would also witness a /∈ ans(q,A), a
contradiction). Hence () /∈ cert(Q′, D′). J

I Lemma 7. OMQ containment in (UNFOreg,UC2RPQ) reduces in polynomial time to
satisfiability in UNFOreg.

Proof. It suffices to reduce containment between Boolean OMQs to satisfiability; the case of
general OMQs can be reduced to the Boolean case by applying the construction described in
the proof of Lemma 6, Step 3, to both input OMQs.

Let Q1 = (O,Σfull, q1) and Q2 = (O,Σfull, q2) be OMQs with O a UNFOreg sentence and
q1, q2 Boolean UC2RPQs. Then the following holds:

Q1 ⊆ Q2 iff O ∧ q1 ∧ ¬q2 is unsatisfiable.

For the ‘if’ direction, assume Q1 * Q2. Then there is a database D with cert(Q1, D) *
cert(Q2, D), i.e., there is a structure A extending D such that A |= O, A |= q1, and A 6|= q2.
Hence O ∧ q1 ∧ ¬q2 is satisfiable.

For the ‘only if’ direction, assume that O ∧ q1 ∧ ¬q2 is satisfiable. Then A |= O, A |= q1,
and A 6|= q2 for some structure A. Then A contains some (finite) database D witnessing
Q1 * Q2. J

I Lemma 8. Every UNFOreg sentence ϕ can be transformed into an equivalent normal
UNFOreg sentence ϕ′ in single exponential time. Moreover, the width and the atom width
of ϕ′ are at most polynomial in the size of ϕ and the path expressions that occur in ϕ′ are
exactly those in ϕ.

Proof. By Lemma 4.1 of [47], we can convert any UNFO sentence ϕ in single exponential
time into an equivalent UNFO sentence ϕ′ generated by the following grammar:

ϕ(x) ::= ∃yψ(x,y) | ¬ϕ(x) | ϕ(x) ∨ ϕ(x)

where ∃yψ(x,y) is a CQ that might contain equality atoms. The transformation steps are
rather straightforward and also work for UNFOreg with the only difference that ∃yψ(x,y)
is then a C2RPQ that might contain equality atoms. The transformation may cause an at
most single exponential blowup in formula size and it satisfies the requirements regarding
parameters formulated in Lemma 8.

We can easily eliminate equality atoms in C2RPQs by identifying variables; when a free
variable is identified with a quantified variable, we use the name of the free variable.

It remains to make C2RPQs connected. Let ∃yψ(x,y) be a C2RPQ subformula such
that ψ(x,y) has the connected components ψ(x,y0), ψ(y1), . . . , ψ(yk), k ≥ 1. We replace it
with the conjunction of ϕ0 = ∃y0 ψ(x,y0) and ϕ1 = ∃y1 ψ(y1), . . . , ϕk = ∃ykψ(yk), that is,
with the C2RPQ ϕ0?(x), ϕ1?(x), . . . , ϕk?(k). Note that this C2RPQ and all C2RPQs inside
the tests are connected. In fact, in can be verified that the resulting UNFOreg sentence is
normal according to our definition. J

B Proofs for Section 3

I Lemma 9. A normal UNFOreg sentence ϕ0 of size n and width m is satisfiable iff there is
a proper type decorated tree-like structure (T, bag, τ) for ϕ0 of width at most m and outdegree
at most n2 + n such that ϕ0 ∈ τ(a) for some a.
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Proof. (⇐) Assume a proper type decorated tree-like structure (T, bag, τ) for ϕ0. It is
easily verified by induction on the structure of formulas that, for all ψ(x) ∈ cl(ϕ0) and all
a ∈ dom(T, bag), we have A(T,bag) |= ψ(a) if, and only if, ψ(x) ∈ τ(a). Since ϕ0 ∈ τ(a) for
some a, we get A(T,bag) |= ϕ0.

(⇒) Let A |= ϕ0 for a UNFOreg sentence ϕ0 of size n. In order to construct a tree-like
structure (T, bag), we use an unraveling technique during which we maintain a mapping
h : dom(T, bag) → A and an additional labeling E(w) containing expressions of the form
A(b, b′), for each w ∈ T . Throughout the construction, we preserve as an invariant that
h is a homomorphism and that for each A(b, b′) ∈ E(w), we have b, b′ ∈ dom(w) and
A |= A(h(b), h(b′)).

Start with choosing elements a1, . . . , ak ∈ A such that, for every formula of the form
∃xψ(x) ∈ cl(ϕ0) with A |= ∃xψ(x), there is some i ∈ {1, . . . , k} and A |= ψ(ai). Initialize
(T, bag) by setting T = {ε, 1, . . . , k}, bag(ε) to the empty structure, and bag(i) = A|{ai}, for
every i ∈ {1, . . . , k}, where A|X denotes the restriction of A to domain X. Moreover, set
h(ai) = ai and E(ε) = E(i) = ∅, for all i ∈ {1, . . . , k}. Clearly, the invariants are satisfied.

Then, apply the following steps exhaustively and in a fair way:
Choose a node w ∈ T , an element a ∈ dom(w), and a C2RPQ ψ(x) ∈ cl(ϕ0) with
A |= ψ(h(a)). There is a mapping β : var(ψ) → A such that β(x) = h(a), and for each
atom R(z) ∈ ψ, we have β(z) ∈ RA, and for each A(z, z′) ∈ ψ, A an NFA, we have
A |= A(β(z), β(z′)). Let B = {β(z) | z ∈ var(ψ)}, and create a successor v of w where the
associated structure bag(v) is obtained from A|B by replacing each b ∈ B \ {h(a)} with a
fresh b′, and h(a) with a. Extend h by setting h(b′) = b, for all introduced b′. Finally, set
E(w) = {A(β(z), β(z′)) | A(z, z′) ∈ ψ} where b is b′ for all b ∈ B \ {h(a)} and h(a) is a.
Choose a node w ∈ T and a label A(b, b′) ∈ E(w). By the invariant for E(w), we know
that A |= A(h(b), h(b′)). Take a shortest sequence a1, . . . , an ∈ A and word ŵ ∈ L(A) of
length n− 1 such that a1 = h(b), an = h(b′), and (ai, ai+1) ∈ RA if the ith symbol in ŵ
is R, (ai+1, ai) ∈ RA if the ith symbol in ŵ is R−, and ai = ai+1 and A |= ϕ(ai) if the
ith symbol in ŵ is ϕ(x)?. If n ≤ 2, then, by construction, bag(w) |= A(b, b′), so we can
stop. If n > 2, let A = (Q,Σ, q0,∆, F ) and q0, . . . , qn be a sequence of states such that
(qi, ai+1, qi+1) ∈ ∆ for all i with 0 ≤ i < n and qn ∈ F . Define B = {a1, a2, an, an−1}
and B′ = B \ {a1, an}. Then create a successor v of w, and set bag(v) to the structure
obtained fom A|B by replacing every d ∈ B′ with a fresh d′, a1 with b, and an with b′.
Finally, extend h by setting h(d′) = d for all d ∈ B′, and set E(v) to the singleton set
containing A[q0/q1, F/{qn−1}](a2, an−1), where d is d′, for all d ∈ B′, and a1 = b and
an = b′.

By definition of the rules, the invariants regarding h and E are preserved.
Let (T ∗, bag∗) and h∗ be the tree-like structure and homomorphism, respectively, obtained

in the limit of the unraveling. We define a type decoration τ by taking τ(a) = {ψ(x) ∈ cl(ϕ0) |
A |= ψ(h∗(a))}, for all a ∈ dom(T ∗, bag∗). It is not difficult to verify that A(T∗,bag∗) |= ψ(a)
iff ψ(x) ∈ τ(a), for all a ∈ dom(T ∗, bag∗) and all ψ(x) ∈ cl(ϕ0). In particular, we have:

if ψ(x) ∈ τ(a) is a C2RPQ, then A |= ψ(h∗(a)). Since steps 1 and 2 were applied
exhaustively, we know that A(T∗,bag) |= ψ(a).
Let ¬ψ(x) ∈ τ(a) for a C2RPQ ψ(x) and assume A(T∗,bag) |= ψ(a). Since h∗ is a
homomorphism from A(T∗,bag∗) to A, we also have A |= ψ(h∗(a)), a contradiction to the
definition of τ .

Consequently, (T ∗, bag∗, τ) is proper. Finally, observe that the size of the bag created is
bounded by m in the first step and by 4 in the second step. For the outdegree, observe that
a bag created in the second step has outdegree 1, while a bag created in the first step has
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outdegree at most n2 + n. J

I Lemma 11. The cardinality of qcl(ϕ0,∆, s) is bounded by p · (a2dm)m′ , where p is the
number of C2RPQs in ϕ0, a the maximal number of states in an NFA in ϕ0, d the cardinality
of ∆, m the width of ϕ0, and m′ the atom width of ϕ0.

Proof. Each query in qcl(ϕ0,∆, s) can be obtained from a C2RPQ ϕ(x) ∈ cl(ϕ0) by first
dropping atoms, then replacing NFA atoms A(t, t′) with an atom A′(t̂, t̂′) where A′ is obtained
from A by replacing the initial state and replacing the set of final states with a single state,
t̂ is t or a fresh constant, and t̂′ is t′ or a fresh constant, and finally replacing existentially
quantified variables with constants from ∆; to see this, it is important to consider Condition 3
of splittings and to note that the ψ0-component of splittings is not included in qcl(ϕ0,∆, s).
Thus the number of atoms in each query in qcl(ϕ0,∆, s) is at most m′. Furthermore, each
atom can take on a2dm variations by replacing NFA states as described and/or replacing
variables with constants. Thus each of the p C2RPQs ϕ(x) ∈ cl(ϕ0) contributes at most
(a2dm)m′ C2RPQs to qcl(ϕ0,∆, s). J

I Lemma 12. Let (T, bag, τ) be a type decorated tree-like structure, ϕ(x) ∈ cl(ϕ0) a C2RPQ,
and a ∈ dom(T, bag). Then there is a homomorphism h from ϕ(x) to (T, bag, τ) with h(x) = a

iff there is a witness tree for ϕ(a) in (T, bag, τ).

Proof. (⇒) Let h be a homomorphism from ϕ(x) to (T, bag, τ) with h(x) = a. We inductively
construct a witness tree (W,σ) for ϕ(a) in (T, bag, τ). During the construction, we maintain
the following invariants for all nodes u ∈W with σ(u) = (w,ψ(a)):

(i) for all R(t) ∈ ψ(a)), we have h(t) ∈ RA(T,bag) ;
(ii) for all A(t, t′) ∈ ψ(a), we have A(T,bag), τ |= A(h(t), h(t′)).

We start the construction with setting σ(ε) = (w,ϕ(a)) for some w ∈ T with a ∈ dom(w),
obviously satisfying (i) and (ii).

Then, apply the following step exhaustively. Let u ∈W be an unprocessed node in the
witness tree constructed so far, and assume that σ(u) = (w,ψ(a)). First, assign to each
constant a ∈ dom(T, bag) \ dom(w) the (uniquely defined) value κ(a) ∈ {−1, 1, . . . ,m}, m
the outdegree of T , such that w · κ(a) lies on the shortest path from w to the unique world
where a appears for the first time in (T, bag).

We use the mapping κ to assign atoms occurring in (a subdivision of) ψ(a) to neighboring
nodes of w, intuitively, to reflect where h maps different parts of ψ(a). Formally, we use
queries ψ−1(b−1), . . . , ψ`(b`), initialized with ∅, where ψi(bi) collects the parts of ψ(a) which
are sent to w · i, for all i. We process all atoms in ψ(a) as follows:
1. For each atom R(t) ∈ ψ(a), by invariant (i), we can fix a v ∈ T with h(t) ∈ Rbag(v) which

has minimal distance to w. We distinguish three cases:

a. if h(t) ∈ Rbag(w), then add R(t) to ψ0;
b. if h(t) ⊆ dom(w) and h(t) /∈ Rbag(w), then add R(t) to ψi where i is the (unique)

number such that w · i is on the shortest path to v;
c. if h(t) 6⊆ dom(w), add R(t) to ψi where i = κ(h(x)) for some x ∈ t with h(x) /∈ dom(w).

It is important to note that i is uniquely defined in this way. Indeed, assume two
variables x, y ∈ t with h(x), h(y) /∈ dom(w) and κ(h(x)) 6= κ(h(y)). Then, one of
w ·κ(h(x)) and w ·κ(h(y)) does not lie on the shortest path from w to v, say the latter.
However, by the connectedness property of tree decompositions, we know that then
h(y) appears in dom(w), a contradiction.
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2. For an atom A(t, t′) ∈ ψ(a), by invariant (ii), we can fix sequences a1, . . . , an and
s0, . . . , sn, and a word ν1 · · · νn−1 ∈ L(A) of minimal length such that a1 = h(t), an =
h(t′), s0 = q0, sn ∈ F , (si, νi, si+1) ∈ ∆, for all i ∈ {1, . . . , n− 1}, (ai, ai+1) ∈ RA(T,bag,τ)

if νi = R, (ai+1, ai) ∈ RA(T,bag,τ) if νi = R−, and θ(x) ∈ τ(ai) and ai+1 = ai if νi = θ(x)?.
Let I be the set of all i ∈ {1, . . . , n} such that ai ∈ dom(w).
If I = ∅, then t, t′ are variables with κ(h(t)) = κ(h(t′)). Add A(t, t′) to ψκ(h(t)).
Otherwise, that is, I 6= ∅, let i1 < . . . < ik be a linear order of the elements in I. If
a1 /∈ dom(w) and thus 1 /∈ I, then add A[F/{si1+1}](t, ai1) to ψκ(a1), and, if an /∈ dom(w)
and thus n /∈ I, then add A[q0/sik ](aik , t′) to ψκ(an). Moreover, for each j ∈ {1, . . . , k}
such that νij is not a test θ(x)? do:

if νij = R and (aij , aij+1) ∈ Rbag(w), then add A[q0/sij , F/{sij+1}](aij , aij+1) to ψ0;
if νij = R and (aij , aij+1) /∈ Rbag(w), then add A[q0/sij , F/{sij+1}](aij , aij+1) to ψi,
where i = κ(aij+1);
if νij = R− and (aij+1, aij ) ∈ Rbag(w), then add A[q0/sij , F/{sij+1}](aij , aij+1) to ψ0;
if νij = R− and (aij+1, aij ) /∈ Rbag(w), then add A[q0/sij , F/{sij+1}](aij , aij+1) to ψi,
where i = κ(aij+1).

It is crucial that in Step 2 the cardinality of I is bounded by m2, m the size of ϕ0. More
precisely, in sequences a1, . . . , an and s0, . . . , sn of minimal length, there are no i < j such that
ai = aj and si = sj , as otherwise we can obtain shorter sequences by dropping ai+1, . . . , aj
and si+1, . . . , sj . As both dom(w) and the number of states in A is bounded by m, the
claimed bound follows. It should thus be clear that ϑ(a) =

⋃
i ψi(bi) is a subdivision of ψ(a).

Note that the ψi(bi) need not be connected. Define a splitting ϑ0(a0), . . . , ϑ`(a`) of
ϑ(a) by setting ϑ0(a0) = ψ0(b0), and including, for each i ∈ {−1, 1, . . . ,m}, each connected
component ψ′(a′) of ψi(bi) in the sequence. By construction, h is a homomorphism from
ϑ0(a0) to bag(w) given τ . Finally, extend the witness tree by adding, for each ϑi(ai),
1 ≤ i ≤ `, a successor ui of u with σ(ui) = (w · j, ϑ′i(a′i)) where j is such that ϑi(ai) ⊆ ψj(bj)
and ϑ′i(a′i) is obtained from ϑi(ai) by replacing each variable x in the domain of h with h(x).
By construction, u satisfies (∗). Moreover, it is routine to verify that invariants (i) and (ii)
are preserved.

It remains to argue that the described process results in a finite tree. Clearly, the
constructed tree is finitely branching. For finite depth, consider first atoms of the form
R(t) ∈ ϕ(a). In Step 1, these atoms are always ‘sent’ to a closest v such that h(t) ∈ Rbag(v)
(Items 1b and 1c). This v is reached after finitely many steps. Consider now atoms of
the form A(t, t′). Assume some atom A(t0, t′0) is obtained in Step 2 applied to A(t, t′) and
that A(t0, t1) ∈ ϑi(ai). Let A(t′0, t′1) be the corresponding atom in ϑ′i(a′i). Then, by the
minimality condition, the witnessing sequences selected in Step 2 when applied to A(t′0, t′1)
while processing ϑ′i(a′i) is strictly shorter than the witnessing sequence for A(t, t′). Thus,
finite depth follows.

(⇐) Let (W,σ) be a witness tree for ϕ(a) in (T, bag, τ). We inductively construct a
homomorphism h from ϕ(x) to (T, bag, τ) such that h(x) = a.

Start with h(x) = a. Then apply the following rule exhaustively. Let u ∈W be a node in
the witness tree with σ(u) = (w,ψ(a)) such that all predecessor nodes have been processed.
Let g be the homomorphism witnessing Condition (∗) for u, and define h(z) = g(z) for all z
in the domain of g but not in the domain of h.

It is a consequence of Condition 2 of splittings and (∗), that h is well-defined. We show
that the result h of this process is a homomorphism from ϕ(x) to (T, bag, τ).

Consider first atoms of the form R(t). We prove by induction that, if R(t) ∈ ψ(a) for
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some u ∈W with σ(u) = (w,ψ(a)), then h(t) ∈ RA(T,bag) . The induction base is the case
when R(t) is put into ϑ0(a) by (∗). By definition of h, we know h(t) ∈ Rbag(w), thus
also h(t) ∈ RA(T,bag) . In the induction step, let R(t) ∈ ψ(a), but in (∗) the atom R(t) is
put into ϑi(ai) for some i > 0. By the definition of, R(t′) ∈ ϑ′i(a′) where t′ is obtained
from t by instantiating some variables z ∈ t with h(z). By induction, we know that
h(t′) ∈ RA(T,bag) , thus also h(t) ∈ RA(T,bag) .
Consider now atoms of the form A(t, t′). We prove by induction that, if A(t, t′) ∈ ψ(a) for
some u ∈W with σ(u) = (w,ψ(a)), then A(T,bag), τ |= A(h(t), h(t′)). The induction base
is the case when A(t, t′) is put into ϑ0(a0) by (∗). By (∗) and the definition of h, we know
that h is a homomorphism from A(t, t′) to bag(w), hence bag(w), τ |= A(h(t), h(t′)) and
thus A(T,bag), τ |= A(h(t), h(t′)). In the induction step, the atom A(t, t′) is subdivided
into atoms, say α1, . . . , αk. However, by definition of subdivisions and by (∗), it is
straightforward to prove that A(T,bag), τ |= A(h(t), h(t′)) given that A(T,bag), τ |= αi for
all i, by induction hypothesis.

J

C Proofs for Section 4

We give the semantics of 2ATAs. A run of A on a labeled tree (T, L) is a (Tr ×Q)-labeled
tree (Tr, r) such that r(ε) = (ε, q0) and whenever x ∈ Tr, r(x) = (w, q), and δ(q, L(w)) = θ,
then there is a set V = {(m1, q1), . . . , (mn, qn)} ⊆ [k] × Q such that V satisfies θ and for
1 ≤ i ≤ n, we have x · i ∈ Tr, w ·mi is defined, and r(x · i) = (w ·mi, qi). A run is accepting
if every infinite path π satisfies the parity condition F , that is, if there is an even i such that
inf(π) ∩Gi 6= ∅ and inf(π) ∩Gi−1 = ∅, where inf(π) ⊆ Q denotes the set of states that occur
infinitely often in π. The automaton accepts an input tree if there is an accepting run for it.

I Theorem 14. In UNFOreg, satisfiability is 2ExpTime-complete.

Proof. The lower bound follows from that for UNFO [47]. For the upper bound, let ϕ be a
UNFOreg sentence of size n. By Lemma 8, we can transform ϕ into an equivalent normal
UNFOreg sentence ϕ0 whose width m and atom width m′ are polynomial in n and whose
size is single exponential in n. Note that the number of 1-types for ϕ0 is double exponential
in n and that, by the bounds stated in Lemma 8 and by Lemma 11, the cardinality of
qcl(ϕ0,∆, n2) is single exponential in n.

We then build A0 and A1 for ϕ0 as described above. The number of states of A0 is
exponential in n and, by the bound on qcl(ϕ0,∆, n2) stated above, the same is true for
the number of states of A1. The alphabet Σ is of cardinality double exponential in n.
The transition functions of A0 and A1 can be computed in time double exponential in n.
Constructing the intersection 2ATA does not increase the number of states. In summary, the
final 2ATA A can be constructed in time double exponential in n and has single exponentially
many states in n. The number of sets in the parity condition is a constant. Consequently,
nonemptiness of A can be decided in time double exponential in ϕ. J

D Proofs for Section 5

I Lemma 17. D is satisfiable with ϕ0 iff D has a proper type decoration τ such that
ϕ0 ∈ τ(a0) for some a0 ∈ dom(D).

Proof. The ‘only if’ direction is rather straightforward. Let A be a model of D and ϕ0.



J. C. Jung, C. Lutz, M. Martel, and T. Schneider 15:25

Then we can define, for every a ∈ dom(D),

τ(a) = {ϕ(x) ∈ ecl(ϕ0) | A |= ϕ(a)}.

We aim to show that τ is a proper type decoration of D and that ϕ0 ∈ τ(a0), for some
a0 ∈ D. The latter is clear as, by assumption, A |= ϕ0. We verify Point 1 to 3 of properness.
Points 1 and 2 are clear as τ(a) is read off from a model of τ(a). Assume to the contrary of
what we aim to show that Point 3 is violated. Then there is an a ∈ dom(D), a ¬ψ(x) ∈ τ(a)
for some ψ(x) ∈ qcl(ϕ0), a subdivision ϑ(a) of ψ(a), a splitting ϑ0(a0), ϑ1(a1), . . . , ϑk(kk) of
ϑ(a) and a homomorphism h from ϑ0(a0) to D given τ , such that ¬ϑi(x) /∈ τ(ai), for all
1 ≤ i ≤ k. By definition of τ , we get that A |= ϑi(ai), for all i. It can be verified that this
implies A |= ψ(a), in contradiction to ¬ψ(x) ∈ τ(a). Thus, τ is proper.

Now for the ‘if’ direction. Assume that D has a proper type decoration τ . Then we find,
for each a ∈ dom(D), a model Aa of the formula in Point 1 of the definition of properness.
We assume w.l.o.g. that the domains of Aa and Ab are disjoint when a 6= b and that each
Aa shares with D only the constant a. Let A be obtained by taking the union of D and all
models Aa. Clearly, A is a model of D. It thus remains to show that it is also a model of ϕ0.
We start with an auxiliary claim.

Claim. For all a ∈ dom(D), b ∈ dom(Aa), and for all ϕ(x) ∈ ecl(ϕ0) with a free variable x,
we have Aa |= ϕ(b) iff A |= ϕ(b).

Proof of the Claim. The proof is by induction on the structure of ϕ(x). Since ϕ0 is
normal, there are three cases: negation ¬ϕ(x), unary disjunction ϕ(x) ∨ ψ(x), and C2RPQs
ϕ(x). Negation and unary disjunction are immediate; we consider only C2RPQs.

Let ϕ(x) ∈ ecl(ϕ0) be a C2RPQ. For (⇒), assume that Aa |= ϕ(b), that is, there is a
mapping h : var(ϕ)→ dom(Aa) such that h(x) = b and

h(x) ∈ RAa for all R(x) ∈ ϕ(x), and
Aa |= A(h(z), h(z′)) for all A(z, z′) ∈ ϕ(x).

By definition of A and the induction hypothesis applied to tests in A(z, z′), we also have
h(x) ∈ RA for all R(x) ∈ ϕ(x), and
A |= A(h(z), h(z′)) for all A(z, z′) ∈ ϕ(x).

Thus, we obtain A |= ϕ(b).
For (⇐), assume that A |= ϕ(b), that is, there is a mapping h : var(ϕ)→ dom(A) such

that h(x) = b and
h(x) ∈ RA for all R(x) ∈ ϕ(x), and
A |= A(h(z), h(z′)) for all A(z, z′) ∈ ϕ(x).

Fix a ∈ dom(D) such that b ∈ dom(Aa), and let U = {a} ∪ (dom(A) \ dom(Aa)). We first
define a query ψ0(x), which intuitively contains those parts of ϕ that are mapped to U by
h (that is, outside Aa); the free variable x ‘represents’ the domain element a. Formally, we
process ϕ(x) as follows:
1. for all R(x) ∈ ϕ(x) with h(x) 6⊆ dom(Aa), we have, by construction of A, that h(x) ⊆ U .

In this case, we include R(x′) in ψ0(x), where x′ is obtained from x by renaming every
y ∈ x satisfying h(y) = a with x.

2. for all A(z, z′) ∈ ϕ(x), there are sequences a1, . . . , an, s0, . . . , sn, and a word ν1 · · · νn−1 ∈
L(A) such that a1 = h(z), an = h(z′), s0 = q0, sn ∈ F , (si, νi, si+1) ∈ ∆, for all
i ∈ {1, . . . , n− 1}, (ai, ai+1) ∈ RA if νi = R, (ai+1, ai) ∈ RA if νi = R−, and θ(x) ∈ τ(ai)
and ai+1 = ai if νi = θ(x)?.
For all i, j with 1 ≤ i ≤ j ≤ n such that ai, . . . , aj is a subsequence of a1, . . . , an maximal
with ak ∈ U for all i ≤ k ≤ j, we distinguish four cases:
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if i = 1 and j = n, then add A[F/{sn}](z, z′) to ψ0(x),
if i = 1 and j 6= n, then add A[F/{sj−1}](z, x) to ψ0(x),
if i 6= 1 and j = n, then add A[q0/si−1, F/{sn}](x, z′) to ψ0(x),
if i 6= 1 and j 6= n, then add A[q0/si−1, F/{sj−1}](x, x) to ψ0.

Note that aj = a in the first, ai = a, in the second, and ai = aj = a in the last case.
Let ψ1(x), . . . , ψk(x) be all connected components of ψ0(x) with x considered as ‘constant’.
It is not hard to see that ψi(x) ∈ qcl(ϕ0), for every i ∈ {1, . . . , k}.

Assume first that Aa |= ψi(a), for all i ∈ {1, . . . , k}. In this case, we can modify h and
the witnessing sequences to ‘live’ completely in Aa, and thus obtain Aa |= ϕ(b). Assume now
that Aa 6|= ψi(a), for some i ∈ {1, . . . , k}. By Point 1, we have ¬ψi(x) ∈ τ(a). We now derive
a contradiction to Point 3 using the mapping h from above. For doing so, we assume that
dom(D) = {b1, . . . , b`} and define queries ϑ0(a0), ϑ′1(b1) . . . , ϑ′`(b`), where intuitively ϑ0(a0)
contains those atoms from ψi(x) which are mapped to dom(D) by h while ϑ′i(bi) contains all
atoms which are mapped to Abi by h. Formally, we proceed as follows:

for all R(x) ∈ ψi(x), we either have h(x) ∈ RD or h(x) ∈ RAbj , for some j. In the former
case, add R(x) to ϑ0(a); in the latter case, add R(x) to ϑ′j(bj), where x′ is obtained from
x by replacing every y ∈ x satisfying h(y) = bj with bj ;
Let A∗(z, z′) be an atom that was added in Step 2 above, and let ai, . . . , aj and si−1, . . . , sj
be the sub-sequences corresponding to this atom which were assumed there. Depending
on where the sequence ai, . . . , aj lies with respect to dom(D), we distinguish five cases.

If {ai, . . . , aj} is disjoint from dom(D), then there is a k such that {ai, . . . , aj} ⊆
dom(Abk). Add A∗(z, z′) to ϑ′k(bk) in this case.
If {ai, . . . , aj} is not disjoint from dom(D) and ai, aj /∈ dom(D), then let l, u be the
unique numbers with i ≤ l ≤ u ≤ j such that al, au ∈ dom(D) but ak /∈ dom(D) for
all i ≤ k < l and all u < k ≤ j. Moreover, fix k, k′ such that ai ∈ dom(Abk) and aj ∈
dom(Abk′ ). Note that al = bk and au = bk′ in this case. Then add A∗[F/{sl−1}](z, al)
to ϑ′k(al), A∗[q0/sl−1, F/{su−1}](al, au) to ϑ0(a0), and A∗[q0/su−1](au, z′) to ϑ′k′(au).
If ai ∈ dom(D) and aj /∈ dom(D), then let u be the unique number with i ≤ u ≤ j

such that au ∈ dom(D), but ak /∈ dom(D) for all u < k ≤ j, and fix k such that
aj ∈ dom(Abk). Note that au = bk in this case. Then add A∗[F/{su−1}](ai, au) to
ϑ0(a0) and A∗[q0/su−1](au, z′) to ϑ′k(au).
If aj ∈ dom(D) and ai /∈ dom(D), then let l be the unique number with i ≤ l ≤ j

such that al ∈ dom(D), but ak /∈ dom(D) for all i ≤ k < l, and fix k such that
ai ∈ dom(Abk). Note that al = bk in this case. Then add A∗[F/{sl−1}](z, al) to ϑ′k(al)
and A∗[q0/sl−1](al, ai) to ϑ0(a0).
If ai, aj ∈ dom(D), then add A∗(ai, aj) to ϑ0(a0)

Now obtain a sequence ϑ1(a1), . . . , ϑk(ak) by replacing each ϑ′i(bi) with its connected com-
ponents. It should be clear that ϑ0(a0), ϑ1(a1) . . . , ϑk(ak) is a splitting of a subdivision of
ψi(a). Moreover, h is a homomorphism from ϑ0(a0) to D given τ . However, by construction
of ϑi(ai), it should be clear that Aai |= ϑi(ai), for all i. Thus, ϑi(x) ∈ τ(ai) for all i, a
contradiction to Condition 3. This finishes the proof of the Claim.

Based on the previous claim, we can establish by structural induction that, for all sentences
ϕ ∈ ecl(ϕ0), we have:

ϕ ∈ τ(a) for all a ∈ dom(D) iff A |= ϕ.

Note that Condition 2 is used to prove the induction base. As ϕ0 ∈ τ(a0) for some
a0 ∈ dom(D), this yields the desired A |= ϕ0. J
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E Proofs for Section 6

I Theorem 18. The UNFOreg model checking problem is PNP[O(log2 n)]-complete.

Proof. The lower bound follows from that for UNFO [47].
For the upper bound, we give a polynomial-time reduction of the model checking problem

for UNFOreg to a restricted version of the problem ‘Tree Block Satisfaction’, which was
shown to be PNP[O(log2 n)]-complete in [45]. This version, called TB(SAT) in [47], is defined
as follows.

A TB-tree of width k ≥ 1 is a tree consisting of blocks, where each block is a kind of
Boolean circuit that has k outputs and, for each of its n children, has k inputs,1 see Figure 1.
The i-th output of a block is determined by the values of its inputs in a way defined by an
existentially quantified Boolean formula (∃QBF) χi of the form

χi = ∃b1c1 . . .bmcmd
(
c1 = inputi1(b1) ∧ . . . ∧ cm = inputim(bm) ∧ ψ

)
, where

i1, . . . , im ≤ n;
each bj is a tuple of log k variables, encoding a number #bj ≤ k;
inputij (bj) represents the value of the #bj-th output bit of the ij-th child block (e.g., if
#bj = 5, then input2(bj) = y

(2)
5 in Figure 1);

ψ is a Boolean formula using any of the existentially quantified variables.

. . .

χ2χ1 . . . χk

y
(1)
1 . . . y

(1)
k

. . .

y
(n)
1 . . . y

(n)
k

. . .

z1 z2 . . . zk

Figure 1 A block in a TB-tree of width k with n children.

TB(SAT) is the following problem: given a TB-tree of width k, does the first output bit
of the root block have value 1? For the reduction, we show how to construct, for a given
UNFOreg sentence ϕ and structure A, a TB-tree TA,ϕ such that

TA,ϕ is a yes-instance of TB(SAT) iff A |= ϕ. (∗)

Let |dom(A)| = k and assume a linear order on the elements of A from 1 to k. For a given
a ∈ dom(A), we use #a to denote the position of a in this order. We construct TA,ϕ of width
k via induction on the structure of ϕ. The construction satisfies the following invariant:
For every subformula ψ(x) of ϕ with at most one free variable, and every a ∈ dom(A) with
#a = i,

The i-th output gate of TA,ψ(x) is true iff A |= ψ(a). (∗∗)

In case ψ has no free variable, A |= ψ(a) stands for A |= ψ.

1 In the general case [45], a block may have additional inputs, which do not connect to children and
are thus inputs of the TB-tree. Our version does not allow this; i.e., we restrict ourselves to TB-trees
without inputs.
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It is easy to see that (∗∗) implies (∗): just set ψ(x) = ϕ and i = 1. Furthermore, (∗∗) is
readily checked in every step of the induction.

The shape of each TA,ψ(x) will roughly reflect that of the syntactic tree of ψ(x). When
we construct the ∃QBFs χi of each block, we will use b to denote a vector of log k variables
and #b = i as a shorthand for the Boolean formula expressing that b represents the binary
encoding of i.

Let ψ(x) be a subformula of ϕ.

Case 1: ψ(x) = ¬ϑ(x). Construct TA,ψ(x) from TA,ϑ(x) by adding a new root block whose
i-th output is defined by the formula that negates the i-th input of the single child:

χi := ∃bc
(
c = input1(b) ∧ #b = i ∧ c = 0

)
Case 2: ψ(x) is built from atomic formulas and UNFOreg formulas in one free variable
using conjunction, disjunction, and existential quantification. Let y1, . . . , yn be the variables
in ψ(x) that are quantified on the ‘top level’, i.e., outside the scope of any test in ψ(x).
Let ϑ1(z1), . . . , ϑm(zm) the maximal strict subformulas in at most one free variable, where
zi ∈ {x, y1, . . . , yn} for all i ≤ m. We can assume w.l.o.g. that the zi are distinct and coincide
with y1, . . . , ym and that x occurs in ϕ only in atoms of the form x = yj . These assumptions
can always be satisfied by introducing additional quantified variables and equality atoms.
We construct TA,ψ(x) from the TA,ϑi(x) by adding a new root block whose children are the
roots of the TA,ϑi(x), and whose i-th output is defined by the formula

χi := ∃b1c1 . . .bmcm bm+1 . . .bn
( ∧
j≤m

cj = inputj(bj)
)
∧ χA,

where the bj , cj are used to refer to the values of the subformulas ϑj(yj), the bm+1, . . . ,bn
correspond to the additional yj and χA is obtained from ψ(x) as follows:

Every subformula ϑj(yj) is replaced by cj .
Every equational atom x = yj is replaced by #bj = i and yj = y` by #bj = #b`.
Every relational atom R(yj1 , . . . , yj`) is replaced by a Boolean formula enumerating all
tuples in RA:∨

(a1,...,a`)∈RA

(
#bj1 = #a1 ∧ . . . ∧ #bj` = #a`

)
Every regular atom A(yj , yh) is replaced with the Boolean formula∨

a,b∈dom(A)

(
#bj = #a ∧ #bh = #b ∧ αA,a,b

)
,

where αA,a,b is an ∃QBF that evaluates to true iff there is a path from element a to b
in A that is accepted by A. After bound renaming, the quantifiers from αA,a,b can be
moved forward such that χi becomes a well-formed ∃QBF. To encode A’s behavior in
αA,a,b, we assume that A = (Q,Σ, q0,∆, F ), where
Q with |Q| = t is the set of states;
Σ = {R,R− | R a binary predicate in ϕ} ∪ {ϑ(x)? | ϑ(x)? a test in ϕ} is the input
alphabet;
q0 is the initial state;
∆ ⊆ Q× Σ×Q is the transition relation;
F ⊆ Q is the set of accepting states.
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For every p, q ∈ Q, denote with A[p, q] the NFA obtained from A by setting p to be the
initial state and q to be the only accepting state.
The encoding uses fresh Boolean variables x`p,q,a,b with ` ≤ t·k, p, q ∈ Q, and a, b ∈ dom(A).
The truth value of the variable x`p,q,a,b indicates whether there is a path of length ` from
a to b in A that is accepted by A[p, q]. It is clear that, whenever there is some path from
a to b accepted by A[p, q], then there is always a path of length ≤ t · k because one can
always omit loops between two positions in a path that agree in state and element visited.
Therefore the above restriction ` ≤ t · k suffices for a correct modeling of A’s behavior,
and the number of variables needed is polynomial.
The formula αA,a,b enforces the correct truth values of these variables via induction on `
and requires that some x`q0,qf ,a,b

with qf ∈ F be true:

αA,a,b = ∃b′1,1c′1,1 . . .b′m,kc′m,k ∃
h=0,...,|Q|
p,q∈Q

a,b∈dom(A)

xhp,q,a,b

( ∧
j≤m,`≤k

c′j,` = inputj(b′j,`) ∧#b′j,` = `
)

∧ βA ∧ γA ∧ δA ∧
∨
`≤t·k

∨
qf∈F

x`q0,qf ,a,b
,

where the b′j,`, c′j,` make the values of all ϑj(yj) in all elements of the structure accessible
for evaluating tests in regular atoms, and the conjuncts βA, γA, δA have the purpose to
set the x`·,·,·,· for ` = 0, ` = 1, and ` ≥ 2, respectively. They are defined as follows.

βA =
∧
q∈Q

a∈dom(A)

x0
q,q,a,a ∧

∧
p,q∈Q

a,b∈dom(A)
p 6=q or a6=b

¬x0
p,q,a,b

γA =
∧

(p,R,q)∈Q
(a,b)∈RA

x1
p,q,a,b ∧

∧
(p,R−,q)∈Q

(a,b)∈RA

x1
p,q,b,a ∧

∧
(p,ϑj?,q)∈Q
a∈dom(A)

(
x1
p,q,a,a ↔ c′#a

)
∧ γ′A ,

where γ′A is the conjunction of ¬x1
·,·,·,· for all x1

·,·,·,· that do not occur in the preceding
conjuncts of γA. Finally,

δA =
∧

p,q∈Q
a,b∈dom(A)

1≤`<t·k

(
x`+1
p,q,a,b ↔

∨
r∈Q

c∈dom(A)

(
x1
p,r,a,c ∧ x`+1

r,q,c,b

))

Case 2 also covers the case where ψ(x) has no strict subformula with at most one free
variable. It is easy to check that the invariant (∗∗) holds and that TA,ϕ can be constructed
in polynomial time. J
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