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Abstract
We introduce the query-by-example (QBE)
paradigm for query answering in the presence of
ontologies. Intuitively, QBE permits non-expert
users to explore the data by providing examples
of the information they (do not) want, which the
system then generalizes into a query. Formally, we
study the following question: given a knowledge
base and sets of positive and negative examples, is
there a query that returns all positive but none of
the negative examples? We focus on description
logic knowledge bases with ontologies formulated
in Horn-ALCI and (unions of) conjunctive queries.
Our main contributions are characterizations,
algorithms and tight complexity bounds for QBE.

1 Introduction
In recent times, ontology-enriched systems (OES) have risen
as a prominent technology for data management. The ap-
peal of OES comes from the fact that the ontology provides
rich schema information or background knowledge which en-
riches the answers of queries. The success of this paradigm
has led not only to the development of a vast amount of
foundational results, but also of optimized systems used in
real-life scenarios, see e.g., [Rodriguez-Muro et al., 2013;
Kharlamov et al., 2015; Calvanese et al., 2016; Hovland et
al., 2017] and references therein. For instance, the OES On-
top is currently being used to access exploration data gen-
erated by the petroleum company Statoil [Kharlamov et al.,
2015]. In these OES, users access the data through queries
usually formulated in powerful query languages such as con-
junctive or path queries. Unfortunately, in real life, casual non-
expert users are often not able to specify queries using these
formalisms (e.g., Statoil geologists [Hovland et al., 2017]),
clearly hampering the usability of OES.

In relational databases (witnessing the same problem), an
alternative approach for querying was proposed to allevi-
ate this problem: query-by-example (QBE), where roughly,
users give positive and negative examples which the system
should reverse-engineer into a query conforming with the ex-
amples [Zloof, 1975]. Because of ‘big data’, this querying
paradigm has lately gained new interest since even expert
users might find it useful to explore the data in this way. As

a result, QBE has been investigated for different query lan-
guages and data representations, e.g., conjunctive queries over
relational data [Tran et al., 2014; ten Cate and Dalmau, 2015;
Bonifati et al., 2016; Barceló and Romero, 2017], SPARQL
queries over RDF data [Arenas et al., 2016], and path queries
over graph databases [Bonifati et al., 2015].

The goal of this paper is two-fold. First, we aim at initiating
research on the QBE approach to querying in the context of
ontology-enriched systems. We mainly focus on establish-
ing foundational results for QBE over OES with the ontol-
ogy formulated in description logics (DLs). Formally, we
introduce and study the following problem QBE(L,Q) for an
ontology language L and some query language Q: given an
L-knowledge base and sets of positive and negative examples,
decide whether there is a query q ∈ Q such that all positive
examples are certain answers to q over K, and none of the
negative is. As query language Q, we consider (unions of)
conjunctive queries, (U)CQs. We allow for a restricted signa-
ture Σ, which is a common feature in many OES. As a simple
example, consider the knowledge base consisting of
T = {Human v Vertebrate,Vertebrate v ∃hasPart.Spine},
A = {Human(ax), hasPart(an, sp),Spine(sp),Bug(bug)}.
If the positive examples are ax, an and the negative example
is bug, then q(x) = ∃y hasPart(x, y) ∧ Spine(y) is a witness
query. However, there is no witnessing query for the positive
examples an, bug if ax is to be avoided.

The second aim is to continue bridging the gap between DL
and machine learning research. Indeed, QBE over knowledge
bases can be viewed as an instantiation of the inductive logic
programming (ILP) framework [Nienhuys-Cheng and de Wolf,
1997]: the background knowledge is given by a DL knowledge
base and the learning goal are single rules for Q = CQ and
sets of rules with the same head for Q = UCQ, respectively.
In this area, the work closest to ours is perhaps [Kietz, 2002].

Our main contributions are characterizations, algorithms,
and complexity bounds for QBE(L,Q) for L an expres-
sive Horn DL L ∈ {Horn-ALCI,Horn-ALC} and Q ∈
{CQ,UCQ}. In Section 3, we start with providing natural
model-theoretic characterizations for QBE(Horn-ALCI,Q)
for Q ∈ {CQ,UCQ} by lifting characterizations known from
the relational database setting [ten Cate and Dalmau, 2015] by
replacing the database with the universal model of the knowl-
edge base. Unfortunately, our characterizations do not give



immediate rise to a decision procedure because the universal
model is typically infinite. In Section 4, we exploit the regular-
ity of universal models and provide decision procedures run-
ning in 2-EXPTIME and CONEXPTIME for Horn-ALCI and
Horn-ALC, respectively. Having these, we prove matching
lower bounds, the most challenging one being a 2-EXPTIME-
lower bound for QBE(Horn-ALCI,Q), Q ∈ {CQ,UCQ}.
Interestingly, some results depend on restricting the signature,
so we consider also the variant QBEf of QBE with unre-
stricted signature. The following table summarizes our results.

L → Horn-ALCI Horn-ALC
QBE(L,CQ) 2-EXPTIME CONEXPTIME
QBE(L,UCQ) 2-EXPTIME EXPTIME
QBEf (L,CQ) 2-EXPTIME CONEXPTIME
QBEf (L,UCQ) EXPTIME EXPTIME

We obtain the same results for the variant QDEF of QBE, the
problem to decide whether some q ∈ Q returns precisely the
positive examples. In Section 5, we investigate the size of
witness queries. This is of course vital for practical purposes
since at the end the user is interested in obtaining a (witness)
query to further explore the data. We particularly show that
they can be double exponentially large, which is in contrast to
the relational database setting. In Section 6, we discuss related
work and lay out directions for future work.

An extended version with appendix can be found under
www.informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries
Syntax. We introduce the DL Horn-ALCI [Krötzsch et al.,
2013]. Let NC,NR,NI be infinite disjoint sets of concept,
role, and individual names, respectively. The syntax of Horn-
ALCI concepts C,D is given by the grammar:

B,B′ ::= > | ⊥ | A | B uB′ | B tB′ | ∃r.B
C,D ::= > | ⊥ | A | ¬A | C uD | ¬B t C | ∃r.C | ∀r.C

where A ∈ NC and r ∈ {s, s− | s ∈ NR} is a role. Concepts
of the form B are called basic concepts and roles of the form
r− inverse roles. We identify r− with s ∈ NR if r = s−.

A Horn-ALCI TBox (ontology) T is a finite set of concept
inclusions (CIs) B v C, with B a basic concept and C a
Horn-ALCI concept. An ABox A is a finite set of concept
and role assertions of the form A(a) and r(a, b), where A ∈
NC, r ∈ NR and a, b ∈ NI. We write ind(A) for the set of
individuals in A. A Horn-ALCI knowledge base (KB) K is a
pair (T ,A) of a Horn-ALCI TBox T and an ABox A. The
fragment Horn-ALC is obtained by disallowing inverse roles;
ELI is the fragment allowing only concept inclusions C v D
with C,D ::= > | A | C uD | ∃r.C.
Semantics. The semantics is defined in terms of interpreta-
tions I = (∆I , ·I), consisting of a non-empty domain ∆I

and an interpretation function ·I mapping concept names to
subsets of the domain and role names to binary relations over
the domain. Further, we adopt the standard name assumption,
i.e., aI = a for all a ∈ NI. The interpretation of complex
concepts CI is defined in the usual way [Baader et al., 2017].
An interpretation I is a model of a TBox T if BI ⊆ CI for all
CIsB v C ∈ T ; and it is a model of an ABoxA if (a, b) ∈ rI

for all r(a, b) ∈ A and a ∈ AI for all A(a) ∈ A. We call a
KB (T ,A) consistent if T and A have a common model.

Queries. A conjunctive query (CQ) is an expression of the
form q(x) = ∃yϕ(x,y), where x and y are tuples of vari-
ables and ϕ(x,y) is a conjunction of atoms of the form A(v)
or r(v, w) with A ∈ NC, r ∈ NR, and v, w ∈ x ∪ y. We call
x answer variables and y quantified variables of q. A union
of conjunctive queries (UCQ) is an expression of the form
q(x) = q1(x) ∨ . . . ∨ qn(x), where each qi(x) is a CQ with
answer variables x. A match of a CQ q in an interpretation I
is a function π : x ∪ y→ ∆I such that π(v) ∈ AI for every
atom A(v) of q and (π(v), π(w)) ∈ rI for every atom r(v, w)
of q. We write I |= q(a1, . . . , an) if there is a match of q in
I with π(xi) = ai, for all i ≤ n. A tuple a of elements from
ind(A) is a certain answer to q over a KB (T ,A), written
T ,A |= q(a), if I |= q(a) for all models I of T and A.

A signature Σ is a set of concept and role names. For a
given signature Σ and a query language Q, we denote with
QΣ the set of all queries in Q that use only names from Σ.
Given an ABox A, S+ and S− denote n-ary relations over
ind(A), called positive and negative examples over A, resp.

Reasoning Problems. We study the following decision prob-
lem for some ontology language L and query language Q:

Problem: Query-by-Example QBE(L,Q)

Input: (T ,A, S+, S−,Σ) with (T ,A) an L- KB,
S+ and S− examples over A and Σ a signature

Question: Is there a query q(x) ∈ QΣ such that
• T ,A |= q(a) for all a ∈ S+, and
• T ,A 6|= q(b), for all b ∈ S−?

A closely related problem is the query definability prob-
lem QDEF(L,Q) which takes as input a tuple (T ,A, S+,Σ)
and asks whether there is a query q(x) ∈ QΣ such that an
n-tuple a is a certain answer if, and only if a ∈ S+. If
a tuple (T ,A, S+, S−,Σ) is a yes-instance of QBE(L,Q),
then we call the query q(x) a witness. We further define
the variant QBEf (L,Q) (f standing for full) as the prob-
lem of deciding for a given tuple (T ,A, S+, S−) whether
(T ,A, S+, S−,Σ∗) ∈ QBE(L,Q), where Σ∗ is the set of all
concept and role names occurring in (T ,A); QDEFf (L) is
defined analogously. Besides the decision problems, we will
also be interested in the size of witness queries (if they exist).

We remark that allowing individual names in witness
queries might be desirable in some applications, where the
user knows some ‘special’ individuals which are relevant for
her query. We show that our choice of forbidding them is
without loss of generality. Let QBEc(L,Q) be the variant of
QBE(L,Q) that takes another input I ⊆ ind(A) and allows
the witness query to use constants from I . We then have:

Lemma 1. QBEc(L,Q) and QDEFc(L,Q) reduce in poly-
nomial time to QBE(L,Q) and QDEF(L,Q), resp., for Q ∈
{CQ,UCQ}, for any L.

Throughout the paper, we will assume that the input knowl-
edge base (T ,A) is consistent and that S+ is not empty. Both
conditions can be effectively checked and if one of them isn’t
satisfied the reasoning problems become easier, see appendix.



Moreover, we assume that all TBoxes T are in ELI⊥-normal
form, that is, CIs in T take one of the following forms:

> v A A v ⊥ A uA′ v B A v ∃r.B ∃r.A v B
where A,A′, B range over concept names and r ranges
over roles. It has been shown that every Horn-ALCI
TBox T can be transformed in polynomial time to an
ELI⊥ TBox T ′ such that T ′ is a conservative extension
of T [Bienvenu et al., 2016], and it is easily verified
that then (T ,A, S+, S−,Σ) ∈ QBE(Horn-ALCI,Q) iff
(T ′,A, S+, S−,Σ) ∈ QBE(ELI⊥,Q), for Q∈{CQ,UCQ}.

3 Model-Theoretic Characterizations
In this section, we provide model-theoretic characterizations of
QBE and QDEF, setting the foundations for the development
of our decision procedures later on. We presume the stan-
dard notion of Σ-homomorphisms between interpretations (cf.
appendix) and write I →Σ J if there is a homomorphism re-
stricted to the signature Σ from I to J , and (I,a)→Σ (J ,b)
if there is such homomorphism that additionally maps the
tuple a from ∆I to b from ∆J . We drop the Σ in case it
comprises all relevant names.

Our characterization is based on the notion of direct prod-
ucts. Let I,J be interpretations. The direct product I ⊗J of
I and J is the interpretation defined by ∆I⊗J = ∆I ×∆J ,
AI⊗J = AI ×AJ , and

rI⊗J = {((a1, b1), (a2, b2)) | (a1, a2) ∈ rI , (b1, b2) ∈ rJ },
for all concept names A and role names r. The prod-
uct (I,a) ⊗ (J ,b) is defined as (I ⊗ J ,a ⊗ b), where
(a1, . . . , an)⊗ (b1, . . . , bn) = ((a1, b1), . . . , (an, bn)). Given
Σ, a product Πn

i=1(Ii,ai) = (I1,a1)⊗. . .⊗(In,an) is called
Σ-safe if every element of the tuple a1 ⊗ . . . ⊗ an appears
in the extension of some concept or role name from Σ in
Πn
i=1(Ii,ai); again, we drop Σ in case it is trivial.
Let us recall the characterization for QBE with CQs over

relational databases [ten Cate and Dalmau, 2015; Barceló and
Romero, 2017]. For the sake of simplicity, we state it here in
our terminology, that is, consider ABoxes instead of databases.
Given an ABox A and sets S+, S− of examples over A, there
is a CQ distinguishing S+ and S− iff

1. Πa∈S+(IA,a) is safe, and
2. Πa∈S+(IA,a) 6→ (IA,b) for every b ∈ S−,

where IA is A viewed as an interpretation. The intuition
behind this characterization is as follows: the constructed
product can be viewed as CQ with answer variables Πa∈S+a;
in fact, this CQ is the least general generalization of the
positive examples. Condition 1 ensures that it is a well-defined
CQ by requiring all answer variables to actually appear, and
Condition 2 ensures that no negative examples are returned.

We argue, however, that this simple characterization does
not apply to the case with ontologies. In fact, the example
from the introduction does not satisfy Condition 1, but there
exists a witness query. We lift the characterization to take into
account non-empty TBoxes using universal interpretations.
Universal Interpretations. Let (T ,A) be a consistent Horn-
ALCI KB and T in ELI⊥-normal form. A type for T is a

subset t of the concept names in T such that T |= u t v A
implies A ∈ t for all concept names A. When a ∈ ind(A),
t, t′ are types for T , and r is a role, we write
• a  T ,Ar t if T ,A |= ∃r.u t(a) and t is maximal with

this condition, and
• t  Tr t′ if T |= u t v ∃r.u t′ and t′ is maximal with

this condition.
A path for A and T is a finite sequence π = ar0t1 · · ·
tn−1rn−1tn, n ≥ 0, with a ∈ ind(A), r0, . . . , rn−1 roles,
and t1, . . . , tn types for T such that

(i) a T ,Ar0 t1 and (ii) ti  Tri ti+1 for every 1 ≤ i < n.
We use tail(π) to denote the last element of a path π. Let
Paths be the set of all paths forA and T . The universal model
UT ,A of (T ,A) is defined as follows:

∆UT ,A = Paths

AUT ,A = {a ∈ ind(A) | T ,A |= A(a)} ∪
{π ∈ Paths \ ind(A) | A ∈ tail(π)}

rUT ,A = {(a, b) ∈ ind(A)2 | r(a, b) ∈ A} ∪
{(π, πrt) | πrt ∈ Paths} ∪
{(πr−t, π) | πr−t ∈ Paths}

It is well-known that UT ,A is universal in the sense that
T ,A |= q(a) iff UT ,A |= q(a) for every UCQ q(x) and
every tuple a of individuals [Bienvenu and Ortiz, 2015].

We state now our characterization for Q = CQ.
Theorem 1. For every Horn-ALCI KB (T ,A), all n-ary
relations S+ and S− over ind(A), and signatures Σ, we have:
• (T ,A, S+, S−,Σ) ∈ QBE(Horn-ALCI,CQ) iff

1. Πa∈S+(UT ,A,a) is Σ-safe, and
2. Πa∈S+(UT ,A,a) 6→Σ (UT ,A,b) for all b ∈ S−.

• (T ,A, S+,Σ) ∈ QDEF(Horn-ALCI,CQ) iff
1.’ Πa∈S+(UT ,A,a) is Σ-safe, and
2.’ Πa∈S+(UT ,A,a) 6→Σ (UT ,A,b) for all b ∈

ind(A)n \ S+.
Thus, the characterization is the same as in the database

setting with IA replaced by UT ,A. Note that UT ,A is possibly
infinite, so the product is, in contrast to the database case, not
the witness. In fact, the proof for direction (⇐) merely shows
that there is a witness, but in a non-constructive way based on
the finite outdegree of UT ,A. Hence, Theorem 1 does not give
immediate bounds on the size of witness queries.

In case of UCQs the additional expressive power leaves us
with a simpler characterization, the product is compensated
for by the use of disjunction in the query language and is thus
not necessary anymore.
Theorem 2. For every Horn-ALCI KB (T ,A), all n-ary
relations S+ and S− over ind(A), and signatures Σ, we have:
• (T ,A, S+, S−,Σ) ∈ QBE(Horn-ALCI,UCQ) iff

(UT ,A,a) is Σ-safe and (UT ,A,a) 6→Σ (UT ,A,b), for
all a ∈ S+ and b ∈ S−.
• (T ,A, S+,Σ) ∈ QDEF(Horn-ALCI,UCQ) iff

(UT ,A,a) is Σ-safe and (UT ,A,a) 6→Σ (UT ,A,b) for
all a ∈ S+ and b ∈ ind(A)n \ S+.



4 Complexity of QBE and QDEF

Based on the characterizations in Theorems 1 and 2, we now
pinpoint the precise complexity for the introduced decision
problems. We start with observing that Σ-safety (in both
theorems) can be checked in exponential time by computing
first UT ,A up to depth 1, computing the product (only in case
of Theorem 1), and directly checking the condition.

Lemma 3. Σ-safety can be decided in EXPTIME.

For Conditions 2 and 2’ of Theorem 1 it is sufficient to give
an algorithm for deciding Πa∈S+(UT ,A,a) →Σ (UT ,A,b)
for some b; this algorithm can also be used for the homomor-
phism checks in Theorem 2 by treating the elements a ∈ S+

individually. Note that there is no immediate decision proce-
dure, as the involved interpretations UT ,A are typically infinite.
We can, however, exploit regularity of UT ,A.

Let us fix an input (T ,A, S+, S−,Σ) with k = |S+|, and
denote with UkT ,A the product Πk

i=1UT ,A. Observe first that
UkT ,A might be disconnected and that for our purposes it suf-
fices to consider the substructure P of UkT ,A containing all
elements from ind(A)k and everything that is reachable from
there; thus, the domain ∆P of P is the smallest set such that:

• ind(A)k ⊆ ∆P , and whenever p ∈ ∆P and (p,p′) ∈
rU

k
T ,A or (p′,p) ∈ rU

k
T ,A , then also p′ ∈ ∆P .

It is easy to show that for a∗ = Πa∈S+a, we have:

Lemma 4. For every b ∈ S−, we have (UkT ,A,a∗) →Σ

(UT ,A,b) iff (P,a∗)→Σ (UT ,A,b).

For what follows, it is convenient to characterize rP in terms
of (tuples of) types, similar to the definition of UT ,A. For doing
so, let TP be the set of all types for T and ∆ = ind(A) ∪ TP.
Then define, for each role r, a binary relation ↪→T ,Ar on ∆k by
taking c ↪→T ,Ar d iff c = (c1, . . . , ck) and d = (d1, . . . , dk)
and for each 1 ≤ i ≤ k we have:

• if ci, di ∈ ind(A), then r(ci, di) ∈ A or r−(di, ci) ∈ A;

• if ci ∈ ind(A), di ∈ TP, then ci  T ,Ar di;

• if ci, di ∈ TP, then ci  Tr di or di  Tr− ci.

For p = (π1, . . . , πk) ∈ ∆P , denote with tail(p) the tuple
(tail(π1), . . . , tail(πk)). It should be clear that we have

• (p,p′) ∈ rP iff tail(p) ↪→T ,Ar tail(p′).

We give a characterization for (P,a∗)→Σ (UT ,A,b), which
will be the basis of our decision procedure. Intuitively, we
decompose P into the non-tree-shaped part with domain N =
ind(A)k and the tree-shaped subinterpretations below each
a ∈ N (which are characterized alone by their roots, similar
to UT ,A). The latter have to be decomposed again because
they might be mapped to different parts of UT ,A. We denote
with Pc for c ∈ ∆k the sub-interpretation of P rooted at some
c. Moreover, we use the notation UT ,t for a type t for T
as an abbreviation for UT ,{A(at)|A∈t} and denote with at its
root. Given some Σ-role r, a tuple c ∈ ∆k, a set T ⊆ ∆k,
and a type t ∈ TP, we write (r, c, T, t) ∈ PHom, for partial
homomorphism, if there is a partial function g : ∆Pc → ∆UT ,t

satisfying the following conditions:

– g is a homomorphism on its domain;

– g(c) = π for some π = atrt
′ ∈ ∆UT ,t ;

– if g(p) is defined and (p,p′) ∈ sPc for a Σ-role s, then
either g(p) = at and tail(p) ∈ T or g(p′) is defined.

Intuitively, (r, c, T, t) belongs to PHom if there is a homomor-
phism from Pc to the subtree rooted at some r-successor of the
root at of UT ,t given that some parts of Pc can be ‘delayed’
to T when they map to at. The component T is necessary be-
cause of the ‘bidirectional nature’ of Horn-ALCI . In general,
a homomorphism (P,a∗) →Σ (UT ,A,b) does not map sub-
trees of P to subtrees in UT ,A, and T is used to synchronize
between different subtrees of UT ,A, see the characterization
below. For c ∈ ∆k, t ∈ TP we write c →Σ t if there is a
Σ-homomorphism from an element of type c to an element
of type t. We further denote with tpUT ,A

(π) the type of π in
UT ,A and with P|N the restriction of P to domain N . We
establish the following characterization.

Lemma 5. (P,a∗) →Σ (UT ,A,b) iff there is a Σ-
homomorphism h : (P|N ,a∗)→Σ (UT ,A,b) and a labeling
T (π) ⊆ ∆k for every π ∈ range(h) ∪ ind(A) such that:

1. for every p ∈ N , we have p ∈ T (h(p));

2. for every c ∈ T (π), we have c→Σ tpUT ,A
(π);

3. for every π ∈ range(h) ∪ ind(A), every c ∈ T (π), and
every d with c ↪→T ,Ar d one of the following is true:

(a) there is some π′ ∈ range(h) ∪ ind(A) such that
(π, π′) ∈ rUT ,A and d ∈ T (π′), or

(b) (r,d, T (π), tpUT ,A
(π)) ∈ PHom.

4.1 Horn-ALCI
We now devise a decision procedure for the criterion in
Lemma 5. First observe that there are only double exponen-
tially many mappings h and T , since a∗ is forced to be mapped
to b, parts disconnected from a∗ can be neglected, and UT ,A
has bounded outdegree. We can thus enumerate all possible
such mappings. Conditions 1, 2, and 3(a) can be checked in
double exponential time using straightforward algorithms. For
Condition 3(b), we devise a mosaic-based decision procedure
similar to an algorithm in [Jung et al., 2017].

A mosaic represents the neighborhood of an element in
∆UT ,A of some type t ∈ TP, together with ‘types’ of elements
from ∆P which can be mapped there. Formally, a mosaic is
a tuple M = (t, T, r0, t0, T0, . . . , rn, tn, Tn) with n ≤ |T |,
t, ti ∈ TP, T, Ti ⊆ ∆k \N , and ri Σ-roles such that:

(i) t0  r0 t and t ri ti for all 1 ≤ i ≤ n;

(ii) if t r t
′, there is an 1 ≤ i ≤ n with (ri, ti) = (r, t′);

(iii) t ∈ T implies t→Σ t;

(iv) for every t ∈ T and every t ↪→T ,Ar t′ for some Σ-role r,
we either have r = r−0 and t′ ∈ T0 or r = ri and t′ ∈ Ti,
for some 1 ≤ i ≤ n.

Intuitively, t0 is the predecessor type of t and t1, . . . , tn are the
successors via roles ri. Condition (iv) ensures that successors
of types t ∈ T mapped to t can be mapped to either t0 or
some ti. Given a set T̂ ⊆ ∆k \ N , a root mosaic for T̂ is a
tuple M = (t, T, r0, t0, T0, . . . , rn, tn, Tn) satisfying (i)–(iii)



above, T0 = ∅, and the variant (iv’) of (iv) which is obtained
by replacing ‘t ∈ T ’ with ‘t ∈ T \ T̂ ’.

We define a mosaic elimination procedure as follows. De-
fine a sequence of sets of mosaics by starting with M0

as the set of all mosaics and root mosaics, and obtain
Mi+1 from Mi by removing all (root) mosaics M =
(t, T, r0, t0, T0, . . . , rn, tn, Tn) from Mi violating the follow-
ing compatibility condition:
(E) for every 1 ≤ j ≤ n, there is an M ′ =

(t′, T ′, r′0, t
′
0, T

′
0, . . . , r

′
m, t
′
m, T

′
m) ∈ Mi such that t =

t′0, rj = r′0, tj = t′, T ′0 ⊆ T , and Tj ⊆ T ′.

Let M̂ be where the sequence M0 ⊇M1 ⊇ . . . stabilizes.

Lemma 6. (r̂, t̂, T̂ , t̂) ∈ PHom iff M̂ contains a root mosaic
M = (t, T, r0, t0, T0, . . . , rn, tn, Tn) for T̂ with t = t̂ and a
mosaic M ′ = (t′, T ′, r′0, t

′
0, T

′
0, . . . , r

′
m, t
′
m, T

′
m) with t̂ ∈ T ′

and r0 = r̂ such that t = t′0, ri = r′0, ti = t′, T ′0 ⊆ T , and
Ti ⊆ T ′ for some i.

It remains to discuss the running time of our procedure.
The set ∆ has size |A|+ 2|T |, thus ∆k is of size NA,T ,k :=

(|A|+ 2|T |)k. Hence, the number of mosaics is bounded by
2NA,T ,k . In each round of the elimination procedure at least
one mosaic is removed, thus the procedure terminates after
double exponentially many steps. Finally, the checks in (E)
can be implemented in exponential time. We thus conclude:
Corollary 7. For L = Horn-ALCI and Q ∈ {CQ,UCQ},
QBE(L,Q) and QDEF(L,Q) are in 2-EXPTIME.

We show next a matching lower bound.
Lemma 8. For L = ELI and Q ∈ {CQ,UCQ}, QBE(L,Q)
and QDEF(L,Q) are 2-EXPTIME-hard.

We reduce the word problem for exponential space bounded
alternating Turing machines (ATM) which is 2-EXPTIME-
hard [Chandra et al., 1981]. Given an ATM M and a
word w, we construct a TBox T such that M accepts w iff
(UT ,A, a) →Σ (UT ,A, b) for A = {A(a), B(b)} and some
signature Σ. We assume without loss of generality that instead
of halting in the accepting state, M enters an infinite loop of
special states without changing the tape anymore. We sketch
the main idea by describing the universal model.

Below a, T enforces the infinite tree that is obtained by
repeatedly glueing the pattern in Figure 1(a) to its leaves (as
indicated by ◦; only Σ-symbols depicted). Note that this
pattern (without the outgoing path labeled with α0, α1) is in
fact the basic one of a computation tree of an ATM: a universal
configuration of length 2n (labeled with U ) followed by a
branch into two existential configurations of the same length
(labeled with E1, E2). We call this the skeleton tree. Apart
from the skeleton tree, for every possible choice of α0, α1, a
path of the shape depicted in the right starts from every node
of the tree. There, α0 and α1 range over all possible triples
containing the content of three consecutive tape cells, e.g.,
〈a, b, c〉 or 〈a, (q, b), c〉.

Below b, T enforces an infinite tree as illustrated in Fig-
ure 1(b), having the following properties:
• It starts with a path of length 2n labeled with the initial

configuration, encoded using triples.

(a) U
a

U

E1

E1

U

E2

E2

U

U
... 2n steps

U

E1
... 2n steps

E1

E2
...

E2 α0

... 2n steps

α1

(b) U 〈6 b, (q0, a1), a2〉
b

U 〈(q0, a1), a2, a3〉
...

U 〈 , , 〉
U 〈 , , 6 c〉

E1 β0

...
E1 β1

...

. . .

E1 β2n−2

E1 β2n−1

E2 ...

. . .

U U. . .
...

Figure 1: Parts of the universal model enforced in Lemma 8.

• All other nodes are labeled with a pair β = (α, α′) with
α, α′ triples as described above. In this case, α (resp., α′)
is intended to represent the content of the tape cell in the
current (resp., previous) configuration.
• Every path of length 2n (between Ex and U or U and
Ex), e.g., β0, . . . , β2n−1 in Figure 1, corresponds to the
description of a valid configuration of M , and a possible
predecessor configuration.
• This is continued infinitely, always switching between

universal and existential configurations, as depicted.
It is instructive to consider some homomorphism h0 of the
skeleton tree below a into the tree below b. Informally, h0

can be thought of as a labeling of the skeleton (and thus of
the computation tree) with actual configurations. It remains
to ensure that the transition relation of M is obeyed, which
is done as follows. Every node in the tree below b has also
outgoing paths of the same shape as the one depicted in the left
side (for the sake of clarity and space they are not depicted in
Fig. 1). However, it has only such paths for every α, α′ except
the label β = α0, α1 at the current node. Let now v be a node
in the skeleton tree and assume its image v′ = h0(v) has label
β = (α, α′). Clearly, h0 can be extended for all outgoing
paths except the one labeled with α0 = α and α1 = α′.
Additionally, by construction, the end of this path can only be
mapped to the corresponding cell in the previous configuration.
The homomorphism condition ensures that the computation
tree obeys the transition relation.

Summarizing, from Lemma 8 and Corollary 7 we obtain:
Theorem 9. For L = Horn-ALCI and Q ∈ {CQ,UCQ},
QBE(L,Q) and QDEF(L,Q) are 2-EXPTIME-complete.

We remark that the hardness proof crucially relies on Σ. For
CQs, it is adapted to the unrestricted signature case by adding
an assertion A′(a′) to the ABox, and enforcing below a′ a tree
identical (up to Σ-homomorphisms) to the tree below a, by
using fresh copies of non-Σ concept names. The product of
the trees below a and a′ is then as in the proof of Lemma 8.

This approach does not apply to UCQs. In fact, the problem
becomes easier with unrestricted signature. To see the reason



for this complexity drop, note that, for a TBox T in normal
form, we have (UT ,A,a)→ (UT ,A,b) iff (UT ,A|ind(A),a)→
(UT ,A,b). This can be straightforwardly decided in exponen-
tial time, see the appendix.
Theorem 10. For L = Horn-ALCI, QBEf (L,UCQ) and
QDEFf (L,UCQ) are EXPTIME-complete.

4.2 Horn-ALC
For Horn-ALC, note that the characterizations in Theorems 1
and 2 and Lemma 5 are still valid since Horn-ALC is a frag-
ment of Horn-ALCI. However, the absence of inverse roles
simplifies the decision procedure of PHom which is the bot-
tleneck for Horn-ALCI. Indeed, both Pc and the anonymous
parts of UT ,t are directed regular trees where all roles point
away from the root, so the set T can be ignored and PHom is
decided by applying standard techniques for regular trees.
Lemma 11. Given (T ,A, S+, S−,Σ) with (T ,A) a Horn-
ALC KB, the relation PHom can be decided in EXPTIME.

Applying this Lemma, we obtain a CONEXPTIME upper
bound for deciding QBE from the algorithm devised in the
previous section. A matching lower bound is inherited from
the database setting [ten Cate and Dalmau, 2015]. For UCQs, a
careful analysis of Lemma 5 yields an EXPTIME upper bound;
the matching lower bound is obtained by a reduction from
subsumption in Horn-ALC [Krötzsch et al., 2013].
Theorem 12. For L = Horn-ALC, QBE(L, Q) and
QDEF(L,Q) are CONEXPTIME-complete if Q = CQ and
EXPTIME-complete if Q = UCQ. All results also hold with
unrestricted signature.

5 Size of Witness Queries
We finally investigate the size of witness queries. We first
establish the following double exponential lower bound.
Lemma 13. There is a family of Horn-ALC knowledge bases
(Tn,An)n≥1, sets of examples S+ and S−, a signature Σ, and
a polynomial p(n) such that, for all n ≥ 1, |Tn ∪An| ≤ p(n),
(Tn,An, S+, S−,Σ) ∈ QBE(Horn-ALC, (U)CQ) and every
(U)CQ witnessing this is of size Ω(22n

).
The main idea for the lower bound is to give Horn-ALC

knowledge bases (Tn,An) over two individuals a, b such that
in UTn,An the trees below a and b are Σ-homomorphically
equivalent to I2n and J2n , respectively, where In,Jn are
given by the following recursive ‘definitions’:

I0 =

In =

A

In−1

B

In−1

J1 =
A B

Jn =

A

In−1

B

Jn−1

A

Jn−1

B

In−1

It can be shown that (In, a) 6→Σ (Jn, b), but that (I ′, a)→Σ

(Jn, b) for any sub-interpretation I ′ of In. Thus, the small-
est Σ-(U)CQ distinguishing between a and b in (Tn,An) is
(I2n , a) viewed as CQ, whose size is Ω(22n

).
For Horn-ALC, a matching upper bound is obtained by an
analysis of Lemma 5 and the observations made in the previous

Section. For Horn-ALCI, we obtain a four-fold exponential
upper bound on the size of the witness query by viewing the
check for PHom as a reachability game on pushdown systems
and apply known results from there [Kupferman et al., 2010;
Carayol and Hague, 2014]. We leave the exact sizes for future
work.

Theorem 14. If (T ,A, S+, S−,Σ) ∈ QBE(L,CQ), there is
a witness query of at most double (resp., four-fold) exponential
size if L = Horn-ALC (resp., L = Horn-ALCI).

6 Discussion and Future Work
Our investigation opens a new whole research avenue towards
improving the usability of ontology-enriched systems. From
the theoretical perspective, the most natural next step is to
broaden our understanding to different ontology and query
languages. Given the state of the art of OES, we are particu-
larly interested in ‘lightweight’ DLs, such as DL-Lite and EL;
our results already provide a solid basis for these logics. For
non-Horn or Datalog± ontologies it will be more challenging
– a good starting point for non-Horn DLs might be [Botoeva
et al., 2016b]. As for the query language, we will study reg-
ular path queries. From the practical perspective, it suggests
itself to develop systems for QBE over KBs which not only
implement reverse-engineering algorithms, but also allow in-
teraction with the user, as done e.g., in [Bonifati et al., 2014;
Diaz et al., 2016]. Given the high complexity of QBE, it
will be also important to design heuristics [Tran et al., 2014;
Mottin et al., 2016] or approximations [Barceló and Romero,
2017], as for relational databases. We note that some approx-
imations considered by Barceló and Romero [2017] do not
directly lead to better complexity in the context of OES. For
example, 2-EXPTIME-hardness in Lemma 8 already holds for
tree-shaped CQs. Another possible approximation is bounding
the size of the witness queries.

Related within DL research is the study of query conser-
vative extensions (QCE), where the question is whether two
given ontologies or two knowledge bases can be distinguished
by a query (without providing examples). Indeed, in the con-
text of QCE, characterizations based on homomorphisms and
universal models have been devised and inverse roles also tend
to increase the complexity, see [Botoeva et al., 2016a] for a
recent survey, and references therein. We are, however, not
aware of any direct reductions between QBE and QCE.

Within the broader context of machine learning, we believe
that our results lay the foundations for questions related to
learnability of queries, see [Cohen and Page, 1995] for an
overview. In this line, one could investigate an ILP inspired
variant: if an instance (T ,A, S+, S−,Σ) of QBE does not
have a witness, is there an extension T ′ ⊇ T such that there
is a witness? In the context of active learning, one would be
interested in learning a (conjunctive) query with membership
and/or equivalence queries over a DL knowledge base. Fi-
nally, it would be interesting to extend the recently introduced
framework of learning concepts over background structures of
small degree and having only local access to the data [Grohe
and Ritzert, 2017] with an ontology.
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APPENDIX
A Additional Preliminaries
Homomorphisms. Let I,J be interpretations, and Σ a
signature. A Σ-homomorphism from I to J is a mapping
h : ∆I → ∆J such that a ∈ AI implies h(a) ∈ AJ and
(a, b) ∈ rI implies (h(a), h(b)) ∈ rJ , for all a, b ∈ ∆I ,
concept names A ∈ Σ, and role names r ∈ Σ. We write
I →Σ J in case there exists a Σ-homomorphism from I to
J . If a and b are n-tuples from ∆I and ∆J , respectively,
we write (I,a) →Σ (J ,b) if there is a Σ-homomorphism
h : ∆I → ∆J with h(a) = b. If Σ includes all relevant
names, we omit it and write just I → J .

B Proofs for Section 2
Lemma 1. QBEc(L,Q) and QDEFc(L,Q) reduce in poly-
nomial time to QBE(L,Q) and QDEF(L,Q), resp., for Q ∈
{CQ,UCQ}, for any L.

Proof. We prove it for L = CQ, for UCQs it is similar. Let
(T ,A, S+, S−,Σ, I) be an instance of QBEc. Define M as
the set of all a ∈ I such that there is some position i such that
ai = a for all (a1, . . . , an) ∈ S+. Define Σ′ = Σ ∪ {Xa |
a ∈ I \M} andA′ = A∪{Xa(a) | a ∈ I \M}. It is routine
to verify correctness of the reduction:
Claim. (T ,A, S+, S−,Σ, I) ∈ QBEc iff
(T ,A′, S+, S−,Σ′) ∈ QBE.
Proof of the Claim. (⇒) Let q(x) be a witness for
(T ,A, S+, S−,Σ, I) ∈ QBEc(L). Obtain a query q′ ∈ LΣ′

from q by processing every individual name a appearing in q
as follows:

– if a ∈M , then let i be a position such that ai = a for all
a ∈ S+, and replace all occurrences of a with xi;

– if a ∈ I\M , then replace all occurrences of awith a fresh
quantified variable xa and add the conjunct Xa(xa).

It should be clear that (T ,A′) |= q′(a) for all a ∈ S+. As-
sume now that (T ,A′) |= q′(a) for some a ∈ S−, and let I
be an arbitrary model of (T ,A). Obviously, the extension I ′
of I interpreting every fresh concept Xa with XI

′

a = {a} is
a model of (T ,A′). Let π be a match for q′(a) into I ′. By
construction, π is also a match for q(a) into I. Hence, we
obtain (T ,A) |= q(a), a contradiction.

(⇐) Let q(x) be a query witnessing (T ,A′, S+, S−,Σ′) ∈
QBE(L). Note that it cannot be the case that there is a quan-
tified variable z such that both Xa(z) and Xb(z) for a 6= b
appear in q, since this implies S+ = ∅, contradicting our
assumption about S+. Moreover, there cannot be an atom
Xa(xi) with xi ∈ x an answer variable appears in q(x),
since this implies ai = a for all a ∈ S+, contradicting
the construction of A′. Obtain a query q′ from q by replac-
ing every quantified variable z such that Xa(z) appears in
q with a. It is routine to verify that q′(x) witnesses that
(T ,A, S+, S−,Σ, I) ∈ QBEc(L).

We justify in detail the assumptions that (T ,A) is actually
consistent and that S+ 6= ∅.

KB Consistency. We consider first the case when (T ,A)
happens to be inconsistent. In that case, we have T ,A |= q(a)
for every n-ary CQ q(x) and every a ∈ ind(A)n, thus there is
a witness if and only if S− = ∅ (and then, every n-ary CQ is
a witness). Hence, one could check (T ,A) for inconsistency
first, which can be done in EXPTIME if T is formulated in
Horn-ALCI [Krötzsch et al., 2013].
No Positive Examples. The second case we discuss is S+ =
∅, that is, the question whether there is a LΣ-query q(x) with
n answer variables such that (T ,A) 6|= q(b) for all b ∈ S−.
A natural candidate for such a query is

q(x) =
∧
A∈Σ

n∧
i=1

A(xi) ∧
∧
r∈Σ

n∧
i=1

n∧
j=1

r(xi, xj) .

It is easy to see that q(x) is the most restrictive query in the
sense that if T ,A |= q(a) then T ,A |= q′(a) for every n-ary
query q′(x), so the instance has a witness if and only if q(x)
is such a witness. Hence, an algorithm for deciding QBE in
this special case has to check whether (T ,A) 6|= q(b) for all
b ∈ S−. This can be done in EXPTIME.

C Proofs for Section 3
Theorem 1. For every Horn-ALCI KB (T ,A), all n-ary
relations S+ and S− over ind(A), and signatures Σ, we have:
• (T ,A, S+, S−,Σ) ∈ QBE(Horn-ALCI,CQ) iff

1. Πa∈S+(UT ,A,a) is Σ-safe, and
2. Πa∈S+(UT ,A,a) 6→Σ (UT ,A,b) for all b ∈ S−.

• (T ,A, S+,Σ) ∈ QDEF(Horn-ALCI,CQ) iff
1.’ Πa∈S+(UT ,A,a) is Σ-safe, and
2.’ Πa∈S+(UT ,A,a) 6→Σ (UT ,A,b) for all b ∈

ind(A)n \ S+.

Proof. We show only the characterization for QBE(CQ); the
proof for QDEF(CQ) is analogous.

(⇒) Let (T ,A, S+, S−,Σ) ∈ QBE(CQ) with S+ =
{a1, . . . ,am} and let q(x) be a Σ-CQ witnessing this. By
universality, for every i, there is a match πi from q(x)
into UT ,A with πi(x) = ai. Define π by taking π(z) =
(π1(z), . . . , πm(z)), for every variable z in q(x). By con-
struction, π is a match for q(x) into Πa∈S+UT ,A and π(x) =
a1 ⊗ . . .⊗ am, which is thus Σ-safe. Assume that Condition
2 does not hold, that is, there is a b ∈ S− such that there is
a homomorphism h : Πa∈S+(UT ,A,a)→Σ (UT ,A,b). Com-
posing π and h yields a match π̂ from q(x) into UT ,A with
π̂(x) = b. Hence, T ,A |= q(b), a contradiction.

(⇐) For the other direction, let Conditions 1 and
2 be fulfilled. We show that there is a witness for
(T ,A, S+, S−,Σ) ∈ QBE(CQ). Let (I,a∗) be the Σ-
restriction of Πa∈S+(UT ,A,a), and let q(x) be (I,a∗) viewed
as a (possibly infinite) CQ; in particular, a∗ becomes the tuple
of answer variables x. By Condition 1, q(x) has the right num-
ber of answer variables. Clearly, every a ∈ S+ is a certain
answer to q(x), using the projection mappings, and none of
the b ∈ S− is a certain answer by Condition 2 and universal-
ity of UT ,A. If q(x) is finite, we are done. If q(x) is infinite,
we show that there is a finite subquery of q(x) which is a



witness. Denote with qi(x), i ≥ 0, the restriction of q(x) to
variables that have distance at most i to the answer variables x
in q(x). By construction, we have that qi(x) is finite for every
i ≥ 1. To reach a contradiction, assume that qi is not a witness
for every i ≥ 1, that is, there are matches πi from qi(x) to
UT ,A with πi(x) = bi for some bi ∈ S−. Since S− is finite,
there is some b ∈ S− such that b = bi for infinitely many i.
Thus, there are matches πi, i ≥ 1, from qi(x) to UT ,A with
πi(x) = b. We construct a sequence of matches (π′i)i≥1 such
that for all j ≥ 1, we have
(∗) for all 0 < i < j, π′i(z) = π′j(z) for all variables z

occurring in qi.
Start with setting π′1 = π1, obviously satisfying (∗). To define
π′j , assume that π′k are defined for all 0 < k < j. Let V be all
variables that occur in qj but not in qj−1, and define, for all
k ≥ j, τk as the restriction of πk to V . By construction V is
finite. Moreover, as UT ,A has finite outdegree, there are only
finitely many different τk. Choose some τ such that τ = τk for
infinitely many k ≥ j. Then obtain a new sequence of matches
by dropping all πk such that τk 6= τ . Setting π′j = τ ∪ π′j−1

finishes the construction and satisfies (∗).
It remains to note that π̂ =

⋃
i≥0 π

′
i is a match for q(x)

into UT ,A with π̂(x) = b. Thus, Πa∈S+(UT ,A,a) →Σ

(UT ,A,b), contradicting Condition 2.

Theorem 2. For every Horn-ALCI KB (T ,A), all n-ary
relations S+ and S− over ind(A), and signatures Σ, we have:

• (T ,A, S+, S−,Σ) ∈ QBE(Horn-ALCI,UCQ) iff
(UT ,A,a) is Σ-safe and (UT ,A,a) 6→Σ (UT ,A,b), for
all a ∈ S+ and b ∈ S−.

• (T ,A, S+,Σ) ∈ QDEF(Horn-ALCI,UCQ) iff
(UT ,A,a) is Σ-safe and (UT ,A,a) 6→Σ (UT ,A,b) for
all a ∈ S+ and b ∈ ind(A)n \ S+.

Proof. (⇒) Let (T ,A, S+, S−,Σ) ∈ QBE(UCQ), wit-
nessed by a Σ-UCQ q(x). By universality, for every a ∈ S+,
there is a disjunct q′(x) of q(x) such that there is a match
π of q′(x) into UT ,A with π(x) = a. Since q′ is a Σ-
query, (UT ,A,a) is Σ-safe. Suppose now that there are
a ∈ S+, b ∈ S− such that there is a Σ-homomorphism
h : (UT ,A,a) →Σ (UT ,A,b). As a ∈ S+ and UT ,A is uni-
versal, there is a match π from q(x) into UT ,A with π(x) = a.
Composing h and π yields a match for q(x) into (UT ,A,b),
thus T ,A |= q(b), a contradiction to b ∈ S−.

(⇐) For the other direction, suppose that (UT ,A,a) is Σ-
safe and (UT ,A,a) 6→Σ (UT ,A,b), for all a ∈ S+ and b ∈
S−. We show that there is witness for (T ,A, S+, S−,Σ) ∈
QBE(UCQ).

For the sake of simplicity, we abbreviate UT ,A just with I.
Further, we denote with qI,a(x) the interpretation (I,a)
viewed as (possibly infinite) CQ with the answer variables
x being the distinguished tuple a. For a (U)CQ q, denote with
qΣ(x) the restriction of q(x) to symbols from Σ, and with
qi(x) the restriction of q(x) to variables that have distance at
most i to the answer variables of q(x).

We now define a possibly infinite UCQ q(x) by taking
q(x) =

∨
a∈S+ qΣ

I,a. By Σ-safety and universality of I , every
a ∈ S+ is a certain answer to this query and none of the

b ∈ S− is a certain answer. Thus, if q(x) is finite, then q(x)
is the required witness. If q(x) is infinite, we show that there is
a finite subset of q(x) that is a witness for (T ,A, S+, S−,Σ).
Assume the opposite, that is, qi(x) is not a witness for ev-
ery i ≥ 1. To reach a contradiction, we will show that there
exist a ∈ S+, b ∈ S− with (I,a) →Σ (I,b), contradict-
ing Condition 1. Clearly, For every such qi(x) we still have
T ,A |= qi(a) for all a ∈ S+. However, by our assumption,
for every i, there is a bi ∈ S− such that T ,A |= qi(bi). Since
S− is finite and q(x) consists of finitely many disjuncts, there
have to be a ∈ S+ and b ∈ S− such that, for infinitely many
i:

• b = bi, and

• the disjunct pi = qΣ,i
I,a of qi corresponding to a, satisfies

T ,A |= pi(bi).

We can then proceed as in the proof of Theorem 1 and con-
struct a homomorphism (I,a)→Σ (I,b).

D Proofs for Section 4
Lemma 3. Σ-safety can be decided in EXPTIME.

Proof. It suffices to compute Πa∈S+UT ,A for a∗ = Πa∈S+a
and all neighbors b of a. This can be done by computing the
universal model up to depth 1. Thus it is in EXPTIME; it is
also EXPTIME-hard since it is at least as hard as subsumption.
By the same approach, we obtain PTIME-completeness for
data complexity.

Lemma 4. For every b ∈ S−, we have (UkT ,A,a∗) →Σ

(UT ,A,b) iff (P,a∗)→Σ (UT ,A,b).

Proof. The direction (⇒) is trivial since P is a sub-
interpretation of UT ,A.

For (⇐), let h : (P,a∗)→Σ (UT ,A,b). Note that, by defi-
nition, P is actually the maximal connected sub-interpretation
containing ind(A)k. We can extend the homomorphism h to a
connected component I 6= P of UT ,A by taking the projection
of ∆I to an arbitrary (but fixed) component.

Lemma 5. (P,a∗) →Σ (UT ,A,b) iff there is a Σ-
homomorphism h : (P|N ,a∗)→Σ (UT ,A,b) and a labeling
T (π) ⊆ ∆k for every π ∈ range(h) ∪ ind(A) such that:

1. for every p ∈ N , we have p ∈ T (h(p));

2. for every c ∈ T (π), we have c→Σ tpUT ,A
(π);

3. for every π ∈ range(h) ∪ ind(A), every c ∈ T (π), and
every d with c ↪→T ,Ar d one of the following is true:

(a) there is some π′ ∈ range(h) ∪ ind(A) such that
(π, π′) ∈ rUT ,A and d ∈ T (π′), or

(b) (r,d, T (π), tpUT ,A
(π)) ∈ PHom.

Proof. (⇒) Let g : (P,a∗)→Σ (UK,b). We define h = g|N
and, for a ∈ range(h) ∪ ind(A), we set

T (a) = {tail(p) | p ∈ ∆P ∧ g(p) = a}.

We verify h and T satisfy Conditions 1–3.



• Condition 1. Let p ∈ N . We have p ∈ h−1(h(p)) ⊆
g−1(h(p)), which implies p ∈ T (h(p)).

• Condition 2. Let a ∈ range(h) ∪ ind(A), c ∈ T (a) and
A ∈ Σ. Since c ∈ T (a), there exists a p ∈ ∆P such that
g(p) = a and tail(p) = c. SinceA ∈ c, by the definition
of P , we have p ∈ AP . Since g is a Σ-homomorphism,
a = g(p) ∈ AUK .

• Condition 3. Let a ∈ range(h) ∪ ind(A), c ∈ T (a) and
d ∈ ∆k with c ↪→k

r d. Since c ∈ T (a), there exists
a p ∈ ∆P such that g(p) = a and tail(p) = c. We
distinguish two cases, depending on b := g(prd):

– If b ∈ range(h) ∪ ind(A), then it is clear that
(a, b) ∈ rUK and d ∈ T (b). In this case, Condi-
tion 3(a) holds.

– If b /∈ range(h) ∪ ind(A), we need to show that
(r,d, T (a), tpUK(a)) ∈ PHom. We define a par-
tial function ĝ : ∆Pd → ∆

UT ,tpUK (a) witness-
ing PHom by setting ĝ(q) := g(q), for every
q ∈ ∆P of the shape q = prdp′ such that g(q)
lies in the subtree rooted at a. We argue that ĝ
fulfils all the necessary conditions: Since ĝ is a
restriction of g, it is a homomorphism on its do-
main. Since g(p) = a ∈ range(h) ∪ ind(A)
but g(prd) /∈ range(h) ∪ ind(A), we know that
g(prd) is a child of g(p) in the anonymous part
of UK. It follows that g(prd) ∈ ∆

UT ,tpUK (a) and
thus, the second condition for PHom holds. For the
last condition, let ĝ(q) ∈ ∆Pd be defined and let
(q,q′) ∈ sPc for a Σ-role s. Now, assume that ĝ(q′)
is not defined. Since ĝ(q) is defined, and from the
definition of the domain of ĝ, we have that ĝ(q) = a.
This implies g(q) = a, and thus, tail(q) ∈ T (a).

(⇐) Let h : (P|N ,a∗) →Σ (UK,b) and T : range(h) ∪
ind(A)→ 2∆k

such that Condition 1 to 3 are fulfilled.
For constructing the homomorphism g : (P,a∗) →Σ

(UK,b), we construct a series g0, g1, . . . of homomorphisms
with increasing domains N = dom(g0) ⊆ dom(g1) ⊆ . . .,
such that every gi+1 extends gi and

⋃∞
i=0 dom(gi) = ∆P , and

we will then set g =
⋃∞
i=0 gi. While constructing the gi, we

will keep the following invariants about gi.

• Every element from dom(gi) is reachable from an indi-
vidual in N . So dom(gi) ⊆ ∆P can be regarded as N
plus a set of trees with roots in N .

• If p ∈ dom(gi) is a leaf in dom(gi), but p has a successor
in P , then p ∈ range(h) ∪ ind(A). So with every step
from gi to gi+1, we define the homomorphism up to the
points where it comes back to range(h) ∪ ind(A).

• gi is a Σ-homomorphism on its domain.

Set g0 = h and note that the invariants are fulfilled. If gi
has been defined and dom(gi) ( ∆P , we define gi+1 in the
following way: Choose a leaf pc ∈ dom(gi) such that there
exists pcrd /∈ dom(gi) for some role r and some d ∈ ∆k.
Denote gi(pc) = a. From the second invariant, we know that
c ∈ T (a), so the requirements for Condition 3 are fulfilled

and we know that either 3(a) is true or 3(b) is true. If 3(a)
is true, then let dom(gi+1) = dom(gi) ∪ {pcrd} and define
gi+1(pcrd) = b, where b is the element from Condition 3
(a). Note that then the invariants hold for gi+1. If 3 (b) is
true, then (r,d, T (a), tpUK(a)) ∈ PHom, so there is a partial
function h′ : ∆Pd → ∆

UT ,tpUK (a) fulfilling the conditions of
the definition of PHom. In dom(h′), consider the connected
component Z ⊆ dom(h′) of d. For every dq ∈ Z, where q
could possibly be empty, we define gi+1(pcrdq) = h′(dq)
and we obtain dom(gi+1) = dom(gi) ∪ {pcrdq | dq ∈ Z}.
Since Z is connected, the first invariant holds. From the
third condition of the definition of PHom, we know that
whenever dq is a leaf in Z that has a successor in P , then
gi+1(dq) = a and tail(pcrdq) ∈ T (a), so the second in-
variant holds. Since gi is a Σ-homomorphism on its domain
and h′ is a Σ-homomorphism on Z, it follows that gi+1 is
a Σ-homomorphism on its domain, aside from possibly the
leafs in Z. But from Condition 2, it follows that gi+1 is also a
homomorphism on the leafs, so the third invariant holds.

If the leafs pc are chosen in a fair way, i.e. ensuring that
every such leaf gets chosen at some point, it follows that⋃∞
i=0 dom(gi) = ∆P . From the third invariant, it follows then

that g is a Σ-homomorphism from (P,a∗) to (UK,b).

Lemma 6. (r̂, t̂, T̂ , t̂) ∈ PHom iff M̂ contains a root mosaic
M = (t, T, r0, t0, T0, . . . , rn, tn, Tn) for T̂ with t = t̂ and a
mosaic M ′ = (t′, T ′, r′0, t

′
0, T

′
0, . . . , r

′
m, t
′
m, T

′
m) with t̂ ∈ T ′

and r0 = r̂ such that t = t′0, ri = r′0, ti = t′, T ′0 ⊆ T , and
Ti ⊆ T ′ for some i.

Proof. For the direction (⇒), let g be the function witness-
ing (r̂, t̂, T̂ , t̂) ∈ PHom. We define a set M∗ of mosaics by
including a mosaic M(π) = (t, T, r0, t0, T0, . . . , rn, tn, Tn)
for every π ∈ ∆UT ,t̂ . There, M(π) is given by:

• t = tail(π);

• T = {tail(p) | g(p) = π}.
• r0 is arbitrary and T0 = ∅, if π = at̂; otherwise let π =
π′rt and define r0 = r and T0 = {tail(p) | g(p) = π′};
• ri, ti for 1 ≤ i ≤ n are determined by requiring that
πr1t1, . . . , πrntn be all successors of π;

• Ti for 1 ≤ i ≤ n is given by Ti = {tail(p) | g(p) =
πriti}.

By construction, M(at̂) is a root mosaic for T̂ , and all other
M(π) are mosaics. Moreover, there is a successor of the shape
π = at̂t̂ ∈ ∆UT ,t̂ , such that g(t̂) = π. Define M = Mt̂ and
M ′ = Mπ. By construction, they satisfy the conditions from
the lemma. Moreover, using the homomorphism condition of
g, it is routine to verify that M∗ ⊆Mi for all i ≥ 0.

For the direction (⇐), let M̂ be the result of mosaic elimi-
nation procedure, and let M and M ′ be the mosaics that are
guaranteed to exist by assumption. Before defining the func-
tion g, let us define a map τ : ∆UT ,t̂ → M̂ which assigns
every node in ∆UT ,t̂ a mosaic. Start with τ(at̂) = M and
τ(at̂r̂t

′) = M ′. By Condition (E), we can continue defining
τ(πst) whenever τ(π) is defined.



We define now the homomorphism g inductively, maintain-
ing the following invariants:
(∗) if g(p) = π is defined and τ(π) =

(t, T, r0, t0, T0, . . . , rn, tn, Tn), then tail(p) ∈ T ,
and

(∗∗) g is a homomorphism on its domain.

Start with setting g(t̂) to the successor π = π̂r̂t that exists
because of Condition 2 of strategy tree, obviously satisfying
the invariant. To extend g, let g(p) = π defined, (p,p′) ∈ rPc

for some Σ-role r. If π = π̂ and tail(p) ∈ T̂ , we do nothing.
Otherwise, suppose τ(π) = (t, T, r0, t0, T0, . . . , rn, tn, Tn).
By (∗), we have that tail(p) ∈ T . Moreover, we know that
tail(p) ↪→T ,Ar tail(p′). Condition (vi) (resp., (vi’)) yields that
t ∈ Ti for some i and either i = 0 and r = r−0 or i > 0 and
r = ri. Extend g by setting g(p′) to the predecessor of π if
i = 0 and to πriti if i > 0.

Lemma 8. For L = ELI and Q ∈ {CQ,UCQ}, QBE(L,Q)
and QDEF(L,Q) are 2-EXPTIME-hard.

Proof. We reduce the word problem for the following vari-
ant of exponential space bounded alternating Turing ma-
chines (ATMs) which is easily seen to be equivalent to the
standard model. An alternating Turing machine is a tuple
M = (Q,Θ,Γ, q0,∆) where Q = Q∃ ]Q∀ ] {qa, q1

a, q
2
a} is

the set of states, consisting of existential states Q∃, universal
states Q∀, and some accepting states qa, q1

a, q
2
a. Further, Θ is

the input alphabet and Γ is the tape alphabet, q0 ∈ Q∃ ∪Q∀ is
the starting state, and the transition relation ∆ is of the form

∆ ⊆ Q× Γ×Q× Γ× {L,N,R}.

We write ∆(q, σ) to denote the set {(q′, σ′,M) |
(q, σ, q′, σ′,M) ∈ ∆} and assume w.l.o.g that the state q0

is universal and that every set ∆(q, σ) contains exactly two el-
ements when q is universal; moreover, we assume a fixed order
on these two elements, speaking about the first and the sec-
ond possible successor. Finally, we assume that ∆(qa, σ) =
{(q1

a, σ,N), (q2
a, σ,N)} and ∆(qia, σ) = {(qa, σ,N)} for all

σ ∈ Γ.
A configuration of an ATM is a wordwqw′ withw,w′ ∈ Γ∗

and q ∈ Q. The successor configurations of a configuration
wqw′ are defined in the usual way.

A computation tree of an ATM M on input w is a tree
whose nodes are labeled with configurations of M such that
• the root is labeled with the initial configuration q0w, and
• the descendants of any inner node which is labeled by

a universal (resp., existential) configuartion include all
(resp., one) of the successors of that configuration.

A computation tree is called accepting if on all paths in the
tree, the sequence of visited states is of the shape u ·(qaq1

a)ω or
u · (qaq2

a)ω , that is, eventually M loops through the accepting
states. An ATMM accepts an inputw if there is a computation
tree of M on w.

It is well-known that there is a fixed exponentially space
bounded M whose word problem is 2-EXPTIME-hard such
that every configuration wqw′ appearing in some computation
tree actually satisfies |ww′| ≤ 2n with n the length of the

input [Chandra et al., 1981]. Moreover, we assume that Γ
contains special symbols 6 b, 6 c which delimit the input word
from left and right and are never overwritten, and further the
blank symbol .

We are going to construct a TBox T including two special
concept names A,B, and an alphabet Σ such that

(T , {A(a), B(b)}, {a}, {b},Σ) ∈ QBE iff M accepts w.

We enforce an exponential counter using concept names
X1, . . . , Xn, X1, . . . , Xn and C1, . . . , Cn, Cn, . . . , Cn as
follows:

∃r−.X1 v X1 u C1

∃r−.X1 v X1 u C1

Ci−1 u ∃r−.Xi v Xi u Ci, for all 2 ≤ i ≤ n
Ci−1 u ∃r−Xi v Xi u Ci, for all 2 ≤ i ≤ n
Ci−1 u ∃r−.Xi v Xi u Ci, for all 2 ≤ i ≤ n
Ci−1 u ∃r−.Xi v Xi u Ci, for all 2 ≤ i ≤ n

Moreover, we include the following CIs to have convenient
abbreviations available:

X1 u . . . uXn v Max

Xi v Max for all 1 ≤ i ≤ n

We start with CIs that enforce the skeleton tree below a, as
described in the main part:

A v X1 u . . . uXn u U
U uMax v ∃r.U
U uMax v ∃r.E1 u ∃r.E2

Ej uMax v ∃r.Ej , for j ∈ {1, 2}
E uMax v ∃r.U

For enforcing the paths which starting from every element, let
X denote the set of all concept names of the shape α〈x,y,z〉
with x, y, z ∈ Γ ∪ (Γ×Q) such that at most one of x, y, z is
actually from (Γ × Q). Intuitively, α〈x,y,z〉 describes three
consecutive tape cells in a configuration. We include the
following transition for all α, α′ ∈ X and j ∈ {1, 2}:1

Ej v ∃r.∃r−.(α u ∃(r−)2n

.α′) (1)

U v ∃r.∃r−.(α u ∃(r−)2n

.α′)) (2)

This finishes the first part, that is, the tree below a.
For the second part, we use the same counters and enforce

that every model of B contains in some sense all possible
computation trees. For this purpose, let c0 be the initial con-
figuration of M on input w, and let αi be X〈x,y,z〉 if the three
cells i − 1, i, i + 1 are labeled with x, y, z, respectively. To
enforce the initial configuration, we include the following CI:

B v U uX1 u . . . Xn u Init

Init u (X = i) v ∃r.(U u Init u αi) for all i ≤ n
Init u (X > n) uMax v ∃r.(U u Init u α〈 , ,6c〉)

1∃rk.C denotes ∃r. . . . ∃r.C with a sequence of k times ∃r.



To enforce the remainder of the tree, let XE (resp., XU1 and
XU2 ) as the set of all pairs (α0, α

′
1) such that α0, α1 ∈ X, and

there are two configurations c, c′ ofM such that c is existential
(resp., universal), c′ is a successor configuration of c (where
the first, resp., second possibility from the universal transition
was chosen), some cell in c is labeled with α, and the same
cell in c′ is labeled with α′. Moreover, denote with X 6b∗ (resp.
X 6c∗) the subset of X∗ that contains only (α0, α

′
1) with α of

the shape X〈6b,y,z〉 (resp., X〈x,y,6c〉). Additionally, introduce
concept names Sj , j ∈ {0, 1, 2} where, intuitively, the sub-
script j denotes the number of states seen so far, and a function
st : X → {0, 1} defined as follows: st(α〈x,y,z〉}) = 1 if y
contains a state, and 0 otherwise. We include the following
CIs to start:

Init uMax v u
(α0,α′1)∈X0

U1

∃r.(E1 u α0 u α′1 u Sst(α)) u

u
(α0,α′1)∈X0

U2

∃r.(E2 u α0 u α′1 u Sst(α))

For j ∈ {1, 2} and i ∈ {0, 1} we include the following CIs:

Ej u Si uMax u α0 u α′1 v
u

(β0,β
′
1)∈XUj

(α0,α
′
1)∼(β0,β

′
1)

∃r.(Ej u β0 u β′1 u Si+st(β0))

U u Si uMax u α0 u α1 v
u

(β0,β
′
1)∈XE

(α0,α
′
1)∼(β0,β

′
1)

∃r.(Ej u β0 u β′1 u Si+st(β0)),

where (α0, α
′
1) ∼ (β0, β

′
1) if α0 = α〈x,y,z〉, β0 = α〈y,z,z′〉,

α1 = α〈x′,y′,z′〉, and β1 = α〈y′,z′,z′′〉, that is, both α0, β0 and
α1, β1 can be labels of adjacent cells in a configuration. Note
that there are no CIs with S2 on the left-hand side because
there would be too many states.

Finally, to realize the change between existential and uni-
versal configurations, we include the following CIs for every
(α0, α1) ∈ X 6c∗ and j ∈ {1, 2}.

Ej u S1 uMax u α0 u α′1 v
u

(β0,β′1)∈X0
E

∃r.(U u β0 u β′1 u Sst(β0))

U u S1 uMax u α0 u α′1 v
u

(β0,β′1)∈X0
U1

∃r.(E1 u β0 u β′1 u Sst(β0)) u

u
(β0,β′1)∈X0

U2

∃r.(E2 u β0 u β′1 u Sst(β0))

Here, we include only transitions for S1 since a valid config-
uration includes exactly one state. To generate the outgoing
paths, we include the following CIs for every (α0, α

′
1) ∈ X:

α0 u α′1 v u
(β0,β1)∈X2\{(α0,α1)}

∃r.∃r−.(β0 u ∃(r−)2n

.β1)

Init v u
(β0,β1)∈X2

∃r.∃r−.(β0 u ∃(r−)2n

.β1)

Note that, at non-Init-nodes, the same outgoing paths are cre-
ated as in (1) and (2), except for the current labeling. This

is then responsible for verifying that the configuration has
changed accordingly.

Using the given intuitions, it is now routine to verify the
following claim for Σ = {r, U,E1, E2} ∪X.

Claim.

(T , {A(a), B(b)}, {a}, {b},Σ) ∈ QBE iff M accepts w.

Since the instance (T , {A(a), B(b)}, {a}, {b}), in partic-
ular T , can be constructed in polynomial time from M , we
obtain the desired result.

Theorem 10. For L = Horn-ALCI, QBEf (L,UCQ) and
QDEFf (L,UCQ) are EXPTIME-complete.

Proof. The lower bound follows from Lemma 17 below. For
the upper bound, we consider only TBoxes in normal form.
For TBoxes not in normal form, the definition of universal
model has to adapted, but the proof principle remains the
same.

As mentioned in the main part, we have (UT ,A,a) →
(UT ,A,b) iff (UT ,A|ind(A),a) → (UT ,A,b). To decide the
latter, we proceed as follows. First, compute UT ,A|ind(A).
Then enumerate all possible maps h from ind(A) to ∆UT ,A

with h(a) = b (domain elements disconnected from a can
be ignored, as for such elements the identity establishes a
homomorphism). We accept if one of the maps is actually a
homomorphism. It remains to note that the computation of the
universal interpretation can be done in exponential time, there
are only exponentially many such homomorphisms, and the
checks can be done in exponential time.

D.1 Proofs for Horn-ALC
Lemma 11. Given (T ,A, S+, S−,Σ) with (T ,A) a Horn-
ALC KB, the relation PHom can be decided in EXPTIME.

We show that PHom can be decided using the following
relation Hom ⊆ ∆k × TP. For a pair (c, t) ∈ ∆k × TP we
have (c, t) ∈ Hom if there is a Σ-homomorphism (Pc, c)→Σ

(UT ,t(a), a). By UT ,t(a) we denote the structure UT ,t where
the root is called a.

Lemma 11 follows then from the following two Lemmas.
Lemma 15. Let r be a Σ-role, c ∈ ∆k, T ⊆ ∆k and t ∈ TP.
Then we have (r, c, T, t) ∈ PHom iff there exists a t′ ∈ TP
such that t T ,Ar t′ and (c, t′) ∈ Hom.

Proof. For the first direction, let (r, c, T, t) ∈ PHom and let
g : ∆Pc → ∆UT ,t a partial Σ-homomorphism witnessing that.
From the second condition for PHom it follows that the root
of UT ,t has an r-successor b such that g(c) = b. Let t′ be the
type of b. Since T is formulated in Horn-ALC, all roles in
both Pc and UT ,t are pointing away from the root, and it can
be shown by induction on the length on the path p, that g(p) is
defined for all p ∈ ∆Pc . Thus, g is a Σ-homomorphism from
Pc to UT ,t′(b) which maps c to b, and hence, (c, t′) ∈ Hom.

For the other direction, consider any tuple (r, c, T, t) and
let there be a t′ ∈ TP such that t  T ,Ar t′ and Hom(c, t′).
We aim to show that (r, c, T, t) ∈ PHom. Since Hom(c, t′),
there exists h : (Pc, c)→Σ (UT ,t′(a), a). This h is a witness
for (r, c, T, t) ∈ PHom.



Lemma 16. Given (T ,A, S+, S−,Σ), where T is formulated
in Horn-ALC, the problem of deciding Hom is in EXPTIME.

Proof. We give an EXPTIME procedure for computing the
relation Hom. We define a sequence of relations Homi ⊆
∆k × TP that approximates Hom from above. Let c =
(π1, . . . , πk). By tp(πi) we denote the set of concept names
that are true at πi, i.e. if πi = a for some a ∈ ind(A), then
tp(πi) = tpT ,A(a) and otherwise, tp(πi) = tail(πi). Let
Hom0 contain all pairs (c, t) such that

⋂k
i=1 tp(πi) ⊆ t. A

pair (c, t) is in Homi+1 if it is in Homi and for every d ∈ ∆k

and r ∈ Σ with c ↪→T ,Ar d there exists a type t′ such that
t T ,Ar t′ and (d, t′) ∈ Homi.

Claim: Hom =
⋂∞
i=0 Homi.

Proof of the Claim. (⊆): First we show by induction on i:

Hom ∩ Homi ⊆ Homi+1 (*)

−We begin by showing Hom ⊆ Hom0∩Hom1, which implies
the induction start. Let (c, t) ∈ Hom, so there exists h :
(Pc, c) →Σ (UT ,t(a), a). Since h(c) = t, we have for every
concept name A ∈ Σ that c ∈ APc implies A ∈ t and it
follows that (c, t) ∈ Hom0. Let r ∈ Σ and d ∈ ∆k such that
c ↪→T ,Ar d. Since h is defined for d, it follows that there is a
t′ ∈ TP with t  T ,Ar t′ and it follows that (d, t′) ∈ Hom0.
Therefore, (c, t) ∈ Hom1.
− For the induction step, assume Hom ∩ Homi ⊆ Homi+1.
We need to show that Hom ∩ Homi+1 ⊆ Homi+2. Let
(c, t) ∈ Hom ∩ Homi+1. Thus, for every r ∈ Σ and
d ∈ ∆k with c  T ,Ar d, there exists a td ∈ TP such
that t  T ,Ar td and (d, td) ∈ Homi. But we also have
(Pd,d) →Σ (UT ,td(a), a) by restricting h to the subtree
rooted at d, and thus, (d, td) ∈ Hom. Using the induc-
tion hypothesis, we conclude that (d, td) ∈ Homi+1. Hence,
(c, t) ∈ Homi+2, which finishes the proof of (*).

Now we can show that Hom ⊆ Homi for all i, again by
induction on i. The case i = 0 has been shown above, and the
induction step follows from (*).
(⊇): Let (c, t) ∈

⋂∞
i=0 Homi. We construct a homomorphism

h : (Pc, c)→Σ (UT ,t(a), a) level by level, i.e. we inductively
define a sequence hj : (Pc|j , c) →Σ (UT ,t(a), a), where
Pc|j denotes the restriction of Pc to the first j levels. While
constructing the hj , we will keep the following invariants:

• hj is a Σ-homomorphism on its domain.

• For every leaf p of Pc|j we have (tail(p), tp(hj(p)) ∈⋂∞
i=0 Homi.

We have dom(h0) = {c} and set h0(c) = a. Note that
h0 is a homomorphism, since (c, t) ∈ Hom0 and the second
invariant is also true. Now assume hj has been defined. To
define hj+1, consider any leaf prd ∈ ∆Pc|j+1 . From the
second invariant we know that (p, tp(hj(p))) ∈ Homi for all
i. So for every i we have a type ti such that (d, ti) ∈ Homi.
Since there are only finitely many types, there must be a type
t′ that appears infinitely many times among the ti. Clearly
t T ,Ar t′, so we can choose this type as the image of d, i.e.
we set hj+1(prd) = hj(p)rt′. Since t′ appeared infinitely

many times in the sequence ti, and since the sequence Homi is
descending, we have (d, t′) ∈

⋂∞
i=0 Homi, i.e. the second in-

variant holds for hj+1. The first invariant follows from the fact
that (d, t′) ∈ Hom0 and because hj is a Σ-homomorphism on
its domain.

Finally, we set h =
⋃∞
i=0 hj . Since Pc is connected, we

have dom(h) = ∆Pc and the first invariant assures that h is a
Σ-homomorphism (Pc, c)→Σ (UT ,t(a), a), so (c, t) ∈ Hom.
This finishes the proof of the claim.

Now we argue the time complexity of computing Hom.
Since Homi+1 ⊇ Homi for all i and since Hom0 contains
at most |∆k × TP| many elements, which is single exponen-
tial measured in the size of (T ,A, S+, S−,Σ), the sequence
Homi stabilizes after exponentially many steps. Comput-
ing Hom0 and computing Homi+1 from Homi can also be
done in exponential time. Hence, Hom can be decided in
EXPTIME.

Theorem 12. For L = Horn-ALC, QBE(L, Q) and
QDEF(L,Q) are CONEXPTIME-complete if Q = CQ and
EXPTIME-complete if Q = UCQ. All results also hold with
unrestricted signature.

The missing statement is the EXPTIME-completeness,
which follows from the following two lemmas.
Lemma 17. Both QBEf (Horn-ALC,UCQ) and
QDEFf (Horn-ALC,UCQ) are EXPTIME-hard.

Proof. We reduce from (the complement of) the subsumption
problem in Horn-ALC, which is the problem of deciding,
given a Horn-ALC-TBox T and concept namesA,B, whether
T 6|= A v B. The problem is EXPTIME-complete [Krötzsch
et al., 2013].

Given a TBox T and concept names A,B, define an in-
put (T ,A, S+, S−) for QBEf , by taking A = {A(a), B(b)},
S+ = {b} and S− = {a}. We now argue correctness of the
reduction. It is easy to see that T |= A v B iff there is a
homomorphism h : UT ,{B(b)} → UT ,{A(a)} with h(b) = a.
By Theorem 2, this is that case iff (T ,A, S+, S−) /∈ QBEf .
(Note that the constructed instance is always safe and that both
S+ and S− contain only one individual each.) Thus, we have
T 6|= A v B iff (T ,A, S+, S−) ∈ QBEf .

The EXPTIME-hardness of QDEFf can be achieved by the
same reduction, just ignoring S−.

Lemma 18. Both QBE(Horn-ALC,UCQ) and
QDEF(Horn-ALC,UCQ) are in EXPTIME.

Proof. We only describe an exponential time algorithm for
QBE(Horn-ALC,UCQ); the arguments for QDEF are essen-
tially the same. By Theorem 1, we need to check Σ-safety
of (UT ,A,a) for every a ∈ S+ and whether (UT ,A,a) 6→
(UT ,A,b) for all a ∈ S+ and b ∈ S−. The former can be
checked in EXPTIME by Lemma 3. For the latter, we loop
over all (polynomially many) pairs (a,b) ∈ S+ × S− and
use Lemma 5 for every such pair individually, that is, in the
definition of P we use k = 1. In this case, there are only
single exponentially many candidates for the homomorphism
h and the labeling T , so we can loop over all possible h and
T and check Conditions 1 to 3. Clearly, Conditions 1, 2 and



3a can be checked in EXPTIME, whereas 3b can be checked
in EXPTIME by Lemma 11.

E Proofs for Section 5
Lemma 13. There is a family of Horn-ALC knowledge bases
(Tn,An)n≥1, sets of examples S+ and S−, a signature Σ, and
a polynomial p(n) such that, for all n ≥ 1, |Tn ∪An| ≤ p(n),
(Tn,An, S+, S−,Σ) ∈ QBE(Horn-ALC, (U)CQ) and every
(U)CQ witnessing this is of size Ω(22n

).

Proof. Given some n ≥ 1, we construct a
Horn-ALC KB (Tn,An) using concept names
A,B,G,H,U,X1, X1, C1, C1, . . . , Xn, Xn, C1, Cn and a
single role name r. The concept names Xi, Xi are used to
implement an exponential counter. The ABox An is given by

An = {G(a), X1(a), . . . , Xn(a)} ∪
{H(b), X1(b), . . . , Xn(b)}

For the construction of the TBox, we start with including the
following CIs:

Xi v U, for all 1 ≤ i ≤ n
Xi v U ′, for all 1 ≤ i < n

G u U v ∃r. (∃r.(G uA) u ∃r.(G uB))

H u U ′ v ∃r. (∃r.(G uA) u ∃r.(H uB))u
∃r. (∃r.(G uB) u ∃r.(H uA))

H u U v ∃r.∃r.A u ∃r.∃r.B

Note that U and U ′ are enforced if the counter value is smaller
than 2n − 1 and 2n − 2, respectively. It remains to implement
the counter:

X1 v ∀r.∀r.(X1 u C1)

X1 v ∀r.∀r.(X1 u C1)

Xi v ∀r.∀r.(¬Ci−1 t (Xi u Ci)), for all 2 ≤ i ≤ n
Xi v ∀r.∀r.(¬Ci−1 t (Xi u Ci)), for all 2 ≤ i ≤ n
Xi v ∀r.∀r.(¬Ci−1 t (Xi u Ci)), for all 2 ≤ i ≤ n
Xi v ∀r.∀r.(¬Ci−1 t (Xi u Ci)), for all 2 ≤ i ≤ n

Obviously, the size of both An and Tn is bounded by some
polynomial in n. Let I denote the subtree of UTn,An

starting
at a (that is, with domain {π ∈ ∆UTn,An | π starts with a})
restricted to signature Σ = {r,A,B}. Then, define qn(x) as
(I, a), viewed as CQ. By construction, qn is a finite tree of
exponential depth, thus of double exponential size. We verify
the following claim:

Claim. (Tn,An) 6|= qn(b), but (Tn,An) |= q′(b) for every
subquery q′ of qn.

Proof of the Claim. For the first part of the claim it suffices to
note that, by construction, (UTn,An

, a) 6→Σ (UTn,An
, b). For

the second part, note that qn(x) is minimal, that is, there is no
subquery that is equivalent. Let q′(x) be obtained from qn(x)
by removing an atom. We distinguish cases.

• If some atom A(z) or B(z) is removed, then q′(x) is not
minimal anymore. In fact, one can remove the whole
subtree below z from the query and obtain an equivalent
query q̂(x). It is then easy to construct a match π from
q̂(x) to UTn,An

with π(x) = b, and thus, Tn,An |=
q′(b).
• If some atom r(z, z′) is removed, we can drop the dis-

connected part from q′(x) and obtain an equivalent query
q̂(x). Again, we can construct a match π from q̂(x) to
UTn,An

with π(x) = b.
The lemma then follows: set S+ = {a} and S− = {b}.

Theorem 14. If (T ,A, S+, S−,Σ) ∈ QBE(L,CQ), there is
a witness query of at most double (resp., four-fold) exponential
size if L = Horn-ALC (resp., L = Horn-ALCI).

We prove Theorem 14 only for L = CQ, it is completely
analogous for UCQs.

Suppose that (T ,A, S+, S−,Σ) ∈ QBE(CQ). By Theo-
rem 1, we know that both Condition 1 and Condition 2 are
satisfied; thus, we also have (P,a∗) 6→Σ (UT ,A,b) for all
b ∈ S−. To derive an upper bound on size of witness queries,
we view the characterization in Lemma 5 as a game, where
the second Player A tries to show the existence of the homo-
morphism and the first one, Player E, tries to refute that. The
game proceeds as follows:
• Player A chooses a homomorphism from (P|N ,a∗)→

(UT ,A,b) and a labeling T (π) ⊆ ∆k for every π ∈
range(h) ∪ ind(A).
• Player E wins immediately if there is no such homomor-

phism or T does not satisfy Point 2 in Lemma 5.
• After that initial phase, Players E and A take turns ac-

cording to Point 3 in Lemma 5. Player E starts with
choosing a ∈ Nk and sets π := h(a) and c := a. Then:

– Player E chooses d ∈ ∆k with c ↪→T ,Ar d.
– Player A responds with one of the following moves:
∗ He chooses some π′ ∈ range(h) ∪ ind(A) such

that there is (π, π′) ∈ rUT ,A and d ∈ T (π′).
∗ He chooses T ⊆ T (π) and promises that

(r,d, T, tpUT ,A
(π)) ∈ PHom.

In the first case, the game continues with c := d. In
the second case, Player E can either challenge the
promise or choose some new c ∈ T (π).

• Player E wins if, at some point, she can successfully
challenge the promise or Player A cannot move anymore.
Player A wins otherwise.

It is not hard to show that Player E has a winning strategy
in this game iff (P,a∗) 6→Σ (UT ,A,b). Since we know that
the latter is the case, we know that Player E has a winning
strategy. The witness that we are going to construct consists of
P|N together with initial parts of the subtrees rooted at each
a ∈ N (again viewed as CQ with answer variables a∗). The
depth of these initial parts is related to the length of the plays.
Thus, let us determine the length of the maximal play in the
above game.

We can assume without loss of generality that Player E
never visits a pair (π, c) twice (otherwise she could play her



reply of the second visit already in her first opportunity and
win earlier). Thus, there are at most |∆k|2 many moves in the
game.

In case of Horn-ALC, we can always assume that the T ⊆
T (π) chosen by Player A is T = ∅, due to the absence of
inverse roles. Thus, he chooses the promise move at most
once during the game, and if it is chosen once, the challenge
of this move by Player E is successful. Now, note that a
successful challenge of Player A’s promise about PHom can
be witnessed by an initial part of Pd which is of depth |∆k ×
TP| (this can be extracted from the proof of Lemma 16 above).
Thus, summarizing, the depth of the tree-shaped parts in the
constructed CQ is at most |∆k|2 + |∆k| × |TP|, which is
exponential in the input size. Thus, the size of the overall
query is doubly exponential in the input size.

For Horn-ALCI , the argumentation is much more involved.
We provide a characterization of PHom via reduction to push-
down reachability games and then apply results from this field.

A pushdown reachability game is a tuple G =
(Q,QI , QII ,Ω,R, F ) where Q is a finite set of control states
partitioned into two sets QI , QII , Ω is a finite stack alphabet,
andR ⊆ (Q× Σ)× (Q× Σ≤2) is the set of transitions, and
F is a set of target configurations. There a configuration is a
pair (w, q) with w ∈ Ω∗ is the stack content and q ∈ Q is a
control state. We write (q, w)→ (q′, w′) if there is a one step
transition from configuration (q, w) to configuration (q′, w′).

A play of a pushdown game is a sequence
(q0, w0), (q1, w1), . . . , where (q0, w0) is some starting
configuration and (pi, wi)→ (pi+1, wi+1) for all i ≥ 0. Such
a play is winning for player I if there is some i such that
(qi, wi) ∈ F . A strategy ξ for player I is a function assigning
to every finite sequence (q0, w0), . . . , (qn, wn) of configu-
rations a configuration ξ(v) such that (qn, wn) → ξ(v)).
A strategy is winning if it guarantees a win for player I
whenever she follows the strategy.

For deciding (r̂, t̂, T̂ , t̂) ∈ PHom, we view the homomor-
phism test as a game between Player I (trying to show that
there is no homomorphism) and Player II (trying to show
that there is a homomorphism). We model this game using
pushdown systems, where intuitively, the state captures the
current node in P and the stack contains the path from the
root to the current node in UT ,t. Thus, the pushdown game is
based on the following states and stack alphabet:

QI = ∆k ∪ {qI , qII}
QII = {(t, r, t′) | t ↪→r t

′} ∪ {q0, q
′
I , q
′
II}

Ω = {(r, t) | r a Σ-role, t ∈ TP} ∪ {(⊥, t̂)}
States qI , q′I and qII , q

′
II are entered when player I and

player II , respectively, has won the homomorphism game.
InR, we include the following transitions:

1. (q0, (⊥, t̂)) → (t̂, (⊥, t̂) · (r̂, t)) for all t ∈ TP with
t̂ r t;

2. (t, a)→ ((t, r, t′), a) for all (t, r, t′) ∈ QII and a ∈ Ω;
3. ((t, r, t′), (s, t))→ (t′, (s, t) · (r, t′)) for all t r t

′;
4. ((t, r, t′), (r−, t))→ (t′, ε);
5. (t, (r, t))→ (qI , ε) for all t, t with t 6→Σ t;

6. ((t, r, t′), a)→ (qI , ε) for all a ∈ Ω;

7. (qI , a)→ (q′I , ε) and (q′I , a)→ (qI , a) for a ∈ Ω;

8. ((t, r, t′), (⊥, t̂))→ (qII , (⊥, t̂)) for all t ∈ T̂ ;

9. (qII , a)→ (q′II , a) and (q′II , a)→ (qII , a) for a ∈ Ω.

The intuition behind these rules is as follows. In the first rule,
Player II chooses the successor of t̂ from the second point
of PHom. After that, players take turns. In rule 2, Player I
chooses a possible successor of t. Player II responds by either
going to a successor of t (written on the stack), see rule 3, or
going to the predecessor of the current node (by deleting the
top-most symbol from the stack), see rule 4. Player I wins
the game if at some point the game is at a state where the
types are not compatible, see rule 5, or Player II is forced
to enter qI , see rule 6. In states qI , q′I players reduce the
stack stepwise, until the target configuration F = {(q′I , ε)}
is reached. Player II wins if the game reaches the root and
t ∈ T̂ (rule 8), because the game enters an infinite loop (rule 9).
Based on these intuitions it is straightforward to show that:

Lemma 19. Player I has a winning strategy from (q0, (⊥, t̂))
iff (r̂, t̂, T̂ , t̂) /∈ PHom.

It is known that, if there is a winning strategy, then there
is a regular one. To make this formal, define a strategy au-
tomaton for G to be a finite deterministic automaton D =
(S,Ω, s0, δ, (Outs)s∈S) where S is a finite set of states, Ω
is the underlying alphabet (coinciding with the one of the
game), δ : S ×Ω→ S is the transition function, and for every
s ∈ S, Outs is a function that takes as input a state q ∈ QI
and returns a move for player I . Intuitively, D processes a
configuration (q, w) by reading first the stack content from
bottom to top and then returning a move for q. In order to
be a strategy automaton, D has to satisfy the property that,
when the game is in a configuration (q, w), q ∈ QI that is
winning for Player I , then D outputs a move that is winning
for Player I . In other words, D specifies a winning strategy
for Player I .

It has been shown in [Kupferman et al., 2010] and more
explicitely in [Carayol and Hague, 2014] that, if there is a
winning strategy for Player I in G, then there is a strategy
automaton D for G of size exponential in Q. Let us assume
that Player I has a winning strategy for the homomorphism
game, that is, no matter the moves of player II , after finitely
many steps the game reaches a situation where II can only
go to state qerr. Let D be the strategy automaton which exists
because of the winning strategy, and let N = |S| be the
number of its states. Moreover, let M = |Ω| be the size of the
underlying alphabet. We can then show:

Lemma 20. The game played according to the strategy au-
tomaton does not reach a configuration (q, w) with w ≥
MN + 1.

Proof. Assume to the contrary that such a configuration is
reached via play (q0, w0), . . . , (qn, wn) = (q, w). For each
i ∈ {1, . . . ,MN + 1}, define ni to be the minimal j such that
qj ∈ QI and |wk| > i for all k > j. Consider the sequence
(p1, s1), . . . , (pMN+1, sMN+1) where, for all i, pi = qni

and
sni

is the state of D after reading wni
. By choice of M,N ,



there are i < j such that (pi, si) = (pj , sj). But this means
that Player II has found a way to force Player I to visit the
same pair (p, s) twice without decreasing the stack. Hence,
using the same strategy, Player II can extend the game to
infinity, contradicting the assumption that D is a strategy au-
tomaton.

Note further that a winning game for Player I never reaches
the same configuration (w, q) twice. Since there are only
|Ω|MN × |Q| configurations with stack height at most MN ,
any winning game has length at most |M |MN×|Q|. It remains
to note that M = O(2p(|T |)), |Q| = O((2p(|T |) + |A|)p(k)),
andN = O(2p(|Q|)) to derive that a winning game has at most

n0 = O(222p(|T |k)+|A|p(k)

)

many rounds, for some polynomial p.
Summing up. We have shown above that, if Player I suc-

cessfully challenges the promise about PHom at some point,
this can be witnessed by a CQ of depth n0, that is, triple ex-
ponential depth. Now, if during the (outside) game Player A
always chooses the step corresponding to 3(a) of Lemma 5
and only finally the promise step corresponding to 3(b), we
are done: the depth of the tree-shaped parts is bounded triple
exponentially in the input size. In case there are several (un-
challenged) moves corresponding to 3(b), one can show with
a similarly defined reachability game that the types in T can
be ‘enforced’ in a game of at most n0 rounds. The overall size
of the witness CQ that we obtain is then four-fold exponential.


