
Ontology-Mediated Querying with the Description Logic EL:
Trichotomy and Linear Datalog Rewritability

Carsten Lutz and Leif Sabellek
University of Bremen, Germany

{clu,sabellek}@informatik.uni-bremen.de

Abstract
We consider ontology-mediated queries (OMQs)
based on an EL ontology and an atomic query (AQ),
provide an ultimately fine-grained analysis of
data complexity and study rewritability into linear
Datalog– aiming to capture linear recursion in SQL.
Our main results are that every such OMQ is in
AC0, NL-complete or PTIME-complete, and that
containment in NL coincides with rewritability into
linear Datalog (whereas containment in AC0 coin-
cides with rewritability into first-order logic). We
establish natural characterizations of the three cases,
show that deciding linear Datalog rewritability (as
well as the mentioned complexities) is EXPTIME-
complete, give a way to construct linear Datalog
rewritings when they exist, and prove that there is
no constant bound on the arity of IDB relations in
linear Datalog rewritings.

1 Introduction
An important application of ontologies is to enrich data with
a semantics and with domain knowledge while also provid-
ing additional vocabulary for query formulation [Calvanese
et al., 2009; Kontchakov et al., 2013; Bienvenu et al., 2014;
Bienvenu and Ortiz, 2015]. The combination of a traditional
database query and an ontology can be viewed as a com-
pound query, commonly referred to as an ontology-mediated
query (OMQ). Substantial research efforts have been invested
into studying OMQs based on description logic (DL) ontolo-
gies, with two dominating topics being the data complexity
of OMQs [Hustadt et al., 2005; Krisnadhi and Lutz, 2007;
Rosati, 2007; Calvanese et al., 2013] and their rewritability
into more standard database query languages such as SQL
(which in this context is often equated with first-order logic)
and into Datalog [Pérez-Urbina et al., 2010; Eiter et al., 2012;
Bienvenu et al., 2013; 2014; Kaminski et al., 2014; Trivela et
al., 2015; Feier et al., 2017]. While the former topic aims to
understand the feasibility of OMQs from a theoretical angle,
the latter is inspired by rather practical concerns: since most
database systems are unaware of ontologies, rewriting OMQs
into standard query languages provides an important avenue
for implementing OMQ execution in practical applications;
however, a major challenge emerges from the fact that the

desired rewritings are typically not guaranteed to always exist,
though they often do exist in practically relevant cases. Both
topics are thoroughly intertwined since rewritability into first-
order logic (FO) is closely related to AC0 data complexity
while rewritability into Datalog is closely related to PTIME
data complexity.

Modern DLs can roughly be divided into two families:
‘expressive DLs’ such as ALC and SHIQ which typically
have CONP data complexity and where rewritability is guaran-
teed neither into FO nor into Datalog [Bienvenu et al., 2014;
Trivela et al., 2015; Feier et al., 2017], and ‘Horn DLs’
such as EL and Horn-SHIQ which typically have PTIME
data complexity and where rewritability into Datalog is guar-
anteed, but FO-rewritability is not [Bienvenu et al., 2013;
Hansen et al., 2015; Bienvenu et al., 2016] (with the notable
exception of DL-Lite [Calvanese et al., 2009]). In this paper,
we consider the OMQ language (EL,AQ) where the ontology
is formulated in the Horn description logic EL and where
the actual queries are atomic queries (AQs) of the form A(x),
studying data complexity, rewritability, and their relations.
Our actual contribution is two-fold.

First, we carry out an ultimately fine-grained analysis of
data complexity. In fact, we establish a trichotomy, showing
that every OMQ from (EL,AQ) is in AC0, NL-complete, or
PTIME-complete, a remarkable sparseness of complexities.
We also establish elegant characterizations that separate the
three classes of OMQs. In particular, we show that an OMQ
Q is in NL if there is a bound k such that any minimal tree-
shaped ABox A whose root is an answer to the OMQ Q does
not contain a full binary tree of depth k as a minor, and PTIME-
hard otherwise. We additionally use a second, more opera-
tional characterization to determine the precise complexity of
deciding whether a given OMQ is in AC0, NL-complete, or
PTIME-complete, which turns out to be EXPTIME-complete.

And second, we put rewritability into linear Datalog onto
the agenda of OMQ research. In fact, the equation “SQL = FO”
often adopted in this area ignores the fact that SQL contains
linear recursion from its version 3 published in 1999 on, which
exceeds the expressive power of FO. We believe that, in the
context of OMQs, linear Datalog is a natural abstraction of
SQL that includes linear recursion, despite the fact that it does
not contain full FO. Indeed, all OMQs from (EL,AQ) that are
FO-rewritable are also rewritable into a union of conjunctive
queries (UCQ) and thus into linear Datalog (and the same is

true for much more expressive OMQ languages) [Bienvenu
et al., 2014]. This shows that the expressive power of FO
that lies outside of linear Datalog is not useful when using
SQL as a target language for OMQ rewriting. We prove that
rewritability into linear Datalog coincides with containment
in NL. By what was said above, it is thus EXPTIME-complete
to decide whether a given OMQ is rewritable. Moreover, we
show how to construct linear Datalog rewritings when they
exist and prove that there is no constant bound on the arity of
IDB relations in linear Datalog rewritings.

Proof details are in the appendix, which is provided at
http://www.cs.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries
Let NC, NR, and NI be countably infinite sets of concept names,
role names, and individual names. An EL-concept is built
according to the syntax rule C,D ::= > | A | C uD | ∃r.C
where A ranges over concept names and r over role names.
An EL-TBox is a finite set of concept inclusions (CIs) of the
form C v D, C and D EL-concepts. The size of T , denoted
|T |, is the number of symbols needed to write all CIs of T ,
with each concept and role name counting as one symbol.

An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) where A is a concept name, r a role name,
and a, b individual names. We use Ind(A) to denote the set of
individuals of the ABoxA. A signature is a set of concept and
role names. We often assume that the ABox is formulated in a
prescribed signature, which we call the ABox signature. An
ABox that only uses concept and role names from a signature
Σ is called a Σ-ABox.

The semantics of DLs is given in terms of an interpretation
I = (∆I , ·I), where ∆I is a non-empty set (the domain) and
·I is the interpretation function, assigning to each A ∈ NC a
set AI ⊆ ∆I and to each r ∈ NR a relation rI ⊆ ∆I ×∆I .
The interpretation function is extended to compound concepts
by setting >I = ∆I , (C uD)I = CI ∩DI , and (∃r.C)I =
{d ∈ ∆ | ∃e ∈ ∆ : (d, e) ∈ rI}. An interpretation I satisfies
a CI C v D if CI ⊆ DI , a concept assertion A(a) if a ∈ AI ,
and a role assertion r(a, b) if (a, b) ∈ rI . We say that I is a
model of a TBox or an ABox if it satisfies all inclusions or
assertions in it.

An atomic query (AQ) takes the form A(x), A a concept
name. We write A, T |= A(a) if a ∈ Ind(A) and in every
model I ofA and T , we have a ∈ AI . An ontology-mediated
query (OMQ) is a triple Q = (T ,Σ, A(x)) with T a TBox,
Σ an ABox signature, and A(x) an AQ. We assume w.l.o.g.
that A occurs in T . Let A be a Σ-ABox. We write A |= Q(a)
and say that a is an answer to Q on A if A, T |= A(a). The
evaluation problem for Q is to decide, given a Σ-ABox A and
an a ∈ A, whether A |= Q(a). When we speak about the
complexity of an OMQ Q, we generally mean its evaluation
problem. It is thus understood what we mean when saying
that Q is in PTIME or NL-hard. We use (EL,AQ) to denote
set of all OMQs (T ,Σ, A(x)) where T is an EL-TBox. It is
known that all OMQs in (EL,AQ) are in PTIME [Rosati, 2007;
Krisnadhi and Lutz, 2007].

A Datalog rule ρ has the form S(x) ← R1(y1) ∧ · · · ∧
Rn(yn) where n > 0 and S,R1, . . . , Rn are relations of any

arity and x,yi denote tuples of variables. We refer to S(x)
as the head of ρ, and to R1(y1) ∧ · · · ∧Rn(yn) as the body.
Every variable that occurs in the head of a rule is required to
also occur in its body. A Datalog program Π is a finite set of
Datalog rules with a selected unary goal relation goal that does
not occur in rule bodies. Relation symbols that occur in the
head of at least one rule of Π are intensional (IDB) relations,
and all remaining relation symbols in Π are extensional (EDB)
relations. In our context, EDB relations must be unary or
binary and are identified with concept names and role names.
Note that, by definition, goal is an IDB relation. A Datalog
program is linear if each rule body contains at most one IDB
relation. The width of a Datalog program is the maximum
arity of non-goal IDB relations used in it and its diameter
is the maximum number of variables that occur in a rule in
Π. For an ABox A that uses only EDB relations from Π and
a ∈ Ind(A), we write A |= Π(a) if a is an answer to Π on A,
defined in the usual way [Abiteboul et al., 1995].

A Datalog program Π over EDB signature Σ is a rewriting
of an OMQ Q = (T ,Σ, A(x)) if for all Σ-ABoxes A and
all a ∈ Ind(A), we have A |= Q(a) iff A |= Π(a). We
say that Q is (linear) Datalog-rewritable if there is a (linear)
Datalog program that is a rewriting of Q. It is well-known
that, in EL, all OMQs are Datalog-rewritable. It follows from
the results in this paper that there are simple OMQs Q =
(T ,Σ, A(x)) that are not linear Datalog-rewritable, choose
e.g. T = {∃r.A u ∃s.A v A} and Σ = {r, s, A}.

Throughout the paper, we generally and without further
notice assume TBoxes to be in normal form, that is, to contain
only concept inclusions of the form ∃r.A1 v A2, > v A1,
A1 u A2 v A3, A1 v ∃r.A2 where all Ai are concept
names. Every TBox T can be converted into a TBox T ′ in
normal form in linear time [Baader et al., 2005], introducing
fresh concept names; the resulting TBox T ′ is a conserva-
tive extension of T , that is, every model of T ′ is a model of
T and, conversely, every model of T can be extended to a
model of T ′. Consequently, when T is replaced in an OMQ
Q = (T ,Σ, A0(x)) with T ′ resulting in an OMQ Q′, then
Q and Q′ are equivalent in the sense that they give the same
answers on all Σ-ABoxes. Thus, conversion of the TBox in an
OMQ into normal form does not impact evaluation complexity
nor rewritability into linear Datalog (or any other language).

We shall often deal with ABoxes that are tree-shaped.
By a tree, we generally mean a directed (unlabelled) tree
T = (V,E), defined in the usual way. Every ABox gives
rise to a directed graph GA = (Ind(A), {(a, b) | r(a, b) ∈
A for some r}). We say that A is tree-shaped if GA is a
tree and r(a, b), s(a, b) ∈ A implies r = s. The importance
of tree-shaped ABoxes is due to the fact that OMQs from
(EL,AQ) cannot distinguish between a Σ-ABox and its unrav-
eling into a tree, see [Lutz and Wolter, 2012] or the appendix
of this paper.

We introduce some further standard graph theoretic notions
for ABoxes. A homomorphism from an ABox A1 to an ABox
A2 is a total function h : Ind(A1) → Ind(A2) such that
A(a) ∈ A1 implies A(h(a)) ∈ A2 and r(a, b) ∈ A1 implies
r(h(a), h(b)) ∈ A2. We write A1 → A2 if there is a ho-
momorphism from A1 to A2. A directed graph G = (V,E)
is a minor of an ABox A if G is a minor of GA, that is, if

G can be obtained from GA by deleting edges and vertices
and by contracting edges. A path decomposition of a directed
graph (V,E) is a sequence S1, . . . , Sn of subsets of V such
that for every (a, b) ∈ E there is a set Si with a, b ∈ Si
and Si ∩ Sk ⊆ Sj , for all i ≤ j ≤ k. A path decomposi-
tion is an (`, k)-path decomposition if k = maxni=1 |Si| and
` = maxn−1

i=1 |Si ∩ Si+1|. The pathwidth of a directed graph
(V,E) is the smallest k such that (V,E) has an (`, k+ 1)-path
decomposition for some ` ∈ N. We identify the pathwidth of
an ABox A with the pathwidth of GA.

3 NL, PTime, Linear Datalog Rewritability
We establish a dichotomy between PTIME and NL for evalu-
ating queries from (EL,AQ), also showing that containment
in NL coincides with rewritability into linear Datalog (unless
NL = PTIME). The dichotomy is based on a characterization
of containment in NL via a ‘bounded amount of branching’
in ABoxes whose root is an answer to the query. The linear
Datalog programs constructed in the proofs are of unbounded
width. We establish a hierarchy theorem which shows that this
is unavoidable.

Let Q = (T ,Σ, A0(x)) be an OMQ. We say that Q is
unboundedly branching if for every k ≥ 0, there is a tree-
shaped Σ-ABox A such that

1. A, T |= A0(a), a the root of A, and A is minimal with
this property (w.r.t. set inclusion)

2. A has the full binary tree of depth k as a minor.

Otherwise, Q is boundedly branching. In the latter case, the
branching limit of Q is the maximum integer k such that there
is a tree-shaped Σ-ABox A that satisfies Conditions 1 and 2
above. The branching limit is 0 if there is no tree-shaped
Σ-ABox A that satisfies Condition 1.

Example 1. (1) The OMQ Q1 = (T1, {A, r, s}, A(x)) with
T1 = {∃r.A v B1,∃s.A v B2, B1 u B2 v A} is unbound-
edly branching as witnessed by the ABoxesA1,A2, . . . where
Ai is a full binary tree of depth i, each left successor connected
via the role name r, each right successor via the role name s,
and with the concept name A asserted for each leaf.
(2) The OMQ Q2 = (T2, {A, r, s}, B12(x)) with T2 =
{∃r.A v B1,∃s.A v B2,∃s.B2 v B2, B1 u B2 v
B12,∃r.B12 v B1} is boundedly branching with branching
limit one. In fact, every minimal tree-shaped Σ-ABox whose
root is an answer to Q2 consists of a single r-path with an
s-path starting at each non-leaf node and with A asserted for
each leaf. Note that the number of individuals at which a
branching occurs is unbounded in such ABoxes.

The following theorem sums up the results obtained in this
section, except for the width hierarchy (Theorem 15).

Theorem 2. For every OMQ Q ∈ (EL,AQ), one of the fol-
lowing applies:

1. Q is PTIME-hard and not expressible in linear Datalog;

2. Q is rewritable into linear Datalog and thus in NL.

Bounded branching of Q implies linear Datalog rewritability
and delineates the two cases.

Note that Theorem 2 implies that any OMQ from (EL,AQ)
is linear Datalog rewritable if and only if it is in NL (un-
less NL = PTIME). It is interesting to compare Theorem 2
with the result by [Afrati and Cosmadakis, 1989] that there
are Datalog-queries that are not expressible as a linear Data-
log program, but belong to NC2 and are thus unlikely to be
PTIME-hard.

3.1 Characterizations and PTime-Hardness
Theorem 2 provides a characterization of PTIME-hardness in
terms of unbounded branching that is elegant, but does not
lend itself to hardness proofs very well. For this reason, we
establish a second characterization designed to enable a re-
duction from the PTIME-complete path systems accessibility
(PSA) problem and show that both characterizations are equiv-
alent. The new characterization will also be handy later on to
decide the rewritability of OMQs into linear Datalog.

An instance of PSA takes the form G = (V,E, S, t) where
V is a finite set of nodes, E is a ternary relation on V , S ⊆ V
is a set of source nodes, and t ∈ V is a target node. G is a yes
instance if t is accessible, where a node v ∈ V is accessible if
v ∈ S or there are accessible nodes u,w with (u,w, v) ∈ E.

Before we can state the new characterization, we need some
preliminaries. Let T be a TBox. A T -type is a set t of concept
names from T that is closed under T -consequence, that is, if
T |=u t v A, then A ∈ t. For any ABox A and a ∈ Ind(A),
we use tpA,T (a) to denote the set of concept names A from
T such that A, T |= A(a), which is a T -type. If M is a
set of concept names, then by M(a) we denote the ABox
{A(a) | A ∈ M}. We also write A, T |= M(a), meaning
that A, T |= A(a) for all A ∈ M . For every tree-shaped
ABox A and a ∈ Ind(A), we use Aa to denote the sub-tree
ABox of A that has a as the root. Moreover, we use Aa to
denoteA\Aa, that is, the ABox obtained fromA by removing
all assertions that involve descendants of a (making a a leaf)
and all assertions of the form A(a). We also combine these
notations, writing for example Aabc for ((Aa)b)c.

Definition 3. An OMQ (T ,Σ, A0(x)) ∈ (EL,AQ) has the
ability to simulate PSA if there are T -types t0, t1 and a tree-
shaped Σ-ABox A with root a and distinguished non-root
individuals b, c, d where c and d are distinct incomparable
descendants of b such that

1. A, T |= A0(a);

2. t1 = tpA,T (b) = tpA,T (c) = tpA,T (d);

3. Ab ∪ t0(b), T 6|= A0(a);

4. tpAc∪t0(c),T (b) = tpAd∪t0(d),T (b) = t0.

We define Afinish := Ab, A∧ := Abcd and Astart := Ab.

Example 4. The OMQ Q1 from Example 1 has the ability to
simulate PSA. Figure 1 shows a witnessing ABoxA according
to Definition 3 where t1 = {A,B1, B2} and t0 = {B2}.
PSA is PTIME-hard under FO-reductions [Immerman,

1999]. Using a reduction from this probem, we show that
having the ability to simulate PSA is sufficient for PTIME-
hardness under FO-reductions. In particular, we use the ABox
A∧ from Definition 3 to implement an “and” gate where t0

a

b

c

A

r

A

s

r
d

A

r

A

s

s

r

A

s

r

A

s

Figure 1: Witness ABox for Example 4
and t1 represent the truth values zero and one to capture the
behaviour of the ternary relation E in PSA.
Lemma 5. If Q ∈ (EL,AQ) has the ability to simulate PSA,
then Q is PTIME-hard under FO-reductions.
To link Lemma 5 to Theorem 2, we next show that the ability
to simulate PSA is equivalent to unbounded branching.
Proposition 6. Let Q ∈ (EL,AQ). Then Q has the ability to
simulate PSA iff Q is unboundedly branching.
The “⇒” direction is proved by taking an ABox A that wit-
nesses the ability to simulate PSA and then glueing together
disjoint copies of A∧ to obtain tree-shaped ABoxes whose
root is an answer to Q, which are minimal with this property,
and that contain deeper and deeper full binary trees as a minor.
The “⇐” direction is based on a combinatorial argument: if we
take a minimal tree-shaped ABox that makesQ true at the root
and contains a deep full binary tree as a minor, then it must
contain an ABox that witnesses the ability to simulate PSA.

3.2 NL and Linear Datalog-Rewritability
We show that bounded branching characterizes containment in
NL as well as linear Datalog rewritability, which therefore co-
incide (unless NL = PTIME). We also give a way to construct
linear Datalog rewritings when they exist.
Proposition 7. Let Q ∈ (EL,AQ). Then Q is boundedly
branching iff Q is rewritable into a linear Datalog program.
Moreover, if the branching limit ofQ is k, then there is a linear
Datalog rewriting of width k + 1.

Direction “⇒”. Let Q = (T ,Σ, A0(x)) be an OMQ from
(EL,AQ). For each k > 0, we construct a linear Datalog
program ΠQ,k that is sound as a rewriting of Q and complete
on ABoxes that do not have the full binary tree of depth k
as a minor. The program ΠQ,k uses IDB relations of the
form Pt1,...,tm where t1, . . . , tm, are T -types; the arity of this
relation is m ≤ k. For any finite set S of concepts, we use
clT (S) to denote the smallest (w.r.t. set inclusion) T -type t
with T |= uS v t. Let N be the set of all concept names
from T . The program ΠQ,k consists of five types of rules:
Start rules: PclT (S)(x) ← S(x) for all S ⊆ N and where
S(x) abbreviates

∧
A∈S A(x);

Extension rules: Pt1,...,tm,clT (S)(x1, . . . , xm, y) ←
Pt1,...,tm(x1, . . . , xm) ∧ S(y) for all S ⊆ N and T -types
t1, . . . , tm;
Step rules: Pt1,...,tm−1,t(x1, . . . , xm−1, y) ←
Pt1,...,tm(x1, . . . , xm) ∧ r(y, xm) ∧ S(y) for all S ⊆ N and
T -types t1, . . . , tm where t = clT (S ∪ {∃r.A | A ∈ tm});

Consolidation rules: Pt1,...,tm−2,t(x1, . . . , xm−1) ←
Pt1,...,tm(x1, . . . , xm−1, xm−1) for all S ⊆ N and T -types
t1, . . . , tm, t where t = clT (tm−1 ∪ tm);
Goal rules: goal(x)← Pt(x) for all T -types t with A0 ∈ t.
Example 8. We give a fragment of the program ΠQ2,2 for the
OMQ Q2 from Example 1 that is equivalent to the full ΠQ2,2

and showcases the purpose of the different rules. For readabil-
ity, we use representative concept names in the subscript of
IDB relations instead of types:

PA(x)← A(x) PB1
(x)← r(x, y) ∧ PA(y)

PB1,A(x, y)← PB1(x) ∧A(y)

PB1,B2
(x, y)← s(y, z) ∧ PB1,A(x, z)

PB1,B2(x, y)← s(y, z) ∧ PB1,B2(x, z)

PB12
(x)← PB1,B2

(x, x)

PB1
(x)← r(x, y) ∧ PB12

(y) goal(x)← PB12
(x)

It can be verified that the program ΠQ,k is sound, that is,
A |= ΠQ,k(a) implies A |= Q(a) for any Σ-ABox A. The
following lemma states a form of completeness.

Lemma 9. If A is a tree-shaped ABox with root a0 that does
not have the full binary tree of depth k as a minor andA, T |=
A0(a0), then A |= ΠQ,k(a0).

Lemma 9 is proved by exhibiting a suitable strategy for ap-
plying the rules in ΠQ,k. Returning to the “⇒” direction of
Proposition 7, we next show the following.

Lemma 10. If k− 1 is the branching limit of Q, then ΠQ,k is
a rewriting of Q.

The programs ΠQ,k allow us to construct a linear Datalog
rewriting of an OMQQ provided that we know an upper bound
on its branching limit. The following lemma establishes such
an upper bound (in case thatQ is rewritable into linear Datalog
at all).

Lemma 11. If Q = (T ,Σ, A0(x)) ∈ (EL,AQ) is boundedly
branching, then its branching limit is at most 24|T |+1

.

It can be verified that Lemma 11 is a consequence of the
proof of Proposition 6. Lemma 11 almost yields decidability
of linear Datalog rewritability: guess a tree-shaped Σ-ABox
A and verify that it satisfies Conditions 1 and 2 from the defi-
nition of k-branching, where k is the bound from Lemma 11.
For this to work, we would additionally have to bound the
depth and degree of the tree-shaped ABoxes to be guessed.
While this is not too difficult, we follow a different route (in
Section 5) to obtain tight complexity bounds.

Direction “⇐”. For d, k, n ≥ 0, let `kd(n) denote the maxi-
mum number of leaves in any tree that has degree d, depth
n, and does not have as a minor the full binary tree of depth
k + 1. The following lemma says that `kd(n) as a function of
n grows like a polynomial of degree k.

Lemma 12. (d−1)k(n−k)k ≤ `kd(n) ≤ (k+ 1)(d−1)knk

for all d, k ≥ 0 and n ≥ 2k.

Let Π be a Datalog program over EDB signature Σ and
IDB signature ΣI , and let A a Σ-ABox. It is standard to
characterize answers to Π in terms of derivations that take

the form of a labelled tree, see [Abiteboul et al., 1995] or the
appendix. From each derivation D, one can read off an ABox
AD in a standard way such that the properties summarized by
the following lemma are satisfied.
Lemma 13. Let D be a derivation of Π(a) in A, Π of diame-
ter d. Then

1. AD |= Π(a);
2. there is a homomorphism h fromAD toA with h(a) = a;
3. AD has pathwidth at most d.
We are now ready to prove the desired result.

Lemma 14. IfQ ∈ (EL,AQ) is unboundedly branching, then
it is not rewritable into a linear Datalog program.

The proof, inspired by [Afrati and Cosmadakis, 1989], is
by contradiction. Assume that Q ∈ (EL,AQ) is unboundedly
branching, but rewritable into a linear Datalog program Π.
We choose a minimal tree-shaped Σ-ABox A that contains a
full binary tree of very large depth as a minor and such that
A |= Q(a0), a0 the root of A. Consider the derivation D of
Π(a0) in A and the associated ABox AD. By a sequence of
manipulations, we identify a tree-shaped sub-ABox B ⊆ AD
such that B has a very large number of leaves (a consequence
of Point 2 of Lemma 13 and the fact that the homomorphism
must be surjective due to the minimality of A and Point 1 of
that lemma). By Lemma 12, it follows that B must contain a
full binary tree of large depth as a minor and therefore must
have high pathwidth, in contrast to Point 3 of Lemma 13.

3.3 Width Hierarchy
The linear Datalog rewritings constructed in the previous sec-
tion are of unbounded width. We next show that this is unavoid-
able, in contrast to the fact that every OMQ from (EL,AQ)
can be rewritten into a monadic Datalog program [Baader et
al., 2017]. It strengthens a result by [Dalmau and Krokhin,
2008] who establish an analogous statement for constraint
satisfaction problems (CSPs). However, while every OMQ
from (EL,AQ) is equivalent to a CSP (up to complementation
[Bienvenu et al., 2014]), the converse is false and indeed the
CSPs used by Dalmau and Krokhin are not equivalent to an
OMQ from (EL,AQ).
Theorem 15. For every ` > 0, there is an OMQ from
(EL,AQ) that is rewritable into linear Datalog, but not into a
linear Datalog program of width `.

To prove Theorem 15, we use the following queries: for all
k ≥ 1, let Qk = (Tk,Σ, Ak(x)) where Σ = {r, s, t, u} and

Tk = {> v A0}∪
{∃x.Ai v Bx,i | x ∈ {r, s, t, u}, 0 ≤ i ≤ k − 1}∪
{∃x.Bx,i v Bx,i | x ∈ {r, s, t, u}, 0 ≤ i ≤ k − 1}∪
{Br,i uBs,i v Ai+1 | 0 ≤ i ≤ k − 1}∪
{Bt,i uBu,i+1 v Ai+1 | 0 ≤ i ≤ k − 1}.

In the OMQ Qk, each concept name Ai, i ≤ k, represents the
existence of a full binary tree of depth i, that is, ifAi is derived
at the root of a tree-shaped Σ-ABoxA, thenA contains the full
binary tree of depth i as a minor. Thus, deriving Qk at the root
implies that A has the full binary tree of depth k as a minor.

r s

r

r s

s

u

r s

u t

t

u

r s

u t

u t

t

Figure 2: An ABox of depth 4 whose root is an answer to Q2

and which is minimal with this property. It has 11 leaves, the
largest number of leaves that a binary tree of depth 4 can have,
unless it contains the full binary tree of depth 3 as a minor.

Furthermore, for every n ≥ k there is minimal tree-shaped
Σ-ABox A such that Qk is derived at the root, A is of depth
n, and A has the maximum number of leaves that any tree of
depth n without the full binary tree of depth k + 1 as a minor
can have. For the case k = 2 and n = 4, such an ABox is
shown in Figure 2. The concept inclusions ∃x.Bx,i v Bx,i in
Tk ensure thatQk is closed under subdivisions of ABoxes, that
is, ifA is a Σ-ABox andA′ is obtained fromA by subdividing
an edge into a path (using the same role name as the original
edge), then A |= Qk(a) iff A′ |= Qk(a) for all a ∈ Ind(A).

Lemma 16. Every Qk is rewritable into linear Datalog.

We prove Lemma 16 by showing that each Qk is boundedly
branching with branching limit k and using Proposition 7.

To show that linear Datalog rewritings of the defined family
of OMQs require unbounded width, we first show that they
require unbounded diameter and then proceed by showing that
the width of rewritings cannot be significantly smaller than the
required diameter. To make the latter step work, we actually
show the former on an infinite family of classes of ABoxes of
restricted shape. More precisely, for all i ≥ 0 we consider the
class Ci of all forest-shaped Σ-ABoxes in which the distance
between any two branching individuals exceeds i (where a
forest is a disjoint union of trees and a branching individual
is one that has at least two successors). Since the queries Qk
are closed under the subdivision of ABoxes, each class Ci
contains ABoxes whose root is an answer to the query. The
proof of the following is similar to the proof of Lemma 14.

Lemma 17. For any i ≥ 0, Q2k+3 is not rewritable into a lin-
ear Datalog program of diameter k on the class of ABoxes Ci.

We are now ready to establish the hierarchy.

Proposition 18. Q8`+13 is not rewritable into a linear Data-
log program of width `.

The proof of Proposition 18 is by contradiction. Assume
that Q8`+13 is rewritable into a linear Datalog program Π of
width ` and let k be the diameter of Π. We show that, on the
class of ABoxes Ck, there must then be a linear Datalog rewrit-
ing Π′ of Q8`+13 of diameter 4`+ 5, contradicting Lemma 17.
In fact, Π′ can be obtained from Π by a sequence of manipu-
lations: first rewrite the rules such that the restriction of rule
bodies to EDB relations takes the form of a forest in which
there is at most one branching node in every tree, then further
rewrite to achieve that each such forest contains at most 2`
trees, and finally replace each rule with a set of rules of small
diameter, slightly increasing the width.

4 AC0 vs. NL: Completing the Trichotomy
We say that an OMQ Q = (T ,Σ, A0(x)) has unbounded
depth if for every k ≥ 0, there is a tree-shaped ABox A with
depth at least k and root a such that A, T |= A0(a) and A
is minimal with this property (regarding set inclusion). The
following theorem summarizes the results in this section.
Theorem 19. For every OMQ Q ∈ (EL,AQ), one of the
following applies:

1. Q is FO-rewritable and thus in AC0.
2. Q is not FO-rewritable and NL-hard.

Unbounded depth of Q implies NL-hardness and delineates
the two cases.

The following characterization of FO-rewritability was es-
tablished in [Bienvenu et al., 2013].
Theorem 20. Let Q ∈ (EL,AQ). Q is not FO-rewritable iff
Q has unbounded depth.

To prove Theorem 19, it thus remains to show that un-
bounded depth implies NL-hardness. Similarly to the case of
PTIME-hardness, the elegant condition of unbounded depth
does not directly lend itself to hardness proofs, and we thus es-
tablish a second and equivalent characterization. Here, the sec-
ond characterization is tailored towards NL-hardness proofs
via reduction from reachability in directed graphs (REACH).
Definition 21. An OMQ (T ,Σ, A0(x)) ∈ (EL,AQ) has the
ability to simulate REACH iff there are T -types t0 (t1 and a
tree-shaped ABox A with root a and distinguished non-root
individuals b, c where c is a descendant of b such that

1. A, T |= A0(a),
2. t1 = tpA,T (b) = tpA,T (c),

3. tpAc∪t0(c),T (b) = t0, and

4. Ab ∪ t0(b), T 6|= A0(a).
We define Afinish = Ab, Aedge = Abc, and Astart = Ac.

The three defined sub-ABoxes can be used in a reduction
from REACH to Q. We now prove that unbounded depth
implies NL-hardness, proceeding via the ability to simulate
REACH. The following lemma is essentially implicit already
in [Bienvenu et al., 2013].
Lemma 22. Let Q ∈ (EL,AQ). If Q has unbounded depth,
then Q has the ability to simulate REACH.

The next lemma is proved similarly to Lemma 5.
Lemma 23. Let Q ∈ (EL,AQ). If Q has the ability to simu-
late REACH, then Q is NL-hard under FO-reductions.

We have completed the proof of Theorem 19, and thus also
of the trichotomy.

5 Decidability and Complexity
We first show that an existing reduction in [Bienvenu et al.,
2013] yields a variety of relevant hardness results, under vari-
ous complexity-theoretic assumptions.
Theorem 24. The following properties of OMQs from
(EL,AQ) are EXPTIME-hard: linear Datalog rewritability,
containment in NL (unless NL = PTIME), NL-hardness (un-
less L = NL), and PTIME-hardness (unless L = PTIME).

For NL-hardness and PTIME-hardness, the complexity-
theoretic assumptions can be dropped when hardness is de-
fined under FO-reductions, as a consequence of the fact that
Lemma 5 establishes hardness under such reductions.

Regarding upper bounds, we first recall the known re-
sult that it is in EXPTIME to decide whether an OMQ from
(EL,AQ) is FO-rewritable [Bienvenu et al., 2013] and observe
that, by Theorem 19, we also obtain an EXPTIME upper bound
for NL-hardness. For linear Datalog rewritability, containment
in NL, and PTIME-hardness, we use an approach based on
(one-way) alternating parity automata on finite trees (APTAs).
Because of space constraints, we can only give a brief sketch.
By Theorem 2 and Proposition 6, it suffices to decide whether
a given OMQ has the ability to simulate PSA, that is, whether
there are T -types t0, t1 and a tree-shaped Σ-ABox A that
satisfy the conditions from Definition 3. We iterate over all
choices for t0, t1, building for each choice an APTA At0,t1
that accepts precisely the tree-shaped Σ-ABoxes satisfying the
required conditions for the chosen t0, t1.
Theorem 25. It is in EXPTIME to decide whether a given
OMQ from (EL,AQ) is rewritable into linear Datalog.

Interestingly, it is rather unclear how an EXPTIME upper
bound would be established based on the characterization in
terms of bounded branching. The following corollary sums up
the results obtained in this section.
Corollary 26. For OMQs from (EL,AQ), all of the following
problems are EXPTIME-complete (under the same complexity
theoretic assumptions for the lower bounds as in Theorem 24):
linear Datalog rewritability, containment in NL, NL-hardness,
and PTIME-hardness.

Note that Theorem 25 and the results from Section 3.2 give
an algorithm that provides a linear Datalog rewriting of a given
OMQ if it exists and reports failure otherwise.

6 Conclusion
As future work, we plan to extend our analysis to (ELI,AQ)
where ELI is the extension of EL with inverse roles. Then
the overall picture changes because there are OMQs from
(ELI,AQ) that express a form of undirected reachability and
are L-complete. This also raises the question whether L-
completeness coincides with rewritability into symmetric Dat-
alog [Egri et al., 2007]. Note, though, that even lifting to
(ELI,AQ) the results established in this paper such as the
dichotomy between NL and PTIME is non-trivial. It would
also be interesting to replace AQs with conjunctive queries. As
illustrated by [Bienvenu et al., 2013] versus [Bienvenu et al.,
2016], this makes the technical development more awkward
since it requires to replace tree-shaped ABoxes with (some-
what contrived) ABoxes that are almost a tree. It might be
more elegant to directly move to frontier-one tuple generating
dependencies [Baget et al., 2009]. It would also be interesting
to study the size of linear Datalog rewritings, to find ways to
construct such rewritings that are efficiently executable, and to
analyze empirically whether linear recusion is sufficiently well
optimized in SQL database systems to support the rewritten
queries.
Acknowledgements. The authors were funded by ERC con-
solidator grant 647289 ‘CODA’.

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Afrati and Cosmadakis, 1989] Foto N. Afrati and Stavros S.
Cosmadakis. Expressiveness of restricted recursive queries
(extended abstract). In Proc. of STOC, pages 113–126,
1989.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In Proc. of IJCAI,
pages 364–369, 2005.

[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten
Lutz, and Ulrike Sattler. An Introduction to Description
Logics. Cambride University Press, 2017.

[Baget et al., 2009] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. Extending decid-
able cases for rules with existential variables. In Proc. of
IJCAI, pages 677–682, 2009.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Proc. of Reasoning
Web, volume 9203 of LNCS, pages 218–307. Springer,
2015.

[Bienvenu et al., 2013] Meghyn Bienvenu, Carsten Lutz, and
Frank Wolter. First order-rewritability of atomic queries in
horn description logics. In Proc. of IJCAI, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MM-
SNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[Bienvenu et al., 2016] Meghyn Bienvenu, Peter Hansen,
Carsten Lutz, and Frank Wolter. First order-rewritability
and containment of conjunctive queries in horn description
logics. In Proc. of IJCAI, 2016.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. On-
tologies and databases: The DL-Lite approach. In Proc. of
Reasoning Web 2009, pages 255–356, 2009.

[Calvanese et al., 2013] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in de-
scription logics. Artif. Intell., 195:335–360, 2013.

[Dalmau and Krokhin, 2008] Vı́ctor Dalmau and Andrei A.
Krokhin. Majority constraints have bounded pathwidth
duality. Eur. J. Comb., 29(4):821–837, 2008.

[Egri et al., 2007] László Egri, Benoit Larose, and Pascal Tes-
son. Symmetric datalog and constraint satisfaction prob-
lems in LogSpace. Electronic Colloquium on Computa-
tional Complexity (ECCC), 14(024), 2007.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Mantas
Simkus, Trung-Kien Tran, and Guohui Xiao. Query rewrit-
ing for Horn-SHIQ plus rules. In Proc. of AAAI. AAAI
Press, 2012.

[Feier et al., 2017] Cristina Feier, Antti Kuusisto, and
Carsten Lutz. Rewritability in monadic disjunctive dat-
alog, MMSNP, and expressive description logics. In Proc.
of ICDT, 2017.

[Hansen et al., 2015] Peter Hansen, Carsten Lutz, İnanç Sey-
lan, and Frank Wolter. Efficient query rewriting in the
description logic EL and beyond. In Proc. of IJCAI, 2015.

[Hustadt et al., 2005] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Data complexity of reasoning in very expres-
sive description logics. In Proc. of IJCAI, pages 466–471.
Professional Book Center, 2005.

[Immerman, 1999] Neil Immerman. Descriptive complexity.
Graduate texts in computer science. Springer, 1999.

[Kaminski et al., 2014] Mark Kaminski, Yavor Nenov, and
Bernardo Cuenca Grau. Datalog rewritability of disjunctive
datalog programs and its applications to ontology reasoning.
In Proc. of AAAI, pages 1077–1083. AAAI Press, 2014.

[Kontchakov et al., 2013] Roman Kontchakov, Mariano
Rodriguez-Muro, and Michael Zakharyaschev. Ontology-
based data access with databases: A short course. In
Reasoning Web, pages 194–229, 2013.

[Krisnadhi and Lutz, 2007] Adila Krisnadhi and Carsten
Lutz. Data complexity in the EL family of description
logics. In Nachum Dershowitz and Andrei Voronkov, edi-
tors, Proc. of LPAR, volume 4790 of LNAI, pages 333–347.
Springer, 2007.

[Lutz and Wolter, 2010] Carsten Lutz and Frank Wolter. De-
ciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput., 45(2):194–228,
2010.

[Lutz and Wolter, 2012] Carsten Lutz and Frank Wolter. Non-
uniform data complexity of query answering in description
logics. In Proc. of KR, 2012.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. Journal of
Applied Logic, 8(2):186–209, 2010.

[Rosati, 2007] Riccardo Rosati. The limits of querying on-
tologies. In Proc. of ICDT, volume 4353 of LNCS, pages
164–178. Springer, 2007.

[Scheffler, 1989] Petra Scheffler. Die Baumweite von
Graphen als ein Mass für die Kompliziertheit algorithmis-
cher Probleme. Report (Karl-Weierstrass-Institut für Math-
ematik). Akademie der Wissenschaften der DDR, Karl-
Weierstrass-Institut für Mathematik, 1989.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos,
Alexandros Chortaras, and Giorgos B. Stamou. Optimising
resolution-based rewriting algorithms for OWL ontologies.
J. Web Sem., 33:30–49, 2015.

A Two Basic Lemmas
We start with two basic observations. Let A be a Σ-ABox
and a ∈ Ind(A). A path in A starting at a is a sequence
p = a0r0a1r1,2 , . . . rn−1an ∈ Ind(A) such that a0 = a and
ri(ai, ai+1) ∈ A for all i < n. We use tail(p) to denote an.
The unraveling ofA at a is the (possibly infinite) ABox whose
individuals are the paths in A starting at a and which contains
the assertion A(p) whenever A(tail(p)) ∈ A and r(p, prb)
whenever prb is a path in A. The following is well-known
[Lutz and Wolter, 2012].
Lemma 27. Let Q = (T ,Σ, A(x)) be an OMQ from
(EL,AQ) and A a Σ-ABox with a distinguished node a. Then
A |= Q(a) iff Au |= Q(a) where Au is the unraveling of A
at a.

The degree of an ABox A is the maximum number of suc-
cessors of any individual in A. The following lemma often
allows us to concentrate on ABoxes of small degree. It is
proved using a chase procedure.
Lemma 28. LetQ = (T ,Σ, A0(x)) ∈ (EL,AQ) be an OMQ
and A a Σ-ABox such that A |= Q(a0). Then there is an
A′ ⊆ A of degree at most |T | such that A′ |= Q(a0).

Proof. (sketch) As a preliminary, consider the chase procedure
that, given an ABoxA, exhaustively applies to it the following
rules:
R1 If A1(a), A2(a) ∈ A, A1 uA2 v A3 ∈ T , and A3(a) /∈

A, then add A3(a) to A;
R2 If > v A1 ∈ T , and A1(a) /∈ A for some a ∈ Ind(A),

then add A1(a) to A;
R3 If r(a, b), A1(b) ∈ A, ∃r.A1 v A2 ∈ T , and A2(a) /∈ A,

then add A2(a) to A;
R4 If A1(a) ∈ A, T |= A1 v A2, and A2(a) /∈ A, then add

A2(a) to A.
Let exhaustive rule applications result in the (unique) ABox
Ac. It is standard to prove that for any concept name A and
a ∈ Ind(A), we have A, T |= A(a) iff A(a) ∈ Ac.

Now assumeA |= Q(a0) and letAc be the completed ABox
produced by the chase. Since A |= Q(a0), A0(a0) ∈ Ac. Let
A′ be obtained from A by removing all assertions r(a, b) that
did not participate in any application of rule R3, and let A′c be
the result of chasing A′. Clearly, we must have A0(a0) ∈ A′c.
Moreover, it is easy to verify that the degree of A′ is at most
|T |.

B Proofs for Section 3
Lemma 29. LetA1,A2 be Σ-ABoxes and T a TBox such that
tpA1,T (a) = tpA2,T (a) for all a ∈ Ind(A1)∩ Ind(A2). Then
tpA1∪A2,T (a) = tpAi,T (a) for all a ∈ Ind(Ai), i ∈ {1, 2}.

Proof. Let A1, A2, and T be as in the lemma. It clearly
suffices to show that tpA1∪A2,T (a) ⊆ tpAi,T (a) for all
a ∈ Ind(Ai), i ∈ {1, 2}. We show the contrapositive.
Thus, assume that Ai, T 6|= A(a). We have to show that
A1∪A2, T 6|= A(a). It is well-known [Lutz and Wolter, 2010]
that for every EL-TBox T and ABox A, there is a model I
that is universal in the sense that a ∈ AI iff A, T |= A(a) for

all a ∈ Ind(A) and all concept names A. For each j ∈ {1, 2},
let Ij be such a universal model for T andAj . We can assume
w.l.o.g. that ∆I1 ∩∆I2 = Ind(A1)∩ Ind(A2). By assumption
and since tpA1,T (a) = tpA2,T (a), we must have a /∈ AI1

and a /∈ AI2 . Consider the (non-disjoint) union I of I1 and
I2. Clearly, I is a model of A1 ∪ A2 and a /∈ AI . To show
A1∪A2, T 6|= A(a), it thus remains to prove that I is a model
of T . To do this, we argue that all concept inclusions from T
are satisfied:

• Consider ∃r.A1 v A2 ∈ T and a, b ∈ ∆I such that
(a, b) ∈ rI and b ∈ AI1 . Then there exist i, j ∈ {1, 2}
such that (a, b) ∈ rIi and b ∈ A

Ij
1 . If i = j,

then a ∈ AI2 , since Ii is a model of T . Otherwise
b ∈ ∆I1 ∩∆I2 = Ind(A1)∩ Ind(A2), so by assumption,
tpA1,T (b) = tpA2,T (b). It follows that A1 ∈ tpAi,T (b)

and thus, b ∈ AIi1 . Together with (a, b) ∈ rIi and be-
cause Ii is a model of T , it follows that a ∈ AIi2 ⊆ AI2 .
Thus, the inclusion ∃r.A1 v A2 is satisfied in I.

• Consider > v A1 ∈ T and a ∈ ∆I . Then a ∈ ∆Ii

for some i ∈ {1, 2}. Since Ii is a model of T , we
have a ∈ AIi1 , so a ∈ AI1 and the inclusion > v A1 is
satisfied in I.

• Consider A1 u A2 v A3 ∈ T and a ∈ AI1 ∩ AI2 . Then
there are i, j ∈ {1, 2} such that a ∈ AIi1 and a ∈ AIj2 .
If i = j, then a ∈ AI3 follows, since Ii is a model of T .
Otherwise a ∈ ∆I1 ∩∆I2 = Ind(A1) ∩ Ind(A2), so by
assumption, tpA1,T (a) = tpA2,T (a). For sure we have
A1, A2 ∈ tpA1,T (a), so we have a ∈ AI11 ∩ A

I1
2 and

since I1 is a model of T , we conclude a ∈ AI13 ⊆ AI3 ,
so the inclusion A1 uA2 v A3 is satisfied in I.

• Consider A1 v ∃r.A2 ∈ T and a ∈ AI1 . Then a ∈ AIi1
for some i ∈ {1, 2}. Since Ii is a model of T , we
have b ∈ ∆Ii and (a, b) ∈ rIi , hence also b ∈ ∆I and
(a, b) ∈ rI and thus, A1 v ∃r.A2 is satisfied in I.

Lemma 5. If Q ∈ (EL,AQ) has the ability to simulate PSA,
then Q is PTIME-hard under FO-reductions.

Proof. Let Q = (T ,Σ, A0(x)) have the ability to simulate
PSA. We show that there is an FO-reduction from PSA to
evaluating Q. Let G = (V,E, S, t) be an input to PSA. We
construct a Σ-ABox AG with a distinguished node a0 such
that AG, T |= A0(a0) iff t is accessible in G.

Since Q is able to simulate PSA, there are A, a, b, c, d,
t0, and t1 satisfying Conditions 1 to 4 from Definition 3. We
construct AG as follows. Reserve an individual av for every
v ∈ V . For every (u, v, w) ∈ E, include in AG a copy of
A∧ and identify au, av and aw with c, d and b, respectively.
For every v ∈ S, include a copy of Astart and identify its root
with av. Finally, include a copy of Afinish and identify b with
at. The distinguished node a0 of AG is the root of Afinish. It
can be verified that AG can be defined from G by a first-order
query.

Claim. AG, T |= A0(a0) iff t is accessible in G.

First assume that t is accessible in G. Define a sequence
S = S0 ⊆ S1 ⊆ · · · ⊆ V by setting

Si+1 = Si∪{v ∈ V | there is a (u,w, v) ∈ E s.t. u,w ∈ Si}
and let the sequence stabilize at Sn. Clearly, the elements
of Sn are exactly the accessible nodes. It can be shown by
induction on i that whenever v ∈ Si, then AG, T |= t1(av).
In fact, the induction start follows from t1 = tpA,T (b) and the
induction step from Condition 2. (Here we use the fact that
in EL, for every tree-shaped ABox A and every individual
b the type tpA,T (b) depends only on Ab.) It follows from
Conditions 1 and 2 that Afinish ∪ t1(b), T |= A0(a), thus
AG, T |= A0(a0) as required.

For the other direction, assume that t is not accessible in G.
Set
A′G := AG ∪ {t0(av) | v ∈ V is not accessible}

∪ {t1(av) | v ∈ V is accessible}.

We show that A′G, T 6|= A0(a0), which implies AG, T 6|=
A0(a0).

We have defined A′G as an extension of AG. Alternatively
and more suitable for what we want to prove, A′G can be
obtained by starting with an ABox A0 that contains only the
assertions t0(av) for all inaccessible nodes v ∈ V as well as
t1(av) for all accessible nodes v ∈ V , and then exhaustively
applying the following rules in an unspecified order:
• Choose a triple (u, v, w) ∈ E that has not been chosen

before, take a new copy of A∧, rename c to au, d to
av and b to aw, and add the assertions tacc(x)(ax) for
x ∈ {u, v, w} where acc(x) = 1 if x is accessible and
acc(x) = 0 otherwise. Let this modified copy of A∧ be
called Au,v,w∧ . Now Ai+1 is defined as the union of Ai
and Au,v,w∧ .
• Chose a node v ∈ S that has not been chosen before,

introduce a new copy of Astart and rename b to av, add
the assertions t1(av). Let this altered copy of Astart be
called Avstart. Now Ai+1 is defined as the union of Ai
and Avstart.
• Introduce a new copy of Afinish, rename b to at and add

the assertions t0(at). Let this altered copy of Afinish be
called Atfinish. Now Ai+1 is defined as the union of Ai
and Atfinish.

Clearly, rule application terminates after finitely many step
and results in the ABox A′G.

Claim. tpAi,T (u) = t0 if u ∈ V is inaccessible and
tpAi,T (v) = t1 if v ∈ V is accessible, for all i > 0.

The proof is by induction on i. For i = 0, the statement is
clear since t0 and t1 are T -types. Now assume the statement
is true for some i and considerAi+1. IfAi+1 was obtained by
the first rule, it can be verified using Conditions 2 and 4 from
Definition 3 that tpAu,v,w

∧ ,T (x) = tacc(x) for all x ∈ {u, v, w}.
So with Lemma 29 and since Ai and Au,v,w∧ share only the
individuals u, v, w, the statement follows. If Ai+1 was ob-
tained by the second rule it follows from Condition 2 that
tpAv

start,T (av) = t1 and with Lemma 29, the statement follows.
If Ai+1 was obtained by the third rule, it can be verified that

tpAt
finish,T

(at) = t0 and with Lemma 29, the statement follows.
This finishes the proof of the claim.

The claim yields tpA′G,T (at) = t0, so by Condition 3 from
Definition 3 it follows thatA′G, T 6|= A0(a0), as required.

Our next aim is to show that our two characterizations are
equivalent. We first establish a purely combinatorial lemma.
Lemma 30. Let k ≥ 0, n ≥ 1. Every full binary tree of depth
n · k whose nodes are colored with n different colors has the
full monochromatic binary tree of depth k as a minor.

Proof. Every full binary tree T whose nodes are colored
with n different colors will be associated with the tuple
(m1, . . . ,mn), where mi is the smallest positive integer such
that T does not have the full binary tree of depth mi of color i
as a minor and mi = 0 if T doesn’t contain any nodes of color
i. We will prove the following statement:

Claim. Let T be a full binary tree of depth k whose nodes are
colored with n different colors. Then

∑n
i=1mi ≥ k + 1.

We proof the claim by induction on k. For k = 0 there is only
one node with a color i0. Then mi0 = 1 and mi = 0 for all
i 6= i0. Hence,

∑n
i=1mi = 1 ≥ 1 = k + 1.

Now assume the claim holds for a fixed k and consider
a tree T of depth k + 1. Let the root be called a and the
subtrees whose roots are the children of a be T1 and T2. Let
(mj

1, . . . ,m
j
n) be the tuple associated with Tj for j ∈ {1, 2}.

The tuple (m1, . . . ,mn) associated with T can be computed in
the following way: Let i0 be the color of a. For every i 6= i0
we have mi = max(m1

i ,m
2
i). If m1

i0
= m2

i0
, then mi0 =

m1
i0

+ 1. Otherwise mi0 = max(m1
i ,m

2
i). We distinguish

two cases:
1. There exists a color j such that m1

j 6= m2
j .

W.l.o.g. let m1
j < m2

j . Then
∑n
i=1mi =∑n

i=1 max(m1
i ,m

2
i) = m2

j +
∑
i 6=j max(m1

i ,m
2
i) ≥

1 +m1
j +
∑
i 6=j max(m1

i ,m
2
i) ≥ 1 +m1

j +
∑
i 6=jm

1
i ≥

1 +
∑n
i=1m

1
i ≥ 1 + (k + 1).

2. We have m1
i = m2

i for all colors. Then we also have
m1
i0

= m2
i0

, so mi0 = 1 + m1
i0

. Again, it follows∑n
i=1mi ≥ 1 + (k + 1).

With the claim proven, the lemma follows easily: Let T be a
full binary tree of depth n · k whose nodes are colored with n
different colors. Then

∑n
i=1mi ≥ n · k + 1. Assume there is

no full monochromatic binary tree of depth k as a minor in T ,
then mi ≤ k for all colors i. This yields

∑n
i=1mi ≤ k · n, a

contradiction.

Proposition 6. Let Q ∈ (EL,AQ). Then Q has the ability to
simulate PSA iff Q is unboundedly branching.

Proof. 1 ⇒ 2: Let k ≥ 1 and A, a, b, c, d, t0 and t1 be as in
Definition 3. Let S = {w ∈ {0, 1}∗ | |w| ≤ k − 1}. We
will construct an ABox Ak built up from the following set of
ABoxes:

• One copy of Afinish;
• For every w ∈ S, one copy A∧,w of A∧;

• For every w ∈ {0, 1}k, one copy Astart,w of Astart.

We identify the individual b of Afinish with the individual
b of A∧,ε. For every w0 ∈ S, we identify the individual b of
A∧,w0 with the individual c of A∧,w and for every w1 ∈ S,
we identify the individual b of A∧,w1 with the individual d
of A∧,w. Finally, for every w0 ∈ {0, 1}k, we identify the
individual b of Astart,w0 with the individual c of A∧,w and for
every w1 ∈ {0, 1}k, we identify the individual b of Astart,w1

with the individual d ofA∧,w. The resulting ABox isAk. The
root of Ak is a.
Ak has the full binary tree of depth k as a minor (induced

by the set of roots of all A∧,w and Astart,w). From conditions
1 and 2 from Definition 3 follows that Ak, T |= A0(a).

The constructed ABox Ak does not have to be minimal, but
we can minimize it without destroying the full binary tree mi-
nor: As long asAk is not minimal, remove any concept or role
assertion from Ak such that Ak, T |= A0(a) still holds. We
argue that a role assertion connecting two individuals which lie
on the same path from a to a root of a Astart,w can never be re-
moved: If the removed role assertion lies in A∧,w on the path
from its b to its c, then tpAk,T (b) ⊆ tpAb

c∪t0(c),T (b) = t0.
By iteratively using conditions 3 and 4 from Definition 3,
it follows that Ak, T 6|= A0(a). If the removed role as-
sertion lies in A∧,w on the path from its b to its d, the
proof is analogous. If the removed role assertion lies in
Afinish on the path from the root to its b, it follows that
tpAk,T (a) ⊆ tpAb∪t0(b),T (a) 63 A0.

Since no role assertion on a path from a to a root of an
instance of Astart,w will ever be removed, the previously iden-
tified minor in form of the full binary tree of depth k still
remains in the minimized Ak.

2 ⇒ 1: Let tp denote the set of all T -types and m = |tp|.
Choose k = m · 2m · (2mm + 1). Consider a minimal tree-
shaped Σ-ABox A that satisfies A, T |= A0(a), a the root
of A, and has the full binary tree of depth k as a minor. We
color every b ∈ Ind(A) with the color (tpA,T (b), Sb) where
Sb ⊆ tp such that t ∈ Sb whenever Ab ∪ t(b), T |= A0(a).
There are at most m · 2m distinct colors, so from Lemma 30
we know that A has as a minor a monochromatic full binary
tree T of depth 2mm + 1. Let b be a child of the root of T
(to make sure that b is not the root of A) and T ′ ⊆ T the
subtree of T rooted at b, so T ′ is a full binary tree of depth
2mm. We color every c ∈ T ′ with the function fc : tp→ tp
that is defined by fc(t) = tpAc∪t(c),T (b). There are at most
mm such functions, so again by Lemma 30, there will be the
monochromatic binary tree of depth 2 as a minor, especially
we have two independent nodes c and d in T that are colored
with the same function and that are non-leaves. We will show
thatAwith the distinguished nodes b, c, dwitnesses thatQ has
the ability to simulate PSA. Condition 1 is true by choice ofA.
Condition 2 is fulfilled, because b, c and d were colored with
the same color by the first coloring (we set t1 := tpA,T (b)).

To find t0, we define a sequence t′i of T -types where t′0 = ∅
and t′i+1 = tpAc∪t′i(c),T (b). It follows by induction on i that
t′i ⊆ t′i+1 for all i. Let t0 be the limit of the t′i, so since c and
d were colored with the same function fc = fd, condition 4
holds. It thus remains to argue that condition 3 holds. We show

by induction on i that Ac ∪ t′i(c), T 6|= A0(a). It is clear that
Ac ∪ t′0(c), T 6|= A0(a) since c is not a leaf and A is minimal
for A, T |= A0(a). Now assume Ac ∪ t′i(c), T 6|= A0(a) for
some i, so we haveAc∪t′i+1(b), T 6|= A0(a). And since in the
first coloring, Sb = Sc has been assured, Ac ∪ t′i+1(c), T 6|=
A0(a) follows, which completes the induction. So especially
we have Ac ∪ t0(c), T 6|= A0(a) and again using Sb = Sc,
condition 3 follows.

Lemma 9. If A is a tree-shaped ABox with root a0 that does
not have the full binary tree of depth k as a minor andA, T |=
A0(a0), then A |= ΠQ,k(a0).

Proof. Let A be a tree-shaped ABox with root a0 that does
not have the full binary tree of depth k as a minor andA, T |=
A0(a0). For every a ∈ Ind(A), let `(a) be the largest integer
such that the ABox Aa contains the full binary tree of depth
`(a) as a minor. It can be seen that every leaf is labelled by 0
and every non-leaf is labelled by

• the maximum label of its children, if this maximum oc-
curs precisely once among the children and

• the maximum label of its children plus one, otherwise.

We recursively define a sequence in Ind(A) that will be
used to guide the derivation of ΠQ,k on A, by defining it for
all subtrees Aa. If a is a leaf, then seq(Aa) = (a). Otherwise,
let A1, . . . ,An be the subtrees rooted at the children of a and
w.l.o.g. let the root of A1 have the maximum label among the
children of a. Then seq(Aa) = seq(A1) · a · seq(A2) · a · . . . ·
seq(An) · a.

It can be seen that the first individual of such a sequence is
a leaf. It can be proved by induction on the depth of Aa that
every individual in seq(Aa) besides the first one is either a
leaf below the previous individual or the parent of the previous
individual.

Let seq(A) = a1 . . . am. This sequence gives rise to a
sequence of tuples B1, . . . , Bm of individuals that will occur
together in an IDB fact. We set B1 = (a1). If ai+1 is a leaf,
then Bi+1 = Bi · ai+1. Otherwise, let B′i+1 be obtained by
replacing the last element of Bi (which is ai) with ai+1. If
the second last element is also ai+1, then Bi+1 is obtained
by removing the last element from B′i+1. Otherwise, Bi+1

is defined to be B′i+1. For every 1 ≤ i ≤ m, let Bi =
(bi,1, . . . , bi,ni

).
We prove by induction on i, that for every Bi, we have

`(bi,1) > `(bi,2) > . . . > `(bi,ni
) and all these individuals

lie on the same path from the root to a leaf. For B1, there is
nothing to show. Assume the statement is true for Bi−1 and
consider Bi. If ai is a leaf, then it lies somewhere below ai−1.
If ai−1 had only one child c, then seq(Aai−1) = seq(Ac)·ai−1

and ai would be the parent of ai−1. So ai−1 has at least two
children and hence, `(ai−1) > 0 and `(ai) = 0. If ai is the
parent of ai−1, we have to argue that `(bi,ni−1) > `(bi,ni

) =
`(ai). This follows from the fact that ai lies below bi,ni−1 and
that the subtree rooted at the child of bi,ni−1 with the highest
label has been traversed first, so ai does not lie in this first
subtree. So ai is (a descendant of) a child of bi,ni−1 that has a
label smaller than bi,ni−1.

Since the largest label of an individual in A is k − 1, it
follows that the tuples Bi have length at most k.

Next, we will describe the derivation that leads to goal(a0).
For a ∈ Ind(A) and any subset C of the children of a, let AaC
denote the subset of A containing only assertions involving a
or an individual from

⋃
c∈C Ac.

Claim. For every i ∈ {1, . . . ,m}, we have ΠQ,k,A |=
Pt1,...,tn(Bi), where tj = tp

A
bi,j
Cj

,T
(bi,j) and Cj is the set

of all children of bi,j that have appeared before ai in the se-
quence.

We prove the claim by induction on i. Since a1 is a leaf and no
other individuals have appeared before a1, the claimed IDB
fact is Pt1(a1), where t1 = tpAa1 ,T (a1). We obtain this fact
by using the start rule for a1.

Assuming the claim holds for a specific i, we prove the
claim for i+ 1. For the first case, assume that ai+1 is a leaf.
We use the extension rule for Pt1,...,tn(Bi) and ai+1 to obtain
Pt1,...,tn+1

(Bi+1), with tn+1 as required.
Now consider the case that ai+1 is not a leaf. Then

ai+1 is the parent of ai. We apply the step rule to
obtain Pt1,...,t′n(B′i+1) with t′n = tpAai+1

{ai}
,T (ai+1). If

ai+1 has not appeared before, we have Pt1,...,t′n(B′i+1) =
Pt1,...,t′n(Bi+1), the claimed fact. If ai+1 has appeared
before in the sequence, use the consolidation rule to ob-
tain Pt1,...,tn−2,cl(tn−1∪t′n)(Bi+1), where cl(tn−1 ∪ t′n) =
tpAai+1

C∪{ai}
,T (ai+1) and C ∪ {ai} is now the set of all chil-

dren of ai+1 that have appeared before ai+1 in the sequence.
Thus, the claim follows.

With the claim proven, consider the claim for the last ele-
ment of seq(A), which is the root a0. All children of a0 have
appeared before. The claim gives ΠQ,k,A |= Pt(a0), where
t = tpA,T (a) 3 A0, so the goal rule can be applied to derive
goal(a0).

Lemma 10. If k− 1 is the branching limit of Q, then ΠQ,k is
a rewriting of Q.

Proof. Since ΠQ,k is sound (independently of the value cho-
sen for k), it remains to show completeness. Thus let A be
a Σ-ABox with A, T |= A0(a). Let Au be the unraveling
of A at a. Lemma 27 yields Au, T |= A0(a). Since the
branching limit of Q is k − 1 and by compactness, we find
a finite tree-shaped A′ ⊆ Au such that A′, T |= A0(a) and
A′ does not have the full binary tree of depth k as a minor.
Lemma 9 yields A′ |= ΠQ,k, thus Au |= ΠQ,k. Since there
is a homomorphism from Au to A and answers to Datalog
programs are preserved under homomorphisms, this implies
A |= ΠQ,k.

Lemma 12. (d−1)k(n−k)k ≤ `kd(n) ≤ (k+ 1)(d−1)knk

for all d, k ≥ 0 and n ≥ 2k.

Proof. We aim to show that for all d, k ≥ 0 and n ≥ 2k,

`kd(n) =

k∑
i=0

(d− 1)i
(
n

i

)
(∗)

From (∗), the lower bound stated in the lemma is obtained
by considering only the summand for i = k and the upper
bound is obtained by replacing every summand with the largest
summand, which is the summand for i = k if n ≥ 2k.

Towards proving (∗), we first observe that for all n ≥ 1 and
k ≥ 1:

`kd(n) = `kd(n− 1) + (d− 1)`k−1
d (n− 1) (∗∗)

Let T be a tree with degree d and depth n that does not contain
the full binary tree of depth k + 1 as a minor and that has the
largest possible number of leaves. It can easily be seen that
the root of T has degree d and that T contains the full binary
tree of depth k as a minor. Consider the subtrees T1, . . . , Td
whose roots are the children of the root of T . There must be
one of them that also has the full binary tree of depth k as a
minor and all of them must have the full binary tree of depth
k − 1 as a minor, otherwise T would not have the maximum
number of leaves. Moreover, there cannot be two subtrees that
both have the full binary tree of depth k as a minor, since then
T would have a minor of depth k + 1. Since the number of
leaves of T is the sum of the leaves of all Tj , (∗∗) follows.

Now we prove (∗) by induction on n. First observe that
`kd(0) = `0d(n) = 1 for all d, k, n, thus (∗) holds for all cases
where k = 0 or n = 0. From now on, let k ≥ 1 and n ≥ 1
and assume that (∗) holds for `kd(n) and for `k−1

d (n). We show
that it also holds for `kd(n+ 1):

`kd(n+ 1) = `kd(n) + (d− 1) · `k−1
d (n)

=

k∑
i=0

(d− 1)i
(
n

i

)
+ (d− 1)

k−1∑
i=0

(d− 1)i
(
n

i

)

=

k∑
i=0

(d− 1)i
(
n

i

)
+

k∑
i=1

(d− 1)i
(

n

i− 1

)

= 1 +

k∑
i=1

(d− 1)i
(
n+ 1

i

)

=

k∑
i=0

(d− 1)i
(
n+ 1

i

)

A derivation of Π(a) in A is a labelled directed tree
(V,E, `) where

1. `(x0) = goal(a) for x0 the root node;

2. for each x ∈ V with children y1, . . . , yk, k > 0, there
is a rule S(y) ← q(x) in Π and a substitution σ of
variables by individuals from A such that `(x) = S(σy)
and `(y1), . . . , `(yk) are exactly the facts in q(σx);

3. if x is a leaf, then `(x) ∈ A.

Note that all leaves are labelled with Σ-assertions from A
and all inner nodes with ΣI -assertions, that is, assertions of
the form P (a) with P ∈ ΣI and a a tuple of individuals
from Ind(A). It is well known that A |= Π(a) iff there is a
derivation of Π(a) in A

We associate with each derivation D = (V,E, `) of Π(a)
in A an instance AD. In fact, we first associate an instance
Ax with every x ∈ V and then set AD := Ax0

for x0 the root
of D. If x ∈ V is a leaf, then `(x) ∈ A and we set Ax =
{`(x)}. If x ∈ V has children y1, . . . , yk, k > 0, such that
y1, . . . , y` are labelled with ΣI -assertions and y`+1, . . . , yk
with Σ-assertions, then Ax is obtained by starting with the
facts from `(y`+1), . . . , `(yk) and then adding a copy of Ayi ,
for 1 ≤ i ≤ `, in which all individuals except those in `(x)
are substituted with fresh individuals.

The following lemma, stated also in the main part of the
paper, is straightforward to verify.

Lemma 13. Let D be a derivation of Π(a) in A, Π of diame-
ter d. Then

1. AD |= Π(a);

2. there is a homomorphism h fromAD toA with h(a) = a;

3. AD has pathwidth at most d.

Lemma 14. IfQ ∈ (EL,AQ) is unboundedly branching, then
it is not rewritable into a linear Datalog program.

Proof. Let Q = (T ,Σ, A0(x)) be unboundedly branching.
Assume to the contrary of what we have to show that Q is
rewritable into a linear Datalog program Π. Let d be the
diameter of Π. To establish a contradiction, choose k0 > 0
very large (we will make this precise later) and let A be a
minimal tree-shaped Σ-ABox with root a0 such that A |=
Q(a0) and A has the full binary tree T of depth k0 as a minor.
We can assume w.l.o.g. that there is a constant ` (which is
independent of k0) such that the depth of A is bounded by
` · k0: since Q is unboundedly branching, by Proposition 6
we must find tree-shaped Σ-ABoxes Astart, A∧ and Afinish as
in Definition 3 (ability to simulate PSA) from which we can
assemble the desired ABox A as in the construction from the
proof of the “⇒” direction of Proposition 6. As `, we can then
use the sum of the depths of Astart, A∧ and Afinish.

We have A |= Π(a0) and thus there is a derivation D of
Π(a0) in A. Consider the ABox AD. By Lemma 13, we have
the following:

1. AD |= Π(a0);

2. there is a homomorphism h from AD to A with h(a0) =
a0;

3. AD has pathwidth at most d.

We manipulate AD as follows

• Restrict the degree to |T | by taking a subset according to
Lemma 28.

• Remove all assertions that involve an individual
a which is not reachable from a0 along role
edges, that is, for which there are no assertions
r1(a0, a1), . . . , rn(an−1, an) with an = a.

We use B to denote the resulting ABox. It can be verified that
Conditions 1 to 3 still hold when AD is replaced with B. In
particular, this is true for Condition 1 since AD |= Π(a0) iff
AD, T |= A0(a0) iff B, T |= A0(a0) iff B |= Π(a0). The
second equivalence is easy to establish by showing how a

model witnessing B, T 6|= A0(a0) can be transformed into a
model that witnesses AD, T 6|= A0(a0).

Choose a homomorphism h from B to A with h(a0) = a0.
Then h must be surjective since otherwise, the restriction
A− of A to the individuals in the range of h would satisfy
A−, T |= A0(a0), contradicting the minimality of A. Since
A contains the full binary tree of depth k0 as a minor, we
find in A distinct leaves a1, . . . , a2k0 . For each ai, choose a
bi with h(bi) = ai. Clearly, all individuals b1, . . . , b2k0 must
be distinct, since a1, . . . , a2k0 are. Moreover, B contains no
assertion of the form r(bi, c), for any bi.

By construction, B is connected. By Condition 2, and
since A is tree-shaped, B must have the form of a DAG (a
directed acyclic graph), meaning that the directed graph GA
is a DAG. We proceed to exhaustively remove assertions from
B as follows: whenever r(c1, c), r(c2, c) ∈ B with c1 6= c2,
then choose and remove one of these two edges. Using the
fact that every individual in B is reachable from a0, it can be
proved by induction on the number of edge removals that the
obtained ABoxes

(i) remain connected and

(ii) contain the same individuals as B, that is, edge removal
never results in the removal of an individual.

Point (i) and the fact that we start from a DAG-shaped ABox
means that the ABox Bt ultimately obtained by this manip-
ulation is tree-shaped. By construction of Bt, h is still a
homomorphism from Bt toA, Bt has pathwidth at most d, and
the individuals b1, . . . , b2k0 are leaves in Bt (and thus Bt has
at least 2k0 leaves). From the former, it follows that the depth
of Bt is at most ` · k0.

We now show that it is possible to choose a value for k0

such that, because Bt has 2k0 leaves, it must contain the full
binary tree of a certain depth k as a minor, and consequently
has pathwidth exceeding d, which contradicts the fact that Bt
has pathwidth at most d. Set k = 2d + 3. By Lemma 12,
Bt contains the full binary tree of depth k as a minor, unless
the number of leaves of Bt is bounded by k(|T | − 1)k−1(` ·
k0)k−1 = c · kk−1

0 where c is a constant that is independent
of k0. So if we choose k0 large enough so that 2k0 > c ·
kk−1

0 , then the existence of a full binary tree of depth k in
Bt is guaranteed. But it is well-known that the full binary
tree of depth k has pathwidth dk/2e [Scheffler, 1989] and
consequently every tree that has this tree as a minor has at
least the same pathwidth. It follows that the pathwidth of Bt
is at least d+ 1, the desired contradiction.

Lemma 16. Every Qk is rewritable into linear Datalog.

Proof. By Proposition 7, it suffices to show that the Qk are
boundedly branching. Let A be a tree-shaped ABox that
derives Qk at its root and is minimal with that property. We
show that A does not have the full binary tree of depth k + 1
as a minor.

We start with an analysis of the sets tpA,Tk(a), a ∈ Ind(A),
and of the structure of A. Since > v A0 ∈ Tk, none of
the sets tpA,Tk(a) is empty. It is easy to verify that Tk |=
Ai v Ai−1 and Tk |= Bx,i v Bx,i−1 for 1 ≤ i ≤ k and x ∈

{r, s, t, u}, so tpA,Tk(a) is thus of the form {A0, . . . , Ai}∪B,
i ≥ 0 and B ⊆ {Bx,j | x ∈ {r, s, t, u} and 0 ≤ j ≤ k}.
We say that a has type i if i is the largest integer such that
Ai ∈ tpA,Tk(a) and that a has x-type jx if jx is the largest
integer such that Bx,jx ∈ tpA,Tk(a). We argue that every
individual in A has no more than one outgoing edge of the
same role. Assume there would be distinct individuals a, b, c
and assertions x(a, b), x(a, c) ∈ A for some x ∈ {r, s, t, u}.
Let b have type j and x-type ` and c have type m and x-type
n, where 0 ≤ j, `,m, n ≤ k. This will derive Bx,j , Bx,`,
Bx,m and Bx,n at a, but since Tk |= Bx,i v Bx,i−1 for
1 ≤ i ≤ k, these four concept names are already implied by
Bx,max(j,`,m,n), so one of the individuals b, c can be removed
without altering the result of the query. We will refer to non-
leaves by the combination of role names of their outgoing
edges, e.g. an rs-node is an individual that has one outgoing r-
edge, one outgoing s-edge and no other outgoing edges. Using
minimality of A, it can be argued that for every x-node a with
x ∈ {r, s, t, u}, we have some x(b, a) ∈ A and it follows that
a path from one branching point to the next is always a chain
of the same role. It can be seen that every individual with
degree greater than one is either an rs-node or a tu-node. All
other combinations do not appear due to the minimality of A.
As an example, assume there is an rst-node a. Then there
will Br,j , Bs,`, Bt,m derived at a, with j, `,m being maximal.
If a is the root of A, then the t-edge could be removed. If
a is not the root, it must be connected to its parent by a t-
edge, since otherwise, the t-edge below a could be removed.
If m ≤ min(j, `), the t-edge below a could be removed as
well. So the final case is that m > min(j, `), but then both
the r-edge and the s-edge could be removed. In any case, A
would not be minimal, so it does not contain an rst-edge. All
other combinations of roles can be argued similarly, so A has
no individuals of outdegree three or higher.

For all a ∈ Ind(A), let tdep(a) denote the maximum depth
of a full binary tree that can be found as a minor in the subtree
of A rooted at a.

Claim. a is of type i iff tdep(a) = i for all a ∈ Ind(A) that
are leaves or of degree two.

We prove the claim by induction on the number n of leaves of
the subtree rooted at a, starting with n = 1. For the induction
start consider a node a that has one leaf below it. If a would
be of degree two, it would have more leaves below, so a is
a leaf itself and the statement follows easily. Now let n > 1
and a an individual of degree two with n leaves below it.
The two outgoing paths from a both either end in a leaf or
in another node of degree two. In any case, the induction
hypothesis applies for the two endpoints of the paths. Let b
and c be the endpoints of the two paths and b have type i and
c have type j, so tdep(b) = i and tdep(c) = j. It follows that
tdep(a) = i+ 1 if i = j and tdep(a) = max(i, j) otherwise.
Using the minimality of A we can see that in the first case, a
must be a rs-node and has type i+ 1. In the second case, also
using minimality, a must be a tu-node, i and j have to differ
by one with the u path leading to the node with higher type,
and it follows that a has type max(i, j).

From the claim, it immediately follows thatQk is boundedly

branching: In every minimal tree-shaped minimal ABox A
that derives Qk at the root, the root is either of degree two or
is a leaf, since nodes of degree one always have type 0 and
k ≥ 1. So the claim says that k is the largest integer such that
A contains the full binary tree of depth k as a minor. Thus,
Qk is boundedly branching.

Lemma 17. For any i ≥ 0, Q2k+3 is not rewritable into a lin-
ear Datalog program of diameter k on the class of ABoxes Ci.

Proof. Let i ≥ 0. For n ≥ k ≥ 1, we explicitly construct
tree-shaped ABoxes Ank ∈ Ci that are minimal for Qk, have
depth at most n(i+ 1) and that have a large number of leaves.
If n = k = 1, then Ank has only three individuals, the root
being an rs-node. If n = k > 1, then take the disjoint union
of two copies of An−1

k−1 , introduce a new rs-node as the root,
with an outgoing r-path of length i+ 1 leading to the root of
the first copy and an outgoing s-path of length i+ 1 leading to
the root of the second copy. If n > k = 1, then Ank consists
of a root that is a tu-node with an outgoing t-edge ending in a
leaf and an outgoing u-path of length i+ 1 leading to the root
of a copy of An−1

k . Finally, for n > k > 1, take the disjoint
union of An−1

k−1 and An−1
k and introduce a new tu-node as the

root, with an outgoing t-path of length i + 1 pointing to the
root of An−1

k−1 and an outgoing u-path of length i+ 1 pointing
to the root of An−1

k .
The structure of Ank resembles the structure of the largest

(in terms of number of leaves) binary tree of depth n that
does not have the full binary tree of depth k + 1 as a minor,
precisely: It can be proven by induction on the construction of
the Ank , that Ank has precisely `k2(n) leaves, so from Lemma
12 it follows that Ank has at least (n− k)k leaves.

From now, the proof is similar to the one of Lemma 14.
For the sake of contradiction, assume that there is a k ≥ 1,
such that Q2k+3 is rewritable into a linear Datalog program
Π of diameter k on the class Ci. Choose n very large (we
will make this precise later) and let A = An2k+3, so A is a
minimal tree-shaped ABox for Q2k+3 with root a0, depth at
most n(i+ 1) and that has at least (n− 2k − 3)2k+3 leaves.

We have A, T |= Π(a0) and thus there is a derivation of
Π(a0) in A. Consider the ABox AD. By Lemma 13, we have
the following:

1. AD |= Π(a0);

2. there is a homomorphism h from AD to A with h(a0) =
a0;

3. AD has pathwidth at most k.

We manipulate AD as follows:

• Restrict the degree to |T | by taking a subset according to
Lemma 28.

• Remove all assertions that involve an individual
a which is not reachable from a0 along role
edges, that is, for which there are no assertions
r1(a0, a1), . . . , rn(an−1, am) with am = a.

We use B to denote the resulting ABox. It can be verified that
Conditions 1 to 3 still hold when AD is replaced with B. In
particular, this is true for Condition 1 since AD |= Π(a0) iff

AD, T |= A0(a0) iff B, T |= A0(a0) iff B |= Π(a0). The
second equivalence is easy to establish by showing how a
model witnessing B, T 6|= A0(a0) can be transformed into a
model that witnesses AD, T 6|= A0(a0).

Choose a homomorphism h from B to A with h(a0) = a0.
Then h must be surjective since otherwise, the restriction
A− of A to the individuals in the range of h would satisfy
A−, T |= A0(a0), contradicting the minimality of A. Let
a1, . . . , am be the leaves of A, m ≥ (n − 2k − 3)2k+3. For
each ai, choose a bi with h(bi) = ai. Clearly, all individuals
in b1, . . . , bm must be distinct.

By construction, B is connected. Since B → A, B must
further be a DAG (directed acyclic graph). We proceed to
exhaustively remove assertions from B as follows: whenever
r(c1, c), r(c2, c) ∈ B with c1 6= c2, then choose and remove
one of these two assertions. Using the fact that every individual
in B is reachable from a0, it can be proved by induction on
the number of edge removals that the obtained ABoxes

(i) remain connected and

(ii) contain the same individuals as B, that is, edge removal
never results in the removal of an individual.

Point (i) and the fact that we start from a DAG-shaped ABox
means that the ABox Bt ultimately obtained by this manip-
ulation is tree-shaped. By construction of Bt, h is still a
homomorphism from Bt to A, Bt has pathwidth at most k,
and the individuals b1, . . . , bm are leaves in Bt (and thus Bt
has at least (n − 2k − 3)2k+3 leaves. From the former, it
follows that the depth of Bt is at most n(i+ 1).

Assume that Bt does not contain the full binary tree of
depth 2k + 3 as a minor. Then by Lemma 12, the number of
leaves of Bt is at most (2k+ 3)(|T | − 1)2k+2(n(i+ 1))2k+2,
which is polynomial of degree 2k + 2 in n. So if n was
chosen large enough such that (n − 2k − 3)2k+3 > (2k +
3)(|T | − 1)2k+2(n(i+ 1))2k+2 in the beginning, this leads to
a contradiction. Hence, Bt must contain as a minor the full
binary tree of depth at least 2k + 3. But it is well-known that
any such tree has pathwidth at least k + 1, in contradiction to
Bt having pathwidth at most k.

Proposition 18. Q8`+13 is not rewritable into a linear Data-
log program of width `.

Proof. Assume to the contrary of what we have to show that
Q8`+13 is rewritable into a linear Datalog program Π0 of width
`. Let k be the diameter of Π0. Clearly, Π0 is also a rewriting
of Q8`+13 on the class of ABoxes Ck.

We carry out a sequence of three rewriting steps on Π0. In
the first step, let Π1 be obtained from Π0 by replacing every
rule S(x) ← q(y) in Π0 with the set of all rules S(x′) ←
q(y′) that can be obtained from the original rule by consistenly
identifying variables in the rule body and head such that the
restriction of q(y′) to EDB relations (that is, concept and role
names in Σ) takes the form of a forest in which every tree
branches at most once. This step preserves equivalence on
Ck since every homomorphism from the body of a rule in Π
into an ABox from Ck (and also to the extension of such an
ABox with IDB relations) induces a variable identification that
identifies a corresponding rule produced in the rewriting.

In the next step, we rewrite Π1 into a linear Datalog program
Π2, as follows. Let S(x)← q(y) be a rule in Π1 and let V be
the set of special variables in q(y), that is, variables that occur
also in x or in the IDB atom in q(y), if existant. We obtain a
new rule body q′(y′) from q(y) in the following way:

1. remove the IDB atom (if existant), obtaining a forest-
shaped rule body;

2. remove all trees that do not contain a special variable;
3. re-add the IDB atom (if existant).

In Π2, we replace S(x)← q(y) with S(x)← q′(y′).
We argue that, on the class of ABoxes Ck, Π2 is equivalent

to Π1. Thus let A be an ABox from Ck and a ∈ Ind(A) such
that A |= Π2(a). We have to show that A |= Π1(a). Let
q1(x1), . . . , qp(xp) be all trees that have been removed from
a rule body during the construction of Π2. Let Ai be q1(x1)
viewed as a Σ-ABox, 1 ≤ i ≤ p. Note that eachAi must be in
Ck. Let B be the disjoint union of the ABoxes A,A1, . . . ,Ap,
assuming that these ABoxes do not share any individual names,
and note that B is in Ck. Since A |= Π2(a), we must have
B |= Π2(a). By construction of B, this clearly implies B |=
Π1(a). Consequently, B |= Q8`+13(a). Since answers to
OMQs from (EL,AQ) depend only on the reachable part of
ABoxes, we obtain that A |= Q8`+13(a), thus A |= Π1(a) as
required.

At this point, let us sum up the most important properties
of the linear Datalog program Π2: it is a rewriting of Q8`+13

on Ck, has width at most ` and diameter at most k, and
(∗) the restriction of the rule body to EDB relations is a forest

that consists of at most 2` trees.
Note that the upper bound of 2` is a consequence of the fact
that, by construction of Π2, each of the relevant trees contains
at least one special variable.

We now rewrite Π2 into a final linear Datalog program Π3

that is equivalent to Π2, has width at most 4`+2, and diameter
at most 4` + 5. Thus Π3 is a rewriting of Q8`+13 on Ck of
diameter 4`+ 5, which is a contradiction to Lemma 17.

It thus remains to give the construction of Π3. Let ρ =
S(x) ← q(y) be a rule in Π2 and let y′ ⊆ y be the set of
variables x that are special or a branching variable where the
latter means that q(y) contains atoms of the form r(x, y1),
s(x, y2) with y1 6= y2. Due to (∗), y′ contains at most 4`
variables. Let q′(y′) be the restriction of q(y) to the variables
in y′. By construction of Π2, it can be verified that q(y) is the
union of q′(y′) and path-shaped q1(y1), . . . , qp(yp) such that
for 1 ≤ i ≤ p,
• qi(yi) contains only EDB atoms,
• there are at most two variables shared by qi(yi) and
q′(y′), denoted by xi, and
• the queries q1(y1), . . . , qp(yp) do not share any vari-

ables.
We thus find linear Datalog programs Γ1, . . . ,Γp that are at
most binary, of width at most two and diameter at most three
such that for any Σ-ABox A and a ⊆ Ind(A), A |= Γi(a)
iff there is a homomorphism hi from qi(yi) to A such
that hi(xi) = a. Let the goal relations of Γ1, . . . ,Γp be
G1, . . . , Gp. We assume w.l.o.g. that the programs Γ1, . . . ,Γp

do not share variables or IDB relations, and neither do they
share variables or IDB relations with Π2. In Π3, we replace
S(x)← q(y) with the following rules:
• for any rule P (x) ← p(z) in Γ1 where p(z) contains

only EDB atoms, the rule XP
ρ (y′,x)← q′(y′) ∧ p(z);

• for any rule P (x) ← p(z) in Γi, 1 < i ≤ n, where
p(z) contains only EDB atoms, the rule XP

ρ (y′,x) ←
X
Gi−1
ρ (y′,xi−1) ∧ p(z);

• for any rule P (x)← p(z) in Γi, 1 ≤ i ≤ n, where p(z)
contains the IDB atom Q(u), the rule XP

ρ (y′,x) ←
XQ
ρ (y′,u) ∧ p(z);

• the rule S(x)← X
Gp
ρ (y′,xp).

where the goal relations of Γ1, . . . ,Γp become normal IDB
relations. It can be verified that Π3 is as required.

C Proofs for Section 4
Lemma 22. Let Q ∈ (EL,AQ). If Q has unbounded depth,
then Q has the ability to simulate REACH.

Proof. We use a pumping argument. Let Q =
(T ,Σ, A0(x)) ∈ (EL,AQ) have unbounded depth. Set k :=
3|T | + 1. Since Q has unbounded depth, there is a tree-shaped
ABoxA of depth k with root a such thatA, T |= A0(a) andA
is minimal with this property. A contains a path from the root
to a leaf that is of length at least k. Let A′ denote the ABox
obtained from A by removing all assertions involving the leaf
in this path. Since A is minimal, A′, T ′ 6|= A0(a). For every
individual b on the remaining path, we consider the pair (t′b, tb)
where t′b = tpA′,T (b) and tb = tpA,T (b). Observing t′b ⊆ tb,
we obtain 3|T | = k − 1 as an upper bound for the number
of different pairs that may occur on the path. The remaining
path has k individuals, so by the pigeonhole principle there are
distinct individuals b and cwith (t′b, tb) = (t′c, tc). W.l.o.g., let
c be a descendant of b. We set t0 = t′b and t1 = tb. It is now
easy to verify that A, a, b, c, t0 and t1 satisfy Conditions 1
to 4 from Definition 21.

Lemma 23. Let Q ∈ (EL,AQ). If Q has the ability to simu-
late REACH, then Q is NL-hard under FO-reductions.

Proof. Let (T ,Σ, A0(x)) ∈ (EL,AQ) have the ability to sim-
ulate REACH. Then there is an ABox A with root a, distin-
guished individuals b and c, and sets t0 (t1 of concept names
as in Definition 21. We reduce REACH to Q. Let G = (V,E)
be a directed graph, s ∈ V a source node and t ∈ V a target
node. We construct a Σ-ABox AG. Reserve an individual av
for every node v ∈ V . For every (u, v) ∈ E, include in AG
a copy Au,v of Aedge and identify c with au and b with av.
Further include in AG one copy of Afinish and identify b with
at and one copy of Astart and identify c with as. Let a0 be the
root of the copy of Afinish in AG. It can be verified that AG
can be constructed from G using an FO-query. It thus remains
to show the following.

Claim. t is reachable from s inG iff a0 ∈ certT (A0(x),AG).

Let t be reachable from s. Then there is a path s =

v0, . . . , vn = t in G. By definition of AG, there is a copy
of Astart whose root is as, so Condition 2 from Definition 21
yields t1 ⊆ tpA,T (as). Between any two avi , avi+1

there is a
copy of Aedge, so we inductively obtain t1 ⊆ tpA,T (avi) for
all i. In particular, t1 ⊆ tpA,T (at). Finally, there is a copy
of Afinish in which b is identified with at. By Condition 1, we
have A0 ∈ tpA,T (a0), i.e. a0 ∈ certT (A0(x),AG).

For the other direction, assume that t is not reachable from
s. Set

A′G := AG ∪ {t0(av) | v ∈ V is not reachable from s}
∪ {t1(av) | v ∈ V is reachable from s}.

We show that A′G, T 6|= A0(a0), which implies AG, T 6|=
A0(a0).

We have defined A′G as an extension of AG. Alternatively
and more suitable for what we want to prove, A′G can be
obtained by starting with an ABox A0 that contains only the
assertions t0(av) for all unreachable nodes v ∈ V as well as
t1(av) for all reachable nodes v ∈ V , and then exhaustively
applying the following rules in an unspecified order:

• Choose an edge (u, v) ∈ E that has not been chosen
before, take a new copy of Aedge, rename c to au and
b to av, and add the assertions Mreach(x)(ax) for x ∈
{u, v} where reach(x) = 1 if x is reachable from s and
reach(x) = 0 otherwise. Let this modified copy of Aedge

be called Au,vedge. Now Ai+1 is defined as the union of Ai
and Au,vedge.

• Introduce a new copy of Astart, rename b to as and add
the assertions t1(as). Let this altered copy of Astart be
called Asstart. Now Ai+1 is defined as the union of Ai
and Asstart.

• Introduce a new copy of Afinish, rename b to at and add
the assertions t0(at). Let this altered copy of Afinish be
called Atfinish. Now Ai+1 is defined as the union of Ai
and Atfinish.

Clearly, rule application terminates after |E| + 2 steps and
results in the ABox A′G.

Claim. tpAi,T (u) = t0 if u ∈ V is unreachable and
tpAi,T (v) = t1 if v ∈ V is reachable, for all i > 0.

The proof is by induction over i. For i = 0, the statement
is clear since t0 and t1 are T -types. Now assume the state-
ment is true for some i and consider Ai+1. If Ai+1 was
obtained by the first rule, it can be verified using conditions 2
and 3 from Definition 21 that tpAu,v

edge,T
(v) = Macc(v) for all

x ∈ {u, v}. So with Lemma 29 and since Ai and Au,vedge share
only the individuals u, v, the statement follows. If Ai+1 was
obtained by the second rule it follows from Condition 2 that
tpAs

start,T (as) = t1 and with Lemma 21, the statement follows.
If Ai+1 was obtained by the third rule, it can be verified that
tpAt

finish,T
(at) = t0 and with Lemma 29, the statement follows.

This finishes the proof of the claim.
The claim yields tpA′G,T (at) = t0, so by Condition 4 from

Definition 21 it follows that A′G, T 6|= A0(a0), as required.

D Proofs for Section 5
Theorem 24. The following properties of OMQs from
(EL,AQ) are EXPTIME-hard: linear Datalog rewritability,
containment in NL (unless NL = PTIME), NL-hardness (un-
less L = NL), and PTIME-hardness (unless L = PTIME).

Proof. In (the appendix of) [Bienvenu et al., 2013], it is
proved that FO-rewritability in (EL,AQ) is EXPTIME-hard.
The proof is by a reduction of the word problem of a polyno-
mially space bounded alternating Turing machine (ATM) M
that solves an EXPTIME-complete problem. The reduction
exhibits a polynomial time algorithm that constructs, given
an input w to M , an OMQ Q = (T ,Σ, B(x)) ∈ (EL,AQ)
such that Q is not FO-rewritable iff M accepts w. A careful
inspection of the construction of Q and of the “if” part of the
proof reveals that

(∗) if M accepts w, then Q is unboundedly branching, thus
not linear Datalog rewritable, PTIME-hard, NL-hard, and
not in NL (unless NL = PTIME).

Conversely, if M does not accept w, then FO-rewritability of
Q implies that Q is

• in L and thus neither NL-hard (unless L = NL) nor
PTIME-hard (unless L = PTIME).

• linear Datalog rewritable (since every FO-rewritable
OMQ from (EL,AQ) is rewritable into a UCQ [Bien-
venu et al., 2013]).

The stated hardness results follow.
We expand a little bit on (∗), using the terminology from

[Bienvenu et al., 2013]. Assume that M accepts w. We have
to argue that for any k ≥ 0, there is a Σ-ABox A such that
A, T |= B(a), a the root ofA,A is minimal with this property,
and A contains as a minor the full binary tree of depth k.
Thus fix a k > 0. Since M accepts w, there is an accepting
computation tree T of M on w. T can be converted into a
tree-shaped ABox AT in a straightforward way: introduce
one individual name for each configuration, use the concept
names from C to describe the actual configurations at their
corresponding individual names (see [Bienvenu et al., 2013]),
and use the role names r1 and r2 to connect configurations in
the intended way. Let m be the number of leaf nodes in AT .
By starting with AT and then repeatedly appending copies of
AT to leaf nodes, we can construct an ABox A that is a “full
m-ary tree ofAT -trees of depth k”. At each leaf ofA, we add
the concept name Start. Clearly,A contains as a minor the full
binary tree of depth k. It can be verified that A, T |= B(a), a
the root of A, and that A is minimal with this property, that is,
removing any assertion fromA result in B(a) no longer being
entailed.

We now introduce alternating parity automata on finite trees
(APTAs). A tree is a non-empty (and potentially infinite) set
T ⊆ (N\0)∗ closed under prefixes. We say that T is m-ary if
for every n · i ∈ T , we have i ≤ m. For any n ∈ (N \ 0)∗, as
a convention we set n ·0 := n. For an alphabet Γ, a Γ-labelled
tree is a pair (T, L) with T a tree and L : T → Γ a node
labeling function. For any set X , let B+(X) denote the set
of all positive Boolean formulas over X , i.e., formulas built

using conjunction and disjunction over the elements ofX used
as propositional variables, and where the special formulas true
and false are allowed as well. An infinite path P of a tree T is
a prefix-closed set P ⊆ T such that for every i ≥ 0, there is a
unique n ∈ P with |n| = i.
Definition 31 (APTA). An alternating parity tree automaton
(APTA) on finite m-ary trees is a tuple A = (S,Γ, δ, s0, c)
where S is a finite set of states, Γ is a finite alphabet, δ : S ×
Γ→ B+(tran(A)) is the transition function with tran(A) =
{〈i〉s, [i]s | 0 ≤ i ≤ m and s ∈ S} the set of transitions of
A, s0 ∈ S is the initial state, and c : S → N is the parity
condition that assigns to each state a priority.

Intuitively, a transition 〈i〉s with i > 0 means that a copy
of the automaton in state s is sent to the i-th successor of
the current node, which is then required to exist. Similarly,
〈0〉s means that the automaton stays at the current node and
switches to state s. Transitions [i]s mean that a copy of the
automaton in state s is sent to the relevant successor if that
successor exists (which is not required).
Definition 32 (Run, Acceptance). A run of a APTA A =
(S,Γ, δ, s0, c) on a finite Γ-labelled tree (T, L) is a T × S-
labelled tree (Tr, r) such that the following conditions are
satisfied:

1. r(ε) = (ε, s0);
2. if m ∈ Tr, r(m) = (n, s), and δ(s, L(n)) = ϕ, then

there is a (possibly empty) set S ⊆ tran(A) such that S
(viewed as a propositional valuation) satisfies ϕ as well
as the following conditions:
(a) if 〈i〉s′ ∈ S, then n · i ∈ T and there is a node

m · j ∈ Tr such that r(m · j) = (n · i, s′);
(b) if [i]s′ ∈ S and n · i ∈ T , then there is a node

m · j ∈ Tr such that r(m · j) = (n · i, s′).
We say that (Tr, r) is accepting if on all infinite paths ε =
n1n2 · · · of Tr, the maximum priority that appears infinitely
often is even. A finite Γ-labelled tree (T, L) is accepted by A
if there is an accepting run of A on (T, L). We use L(A) to
denote the set of all finite Γ-labelled tree accepted by A.

Note that, although input trees are finite, runs can be infinite
because of transitions of the form [0]s; it thus makes sense
to use a parity condition. It is known (and easy to see) that
APTAs are closed under complementation and intersection,
and that these constructions involve only a polynomial blowup.

Let Q = (T ,Σ, A0(x)) be an OMQ. We are going to con-
struct, for every pair of T -types t0, t1, an automaton At0,t1
such that Q has the ability to simulate PSA iff L(At0,t1) 6= ∅
for at least one pair t0, t1. Thus, let t0, t1 be T -types.

Let Γ be the alphabet that consists of all subsets of Σ ∪
{b, c, d} that contain exactly one role name and not more than
a single element of {b, c, d}. A Γ-labelled tree is proper if it
has exactly one node whose label contains b, and likewise for c
and d. We are going to use proper Γ-labelled trees to represent
Σ-ABoxes, where each tree node corresponds to an ABox
individual and the role name in each node label represents
the role via which the current tree node is reachable from
its predecessor (except at the root). Because APTAs run on
trees of fixed maximum degree, we need to restrict the degree

of ABoxes that witness the ability to simulate PSA. We are
going to use m = 4|T | and shall argue later that this choice is
without loss of generality. The elements b, c, d of node labels
serve the purpose of marking the distinguished individuals
b, c, d in ABoxes that witness the ability to simulate PSA.
Formally, a proper Γ-labelled tree (T, L) represents the ABox
A(T,L) := {A(n) | A ∈ L(n)}∪

{r(n,m) | r ∈ L(m) and m child of n}.

We characterize entailment of OMQs in terms of derivation
trees. A derivation tree for Q(a0) in a Σ-ABox A is a finite
Ind(A)× NC-labelled tree (T, V) that satisfies the following
conditions:

1. V (ε) = (a0, A0);
2. if V (x) = (a,A) and neitherA(a) ∈ A nor> v A ∈ T ,

then one of the following holds:
• x has successors y1, . . . , yk, k ≥ 1 with V (yi) =

(a,Ai) for 1 ≤ i ≤ k and T |= A1 u · · · uAk v A;
• x has a single successor y with V (y) = (b, B) and

there is an ∃r.B v A ∈ T such that r(a, b) ∈ A.
Note that the first item of Point 2 above requires T |= A1 u
· · · u Ak v A instead of A1 u A2 v A ∈ T to ‘shortcut’
anonymous parts of the canonical model. In fact, the derivation
of A from A1 u · · · uAk by T can involve the introduction of
anonymous elements. The main property of derivation trees is
the following.
Lemma 33. LetA be a Σ-ABox. ThenA, T |= Q(a) iff there
is a derivation tree for Q(a) in A.

The proof is a minor variation of an analogous result for the
more expressive description logic ELI⊥ in [Bienvenu et al.,
2013], proof details are omitted.

We are going to construct At0,t1 as the intersection of six
automata A0,A1, . . . ,A5, where A0 ensures that the input
tree (T, L) is proper and for 1 ≤ i ≤ 5, Ai ensures that the
corresponding condition i from the definition of the ability to
simulate PSA is satisfied, where the two equalities in condition
4 count as two conditions. We start with the automaton A1,
which has to make sure that A(T,L), T |= A0(a) with a the
root of A(T,L). We are going to use derivation trees and
Lemma 33. Set A1 = (S,Γ, δ, s0, c) where

S = {sA | A ∈ Σ ∩ NC} ∪ {sr | r ∈ Σ ∩ NR},
s0 = sA0 , and c assigns one to all states, that is, the accepting
runs are exactly the finite runs. The transition function δ is
defined as follows:
δ(sA, σ) = true if A ∈ σ or

> v A ∈ T

δ(sA, σ) =
∨

T |=A1u···uAnvA

(
〈0〉sA1

∧ · · · ∧ 〈0〉sAn

)
∨

∨
∃r.BvA∈T

∨
i∈1..m

〈i〉(sB ∧ sr) if A /∈ σ and
> v A /∈ T

δ(sr, σ) = true if r ∈ σ
δ(sr, σ) = false if r /∈ σ

It should be obvious how the above transitions verify the
existence of a derivation tree. Note that the tree must be
finite since runs are required to be finite. This finishes the
definition of A1. The automata A2, . . . ,A5 are variations
of A1. We will give some crucial intuitions, but refrain from
working out full details. Regarding A2, we present a simplified
version that only ensures tpA(T,L),T (b) = t1 (but not, as also
required, tpA(T,L),T (c) = t1 and tpA(T,L),T (d) = t1). Set
A2 = (S,Γ, δ, s0, c) where

S = {sA, sA | A ∈ Σ ∩ NC} ∪ {sr, sr | r ∈ Σ ∩ NR},

and c assigns one to s0 and all states of the form sA and zero
to all states of the form sA. The transition function δ contains
all transitions from A1, plus the following:

δ(s0, σ) =
∧
A∈t1

[0]sA ∧
∧

A∈(Σ∩NC)\t1

[0]sA if b ∈ σ

δ(s0, σ) =
∧

1≤i≤m

[i]s0 if b /∈ σ

δ(sA, σ) = false if A ∈ σ or
> v A ∈ T

δ(sA, σ) =
∧

T |=A1u···uAnvA

(
[0]sA1

∨ · · · ∨ [0]sAn

)
∧

∧
∃r.BvA∈T

∧
i∈1..m

[i](sB ∨ sr) if A /∈ σ and
> v A /∈ T

δ(sr, σ) = false if r ∈ σ
δ(sr, σ) = true if r /∈ σ

Note that the transitions for sA and sr are simply the duals of
those for sA and sr. This together with the definition of the
acceptance condition implies that a state sA can be assigned
to a tree node n iff A(T,L), T 6|= A(n). This finishes the
definition of A2. The remaining automata A3, . . . ,A5 mainly
differ from the previous ones in that instead of considering the
ABox A(T,L), they need to consider an ABox obtained from
A(T,L) by replacing the subtree rooted at one of the nodes
marked b (or c or d) with the assertions {A(b) | A ∈ t0}. This
requires to modify the transitions present in A1 and A2, using
the markers b, c, d in the input tree. For example, the first
two transitions from A1 could be replaced with the following

transitions:

δ(sA, σ) = true if A ∈ σ or
> v A ∈ T
or (b ∈ σ
and A ∈ t0)

δ(sA, σ) =
∨

T |=A1u···uAnvA

(
〈0〉sA1

∧ · · · ∧ 〈0〉sAn

)
∨

∨
∃r.BvA∈T

∨
i∈1..m

〈i〉(sB ∧ sr) if A /∈ σ and
> v A /∈ T
and b /∈ σ

δ(sA, σ) =
∨

T |=A1u···uAnvA

(
〈0〉sA1

∧ · · · ∧ 〈0〉sAn

)
if b ∈ σ
and A /∈ t0

We omit further details of the automata A3, . . . ,A5.
Lemma 34. Q has the ability to simulate PSA iff L(At0,t1) 6=
∅ for some t0, t1.

Proof. First assume that there are T -types t0, t1 such that
L(At0,t1) 6= ∅. Then there is a Γ-labelled tree (T, L) ∈
L(At0,t1). Using the construction of At0,t1 it can be verified
that A = A(T,L), t0, and t1 satisfy Conditions 1 to 4 from
Definition 3, thus Q has the ability to simulate PSA.

Conversely, assume that Q has the ability to simulate PSA.
Then there are T -types t0, t1 and a tree-shaped Σ-ABox A
such that Conditions 1 to 4 from Definition 3 are satisfied.
Using exactly the same arguments as in the proof of Lemma 28,
we find a sub-ABox A′ ⊆ A of degree at most m = 4|T | that
still satisfies Conditions 1 to 4 from Definition 3; the factor of
4 stems from the fact that these conditions mention not onlyA,
but also three sub-ABoxes of A. It is now easy to encode A
as a Γ-labelled tree (T, L) and to verify that (T, L) ∈ At0,t1 ,
which finishes the proof.

It is not hard to verify that the number of states of the
resulting overall automaton At0,t1 is polynomial in the size
of O. Since the emptiness of APTAs can be decided in time
single exponential in the number of states (and polynomial in
the size of all other components of the automaton) and since
we need to build at most single exponentially many automata
At0,t1 , we obtain Theorem 25.

