
ar
X

iv
:1

70
6.

07
41

2v
2 

 [
cs

.M
A

] 
 7

 S
ep

 2
01

7

Rational coordination

with no communication or conventions

Valentin Goranko∗

Stockholm University

Sweden

Antti Kuusisto†

University of Bremen

Germany

Raine Rönnholm‡
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Abstract

We study pure coordination games where in every outcome, all players have
identical payoffs, ‘win’ or ‘lose’. We identify and discuss a range of ‘purely ratio-
nal principles’ guiding the reasoning of rational players in such games and analyse
which classes of coordination games can be solved by such players with no preplay
communication or conventions. We observe that it is highly nontrivial to delineate
a boundary between purely rational principles and other decision methods, such as
conventions, for solving such coordination games.

1 Introduction

Coordination games ([11]) are strategic form games which have several pure strategy
Nash equilibria with the same or comparable payoffs for every player, and where all
players have the mutual interest to select one of these equilibria. In pure coordination
games ([11]), aka games of common payoffs ([12]), all the players in the game receive the
same payoffs and thus all payers have fully aligned preferences to coordinate in order to
reach the best possible outcome for everyone. Here we study one-step pure win-lose
coordination games (WLC games) in which all payoffs are either 1 (i.e., win) or 0 (i.e.,
lose).

Clearly, if players can communicate when playing a pure coordination game with at
least one winning outcome, then they can simply agree on a winning strategy profile,
so the game is trivialised. What makes such games non-trivial is the limited, or no
possibility of communication before the game is presented to the players. In this paper
we assume no preplay communication1 at all, meaning that the players must make their
choices by reasoning individually, without any contact with the other players before (or
during) playing the game.

There are many natural real-life situations where such coordination scenarios occur.
For example, (A) two cars driving towards each other on a narrow street such that they
can avoid a collision by swerving either to the right or to the left. Or, (B) a group of n
people who get separated in a city and they must each decide on a place where to get
together (‘regroup’), supposing they do not have any way of contacting each other.
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1Note that, unlike the common use of ‘preplay communication’ in game theory to mean communica-
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Even if no preplay communication is possible, players may still share some conven-
tions ([8], [11], [18]) which they believe everyone to follow. In (A), a collision could be
avoided by using the convention (or rule) that cars should always swerve to the right
(or, to the left). In (B), everyone could go to a famous meeting spot in the city, e.g.,
the main railway station. Conventions need not be explicit agreements, but they can
also naturally emerge as so-called focal points, for example. The theory of focal points,
originating from Schelling [17], has been further developed in the context of coordination
games, e.g. in [13], [20].

In this paper we assume that the players share no conventions, either. Thus, in our
setting players play independently of each other. They can be assumed to come from
completely different cultures, or even from different galaxies, for that matter. However,
we assume that it is common belief among the players that:
(1) every player knows the structure of the game;
(2) all players have the same goal, viz. selecting together a winning profile;

Initially in this paper we will only assume individual rationality, i.e. that every
player acts with the aim to win the game. Later we will assume in addition common
belief in rationality, i.e. that every player is individually rational and that it is commonly
believed amongst all players that every player is rational.

Our main objective is to analyse what kinds of reasoning can be accepted as ‘purely
rational’ and what kinds of WLC games can be solved by such reasoning. Thus, we try
to identify ‘purely rational principles’ that every rational player ought to follow in every
WLC game. We also study the hierarchy of such principles based on classes of WLC

games that can be won by following different reasoning principles. It is easy to see that
coordination by pure rationality is not possible in the example situations (A) and (B)
above. However, we will see that there are many natural pure coordination scenarios in
which it seems clear that rational players can coordinate successfully.

One of the principal findings of our study is that it is highly nontrivial to demarcate
the “purely rational” principles from the rest2. Indeed, this seems to be an open-ended
question and its answer depends on different background assumptions. Still, we identify a
hierarchy of principles that can be regarded as rational and we also provide justifications
for them. However, these justifications have varying levels of common acceptability and
a more in-depth discussion would be needed to settle some of the issues arising there.
Due to space constraints, a more detailed discussion on these issues is deferred to a
follow-up work.

Coordination and rationality are natural and interesting topics that have been stud-
ied in various contexts in, e.g., [3], [6], [7], [8], [19]. We note the close conceptual
relationship of the present study with the notion of rationalisability of strategies [2], [5],
[15], which is particularly important in epistemic game theory. We also mention two
recent relevant works related to logic to which the observations and results in the present
paper could be directly applied: in [10], two-player coordination games were related to
a variant of Coalition Logic3, and in [1], coordination was analysed with respect to the
game-theoretic semantics of Independence Friendly Logic.

In addition to the theoretical work presented here, we also run some empirical ex-
periments on people’s behaviour in certain (2-player) WLC games. One of our tests can
be accessed from the link given in [9]. We suggest to the reader to do that test before
reading further this paper and then to do it again after reading the paper.

2Schelling shares this view on pure coordination games (see [17], pg. 283, ftn. 16).
3In fact, the initial motivation for the present work came from concerns with the semantics of Alter-

nating time temporal logic ATL, extending Coalition Logic.
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2 Pure win-lose coordination games

2.1 The setting

A pure win-lose coordination game G is a strategic form game with n players (1, . . . , n)
whose available choices (moves, actions) are given by sets {Ci}i≤n. The set of winning
choice profiles is presented by an n-ary winning relation WG. For technical convenience
and simplification of some definitions, we present these games as relational structures
(see, e.g., [4]). A formal definition follows.

Definition 2.1. An n-player win-lose coordination game (WLC game) is a rela-
tional structure G = (A,C1, . . . , Cn,WG) where A is a finite domain of choices, each
Ci 6= ∅ is a unary predicate, representing the choices of player i, s.t. C1 ∪ · · · ∪Cn = A,
and WG is an n-ary relation s.t. WG ⊆ C1 × · · · × Cn. Here we also assume that the
players have pairwise disjoint choice sets, i.e., Ci ∩ Cj = ∅ for every i, j ≤ n s.t. i 6= j.
A tuple σ ∈ C1×· · ·×Cn is called a choice profile for G and the choice profiles in WG

are called winning.

We use the following terminology for any WLC game G = (A,C1, . . . , Cn,WG).

• The losing relation of G is the relation LG := C1 × · · · ×Cn \WG. A choice profile
σ ∈ LG is called losing.

• The complementary game of G is the game G := (A,C1, . . . , Cn, LG).

• Let Ai ⊆ Ci for every i ≤ n. The restriction of G to (A1, . . . , An) is the game
G ↾ (A1, . . . , An) := (A1 ∪ · · · ∪An, A1, . . . , An, WG ↾ A1 × · · · ×An).

• For every choice c ∈ Ci of a player i, the winning extension of c in G is the set
W i

G(c) of all tuples τ ∈ C1 × · · · ×Ci−1 ×Ci+1 × · · · ×Cn such that the choice profile
obtained from τ by adding c to the i-th position is winning. We define the losing
extension of c in G analogously.

• A choice c ∈ Ci of a player i is (surely) winning, respectively (surely) losing, if
it is guaranteed to produce a winning (respectively losing) choice profile regardless of
what choices the other player(s) make. Note that c is a winning choice iff W i

G(c) =
C1 × · · · × Ci−1 × Ci+1 × · · · × Cn. Similarly, c is a losing choice iff W i

G(c) = ∅.

• A choice c ∈ Ci is at least as good as (respectively, better than) a choice c′ ∈ Ci

if W i
G(c

′) ⊆ W i
G(c) (respectively, W

i
G(c

′) ( W i
G(c)). A choice c ∈ Ci is optimal for a

player i if it is at least as good as any other choice of i.

Note that a choice c ∈ Ci is better than a choice c′ ∈ Ci precisely when c weakly
dominates c′ in the usual game-theoretic sense (see e.g. [12], [16]), and a choice c ∈ Ci

is an optimal choice of player i when it is a weakly dominant choice. Note also that
c strictly dominates c′ (ibid.) if and only if c is surely winning and c′ is surely losing.
Thus, strict domination is a too strong concept in WLC games. Also the concept of Nash
equilibrium is not very useful here.

Example 2.2. We present here a 3-player coordination story which will be used as
a running example hereafter. The three robbers Casper, Jesper and Jonathan4 are

4This example is based on the children’s book When the Robbers Came to Cardamom Town by
Thorbjørn Egner, featuring the characters Casper, Jesper and Jonathan.
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planning to quickly steal a cake from the bakery of Cardamom Town while the baker is
out. They have two possible plans to enter the bakery: either (a) to break in through
the front door or (b) to sneak in through a dark open basement. For (a) they need a
crowbar and for (b) a lantern. The baker keeps the cake on top of a high cupboard, and
the robbers can only reach it by using a ladder.

When approaching the bakery, Casper is carrying a crowbar, Jesper is carrying a
ladder and Jonathan is carrying a lantern. However, the robbers cannot agree whether
they should follow plan (a) or plan (b). While the robbers are quarreling, suddenly
Constable Bastian appears and the robbers all flee to different directions. After this the
robbers have to individually decide whether to go to the front door (by plan (a)) or to
the basement entrance (by plan (b)). They must do the right decision fast before the
baker returns.

The scenario we described here can naturally be modeled as a WLC game. We
relate Casper, Jesper and Jonathan with players 1, 2 and 3, respectively. Each player
i has two choices ai and bi which correspond to either going to the front door or to
the basement entrance, respectively. The robbers succeed in obtaining the cake if both
Casper and Jesper go to the front door (whence it does not matter what Jonathan does).
Or, alternatively, they succeed if both Jonathan and Jesper go to the basement (whence
the choice of Casper is irrelevant). Hence this coordination scenario corresponds to
the following WLC game G∗ = ({a1, b1, a2, b2, a3, b3}, C1, C2, C3,WG∗), where for each
player i, Ci = {ai, bi} and WG∗ = {(a1, a2, a3), (a1, a2, b3), (a1, b2, b3), (b1, b2, b3)}. (For
a graphical presentation of this game, see Example 2.3 below.)

2.2 Presenting WLC games as hypergraphs

The n-ary winning relation WG of an n-player WLC game G defines a hypergraph on the
set of all choices. We give visual presentations of hypergraphs corresponding to WLC

games as follows: The choices of each player are displayed as columns of nodes starting
from the choices of player 1 on the left and ending with the column with choices of
player n. The winning relation consists of lines that go through some choice of each
player5. This kind of graphical presentation of a WLC game G will be called a game
graph (drawing) of G. (Note that game graphs of 2-player WLC games are simply
bipartite graphs.)

Example 2.3. The WLC game G∗ in Example 2.2 has the following game graph:

G∗ : a1 a2 a3

b1 b2 b3

We now define several simple types of WLC games and introduce a uniform notation
for them. Since the names of choices are not given for these games, each game given
here actually corresponds to a class of games with the same structure. However, in this
paper we usually consider all these games to be equivalent6. Let k1, . . . , kn ∈ N.

• G(k1 × · · · × kn) is the n-player WLC game where the player i has ki choices and the
winning relation is the universal relation C1 × · · · × Cn.

5In pictures these lines can be drawn in different styles or colours, to tell them apart.
6If a player reasons by pure rationality, the names of the choices should not have an effect on that

player’s reasoning. We will discuss further this issue later on.
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• G(k1 × · · · × kn) is the n-player WLC game where the player i has ki choices and
the winning relation is the empty relation. Note that with this notation we have
G(k1 × · · · × kn) = G(k1 × · · · × kn). Some examples:

G(2× 3) G(1× 3× 1) G(1× 1× 2)

• Let k ∈ N. We write G(Zk) for the 2-player WLC game in which both players have k
choices and the winning relation forms a single path that goes through all the choices
(see below for an example). Similarly, G(Ok), where k ≥ 2, denotes the 2-player WLC

game where the winning relation forms a 2k-cycle that goes through all the choices.
These are exemplified by the following:

G(Z2) G(Z3) G(O2) = G(2 × 2) G(O3)

• Suppose that G(A) and G(B) have been defined, both having the same number of
players. Then G(A + B) is the disjoint union of G(A) and G(B), i.e., the game
obtained by assigning to each player a disjoint union of her choices in G(A) and G(B),
and where the winning relation for G(A+B) is the union of the winning relations in
G(A) and G(B). Some examples:

G(1× 2 + 1× 0) G(2× 1 + 1× 2) G(1× 1 + 2× 2) G(Z2 + 1× 1)

• Let m ∈ N. Then G(mA) := G(A+ · · ·+A) (m times). Examples:

G(3(1× 1× 1))
G(2(2× 2)) G(2Z2)

• Recall our “regrouping scenario” (B) from the introduction. If there are n people in
the group and there are m possible meeting spots in the city, then the game is of the
form G(m(1n)), where 1n := 1× · · · × 1 (n times).

2.3 Symmetries of WLC games and structural protocols

A protocol is a mapping Σ that assigns to every pair (G, i), where G is a WLC game
and i a player in G, a nonempty set Σ(G, i) ⊆ Ci of choices. Thus a protocol gives
global nondeterministic strategy for playing any WLC game in the role of any player.
Intuitively, a protocol represents a global mode of acting in any situation that involves
playing WLC games. Hence, protocols can be informally regarded as global “reasoning
styles” or “behaviour modes”. Thus, a protocol can also be identified with an agent
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who acts according to that protocol in all situations that involve playing different WLC

games in different player roles.
Assuming a setting based on pure rationality with no special conventions or preplay

communication, a protocol will only take into account the structural properties of the
game and its winning relation. Thus the names of the choices and the names (or ordering)
of the players should be of no relevance. In this section we make this issue precise.

Definition 2.4. An isomorphism7 between gamesG andG′ is called a choice-renaming.
An automorphism of G is called a choice-renaming of G.

Let G = (A,C1, . . . , Cn,WG) be a WLC game. For a player i, we say that the choices
c, c′ ∈ Ci are i-equivalent, denoted by c ≃i c

′, if there is a choice-renaming of G that
maps c to c′. For each i ≤ n, the relation ≃i is an equivalence relation on the set Ci.
We denote the equivalence class of c ∈ Ci by JcKi.

Supposing that a player i does not use names or labels of her choices (or she has no
preferences over them), then she should be indifferent about the choices that are in the
same equivalence class.

Example 2.5. Let A = {a1, b1, c1, a2, b2, c2} and A = {a′1, b
′
1, c

′
1, a

′
2, b

′
2, c

′
2}. Consider

the WLC games G and G′ whose game graphs are given below.

G : a1

b1
c1

a2

b2
c2

G′ :a′1
b′
1

c′
1

a′
2

b′
2

c′
2

A function π : A → A′, which maps b2 to c′2, c2 to b′2 and c to c′ for all the other choices
c ∈ A, is choice-renaming from G to G′. Note that actually both G and G′ are of the
form G(O3). A function that maps ai to bi, bi to ci and ci to ai (for i ∈ {1, 2}) is a
choice-renaming of G. Therefore a1 ≃1 b1 ≃1 c1 and a2 ≃2 b2 ≃2 c2.

Definition 2.6. Consider n-player WLC games G = (A,C1, . . . , Cn,WG) and G′ =
(A,C ′

1, . . . , C
′
n,W

′
G). A permutation β : {1, ..., n} → {1, ..., n} is called a player-

renaming between G and G′ if the following conditions hold:

(1) Cβ(i) = C ′
i for each i ≤ n.

(2) W ′
G = { (cβ(1), . . . , cβ(n)) | (c1, . . . , cn) ∈ WG }.

If there is a player-renaming between two WLC games, the games are essentially the
same, the only difference being the ordering of the players. Furthermore, the game
graph of G′ is simply obtained by permuting the columns of the game graph of G.

Example 2.7. Consider the following WLC games:

G: a1

b1

a2

b2
c2

G′: a1

b1

a2

b2
c2

A permutation β, which swaps 1 and 2, is a player-renaming between G and G′.

7Isomorphism is defined as usual for relational structures (see, e.g., [4]).
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Definition 2.8. Consider WLC games G and G′. A pair (β, π) is a full renaming
between G and G′ if there is a WLC game G′′ such that β is a player-renaming between
G and G′′ and π is a choice-renaming between G′′ and G′. If G = G′, we say that (β, π)
is a full renaming of G. We say that choices c ∈ Ci and c′ ∈ Cj in the same game are
structurally equivalent, denoted by c ∼ c′, if there is a full renaming (β, π) of G such
that β(i) = j and π(c) = c′. It is quite easy to see that ∼ is an equivalence relation on
the set A of all choices. We denote the equivalence class of a choice c by [c].

We also make the following observations:

• If c ≃i c
′ for some i, then also c ∼ c′.

• Suppose that there is a tuple G1, . . . , Gn of WLC games such that for any i there is
either a choice-renaming or a player-renaming between Gi and Gi+1. Then it is easy
to show that there is a full renaming from G1 to Gn.

Example 2.9. Consider a WLC game of the form G(1 × 2 + 2× 1).

G(1 × 2 + 2× 1): a1

b1
c1

a2

b2
c2

Let β be the permutation which swaps (players) 1 and 2, and let π be the bijection
{(a1, c2), (b1, b2), (c1, a2), (a2, c1), (b2, b1), (c2, a1)}. Now the pair (β, π) is a full renaming
of G(1 × 2 + 2 × 1). It is easy to see that ≃1 has the equivalence classes {a1} and
{b1, c1}, and similarly, ≃2 has the equivalence classes {c2} and {a2, b2}. Furthermore, ∼
has the equivalence classes {a1, c2} and {b1, c1, a2, b2}. Likewise, in the game G∗ from
Example 2.2 the relation ∼ has the equivalence classes {a1, b3}, {b1, a3}, {a2, b2}.

We say that a protocol Σ is structural if it is “indifferent” with respect to full
renamings, which means that, given any WLC games G, G′ for which there exists a full
renaming (β, π) between G and G′, for any i and any choice c ∈ Ci, it must hold that
c ∈ Σ(G, i) iff π(c) ∈ Σ(G′, β(i)). Intuitively, this reflects the idea that when following
a structural protocol, one acts independently of the names of choices and names (or
ordering) of player roles. Thus, following a structural protocol, one cannot tell the
difference between choices that are structurally equivalent. Hereafter, unless otherwise
specified, we only consider structural protocols.

It is worth noting that if we considered a framework whereWLC games were presented
so that the names of the choices and players could be used to define an ordering (of the
players and their choices), things would trivialize because it would be easy to win all
games by the prenegotiated agreement to always choose the lexicographically least tuple
from the winning relation.

3 Purely rational principles in WLC games

By a principle we mean any nonempty class of protocols. Intuitively, these are the pro-
tocols “complying” with that principle. If protocols are regarded as “reasoning styles”
(or “behaviour modes”), then principles are properties of such reasoning styles (or be-
haviour modes). Principles that contain only structural protocols are called structural
principles.

A player i follows a principle P in a WLC game G if she plays according to some
protocol in P. We are mainly interested in structural principles which describe “purely
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rational” reasoning that involves neither preplay communication nor conventions and
which are rational to follow in every WLC game. Such principles will be called purely
rational principles. Intuitively, purely rational principles should always be followed
by all rational players. Consider:

P1 := {Σ | Σ(G, i) does not contain any surely losing choices when WG 6= ∅},

P2 := {Σ | Σ(G, i) contains all choices c ∈ Ci such that |W i
G(c)|

is a prime number. If there are no such choices, Σ(G, i) = Ci.}.

If player i follows P1, then she always uses some protocol which does not select surely
losing choices, if possible. This seems a principle that any rational agent would follow.
If player i follows P2, then she always plays choices whose degree (in the game graph)
is a prime number, if possible. Note that both principles are structural, but P1 can be
seen as a purely rational principle, while P2 seems arbitrary; it could possibly be some
seemingly odd convention, for example.

We say that a principle P solves a WLC game G (or G is P-solvable), if G is won
whenever every player follows some protocol that belongs to P. Formally, this means
that Σ1(G, 1) × · · · × Σn(G,n) ⊆ WG for all protocols Σ1, . . . ,Σn ∈ P. The class of all
P-solvable games is denoted by s(P).

In this paper we try to identify (a hierarchy of) principles that can be considered to
be purely rational and analyse the classes of games that they solve.

3.1 Basic individual rationality

Hereafter we describe principles by the properties of protocols that they determine. We
begin by considering the case where players are individually rational, but there is no
common knowledge about this being the case. It is safe to assume that any individually
rational player would follow at least the following principle.

Fundamental individual rationality (FIR):
Never play a strictly dominated choice.8

As noted before, strict domination is a very weak concept with WLC games. Following
FIR simply means that a player should never prefer a losing choice to a winning one.
Therefore FIR is a very weak principle that can solve only some quite trivial types of
games such as G(1 × 2 + 1 × 0) (See figure 1). In general, FIR-solvable games have a
simple description: at least one of the players has (at least one) winning choice, and all
non-winning choices of that player are losing. Thus, for example all games of the form
G(k × l +m× 0) are FIR-solvable. FIR has two natural strengthenings which can be
considered purely rational:

1. Non-losing principle (NL): Never play a losing choice, if possible.

2. Sure winning principle (SW): Always play a winning choice, if possible.

Since losing choices cannot be winning choices, these principles can naturally be put
together (by taking the intersection of these principles):

Basic individual rationality (BIR): NL ∩ SW.

When following BIR, a player plays a winning choice if she has one, and else she plays a
non-losing choice. We make the following observations. See the corresponding pictures
in Figure 1.

8Recall, that a choice a is strictly dominated by a choice b if the choice b guarantees a strictly higher
payoff than the choice a in every play of the game (see e.g. [12], [16]).
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1. NL and SW do not imply each other and neither of them follows from FIR. This can
be seen by the following examples.

• The game G(1 × 1 + 1× 1) is NL-solvable but not SW-solvable. This is be-
cause neither of the players has a winning choice, but the non-losing moves form a
cartesian product.

• The game G(Z2) is SW-solvable but not NL-solvable. This is because both
players have a winning choice, but there are no losing choices. Note that in this
game both players can force winning and thus they both would be sure of winning
even without knowing that the other player follows SW.

2. FIR-solvable games are solvable by both SW and NL. This is because in FIR-solvable
games, at least one player i has a winning choice and all the other choices of that
player are losing. Hence by following either SW or NL, the player i will select a
winning choice.

3. Every BIR-solvable game is either NL or SW-solvable. This is because a BIR-
solvable game G is won when every player selects a winning choice, if they have one,
or else if they each play a non-losing choice. If at least one player has a winning
choice in G, then it is SW-solvable, else it is NL-solvable.

G(1 × 2 + 1× 0) G(1 × 1 + 1× 1) G(Z2)

Figure 1:

Therefore we can see that the sets of games solvable by FIR, NL, SW, BIR form the
following lattice:

s(FIR) = s(NL) ∩ s(SW)

s(SW)s(NL)

s(BIR) = s(NL) ∪ s(SW)

()

( )

SW-solvable and NL-solvable games have simple descriptions: In SW-solvable games, at
least one player has a surely winning choice. In NL-solvable games, the winning relation
forms a nonempty Cartesian product between all non-losing choices. BIR-solvable games
have (at least) one of these two properties.

Note that in order to follow BIR, the players do not make any assumptions on the
behavior or rationality of each other. In fact, the players do not even need to know that
everyone has a mutual goal in the game; that is, following BIR would be equally rational
even in the games that are not cooperative.

3.2 Common beliefs in rationality and iterated reasoning

In contrast to individual rationality, collective rationality allows players to make as-
sumptions on each other’s rationality. Let P be a (purely rational) principle. When all
players believe that everyone follows P, they can reason as follows:

(⋆) Suppose that by following P each player i must play a choice from Ai ⊆ Ci (that is,
Ai is the smallest set such that Σ(G, i) ⊆ Ai for every Σ ∈ P). By this assumption,
the players may collectively assume that the game that is played is actually G′ :=
G ↾ (A1, . . . , An), and therefore all P-compliant protocols should only prescribe
choices in G′.

9



If players have common belief in P being followed, then the reasoning (⋆) above can
be repeated for the game G′ and this iteration can be continued until a fixed point
is reached. By cir(P) we denote the principle of collective iterated reasoning of
P which prescribes that P is followed in the reduced game obtained by the iterated
reasoning of (⋆). Note that after every iteration of (⋆), the sets of choices for each
player become smaller (or stay the same). And since each protocol in any principle P
must give nonempty set of choices for any WLC game, cir(P) cannot make the set of
choices empty for any player. By these observations it is easy to see that s(P) ⊆ s(cir(P))
for any principle P.

When considering principles of collective rationality, we will apply collective iterated
reasoning. It may be debated whether such reasoning counts as purely rational, so a
question arises: if P is a purely rational principle, is cir(P) always purely rational as
well? For the lack of space we will not discuss this issue here. We note, however, the
extensive literature relating common beliefs and knowledge with individual and collective
rationality, see e.g. [5], [11], [14], [21].

3.3 Basic collective rationality

Here we extend individually rational principles of Section 3.1 by adding common belief in
the principles (as described in Section 3.2) to the picture. We first analyse what happens
with principles NL and SW. It is easy to see that the collective iterated reasoning of
NL reaches a fixed point in a single step by simply removing the losing choices of every
player. Hence s(NL) = s(cir(NL)). Collective iterated reasoning of SW also reaches a
fixed point in a single step by eliminating all non-winning choices of every player who
has a winning choice. But if even one player has a winning choice, then the game is
already SW-solvable. Therefore s(SW) = s(cir(SW)).

However, assuming common belief in BIR, some games which are not BIR-solvable
may become solvable. See the following example.

Example 3.1. The game G(Z2 + 1× 1) cannot be solved with NL or SW. However, if
the players can assume that neither of them selects a losing choice (by NL) and eliminate
those choices from the game, then they (both) have a winning choice in the reduced game
and can win in it by SW.

G(Z2 + 1× 1):

Thus, we define the following principle:

Basic collective rationality (BCR): cir(BIR).

The above example shows that s(BIR) ( s(BCR), i.e. BCR is stronger than BIR. The
games solvable by BCR have the following characterisation: after removing all surely
losing choices of every player, at least one of the players has a surely winning choice. It
is worth noting that common belief in SW is not needed for solving games with BCR
because a single iteration of cir(NL) suffices. Thus, players could solve BCR-solvable
games simply by following BIR and believing that everyone follows NL. We also point
out that the principle BCR is equivalent to the principle applied in [10] for Strategic
Coordination Logic.
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3.4 Principles using optimal choices

If a rational player has optimal choices (that are at least as good as all other choices),
it is natural to assume that she selects such a choice. Note that players may have
several optimal choices or none at all. For example, in game G(2× 2) both players have
two optimal choices while in G(Z3) neither of the players has optimal choices. We now
introduce the following principle:

Individual optimal choices (IOC): Play an optimal choice, if possible.

Example 3.2. Recall theWLC game G∗ from Example 2.2. For Casper (who is carrying
the crowbar) it is a better choice to go to the front door than to the basement. Likewise,
for Jonathan (who is carrying the lantern) it is a better choice to go to the basement
than to the front door. Therefore the choice a1 is (the only) optimal choice for player
1 and b3 is (the only) optimal choice for the player 3. The player 2 (Jesper) does not
have any optimal choices, but if both 1 and 3 play their optimal choices, then the game
is won regardless of the choice of 2. Therefore, the game G∗ is solvable with IOC. But
since no player has winning or losing choices in this game, it is easy to see that it is not
BCR-solvable.

Note that if a player has winning choices, then the set of optimal choices is the set
of winning choices, and therefore IOC ⊆ SW. From the description of BIR-solvable
games, we see that they are also IOC-solvable. The next example shows that IOC is
incomparable with BCR (with respect to solvable games).

Example 3.3. Consider a WLC game G∗ from Example 2.2. In this game, none of
the players has winning or losing choices, and therefore it is not solvable with BCR.
However, both player 1 and 3 have an optimal choice a1 and b3, respectively. If 1 and 3
play a optimal choice, then the game is won regardless of the choice of player 2. Hence
G∗ ∈ s(IOC).

Consider the following WLC game GΣ.

GΣ:

c1

b1

a1

c2

b2

a2

By following BCR, player 1 chooses either a1 or c1 and player 2 chooses b2, whence the
game is won. However, GΣ is not solvable with IOC since player 1 does not have any
optimal choices (and may thus end up choosing the losing choice b1).

As we saw above, if a player does not have optimal choices, following only IOC might
lead to playing a losing choice. In order to avoid pathological cases like this, we should
at least add NL to IOC.

Improved basic individual rationality (BIR+): IOC ∩ NL

Since IOC ⊆ SW, we have BIR+ ⊆ BIR. Note that, unlike BCR, the principle BIR+ is
only based on individual reasoning. However, BIR+ is nevertheless stronger than BCR
as shown by the following proposition.

Proposition 3.4. s(BCR) ( s(BIR+).

Proof. Suppose first that G ∈ s(BCR). Then player i has a nonempty set Ai of winning
choices in the reduced game after removing all losing choices of all the other players.
But now every choice in Ai must be an optimal choice of i in the original game G.
Hence, by following BIR+, the player i will play a choice from Ai (by IOC) while all
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the other players play a non-losing choice (by NL), whence the game is won. Therefore
G ∈ s(BIR+) and thus s(BCR) ⊆ s(BIR+). In Example 3.3 we saw that G∗ is solvable
with IOC but not with BCR. Therefore s(BCR) ( s(BIR+).

We now consider the collective version of IOC:

Collective optimal choices (COC): cir(IOC)

Proposition 3.5. s(BIR+) ( s(COC).

Proof. We first show that s(BIR+) ⊆ s(COC). Suppose that WLC game G is BIR+-
solvable, i.e. the game is won when every player plays an optimal choice, if they have
any, else they play a non-losing choice. Let G′ be the game that is obtained after the
first collective iteration of IOC. Now all the remaining non-losing choices of every player
in G′ must be winning choices. Since winning choices are also optimal choices, all losing
choices are eliminated in the second iteration of cir(IOC). After this, all combinations
of the remaining choices are winning. Thus the game is won by following COC.

Consider the following WLC game G∗∗.

G∗∗ : a1 a2 a3 a4

b1 b2 b3 b4

Here only players 1 and 4 have optimal choices a1 and b4, respectively, and no player has
losing choices. Hence we see that G cannot be solved with BIR+. (By following BIR+,
players may end up selecting the choice profile (a1, b2, a3, b4) which is not winning.)
However, after the first iteration of cir(IOC), the players 2 and 3 have optimal choices
a2 and b3, respectively. Hence, by following COC, the players end up choosing a winning
choice profile (a1, a2, b3, b4).

Note that we can construct a similar game for 2n players, where it takes n iterations
of cir(IOC) for solving it.

Finally, let us consider what happens in the special case of 2-player WLC games. We
first observe that the only optimal choices in 2-player WLC game G (where WG 6= ∅) are
those that are winning against all non-surely losing choices of the other player. Conse-
quently, when considering 2-player WLC games, we have s(IOC), s(COCs) ⊆ s(BCR).
By combining this with the results of Propositions 3.4 and 3.5, we obtain the following
result.

Proposition 3.6. For 2-player WLC games: s(BCR) = s(BIR+) = s(COC).

3.5 Elimination of weakly dominated choices

Usually in game-theory, rationality is associated with the elimination of strictly or weakly
dominated strategies. As noted in Section 3.1, strict domination is a too strong concept
for WLC games. Weak domination, on the other hand, gives the following principle when
applied individually.

Individually rational choices (IRC): Do not play a choice a when there is

a better choice b available, i.e., if W i
G(a) ( W i

G(b), then i does not play a.

Note that by the definition, IRC ⊆ NL ∩ IOC and therefore s(BIR+) ⊆ s(IRC). The
inclusion here is proper since there are WLC games that are solvable with IRC but not
with BIR+. See the following example.
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Example 3.7. Consider the following WLC game G#.

G#:

c1

b1

a1

d1

c2

b2

a2

d2

In G# none of the players has losing choices nor optimal choices and therefore it cannot
be solved with BIR+. But the choice b1 is better than a1 and likewise c1 is better than
d1. (Note that b1 and c1 are not comparable with each other.) Therefore, by following
IRC, the player on will play either b1 or c1. With a symmetric reasoning the player 2
will play either b2 or c2, which leads to win. Therefore G# ∈ s(IRC).

The COC-solvable game G∗∗ (in the proof of Proposition 3.5) is unsolvable with
IRC. (This is because neither of the moves a2 and b2 (respectively a3 and b3) is better
than the other.) On the other hand, the game G# in Example 3.7 is unsolvable with
COC, and therefore IRC is incomparable with COC in the general case. However, in
the 2-player case s(COC) ( s(IRC), since then s(COC) = s(BIR+) by Proposition 3.6.

We next assume common belief in IRC. As commonly known (see e.g. [14]), iterated
elimination of weakly dominated strategies eventually stabilises in some reduced game
but different elimination orders may produce different results. However, when applying
cir(IRC), the process will stabilise to a unique reduced game since all weakly dominated
choices are always removed simultaneously. By following the next principle, players will
play a choice within this reduced game.

Collective rational choices (CRC): cir(IRC)

The following example shows that s(IRC) ( s(CRC).

Example 3.8. Consider the following WLC game.

G(Z3):

c1

b1

a1

c2

b2

a2

We first note that b1 is a better choice than a1 and likewise b2 is a better choice than
c2. Therefore, by following IRC, player 1 will play a choice from {b1, c1} and player 2
will play from {a2, b2}, which does not guarantee winning. However, after eliminating
a1 and c2, then b1 is better than c1 and b2 is better than a2. Thus, by following CRC
and doing one more iteration of cir(IRC), player 1 and 2 have only the choices b1 and b2
which are winning.

In G(Z3), we needed two iterations of cir(IRC). It is easy to see that in the game
G(Z4) the iterations are done analogously and the fixed point is reached in 3 iterations.
Furthermore, we can see that n− 1 iterations of cir(IRC) are needed for solving G(Zn).
Therefore different numbers of iterations of cir(IRC) form a proper hierarchy of CRC-
solvable 2-player WLC games.

3.6 Symmetry-based principles

By only following the concept of rationality from game-theory, one could argue that CRC
reaches the border of purely rational principles. However, we now define more principles
which are incomparable with CRC but can still be regarded as purely rational. These
principles are based on symmetries in WLC games and the assumption that players
follow only structural protocols is central here.
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We begin with auxiliary definitions. We say that a choice profile (c1, . . . , cn) exhibits
a bad choice symmetry if Jc1K1 × · · · × JcnKn 6⊆ WG (recall Definition 2.4), and that
a choice c generates a bad choice symmetry if σc exhibits bad choice symmetry for
every choice profile σc that contains c.

Elimination of bad choice symmetries (ECS):
Never play choices that generate a bad choice symmetry, if possible.

Why should this principle be considered rational? Suppose that a player i plays a
choice ci which generates a bad choice symmetry. It is now possible to win only if some
tuple (c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ WG is eventually chosen. However, the players have
exactly the same reason (based on structural principles) to play so that any other tuple
in Jc1K1×· · ·× JcnKn is selected, and such other tuple may possibly be a losing one since
Jc1K1 × · · · × JcnKn 6⊆ WG.

Here is a typical example of using ECS. Suppose that the game graph of G has two
(or more) connected components that are isomorphic to each other. Since no player can
see a difference between those components, all players should avoid playing choices from
them. See the following example.

Example 3.9. Consider the WLC game G(1 × 1 + 2(1 × 2)):

c1

b1

a1

e2

d2

c2

b2

a2

In this game b1 ≃1 c1 and b2 ≃2 c2 ≃2 d2 ≃2 e2. Since all the choice profiles in
{b1, c1}×{b2, c2, d2, e2} are not winning, we see that both b1 and c1 generate a bad choice
symmetry. Likewise, b2, c2, d2 and e2 generate a bad choice symmetry. Therefore, by
following ECS, the players will choose a1 and a2.

While ECS only considers symmetries between similar choices, the next principle
takes symmetries between players into account. Consider a choice profile ~c = (c1, . . . , cn)
and let Sp

i (~c) := {ci} ∪ (Ci ∩
⋃

j 6=i[cj ]) for each i (recall Definition 2.8). We say that
(c1, ..., cn) exhibits a bad player symmetry if Sp

1(~c)×· · ·×Sp
n(~c) 6⊆ WG and a choice

c generates a bad player symmetry if σc exhibits a bad player symmetry for every
choice profile σc that contains c.

Elimination of bad player symmetries (EPS):
Never play choices that generate bad player symmetries, if possible.

Here the players assume that all players reason similarly, or alternatively, each player
wants to play so that she would at least coordinate with herself in the case she was to
use her protocol to make a choice in each player role of a WLC game. Suppose that
the players have some reasons to select a choice profile (c1, . . . , cn). Now, if there are
players i 6= j and a choice c′j ∈ Cj such that c′j ∼ ci, then the player j should have the
same reason to play c′j as i has for playing ci. Hence, if the players have their reasons
to play (c1, . . . , cn), they should have the same reasons to play any choice profile in
Sp
1(~c)× · · · × Sp

n(~c). Winning is not guaranteed if Sp
1(~c)× · · · × Sp

n(~c) 6⊆ WG.

Example 3.10. Consider EPS in the case of a two-player game WLC game G. If
for a given choice c ∈ C1, there is a structurally equivalent choice c′ ∈ C2 such that
(c, c′) /∈ WG, then by following EPS, player 1 does not play the choice c (and likewise
player 2 does not play the choice c′). With this kind of reasoning, some CRC-unsolvable
games like G(1× 1 + 1× 2 + 2× 1) become solvable.
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Note also that the game G∗ (recall Example 2.2) is EPS-solvable since both choices
b1 and a3 generate a bad player symmetry.

Example 3.11. In Example 3.8 we showed that in order to solve G(Zn) by CRC it
takes n− 1 collective iterations and after that the “middle choices” are selected by both
of the players. The game G(Zn) can also be solved by ELR and the players will end up
choosing the same choices as with CRC. This is because every other choice—except the
middle choice—generates a bad player symmetry.

Finally, we introduce a principle that takes both types of symmetries into account.
For a choice profile ~c = (c1, ..., cn) let Si(~c) := Ci ∩

⋃
j [cj ] for each i. We say that

(c1, ..., cn) exhibits a bad symmetry if S1(~c) × · · · × Sn(~c) 6⊆ WG, and a choice c
generates a bad symmetry if σc exhibits a bad symmetry for every choice profile σc
that contains c.

Elimination of bad symmetries (ES):
Never play choices that generate bad symmetries, if possible.

By the definition of bad choice symmetry it is easy to see that if a choice c generates
either a bad choice symmetry or a bad player symmetry, then c also generates a bad
symmetry. Therefore by using Claim I—which is presented in Section 3.9—it is easy to
show that s(ECS), s(EPS) ⊆ s(ES).

By the definitions of ECS and EPS, it is clear that they can solve all NL solvable
games and therefore also ES can solve all NL solvable games. Furthermore, we can show
that the games solvable by ECS, EPS and CRC are completely independent of each
other. See the following table:

A class G of games Example of a game in the class G
s(ECS) \ (s(EPS ∪ s(CRC)) G(1 × 1 + 2(1 × 2))

s(EPS) \ (s(ECS ∪ s(CRC)) G(1× 1 + 1× 2 + 2× 1)

s(CRC) \ (s(ECS ∪ s(EPS))

(s(ECS) ∪ s(EPS)) \ s(CRC) G(1 × 1 + 2(2 × 2))

(s(ECS) ∪ s(CRC)) \ s(EPS)
(s(EPS) ∪ s(CRC)) \ s(ECS) G(Z3)

The WLC game in class s(CRC)\(s(ECS∪s(EPS)) above is also unsolvable with ES and
therefore ES and CRC are incomparable with each other. This particular game is also
SW-solvable, and thus it follows that all symmetry based principles are incomparable
with SW. Since ECS and EPS are incomparable and s(ECS), s(EPS) ⊆ s(ES), it also
follows that ES is stronger than both ECS and EPS.

So far we have only presented examples of such ECS-solvable games with contain
isomorphic connected components. In the following example we see how ECS can be
used for eliminating moves from a single component. This particular example can also
be solved with EPS but not with CRC.

Example 3.12. In the WLC game G(O3+1×1), there are no weakly dominated choices
and thus it is not CRC-solvable. However, by applying ECS or EPS, players will play
choises d1 and d2 which are winning.
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G(O3 + 1× 1) : a1

b1
c1

d1

a2

b2
c2

d2

So far we have only seen ECS and EPS solving games whose game graphs consist of
several connected components. It is easy to see that none of these kinds of games can
be solved with CRC. In the next Example we present an ECS and EPS-solvable game
whose game graph is connected, but which is not CRC-solvable.

Example 3.13. In the WLC game G below, there are no weakly dominated choices.
However, by applying ECS or EPS players will pick choices c1 and c2 which are winning.
(Note here that G is almost of the type s G(O5), the only difference being a single extra
edge that “forms a diagonal of the 10-cycle”.)

G :

e1

d1

c1

b1

a1

e2

d2

c2

b2

a2

In a follow-up work we will address questions about compatibility of the symmetry
principles ECS and EPS with each other and with the other principles considered so far,
in particular with CRC which is the strongest of them.

3.7 Hierarchy of the principles presented so far

The partially ordered diagram below presents the hierarchy of solvable games with the
principles we have presented in this paper. The principles that only use individual
reasoning have normal frames and the ones that use collective reasoning have double
frames.

(

s(FIR)

s(SW)s(NL)

s(BIR)

s(BCR)

s(IOC)

s(BIR+)

s(COC)

s(IRC)

s(CRC)

s(ECS) s(EPS)

s(ES)

• Normal lines represent proper inclusions in both the general and 2-player case.

• Double lines represent proper inclusions in the general case. In the 2-player case there is an
identity.

• Dashed lines represent proper inclusions in the 2-player case. In the general case the two sets are
not comparable.

Note that the diagram is complete in the sense that no new lines can be added to it (in
the general nor the 2-player case).
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3.8 Beyond the limits of pure rationality

How far can we go up the hierarchy of rational principles? This seems a genuinely difficult
question to answer. We now mention—without providing precise formal definitions—
two structural principles for which it would seem somewhat controversial to claim them
rational in our sense, but they are definitely meaningful and natural nevertheless.

The first one is the principle of probabilistically optimal reasoning (PR).
Informally put, this principle prescribes to always play a choice that have as large
winning extension as possible. These choices have the highest probability of winning,
supposing that all the other players play randomly (but not if the others follow PR, too:
consider e.g. G(1 × 2 + 2× 1)).

With PR one can solve games like G(1×1+2×2) that are unsolvable with all other
principles presented here. However, in G(1 × 1 + 2× 2) one could also reason (perhaps
less convincingly) that both players should pick their choices from the subgame G(1×1)
since that is the ‘simplest ’ (and, also the only ‘unique’) winning choice profile. We call
this kind of reasoning the Occam razor principle (OR). In fact, it generalises the
idea of focal point [13], [17], [20].

Note that G(1 × 1 + 2 × 2) can be won if both players follow PR or if both follow
OR, but not if one follows PR while the other follows OR. Moreover, in this game it is
impossible for a player to follow both PR and OR. Hence, at least one of these principles
is not purely rational. Actually, it can be argued that none of them is purely rational.
It is also interesting to note that following PR can violate the symmetry principles, as
demonstrated by the game G(2(2 × 2) + 1× 1).

3.9 Characterising structurally unsolvable games

So far we have characterised several principles with different levels of justification for
being purely rational. It seems difficult to pinpoint a single strongest principle of pure
rationality, but even if such a principle existed, certain games would nevertheless be
unsolvable (assuming that purely rational principles must be structural). The simplest
nontrivial example of such a game is G(2(1 × 1)).

We now characterise the class of WLC games that are structurally unsolvable, i.e.,
unsolvable by any structural principle. We say that G is structurally indeterminate
if all choice profiles in WG exhibit a bad symmetry (recall the definition of the principle
ES). For an example the game G(1 × 2 + 2 × 1) is structurally indeterminate, whereas
the game G(1× 1 + 2× 2) is not.

Claim I. No structural principle can solve a structurally indeterminate game.

Proof. For the sake of contradiction, suppose that there is a structural principle P and
a structurally indeterminate WLC game G such that G ∈ s(P). Let Σ be any protocol
in P. Since P is a structural principle, Σ must be a structural protocol. Since P′ ⊆ P
implies s(P) ⊆ s(P′), the also the singleton principle {Σ} solves G.

Let (u1, . . . , un) ∈ Σ(G, 1) × · · · × Σ(G,n). Since G is structurally indeterminate,
(u1, . . . , un) must exhibit a global losing symmetry. Therefore there is a choice profile
(u′1, . . . , u

′
n) ∈ U1 × · · · × Un such that (u′1, . . . , u

′
n) /∈ WG. Since Σ is a structural

protocol, we must have (u′1, . . . , u
′
n) ∈ Σ(G, 1)× · · · ×Σ(G,n). Since (u′1, . . . , u

′
n) /∈ WG,

we have Σ(G, 1) × · · · × Σ(G,n) 6⊆ WG. Therefore {Σ} does not solve G, which is a
contradiction.

This characterisation is optimal in the sense that all games that are not structurally
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indeterminate, can be solved by some structural principle. This follows from the follow-
ing even stronger claim.

Claim II. There exists a protocol Σ such that the principle {Σ} can solve all WLC games
that are not structurally indeterminate.

Proof. The idea is simply to define a protocol that chooses, on an arbitrary input (G, i)
where G is not structurally indeterminate, a node from a tuple of G that does not exhibit
global losing symmetry. The only difficulty is that there may be several such tuples in G,
and these tuples do not necessarily form a Cartesian product. We now briefly describe
how to circumvent this problem.

Firstly, we use some standard encoding of relational structures by binary strings.
Furthermore, we require that this encoding is based on a linear order in the standard
way, so that every encoding defines a lexicographic order of the tuples of the structure
encoded. We note that a single structure can have several encodings, as each linear
ordering of the domain can potentially define a different encoding.

Now, when presented with an input (G, i), we do the following. We first define a
finite set G that contains one represenation of each player renaming of G. Then we define
the finite set C of strings that encode, for all possible linear orderings, all the structures
in G. Then, we choose the string s ∈ C with the smallest binary number. Using this
encoding, we choose the lexicographically smallest tuple that does not exhibit global
losing symmetry. Thus we obtain a renaming G′ of G together with a tuple w ∈ WG′

that does not exhibit global losing symmetry.
Let wj denote some coordinate of w such that there exists a full renaming (β, π) from

G′ to G that sends the player role number j to the player role number i. There may be
several such coordinates j and several renamings (β, π) for j. Let S be the subset of G
that contains exactly all points π(wj) for all such renamings (β, π) and coordinates j.
The desired protocol outputs S on the input (G, i).

There are many games that are not structurally unsolvable, but in order to solve
them, the players need to follow structural principles that seem arbitrary and certainly
cannot be considered purely rational. We call such principles structural conventions.
However, it is difficult to separate some rational principles from structural conventions.
This and other related conceptual issues will be discussed in an extended version of this
paper.

4 Concluding remarks

We have proposed and studied a hierarchy of principles of rational players’ reasoning
about how to act in WLC games. We have compared their strength in terms of the
classes of WLC games solvable by them. One major conclusion we draw is that the
boundary of (pure) rationality is rather uncertain.

In this paper we have focused on scenarios where players look for choices that guar-
antee winning if a suitable rational principle is followed. But it is very natural to ask
how players should act in a game which seems not solvable by any purely rational prin-
ciple. If players cannot guarantee a win, it is natural to assume that they should at
least try to maximize somehow their collective chances of winning, say, by considering
protocols involving some probability distribution between their choices. Another natu-
ral extension of our framework is to consider non-structural principles based on limited
preplay communication and use of various types of conventions. Also, studying pure dis-
coordination games and combinations of coordination/dis-coordination are major lines
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for further work. We also plan to continue empirical testing in parallel to this work
in order to better understand people’s reasoning and coordination abilities.
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