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Abstract

We propose a family of probabilistic description logics (DLs) that are derived in a principled
way from Halpern’s probabilistic first-order logic. The resulting probabilistic DLs have a
two-dimensional semantics similar to temporal DLs and are well-suited for representing
subjective probabilities. We carry out a detailed study of reasoning in the new family of
logics, concentrating on probabilistic extensions of the DLs ALC and EL, and showing that
the complexity ranges from PTime via ExpTime and 2ExpTime to undecidable.

1. Introduction

Description logics (DLs) are a popular family of knowledge representation formalisms that
underlie ontology languages such as the W3C standards OWL and OWL 2 (W3C, 2012).
Since most traditional DLs are fragments of first-order logic (FO), they support only the
representation of crisp and definite knowledge, and do not provide any built-in means to
represent uncertainty of any kind. This is a shortcoming in application areas in which
uncertain aspects of domain concepts need to be modelled. As a guiding example, we
consider bio-medical applications where ontologies are being used with particular success.
Almost every bio-medical ontology contains uncertain concepts of some sort, although typ-
ically modelled in an inappropriate way. Take for example the well-known and widely
used medical ontology SNOMED CT (Price & Spackman, 2000), which comprises a variety
of classes with names such as ‘Probable tubo-ovarian abscess’, ‘Natural death with proba-
ble cause suspected ’, ‘Probable diagnosis’, ‘Probably present ’, ‘Basal cell tumour, uncertain
whether benign or malignant ’, etc. Similar naming schemes can be found in other bio-
medical ontologies such as GALEN (Rector & Horrocks, 1997). Since traditional DLs are
used to represent these ontologies, the aspect of uncertainty indicated in the names of these
concepts is not reflected in their modelling. For example, nothing is said in SNOMED CT
about the class ‘Natural death with probable cause suspected ’ other than that it is a subclass
of ‘Natural death’.

The need to represent this and other kinds of uncertainty has led to various proposals for
probabilistic DLs; for an overview, see the survey by Lukasiewicz and Straccia (2008) and
Section 5 later on. The proposals differ considerably in the way in which probabilities are
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used, in the syntax, in the chosen semantics, and in the intended application. In this paper,
we follow a principled approach to defining probabilistic DLs by viewing them as fragments
of probabilistic FO (Halpern, 1990) in the same way as classical DLs are fragments of classi-
cal FO. Our aim is to obtain a family of probabilistic DLs that are suitable for representing
uncertain aspects of domain concepts. We note that an FO-based approach to probabilistic
DLs has been advocated earlier (Sebastiani, 1994), but was never developed in serious detail.
To some extent, it can be seen as complementary to approaches that obtain probabilistic
DLs by extending probabilistic propositional logic, see for example (Lukasiewicz, 2008).

In probabilistic FO as defined by Halpern (1990), a distinction is made between statis-
tical probabilities as formalized by Type 1 probabilistic FO and subjective probabilities as
formalized by Type 2 probabilistic FO. The statistical view is concerned with probability
distributions on the domain, and the interest is typically in statements such as “80% of
all patients with positive serological blood tests actually do have Lyme disease”. Contrast-
ingly, the subjective view regards probabilities as degrees of belief and is concerned with
probability distributions on a set of possible worlds, each one described by a classical FO
structure. In this paper, we focus on subjective probabilisties and define probabilistic DLs
as fragments of probabilistic FO of Type 2. Our main reason for doing so is that Type 2
provides an appropriate semantics for probabilistic statements about individuals, which is
crucial for the intended application, while Type 1 does not. To illustrate, consider the
statement “patient John has Lyme disease with at least 80% probability”. This cannot be
adequately modelled in probabilistic FO of Type 1 since this logic is interpreted in single
FO structures (endowed with a probability distribution), where John will either have or
not have Lyme disease. In Type 2, we can include in our set of possible worlds some struc-
tures in which John has Lyme disease and others in which he does not, and then state that
worlds of the former kind have a total probability of at least .8. Note that probabilistic
statements about individuals are crucial for capturing uncertain aspects of domain concepts.
For example, mentioned SNOMED CT class ‘Basal cell tumour, uncertain whether benign
or malignant ’ contains those (individual!) basal cell tumours that are benign in some worlds
and malignant in others, reasonably with both types of worlds exceeding a certain threshold
probability.

Just like in Type 2 probabilistic FO, our semantics does not force the user to specify
or axiomatize one single probability distribution. Instead, she only specifies constraints on
the set of admissible such distributions; in other words, we follow a deductive approach
rather than a model-based one (the probably most prevalent example of the latter kind of
approach being Bayesian networks). We also emphasize that, in contrast to several other
proposals for probabilistic DLs, the logics in our family are monotonic. While this precludes
some typical non-monotonic probabilistic inference patterns (such as changing our degree of
belief about the flight abilities of a given bird once we learn that it is a penguin), it results
in more transparent semantics. In fact, we follow Halpern in believing that it is important
to first understand the monotonic aspects of probability before mixing in non-monotonic
ones, which are typically much more controversial.

We consider several probabilistic extensions of the basic description logics ALC and EL.
While ALC is a well-behaved logical core of the OWL 2 DL ontology language in which
standard reasoning tasks are ExpTime-complete (Baader, Calvanese, McGuinness, Nardi,
& Patel-Schneider, 2003), EL is the basic member of a family of DLs that underly the OWL
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base case + prob. roles P>0C,P=1C + prob. roles

Prob-ALC
ExpTime ≥2ExpTime

ExpTime 2ExpTime
Prob-EL PTime PSpace

Table 1: Main results.

2 EL profile of OWL 2 and in which standard reasoning is tractable (Baader, Brandt, &
Lutz, 2005). Large-scale medical ontologies such as Snomed CT are often formulated in
EL or slight extensions thereof. For both DLs, we start with a probabilistic extension that
adds a concept constructor P∼nC, with ∼ ∈ {≤, <,=, >,≥}, denoting the set of all elements
which we believe with probability ∼n to be an instance of the concept C. For example, we
can express a probable tubo-ovarian abscess simply as P≥nTuboOvarianAbscess, for some
suitable n. We also consider further extensions with probabilistic role constructors, sys-
tems of linear or even polynomial inequalities over concept expressions, and certain forms
of independence constraints. For example, in the concept ∃P≥0.9hasDiagnosis. LymeDisease
the probabilistic constructor P≥0.9 is applied to the role name hasDiagnosis. The con-
cept thus denotes the set of all patients that have Lyme disease as a probable diagno-
sis. As a very simple application of linear inequalities, we can express the class of all
lymphomas that are considered more likely to be Mantle cell lymphomas than follicular
lymphomas as Lymphoma ∧ P (MantleCellLymphoma) > P (FollicularLymphoma).1 An exam-
ple for an independence statement is indep(AB0,Male) expressing that having blood type
AB0 is independent of gender. Full semantic details and more modelling examples will
be given in Section 2. Our probabilistic DLs support a rather general form of ABoxes,
which also include probabilistic features. For a simple example, the probabilistic ABox
assertion P≥0.8∃hasDisease.LymeDisease(john) expresses that we believe with probability at
least 0.8 that John has Lyme disease, as in our lead-in example. The main difficulty to be
dealt with throughout the technical development is that Type 2 structures are inherently
two-dimensional, having both a set of domain elements and a set of possible worlds which
interact via the probabilistic operators and DL constructors.

1.1 Contributions and Structure of the Paper

The main contribution of this paper is to provide a detailed analysis of the computational
complexity of reasoning in various Type 2 probabilistic DLs. In particular, we aim to
separate features of our probabilistic DLs that make reasoning hard from those that do
not: for probabilistic DLs based on ALC, we are primarily interested in understanding the
decidability frontier while, in the case of EL, we are more interested in delineating the border
between the tractable cases and the intractable ones. Table 1 shows some of the complexity
results obtained, where “P>0C,P=1C” means that we restrict the use of the probabilistic
concept constructor P∼nC to the listed combinations of ∼ and n, and where each table
entry denotes completeness for the displayed complexity class (except for one case in which
we know 2ExpTime-hardness, but where decidability is open). In the following, we discuss
in detail the structure of the paper and the obtained results.

1. Follicular lymphoma is a differential diagnosis for Mantle cell lymphoma
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In Section 2, we start with defining the Type 2 probabilistic DLs that are relevant for
this paper, discuss their expressive power and give modelling examples. We also intro-
duce the reasoning tasks concept satisfiability, concept subsumption, knowledge base (KB)
consistency, and KB consequence. We then discuss the role of possible worlds with proba-
bility zero and argue that, in technical constructions and algorithms, we can disregard them
without loss of generality.

Section 3 is concerned with probabilistic extensions of ALC. The most basic such ex-
tension is Prob-ALC, extending classical ALC with the probabilistic concept constructor
P∼nC. We use a type elimination procedure to show that all mentioned reasoning tasks
are ExpTime-complete in Prob-ALC, thus no more difficult than in non-probabilistic ALC.
The proof can easily be adapted to the extension Prob-ALC lineq of Prob-ALC with linear
concept inequalities. The procedure also establishes the uniform model property (UMP)
of Prob-ALC lineq, meaning that every consistent Prob-ALC lineq KB has a uniform model,
that is, a model in which all worlds are assigned the same probability. We then give a
slightly refined version of the model construction that additionally establishes a bounded
model property (BMP), stating that every consistent Prob-ALC lineq KB K has a model in

which the number of worlds and the number of domain elements are bounded by 22O(n)
,

n the size of K. We then observe that the extension Prob-ALC indep of Prob-ALC with
independence constraints does not have the UMP. Since Prob-ALC indep is a fragment of the
extension Prob-ALCpolyeq of Prob-ALC lineq with polynomial concept inequalities, the same
applies to Prob-ALCpolyeq. Nevertheless, using a refined algorithm and model construction
we are able to show that reasoning in Prob-ALCpolyeq is still ExpTime-complete. We fi-
nally consider versions of Prob-ALC that admit probabilistic roles. The most basic such
extension is Prob-ALCr, which extends Prob-ALC with a probabilistic role constructor. We
demonstrate that this logic is close to the undecidability frontier by proving that reasoning
in both Prob-ALC indepr and Prob-ALC lineqr is undecidable. On the positive side, we show that
reasoning in Prob-ALCr becomes decidable and 2ExpTime-complete when all probabilistic
constructors (both on concepts and roles) are restricted to P>0 and P=1. In fact, this is an
immediate consequence of the observation that the resulting DL Prob-ALC01

r is a notational
variant of the two-dimensional combination of ALC and the modal logic S5 (Artale, Lutz,
& Toman, 2007). The decidability status of Prob-ALCr itself remains as an open problem.

In Section 4, we study probabilistic extensions of EL. As in the ALC case, the basic
version Prob-EL only offers probabilistic concept constructors. Unlike in the ALC case,
though, Prob-EL is not computationally as well-behaved as one would hope for: reasoning
is ExpTime-complete and thus no simpler than in Prob-ALC. The intuitive reason is
that extending EL with probabilities results in non-convexity, that is, an implicit form of
disjunction becomes available. We start with analyzing this effect in detail. It turns out
that we are non-convex even if we only admit a single probabilistic concept constructor
P∼p, for any fixed value of ∼ ∈ {<,≤,=, >,≥} and p ∈ (0, 1). We thus proceed to study
the restriction Prob-EL01 of Prob-EL in which only probabilistic concept constructors of
the form P>0C and P=1C are admitted. Note that Prob-EL01 is still a reasonable logic
that admits reasoning about possibility (expressed as P>0C) and certainty (expressed as
P=1C). For example, the concept Patient u P>0∃hadContactWith(Patient u P=1Infected)
describes the class of patients who possibly were in contact with a patient who certainly
was infected. Prob-EL01 can be viewed as a two-dimensional combination of EL with the
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conjunctive and positive fragment of the modal logic S5, in the spirit of many-dimensional
modal logics (Gabbay, Kurucz, Wolter, & Zakharyaschev, 2003). We use a consequence-
based procedure to prove that reasoning in Prob-EL01 is in PTime. As the next step,
we consider a different approach to lowering the complexity of Prob-EL, inspired by the
observation that many biomedical ontologies such as Snomed CT are classical TBoxes, that
is, sets of concept definitions A ≡ D with A a concept name. We thus adopt this restricted
form of TBox and show that, then, it sometimes becomes possible to use probabilities other
than 0 and 1 without losing tractability. In fact, reasoning in Prob-EL with classical TBoxes
remains in PTime when only the constructors P∼p and P=1 are admitted, for any single
choice of ∼ ∈ {≥, >,=} and of p; surprisingly, this is not the case for ∼ ∈ {<,≤}. The
proof again uses a consequence-based procedure. In the final part of Section 4, we extend
Prob-EL01 with probabilistic roles. We show that reasoning in the resulting logic Prob-EL01

r

(with unrestricted TBoxes) is PSpace-complete and thus, while not tractable, considerably
simpler than reasoning in Prob-ALC01

r . The lower bound is established by a reduction of
the word problem of deterministic, polynomially space-bounded Turing machines and the
upper bound is proved by a rather subtle version of a consequence-based procedure.

We discuss related work in Section 5. Throughout the paper, we defer some proof details
to the appendix. This paper is an extended and refined version of two previous conference
papers (Lutz & Schröder, 2010; Gutiérrez-Basulto, Jung, Lutz, & Schröder, 2011). The
approach to probabilistic DLs presented in this paper and its conference predecessors has
been extended to the guarded fragment of FO (Jung, Lutz, Goncharov, & Schröder, 2014).
The non-standard reasoning tasks of computing least common subsumers and most specific
concepts have been studied for an extension of Prob-EL01 (Ecke, Peñaloza, & Turhan, 2014).
Moreover, the task of reading off a set of concept inclusions from a given probabilistic
interpretation has been investigated for a variant of Prob-ALC (Kriegel, 2015). Finally,
Prob-ALC has been used in decision making to model the background knowledge of the
decision maker (Acar, 2014).

2. Type 2 Probabilistic DLs

We introduce the syntax and semantics of the probabilistic DLs studied in this paper, give
modelling examples, and make some initial technical observations.

2.1 Concepts, TBoxes, ABoxes

For the rest of the paper, fix countably infinite sets NC, NR, and NI of concept names, role
names, and individual names, respectively. The probabilistic DL Prob-ALC is obtained
from the classical DL ALC by adding a probabilistic concept constructor. More precisely,
Prob-ALC concepts are formed according to the syntax rule2

C,D ::= A | ¬C | C uD | ∃r.C | P≥nC

where A ranges over NC, C and D over concepts, r over NR, and n over rational numbers
from the interval [0, 1]. Intuitively, the probability restriction P≥nC describes the class of

2. We use a different and arguably more natural naming scheme than in the predecessor conference paper,
where what we call Prob-ALC here would be called Prob-ALCc.
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objects that are believed to belong to the class C with probability (degree of belief) at
least n. We use the usual abbreviations C t D for ¬(¬C u ¬D), ∀r.C for ¬∃r.¬C, > for
At¬A, and ⊥ for ¬>. We also introduce several additional abbreviations that are related
to the probabilistic concept constructor. In particular, P<nC abbreviates ¬P≥nC, P≤nC
abbreviates P≥1−n¬C, P>nC abbreviates P<1−n¬C, and P=nC abbreviates P≥nC uP≤nC.
The only reason for using rational numbers instead of real numbers in the definition of
Prob-ALC is that the former can be finitely represented; an alternative would be to use a
finitely representable subset of the real numbers such as the algebraic reals. All constructors
and their names are listed in Table 2, including abbreviations.

The probabilistic DL Prob-EL is obtained from the classical DL EL by adding the
probability restrictions that can be defined in Prob-ALC. Prob-EL is thus closely related
to the fragment of Prob-ALC in which negation is disallowed, but it is not identical to that
fragment because some abbreviations that rely on negation are now included as primitive
constructors (namely > and all probability restrictions). Formally, Prob-EL concepts are
thus formed according to the syntax rule

C,D ::= > | A | C uD | ∃r.C | P∼nC

where ∼ ranges over {≤, <,=, >,≥} and all other symbols range are as above.

In DLs, TBoxes are used to formalize an ontology, and ABoxes store instance data. Both
in Prob-ALC and in Prob-EL, a TBox is a finite set of concept inclusions (CIs) C v D
where C and D are concepts. We sometimes write C ≡ D to abbreviate C v D and D v C.
In some parts of the paper, we will also consider a more restricted form of TBoxes that
we call a classical TBox. Formally, a classical TBox T is a finite set of concept definitions
A ≡ D where A is a concept name and D is a concept such that every concept name
appears at most once on the left-hand side of a definition in T . Sometimes, the additional
assumption is made that definitions must be acyclic, but we do not require that here. Note
that TBoxes do not have any probabilistic features. It would be possible to consider also
TBox statements of the form P∼n(C v D) expressing the degree of belief that the inclusion
C v D holds with probability ∼n. Though this kind of expressive power might be useful
for some applications, we do not consider it in the present paper to keep the number of
logics under study manageable.

We next introduce ABoxes. In contrast to TBoxes, we deviate from the classical case
and add probabilistic features. This is important for applications in which the data comes
from noisy or untrusted data sources. A Prob-ALC ABox is an expression formed according
to the rule

A ::= C(a) | r(a, b) | ¬A | A ∧ A′ | P≥nA

where C, r, and n have the same ranges as above, a, b range over NI, and A,A′ range over
Prob-ALC ABoxes. Abbreviations P∼nA for ∼ ∈ {≤, <,=, >} are defined in the same way
as for concepts. A knowledge base (KB) is a pair K = (T ,A) with T a TBox and A an
ABox. Note that, in non-probabilistic DLs, ABoxes are normally sets of assertions C(a) and
r(a, b). In our definition, we add conjunction and negation as ABox constructors in order
to support, for example, speaking about joint probabilities of classical ABox assertions, as
in P≥0.1(r(a, b) ∧B(b)). It will become clear when the semantics is defined that we do not
assume probabilistic independence of ABox assertions, and thus joint probabilities cannot
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Name Syntax Semantics

concept name A AI,w

role name r rI,w

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI,w

conjunction C uD CI,w ∩DI,w

disjunction C tD CI,w ∪DI,w

existential restriction ∃r.C {d ∈ ∆I | ∃e ∈ CI,w with (d, e) ∈ rI,w}
value restriction ∀r.C {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI,w ⇒ e ∈ CI,w}
probability restriction P≥nC {d ∈ ∆I | pId (C) ≥ n}

Table 2: Syntax and semantics of Prob-ALC concept constructors

just be calculated from atomic ones. In Prob-EL, we want to disallow negation also in
ABoxes. Thus, a Prob-EL ABox is an expression formed according to the rule

A ::= C(a) | r(a, b) | A ∧ A′ | P∼nA

where all symbol ranges are as expected. We will generally drop the ‘Prob-ALC’ and ‘Prob-
EL’ qualifications and speak only of an ABox as it shall always be clear from the context
which version we refer to. We will use Ind(A) to denote the set of individual names that
occur in the ABox A.

For any syntactic object O such as a concept, a TBox, and an ABox, we use |O| to
denote the number of symbols needed to write O where concept names, role names, and
individual names count as one and probability values are encoded in binary.

2.2 Semantics

The semantics of classical DLs such as ALC is based on interpretations I = (∆I , ·I), where
∆I is a non-empty set called the domain and ·I is an interpretation function that maps
each A ∈ NC to a subset AI ⊆ ∆I , each r ∈ NR to a subset rI ⊆ ∆I × ∆I , and each
a ∈ NI to an element aI ∈ ∆I .3 We refer the reader to (Baader et al., 2003) for more
information about the classical case. To provide a semantics for Type 2 probabilistic DLs,
we generalize such classical interpretations to probabilistic interpretations, in analogy to
Halpern’s generalization of FO structures to Type 2 probabilistic FO structures (Halpern,
1990). As explained in detail in the introduction, this type of semantics is highly appropriate
for representing the uncertain aspects of concepts from the application domain.

A probabilistic interpretation takes the form

I = (∆I ,W, (Iw)w∈W , µ)

3. The unique name assumption is not made, but would not change any of the results in this paper.
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where ∆I is the (non-empty) domain, W a non-empty set of possible worlds, µ a discrete
probability distribution on W (i.e., one that is defined on all subsets of W , and hence has
countable support), and for each w ∈ W , Iw is a classical DL interpretation with domain
∆I such that aIw = aIw′ for all a ∈ NI and w,w′ ∈W . Since aIw does not depend on w, we
write only aI . Given a probabilistic interpretation I, we define the following simultaneously
by mutual recursion:

1. the extension CI,w or CIw of a concept C in a world w, and

2. the probability pId (C) of d ∈ ∆I being a C.

While the recursive cases for Point 1 are given in Table 2, the case for Point 2 is as follows:

pId (C) = µ({w ∈W | d ∈ CI,w}).

For the reader’s convenience, Table 2 lists the semantics also of the concept constructors
that were introduced only as abbreviations.

Via the probability function pI , a probabilistic interpretation assigns a probabilistic
semantics to concepts. The elements of W are the worlds that are considered possible and
µ(w) is the subjective belief in w being identical to the actual world. By definition, pId (C)
thus expresses the subjective belief in d being an instance of C, which replaces the two
definitive cases for classical DL interpretations I where d either is an instance of C (when
d ∈ CI) or d is not an instance of C (when d /∈ CI).

The semantics of TBoxes is defined as in the classical case, but taking into account the
fact that we have several possible worlds (which should all respect the domain knowledge
in the TBox). A probabilistic interpretation I satisfies a concept inclusion C v D (written
I |= C v D) if CI,w ⊆ DI,w for every world w of I. It is a model of a TBox T if it satisfies
all concept inclusions in T .

Let I be a probabilistic interpretation. To give a semantics to ABoxes, we use mutual
recursion to define the following:

1. a relation “|=” that defines when a world w of I satisfies A (written I, w |= A) and

2. the probability pI(A) that A is satisfied in a world w.

The recursive cases for Point 1 are given in Table 3 and the case for Point 2 is

pI(A) = µ({w ∈W | I, w |= A}).

Note that the syntactically distinct ABox assertions (P∼nC)(a) and P∼n(C(a)) are seman-
tically equivalent, so that we shall not distinguish them in the sequel. This allows us to
simply write P∼nC(a). We say that I is a model of A if I, w |= A for some world w. It is
a model of a knowledge base K = (T ,A) if it is a model of both T and A.

Note that, while a TBox T must be satisfied in all worlds of a probabilistic interpretation
I for I to be a model of T , for an ABox A it suffices to be satisfied in only a single world.
We believe that this is a natural generalization of the classical semantics. In fact, the most
basic decision problem for knowledge bases is consistency, the question whether a given KB
has a model. This can be viewed as a satisfiability problem and, from this perspective,
our definition of a model of an ABox is in line with Halpern’s definition of satisfiability in
probabilistic FO. To express that an ABox A is true with certainty, we can simply write
P=1A.
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I, w |= C(a) iff aI ∈ CI,w

I, w |= r(a, b) iff (aI , bI) ∈ rI,w

I, w |= ¬A iff I, w 6|= A
I, w |= A ∧A′ iff I, w |= A and I, w |= A′

I, w |= P≥n(A) iff pI(A) ≥ n

Table 3: Semantics of ABoxes

2.3 Examples

We illustrate how Type 2 probabilistic DLs can be used to model medical knowledge, revis-
iting some of the example classes from SNOMED CT mentioned in the introduction. For
example, the class ‘probable tubo-ovarian abscess’ (Bodenreider, Smith, & Burgun, 2004)
can be modelled in Prob-ALC as a concept of the form

P≥αTuboOvarianAbscess

which describes findings that are a tubo-ovarian abscess with probability at least α. As
a concrete value for α, one would choose a suitable threshold such as 0.75 or 0.9. We
note that this concept is not subsumed by TuboOvarianAbscess, reflecting that a probable
tubo-ovarian abscess needs not actually be a tubo-ovarian abscess. If we focus on patients
instead of on findings, we could use the concept

∃hasAbnormality.P≥αTuboOvarianAbscess,

to describe patients who have an abnormality (e.g. a sonographic irregularity) that is a
tubo-ovarian abscess with probability at least α, and the concept

P≥α∃hasAbnormality.TuboOvarianAbscess,

to describe patients who have a tubo-ovarian abscess with probability at least α and oth-
erwise do not necessarily have any abnormality. It is interesting to note that uncertain
diagnoses may well have definite consequences. For example, Lyme disease is typically
treated with antibiotics even when the diagnosis is not entirely certain, due to the combi-
nation of the graveness of the disease and the difficulty of diagnosing it with certainty. This
is modelled by the following concept inclusion:

P≥0.8∃hasDisease.LymeDisease v ∃recommendedTreatment.Antibiotic

Taking up an example mentioned by Bodenreider et al. (2004), we can formalize the
SNOMED CT concept ‘basal cell tumour, uncertain whether benign or malignant ’, as

BasalCellTumour u ∃hasStatus.(P≥αBenign u PαMalignant).

where α is a threshold probability indicating reasonable possibilities, such as α = 0.1. As
noted in the introduction, uncertainty of instance data is ubiquitous in medicine. Consider
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for example a scenario where patient John exhibits fatigue symptoms. Since fatigue is an
unspecific symptom of Lyme disease, we may model this by an ABox such as

P=1Fatigue(s1) ∧ P=1hasSymptom(John, s1) ∧ P≥0.1∃hasCause. LymeDisease(s1).

If, however, John additionally exhibits unclear fever, which is also unspecifically related
to Lyme disease, then one will be more inclined to attribute also John’s fatigue to the
suspected case of Lyme disease, so we could use an ABox such as

P=1Fatigue(s1) ∧ P=1hasSymptom(John, s1)∧
P=1Fever(s2) ∧ P=1hasSymptom(John, s2)∧

P≥0.2(C(s1)) ∧ P≥0.3(C(s2)) ∧ P≥0.15(C(s1) u C(s2))

where, for readability, we abbreviate C = ∃hasCause. LymeDisease. Note that the ABox
additionally indicates that the attributions of the two symptoms to Lyme disease are not
independent: the lower bound on their joint probability is higher than the product of the
lower bounds on the individual probabilities.

The standard translation from ALC to FO, as described for example in (Baader et al.,
2003), can be extended to a translation from Prob-ALC to Type 2 probabilistic FO in a
straightforward way. Type 2 probabilistic FO is interpreted over structures that strongly
resemble our probabilistic interpretations, except that worlds index FO structures instead of
DL interpretations. The syntax of Type 2 probabilistic FO admits real-valued terms of the
form w(φ) where φ is a formula, denoting the subjective probability that φ is satisfied (by
the given valuation). Concepts P≥nC are then translated to the probabilistic FO formula
w(C#(x)) ≥ n, where C#(x) is the standard translation of C with free variable x. For
example, the concept related to basal cell tumours above translates to

BasalCellTumour(x) ∧ ∃y (hasStatus(x, y) ∧ w(Benign(y)) ≥ α ∧ w(Malignant(y)) ≥ α).

The translation of TBoxes and probabilistic ABoxes is just as simple and left to the reader.

2.4 Reasoning Tasks

A concept C is satisfiable w.r.t. a TBox T if there is a model I of T and a world w such
that CI,w 6= ∅. Note that this is in line with the definition of a model of an ABox, where we
also demand that the ABox is satisfied in at least one world. A concept C is subsumed by
a concept D w.r.t. a TBox T , denoted T |= C v D, if for all models I of T and worlds w,
we have CI,w ⊆ DI,w. A knowledge base K is consistent if it has a model. An ABox A′ is
a consequence of a knowledge base K = (T ,A), written K |= A′, if for every model I of K
and world w with I, w |= A, we have I, w |= A′.

The four notions just introduced give rise to the decision problems concept satisfiability,
concept subsumption, KB consistency, and KB consequence in an obvious way. For example,
KB consequence is the problem to decide, given as input a knowledge base K and an ABox
A′, whether K |= A′. On first sight, KB consequence might seem to be a slightly unusual
reasoning problem. In classical DLs, it is more common to consider instance checking,
which is the restriction of KB consequence to ABoxes of the form C(a). Given that we
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allow probabilistic and Boolean constructors in the ABox, though, KB consequence is a
natural generalization of instance checking.

In Prob-ALC (and its extensions introduced below), concept satisfiability and concept
non-subsumption can be reduced to each other in polynomial time and the same is true for
KB consistency and KB non-consequence. For example, we have K |= A′ where K = (T ,A)
if the KB (T ,A ∧ ¬A′) is inconsistent. Moreover, concept satisfiability and subsumption
can be reduced in polynomial time to KB consistency and KB consequence. For Prob-ALC,
we will thus typically state lower complexity bounds for concept satisfiability and upper
bounds for KB consistency to achieve maximum generality.

In classical EL, concept satisfiability and KB consistency are trivial since every concept
is satisfiable w.r.t. every TBox and every KB is consistent. This is not the case in Prob-EL,
even if we use only a single probabilistic operator; e.g. the concept P≤0.5AuP≤0.5P≤0.5A is
unsatisfiable. As a consequence, concept subsumption and concept satisfiability are again
mutually reducible in polynomial time: T |= C v D iff CuA is unsatisfiable w.r.t. T ∪{Au
D v ⊥} where A is a fresh concept name and ⊥ abbreviates an unsatisfiable concept, and C
is satisfiable w.r.t. T iff T 6|= C v ⊥. Throughout the paper, though, we will often restrict
the available comparisons ∼ ∈ {≤, <,=, >,≥} and concrete probability values in Prob-
EL; for example, Prob-EL01 is the fragment of Prob-EL that admits only the probability
restrictions P>0A and P=1A. This fragment behaves like classical EL in the sense that
concept satisfiability and KB consistency are trivial.

2.5 Language Extensions

We introduce and discuss several natural extensions of the basic probabilistic DLs Prob-
ALC and Prob-EL that are studied in this paper. All extensions can easily be translated
to Type 2 probabilistic FO.

2.5.1 Probabilistic Roles

Instead of restricting the application of probabilistic constructors to concepts, one can also
allow their application to roles. In the corresponding extension Prob-ALCr of Prob-ALC,
the concept formation rule has the additional case ∃P∼nr.C where ∼ ranges over {≤, <,=
, >,≥}. The concept ∃P∼nr.C combines an existential restriction with the application of
the probabilistic constructor P∼n to the role name r. Similarly as for probabilistic concepts,
we use ∀P∼nr.C as an abbreviation for ¬∃P∼nr.¬C. In contrast to the case of probabilistic
concepts, it is not possible to define the other incarnations of ∃P∼nr.C in terms of ∃P≥nr.C
and thus we introduce five primitive constructors, one for each ∼ ∈ {≤, <,=, >,≥}.

To give a semantics for Prob-ALCr concepts, we define the following simultaneously by
mutual recursion:

1. the extension CI,w or CIw of a concept C in a world w,

2. the probability pId (C) of d ∈ ∆I being a C, and

3. the probability pId,e(r) that d, e ∈ ∆I are related by r.
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The definitions for Points 1 and 2 are as for Prob-ALC except that, in Point 1, the semantics
of the additional concept constructors is given by the following clause:

(∃P∼nr.C)I,w = {d ∈ ∆I | ∃e ∈ CI,w : pId,e(r) ∼ n}

For Point 3, we set

pId,e(r) = µ({w ∈W | (d, e) ∈ rI,w}).

To give an example for Prob-ALCr, consider the SNOMED CT class ‘natural death with
probable cause suspected ’. We interpret this class as expressing two properties: on the one
hand, there is at least one cause that is considered probable, and on the other hand, no
cause is certain. Using probabilistic roles, we can model this as the concept

NaturalDeath u ∃P≥αhasCause.> u ¬∃P≥βhasCause.>

expressing that there is some (unspecified) phenomenon which is believed to be the cause
of death with probability at least α, but nothing is believed to be the cause of death with
probability more than β, where α > 0 and β < 1 are suitable chosen thresholds that satisfy
α < β.

2.5.2 Linear and Polynomial Inequalities as Concepts and ABoxes

In contrast to Prob-ALC as introduced above, Type 2 probabilistic FO admits the forma-
tion of unrestricted linear and polynomial inequalities over probabilities. This inspires the
extensions Prob-ALC lineq and Prob-ALCpolyeq of Prob-ALC, in which (i) concepts P≥nC are
replaced with linear (resp. polynomial) inequalities E over expressions P (C), C a concept,
called concept inequalities; and (ii) ABoxes P≥n(A) are replaced with linear (resp. poly-
nomial) inequalities E over expressions P (A), A an ABox, called ABox inequalities. The
semantics of a concept inequality E is that EI,w contains precisely those d ∈ ∆I such that
the inequality E is satisfied when each P (C) in it is replaced by pId (C). The semantics of
ABox inequalities is defined analogously. In all inequalities, we allow strict comparisons via
“<” as well as non-strict comparisons via “≤”. In extension of our earlier policy, we regard
an ABox assertion of the form E(a) with E a concept inequality as an ABox inequality when
convenient. For example, P (A) > P (B)(a) is regarded as P (A(a)) > P (B(a)).

To illustrate the use of linear inequalities, we make a brief detour to qualitative reasoning
about probabilities. There are a number of different proposals, of which we consider two.
First, Gärdenfors (1975) considers a logic with a binary operator ‘more probable than’. This
can be captured in Prob-ALC lineq since ‘more probably being a C than a D’ corresponds to
the linear concept inequality P (C) > P (D). Second, Herzig (2003) proposes an operator
‘more probably than not’, i.e., the probability of an event is higher than its complement.
In Prob-ALC lineq, this can be expressed as P (C) > P (¬C). We note that, in general,
there is no consensus as to whether subjective probabilities in medical ontologies should
be represented quantitatively as in the previous section or qualitatively, e.g., by defining a
‘probable tubo-ovarian abscess’ as

P (TuboOvarianAbscess) > c · P (¬TuboOvarianAbscess)

12
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for some constant c (a generalization of Herzig’s approach). It may depend on the concrete
application which modelling is more appropriate; we note that Prob-ALC lineq and Prob-
ALCpolyeq support both views.

Linear inequalities can also be used to express conditional probabilities. For example, a
concept constructor for conditional probabilities P∼n(C|D), with ∼∈ {≤, <,=, >,≥}, can
be expressed as the linear concept inequality P (C uD) ∼ n · p(D).

Polynomial inequalities are strictly more expressive than linear ones. In particular, they
capture several kinds of independence constraints, as discussed in the following.

2.5.3 Independence Constraints

The semantics of Prob-ALC has no built-in independence of probabilistic events. For ex-
ample, although one might expect that the ABox

P≥0.5NearSighted(John) ∧ P≥0.5Vegetarian(John)

has the consequence P≥0.25(NearSighted u Vegetarian)(John) since the two involved events
are intuitively independent, it is not hard to see that the semantics of Prob-ALC does not
support such a deduction. Polynomial inequalities make it possible to add independence
constraints. For example, we can obtain the desired consequence in the example above
when we add the TBox statement > v C, where C is the polynomial concept inequality

P (NearSighted u Vegetarian) = P (NearSighted) · P (Vegetarian).

For use in lower bounds and other negative results, we single out a particular and very
simple form of independence constraint as follows.

We use Prob-ALC indep to denote the extension of Prob-ALC obtained by admitting
binary independence constraints of the form indep(C,D) in the TBox, with C,D concepts.
An interpretation I satisfies indep(C,D) if for all d ∈ ∆I , we have pId (C)·pId (D) = pId (CuD).

Note that these independence constraints are strictly weaker than polynomial inequali-
ties. For example, the latter also allow to express independence of more than two events.

2.6 Worlds with Probability Zero

Probabilistic interpretations may contain worlds with probability 0 which represent situa-
tions that are infinitely improbable, but not impossible per se. The presence or absence of
such worlds has an impact on the reasoning problems studied in this paper; for example,
the concept AuP=1¬A is satisfiable w.r.t. the empty TBox when worlds of probability zero
are admitted, but not otherwise. It depends on the intended application whether or not the
presence of probability 0 worlds is desired or not. For computational purposes, however, it
is more convenient to assume that all worlds have positive probability. We show that this
can be done without loss of generality.

A probabilistic interpretation I is positive if µ(w) > 0 for all worlds w of I. This gives
rise to positive versions of the introduced reasoning problems concept satisfiability, concept
subsumption, KB consistency, and KB consequence in a straightforward way. For example,
positive KB consequence is the problem to decide, given a KB K = (T ,A) and an ABox
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A′, whether K |=+ A, that is, whether for every positive model I of K and world w with
I, w |= A, we have I, w |= A′.

For all of the reasoning problems and all of the probabilistic DLs considered in this
paper, the positive version can be reduced in polynomial time to the unrestricted version
and vice versa. As an example, we consider KB consequence in Prob-ALC.

Lemma 1. In Prob-ALC, KB consequence and positive KB consequence are polynomially
reducible to each other.

Proof. The reduction of positive KB consequence to KB consequence is by the observation
that K = (T ,A) |=+ A′ iff (T , P>0(A∧A(a))) |= P>0(A′∧A(a)) where A is a fresh concept
name and a a fresh invidual name.

“⇒”. Let I be a model of T with I, w |= P>0(A∧A(a)). Then there is a world v with
I, v |= A ∧ A(a) and µ(v) > 0. Drop all worlds with probability zero from I and call the
result I ′. An easy induction shows that for all Prob-ALC concepts C and worlds w in I ′, we
have CI,w = CI

′,w. In particular, the extensions of probability restrictions do not change
since by the semantics they only depend on world of positive probability. Consequently, I ′
is a positive model of T and I ′, v |= A. From the assumption that K = (T ,A) |=+ A′∧A(a),
we obtain I ′, v |= A′, thus I, v |= A′ ∧A(a). It follows that I, w |= P>0(A′ ∧A(a)).

“⇐”. Let I be a positive model of T with I, w |= A. Extend I to interpret also A
by taking AI,w = {aI}, and AI,v = ∅ for v 6= w. Then I, w |= A ∧ A(a), and hence
I, w |= P>0(A ∧ A(a)), so by assumption I, w |= P>0(A′ ∧ A(a)), which by the way we
defined AI,w implies I, w |= A′.

For the reduction of KB consequence to positive KB consequence, let K = (T ,A) be
a knowledge base and A′ an ABox. Pick a fresh concept name Â for every concept name
A that occurs in K or A′ and a fresh role name r̂ for every role name r that occurs in K
or A′. For a concept C, let Ĉ denote the concept obtained by replacing every occurrence
of a concept name A and role name r that is outside the scope of any P∼n with Â and r̂,
where the scope of P∼n is D in P∼nD, and r in ∃P∼nr.D. This replacement operation is
lifted to TBoxes and ABoxes in the obvious way. Now put K̂ = (T ∪ T̂ , Â). We show that
K |= A′ iff K̂ |=+ Â′.

“⇐”. Let I be a model of T with I, w |= A. Construct the interpretation Î by dropping
all worlds of probability zero from I and interpreting the new symbols as ÂI,v = AI,w and
r̂I,v = rI,w for every world v. One shows by an easy induction that for all concepts C and

worlds v of Î, we have (i) C Î,v = CI,v and (ii) Ĉ Î,v = CI,w. Thus, Î is a positive model of
T ∪ T̂ and by (ii), Î, v |= Â for every world v of Î. By assumption, we thus have Î, v |= Â′
for every v. From (ii), we get I, w |= A′ and are done.

“⇒”. Let Î be a positive model of T ∪ T̂ with Î, w |= Â. Construct an interpretation

I by adding a new world w0 with probability zero, and put AI,w0 = ÂÎ,w, rI,w0 = r̂Î,w

for each concept name A and each role name r occurring in K or A′. By a straightforward

induction, one shows that for all concepts C and worlds v of Î, we have (i) C Î,v = CI,v and

(ii) CI,w0 = Ĉ Î,w. By (i) and (ii), I is a model of T and by (ii), I, w0 |= A. By assumption,
I, w0 |= A′, which by (ii) implies Î, w |= Â′.
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For the remainder of the paper, we will always assume positive interpretations unless ex-
plicitly noted otherwise. Instead of “|=+”, from now on we simply write “|=”; similarly, by
‘consequence’ we mean positive consequence, etc.

3. Prob-ALC and Extensions

We analyse the computational complexity of reasoning with Prob-ALC and its extensions.
We start with showing that, in Prob-ALC, all considered reasoning tasks are ExpTime-
complete and briefly observe that the algorithm used to establish the upper bound (for
KB consistency) can easily be adapted to its extension Prob-ALC lineq. We then show that
the algorithm can also be adapted to Prob-ALCpolyeq, which requires some less straight-
forward modifications. We finally study Prob-ALCr and show that all reasoning tasks are
2ExpTime-complete when only the probability values zero and one are admitted and un-
decidable in Prob-ALC indepr and Prob-ALC lineqr (when probability values are unrestricted).
Decidability of non-extended Prob-ALCr with unrestricted probability values remains open.
We also consider some interesting model properties such as the uniform model property and
the bounded model property.

3.1 Prob-ALC

ExpTime-hardness of concept satisfiability in Prob-ALC is inherited from classical ALC.
To show that all considered reasoning tasks are ExpTime-complete, it thus suffices to
establish an ExpTime upper bound for KB consistency in Prob-ALC. We do this by
developing a procedure in the style of Pratt’s type elimination (Pratt, 1979) which checks
for the existence of a decomposed representation of a model that we call a quasimodel. To
deal with probabilities, the procedure involves solving systems of linear inequalities.

Let K = (T ,A) be the knowledge base whose consistency is to be decided. We assume
w.l.o.g. that the TBox has the form T = {> v CT } and use

• ccl(K) to denote the concept closure of K, i.e., the set of all concepts that are used
in K (possibly as a subconcept) and their negations, and

• acl(K) to denote the ABox closure of K, i.e., the set of all sub-ABoxes of A and
all ABoxes of the form C(a) with C ∈ ccl(K) and a ∈ Ind(A), closed under single
negation.

Note that the cardinality of ccl(K) is bounded by 2|K| and the size of acl(K) by 4|K|. An
ABox type for K is a subset t ⊆ acl(K), which describes a model of an ABox at a single
possible world. An ABox type t is required to satisfy the following conditions:

1. CT (a) ∈ t for all a ∈ Ind(A);

2. (¬C)(a) ∈ t iff C(a) /∈ t, for all (¬C)(a) ∈ acl(K);

3. (C uD)(a) ∈ t iff C(a), D(a) ∈ t, for all (C uD)(a) ∈ acl(K);

4. ¬A′ ∈ t iff A′ /∈ t, for all ¬A′ ∈ acl(K);

5. A′ ∧ A′′ ∈ t iff A′,A′′ ∈ t, for all A′ ∧ A′′ ∈ acl(K);
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6. if C(b) ∈ t and r(a, b) ∈ t, then ∃r.C(a) ∈ t, for all ∃r.C(a) ∈ acl(T ).

Let AK denote the set of all ABox types for K. Note that each interpretation I and world
w of I realize an ABox type

tIw = {A′ ∈ acl(K) | I, w |= A′}.

We now define types for elements of probabilistic interpretations that are not from the ABox.
For uniform notation, we fix an individual name aε ∈ Ind(A) that we use to represent such
‘anonymous’ elements. An element type for K is a subset t ⊆ {C(aε) | C ∈ ccl(K)} that
respects Conditions 1 to 3 in the definition of ABox types. Since element types refer only
to the fixed individual name aε, we will often drop that name altogether and simply view
an element type as a subset of ccl(K). Let TK denote the set of all element types for K.
Note that each interpretation I, world w of I, and element d ∈ ∆I realize an element type

tIw(d) = {C ∈ ccl(K) | d ∈ CI,w}.

A quasimodel for K is a pair Q = (T, T ′) with T ⊆ AK and T ′ ⊆ TK. The general idea is
that T is the set of ABox types realized in the probabilistic interpretation described by the
quasimodel, and T ′ is the set of element types realized in it. Of course, not every possible
pair (T, T ′) describes the set of types realized in an interpretation. For this reason, we are
interested in quasimodels that satisfy two additional conditions, one per dimension. The
first condition concerns the DL dimension. A type t ∈ T ∪ T ′ is saturated in Q if for each
∃r.C(a) ∈ t, there exists a t′ ∈ T ′ with t′ ⊇ {C} ∪ {D | ∀r.D(a) ∈ t}.

It is more complicated to deal with the probabilistic dimension. To deal with it, it
is helpful to think of a probabilistic interpretation I as consisting of a set of slices. In
particular, we refer to the set of ABox types tIw, w a world of I, as the ABox slice of I.
Similarly, for each d ∈ ∆I we refer to the set of element types tIw(d), w a world of I, as the
d-slice of I and as an element slice if the precise identitiy of d is not important.

For each t0 ∈ T , we define a system of linear inequalities E(t0, T ) over the variables
(xt)t∈T that expresses constraints on the probability xt of each ABox type t ∈ T in the
ABox slice of a probabilitic interpretation:

1. probabilistic ABoxes in t0 are satisfied:

• for each P≥nA′ ∈ t0:
∑

t∈T |A′∈t xt ≥ n

• for each ¬P≥nA′ ∈ t0:
∑

t∈T |A′∈t xt < n

2. probabilities sum up to one:
∑

t∈T xt = 1

3. all realized types agree on probablistic ABoxes with t0:

xt = 0 for all t such that (t \ t0) ∪ (t0 \ t) contains an ABox of the form P≥nA′;

4. t0 has positive probability: xt0 > 0.

For each t0 ∈ T ′, we define a corresponding system of inequalities E(t0, T
′) literally in the

same way as for ABox types, only that T is replaced with T ′.
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One might be tempted to think that, in Point 4 above, we should demand that all xt are
positive because we are working with positive interpretations. However, variable xt being
assigned value zero just means that the type t does not actually occur in the described
slice. Thus, solving the system of inequalities actually selects for us a subset of T (resp. T ′)
that is realized in the slice; note that this is particularly natural in the context of element
slices since it would clearly not be reasonable to demand that every element type from T ′

occurs in every element slice. Also note that Points 1 and 3 implicitly also deal with the
probabilistic concept constructor since we do not distinguish between (P≥nC)(a) (where
such a constructor is used) and the probabilistic ABox P≥n(C(a)).

Let us get back to our quasimodel Q = (T, T ′) for K. We say that a type t ∈ T (resp.
t′ ∈ T ′) is coherent in Q if the system of inequalities E(t, T ) (resp. E(t′, T ′)) has a non-
negative solution over the reals; note that there is a non-negative solution over the reals iff
there is such a solution over the rationals (Schrijver, 1986). We call Q proper for K if every
t ∈ T ∪ T ′ is saturated and coherent in Q, and there is a t ∈ T with A ∈ t.

Lemma 2. K is consistent iff there is a proper quasimodel for K.

Proof. “⇒”. Let I, wA |= K. Define a quasimodel Q = (T, T ′) by setting

T = {tIw | w ∈W} and T ′ = {tIw(d) | w ∈W,d ∈ ∆I}.

By the definition of Q and the semantics, each t ∈ T ∪ T ′ is saturated in Q. To establish
coherence, we start with ABox types. Thus, let t ∈ T . We want to show that E(t, T ) has
a solution, which we write as a map δ assigning values to variables. Choose a w ∈ W such
that tIw = t. For each t′ ∈ T , define

δ(xt′) =
∑

w′∈W |tI
w′=t

′

µ(w′).

Using the definition of δ and the semantics, it can be verified that δ is a solution for E(t, T ).
In particular, δ(xt) > 0 since the corresponding sum contains the positive summand µ(w).
The argument for element types t ∈ T ′ is similar: choose w ∈ W and d ∈ ∆I such that
tIw(d) = t, and for each t′ ∈ T ′, put

δ(xt′) =
∑

w′∈W |tw′ (d)I=t′

µ(w′).

We have A ∈ tIwA and tIwA ∈ T , thus Q is proper.

“⇐”: Let Q = (T, T ′) be a proper quasimodel for K. For each t ∈ T (resp. t ∈ T ′),
the system of linear inequalities E(t, T ) (resp. E(t, T ′)) has a non-negative rational solution.
For each t ∈ T ∪ T ′, fix such a solution δt. For a positive rational number r, we use den(r)
to denote the denominator of the irreducible form of r (in particular, den(0) = 1). Put

c := 1/
∏

(t,t′)∈(T×T )∪(T ′×T ′)

den(δt(xt′))
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We now construct an interpretation as follows. Choose a set W such that |W | = 1/c and
put µ(w) = c for all w ∈W . Note that every world has positive probability, as required by
the positive interpretations that we work with.

In the remainder of the construction, we start with defining the ABox slice of the desired
interpretation and then repeatedly add element slices to satisfy existential restrictions.
Before we start, we highlight two properties that are central for this construction:

(a) for each t0 ∈ T and each w0 ∈W , there is a mapping τ : W → T such that τ(w0) = t0
and for each t ∈ T , we have

∑
w∈W |τ(w)=t µ(w) = δt0(xt).

(b) for each t0 ∈ T ′ and each w0 ∈W , there is a mapping τ : W → T ′ such that τ(w0) = t0
and for each t ∈ T ′, we have

∑
w∈W |τ(w)=t µ(w) = δt0(xt).

A proof is straightforward once one observes that for all (t0, t) ∈ (T × T ) ∪ (T ′ × T ′), there
is an integer n ≥ 0 with c · n = δt0(xt) and that for each t0 ∈ T , we have

∑
t∈T δt0(xt) = 1

and δt0(xt0) > 0, and correspondingly for each t0 ∈ T ′.

The set of domain elements and the interpretation of concept and role names is constructed
inductively along with mappings πd : W → TK, indexed over domain elements d, such that
the following properties are satisfied for all d ∈ ∆I and all w,w′ ∈W :

(P1) πd(w) ∈ T ′ or there are t ∈ T and a ∈ Ind(A) such that πd(w) = {C(aε) | C(a) ∈ t};

(P2) πd(w) and πd(w
′) agree on concepts of the form P≥nC.

The intuitive meaning of πd(w) = t is that we have chosen that d should realize the type t
in world w. The steps of the construction are as follows:

• There is a tA ∈ T such that A ∈ t. To start the construction, we put ∆I = Ind(A)
and pick some w0 ∈W . By (a), we find a mapping τ : W → T such that τ(w0) := tA
and for each t ∈ T , we have

∑
w∈W |τ(w)=t µ(w) = δtA(xt). Further put

– aI = a for each a ∈ NI;

– AI,w = {a | A(a) ∈ τ(w)} for each concept name A and w ∈W ;

– rI,w = {(a, b) | r(a, b) ∈ τ(w)} for each role name r and w ∈W .

For all a ∈ Ind(A) and w ∈ W , put πa(w) = {C(aε) | C(a) ∈ τ(w)}. (P1) is
satisfied by definition of πa. (P2) is satisfied since for all w′, w′′ ∈ W , δtA(xτ(w′))
and δtA(xτ(w′′)) must be positive by the Properties of τ , and thus the inequalities in
Point 3 of the definition of EtA,T yield agreement of πd(w

′) and πd(w
′′) on concepts of

the form P≥nC.

• Repeat the following step indefinitely and fairly. Choose w ∈W , d ∈ ∆I , and ∃r.C ∈
πd(w) such that there is no e ∈ ∆I with (d, e) ∈ rI,w and C ∈ πe(w). By saturatedness
and (P1), there is a t ∈ T ′ such that t ⊇ {C} ∪ {D | ∀r.D ∈ πd(w)}. Add a fresh
element e to ∆I . By (b) there is a mapping πe : W → T ′ such that πe(w) = t and for
each t′ ∈ T ′, we have

∑
w′∈W |πe(w′)=t′ µ(w′) = δt(xt′). Put rI,w = rI,w ∪ {(d, e)}. For

all concept names A and w′ ∈W , put AI,w
′

= AI,w
′ ∪{e} if A ∈ πe(w′). Using similar

arguments as in the base case, it can be verified that (P1) and (P2) are satisfied.
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One then has a truth lemma stating that

CI,w = {d ∈ ∆I | C ∈ πd(w)}

for all w ∈ W and all C ∈ ccl(K), proved by induction on the structure of C. The base
case (concept names) holds by construction, and the Boolean cases are trivial. The case for
existential restrictions is straightforward by the iterative construction above, noting that it
is applied fairly. Finally, consider the case C = P≥nD. Let w ∈W , and let d ∈ ∆I . Then

d ∈ (P≥nD)I,w iff µ{w′ ∈W | d ∈ DI,w′} ≥ n.

Assume first that d /∈ Ind(A), i.e. d has been added in the iterative construction above, in
a step for a world ŵ selecting an element type t̂ for d in ŵ. Then we have

µ{w′ ∈W | d ∈ DI,w′} = µ{w′ ∈W | D ∈ πd(w′)} (by induction)

=
∑

t∈T ′|D∈t

µ{w′ | πd(w′) = t}

=
∑

t∈T ′|D∈t

δt̂(xt) (by construction).

Thus

d ∈ (P≥nD)I,w iff
∑

t∈T ′|D∈t

δt̂(xt) ≥ n.

Since δt̂(xt) satisfies the inequalities in Point 1 of the definition of E(t̂, T ′), it follows that
d ∈ (P≥nD)I,w iff P≥nD ∈ t̂. Note that πd(ŵ) = t̂ and thus it remains to show that
P≥nD ∈ πd(ŵ) iff P≥nD ∈ πd(w), which is a consequence of (P2).

The remaining case is that d ∈ Ind(A), i.e., d comes from the base case of the construction
of ∆I , for some map τ : W → T . We then have

µ{w′ ∈W | d ∈ DI,w′} = µ{w′ ∈W | D ∈ πd(w′)} (by induction)

= µ{w′ ∈W | D(d) ∈ τ(w′)} (by construction)

=
∑

t∈T |D(d)∈t

µ{w′ | τ(w′) = t}

=
∑

t∈T |D(d)∈t

δtA(xt) (by construction)

and can proceed to argue in the same way as in the previous case. This finishes the proof
of the truth lemma.

By the truth lemma, I, w |= T for all w. Similarly, we prove that I, w |= A′ iff
A′ ∈ τ(w) for every world w, with τ as in the base of the construction of ∆I . The proof is
by induction on the structure of A′ ∈ acl(K): base cases are by the truth lemma (for D(a))
and by construction (for r(a, b)), respectively, and Boolean cases are trivial. The case for
P≥nA′ is very similar to the case d ∈ Ind(A) in the calculation for P≥nD above. It now
follows that I, w0 |= A, as required.
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Thus, we can decide consistency of a given KB K by checking the existence of a proper
quasimodel for K. This can be done as follows. Start with the quasimodel Q = (AK,TK)
and then repeatedly delete types from both components that are not saturated or not
coherent. If a type t with A ∈ t survives in the first component after the sets have stabilized,
answer ‘satisfiable’. Otherwise, answer ‘unsatisfiable’. Note that this algorithm attempts to
compute a maximal quasimodel in which all types are saturated and coherent as a greatest
fixpoint by approximation from above. For a given pair (T, T ′) and an ABox or element
type t, it can be decided in polynomial time whether t is saturated and coherent; for
the latter, we use the fact that solvability of mixed systems of linear inequalities4 can be
decided in polynomial time (Schröder, 2007). Consequently and since there are only single
exponentially many ABox types and element types, the algorithm runs in ExpTime. We
have thus shown the following.

Theorem 3. In Prob-ALC, concept satisfiability, concept subsumption, KB consistency,
and KB consequence are ExpTime-complete.

We note that the proof of Theorem 3 easily extends to Prob-ALC lineq. The only necessary
modifications concern the systems of inequalities E(t0, T ) and consist in replacing ABoxes
of the form P≥nA′ with linear ABox inequalities. Thus, Points 1 and 3 from the definition
of E(t0, T ) now read as follows:

1′. linear ABox inequalities in t0 are satisfied: E(t0, T ) contains every linear ABox in-
equality from t0 with every expression P (A′) replaced by

∑
t∈T |A′∈t xt;

3′. all realized types agree on linear ABox inequalities with t0:

xt = 0 for all t such that (t \ t0) ∪ (t0 \ t) contains a linear ABox inequality.

We shall see shortly that Theorem 3 can even be extended to Prob-ALCpolyeq. Before we
consider this case, though, we make explicit some interesting consequences of the proof of
Theorem 3. In fact, the proof of Lemma 2 establishes a uniform model property (UMP):
every consistent Prob-ALC KB has a uniform model I, i.e., the probability distribution
µ of I satisfies µ(w) = µ(w′) for all w,w′ ∈ W . Our constructions do not directly yield
a finite model property (FMP) as the domains of the constructed models may be infinite
(whereas the set of worlds is finite). As discussed in the following, this can be fixed by a
slight modification which then even yields a bounded model property (BMP). We use the
following result about linear programming.

Proposition 4 (Chvátal 1983, Fagin, Halpern, & Megiddo 1990). If a system of r linear
inequalities has a non-negative solution, then it has a non-negative solution with at most r
entries positive. If moreover all coefficients are intergers of length `, then we can additionally
assume that the size of each member of the solution is O(r`+ r log(r)).

Here, the length of an integer denotes the number of bits of its binary representation and
the size of a rational number is the sum of the lengths of the binary representations of the
numerator and denominator in its irreducible form. By this lemma, the number c = |W |
of worlds in the models we construct in the above proof is bounded by 22O(|K|)

: c is the

4. I.e., systems that comprise strict inequalities based on “<” and non-strict inequalities based on “≤”.
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product of exponentially many denominators den(δt(xt′)), whose length is, by the previous
lemma, polynomial in r` where r is the number of inequalities and ` is the maximal length
of coefficients in E(t, T ) (resp. E(t, T ′)). Clearly, ` is polynomial in |K|. Moreover, r can
be made polynomial in |K| by replacing the exponentially many equations from Point 3 of
the definition of E(t, T ) with a single equation xt0 + · · · + xtk = 0 where t0, . . . , tk are all
types that qualify as t in the original Point 3. In summary, c is of length 2O(|K|), so that
c ∈ 22O(|K|)

. It is then simple to obtain the same bound on the number of domain elements:
in the model construction, we can stop adding new domain elements as soon as in every
world, there is an element of every type; since every new domain element adds at least one
new type to at least one world, we need at most 2O(|K|) · 22O(|K|)

= 22O(|K|)
domain elements.

We thus obtain the following combination of the UMP and a BMP.

Corollary 5. Every consistent Prob-ALC lineq KB has a uniform model in which the number
of worlds and the number of domain elements are both bounded by 22O(|K|)

.

We have no proof that a super-polynomial number of worlds (nor a super-exponential num-
ber of domain elements) can actually be enforced.

3.2 Polynomial Inequalities

The ExpTime upper bound just established can be generalized to Prob-ALCpolyeq. It has
already been shown in the previous section how the systems of inequalities E(t0, T ) can
be modified to account for linear inequalities, see Points 1′ and 3′. Exactly the same
modification works also for Prob-ALCpolyeq, with the effect that these systems now consist
of polynomial inequalities instead of of linear ones. To emphasize this difference, we denote
the modified systems with Ep(t0, T ). We are interested in finding non-negative solutions over
the reals, which in the case of polynomial inequalities does not coincide with the existence
of a non-negative solution over the rationals.

There are now two difficulties to be addressed. The first one is that polynomial systems
of inequalities cannot be solved in polynomial time (unless P=NP). In fact, the best known
upper bound is PSpace (Canny, 1988) and the best known lower bound is NP. The exact
complexity is a notorious open problem which has even resulted in the introduction of the
complexity class ∃R that consists of all problems mutually reducible in polynomial time
with solving polynomial systems of inequalities (Schaefer, 2010). It would thus seem that
the methods employed in the previous section yield only an ExpSpace upper bound for
Prob-ALCpolyeq. To push the bound back down to ExpTime, we first make the following
observation (Fagin, Halpern, & Megiddo, 1990).

Lemma 6. If a system Ep(t0, T ) has a solution, T a set of ABox types or of element types,
then it has a solution with at most |K|2 variables positive.

Proof. Let δ be a solution for Ep(t0, T ). For each A ∈ acl(K), set δ(A) =
∑

t∈T |A∈t δ(xt).

The system Ê(t0, T ) of linear inequalities is obtained from Ep(t0, T ) by replacing the in-
equalities in Point 1′ with∑

t∈T |A∈t

xt = δ(A) for all A ∈ acl(K)
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and the inequalities in Point 3 with a single one as in the proof of Corollary 5. By con-
struction, the system Ê(t0, T ) has a solution. Since Ê(t0, T ) consists of at most 4|K|2 + 3
linear inequalities, the first part of Proposition 4 (which also applies when coefficients are
real numbers as in Ê(t0, T )) yields the existence of a solution with at most O(|K|2) positive
values. By construction of Ê(t0, T ), this solution is also a solution of Ep(t0, T ).

Instead of checking a system Ep(t0, T ) directly for solvability, Lemma 6 allows us to consider
all systems Ep(t0, T ∗) with T ∗ ⊆ T such that |T ∗| ≤ 4|K|2 + 3 and t0 ∈ T ∗: If any of these
systems has a solution δ, then we obtain a solution for Ep(t0, T ) by setting δ(xt) = 0 for
all t ∈ T \ T ∗. Conversely, solvability of Ep(t0, T ) and Lemma 6 implies the existence of a
solution δ for Ep(t0, T ) and a subset T ∗ ⊆ T such that |T ∗| ≤ 4|K|2 + 3 and δ(xt) = 0 for
all t ∈ T \ T ∗. Clearly, δ is also a solution for Ep(t0, T ∗). Each system Ep(t0, T ∗) is of size
polynomial in |K|, so there are exponentially many such systems. Thus, the solvability of
Ep(t0, T ) can be checked in ExpTime.

The second problem that arises is the loss of the UMP, which means that the model
construction underlying Lemma 2, which assumes a rational solution and produces uniform
models, no longer works.

Lemma 7. Prob-ALC indep does not have the UMP.

Proof. Consider the knowledge base K = (T , {D(a)}) with

T = {indep(A1, A2), indep(A2, A3), indep(A1, A3)}
D = P= 1

2
(A1 uA2) u P= 1

2
(A2 uA3) u P= 1

2
(A1 uA3).

Let I be a model of K. We show that I cannot be uniform. For brevity, put pi = pI
aI

(Ai)
for i = 1, 2, 3. Since I is a model of T and of D, we must clearly have pipj = 1/2 for i 6= j.
It follows that all pi are non-zero, and hence that p1 = p2 = p3 (e.g. p2 = p3 follows from
p1p2 = p1p3 and p1 6= 0), so p1 = p2 = p3 = 1/

√
2. But in uniform models, all probabilities

are rational, so I is not uniform.

It remains to show that K has a model at all. To construct such a model I, take
∆I = {d} and the set of worlds W = W 3

0 where W0 has two worlds w⊥, w>. Equip W0 with
the probability measure µ0 given by µ0(w>) = 1/

√
2, and take µ to be the arising product

measure on W , that is, µ(v1, v2, v3) =
∏
i=1,2,3 µ0(vi) for all v1, v2, v3 ∈W . Then let aI = d

satisfy Ai in a world (v1, v2, v3) iff vi = w>. It can be verified that I is a model of K.

We now describe a more subtle model construction that replaces the one used in the proof
of Lemma 2 and works also for real-valued solutions. Of course, it constructs non-uniform
models. Proper quasimodels for Prob-ALCpolyeq are defined exactly as for Prob-ALC, except
that the generalized systems Ep(t, T ) and Ep(t, T ′) are used.

Lemma 8. K is consistent iff there is a proper quasimodel for K.

Proof. “⇒” is straightforward, as in the proof of Lemma 2. We prove the “⇐” direction.
In particular, we show how to define W and µ such that the Properties (a) and (b) used in
the proof of Lemma 2 still hold.
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Choose a non-negative solution δt for each system E(t, T ), t ∈ T , and each system
E(t, T ′), t ∈ T ′. Let S be the set of all values that appear in the chosen solutions. We use
f(x) to denote the fractional part of a real number x. Now let M be the subset of [0, 1] that
contains 0, 1, and all numbers of the form

f(i · s0 + (s1 + · · ·+ s`))

where s0, . . . , s` ∈ S and i ∈ N are such that i · s0 < 1 and s1 + · · · + s` ≤ 1. Clearly, M
is finite. Let m1, . . . ,mk be the enumeration of M in ascending order (thus m1 = 0 and
mk = 1). Define

W = {(mi,mi+1) | 1 ≤ i < k}.

These worlds partition the interval [0, 1] into subintervals, which give rise to

µ(mi,mi+1) = mi+1 −mi for all (mi,mi+1) ∈W.

We have to show that (a) and (b) hold for W and µ as just defined. Because the proofs are
almost identical, we concentrate on (a). Let t0 ∈ T and w0 = (mi0 ,mi0+1) ∈ W . We have
to define a mapping τ : W → T such that τ(w0) = t0 and∑

w∈W |τ(w)=t

µ(w) = δt0(xt) for all t ∈ T. (∗)

Let t0, . . . , tp be an enumeration of all types that are assigned positive probability by δt0
(where t0 is the type to be assigned to w0). Let x0 be the largest multiple of δt0(xt0) with
x0 ≤ mi0 . For 1 ≤ i ≤ p+ 1, put

xi = x0 + δt0(xt0) + · · ·+ δt0(xti−1).

Note that f(xi) ∈ M for all 0 ≤ i ≤ p+ 1. Intuitively, x0, . . . , xp+1 provides an assignment
of a subinterval of [x0, x0 + 1] to each type from the list t0, . . . , tp such that the subinterval
assigned to ti is of length δt0(t) and [x0, x1] is the subinterval assigned to t0. We use the
[x0, 1]-part of this assignment to define the restriction of τ to worlds from the interval [x0, 1]
and the [1, x0 +1]-part to define the restriction of τ to worlds from the interval [0, x0]. Thus
put τ(mi,mi+1) = t` whenever one of the following holds:

1. x0 ≤ mi, x` ≤ mi, and mi+1 ≤ x`+1;

2. mi < x0, x` ≤ mi + 1, and mi+1 + 1 ≤ x`+1.

It can be verified that (∗) is satisfied using that xi+1−xi = δt0(ti) and that f(xi) ∈M , that
is, the subintervals defined by x0, . . . , xp+1 are unions of consecutive subintervals defined
by W and µ, up to the shift by -1 in Point 2. It thus remains to show that τ(w0) = t0.
By choice, x0 ≤ mi0 . Moreover, mi0+1 is the least element of M strictly above mi0 , thus
mi0+1 −mi0 ≤ x1 − x0 and Point 1 yields τ(mi0 ,mi0+1) = t0.

We have thus established the following result.

Theorem 9. In Prob-ALCpolyeq, concept satisfiability, concept subsumption, KB consis-
tency, and ABox consequence are ExpTime-complete.

23



Gutiérrez-Basulto, Jung, Lutz & Schröder

3.3 Probabilistic Roles

Reasoning in Prob-ALCr is much more challenging than in Prob-ALC. In fact, we do not
know whether it is decidable, but we can prove undecidability if, in addition to probabilis-
tic roles, we allow binary independence constraints or linear concept inequalities. We also
observe that the fragment Prob-ALC01

r of Prob-ALCr that allows only the probability re-
strictions P>0C and P=1C is decidable, and that reasoning with it is 2ExpTime-complete.
We start with the latter, exploiting a very closely relationship between Prob-ALC01

r and
the modal description logic S5ALC in the version with modal roles.

We recall that S5ALC extends the syntax of ALC with concepts of the form ♦C and with
modal roles �r and ♦r which can be used inside existential and universal restrictions and
where r is a role name (Gabbay et al., 2003; Artale, Lutz, & Toman, 2007). The semantics
of S5ALC is quite similar to that of Prob-ALCr. An S5ALC-interpretation is defined like a
probabilistic interpretation except that it does not comprise a probability distribution over
worlds. The interpretation of ♦C in a world w in such an interpretation I, with set W of
worlds, is then given by

(♦C)I,w = {d ∈ ∆I | ∃w′ ∈W : d ∈ CI,w},

and that of modal roles ♦r, �r by

(∃♦r.C)I,w = {d ∈ ∆I | ∃e ∈ CI ∃w′ ∈W : (d, e) ∈ rI,w′}

(∃�r.C)I,w = {d ∈ ∆I | ∃e ∈ CI ∀w′ ∈W : (d, e) ∈ rI,w′}.

TBoxes are then defined as for ALC and Prob-ALC. We are not going to consider ABoxes
in the context of S5ALC .

As has already been stated above, Prob-ALC01
r is the fragment of Prob-ALCr that only

admits probabilities zero and one. More specifically, we only admit probability restrictions
P>0C and existential restrictions ∃P>0r.C, and ∃P=1r.C; note that P=1C is then definable
as ¬P>0¬C, P=0C as P=1¬C, and P<1C as ¬P=1C. In the literature, there are known cases
where this restriction of probability values regains decidability of undecidable probabilistic
logics, for example, in probabilistic CTL (Brázdil, Forejt, Kret́ınský, & Kucera, 2008).

There is a straightforward equivalence-preserving translation of S5ALC-TBoxes into first-
order logic (Gabbay et al., 2003); therefore, all reasoning problems in S5ALC remain un-
affected if we restrict our attention to at most countable models. Now it is easy to see
that over such models, S5ALC and Prob-ALC01

r are essentially identical: we can equip ev-
ery at most countable set W of worlds with a discrete probability distribution µ such that
µ(w) > 0 for all w ∈W ; the exact numerical values µ(w) are irrelevant for the semantics of
Prob-ALC01

r . Under this conversion of models, the concept P>0C of Prob-ALC01
r is equiva-

lent to the concept ♦C of S5ALC , ∃P>0r.C is equivalent to ∃♦r.C, and ∃P=1r.C is equivalent
to ∃�r.C. It is already known that, in S5ALC , concept satisfiability and subsumption are
2ExpTime-complete (Artale, Lutz, & Toman, 2007). By what was said above, these results
transfer to Prob-ALC01

r .

Theorem 10. (Artale, Lutz, & Toman, 2007) In Prob-ALC01r , concept satisfiability and
concept subsumption are 2ExpTime-complete.
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It seems clear that this result extends to KB consistency and consequence, but to the
best of our knowledge these reasoning problems have not been studied for S5ALC . We skip
them here, too.

We now turn our attention to the extensions of Prob-ALCr with binary independence
constraints and with linear concept inequalities, proving undecidability by reduction of the
halting problem of two-register machines. We briefly recall the relevant definitions. A
two-register machine M is similar to a Turing machine. It also has an internal state taken
from a finite set of possible states, but instead of a tape, it has two registers that contain
non-negative integers. In one step, the machine can increment the content of one of the
registers or test whether the content of the register is zero and if not then decrement it. In
the second case, the successor state depends on whether the tested register was zero or not.
There is a designated halting state, and M halts if it encounters this state. Formally:

Definition 11. A (deterministic) two-register machine (2RM) is a pair M = (Q,P ) with
Q = {q0, . . . , q`} a set of states and P = I0, . . . , I`−1 a sequence of instructions. By defini-
tion, q0 is the initial state, and q` the halting state. For all i < `,

• either Ii = +(p, qj) is an incrementation instruction with p ∈ {1, 2} a register and qj
the subsequent state;

• or Ii = −(p, qj , qk) is a decrementation instruction with p ∈ {1, 2} a register, qj the
subsequent state if register p contains 0, and qk the subsequent state otherwise.

A configuration of M is a triple (q,m, n), with q the current state and m,n ∈ N the register
contents. We write (qi, n1, n2)⇒M (qj ,m1,m2) if one of the following holds:

• Ii = +(p, qj), mp = np + 1, and mp = np, where 1 = 2 and 2 = 1;

• Ii = −(p, qj , qk), np = mp = 0, and mp = np;

• Ii = −(p, qk, qj), np > 0, mp = np − 1, and mp = np.

The computation of M on input (n,m) ∈ N2 is the unique longest (possibly infinite) con-
figuration sequence (p0, n0,m0) ⇒M (p1, n1,m1) ⇒M · · · such that p0 = q0, n0 = n, and
m0 = m.

The halting problem for 2RMs is to decide, given a 2RM M , whether its computation
on input (0, 0) is finite (which implies that its last state is q`).

Since 2RMs are Turing complete, their halting problem is undecidable.

Theorem 12. In Prob-ALC indepr and Prob-ALC lineqr , concept satisfiability, concept subsump-
tion, KB consistency, and ABox consequence are undecidable.

Proof. We first consider Prob-ALC lineqr . We reduce the halting problem for 2RMs to concept
satisfiability by transforming a 2RM M = (Q,P ) into a TBox TM and a concept I such
that I is not satisfiable w.r.t. TM iff M halts. More precisely, every model of TM and I
describes an infinite computation of M on (0, 0) via an infinite r-chain of probability 1,
i.e., there are d0, d1, . . . ∈ ∆I such that pIdi,di+1

(r) = 1 for all i ≥ 0; register contents are
described using two concept names R1 and R2: at each element dj , register i has value n
if pIdj (Ri) = 1

2n . Conversely, every infinite computation gives rise to a model of TM and I.
We use the following signature to encode computations on the chain d0, d1, . . .:
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• concept names Q0, . . . , Q` encode the current state;

• the concept names R1 and R2 for representing register contents;

• concept names S1 and S2 are used at di to describe the register contents at di+1,
encoded in the same way as in the case of R1 and R2.

We define the TBox TM step by step, along with explanations:

• Start in state q0 and with the registers containing zero:

I v Q0 u P=1(R1) u P=1(R2)

• Enforce the infinite chain:

> v ∃P=1r.>

• Incrementation instructions are executed correctly: for all Ii = +(p, qj),

Qi v ∀r.Qj
Qi v P (Rp) = 2 · P (Sp)
Qi v P (Rp) = P (Sp)
S` v ∀r.R`
¬S` v ∀r.¬R`

where ` ranges over {1, 2};

• Decrementation instructions are executed correctly: for all Ii = −(p, qj , qk),

Qi u P=1Rp v ∀r.Qj
Qi u P=1Rp v P (R1) = P (S1)
Qi u P=1Rp v P (R2) = P (S2)

Qi u ¬P=1Rp v ∀r.Qk
Qi u ¬P=1Rp v P (Sp) = 2 · P (Rp)
Qi u ¬P=1Rp v P (Rp) = P (Sp)

• The halting state q` is never reached, and thus the computation is infinite:

> v ¬Q`

It is not difficult to prove that the computation of M on (0, 0) is finite iff I is satisfiable
w.r.t. TM .

We can adapt the reduction to Prob-ALC indepr as follows. To describe incrementation,
we introduce an auxiliary concept name Hp for each p ∈ {1, 2} and then replace the second
concept inclusion in the incrementation block of the Prob-ALC lineqr reduction with

indep(Hp, Rp)

Qi v P= 1
2
Hp u P=1((Rp uHp)↔ Sp).
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Note that, together with P= 1
2
Hp, the independence constraint guarantees that the prob-

ability of Hp u Rp is exactly half the probability of Rp. To describe decrementation, we
introduce an auxiliary concept name H ′p for each p ∈ {1, 2} and then replace the second
concept inclusion in the decrementation block with

indep(H ′p, SP )

Qi u ¬P=1Rp v P= 1
2
H ′p u P=1((Sp uH ′p)↔ Rp).

4. Prob-EL and Variants

We study probabilistic DLs that are based on EL instead of ALC, aiming in particular to
identify cases of lower complexity. Our first result is a strong negative one: for almost all
probability restrictions such as P>0.4C and P<0,9C, Prob-EL is ExpTime hard even if only
this one probability restriction, with its fixed comparison type and probability value, is
available. The intuitive reason is that these probabilistic DLs are not convex, that is, they
allow to define a form of disjunction. We thus proceed to study Prob-EL01, the version of
Prob-EL in which only probability restrictions of the form P>0C and P=1C are admitted.
This logic is convex and we show that it admits reasoning in polynomial time. We also
consider restricting the TBox formalism to so-called classical TBoxes and show that, in this
case, also probability values except zero and one can be admitted without losing tractability.
Finally, we extend Prob-EL01 with probabilistic roles and establish PSpace-completeness
of reasoning.

4.1 Lower Bounds

The aim of this section is to establish the following strong lower bound, showing that
already many simple fragments of Prob-EL are computationally as hard as Prob-ALC. For
all ∼ ∈ {≤, <,=, >,≥} and p ∈ [0, 1], we use Prob-EL∼p to denote the fragment of Prob-EL
that admits only probability restrictions of the form P∼pC.

Theorem 13. For all p ∈ (0, 1) and ∼ ∈ {≤, <,=, >,≥}, as well as for ∼p ∈ {<1,=0},
concept subsumption in Prob-EL∼p is ExpTime-hard.

To prove Theorem 13, we show that each relevant logic Prob-EL∼p is non-convex in the
sense that there are a general TBox T and concepts C,D1, . . . , Dn, n ≥ 2 such that T |=
C v D1 t . . . tDn, but T 6|= C v Di for all i. Once non-convexity is established, standard
proof techniques (Baader et al., 2005) can be used to reduce concept satisfiability in ALC
relative to general TBoxes to subsumption in Prob-EL∼p, see Appendix A.3 for details of
how the reduction works in this case.

We start with the case p ∈ (0, 1) and ∼ ∈ {<,≤}, or ∼p ∈ {<1,=0}, where non-
convexity can be attained even if the TBox T is empty. In fact, we have

∅ |= > v P∼pA t P∼pP∼pA

since d /∈ (P∼pA)I,w implies d ∈ (P=0P∼pA)I,w and thus by choice of ∼ and p also
(P∼pP∼pA)I,w, but we clearly also have

∅ 6|= > v P<pA and ∅ 6|= > v P<pP<pA.
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For the cases where ∼ ∈ {=, >,≥} and p ∈ (0, 1), non-convexity is slightly more difficult to
establish. We concentrate here on the case ∼ = ≥ and defer the cases ∼ ∈ {=, >}, which
are minor variations, to the appendix. So consider a logic Prob-EL≥p with p ∈ (0, 1). We
begin with the subcase p ≤ 0.5. Pick k > 0 such that k · p > 1 and put

T = {Ai uAj v P≥pBij | 1 ≤ i < j ≤ k}

C = P≥pA1 u . . . u P≥pAk
Dij = P≥pBij .

We show that the above witnesses non-convexity. Intuitively, the probabilities stipulated
by C sum up to > 1, thus some of the Ai have to overlap in some world, but it is not
clear which Ai these are. The TBox makes an overlap between Ai and Aj in some world
globally visible by enforcing satisfaction of the marker concept P≥pBij , which then holds in
all worlds.

Lemma 14. T |= C v t1≤i<j≤kDij, but T 6|= C v Dij for 1 ≤ i < j ≤ k.

Proof. For the former claim, let I be a model of T and d ∈ CI,w. Since d ∈ (P≥pAi)
I,w

for 1 ≤ i ≤ k and k · p > 1, there is a world v with d ∈ (Ai u Aj)I,w for some i, j with

1 ≤ i < j ≤ k. It follows that d ∈ DI,vij , thus d ∈ DI,wij .

For the latter claim, fix i0, j0 with 1 ≤ i0 < j0 ≤ k. We construct a model I =
(∆I ,W, (Iw)w∈W , µ) by setting ∆I = {d}, W = {w1, w2}, µ(w1) = µ(w2) = 0.5, taking d
to satisfy Ai0 exactly in world w2, and Ai exactly in world w1 for i 6= i0. For 1 ≤ i < j < k,
we then ensure that d satisfies P≥pBij only when this is required by the TBox; to this

end, we take BI,wij = ∅ if i0 ∈ {i, j}, and BI,wij = {d} otherwise, for all w ∈ W . Then I
is, by construction, a model of T . To see that T 6|= C v Di0j0 , let w ∈ W ; then clearly

pId (Ai) = 0.5 ≥ p, i.e., d ∈ CI,w, and there is no world v with d ∈ BI,vi0j0 , so d /∈ DI,wi0j0 .

For the remaining subcase 1 > p > 0.5, the main idea is to use the constructor P≥pC to
simulate P≥qC, for some q < 0.5. Let n be the smallest integer such that n > 1

2(1−p) and

put q = pn − n + 1. Note that n ≥ 2 and 0 < q < 0.5 (to see that q > 0 note that since
1

2(1−p) > 1, n < 1
1−p). Intuitively, we use the fact that

P≥pX1 u . . . u P≥pXn v P≥q(X1 u . . . uXn)

which allows us to simply redo the above reduction for the case p < 0.5 with q in place of
p. Thus, let k > 0 be such that k · q > 1 and define

T = {Ai1 u . . . uAin v Ai | 1 ≤ i ≤ k}∪

{Ai uAj v P≥pBij | 1 ≤ i < j ≤ k}

C = u
1≤i≤k

u
1≤j≤n

P≥pAij

Dij = P≥pBij .

Indeed, the above witnesses non-convexity:
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Lemma 15. T |= C v t1≤i<j≤kDij, but T 6|= C v Dij for 1 ≤ i < j ≤ k.

Proof. For the former claim, let I be a model of T and d ∈ CI,w. We first verify the
following:

Claim. d ∈ (P≥qAi)
I,w for 1 ≤ i ≤ k.

Proof of the Claim. Assume this is not the case for some i, i.e., d ∈ (P<qAi)
I,w. Define

S :=
∑

1≤j≤n
pId (Aij).

On the one hand, we must have S ≥ p · n since d ∈ CI,w. On the other hand, we can
compute S from I as follows:

S =
∑
w∈W

µ(w) · nw (1)

where nw = |{j | 1 ≤ j ≤ n, d ∈ AI,wij }|. Let W1 = {w ∈ W | nw = n} and put

W2 = W \W1; in particular, nw < n for all w ∈ W2. As, by assumption, d ∈ (P<qAi)
I,w

and Ai1 u . . . u Ain v Ai ∈ T , we obtain pId (Ai1 u . . . u Ain) < q, and thus µ(W1) < q.
Equation (1) yields

S =
∑
w∈W

µ(w)nw =
∑
w∈W1

µ(w)nw +
∑
w∈W2

µ(w)nw

≤ nµ(W1) + (n− 1)µ(W2) < nq + (n− 1)(1− q) = n+ q − 1

It remains to apply q = pn − n + 1 to obtain S < pn. Thus, we have pn ≤ S < pn,
contradiction. This finishes the proof of the claim.

We can now continue as in the proof of Lemma 14: since k · q > 1, there is a world
v ∈W with d ∈ (Ai uAj)I,v for some i, j with 1 ≤ i < j ≤ k. It follows that d ∈ DI,vij , thus

d ∈ DI,wij for all w ∈W .

For the latter claim, fix i0, j0 with 1 ≤ i0 < j0 ≤ k. To show that T 6|= C v Di0j0 , we
construct a model I = (∆I ,W, (Iw)w∈W , µ) of T with ∆I = {d} and W = {w1`, w2` | 1 ≤
` ≤ n} such that d ∈ CI,v and d /∈ DI,vi0j0 for any v ∈ W by putting for all 1 ≤ i ≤ k and
1 ≤ `, `′ ≤ n:

A
Iw1`
i :=

{
{d} if i 6= i0

∅ otherwise
A
Iw2`
i :=

{
{d} if i = i0

∅ otherwise

A
Iw1`
i`′ :=

{
{d} if i 6= i0 or ` 6= `′

∅ otherwise
A
Iw2`
i`′ :=

{
{d} if i = i0 or ` 6= `′

∅ otherwise

and for all 1 ≤ i < j ≤ k, 1 ≤ ` ≤ n:

B
Iw1`
ij := B

Iw2`
ij :=

{
∅ if i0 ∈ {i, j}
{d} otherwise

µ(w1`) := µ(w2`) := 1
2n .
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It is not hard to verify that I is a model of T . Note that for 1 ≤ i ≤ k and 1 ≤ ` ≤ n, we
have

pId (Ai`) =
1

2
+ (n− 1) · 1

2n
= 1− 1

2n

since for every Ai`, there is a b ∈ {1, 2} such that d satisfies Ai` in wb`′ for all `′ and in all
w(3−b)`′ whenever ` 6= `′. Using the fact that n > 1

2(1−p) we get

pId (Ai`) = 1− 1

2n
> 1− 1

2 · 1
2(1−p)

= 1− 2(1− p)
2

= p,

and thus, d ∈ CI,v for any v ∈ W . Finally, it is easy to check that d /∈ DI,vi0j0 for any
v ∈W .

4.2 Prob-EL01 is Tractable

In analogy with the logic Prob-ALC01 considered in Section 3.3, we define Prob-EL01 to be
the fragment of Prob-EL that only admits probability restrictions of the form P>0C and
P=1C. Note that none of the logics listed in Theorem 13 is a fragment of Prob-EL01. Our
main result in this section is that, in Prob-EL01, KB consequence can be decided in PTime
and is thus no more difficult than in the underlying description logic EL.

Theorem 16. In Prob-EL01, concept subsumption and KB consequence are in PTime.

In the remainder of this section, we prove Theorem 16 by giving a polynomial time algorithm
for KB consequence in Prob-EL01. It is convenient to assume that all involved ABoxes and
TBoxes are in a certain normal form, namely that ABoxes take the form

A0 ∧
k∧
i=1

P>0Ai ∧ P=1(A=1)

where A0, . . . ,Ak and A=1 are conjunctions of concept assertions of the form A(a) (with A
a concept name) and of role assertions; and that TBoxes are sets of concept inclusions of
the form

X1 u · · · uXn v A or A v X,

where A denotes a concept name and the Xi and X denote basic concepts, that is, either >,
a concept name, or concepts of the form P∼nA or ∃r.A with A a concept name.

We briefly argue that any ABox and TBox can be converted into the required form in
polynomial time, preserving KB consequence. Recall that, in Prob-EL01, an ABox is built
up from concept and role assertions, conjunction, and a probability constructor. Given such
an ABox A, we can first remove nested applications of the probability constructor and pull
this constructor out of conjunctions by applying the transformations

P∼pP≈qA P≈qA P∼p(A1 ∧ · · · ∧ Ak ∧ P≈qA) P∼p(A1 ∧ · · · ∧ Ak) ∧ P≈qA

and then push conjunctions inside the P=1 constructor by applying the transformation

P=1A1 ∧ P=1A2  P=1(A1 ∧ A2).
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These transformations are clearly equivalence-preserving. It remains to replace concept
assertions C(a) where C is a compound concept with the assertion AC(a) where AC is a
fresh concept name, and to add AC ≡ C to the TBox. Let (T ,A) be a KB and B an ABox,
and let (T ′,A′) and B′ be the result of the above transformations. It is easy to show that
(T ,A) |= B iff (T ′,A′) |= B′.

We do not give details for establishing the TBox normal form since this is standard for
EL-like logics. Indeed, probability restrictions do not pose any additional challenges as they
can be treated in the same way as existential restrictions (Baader et al., 2005). Note that
the transformation of a TBox T into a normalized TBox T ′ introduces fresh concept names,
but as long as the ABoxes A and B do not use these concept names, we have (T ,A) |= B
iff (T ′,A) |= B.

We now develop the announced polynomial time algorithm for KB consequence in
Prob-EL01. It be viewed as “consequence-based” in the style of recently proposed effi-
cient procedures (Baader et al., 2005; Kazakov, 2009). Let K = (T ,A) be a KB such that
for some ABox B (all in normal form), we want to decide whether K |= B. We show how to
build, in polynomial time, a model I of K that is universal in the sense that for all ABoxes
B, we have K |= B iff I, vA |= B, for a certain fixed world vA. Since the latter can be
verified in polynomial time, this yields Theorem 16. Interestingly, we can fix up-front the
set of worlds of I, its domain, and its probability distribution µ:

W = {vA, v=1} ∪Wit;

∆I = Ind(A) ∪ (CN×W );

µ(w) = 1/|W | for all w ∈W.

where CN denotes the set of concept names in K and Wit consists of

• worlds vB, v
′
B, va,B, v

′
a,B for all concepts of the form P>0B that occur in T and all

ABox individuals a ∈ Ind(A), and

• worlds vA′ for all ABoxes of the form P>0A′ that occur in A.

Each domain element and world has a particular purpose. We call domain elements of
the form (A,w) anonymous since they are not identified by an individual name in A. An
anonymous element (A,w) is used to witness existential restrictions of the form ∃r.A in
world w. We are going to make the ABox A true in world vA. World v=1 will make true
(only) facts that hold with probability one. And, finally, the worlds in Wit are used as
witnesses for the eponymous concepts P>0B and ABoxes P>0Ai.

We start with constructing an interpretation I0 = (∆I ,W, (I0w)w∈W , µ) that is a model
of A, but not necessarily of T . This is done by setting, for all concept names A, role names r
and worlds w ∈W :

AI0,w = {a | A(a) ∈ A0, w = vA} ∪ rI0,w = {(a, b) | r(a, b) ∈ A0, w = vA} ∪
{a | A(a) ∈ A=1} ∪ {(a, b) | r(a, b) ∈ A=1} ∪
{a | A(a) ∈ Ai ∧ w = vAi}; {(a, b) | r(a, b) ∈ Ai ∧ w = vAi}.

Individual names are interpreted as themselves, that is, aI0 = a. We then complete I0 by
exhaustively applying the rules in Figure 1, which ensures that we also satisfy T . We need
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R1 If X1 u · · · uXn v A ∈ T , and d ∈ XI,wi for 1 ≤ i ≤ n,
then AI,w := AI,w ∪ {d}.

R2 If A v P>0B ∈ T , d ∈ AI,w, and d /∈ (P>0B)I,w,
then BI,ŵ := BI,ŵ ∪ {d} where ŵ = wit(d,w,B).

R3 If A v P=1B ∈ T and d ∈ AI,w
then BI,v := BI,v ∪ {d} for all v ∈W .

R4 If A v ∃r.B ∈ T and d ∈ AI,w,
then rI,w := rI,w ∪ {(d, (B,w))} and BI,w := BI,w ∪ {(B,w)}.

Figure 1: Completion rules for Prob-EL01.

to define the witness function wit(d,w,B) used in Rule R2, which returns the world where
the concept P>0B is witnessed when it is true at element d in world w:

wit(a,w,B) =

{
va,B if w 6= va,B;

v′a,B otherwise;
and wit((A, v), w,B) =

{
vB if v 6= vB;

v′B otherwise.

The use of primed and non-primed worlds in wit avoids having to realize B in the same
world where P>0B appears (which would result in unsound consequences).

The interplay of the rules in Figure 1 is rather subtle and can only be fully appreciated
by going through the proof details of Lemma 17 below. Here, we point out some interesting
aspects. Note that R4 chooses different elements (A,wi) to satisfy the same existential
restriction ∃r.A in different worlds w1, w2. The reason is that, if we would always use the
same element d as a witness for ∃r.A, then we might ‘accidentally’ make B true at d with
probability one, which would result in unsound consequences. Also note that the witness
function makes sure that there is no combination of an element and a world such that this
combination is used as a witness both by R2 and by R4 (which would also result in unsound
consequences). Let us illustrate this for the case of some anonymous element (A,w). Assume
that R2 makes B true at (A,w) in world v to witness a probability restriction P>0B. By
definition of R2 and of wit, we have (i) w 6= vB and v = vB or (ii) w = vB and v = v′B. In
Case (i), (A,w) cannot be used as a witness by R4 in world v = vB since it can only be
used as such in world w 6= vB. In Case (ii), (A,w) cannot be used as a witness by R4 in
world v = v′B since it can only be used as such in world w = vB.

Let I be the resulting interpretation. Since the completion rules do not introduce
additional domain elements or worlds and the number of worlds and domain elements in
I0 is linear in the size of K, it is easy to verify that rule application terminates after
polynomially many steps. We show that I is a universal model of (T ,A) in the sense of the
following lemma.

Lemma 17. For all ABoxes B, (T ,A) |= B iff I, vA |= B.

Proof. For the “⇒” direction, assume that I, vA 6|= B. By definition of I0, we have I0, vA |=
A and, since I extends I0, also I, vA |= A. Moreover, it is straightforward to verify that I
is a model of T (if any CI in T would not be satisfied, there would still be a rule that we
could apply). This yields (T ,A) 6|= B.
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For the “⇐” direction, the main step is to show by induction on the number of rule
applications that a certain set of invariants is preserved. For formulation the invariants, we
introduce some notation. For every world w ∈ W , we define an ABox Aw that consists of
the following assertions:

• X(a) ∈ Aw if a ∈ XI,w, for all a ∈ Ind(A) and basic concepts X;

• r(a, b) ∈ Aw if (a, b) ∈ rI,w, for all a, b ∈ Ind(A).

We say that an anonymous domain element (A, v) is R2-active in w if R2 has added (A, v)
to the extension of some B in world w (this can only be the case when v = w); similarly,
(A, v) is R4-active in w if R4 has added (A, v) to the extension of some B in w (this can
only be the case when v 6= w and w is a world of the form vB or v′B). If none of the above
applies, (A, v) is called inactive in w. Intuitively, a domain element (A, v) becomes active
in w whenever (A, v) witnesses a concept of the form P>0B or ∃r.B.

In the appendix, we show that rule application preserves the following invariants, for all
Prob-EL01-concepts C = X1u . . .uXk, each Xi a basic concept, and all anonymous domain
elements (A, v) ∈ ∆I :

1. K |= AvA ;

2. K |= P=1Av=1 ;

3. K |= P>0Aw for all w ∈W ;

4. if (A, v) is inactive in w and (A, v) ∈ CI,w, then T |= A v P=1C;

5. if (A, v) is R4-active in v and (A, v) ∈ CI,v, then T |= A v C;

6. if (A, v) is R2-active in w ∈ {vB, v′B} and (A, v) ∈ CI,w, then T |= B u P>0A v C.

Given these invariants, it is straightforward to show “⇐”: Assume I, vA |= B and B =
B0 ∧

∧`
i=1 P>0Bi ∧ P=1B=1. Thus, we have B0 ⊆ AvA , B=1 ⊆ Aw for all w ∈ W , and for

each i, there is some w with Bi ⊆ Aw. Invariants 1-3 then imply K |= B0, K |= P>0Bi for
all i, and K |= P=1B=1, and hence K |= B.

4.3 Classical TBoxes and Tractability

We have seen in the previous sections that reasoning in Prob-EL is ExpTime-hard as soon
as we admit any single probability restriction of the form P∼p with ∼ ∈ {<,≤,=, >,≥}
and p ∈ (0, 1), and that it becomes tractable if we only allow probability restrictions of the
form P>0C and P=1C. The goal of this section is to show that we can sometimes regain
tractability for probability values other than zero and one if we allow only classical TBoxes.

We use Prob-EL∼p;=1
class to denote the restriction of Prob-EL obtained by admitting only

the probability restrictions P=1C and P∼p, and only classical TBoxes. Our main result
is that reasoning is tractable when ∼ ∈ {>,≥} and p ∈ (0, 1). In this case, concept
satisfiability and KB consistency are trivial: in the interpretation I that has only a single
element d and a single world w with µ(w) = 1 and such that AI,w = {d} and rI,w = {(d, d)}
for all concept names A and role names r, all concepts, TBoxes, and ABoxes are satisfied.
We thus concentrate on concept subsumption in the following upper bound.
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Theorem 18. For all ∼ ∈ {>,≥} and p ∈ (0, 1), concept subsumption in Prob-EL∼p;=1
class is

in PTime.

Recall that a classical TBox T (subsequently just a TBox) is a finite set of concept definitions
A ≡ D, where A is a concept name and D is a concept description, and additionally every
concept name appears at most once on the left-hand side of a definition. A concept name
A is defined in T if there is a concept definition A ≡ C ∈ T , and primitive otherwise. We
can restrict our attention to the subsumption of defined concept names since T |= C v D
iff T ∪ {AC ≡ C,AD ≡ D} |= AC v AD, with AC , AD fresh concept names. We can also
assume that the input TBox is normalized to a set of concept definitions of the form

A ≡ P1 u . . . u Pn u C1 u . . . u Cm

with n,m ≥ 0, and where P1, . . . , Pn are primitive concept names and C1, . . . , Cm are of the
form P∼pA, P=1A, or ∃r.A with A a defined concept name. Note that the top concept is
completely normalized away. It is well-known that such a normalization can be achieved in
polynomial time for EL (Baader, 2003), and probability restrictions do not pose additional
challenges as they can be treated like existential restrictions.

Observe first that for p ∈ {0, 1} the theorem is a corollary of the PTime result in the
previous section. In the following, we thus assume 0 < p < 1. We prove the desired PTime
upper bound using a consequence-based procedure. In contrast to the algorithm given in
the previous section, though, we do not build up an interpretation, but rather complete the
TBox with all of its relevant consequences. We start with some notation. For a given TBox
T and a defined concept name A in T , we refer by CA to the defining concept for A in T ,
i.e., A ≡ CA ∈ T . Moreover, we deliberately confuse the concept CA = D1 u . . . uDk with
the set {D1, . . . , Dk}. We define the set of concepts that are certain for CA as

cert(CA) = {P∗B | P∗B ∈ CA} ∪
⋃

P=1B∈CA

{CB}

where, here and in what follows, P∗ ranges over P=1 and P∼p. Intuitively cert(CA) contains
concepts that hold with probability 1 whenever A is satisfied in some world.

The algorithm starts with the normalized input TBox and then exhaustively applies the
completion rules displayed in Figure 2. As a general proviso, each rule can be applied only
if it adds a concept that occurs in T and actually changes the TBox, e.g., R1 can only be
applied when ∃r.B′ occurs in T and ∃r.B′ /∈ CA. The following lemma establishes the main
property of the algorithm.

Lemma 19. For all defined concept names A,B, we have T |= A v B iff, after exhaustive
rule application, CB ⊆ CA.

Proof. We start with the “⇐”-direction. Using the semantics, it is straightforward to
show that the rules are sound, i.e., that if a TBox T2 is obtained from a TBox T1 by a
single rule application, then T1 and T2 are equivalent in the sense that they have the same
models. It suffices to show that every model of T1 is also a model of T2. To this end,
let I = (∆I ,W, (Iw)w∈W , µ) be a model of T1 and assume d ∈ ∆I and w ∈ W such that
d ∈ AI,w and hence d ∈ (CA)I,w. We show that if a concept D is added to CA, then we also
have d ∈ DI,w. We are then done since this implies (CA)I,w = (CA uD)I,w and because I
is a model of T1.
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R1 If ∃r.B ∈ CA and CB′ ⊆ CB,
then replace A ≡ CA with A ≡ CA ∪ {∃r.B′}.

R2 If P=1B ∈ CA,
then replace A ≡ CA with A ≡ CA ∪ CB.

R3 If P=1B ∈ CA,
then replace A ≡ CA with A ≡ CA ∪ {P∼pB}.

R4 If P∼pB ∈ CA and D ∈ cert(CB),
then replace A ≡ CA with A ≡ CA ∪ {D}.

R5 If CB ⊆ cert(CA),
then replace A ≡ CA with A ≡ CA ∪ {P=1B}.

R6 If P∼pB ∈ CA and CB′ ⊆ cert(CA) ∪ CB,
then replace A ≡ CA with A ≡ CA ∪ {P∼pB′}.

Figure 2: TBox completion rules for subsumption in Prob-EL∼p;=1.

R1 D = ∃r.B′. Since ∃r.B ∈ CA, we have d ∈ (∃r.B)I,w, i.e., there is some element e ∈ ∆I

with e ∈ BI,w and (d, e) ∈ rI,w. As I is a model of T1, we also have e ∈ (CB)I,w and,
by the assumption CB′ ⊆ CB, we obtain e ∈ (CB′)

I,w. Again, as T1 |= I, we have
e ∈ B′I,w. The semantics yields d ∈ (∃r.B′)I,w.

R2 D ∈ CB. Since P=1B ∈ CA, we have d ∈ (P=1B)I,w. By the semantics, d ∈ BI,w and
thus d ∈ (CB)I,w.

R3 D = P∼pB. Since P=1B ∈ CA, we have d ∈ (P=1B)I,w. By the semantics, d ∈
(P∼pB)I,w.

R4 D ∈ CB. Since P∼pB ∈ CA, we have d ∈ (P∼pB)I,w. Hence, there is some world
v ∈ W with d ∈ BI,v. By definition of cert(CB) and the semantics, we have that
d ∈ DI,w′ for all D ∈ CB and w′ ∈W . Thus, in particular, d ∈ DI,w for all D ∈ CB.

R5 D = P=1B. By definition of cert(CA) and the semantics, we have that d ∈ DI,v for all
D ∈ CA and v ∈W . As CB ⊆ cert(Ca), we have that d ∈ (CB)I,v for all v ∈W . As I
is a model of T1, we get d ∈ BI,v for all v ∈W . The semantics yields d ∈ (P=1B)I,w.

R6 D = P∼pB
′. Since P∼pB ∈ CA, we have d ∈ (P∼pB)I,w. By the semantics, pId (CB) ∼

p. By definition of cert(CA) and the semantics, we have pId (CA) = 1. Together, this
implies pId (CA∪CB) ∼ p. As by assumption CB′ ⊆ CA∪CB, we also have pId (CB′) ∼ p
and hence d ∈ (P∼pB

′)I,w.

For “⇒”, let T be the TBox after exhaustive application of the rules of Figure 2. We
construct a model I of T that satisfies a concept inclusion A v B only if CB ⊆ CA. Let
Def denote the set of defined concept names in T . Moreover, let Sub denote all concepts of
the form P (primitive concept name), ∃r.A, P=1A, and P∼pA that occur in T . We first fix
some constants that will be used to define the probabilities of worlds in the model I:
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• first fix α, α′ ∈ (0, 1) such that α
2 < α′ < α < p (this is possible because p > 0);

• next fix an integer m ≥ 2 such that

(p− α′) +
1− (p− α′ + 3|Def| · α2 )

m
< p

(this can be done simply by choosing m sufficiently large since p− α′ < p);

• finally, choose an integer k ≥ 2 such that

(p− α′) · k − 1

k
+ α > p

(this can be done by choosing k sufficiently large since (p− α′) + α > p).

Start defining an interpretation I = (∆I ,W, (Iw)w∈W , µ) by putting:

W = {δAi, 1j , p` | A ∈ Def, i ∈ {1, 2, 3}, 1 ≤ j ≤ m, 1 ≤ ` ≤ k}

∆I = {(A, v) | A ∈ Def, v ∈W}

µ(p`) =
p− α′

k

µ(δAi) =
α

2

µ(1j) =
1− (p− α′ + 3|Def| · α2 )

m

Note first that µ is indeed a probabilitiy distribution: µ({p` | 1 ≤ ` ≤ k}) = p − α′,
µ({δAi | A ∈ Def, i ∈ {1, 2, 3}}) = 3|Def|α2 , and µ({1j | 1 ≤ j ≤ m}) = 1−(p−α′+3|Def|α2 );
and thus, µ(W ) = 1. Moreover, we observe the following two important properties of µ:

(P1) for any set V of worlds that contains at least k − 1 of the worlds p` and at least two
of the worlds δAi, the probabilities sum up to more than p;

(P2) any set of worlds whose probabilities sum up to a value > p includes at least two
worlds from W \ {p` | 1 ≤ ` ≤ k}.

Using the condition in the choice of k, it is easy to see that Property (P1) is satisfied. For
Property (P2), define V = {p` | 1 ≤ ` ≤ k} and observe that µ(V ) = p − α′. It suffices
to show that, when adding a single world to the set of worlds V , the probability will stay
below p. By choice of α and α′, it is clear that µ(V ∪ {δAi}) = p − α′ + α

2 < p. By choice
of m, we further have

µ(V ∪ {1j}) = p− α′ +
(1− (p− α′ + 3|Def| · α2 ))

m
< p

and are done.
To define concept and role memberships, first define a map π : (∆I ×W ) → 2Sub such

that each set π(·, ·) is minimal with the following conditions satisfied for all A ∈ Def and
v, w ∈W :

36



Probabilistic DLs for Subjective Uncertainty

1. CA ⊆ π((A,w), w)

2. if P∗B ∈ CA, then P∗B ∈ π((A,w), v);

3. if P=1B ∈ CA, then CB ⊆ π((A,w), v);

4. if P>pB ∈ CA, then CB ⊆ π((A,w), p`) for all ` ≤ k when w /∈ {p` | ` ≤ k};

5. if P>pB ∈ CA, then CB ⊆ π((A, pi), p`); for all ` ≤ k with i 6= `;

6. if P>pB ∈ CA, then CB ⊆ π((A,w), δB1) and CB ⊆ π((A,w), δB2) when w /∈
{δB1, δB2, δB3};

7. if P>pB ∈ CA, then CB ⊆ π((A, δBi), δBj) for all distinct i, j ∈ {1, 2, 3}.

Now we simply read off from π the interpretation of the defined concept names A, primitive
concept names P , and role names r as

AI,w = {d ∈ ∆I | CA ⊆ π(d,w)}

P I,w = {d ∈ ∆I | P ∈ π(d,w)}

rI,w = {(d, (B,w)) ∈ ∆I ×∆I | ∃r.B ∈ π(d,w)}.

Intuitively, by 4 and 5, concepts of the form P>pB are made true in (at least) k − 1
worlds p`, and, by 6 and 7, two additional worlds δAi, which suffices by (P1). Conversely,
the construction ensures that an element (A,w) satisfies B in at most one world from
W \ {p` | 1 ≤ l ≤ k} if P>pB,P=1B /∈ CA. Consequently, (A,w) /∈ (P>pB)I,v, by (P2).
Worlds of the form 1j just fill up the remaining space and, by the choice of m, have
sufficiently small probability µ(1j) to ensure (P1) and (P2). Based on this intuition, we
establish the following claim in Appendix C.

Claim. (A,w) ∈ DI,v iff D ∈ π((A,w), v) for all D ∈ Sub, (A,w) ∈ ∆I , and v ∈W .

Using the claim, we now show that I is a model of T . Let B ∈ Def; we have to show that
I satisfies B ≡ CB. We have (A,w) ∈ BI,v iff (by definition of I) CB ⊆ π((A,w), v) iff (by
the claim) (A,w) ∈ DI,v for all D ∈ CB iff (by the semantics) (A,w) ∈ (CB)I,w.

To show that I satisfies a concept inclusion A v B only if CB ⊆ CA, assume that I |=
A v B. By Condition 1 in the definition of π, the definition of AI , and the claim, we have
(A, 11) ∈ AI,11 . Thus, (A, 11) ∈ BI,11 . By definition of BI , we obtain CB ⊆ π((A, 11), 11).
By choice of π (since Conditions 1–3 only these speak about the world 11), it follows that
for every D ∈ CB, we have D ∈ CA or, for some B′, both P=1B

′ ∈ CA and D ∈ CB′ . In
the latter case, non-applicability of rule R2 yields D ∈ CA. In summary, we thus have
CB ⊆ CA as required.

This finishes the proof in case ∼ = >. For the case ∼ = ≥, one can show soundness
of the rules R1–R6 along the lines of “⇐” above. For “⇒”, we can, in fact, use the same
interpretation I. For seeing this, observe that the distribution µ underlying I satisfies the
following variations of (P1) and (P2), which suffice to prove the claim above.

(P1′) for any set V of worlds that contains at least k − 1 of the worlds in {p` | ` ≤ k} and
at least two distinct δAi, δBj the probabilities sum up to at least p;
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(P2′) any set of worlds whose probabilities sum up to a value ≥ p includes at least two
worlds from W \ {p` | ` ≤ k}.

The rest of the proof is then identical.

The completion algorithm requires only polynomial time since each rule application extends
the TBox, and both the number of concept definitions and the number of conjuncts in each
concept definition are bounded by the size of the original TBox. This finishes the proof of
Theorem 18.

It is interesting to note that the proof of Theorem 18 is based on exactly the same
algorithm, for all ∼ ∈ {≥, >} and p ∈ (0, 1). It follows that there is in fact only one
single logic Prob-EL∼p;=1, for all such ∼ and p. Formally, given a Prob-EL∼p;=1-concept C,
≈ ∈ {≥, >} and q ∈ (0, 1), let C≈q denote the result of replacing each subconcept P∼pD in
C with P≈qD in C and similarly for Prob-EL∼p;=1-TBoxes T .

Theorem 20. Let p, q > 0, ∼,≈ ∈ {>,≥}. Given a Prob-EL∼p;=1-TBox T and concept
names A,B, we have T |= A v B iff T≈q |= A v B.

Consequently, the (potentially difficult!) choice of a concrete ∼ ∈ {≥, >} and p ∈ (0, 1) is
moot. In fact, it might be more intuitive to replace the constructor P∼pC with a constructor
LC that describes elements which ‘are likely to be a C’, and to replace P=1C with the
constructor C C to describe elements that ‘are certain to be a C’. Other approaches to
logics of likelihood have been proposed, for example, by Halpern and Rabin (1987) and
Herzig (2003). Note that the case p = 0 is different from the cases considered above: for
example, we have

T∅ |= P>p∃r.A v P>p∃r.P>pA

if p = 0, but not otherwise. In the spirit of the constructors C and L, P>0C can be replaced
with a constructor PC that describes elements for which ‘it is possible that they are a C’.
For example, the Snomed CT concepts ‘definite thrombus’ and ‘possible thrombus’ can
then be written as C Thrombus and P Thrombus (although we speculate that the Snomed
CT designers mean ‘likely’ rather than ‘possible’).

The reader might ask whether it is possible to extend Theorem 18 to ∼ ∈ {<,≤}. The
following theorem answers this question to the negative.

Theorem 21. For all ∼ ∈ {<,≤} and p ∈ (0, 1), concept satisfiability in Prob-EL∼p is
NP-hard and concept subsumption is coNP-hard, even when the TBox is empty.

Proof. It suffices to consider concept satisfiability since there is a straightforward reduction
to the complement of concept subsumption: C is satisfiable w.r.t. T iff T 6|= C v A, A a
fresh concept name. We prove NP-hardness of concept satisfiability by a reduction of the
satisfiability problem of propositional formulae in conjunctive normal form (CNF).

Let ϕ = ϕ1 ∧ · · · ∧ ϕn be a propositional formula in CNF with ϕi = `i1 ∨ · · · ∨ `iki
where each literal `ij is either a variable x or a negated variable ¬x. Assume moreover that
the variables in ϕ are x1, . . . , xm and introduce corresponding concept names X1, . . . , Xm.
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Define the concept Cϕ as:

Cϕ = P∼pC1 u · · · u P∼pCn with

Ci = f(¬`i1) u · · · u f(¬`iki) where f(`) =

P∼pXj if ` = xj ;

P∼p(P∼pXj) if ` = ¬xj

and double negations cancel out. It can be verified that Cϕ is satisfiable iff ϕ is satisfiable.
In particular, if Cϕ is satisfied in a model I at an element d in a world w, then

d ∈ (P∼p(f(¬`i1) u · · · u f(¬`iki)))
I,w

for 1 ≤ i ≤ n; since each f(¬`ij) is of the form P∼pDij and concepts of this form can only
have probability zero or one, there must be at least one f(¬`ij) that has probability zero
and thus d /∈ f(¬`ij)I,w. By choice of f , this implies d ∈ f(`ij)

I,w. We can thus construct a
satisfying assignment for ϕ by assigning true to all variables x such that d ∈ f(x)I,w. The
converse direction is left to the reader.

This result can be explained again by (non-)convexity. The proof of Theorem 21 uses the
non-convexity witness for <,≤ from the proof of Theorem 13 (in the definition of f(`)). In
contrast, the non-convexity witnesses for >,≥ from the proof of that theorem cannot be
expressed using a classical TBox; in fact we have the following.

Corollary 22. For all ∼ ∈ {>,≥} and p ∈ (0, 1), Prob-EL∼p;=1
class is convex for subsumption,

that is, T |= C v D1 t D2 implies T |= C v D1 or T |= C v D2 for all classical Prob-
EL∼p;=1-TBoxes T and Prob-EL∼p;=1-concepts C,D1, D2.

Proof. As in the case of deciding concept subsumption, we can assume that C,D1, D2 are
concept names, see the remark after Theorem 18. Assume that T |= C v D1 t D2. An
inspection of the proof of the completeness part of Lemma 19 yields, for every defined
concept name A, the existence of a probabilistic interpretation I = (∆I ,W, (Iw)w∈W , µ),
a domain element dA ∈ ∆I and a world wA ∈ W with µ(wA) > 0 such that dA ∈ AI,wA

and for all defined concept names B, we have dA ∈ BI,wA if and only if T |= A v B.
Choosing A = C, we obtain dA ∈ CI,wA , but dA /∈ DI,wA

1 and dA /∈ DI,wA
2 , which witnesses

T 6|= C v D1 tD2.

4.4 Prob-EL with Probabilistic Roles

We study the extension Prob-ELr of Prob-EL that admits probabilistic roles. Using the
non-convexity results for Prob-EL from Section 4.1 and the undecidability results for Prob-
ALCr from Section 3.3, it is not hard to exhibit a polynomial time reduction from concept
subsumption in Prob-ALCr to concept subsumption in Prob-ELr, following the strategy
from Appendix A.3. Since the decidability status of the former remains open, we cannot
hope to clarify decidability of the latter. Inspired by the positive results from Section 3.3,
we thus concentrate on the fragment Prob-EL01

r of Prob-ELr, where only the probability
restrictions P>0C and P=1C are admitted, and only the probabilistic roles P>0r and P=1r
are allowed.
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We start with establishing a lower bound which shows that, unlike in the case without
probabilistic roles, we cannot hope for tractability. As a preparation for the lower bound
proof, we observe that, just like Prob-ALC01

r , also Prob-EL01
r does not enjoy the finite model

property.

Lemma 23. Prob-EL01
r lacks the FMP.

Proof. Let

T = { > v P>0A ∃r.A v A′ A uA′ v B
> v ∃P=1r.> ∃r.A′ v A′ ∃r.B v B

P>0B v B }

Then we have T 6|= > v B. In fact, there is a model I of T withBI = ∅: I contains infinitely
many elements arranged in an r-chain of probability one, that is, ∆I = {d0, d1, . . .} and
pIdi,di+1

(r) = 1 for all i ≥ 0; moreover, I has infinitely many worlds w0, w1, . . . such that

AI,wi = {di}. If A′ is interpreted in a minimal way, then (A u A′) = ∅, and thus we can
choose BI = ∅. However, if we take a model J of T that has only a finite number of
domain elements, then J must contain an r-cycle which implies (AuA′) 6= ∅, thus BJ 6= ∅;
similarly, if J has only a finite number of worlds, then there must be an infinite r-chain
that satisfies A in more than one world (in fact, in infinitely many), which again implies
(A uA′) 6= ∅.

The proof of the following hardness result can be considered an extension of the proof
of Lemma 23. We confine ourselves with a sketch here and give details in Appendix D.

Theorem 24. In Prob-EL01
r , concept subsumption is PSpace-hard even if probability re-

strictions P=1C are disallowed and only one of ∃P=1r.C and ∃P>0r.C is admitted.

Proof (sketch). We concentrate on the case where ∃P=1r.C is admitted. The proof is by
reduction of the word problem of deterministic, polynomially space-bounded Turing ma-
chines. Let M be such a machine, x an input to M of length n, and m = p(n) the space
bound of M on x. We construct a TBox T and concept C0 such that T |= > v C0 iff
M accepts x. The basic idea is that each model I of T will contain an infinite r-chain of
probability one as in the proof of Lemma 23. For every element on the path, there will be
a world w such that the concept memberships of d at w represent the initial configuration
of M on x. When going backwards in the chain but staying in the world w, as in the
propagation of A′ in the proof of Lemma 23, the concept memberships evolve according to
the computation of M on x. Since computations start at arbitrarily far distance from the
root of the chain, it follows that for each configuration c that is encountered during the
computation, there is a world w where the concept memberships of the root represent c.
It is then easy to use the probability restiction P>0C in C0 to check whether any of these
configurations is accepting.

The main result of this section is that the lower bound given in Theorem 24 is tight, that
is, concept subsumption in Prob-EL01

r is PSpace-complete. To prove the upper bound, we
once more devise a consequence-based procedure. It is once more presented in a different
way: while the procedure in Section 4.2 constructs a model and the one in Section 4.3
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completes the TBox, for the current goal it is more convenient to build a dedicated data
structure. Another difference to the previous sections is that the algorithm here is non-
deterministic, relying on Savitch’s theorem for determinization. We assume that the TBox
is in the same normal form as in Section 4.2. Thus, a basic concept is a concept of the form
>, A, P>0A, P=1A, or ∃α.A, where A is a concept name and, here and in what follows, α
is a role, i.e., of the form r, P>0r, or P=1r with r a role name. In the latter two cases, we
call the role α a probabilistic role. Every concept inclusion in the input TBox is required to
be of the form X1 u . . . uXn v X with X1, . . . , Xn, X basic concepts.

Let T be the input TBox in normal form, CN the set of concept names that occur in T ,
BC the set of basic concepts in T , and ROL the set of roles in T . Our algorithm maintains
the following data structures:

• a mapping Q that associates with each A ∈ CN a subset Q(A) ⊆ BC such that
T |= A v X for all X ∈ Q(A);

• a mapping Qcert that associates with each A ∈ CN a subset Qcert(A) ⊆ BC such that
T |= A v P=1X for all X ∈ Qcert(A);

• a mapping R that associates with each probabilistic role α ∈ ROL a binary relation
R(α) on CN such that T |= A v P>0(∃α.B) for all (A,B) ∈ R(α).

The above mappings can also be understood as an abstract description of a model of T : each
set Q(A) lists mandatory concept memberships of a domain element d in a world w that
satisfies d ∈ AI,w, each set Qcert(A) list mandatory concept memberships that hold with
probability one for every domain element that satisfies A in some world, and R describes the
structure of the probabilistic roles in the following sense: when (A,B) ∈ R(α), then d ∈ AI,w
implies that there is an element e such that e is an α-successor of d (with probability one)
and, in some world v, satisfies all concepts in Q(B). Note that non-probabilistic roles are
not represented in R(·); we will treat them in a more implicit way later on.

The data structures are initialized as follows, for all A ∈ CN and probabilistic roles α:

Q(A) = {>, A} Qcert(A) = {>} R(α) = ∅.

The sets Q(·), Qcert(·), and R(·) are then repeatedly extended by the application of several
rules. Before we can introduce these rules, we need some preliminaries. As the first step,
Figure 3 presents a set of rules that serves the purpose of saturating a set of concepts Γ;
these rules are not directly applied to our data structure, but they will later on serve an
important purpose in its completion. We use cl(Γ) to denote the set of concepts that is the
result of exhaustively applying the displayed rules to Γ, where any rule can only be applied
if the added concept is in BC, but not yet in Γ. It is not hard to see that rule application
terminates after polynomially many steps.

The rules that are used for completing the data structures Q(·), Qcert(·), and R(·) are
more complex and refer to ‘backtraces’ through these data structures.

Definition 25. A backtrace to An is a finite sequence S,A1, α2, A2, . . . , αn, An where

1. each Ai ∈ CN and each αi ∈ ROL is a probabilistic role;
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R1 If X1 u . . . uXn v X ∈ T and X1, . . . , Xn ∈ Γ, then add X to Γ.

R2 If P=1A ∈ Γ, then add A to Γ.

R3 If A ∈ Γ, then add P>0A to Γ.

R4 If ∃P=1r.A ∈ Γ, then add ∃r.A and ∃P>0r.A to Γ.

R5 If ∃r.A ∈ Γ, then add ∃P>0r.A to Γ.

R6 If ∃α.A ∈ Γ and B ∈ Q(A), then add ∃α.B to Γ.

Figure 3: Saturation rules for cl(Γ).

2. S = B for some P>0B ∈ Q(A1) or S = (r,B) for some (A1, B) ∈ R(P>0r);

3. (Ai, Ai−1) ∈ R(αi) for 1 < i ≤ n.

If t is a backtrace of length n and k ≤ n, we use tk to denote the backtrace
S,A1, α2, . . . , αk, Ak.

The purpose of a backtrace is illustrated in Figure 4. Assume we are interested in basic
concepts that must be true at the element dn in world w1, and that we know from the
R(·) data structure that di must be connected to di−1 via the probabilistic role αi (in every
world), for 1 < i ≤ n, and that Q(A1) tells us that d1 must be in P>0B. Then there is a
world w2 where d1 is in B and via CIs such as ∃αi.X v Y , this might enforce additional
concepts to be true at the elements d2, . . . , dn in w2 (c.f. the Turing machine computations in
the proof of Theorem 24). Now, new concepts at dn in w2 might imply additional concepts
to be true at dn in w1 via CIs of the form P>0X v Y , and the purpose of backtraces is to
take care of exactly such memberships. In this example, the world w2 was generated by a
concept of the form P>0B, which is the first case of Point 2 of Definition 25. The second
case is that w2 is generated by a concept of the form ∃P>0r.A. The backwards propagation
along the dn, . . . , d1 chain in w2, from which backtraces get their name, is captured by the
following notion. Note that the rules R1 to R6 that we had already introduced are used
in every step of this inductive definition.

Definition 26. Let t = S,A1, α2, . . . , αn, An be a backtrace of length n. Then the type
Γ(t) ⊆ BC of t is

Γ(t) =


cl(Qcert(A1) ∪ {B}) if t = B,A1;

cl(Qcert(A1) ∪ {∃r.B′ ∈ BC | B′ ∈ Qcert(B)}) if t = (r,B), A1;

cl(Qcert(An) ∪ {∃αn.B′ ∈ BC | B′ ∈ Γ(tn−1)}) if n > 1.

In terms of Figure 4, Γ(t) is the set of concepts that we know must be true at element dn
in world w2.

We now return to the description of the algorithm. Figure 5 shows the rules used
for completing the data structures Q(·), Qcert(·), and R(·). Rules S1 to S5 are rather
straightforward to understand. Rules S6 and S7 implement the propagation of information
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w1 dn

An

dn−1

An−1

. . . d2

A2

d1

A1

P>0Bαn αn−1 α3 α2

w2 dn dn−1 . . . d2 d1 Bαn αn−1 α3 α2

Figure 4: Backtrace illustration.

S1 Apply R1-R6 to Q(A) and Qcert(A).

S2 If P∼pB ∈ Q(A),
then add P∼pB to Qcert(A).

S3 If C ∈ Qcert(A),
then add P=1C and C to Q(A).

S4 If ∃α.B ∈ Q(A) with α a probabilistic role,
then add (A,B) to R(α).

S5 If (A1, A2) ∈ R(α) and B ∈ Qcert(A2) ,
then add ∃α.B to Qcert(A1).

S6 If t is a backtrace to B and P∼pA ∈ Γ(t),
then add P∼pA to Qcert(B).

S7 If t is a backtrace to B and ∃α.A ∈ Γ(t) with α a probabilistic role,
then add (B,A) to R(α).

Figure 5: The rules for completing the data structure.

along backtraces, as described above. The algorithm for deciding subsumption starts with
the initial data structures defined above and then exhaustively applies the rules shown in
Figure 5. To decide whether T |= A v B, it then simply checks whether B ∈ Q(A) after
the algorithm terminated.

Lemma 27. For all concept names A0, B0, T |= A0 v B0 iff, after exhaustive rule appli-
cation, B0 ∈ Q(A0).

Proof. For the “⇐” direction, we show that the algorithm preserves the following invariants
of the data structures:

C ∈ Q(A) implies T |= A v C (inv1)

C ∈ Qcert(A) implies T |= A v P=1C (inv2)

(A,B) ∈ R(α) implies T |= A v P>0(∃α.B) (inv3)

The proof is by a straightforward induction on the number of applications of the rules in
Figure 5, details are given in Appendix E. A crucial step is to realize that for every backtrace
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t to B, we have T |= B v P>0(uΓ(t)).5 Assume now that B0 ∈ Q(A0). Invariant (inv1)
implies T |= A0 v B0 which finishes the proof of “⇐”.

For “⇒”, we construct a probabilistic model I = (∆I ,W, (Iw)w∈W ) of T such that
there is a world w ∈ W and a domain element d ∈ ∆I with d ∈ AI,w0 but d /∈ BI,w0 . The
construction of I proceeds in a step-wise fashion, in each step extending the domain and/or
the set of worlds. We thus define sequences ∆I0 ,∆I1 , . . . , W0,W1, . . . along with partial
maps π0, π1, . . . , πi : ∆Ii ×Wi → 2BC, that record desired memberships in basic concepts;
role memberships will later be reconstructed from the names of domain elements. The final
sets ∆I and W are then obtained in the limit. The elements of each set ∆Ii are sequences
of triples (α,w,A) where α ∈ ROL is a role, w ∈ Wi is a world, and A ∈ CN is a concept
name. For such a sequence σ, we use σj to denote the prefix of σ that consists of the first
j triples. A domain element of the form σ · (α,w,A) serves the purpose of witnessing the
existential restriction ∃α′.A′ at σ in world w.

Also each world of I serves a clear purpose and, intuitively, corresponds to a backtrace.
In particular, (most) worlds will be of the form (σ, S) for some σ ∈ ∆I and S either B or
(r,B) for some concept name B and role name r. For establishing the close correspondence
between worlds and backtraces, we define a function δ that maps a world (σ, S) to the
sequence S,An, α̂n, . . . , α̂2, A1 where σ = (α1, w1, A1) · · · (αn, wn, An) and α̂ = α if α is a
probabilistic role and α̂ = P>0r if α is the role name r. We will show that the world w
witnesses the existence of the backtrace δ(w). To start the construction of I, put

• ∆I0 = {(α, ε,A0)} where α is any role (not important) and A0 is the concept name
from the left-hand side of the subsumption which is to be checked;

• W0 = {ε, 0},

• π((α, ε,A0), ε) = Q(A0) and π((α, ε,A0), 0) = Qcert(A0).

For the induction step, we start by putting ∆Ii = ∆Ii−1 , Wi = Wi−1, and πi = πi−1, and
then apply the following rules:

1. If ∃α.A ∈ πi(σ,w) for some σ ∈ ∆Ii and w ∈Wi, then put σ′ := σ · (α,w,A) and

(a) add σ′ to ∆Ii if it does not exist yet, and in this case:

(b) put πi(σ
′, w) = Q(A) and πi(σ

′, v) = Qcert(A) for all v ∈Wi \ {w}.

2. If σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆Ii and P>0B ∈ Q(An), then

(a) add (σ,B) to Wi if it does not exist yet, and in this case:

(b) put πi(σj , (σ,B)) = Γ(δ(σ,B)n−j+1) for all 1 ≤ j ≤ n; and

(c) put πi(σ
′ · (α,w,A), (σ,B)) = Qcert(A) for all σ′ · (α,w,A) ∈ ∆Ii that are not a

prefix of σ.

3. If σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆Ii and (An, B) ∈ R(P>0r), then

5. We denote with uX the conjunction of all concepts in X.
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(a) add (σ, r,B) to Wi if it does not exist yet, and in this case:

(b) put πi(σj , (σ, r,B)) = Γ(δ(σ, (r,B))n−j+1) for all 1 ≤ j ≤ n; and

(c) put πi(σ
′ · (α,w,A), (σ, r,B)) = Qcert(A) for all σ′ · (α,w,A) ∈ ∆Ii that are not a

prefix of σ.

Note that once π(σ,w) was set via the application of some rule, it will not be reset by a
later rule application. It is also easy to verify that each pair σ,w is assigned a set π(σ,w).

Finally, put ∆I =
⋃
i≥0 ∆Ii , W =

⋃
i≥0Wi, and π =

⋃
i≥0 πi. Define µ such that

µ(w) > 0 for all w ∈ W and
∑

w∈W µ(w) = 1. If W is finite this is clearly possible;
otherwise assign the probabilities 1/2, 1/4, 1/8, . . . to (an enumeration of) the worlds. It
remains to define the interpretation of concept and role names:

AI,w = {σ ∈ ∆I | A ∈ π(σ,w)}

rI,w = {(σ, σ · (P>0r, v, A)) | σ · (P>0r, v, A) ∈ ∆I , w = (σ, r, A)} ∪

{(σ, σ · (r, w,A)) | σ · (r, w,A) ∈ ∆I} ∪

{(σ, σ · (P=1r, v, A)) | σ · (P=1r, v, A) ∈ ∆I}

This finishes the model construction. For finishing the “⇒”-direction, we need the
following Claim, proved in Appendix E.

Claim. For all σ ∈ ∆I , w ∈W , and C ∈ BC, we have σ ∈ CI,w iff C ∈ π(σ,w).

To see that I is a model of T , assume X1 u . . . u Xn v X ∈ T , and let σ ∈ ∆I and
w ∈ W such that σ ∈ XI,wi for all 1 ≤ i ≤ n. Due to the Claim, we have Xi ∈ π(Σ, w)
for all i. By construction, π(σ,w) is closed under cl for all σ,w. Thus, rule R1 implies
X ∈ π(σ,w), and by the Claim, we have σ ∈ XI,w.

Consider now σ0 = (α, ε,A0) and w0 = ε. By construction, we have that π(σ0, w0) =
Q(A0) and thus, by assumption, A0 ∈ π(σ,w0) but B0 /∈ π(σ0, w0). The Claim now yields
σ ∈ AI,w0

0 but σ /∈ BI,w0
0 .

We now argue that the algorithm can be implemented using only polynomial space. First,
it is easy to see that there can be only polynomially many rule applications: every rule
application extends the data structures Q(·), Qcert(·), and R(·), but these structures consist
of polynomially many sets, each with at most polynomially many elements. It thus remains
to verify that each rule application can be executed using only polynomial space. This
is obvious for rules R1-R6 and S1-S5, but not completely so for the rules S6 and S7,
which involve backtraces. Since the two rules are very similar, we concentrate on S6.
All we need to know for applying the rule is whether there is a backtrace t to B such
that P∼pA ∈ Γ(t). We will show below that we can concentrate on backtraces t whose
length is bounded by |T | · 2|T |. We can thus verify the existence of the desired backtrace
t = S,A1, α2, A2, . . . , αn, An by guessing it step-by-step, from S towards An, simultaneously
computing the types Γ(ti). At each time, we keep only a single pair Ai, αi and the single
type Γ(ti) in memory. When we reach a situation where Ai is the concept name B that we
are interested in for applying S6 and Γ(ti) contains the concept P∼pA that S6 looks for,
then we can stop guessing and apply the rule. We also maintain a binary counter and stop
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in a rejecting configuration when the length of the guessed trace has exceeded |T | · 2|T |. By
Savitch’s theorem, this non-deterministic algorithm can be determinized.

Proposition 28. If there is a backtrace t to B with type Γ(t), then there is a backtrace t̂
to B with Γ(t̂) = Γ(t) and length at most M := |T | · 2|T |.

Proof. Let t = S,A1, α2, . . . , αn, An be a backtrace to An with n > M . Consider the
sequence (A1,Γ(t1)), . . . , (An,Γ(tn)) of concept names with their corresponding types. Note
that there are at most 2|T | possible types and at most |T | concept names. Since n > M , the
pigeon hole principle implies that there are 1 ≤ i < j ≤ n with Ai = Aj and Γ(ti) = Γ(tj).
It should be clear that the sequence

t′ = S,A1, α2, . . . , αi, Ai, αj+1, Aj+1, . . . , An

is, in fact, a backtrace to B and Γ(t′) = Γ(t). Obviously, t′ is shorter than t. If the length
of t′ is at most M , we are done; otherwise, put t := t′ and repeat the above steps.

Summing up, we have obtained the following result.

Theorem 29. In Prob-EL01
r , concept subsumption is PSpace-complete.

As a byproduct, the proof of Lemma 27 yields convexity of Prob-EL01
r .

Corollary 30. Prob-EL01
r is convex for subsumption, that is, T |= C v D1 t D2 implies

T |= C v D1 or T |= C v D2.

Proof. We prove the contrapositive. Take a TBox T and concept names C, D1, and D2

such that T 6|= C v D1 and T 6|= C v D2. By Lemma 27, we get that D1 /∈ Q(C)
and D2 /∈ Q(C). The model I = (∆I ,W, (Iw)w∈W , µ) of T constructed in the proof of
Lemma 27 features an individual d ∈ ∆I and a world w with µ(w) > 0 and d ∈ DI,w iff
D ∈ Q(C) for all basic concepts D. Thus, we have d ∈ CI,w but d /∈ DI,w1 and d /∈ DI,w2

and hence d /∈ (D1 tD2)I,w. This proves that T 6|= C v D1 tD2.

5. Related Work

There is a large number of proposals for probabilistic DLs that differ widely in several
fundamental aspects, among them the following: Is the aim to represent statistical or sub-
jective probabilities (or both)? Is a probabilistic KB associated with one single probability
distribution or does it only specify constraints on the set of admissible probability distribu-
tions? Are probabilities applied to concepts, roles, TBox statements, or ABox assertions?
What type of probabilistic independence is supported? The decisions that we have taken in
the design of Prob-ALC were guided by two aims: to satisfy the needs of modelling uncer-
tainty of domain concepts in ontologies such as Snomed CT and to avoid the intricacies
of non-monotonicity. Because of the many proposals for probabilistic DLs and their huge
divergence regarding the mentioned aspects, it is impossible to give a fully detailed account
of all related work. Instead, we mention the most relevant lines of research and refer the
reader also to the survey papers by Lukasiewicz and Straccia (2008) and de Salvo Braz,
Amir, and Roth (2008).
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An important feature of Prob-ALC KBs is that they are not associated with one single
probability distribution, but only impose constraints on the set of admissible distributions.
This approach was pioneered by Fagin, Halpern, and Megiddo (1990) and has first been used
in a DL context by Heinsohn (1994) and Jaeger (1994), who, however, concentrate mainly on
statistical rather than subjective probabilities. In contrast to these proposals, many other
lines of research on probabilistic DLs associate a probabilistic KB with a single probability
distribution. In particular, this is the case for probabilistic DLs that combine a classical
description logic with a Bayesian network or some other graphical model (Koller, Levy, &
Pfeffer, 1997; Yelland, 2000; d’Amato, Fanizzi, & Lukasiewicz, 2008; Ceylan & Peñaloza,
2014; Mauá & Cozman, 2015; Cozman, Polastro, Takiyama, & Revoredo, 2014). Another
widely used way to impose a single probability distribution is to include strong independence
assumptions in the semantics, instead of specifying them in a graphical model (Jung &
Lutz, 2012; Riguzzi, Bellodi, Lamma, & Zese, 2015; Peñaloza & Potyka, 2016). The latter
proposals, and several others among the ones already mentioned, additionally differ from
Prob-ALC in that the probability distribution is over possible knowledge bases instead of
over possible worlds. Moreover, all the approaches to probabilistic DLs mentioned above
allow the application of probabilities only to TBox statements and to ABox assertions, but
not to concept and role names. We emphasize that this results in rather different expressive
power than what is offered by Prob-ALC: as illustrated in Section 2, applying probabilities
to concepts and roles is essential for modelling uncertainty of domain concepts in ontologies.

A prominent approach to probabilistic DLs is due to Lukasiewicz (2008), who proposes
a probabilistic extension of expressive DLs such as SHIQ. These logics have received more
attention in the sense of an implementation and the discussion of expressive power (Klinov,
Parsia, & Sattler, 2009; Klinov & Parsia, 2013). As in the related work discussed above,
P-SHIQ allows the application of conditional probabilities only to TBox statements and
to ABox assertions, but not to concept and role names. The semantics of P-SHIQ does
not fix a single distribution on worlds, somewhat similarly to our proposal. However, the
P-SHIQ approach is technically very different from ours. It has its root in default logic in
the sense that it is based on Lehmann’s lexicographic entailment and thus non-monotonic
in nature.

Our Type 2 probabilistic DLs are similar in semantics and in spirit to temporal de-
scription logics (Artale, Kontchakov, Lutz, Wolter, & Zakharyaschev, 2007; Lutz, Wolter,
& Zakharyaschev, 2008; Gabbay et al., 2003; Gutiérrez-Basulto, Jung, & Schneider, 2014).
These temporal DLs have a two-dimensional semantics with one dimension being the “DL
dimension” and the other one being time; likewise, our probabilistic DLs have two dimen-
sions which are the DL dimension and the probabilistic (that is: possible worlds) dimension.

Work less directly related to ours includes probabilistic versions of OWL (da
Costa & Laskey, 2006; Ding, Peng, & Pan, 2006), probabilistic versions of
Datalog± (Gottlob, Lukasiewicz, Martinez, & Simari, 2013), probabilistic description logic
programs (Lukasiewicz, 2007), and weighted DLs based on Markov Logic (Niepert, Noess-
ner, & Stuckenschmidt, 2011).

Another line of research that one may consider related to probabilistic DLs are fuzzy
description logics. However, it is important to understand that while probabilistic DLs are
about uncertainty, fuzzy DLs focus on the orthogonal aspect of vagueness: the central notion
is how much some individual, say john, belongs to some concept, say Rich. In contrast,
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in subjective probabilities john is either Rich or he is not and one is concerned with the
degree of belief in the former being the case. Due to this inherent semantical difference,
we do not discuss fuzzy DLs in depth and instead refer to the survey by Lukasiewicz and
Straccia (2008); additionally, an overview of more recent work is given by Borgwardt, Distel,
and Peñaloza (2015).

6. Conclusion

We have proposed a novel family of probabilistic DLs that are derived in a straightforward
way from Halpern’s Type 2 probabilistic FO. We have also provided a substantial analysis
of the complexity of reasoning in these logics, considering standard reasoning tasks such
as concept subsumption and KB consistency. For simplicity, we have concentrated on
probabilistic DLs that extend the basic classical DLs ALC and EL. We conjecture, though,
that our probabilistic DLs, and in particular the most well-behaved variants Prob-ALC
and Prob-EL01, can be extended with many standard DL constructors without a significant
impact on their computational properties. The most challenging technical problem left
open is whether reasoning in Prob-ALCr is decidable when neither linear inequalities nor
independence constraints are admitted.

An interesting direction for future research is to consider query answering under ontolo-
gies in data-centric applications with uncertain data, in the spirit of probabilistic databases.
While our possible worlds semantic is in line with standard approaches to probabilistic
databases (Suciu, Olteanu, Ré, & Koch, 2011; Dalvi & Suciu, 2012; Fuhr & Rölleke, 1997),
in such a setup one typically wants to make strong independence assumptions on the data
(that is, between ABox assertions) which we have not considered in this paper. First steps
into this direction have been made (Jung & Lutz, 2012; Ceylan & Peñaloza, 2015; Gottlob
et al., 2013). Moreover, a very attractive setup for probabilistic reasoning about data is to
combine statistical probabilities in the TBox with subjective probabilities in the data, thus
transforming knowledge about statistics into subjective beliefs about concrete individuals.
This form of reasoning is semantically challenging and inherently nonmonotonic and it has
a long history (Grove, Halpern, & Koller, 1994). In the context of probabilistic FO, there
are at least two interesting proposals that address this problem (Bacchus, Grove, Koller, &
Halpern, 1992; Koller & Halpern, 1996). Transferring these setups to probabilistic DLs in a
way that is both semantically adequate and computationally well-behaved is an interesting
and challenging problem.
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Appendix A. Prob-EL Lower Bounds

We have to deal with the cases where ∼ ∈ {=, >} and p ∈ (0, 1). As in the main part of
the paper, we distinguish the subcases where p ≤ 0.5 and where p > 0.5.

A.1 Non-convexity for ∼ ∈ {=, >} and p ≤ 0.5

Lemma 14 remains true when we replace ≥ with = in T , C, and the Dij . The first part
of the proof still goes through, without any modifications. For the model construction, we
need a slight modification when p < 0.5: we add a new world w3 with AI,w3

i := BI,w3
ij := ∅

and update the probability distribution by putting

µ(w1) = µ(w2) = p

µ(w3) = 1− 2p.

When we replace ≥ with > and assume p < 0.5, the proof of Lemma 14 goes through
without any modifications. However, the case ∼ = > and p = 0.5 requires a slightly
different construction, since P>0.5A1 u P>0.5A2 does already imply that A1 u A2 holds in
some world. We therefore use intersections of three concepts instead of just two. Put

T = {Ai uAj uAk v P>pBijk | 1 ≤ i < j < k ≤ 4}
C = P>pA1 u . . . u P>pA4

Dijk = P>pBijk.

It is only slightly more complicated to show that the above witnesses non-convexity. We
begin with showing

T |= C v D123 tD124 tD134 tD234.

Let I be a model of T , and let d ∈ CI,w. Since d ∈ (P>0.5Ai)
I,w for 1 ≤ i ≤ 4, there is a

world v with d ∈ (Ai uAj uAk)I,v for some 1 ≤ i < j < k ≤ 4: Otherwise, d would satisfy
at most two of the concepts Ai in any world, so the whole set of worlds would need to have
probability at least 1

2

∑4
i=1 p

I
d (Ai) >

1
2 · 2 = 1, contradiction. By the TBox, it follows that

d ∈ DI,vijk .

For the second part, we show w.l.o.g. that T 6|= C v D123. Like in the proof of Lemma 14,
we can take ∆I = {d}, and it then suffices to show that we can find a set of worlds, a
probability distribution on worlds, and a choice of satisfaction or non-satisfaction of the Ai
by d in these worlds such that for each i, the worlds in which d satisfies Ai have probability
more than 0.5 but d does not satisfy A1 u A2 u A3 in any world. This is easy to enforce:
we take W = {w1, w2, w3, w4} and assign probabilities µ(w1) = 0.4, µ(w2) = µ(w3) =
µ(w4) = 0.2. We let d satisfy A1 in w2, w3, w4, and Ai in w1 and wi for i = 2, 3, 4; then
pId (Ai) = 0.6 > 0.5 for all i, and A1 uA2 uA3 has empty extension in all worlds.

A.2 Non-convexity for ∼ ∈ {=, >} and p ≥ 0.5

For the case ∼ = >, Lemma 15 continues to hold. In fact, the proof goes through with only
slight modifications: In the first part, one can proof the claim by deriving the contradiction
pn < S ≤ pn (instead of pn ≤ S < pn); the model construction remains. In the case
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where ∼ is =, again the first part of the proof of Lemma 15 goes through, but we have to
change the model construction. We add a world w3 such that in this world d is not in the
extension of any concept, i.e., AI,w3

ij := AI,w3
i := BI,w3

ij := ∅. Moreover, we need to modify
the probability distribution µ in the following way:

µ(w1`) := µ(w2`) := p
2n−1

µ(w3) := 1− 4np
2n−1

It is not hard to verify that µ(w3) ≥ 0 since p > 0.5 and n > 1
2(p−1) , and

∑
w∈W µ(w) = 1,

thus µ is a valid probability distribution. Further, we can check with the same argumenta-
tion as in the proof above that pId (Ai`) = p, thus d ∈ CI,v for every v. Finally, it is easy to

check that d /∈ DI,vi0j0 for any v ∈W .

A.3 Non-convexity Implies ExpTime-Hardness of Prob-EL∼p

We exploit non-convexity to reduce concept satisfiability in ALC similar to what was done
in (Baader et al., 2005). Notice that the considered logics Prob-EL∼p have different wit-
nesses for non-convexity. We deal here only with the case ∼ = ≥ and p ≤ 0.5; however, by
using the appropriate non-convexity witness in Step (3) below, one gets ExpTime-hardness
for any non-convex extension of EL appearing in this paper.

Suppose that an ALC-TBox T and a concept name A0 are given for which satisfiability
is to be decided. First, we manipulate the TBox T as follows:

(1) Ensure that negation ¬ occurs in front of concept names, only: for every subconcept
¬C in T with C compound, introduce a fresh concept name A, replace ¬C with ¬A,
and add A v C and C v A to T .

(2) Eliminate negation: for every subconcept ¬A, introduce a fresh concept name A, replace
every occurrence of ¬A with A, and add > v A tA and A uA v ⊥ to T .

(3) Eliminate disjunction: modulo introduction of new concept names, we may assume that
t occurs in T only in the form (i) A tB v C and (ii) C v A tB, where A, B, and C
are concept names. The former kind of inclusion is replaced with A v C and B v C.
The latter one is replaced with the non-convexity witness for Prob-EL≥p using fresh
concept names A1, . . . , Ak, Bij and k as in Lemma 14.

Ai uAj v P≥pBij for 1 ≤ i < j ≤ k
C v P≥pA1 u . . . u P≥pAk

P≥p(B12) v A
P≥p(Bij) v B for 1 ≤ i < j ≤ k, ij 6= 12

Let T ′ be the TBox obtained by these manipulations. It is standard to prove that A0 is
satisfiable w.r.t. T iff A0 is satisfiable w.r.t. T ′.

The TBox T ′ contains only the operators u, ∃, >, ⊥, and P≥p. Thus, it remains to deal
with the concept ⊥ being the last one not allowed by our syntax for Prob-EL≥p. To thind
end, we reduce satisfiability of A0 w.r.t. T ′ to (non-)subsumption in Prob-EL≥p: Introduce
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a fresh concept name L and obtain T ′′ from T ′ by replacing every occurrence of ⊥ with L
and adding the concept inclusions ∃r.L v L, for every role r from T ′. Then A0 is satisfiable
w.r.t. T ′ iff T ′′ 6|= A0 v L.

Appendix B. Invariants in Proof of Lemma 17

The induction base for invariants 1–3 holds simply by construction; the induction base for
invariants 4–6 is trivial as there is no concept C satisfying any of their premises. For the
induction step, we consider separately the cases when the rule is applied to some d ∈ Ind(A)
or to some d of the form (A, v); we start with the former. In this case, invariants 4–6 are
trivially preserved except in applications of R4, so we focus on invariants 1–3. We need to
show that the right hand sides remain consequences of K when the rule application at hand
effectively adds new basic concepts to the ABoxes Aw; although of course this happens
in one go, we pretend for ease of notation that basic concepts are added one by one. We
distinguish cases on which rule is applied.

R1 Assume X1 u . . . uXn v A ∈ T and d ∈ XI,wi for all 1 ≤ i ≤ n. Then, R1 will add
d to the extension of A in world w. We analyse the effect regarding the addition of
basic concepts to some Av.

– A(d) is added to Aw; since this is sanctioned by the TBox, invariants 1–3 are
preserved.

– P>0A(d) is added to Av for all v (if not already present; we will omit this proviso
in the further discussion). The induction hypothesis and the assumption imply
that K |= P>0(X1u. . .uXn)(d). Since X1u. . .uXn v A ∈ T , also K |= P>0A(d),
thus invariants 1-3 are preserved.

– P=1A(d) may be added to Av for all v, namely if A(d) ∈ Av for all v (after the
rule application). Then in particular A(d) ∈ Av=1 . The induction hypothesis
yields K |= P=1A(d) which implies that invariants 1–3 are preserved.

– (∃r.A)(a) may be added toAw for some a ∈ Ind(A), namely ifAw contains r(a, d).
Moreover, by assumption X1(d), . . . , Xn(d) ∈ Aw. Preservation of invariants 1-3
is now straightforward as (T ,A ∪ {r(a, d), X1(d), . . . , Xn(d)}) |= (∃r.A)(a).

R2 Assume A v P>0B ∈ T , d ∈ AI,w, and d /∈ (P>0B)I,w. Then, R2 will add d to
the extension of B in world wit(d,w,B). We again analyse which basic concepts are
added to some Av. Throughout, we denote the original value of Av before application
of R2 by A′v.

– B(d) is added to Av for v = wit(d,w,B). As v /∈ {vA, v=1}, only invariant 3
is affected; i.e. we have to show that K |= P>0(A′v ∧ B(d)). Observe that we
can assume w.l.o.g. that A′v = Av=1 since up to now any rule that we applied to
some individual in world v=1 was also applicable to this individual in v and vice
versa. By the induction hypothesis, we have K |= (P=1A′v)∧P>0A(d), and hence
K |= P>0(A′v ∧ B(d)) because A v P>0B ∈ T . (This argument clearly extends
to adding several basic concepts to Av at once.)

– P>0B(d) is added to Av for all v. This effect is handled like the previous one.
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– It cannot happen that P=1B(d) is added to any Av, since we had d /∈ (P>0B)I,w

before the rule application and I has more than one world.

– (∃r.B)(a) may be added to Av for v = wit(d,w,B) and some a ∈ ∆I . Since
d ∈ Ind(A) and the interpretation of roles is affected only by R4, which adds
only edges into domain elements of the form (B, v) to rI,v, we have a ∈ Ind(A)
and r(a, d) ∈ A′v. The argument then proceeds as for B(d).

R3 Assume A v P=1B ∈ T and d ∈ AI,w. R3 adds d to the extension of B in all worlds.
We again analyse which basic concepts are added to some Av.

– B(d) is added to Av. By assumption, P>0A(d) ∈ Av. From A v P=1B ∈ T , we
obtain T |= P>0A v B. Thus, invariants 1-3 are preserved.

– P>0B(d) is added to Av. Preservation of the invariants follows from the first
point.

– P=1B(d) is added to Av. Again, preservation of the invariants follows from the
first point.

– (∃r.B)(a) is added to Av whenever r(a, d) ∈ Av. The invariants are preserved
because (T , r(a, d) ∧A(d)) |= (∃r.B)(a).

R4 Assume A v ∃r.B ∈ T and d ∈ AI,w. R4 adds the pair (d, (B,w)) to the extension of r
in world w and (B,w) to the extension of B. Thus, ∃r.B′(d) is added to Aw whenever
(B,w) ∈ B′I,w for some concept name B′ (since (B,w) is an unnamed individual,
this is the only effect regarding addition of basic concepts to some Av). However, as
A v ∃r.B ∈ T and by the inductive hypothesis (invariant 5) T |= B v B′, we also
have T |= A v ∃r.B′. Since by assumption A(d) ∈ Aw, the invariants 1-3 remain
true. It can be shown as in the case d /∈ Ind(A) that invariants 4-6 are preserved for
(B,w); see below.

Let us now consider the case d = (B,w′). Since d is an anonymous individual, preservation
of invariants 1–3 is trivial except when existential concept assertions are added to some Aw,
so we largely focus on invariants 4–6. Again, we distinguish cases on which rule is applied.

R1 Assume X1 u . . . uXn v A ∈ T and d ∈ XI,wi for all 1 ≤ i ≤ n. Then, R1 will add d
to the extension of A in world w. We analyse which basic concepts are made true in
I by applying the rule.

– We have d ∈ AI,w after rule application. If d is inactive in w, we have T |= B v
P=1(X1u . . .uXn) by the induction hypothesis. Since X1u . . .uXn v A ∈ T , we
get that T |= B v P=1A, showing that invariant 4 is preserved. The argument
for invariants 5 and 6 is analogous.

– We have d ∈ P>0A
I,v for all v after rule application. Observe that for showing

that invariants 4-6 are preserved, it in fact suffices to show T |= B v P>0A.

If d is inactive in w, then the induction hypothesis yields T |= B v P=1(X1 u
. . . u Xn), thus, T |= B v P>0A since X1 u . . . u Xn v A ∈ T . Assume now
that d = (B,w′) is R4-active in w, thus w = w′. By induction, we know that
T |= B v X1u . . .uXn, thus T |= B v P>0A. Assume finally that d = (B,w′) is
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R2-active in w 6= w′ and w ∈ {vE , v′E} for some concept name E. By induction,
we have that T |= E uP>0B v X1 u . . .uXn. Observe that (B,w′) ∈ EI,w since
(B,w′) is R2-active in w. Hence, (B,w′) ∈ P>0E

I,w′ ; since (B,w′) is R2-active
in w, and a domain element that is R2-active must necessarily be also R4-active,
(B,w′) is R4-active in w′ so that the induction hypothesis yields T |= B v P>0E.
Thus, T |= B v P>0(X1 u . . . uXn) and therefore T |= B v P>0A.

– Suppose (B,w′) ∈ P=1A
I,v for some v after the rule application. Since (B,w′)

can be R2-active only in vB or v′B and R4-active only in w′, there is a world
ŵ such that (B,w′) is inactive in ŵ and (B,w′) ∈ AI,ŵ. By the induction
hypothesis, T |= B v P=1A, which suffices to show that invariants 4-6 are
preserved.

– Suppose e ∈ (∃r.A)I,w for some domain element e after the rule application.
Thus, w = w′ and (e, d) ∈ rI,w. The latter implies that d is R4-active in w,
whence d ∈ BI,w already before the rule application. By the premise, we have
that d ∈ XI,wi for 1 ≤ i ≤ n so that, by induction, T |= B v X1 u . . . u Xn.
Since X1 u . . . uXn v A ∈ T , we obtain T |= B v A. We now distinguish cases
on whether e ∈ Ind(A). If e ∈ Ind(A), then (∃r.B)(e) ∈ A′w. Since T |= B v A,
adding (∃r.A)(e) toAw preserves invariants 1-3. If e /∈ Ind(A), then e = (E, v) for
some concept name E and world v. In this case, the induction hypothesis applied
to e = (E, v) in w yields T |= E v P=1C, T |= E v C, or T |= P>0F u E v C
(for w ∈ {vF , v′F }) with ∃r.B a basic concept in C. Clearly, T |= B v A suffices
to show that invariants 4-6 are preserved.

R2 Assume A v P>0E ∈ T , E a concept name, d ∈ AI,w, and d /∈ (P>0E)I,w. Then,
R2 will add d to the extension of E in world ŵ = wit(d,w,E) ∈ {vE , v′E}. Note that,
due to the definition of wit, d has been inactive in ŵ, but after rule application is
R2-active. We again analyse which basic concepts become satisfied by this step.

– We have d ∈ EI,ŵ after the rule application. By the induction hypothesis (noting
that d was inactive in ŵ), we have T |= B v P=1C, thus also T |= E u P>0B v
C u E.

– We have d ∈ (P>0E)I,v for all v after the rule application. Since d ∈ AI,w,
we have d ∈ (P>0A)I,v. The case for v = ŵ is dealt with in the previous
point. For the remaining cases it suffices to note that the induction hypothesis
applied to v and C as in the invariant yields T |= B v P=1C

′, T |= B v C ′,
or T |= F u P>0B v C ′ (for v ∈ {vF , v′F }) where C ′ is obtained from C by
replacing P>0E with P>0A. The concept inclusion (A v P>0E) ∈ T ensures
that invariants 4–6 are preserved.

– Suppose d ∈ (P=1E)I,v for some (and then all) v after the rule application. As
in the same case for R1, there is some world v′ such that (B,w′) is inactive in v′.
By the induction hypothesis, T |= B v P=1E. Thus, all invariants are preserved.

– The case of e ∈ (∃r.E)I,ŵ for some e is impossible by definition of wit and R4.

R3 Assume A v P=1E ∈ T and d = (B,w′) ∈ AI,w. R3 adds (B,w′) to the extension of
E in all worlds. We analyse which basic concepts become satisfied by this step.
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– We have (B,w′) ∈ (P=1E)I,v after the rule application. As in the same case for
R1, there exists a world ŵ such that (B,w′) is inactive in ŵ. By assumption, we
have (B,w′) ∈ P>0A

I,ŵ. The induction hypothesis yields T |= B v P>0A; hence
T |= B v P=1E. Thus, all invariants remain satisfied.

– The proof for (B,w′) ∈ EI,v and (B,w′) ∈ P>0E
I,v after the rule application is

a consequence of the previous item.

– Suppose e ∈ (∃r.E)I,v for some e after the rule application. Thus, (e, (B,w′)) ∈
rI,v, v = w′, which implies that (B,w′) is R4-active in v and (B,w′) ∈ (P>0A)I,v.
By the induction hypothesis, we obtain T |= B v P>0A and, since (A v P=1E) ∈
T , also T |= B v E. The argument then proceeds as in the same case for R1.

R4 Assume A v ∃r.E ∈ T , E a concept name, and (D,w′) ∈ AI,w. Then, R4 adds
(d, (E,w)) to rI,w and (E,w) to EI,w. We analyse which basic concepts become
satisfied by this step.

– We have (E,w) ∈ EI,w after the rule application. Since (E,w) becomes R4-
active in w, we have to establish invariant 5, which however is just the trivial
statement T |= E v E.

– We have (E,w) ∈ P>0E
I,v for all v after the rule application. For v = w, it

follows from the previous point that invariant 5 is preserved. So let v 6= w. Then
(E,w) cannot be R4-active in v. If (E,w) is inactive in v, it suffices to observe
that T |= E v P=1(P>0E) to show that invariant 4 is preserved. If (E,w) is
R2-active in v, we have to establish invariant 6, which however is just the trivial
statement T |= P>0E v P>0E.

– Suppose (E,w) ∈ P=1E
I,v for some (and then all) v after the rule application.

As in the same case for R1, there exists a world ŵ such that (E,w) is inactive
in ŵ. The induction hypothesis applied to this world yields T |= E v P=1E. It
is, then, now not hard to verify that all invariants remain preserved.

– Suppose e ∈ (∃r.B′)I,v for some v after the rule application. Thus, (e, (E,w)) ∈
rI,v and (E,w) ∈ B′I,v. The former implies that v = w and that (E,w) was
R4-active in v already before the rule application. The induction hypothesis
applied to (E,w) in v = w yields T |= E v B′. The argument now proceeds as
in the same case for R1.

Appendix C. Proof of the Claim in Lemma 19

For the sake of completeness, we repeat the claim to be proved:

Claim. (A,w) ∈ DI,v iff D ∈ π((A,w), v) for all D ∈ Sub, (A,w) ∈ ∆I , and v ∈W .

Proof of claim. We start with the “⇐”-direction. Let D ∈ π((A,w), v). We distinguish the
following cases:

• D = P is a primitive concept name. Immediate by definition of P I .

• D = P=1B. Since D ∈ π((A,w), v), by definition of π one of the following cases
applies:
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– D ∈ CA. Then B ∈ π((A,w), w′) for all w′. By definition of BI , it follows that
(A,w) ∈ (P=1B)I,w as required.

– P=1B
′ ∈ CA and D ∈ CB′ . Due to non-applicability of rule R2, we then have

D ∈ CA and can argue as in the previous case.

– P>pB
′ ∈ CA, and D ∈ CB′ . Thus, the definition of cert(·) yields D ∈ cert(CB′).

Since rule R4 is not applicable, we have D ∈ CA and can again argue as before.

• D = P>pB. We distinguish the same cases as above, i.e.,

– D ∈ CA. Then CB ⊆ π((A,w), p) for at least k − 1 distinct worlds p from
{p` | ` ≤ k} (by Conditions 4 and 5 above) and CB ⊆ π((A,w), δBi) and CB ⊆
π((A,w), δBj) for distinct i, j ∈ {1, 2, 3} (Conditions 6 and 7). By (P1) and the
definition of BI , it follows that (A,w) ∈ (P>pB)I,v, as required.

– P=1B
′ ∈ CA and D ∈ CB′ . Due to non-applicability of rule R2, we then have

D ∈ CA and can argue as in the previous case.

– P>pB
′ ∈ CA, and D ∈ CB′ . By definition of cert(·), we have D ∈ cert(CB′).

Since rule R4 is not applicable, we have D ∈ CA and can again argue as before.

• D = ∃r.B. By definition of rI , we have ((A,w), (B, v)) ∈ rI,v. By Condition 1 in the
definition of π and by definition of BI , we have (B, v) ∈ BI,v. The semantics then
yields (A,w) ∈ (∃r.B)I,v.

For the “⇒”-direction, assume that (A,w) ∈ DI,v. Distinguish the following cases:

• D = P is a primitive concept name. Immediate by definition of P I .

• D = P=1B. Take a 1j ∈ W such that w 6= 1j (such a 1j exists since there are at
least two worlds of the form 1j). Since (A,w) ∈ DI,v, we have (A,w) ∈ BI,1j . By
definition of BI , we thus have CB ⊆ π((A,w), 1j). By definition of π((A,w), 1j), it
follows that for every D′ ∈ CB, we have

(i) D′ ∈ CA with D′ of the form P∗B
′ (by Condition 2 in the definition of π), or

(ii) there is a P=1B
′ ∈ CA with D′ ∈ CB′ (by Condition 3).

Thus, CB ⊆ cert(CA) and non-applicability of the rule R5 yields P=1B ∈ CA. By
Condition 2 of π, we have P=1B ∈ π((A,w), v) as required.

• D = P>pB. Since (A,w) ∈ (P>pB)I,v, (P2) yields the following cases:

– (A,w) ∈ BI,1j and w 6= 1j . Then we can argue as in the previous case that
P=1B ∈ CA. Thus rule R3 yields P>pB ∈ CA and by Condition 2 of π, we have
P>pB ∈ π((A,w), v) as required.

– (A,w) ∈ BI,δB′j and w 6= δB′j . By definition of BI , we thus have CB ⊆
π((A,w), δB′j). By definition of π((A,w), δB′j), it follows that for every D′ ∈ CB,
we have

(i) D′ ∈ CA with D′ of the form P∗B
′′ (Condition 2 of π),

(ii) there is a P=1B
′′ ∈ CA with D′ ∈ CB′′ (Condition 3), or
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(iii) P>pB
′ ∈ CA and D′ ∈ CB′ (Condition 6 or 7).

If exclusively (i) and (ii) apply, then CB ⊆ cert(CA); otherwise, we have P>pB
′ ∈

CA and CB ⊆ cert(CA) ∪ CB′ . In the first case, non-applicability of R5 yields
P=1B ∈ CA and R3 yields P>pB ∈ CA. In the latter case, non-applicability of
R6 again yields P>pB ∈ CA. By Condition 2 of π, we have P>pB ∈ π((A,w), v)
as required.

• D = ∃r.B. Then there is an (A′, v) such that ((A,w), (A′, v)) ∈ rI,v and (A′, v) ∈ BI,v.
By definition of rI , we have ∃r.A′ ∈ π((A,w), v), and by definition of BI , we have
CB ⊆ π((A′, v), v). Since Conditions 4–7 in the definition of π apply only to pairs
(( , u), u′) ∈ ∆I ×W with u 6= u′, the last inclusion must be due to Conditions 1–3;
that is, for every D′ ∈ CB we have D′ ∈ CA′ or P=1B

′ ∈ CA′ with D′ ∈ CB′ . In the
latter case, we again obtain D′ ∈ CA′ by non-applicability of R2. Thus CB ⊆ CA′ .
To continue, we make a case distinction as follows:

– v = w. Then the definition of π yields that ∃r.A′ ∈ CA or P=1B
′ ∈ CA with

∃r.A′ ∈ CB′ . In the latter case, we again obtain ∃r.A′ ∈ CA by non-applicability
of R2. Since CB ⊆ CA′ , this implies ∃r.B ∈ CA by non-applicability of R1. By
definition of π, we thus have ∃r.B ∈ π((A,w), v).

– v = 1j , v 6= w. Since ∃r.A′ ∈ π((A,w), v), the definition of π yields a P=1B
′ ∈ CA

with ∃r.A′ ∈ CB′ . By non-applicability of R1 and CB ⊆ CA′ , we have ∃r.B ∈
CB′ . Thus, Condition 3 of π yields ∃r.B ∈ π((A,w), v) as required.

– v = p`, v 6= w. Since ∃r.A′ ∈ π((A,w), v), the definition of π implies that
there is a P=1B

′ ∈ CA with ∃r.A′ ∈ CB′ (Condition 3) or a P>pB
′ ∈ CA with

∃r.A′ ∈ CB′ (Conditions 4 and 5). In the former case, we can continue as in the
case v = 1j above. In the latter case, non-applicability of R1 and CB ⊆ CA′

yield ∃r.B ∈ CB′ . Thus, Conditions 4 and 5 of π yield ∃r.B ∈ π((A,w), v) as
required.

– v = δEj , v 6= w. The reasoning is the same is in the previous case; we give
it here for the sake of completeness. Since ∃r.A′ ∈ π((A,w), v), the definition
of π implies that there is a P=1B

′ ∈ CA with ∃r.A′ ∈ CB′ (Condition 3) or
a P>pB

′ ∈ CA with ∃r.A′ ∈ CB′ (Condition 6 and 7). In the former case,
we can continue as in the case v = 1j . In the latter case, non-applicability of
R1 and CB ⊆ CA′ yield ∃r.B ∈ CB′ . Thus, Conditions 6 and 7 of π yield
∃r.B ∈ π((A,w), v) as required.

Appendix D. Proof for Theorem 24

Theorem 24. In Prob-EL01
r , concept subsumption is PSpace-hard even if probability

restrictions P=1C are disallowed and only one of ∃P=1r.C and ∃P>0r.C is admitted.

Proof. We concentrate on Prob-EL01 where ∃P=1r.C is admitted and only sketch the mod-
ifications required for ∃P>0r.C. The proof is by reduction of the word problem of determin-
istic, polynomially space-bounded Turing machines. Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be
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such a machine, x ∈ Σ an input of length n, and m = p(n) the space bound of M on x. We
assume w.l.o.g. that M terminates on every input, that it never attempts to move left on
the left-most end of the tape, and that there are no transitions defined for qacc and qrej. Our
aim is to construct in polynomial time a TBox T and concept C0 such that T |= > v C0

iff M accepts x, based on the intuitions given in the proof sketch in the main part of the
paper. We use the following concept and role names:

• the elements of Q are used as concept names;

• concept names σ(i) for σ ∈ Γ and i < m indicate that the content of the i-th tape cell
is σ;

• concept names Hi for i < m indicate that the head is on the i-th cell;

• a role name r.

The TBox T contains the following implications:

• Models contain an infinite r-chain of probability one:

> v ∃P=1r.>.

• At every point of the chain, there is a world that describes the initial configuration:

> v P>0(q0 uH0 u x(0)
0 u · · · u x

(n−1)
n−1 uB

(n) u · · · uB(m−1))

where x = x0 · · ·xn−1 is the input and B denotes the blank symbol.

• The computation proceeds as required by M :

∃r.(q uHi u σ(i)) v q′ uHi−1 u γ(i) for 0 < i < m, δ(q, σ) = (q′, γ, L)

∃r.(q uHi u σ(i)) v q′ uHi+1 u γ(i) for i < m− 1, δ(q, σ) = (q′, γ, R)

∃r.(σ(i) uHj) v σ(i) for i, j < m, i 6= j.

Finally, let C0 be P>0qacc.

Claim. T |= > v C0 iff M accepts x.

“⇒”. Assume that M does not accept x. Let c0, . . . , ck−1 be the (rejecting) computation
of M on x, with configurations ci represented in the obvious way as sets of concept names.
Define a probabilistic interpretation I = (∆I ,W, (Iw)w∈W , µ) by putting:

• ∆I = W = N;

• µ(0) = 1/2, µ(1) = 1/4, µ(2) = 1/8, . . .

• AI,j = {i ∈ ∆I | j − i < k ∧A ∈ cj−i};

• rI,j = {(i, i+ 1) | i ∈ ∆};
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It can be verified that I is a model of T with 0 /∈ CI,00 .

“⇐”. Assume that M accepts x and let ck−1, . . . , c0 be the (accepting) computation of
M on x, again with configurations represented as sets of concept names (and for the sake
of convenience named in reverse order, i.e. ck−1 is the starting configuration). Let I be
a probabilistic model of T and let d0 ∈ ∆I , and w0 ∈ W . By definition of T , there is
an infinite chain d0, d1, · · · ∈ ∆I such that pIdi,di+1

(r) = 1. There must also be a world w

such that dk−1 ∈ AI,w iff A ∈ ck−1. It follows that for all j < k, dj ∈ AI,w iff A ∈ cj .

Consequently, d0 ∈ qI,wacc and thus d0 ∈ (P>0qacc)
I,w0 .

To adapt the described reduction to Prob-EL01
r>0, we can simply replace > v ∃P=1r.> with

> v ∃P>0r.> and all concepts ∃r.C with ∃P>0r.C.

Appendix E. Proof of Lemma 27

We first finish the “⇐”-direction, by showing that the invariants are preserved. The proof
is by a straightforward induction on the number of applications of the rules in Figure 5.
The induction base is trivial since ∅ |= A v A and ∅ |= A v >. For the induction step we
start by showing soundness of the rules R1-R6, that is, for every set of concepts Γ we have

T |= uΓ v u cl(Γ). (∗)

This fact is a direct consequence of the semantics for rules R1-R5. For R6 assume ∃α.A ∈ Γ
and B ∈ Q(A). Invariant (inv1) implies T |= A v B, which means that we can certainly
add ∃α.B to Γ.

Next, we analyse backtraces a little closer and prove the following claim.

Claim 1. If t is a backtrace to B, then T |= B v P>0(uΓ(t)).

Proof of Claim 1. Let t = S,A1, α2, . . . , αn, An. The proof is by induction on the length
n of t. For the induction base we let n = 1 and distinguish cases according to the form
of S. Consider first the case that the backtrace starts with S = B, i.e., P>0B ∈ Q(A1).
From invariants (inv1) and (inv2) it follows that T |= A1 v P>0(B uuQcert(A1)). Since
Γ(t) = cl({B} ∪Qcert(A1)), by (∗), we obtain T |= A1 v P>0(uΓ(t)).

Assume now that the backtrace starts with S = (r,B), i.e., (A1, B) ∈ R(P>0r). Hence,
by (inv3), we have T |= A1 v P>0(∃P>0r.B), thus T |= A1 v P>0(∃r.P>0B). From
invariant (inv2) we get T |= A1 v P=1(uQcert(A1)) and T |= B v P=1(uQcert(B)).
Overall, we obtain:

T |= A1 v P>0 (uQcert(A1) u ∃r.uQcert(B)) .

Since Γ(t) = cl(Qcert(A1) ∪ {∃r.B′ | B′ ∈ Qcert(B)}), we can apply (∗) to obtain

T |= A1 v P>0(uΓ(t)).

For the induction step, let n > 1. By Definition 25, (An, An−1) ∈ R(αn), thus, invariant
(inv3) yields T |= An v P>0(∃αn.An−1). Applying the induction hypothesis, we get

T |= An v P>0 (∃αn.P>0(uΓ(tn−1))) .

58



Probabilistic DLs for Subjective Uncertainty

Since ∃αn.P>0C v P>0∃αn.C is valid for all C and (recall that αn is a probabilistic role),
we obtain

T |= An v P>0 (∃αn.uΓ(tn−1)) .

On the other hand, (inv2) implies T |= An v P=1(uQcert(An)). Together this yields:

T |= An v P>0 (uQcert(An) u ∃αn.uΓ(tn−1)) .

Since Γ(t) = cl(Qcert(An) ∪ {∃αn.B | B ∈ Γ(tn−1)}) and by (∗) we finally have

T |= An v P>0(uΓ(t)).

This finishes the proof of the claim.

It remains to show that the rules in Figure 5 preserve the invariants:

S1 Direct consequence of (∗).

S2 Since P>0B v P=1(P>0B) and P=1B v P=1(P=1B) are valid concept inclusions, this
is a direct consequence of the semantics.

S3 C ∈ Qcert(A) implies T |= A v P=1C by invariant (inv2), hence also T |= A v C by
the semantics.

S4 ∃α.B ∈ Q(A) implies T |= A v ∃α.B by invariant (inv1), thus also T |= A v
P>0(∃α.B).

S5 On the one hand, (A1, A2) ∈ R(α) implies T |= A1 v P>0(∃α.A2), by (inv3). On
the other hand, B ∈ Qcert(A2) yields T |= A2 v P=1B, by (inv2). By the semantics,
together they imply T |= A1 v P=1(∃α.B).

S6 Let t be a backtrace to B and Γ = Γ(t) its type. By the Claim 1, T |= B v P>0C
for every C ∈ Γ. Thus, in particular, T |= B v P∼pA for all P∼pA ∈ Γ. By the
semantics, T |= B v P=1(P∼pA), so P∼pA can be added to Qcert(B).

S7 Analogously to S6.

Now, to finish the “⇒”-direction, it remains to prove the Claim from the proof of Lemma 27.
We start with showing the following important properties of the construction.

(i) for every σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆I we have (Aj , Aj+1) ∈ R(α̂j+1) for all
1 ≤ j < n;

(ii) for every σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆I , there are worlds w, v with π(σ,w) =
Q(An) and π(σ, v) = Qcert(An);

(iii) P∼pA ∈ π(σ,w) if and only if P∼pA ∈ π(σ, v) for all σ ∈ ∆I and w, v ∈W ;

(iv) for all probabilistic roles α and σ, σ′ ∈ ∆I with σ′ = σ · (α, v,B) and A ∈ π(σ′, w) we
have ∃α.A ∈ π(σ,w).
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Note that Point (i) verifies that the construction, specifically steps 2(b) and 3(b), is well-
defined, i.e. that the arguments of Γ(·) are actually backtraces.

Proof of Points (i)-(iv). For the proof we assume that σ = (α1, w1, A1) · · · (αn, wn, An).

We prove Point (i) by induction on the number of rule applications. The induction base
is immediate by the definition of ∆I0 . For the induction step note that new elements are
introduced only in rule 1. So assume rule 1 is applied to σ, i.e., ∃αn+1.An+1 ∈ πi(σ,w) for
some w ∈ Wi. By construction, πi(σ,w) is closed under cl, thus, R5 yields ∃α̂n+1.An+1 ∈
πi(σ,w). Now, rules S4, S3, and S7 (depending on whether π(σ,w) was defined as Q(B),
Qcert(B), or Γ(t) for some backtrace t) imply (An, An+1) ∈ R(α̂n), i.e., Point (i) is preserved
after application of rule 1

Point (ii) can be proved by induction on the number of rule applications. The induction
base is clear by the definition of I0. For the induction step it suffices to look at rule 1
and observe that when σ is added to ∆I , we put π(σ,w) = Q(An) for one world w and
π(σ, v) = Qcert(An) for all other worlds v (and there exist at least two worlds).

For Point (iii) we make a case distinction on π(σ,w) and π(σ, v). Inspection of the
rules generating π(σ,w) and π(σ, v) shows that both are either Q(An), Qcert(An) or Γ(t) for
some backtrace t to An. For symmetry reasons it suffices to consider π(σ,w). If π(σ,w) =
Qcert(An), then P∼pA ∈ Q(A) (by rule S3) and P∼pA ∈ Γ(t) for any backtrace t to An,
by Definition 26. If π(σ,w) = Q(An), then by rule S2, P∼pA will be in Qcert(An) and
we proceed as before. If π(σ,w) = Γ(t) for some backtrace t to An, then by S6 we have
P∼pA ∈ Qcert(An) and, again, we can continue as before.

For proving Point (iv), we make a case distinction on whether π(σ′, w) was set to Q(B)
(via rule 1(a)), to Qcert(B) (via rule 2(c) or 3(c)), or to Γ(t) for some backtrace t (via
rule 2(b) or 3(b)).

• Assume π(σ′, w) was set to Q(B), i.e., rule 1 was applied to ∃α.B ∈ π(σ,w). Since
π(σ,w) is closed under cl and A ∈ π(σ′, w) = Q(B), by R6 we obtain ∃α.A ∈ π(σ,w).

• Assume π(σ′, w) was set to Qcert(B). By Point (i), (An, B) ∈ R(α) (note that α is
probabilistic). Now, S5 implies ∃α.A ∈ Qcert(An) ⊆ π(σ,w).

• Assume π(σ′, w) was set to Γ(t) for some backtrace to t to B, that is, π(σ′, w) was
assigned using step 2(b) or 3(b). Observe that t′ = t, α,An is a backtrace to An as,
by Point (i), we have (An, B) ∈ R(α). Moreover, due to step 2(b) (resp., 3(b)) we
have π(σ,w) = Γ(t′). By definition of the type of a backtrace, we get that

Γ(t′) = cl(Qcert(An) ∪ {∃α.B′ | B′ ∈ Γ(t)}).

Since, by assumption, we have A ∈ π(σ′, w) = Γ(t), we get ∃α.A ∈ Γ(t′) = π(σ,w).

This finishes the proof of the properties and we can show the Claim from the main part.

Claim. For all σ ∈ ∆I , w ∈W , and C ∈ BC, we have σ ∈ CI,w iff C ∈ π(σ,w).

Proof of the Claim. We prove the claim by induction on C (mostly just a case distinction
except where composite basic concepts mention concept names). Throughout the following
we assume σ = (α1, w1, A1) · · · (αn, wn, An).
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• C = >. Then both σ ∈ >I,w and > ∈ π(σ,w) for all σ ∈ ∆I and w ∈W .

• C = A ∈ CN. For this case, the claim holds trivially by definition of the interpretation
of concept names.

• C = P>0A. “⇒”: Let σ ∈ (P>0A)I,w. Then, by the semantics, σ ∈ AI,v for some
v ∈ W . The induction hypothesis implies A ∈ π(σ, v). By R3, also P>0A ∈ π(σ, v),
and by Point (iii), P>0A ∈ π(σ,w).

“⇐”: Let P>0A ∈ π(σ,w). By Point (ii), there is some world v with π(σ, v) = Q(An).
By Point (iii), P>0A ∈ π(σ, v). By construction rule 2(a), the world v = (σ,A) is in
W . By step (b) of rule 2, A ∈ π(σ, v) = Γ(δ(v)1). The induction hypothesis yields
σ ∈ AI,v, thus σ ∈ (P>0A)I,w.

• C = P=1A. “⇒”: Let σ ∈ (P=1A)I,w, thus σ ∈ AI,v for all v ∈ W . By the induction
hypothesis, A ∈ π(σ, v) for all v ∈ W . By Point (ii), there is a world v′ such that
π(σ, v′) = Qcert(An); thus, A ∈ Qcert(An). By S3, P=1A ∈ Q(An), and by S2 also
P=1A ∈ Qcert(An) = π(σ, v′). By Point (iii) we obtain P=1A ∈ π(σ,w).

“⇐”: Let P=1A ∈ π(σ,w). By Point (iii), P=1A ∈ π(σ, v) for all v ∈ W . Since
all π(σ, v) are closed under cl, R2 implies A ∈ π(σ, v) for all v. By the hypothesis,
σ ∈ AI,v for all v ∈W , which, by the semantics, implies σ ∈ (P=1A)I,w.

• C = ∃r.A. “⇒”: Assume σ ∈ (∃r.A)I,w. By the semantics, there is a σ′ ∈ ∆I

such that σ′ ∈ AI,w and (σ, σ′) ∈ rI,w. By the induction hypothesis, we know that
A ∈ π(σ′, w). Due to the model construction, there are three possibilities for (σ, σ′)
being in rI,w:

– σ′ = σ ·(P>0r, v,B) and w = (σ, r,B) for some concept name B. By construction
rule 3(c), π(σ′, w) = Qcert(B) since σ′ is not a prefix of σ. Hence, A ∈ Qcert(B).
By rule 3(b), we have that π(σ,w) = Γ(δ(w)1) = cl(Qcert(An) ∪ {∃r.B′ | B′ ∈
Qcert(B)}). Since A ∈ Qcert(B), ∃r.A ∈ π(σ,w).

– σ′ = σ · (r, w,B) for some B. By construction, in particular rule 1, we have
∃r.B ∈ π(σ,w) and π(σ′, w) = Q(B). Hence, A ∈ Q(B). Since π(σ,w) is closed
under cl, rule R6 yields ∃r.A ∈ π(σ,w).

– σ′ = σ · (P=1r, v,B). We apply Point (iv) to obtain ∃P=1r.A ∈ π(σ,w). Since
π(σ,w) is closed under cl, rule R4 yields ∃r.A ∈ π(σ,w).

“⇐”: Let ∃r.A ∈ π(σ,w). By rule 1 of the construction, there is a domain element
σ′ = σ·(r, w,A) with π(σ′, w) = Q(A), thus A ∈ π(σ′, w) and, by induction, σ′ ∈ AI,w.
By definition of the interpretation of role names, (σ, σ′) ∈ rI,w. Hence, σ ∈ (∃r.A)I,w.

• C = ∃P=1r.A. “⇒”: Let σ ∈ (∃P=1r.A)I,w, thus there is a domain element σ′ with
σ′ ∈ AI,w and (σ, σ′) ∈ rI,v for all v ∈W . By the induction hypothesis, A ∈ π(σ′, w).
Consider now the worlds 0, ε ∈ W : By definition of the interpretation of r, it follows
from (σ, σ′) ∈ rI,0∩rI,ε that σ′ = σ · (P=1r, v,B) for some world v ∈W and a concept
name B. By Point (iv), this together with A ∈ π(σ′, w) yields ∃P=1r.A ∈ π(σ,w).

“⇐”: Let ∃P=1r.A ∈ π(σ,w). By rule 1 of the construction, there is a domain
element σ′ = σ · (P=1r, w,A) with π(σ′, w) = Q(A), thus A ∈ π(σ′, w) and σ′ ∈ AI,w.
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By definition of the interpretation of role names, (σ, σ′) ∈ rI,v for all v ∈ W . Hence,
σ ∈ (∃P=1r.A)I,w.

• C = ∃P>0r.A. “⇒”: Let σ ∈ (∃P>0r.A)I,w, thus there is a σ′ ∈ ∆I with σ′ ∈ AI,w
and (σ, σ′) ∈ rI,v for some v ∈W . By the induction hypothesis, A ∈ π(σ′, w). Again,
we distinguish the three cases of the interpretation of the roles.

– σ′ = σ · (P>0r, v
′, B) and v = (σ, r,B) for some concept name B. It follows

immediately from Point (iv) that ∃P>0r.A ∈ π(σ,w).

– σ′ = σ · (r, v,B) for some concept name B. By construction, in particular rule 1,
we have ∃r.B ∈ π(σ,w) and π(σ′, w) = Q(B). Since π(σ,w) is closed under cl,
rule R6 implies ∃r.A ∈ π(σ,w). Thus, by R5, ∃P>0r.A ∈ π(σ,w) .

– σ′ = σ · (P=1r, v
′, B). Applying Point (iv) yields ∃P=1r.A ∈ π(σ,w). Since

π(σ,w) is closed under cl, by rule R4, we obtain ∃P>0r.A ∈ π(σ,w).

“⇐”. Let ∃P>0r.A ∈ π(σ,w). On the one hand, by rule 1 of the construction there
is a domain element σ′ = σ · (P>0r, w,A) with π(σ′, w) = Q(A). By hypothesis we
get σ′ ∈ AI,w. On the other hand, Point (i) implies (An, A) ∈ R(P>0r). Thus, by
rule 3(a), the world v = (σ, r, A) exists. By definition of the interpretation of role
names (σ, σ′) ∈ rI,v for v = (σ,A, r). Hence σ ∈ (∃P>0r.A)I,w.
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Jung, J. C., Lutz, C., Goncharov, S., & Schröder, L. (2014). Monodic fragments of proba-
bilistic first-order logic. In Proceedings of the international colloquium on automata,
languages, and programming (ICALP) (pp. 256–267).

Kazakov, Y. (2009). Consequence-driven reasoning for horn shiq ontologies. In Proceed-
ings of the international joint conference on artificial intelligence (ICJAI) (pp. 2040–
2045).

64



Probabilistic DLs for Subjective Uncertainty

Klinov, P., & Parsia, B. (2013). Pronto: A practical probabilistic description logic reasoner.
In Proceedings of the international workshop on uncertainty reasoning for the semantic
web (URSW) (pp. 59–79).

Klinov, P., Parsia, B., & Sattler, U. (2009). On correspondences between probabilistic
first-order and description logics. In Description logics (Vol. 477). CEUR-WS.org.

Koller, D., & Halpern, J. Y. (1996). Irrelevance and conditioning in first-order probabilistic
logic. In Proceedings of the national conference on artificial intelligence (AAAI).

Koller, D., Levy, A., & Pfeffer, A. (1997). P-Classic: A tractable probabilistic descrip-
tion logic. In Proceedings of the national conference on artificial intelligence (AAAI)
(p. 390-397).

Kriegel, F. (2015). Axiomatization of general concept inclusions in probabilistic description
logics. In Proceedings of the 38th german conference on artificial intelligence (KI
2015) (Vol. 9324, pp. 124–136).

Lukasiewicz, T. (2007). Probabilistic description logic programs. Int. J. Approx. Reasoning ,
45 (2), 288–307.

Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artif. Intell , 172 ,
852–883.

Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Sem., 6 (4), 291-308.
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Price, C., & Spackman, K. (2000). SNOMED Clinical Terms. Br. J. Healthcare Comput.
Inf. Mgmt., 17 , 27–31.

Rector, A., & Horrocks, I. (1997). Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings of
the workshop on ontological engineering, AAAI spring symposium (AAAI).

Riguzzi, F., Bellodi, E., Lamma, E., & Zese, R. (2015). Probabilistic description logics
under the distribution semantics. Semantic Web, 6 (5), 477–501.

Schaefer, M. (2010). Complexity of some geometric and topological problems. In Proceedings
of the 17th international conference on graph drawing (GD) (pp. 334–344).

Schrijver, A. (1986). Theory of linear and integer programming. Wiley Interscience.
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