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Abstract

This article investigates the role of arity of second-order quantifiers
in existential second-order logic, also known as Σ1

1. We identify frag-
ments L of Σ1

1 where second-order quantification of relations of arity
k > 1 is (nontrivially) vacuous in the sense that each formula of L
can be translated to a formula of (a fragment of) monadic Σ1

1. Let
polyadic Boolean modal logic with identity (PBML=) be the logic ob-
tained by extending standard polyadic multimodal logic with built-in
identity modalities and with constructors that allow for the Boolean
combination of accessibility relations. Let Σ1

1(PBML=) be the exten-
sion of PBML= with existential prenex quantification of accessibility
relations and proposition symbols. The principal result of the arti-
cle is that Σ1

1(PBML=) translates into monadic Σ1
1. As a corollary,

we obtain a variety of decidability results for multimodal logic. The
translation can also be seen as a step towards establishing whether
every property of finite directed graphs expressible in Σ1

1(FO2) is also
expressible in monadic Σ1

1. This question was left open by Grädel and
Rosen (1999).

1 Introduction

Properties of existential second-order logic have been widely studied in finite
model theory. Existential second-order logic captures the complexity class
NP, and there exists a large body of results concerning the expressive power
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of different fragments of the logic (see e.g. [1, 5, 13, 15, 19]). However, there
are several issues related to the expressivity of Σ1

1 that are not understood
well. Most notably, Fagin’s spectrum arity hierarchy conjecture (see [7, 8])
remains a longstanding difficult open problem in finite model theory. Fagin’s
question is whether there exist sets of positive integers (spectra) definable
by first-order sentences1 with predicates of maximum arity k + 1, but not
definable by sentences with predicates of arity k.

In this article we investigate arity reduction of formulae of existential
second-order logic: we identify fragments L of Σ1

1 where second-order quan-
tification of relations of arity k > 1 is (nontrivially) vacuous in the sense that
each formula of L can be translated into a formula of (a fragment of) monadic
Σ1

1, also known as ∃MSO. Our work is directly related to a novel perspective
on modal correspondence theory, and our investigations lead to a variety of
decidability results concerning multimodal logics over classes of frames with
built-in relations. Our work also aims to provide a stepping stone towards a
solution of an open problem of Grädel and Rosen posed in [14].

The objective of modal correspondence theory (see [3]) is to classify for-
mulae of modal logic according to whether they define elementary classes
of Kripke frames.2 On the level of frames, modal logic can be considered a
fragment of monadic Π1

1, also known as ∀MSO, and therefore correspondence
theory studies a special fragment of ∀MSO.

When a modal formula is inspected from the point of view of Kripke
frames, the proposition symbols occurring in the formula are quantified uni-
versally; it is natural to ask what happens if one also quantifies binary re-
lation symbols occurring in (the standard translation of) a modal formula.
This question is investigated in [20], where the focus is on the expressivity of
multimodal logic with universal prenex quantification of (some of) the binary
and unary relation symbols occurring in a formula. A question that imme-
diately suggests itself is whether there exists any class of multimodal frames
definable in this logic, let us call it Π1

1(ML), but not definable in monadic
second-order logic MSO. The question can be regarded as a question of

1The spectrum of a sentence ϕ is the set of positive integers n such that ϕ has a model
of the size n.

2It is well known that if a class of Kripke frames is definable by a modal formula, then
the class is definable by a set of FO formulae iff it is definable by a single FO formula. See
[11] for example. Therefore it makes no difference here whether the term “elementary”
is taken to mean definability by a single first-order formula or definability by a set of
first-order formulae.
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modal correspondence theory. Here, however, the correspondence language
is MSO rather than FO. For further investigations that involve quantification
of binary relations in modal logic, see for example [4, 21].

In the current article we investigate two multimodal logics with existential
second-order prenex quantification of accessibility relations and proposition
symbols, Σ1

1(PBML=) and Σ1
1(ML). The logic Σ1

1(ML) is the extension of or-
dinary multimodal logic with existential second-order prenex quantification
of binary accessibility relations and proposition symbols. PBML= is the logic
obtained by extending standard polyadic3 multimodal logic by built-in iden-
tity modalities and by constructors that allow for the Boolean combination
of accessibility relations (see Subsection 2.1). Obviously Σ1

1(PBML=) is the
extension of PBML= with existential second-order prenex quantification of
accessibility relations and proposition symbols.

We warm up by showing that Σ1
1(ML) translates into monadic Σ1

1(MLE),
which is the extension of multimodal logic with the global modality and exis-
tential second-order prenex quantification of only proposition symbols. The
method of proof is based on the notion of a largest filtration (see [3] for the
definition). We then push the method and show that Σ1

1(PBML=) trans-
lates into monadic Σ1

1. Note that both of these results immediately imply
that Π1

1(ML) translates into ∀MSO, and therefore show that MSO would
be a somewhat dull correspondence language for correspondence theory of
Π1

1(ML).
The logic PBML= contains a wide variety of logics used in different appli-

cations of modal logic. It could be argued that {¬,∪,∩, ◦, ∗,^, E,D} is more
or less the core collection of operations on binary relations used in extensions
of modal logic defined for the purposes of applications. Here ¬, ∪, ∩, ◦, ∗, ^
denote the complement, union, intersection, composition, transitive reflexive
closure and converse operations, respectively. The symbols E and D denote
the global modality and difference modality. Logics using some of these core
operations include for example propositional dynamic logic PDL [9, 16] and
its extensions, Boolean modal logic [10, 23], description logics [2, 18, 25],
modal logic with the global modality [12] and modal logic with the differ-
ence modality [28]. The operations ¬,∪,∩, E,D are part of PBML=. One
of our principal motivations for studying PBML= is that the logic subsumes
a large number of typical extensions of modal logic. Our translation from

3Modal logics with accessibility relations of arities greater than two are called polyadic.
See Section 2.1 for the related definitions.
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Σ1
1(PBML=) into ∃MSO gives as a direct corollary a wide range of decidabil-

ity results for extensions of multimodal logic over various classes of Kripke
frames with built-in relations; see Theorem 4.10 below.

In addition to applied modal logics, the investigations in this article are
directly related to an interesting open problem concerning two-variable logics.
Grädel and Rosen ask in [14] the question whether there exists any class of
finite directed graphs that is definable in Σ1

1(FO2) but not in ∃MSO. Let
BML= denote ordinary Boolean modal logic with a built-in identity relation,
i.e., BML= is the restriction of PBML= to binary relations. Lutz, Sattler
and Wolter show in the article [24] that BML= extended with the converse
operator is expressively complete for FO2. Therefore, in order to prove that
Σ1

1(FO2) ≤ ∃MSO, one would have to modify our translation from Σ1
1(BML=)

into ∃MSO such that it takes into account the possibility of using the converse
operation. We have succeeded neither in this nor in identifying a Σ1

1(FO2)
definable class of directed graphs that is not definable in ∃MSO. However,
we find modal logic a promising framework for working on the problem.

This article is the journal version of the conference article [17].

2 Preliminary definitions

In this section we discuss technical notions that occupy a central role in the
rest of the article.

2.1 Syntax and semantics of Σ1
1(PBML=)

The semantics of PBML=—defined in detail below—is obtained by combining
the semantics of Boolean modal logic with the standard generalization of
Kripke semantics to polyadic modal contexts.

Let V be a vocabulary containing relation symbols only. A V -model, or
a model of the vocabulary V , is an ordinary first-order model (see [6]) that
gives an interpretation to exactly all the symbols in V . We use this notion
of a model in both predicate logic and modal logic. If M is a V -model and
w a point in the domain of M , then the pair (M,w) is a pointed model of
the vocabulary V .

Below we shall exclusively consider vocabularies V containing relation
symbols only. We let V1 denote the subset of V containing exactly all the
unary relation symbols in V , and we let Vh be the subset of V containing
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exactly all the relation symbols in V of higher arities, i.e., arities greater or
equal to two. We define the set MP(V ) of modal parameters over V to be
the smallest set S satisfying the following conditions.

1. For each k ∈ N≥2, let idk be a symbol. We assume that none of the
symbols idk is in V . We have idk ∈ S for all k ∈ N≥2. The symbol idk
is called the k-ary identity symbol.

2. If R ∈ Vh, then R ∈ S.

3. If M∈ S, then ¬M ∈ S.

4. If M∈ S and N ∈ S, then (M∩N ) ∈ S.

Each modal parameter M is associated with an arity Ar(M) defined as
follows.

1. If M = idk, then Ar(M) = k.

2. If M = R ∈ Vh, then the Ar(M) is equal to the arity of R.

3. If M = ¬N , then Ar(M) = Ar(N ).

4. If M = (N1 ∩ N2) and Ar(N1) = Ar(N2), then Ar(M) = Ar(N1). If
Ar(N1) 6= Ar(N2), then Ar(M) = 2.

The set of formulae of PBML= of the vocabulary V (V -formulae) is defined
to be the smallest set F satisfying the following conditions.

1. If P ∈ V1, then P ∈ F .

2. If ϕ ∈ F , then ¬ϕ ∈ F .

3. If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

4. If ϕ1, ..., ϕk ∈ F and ifM∈ MP(V ) is a (k + 1)-ary modal parameter,
then 〈M〉(ϕ1, ..., ϕk) ∈ F .

Operators 〈M〉 are called diamonds. The modal depth Md(ϕ) of a formula
ϕ is the maximum nesting depth of diamonds in ϕ, defined as follows.

1. Md(P ) = 0 for P ∈ V1.

2. Md(¬ϕ) = Md(ϕ).
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3. Md
(

(ϕ1 ∧ ϕ2)
)

= max( {Md(ϕ1),Md(ϕ2)} ).

4. Md
(
〈M〉(ϕ1, ..., ϕk )

)
= 1 + max( {Md(ϕ1), ...,Md(ϕk)} ).

Let M be a V -model with the domain A. The extension MM of a modal
parameterM over M is a relation of the arity Ar(M) over A. The extension
of R ∈ Vh over M is simply the interpretation RM of the symbol R. For each
k ∈ N≥2, the extension idMk of the symbol idk is the set

{ (w1, ..., wk) ∈ Ak | wi = wj for all i, j ∈ {1, ..., k} }.

Other modal parameters are interpreted recursively such that the following
conditions hold.

1. If M = ¬N , then MM = AAr(M) \ NM .

2. If M = (N1 ∩N2), then MM = NM
1 ∩NM

2 .

Note that if Ar(N1) 6= Ar(N2), then (N1 ∩N2)
M = ∅.

The satisfaction relation  for PBML= formulae of the vocabulary V is
defined with respect to pointed V -models as follows.

1. If P ∈ V1, then
(M,w)  P ⇔ w ∈ PM .

2. For other formulae, the satisfaction relation is interpreted according to
the following recursive clauses.

(M,w)  ¬ϕ ⇔ (M,w) 6 ϕ.
(M,w), (ϕ1 ∧ ϕ2) ⇔ (M,w)  ϕ1 and (M,w)  ϕ2.
(M,w)  〈M〉(ϕ1, ..., ϕk) ⇔ there exist u1, ..., uk ∈ Dom(M)

such that (w, u1, ..., uk) ∈MM and
(M,ui)  ϕi for all i ∈ {1, ..., k}.

For each V -model M and each formula ϕ of the vocabulary V , we let ‖ ϕ ‖M
denote the set

{ w ∈ Dom(M) | (M,w)  ϕ }.
The set ‖ ϕ ‖M is called the extension of ϕ over M . When ϕ and ψ are
formulae of the vocabulary V , we write ϕ  ψ if

(M,w)  ϕ ⇒ (M,w)  ψ
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for all pointed V -models (M,w).
Let V be a vocabulary containing relation symbols only; V may be empty,

and V may contain relation symbols of any finite positive arity. A formula
ϕ of Σ1

1(PBML=) of the vocabulary V (V -formula) is a formula of the type

∃S1...∃Sn ψ,

where the variables Si are relation symbols (of any positive arity) and ψ is
a PBML= formula of the vocabulary V ∪ {S1, ..., Sn}. The set {S1, ..., Sn} is
allowed to be empty, so PBML= is a fragment of Σ1

1(PBML=). The sets V
and {S1, ..., Sn} are always assumed to be disjoint. Let (M,w) be a pointed
V -model. We define (M,w)  ϕ if there exists an expansion

M ′ = (M,SM
′

1 , ..., SM
′

n )

of the model M such that (M ′, w)  ψ. The set of non-logical symbols of a
Σ1

1(PBML=) formula ∃S1...∃Sn χ of the vocabulary V is the set of relation
symbols (of any arity) that belong to V and also actually occur in χ. The
symbols idk are not considered to be non-logical symbols.

Let BML= be the fragment of PBML= where each modal parameter oc-
curring in a formula is required to be binary. The logic ML is the fragment of
BML= where the modal parametersM defining diamonds 〈M〉 are required
to be atomic binary relation symbols that belong to the vocabulary consid-
ered. Note that the modal parameter id2 is not considered to be part of the
vocabulary. The logic MLE is the extension of ML with the global diamond
〈E〉, i.e., the diamond 〈¬(id2 ∩ ¬id2)〉. Logics Σ1

1(ML) and Σ1
1(MLE) are the

fragments of Σ1
1(PBML=) defined by extending ML and MLE with existen-

tial prenex quantification of binary and unary relation symbols. Monadic
Σ1

1(MLE) is the fragment of Σ1
1(MLE) where we only allow second-order

quantifiers quantifying unary relation symbols.
The logics Π1

1(PBML=), Π1
1(ML) and Π1

1(MLE) are the counterparts of
the logics Σ1

1(PBML=), Σ1
1(ML) and Σ1

1(MLE), but with universal second-
order quantifiers instead of existential ones.

Let V be a vocabulary containing relation symbols only. The set of for-
mulae of the vocabulary V (V -formulae) of existential second-order logic, or
Σ1

1, is the set of formulae of the type ∃S1...Sn χ, where χ is a first-order (with
equality) formula of the vocabulary V ; the sets {S1, ..., Sn} and V are always
assumed to be disjoint, and the set of non-logical symbols of ∃S1...Sn χ is the
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set of relation symbols that belong to V and also actually occur in χ. Equal-
ity is not considered to be a non-logical symbol. For the semantics of Σ1

1, see
for example [22]. Monadic Σ1

1 is the fragment of Σ1
1 where the second-order

relation variables Si are unary.
Let ϕ be a formula of Σ1

1(PBML=) or Π1
1(PBML=) of the vocabulary V .

Let ψ(x) be a V -formula of Σ1
1 with exactly one free variable, the first-order

variable x. The formulae ϕ and ψ(x) of are called V -equivalent if for all
pointed V -models (M,w), we have

(M,w)  ϕ ⇔ M,
w

x
|= ψ(x),

where M, w
x
|= ψ(x) means that the model M satisfies the formula ψ(x) of

predicate logic when x is interpreted to be w. The formulae ψ(x) and ϕ are
uniformly equivalent if they have the same set U of non-logical symbols and
if the formulae are U -equivalent.4 Two Σ1

1(PBML=) formulae ϕ1 and ϕ2 of
the vocabulary V are V -equivalent if they are satisfied by exactly the same
pointed V -models. The formulae ϕ1 and ϕ2 are uniformly equivalent if they
have exactly the same set U of non-logical symbols and if the formulae are
U -equivalent. Two V -sentences of predicate logic are uniformly equivalent
if they have exactly the same set U of non-logical symbols and if they are
satisfied by exactly the same U -models.

The reason we have chosen to define PBML= exactly the way defined
above, is relatively simple. Firstly, BML= extended with the converse modal-
ity is expressively complete for FO2. We do not know whether Σ1

1(FO2) is
contained in ∃MSO, but we will show below that Σ1

1(BML=) ≤ ∃MSO by es-
tablishing that even the extension Σ1

1(PBML=) of Σ1
1(BML=) with polyadic

modalities is indeed contained in ∃MSO. Finally, the reason we have in-
cluded the modalities idk for k ≥ 3 in the language of PBML= is mostly
due to technical presentation related issues. The reader may, indeed, think
that the modalities idk for k ≥ 3 are not very canonical. The modalities
do, however, have some interesting features. Notice for example that we can
easily eliminate the use of conjunction from PBML=. We shall not make any
use of this feature below, however.

We shall next establish that there is an algorithm that decides, when given
a PBML= formula ϕ of any relational vocabulary V , whether there exists a
pointed V -model (M,w) such that (M,w) |= ϕ. In other words, PBML=

4For example the formulae x = x ∧ ∃yR(y, y) and ∃S ∃P 〈S〉〈id2 ∩ R〉P are uniformly
equivalent. The set of non-logical symbols of both formulae is {R}.
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is decidable. This result will be needed below in order to ensure that the
translation of Σ1

1(PBML=) into ∃MSO is effective. There are several simple
ways of establishing the decidability of PBML=. One of them involves fluted
logic [26]. Fluted logic is a fragment of first-order logic, where the first-
order variables in atomic formulae are are always written in the same order,
without ever permuting them. See [26] for the exact definition of the logic. It
is easy to see that PBML= translates into fluted logic (with identity) simply
by using a straightforward generalization of the standard translation (see [3])
of modal logic. The article [26] constructs an algorithm that decides, given
any formula ϕ of fluted logic (with identity) of any relational vocabulary,
whether ϕ is satisfiable. Therefore PBML= is decidable.

2.2 Types

In the current subsection we define the notion of a type for the logic PBML=.
Let V be a finite vocabulary such that V1 6= ∅. Let m′ be the maximum arity
of the modal parameters in Vh. In the case Vh = ∅, let m′ = 0. Let m be an
integer such that 2 ≤ m and m′ ≤ m. Define the set

SV = Vh ∪ { ¬R | R ∈ Vh } ∪ { idk, ¬idk | 2 ≤ k ≤ m }

of at most m-ary atomic and negated atomic modal parameters over V . Let
k be an integer such that 2 ≤ k ≤ m. Let SV (k) be the set that contains as
elements exactly the k-ary modal parameters in SV . Notice that SV (k) 6= ∅.
Let TV (k) denote the set whose elements are exactly the subsets T ⊆ SV (k)
such that the following conditions are satisfied.

1. Exactly one of the modal parameters idk and ¬idk is in the set T .

2. If R ∈ Vh is k-ary, then exactly one of the modal parameters R and
¬R is in the set T .

Let f be a function with the domain TV (k) that maps each T ∈ TV (k) to
an intersection N ∈ MP(V ) of the elements of T . (There may be several
ways to choose the order of the members of T and bracketing when writing
the modal parameter N . The order and bracketing that f chooses does not
matter.) The set

{ f(T ) | T ∈ TV (k) }
of modal parameters is the set of k-ary access types over V . We let ATPV (k)
denote the set of k-ary access types over V .
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Let M be a k-ary access type over V , and let R ∈ Vh ∪ {idk} be a k-ary
atomic modal parameter. We write R ∈M if ¬R does not occur inM. Let
U ⊆ V and let N be a k-ary access type over U . We say that N is consistent
with M (or alternatively, M is consistent with N ), if for all k-ary symbols
R ∈ Uh ∪ {idk}, we have R ∈M iff R ∈ N .

Let (M,w) be a pointed model of the vocabulary V . We define

τ 0(M,w),m :=
∧

P ∈ V1,

(M,w)  P

P ∧
∧

Q ∈ V1,

(M,w) 6 Q

¬Q.

The formula τ 0(M,w),m is the type of (M,w) of the modal depth 0 and up
to the arity m. We choose the bracketing and ordering of conjuncts of
the formulae τ 0(M,w),m such that if for some pointed V -models (N, v) and

(N ′, v′) the types τ 0(N,v),m and τ 0(N ′,v′),m are uniformly equivalent, then actu-

ally τ 0(N,v),m = τ 0(N ′,v′),m. In other words, if two types of pointed V -models
of the modal depth 0 and up to the arity m are uniformly equivalent, then
they are in fact the one and the same formula. We let TP0

V,m denote the set
containing exactly the formulae τ such that for some pointed model (M,w)
of the vocabulary V , the formula τ is the type of (M,w) of the modal depth
0 and up to the arity m. Clearly the set TP0

V,m is finite.
Let n ∈ N and assume we have defined formulae τn(M,w),m for all pointed

models (M,w), and assume also that TPn
V,m is a finite set containing exactly

all these formulae. We define

τn+1
(M,w),m := τn(M,w),m

∧
∧
{ 〈M〉(σ1, ..., σk) | 1 ≤ k ≤ m− 1,

M∈ ATPV (k + 1),
σ1, ..., σk ∈ TPn

V,m ,
(M,w)  〈M〉(σ1, ..., σk) }

∧
∧
{ ¬〈M〉(σ1, ..., σk) | 1 ≤ k ≤ m− 1,

M∈ ATPV (k + 1),
σ1, ..., σk ∈ TPn

V,m ,
(M,w) 6 〈M〉(σ1, ..., σk) }.

The formula τn+1
(M,w),m is the type of (M,w) of the modal depth n+ 1 and up

to the arity m. Again we assume some standard ordering of the conjuncts
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and some standard bracketing, so that if two types τn+1
(M,w),m and τn+1

(N,v),m

of pointed V -models (M,w) and (N, v) are uniformly equivalent, then the
types are the same formula. We let TPn+1

V,m be the set containing exactly the
formulae τ such that for some pointed model (M,w) of the vocabulary V ,
the formula τ is the type of (M,w) of the modal depth n+ 1 and up to the
arity m. We observe that the set TPn+1

V,m is finite. Since PBML= is decidable,
there is an algorithm that constructs for each triple (V,m, n) the set TPn

V,m.
This fact is used in the proof below establishing that Σ1

1(PBML=) translated
effectively into ∃MSO.

We list a number of properties of types that are straightforward to prove.
Let (M,w) be a pointed model of the vocabulary U , where U may be infinite.
Assume that U1 6= ∅. Let V ⊆ U be a finite vocabulary and let m be as
defined above, i.e., m is at least two and greater or equal to the maximum
arity of the symbols in Vh. Assume that V1 6= ∅. Let n ∈ N. Firstly, (M,w)
satisfies exactly one type in TPn

V,m. Also, for all τ ∈ TPn
V,m and all l ≤ n,

there exists exactly one type σ ∈ TPl
V,m such that τ  σ. Notice also that

for each type τ ∈ TPn
V,m, there exists some pointed V -model that satisfies τ .

Let α ∈ TPn
V,m and let ψ be an arbitrary formula of the vocabulary V and

of some modal depth n′ ≤ n. Assume that the maximum arity of the modal
parameters that occur in ψ is at most m. Now either α  ψ or α  ¬ψ, and
thus, for all points u, v ∈‖ α ‖M , we have (M,u)  ψ iff (M, v)  ψ. Finally,
ψ is V -equivalent to

∨
{α ∈ TPn

V,m | α  ψ}. Notice that
∨
∅ = ⊥, where

⊥ is defined to be the formula (P ∧ ¬P ) for some P ∈ V1.

3 Σ1
1(ML) translates into monadic Σ1

1(MLE)

In this subsection we show how to translate Σ1
1(ML) formulae to uniformly

equivalent formulae of monadic Σ1
1(MLE). The translation is based on the

notion of a largest filtration (see [3] for the definition). The principal idea is
to fix a fresh unary predicate Pα for each subformula α of the quantifier free
part of the Σ1

1(ML) formula to be translated. The translation is given in full
detail below, but intuitively, the fresh predicates Pα encode extensions of the
formulae α, and information concerning extensions of the formulae α can be
recursively recovered from the information encoded by the unary predicates
Pα.

We begin by fixing a Σ1
1(ML) formula ϕ. We will first show how to

translate ϕ to a uniformly equivalent formula ϕ∗(x) of ∃MSO. We will then
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establish that that the first-order part of ϕ∗(x) translates to a uniformly
equivalent formula of MLE.

Let ϕ := Qψ, where Q is a string of existential second-order quantifiers
and ψ a formula of ML. Let V ψ

1 and V ψ
2 denote the sets of unary and binary

relation symbols, respectively, that occur in ψ. Define

V ψ = V ψ
1 ∪ V

ψ
2 .

Let Qψ
1 and Qψ

2 denote the sets of unary and binary relation symbols, respec-
tively, that occur in Q. Define

Qψ = Qψ
1 ∪Q

ψ
2 .

Let SUBψ denote the set of subformulae of the formula ψ.
We fix a unary relation symbol Pα for each formula α ∈ SUBψ. The

symbols Pα are assumed not to occur in ϕ. We then define a collection of
auxiliary formulae needed in order to define the translated formula ϕ∗(x).
Let

P ′, ¬α, (β ∧ γ), 〈R〉ρ, 〈S〉σ ∈ SUBψ,

where P ′ ∈ V ψ
1 , R ∈ V ψ

2 \Q
ψ
2 and S ∈ Qψ

2 . We define

ψ
P ′

:= ∀x
(
P
P ′

(x)↔ P ′(x)
)
,

ψ¬α := ∀x
(
P¬α(x)↔ ¬Pα(x)

)
,

ψ(β∧γ) := ∀x
(
P(β∧γ)(x)↔ (Pβ(x) ∧ Pγ(x))

)
,

ψ〈R〉ρ := ∀x
(
P〈R〉ρ(x)↔ ∃y(R(x, y) ∧ Pρ(y))

)
,

ψ〈S〉σ := ∀x
(
P〈S〉σ(x)↔ ∃y(Access

S
(x, y) ∧ Pσ(y))

)
,

where

Access
S
(x, y) :=

∧
〈S〉χ ∈ SUBψ

(
Pχ(y)→ P〈S〉χ(x)

)
.

Finally, we define

δψ :=
∧

α ∈ SUBψ

ψα
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and

ϕ∗(x) := Q
∗
(δψ ∧ Pψ(x)),

where Q
∗

is a string of existential quantifiers that quantify the predicate
symbols P ∈ Qψ

1 and also the symbols Pα such that α ∈ SUBψ.
We then prove that (M,w)  ϕ implies M, w

x
|= ϕ∗(x). Assume that

(M,w)  ϕ. Therefore there exists an expansion M2 of M by interpretations
of the binary and unary symbols in Qψ such that we have (M2, w)  ψ.
We define an expansion M1 of M by interpretations of the unary symbols
occurring in Q

∗
. For the symbols P ∈ Qψ

1 , we let PM1 = PM2 . For the
symbols Pα, where α ∈ SUBψ, we define PM1

α = ‖ α ‖M2 .

Lemma 3.1. Let 〈S〉σ ∈ SUBψ, where S ∈ Qψ
2 , and let v ∈ Dom(M). Then

(M2, v)  〈S〉σ iff M1,
v
x
|= ∃y

(
AccessS(x, y) ∧ Pσ(y)

)
.

Proof. Assume (M2, v)  〈S〉σ. Thus (v, u) ∈ SM2 for some point

u ∈ ‖ σ ‖M2= PM1
σ .

To establish that

M1,
v

x
|= ∃y

(
AccessS(x, y) ∧ Pσ(y)

)
,

it therefore suffices to prove that for all 〈S〉χ ∈ SUBψ, if u ∈ PM1
χ , then

v ∈ PM1

〈S〉χ. Therefore assume that u ∈ PM1
χ for some formula 〈S〉χ ∈ SUBψ.

As ‖ χ ‖M2= PM1
χ , we have u ∈‖ χ ‖M2 . Since (v, u) ∈ SM2 , we have

(M2, v)  〈S〉χ. As ‖ 〈S〉χ ‖M2= PM1

〈S〉χ, we must have v ∈ PM1

〈S〉χ, as desired.
Assume then that

M1,
v

x
|= ∃y

(
AccessS(x, y) ∧ Pσ(y)

)
.

Hence M1,
v
x
u
y
|= AccessS(x, y) for some u ∈ PM1

σ = ‖ σ ‖M2 . Now, by

the definition of the formula AccessS(x, y), we observe that v ∈ PM1

〈S〉σ. As

‖ 〈S〉σ ‖M2= PM1

〈S〉σ, we have v ∈‖ 〈S〉σ ‖M2 . Therefore (M2, v)  〈S〉σ, as
desired.

Lemma 3.2. Under the assumption (M,w)  ϕ, we have M, w
x
|= ϕ∗(x).
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Proof. We establish the claim of the lemma by proving that

M1,
w

x
|= δψ ∧ Pψ(x).

Since (M2, w)  ψ and ‖ ψ ‖M2= PM1
ψ , we have M1,

w
x
|= Pψ(x). The non-

trivial part in the argument establishing that M1 |= δψ involves showing that

M1 |= ψ〈S〉σ for each 〈S〉σ ∈ SUBψ, where S ∈ Qψ
2 . This follows directly by

Lemma 3.1, as PM1

〈S〉σ = ‖ 〈S〉σ ‖M2 .

We then establish that M, w
x
|= ϕ∗(x) implies (M,w)  ϕ. Therefore

we assume that M, w
x
|= ϕ∗(x). Therefore there exists an expansion M ′

1

of M by interpretations of the unary symbols occurring in Q
∗

such that
M ′

1,
w
x
|= δψ ∧ Pψ(x). We define an expansion M ′

2 of M by interpretations of

the binary and unary symbols that occur in Q. For the symbols P ∈ Qψ
1 , we

define PM ′2 = PM ′1 . For the symbols S ∈ Qψ
2 , we let (v, u) ∈ SM ′2 if and only

if M ′
1,

v
x
u
y
|= Access

S
(x, y).

Lemma 3.3. Let α ∈ SUBψ and v ∈ Dom(M). We have (M ′
2, v)  α iff

M ′
1,

v
x
|= Pα(x).

Proof. We establish the claim of the lemma by induction on the structure of
α. Since M ′

1 |= δψ, the claim holds trivially for all atomic formulae P ∈ V ψ
1 .

Also, the cases where α is of form ¬β, (β ∧ γ) or 〈R〉β, where R ∈ V ψ
2 \Q

ψ
2 ,

are straightforward since M ′
1 |= δψ.

Assume that (M ′
2, v)  〈S〉σ, where S ∈ Qψ

2 and 〈S〉σ ∈ SUBψ. Therefore
(v, u) ∈ SM

′
2 for some u ∈‖ σ ‖M ′2 . Hence M ′

1,
v
x
u
y
|= Access

S
(x, y) by the

definition of SM
′
2 . We also have P

M ′1
σ = ‖ σ ‖M ′2 by the induction hypothesis.

Therefore u ∈ PM ′1
σ , whence we have

M ′
1,
v

x
|= ∃y

(
Access

S
(x, y) ∧ Pσ(y)

)
.

Therefore, as M ′
1 |= ψ〈S〉σ, we have M ′

1,
v
x
|= P〈S〉σ(x).

For the converse, we assume that M ′
1,

v
x
|= P〈S〉σ(x). As M ′

1 |= ψ〈S〉σ, we
have

M ′
1,
v

x
|= ∃y

(
Access

S
(x, y) ∧ Pσ(y)

)
.

Hence there exists some element u ∈ PM ′1
σ such that M ′

1,
v
x
u
y
|= Access

S
(x, y).

Therefore (v, u) ∈ SM
′
2 by the definition of SM

′
2 . Since u ∈ P

M ′1
σ and as

14



‖ σ ‖M ′2= P
M ′1
σ by the induction hypothesis, we may therefore conclude that

(M ′
2, v)  〈S〉σ.

By Lemma 3.3 we immediately observe that since M ′
1,

w
x
|= Pψ(x), we

must have (M ′
2, w)  ψ. Therefore (M,w)  ϕ. This, together with Lemma

3.2, justifies the following conclusion.

Theorem 3.4. Each formula of Σ1
1(ML) translates to a uniformly equivalent

formula of ∃MSO. The translation is effective.

We then establish that ϕ∗(x) is in fact expressible in monadic Σ1
1(MLE).

This is easy. Fix a symbol S ∈ Qψ
2 and let A be the subset of SUBψ that

contains exactly all the formulae of the form 〈S〉χ. The formula

∃y
(
Access

S
(x, y) ∧ Pσ(y)

)
is uniformly equivalent to the following formula of MLE.∨

B ⊆ A

( ∧
〈S〉χ ∈ B

P〈S〉χ ∧ 〈E〉
(
Pσ ∧

∧
〈S〉χ ∈ B

Pχ ∧
∧

〈S〉χ ∈ A\B

¬Pχ
))

Thus we see that for each sentence ψα, where α ∈ SUBψ, there exists a
formula of MLE that is uniformly equivalent to the formula x = x ∧ ψα. We
may therefore draw the following conclusion.

Theorem 3.5. Each formula of Σ1
1(ML) translates to a uniformly equivalent

formula of monadic Σ1
1(MLE). The translation is effective.

The following corollaries are immediate.

Corollary 3.6. Each formula of Π1
1(ML) translates to a uniformly equivalent

formula of monadic Π1
1(MLE). The translation is effective.

Corollary 3.7. Let C be a class of unimodal Kripke frames (W,R0) with a
binary relation R0. Let I be a set of indices such that 0 ∈ I, and define

D = { (W, {Ri}i∈I) | Ri ⊆ W × W, (W,R0) ∈ C }.

If the satisfiability problem of MLE w.r.t. the class C is decidable, then the
satisfiability problem of ML w.r.t. D is decidable.
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4 Σ1
1(PBML=) translates into ∃MSO

In this section we prove that each formula of Σ1
1(PBML=) can be translated

to a uniformly equivalent formula of ∃MSO. The translation bears some
similarity to the translation of Σ1

1(ML) into monadic Σ1
1(MLE), but is much

more complicated. Instead of using the notion of a largest filtration and sub-
formulae, the translation from Σ1

1(PBML=) into ∃MSO is based on types.
One of the main ideas in the translation is to use fresh unary predicates
Pτ in order to encode extensions of types τ of PBML= formulae. In addi-
tion to types, the translation also uses fresh unary predicates that encode
information concerning extensions of access types.

4.1 An effective translation

In the current subsection we define an effective translation of formulae of
Σ1

1(PBML=) to uniformly equivalent formulae of ∃MSO. Effectivity of the
translation follows from the decidability of PBML=.

Let us fix a Σ1
1(PBML=) formula ϕ and show how it is translated. Let

ϕ := Q ψ, where Q is vector of existential second-order quantifiers and ψ a
formula of PBML=. For presentation related results, assume w.l.o.g. that
Md(ψ) ≥ 2 and that each symbol in Q occurs in ψ. We let m denote the
maximum arity of the modal parameters that occur in ψ. Since Md(ψ) ≥ 2,
the formula ψ must contain diamonds, and therefore m exists and m ≥ 2.

Let V ψ
1 denote the set of unary relation symbols that occur in ψ, and let

V ψ
h be the set of relation symbols of higher arities occurring in ψ. Let

V ψ = V ψ
1 ∪ V

ψ
h .

Some of the relation symbols in V ψ may occur in the quantifier prefix Q and
some may not. Let Qψ

1 denote the set of unary relation symbols that occur
in Q. The set of relation symbols of higher arities occurring in Q is denoted
by Qψ

h . Let

Qψ = Qψ
1 ∪Q

ψ
h .

For each k ∈ N≥2, we let ATPψ(k) denote the set containing exactly the k-ary
access types over V ψ. For each n ∈ N, we let TPn

ψ denote the set TPn
V ψ ,m of

types. We define

TPψ =
⋃

i ≤ Md(ψ)

TPi
ψ.
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We then fix a set of fresh (i.e., not occurring in ϕ) unary predicate sym-
bols. We fix a unique unary predicate symbol Pτ for each τ ∈ TPψ. We also
fix a unary predicate symbol P(M, β) for each pair (M, β) such that for some

k ∈ {1, ...,m− 1}, we have M∈ ATPψ(k + 1) and β ∈ (TP
Md(ψ)−1
ψ )k.

The translation ϕ∗(x) of ϕ is the formula(
∃P
)
P ∈ Qψ1

(
∃Pτ

)
τ ∈ TPψ

(
∃P(M, β)

)
k ∈ {1,...,m−1}
M ∈ ATPψ(k+1),

β ∈ (TP
Md(ψ)−1
ψ )k

ψ∗(x) ,

where ψ∗(x) is a first-order formula—to be defined below—in one free vari-
able, x. We let Q

∗
denote the above vector of monadic existential second-

order quantifiers.
One fundamental idea in the translation we will define is that the symbols

Pτ are used in order to encode the extensions of the types τ ∈ TPψ. This is
manifest in the way the model M1 is defined below and also in the content
of Lemma 4.6. While the symbols Pτ store information about extensions of
types, the symbols P(M, β ) are used in order to encode information about
the extensions of the access typesM∈ ATPψ(Ar(M)). We use the symbols
P(M, β ) when we define the formulae AccessM(x, y1, ..., yk) below. The for-
mulae AccessM(x, y1, ..., yk) encode information about the extensions of the
access types M ∈ ATPψ(k + 1) in a way made explicit in Lemmata 4.1 and
4.5.

Before fixing the translation ϕ∗(x) of ϕ, we define a number of auxiliary
formulae. The first formula we define ensures that for all n ∈ {0, ...,Md(ψ)},
the extensions of the predicate symbols Pτ , where τ ∈ TPn

ψ, always cover all
of the domain of any model and never overlap each other. We define

ψuniq := ∀x
( ∧

0 ≤ i ≤ Md(ψ)

( ∨
τ ∈ TPiψ

(
Pτ (x) ∧

∧
σ ∈ TPiψ ,

σ 6= τ

¬Pσ(x)
)))

.

The next formula asserts that each symbol Pβ, where β ∈ TP
Md(ψ)−1
ψ , must

be interpreted such that for all symbols Pτ , where Md(τ) < Md(β), the
extension of Pβ is either fully included in the extension of Pτ or does not
overlap with it. We let

17



ψpack := ∀x∀y
∧

β ∈ TP
Md(ψ)−1
ψ

((
Pβ(x) ∧ Pβ(y)

)
→

∧
τ ∈ TP

<Md(ψ)−1
ψ

(
Pτ (x)↔ Pτ (y)

))
.

Let k be an integer such that 1 ≤ k ≤ m− 1 and let M∈ ATPψ(k + 1).
The next formula encodes information about the relation that the (k+1)-ary
access type M defines over a V ψ-model.

AccessM(x, y1, ..., yk) :=

∨
(β1,...,βk) = β ∈ (TP

Md(ψ)−1
ψ )k

(
P(M, β )(x) ∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)

)
.

We then define formulae χτ (x) that recursively force the interpretations of
the predicate symbols Pτ to match the extensions of the types τ ∈ TPψ. The
content of this assertion is reflected in (the proof of) Lemma 4.6. First, let
τ ∈ TP0

ψ. We define

χτ (x) :=
∧

P ∈ V ψ1 ,

τ  P

P (x) ∧
∧

Q ∈ V ψ1 ,

τ 6 Q

¬Q(x).

Now let τ ∈ TPn+1
ψ , where 0 ≤ n ≤Md(ψ)− 1. We define

χ+
τ (x) :=

∧
k ∈ {1,...,m−1},
M ∈ ATPψ(k+1),

(σ1,...,σk) ∈ (TPnψ)
k,

τ  〈M〉(σ1,...,σk)

∃y1...yk
(
AccessM(x, y1, ..., yk)

∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)
)
,
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χ−τ (x) :=
∧

k ∈ {1,...,m−1},
M ∈ ATPψ(k+1),

(σ1,...,σk) ∈ (TPnψ)
k,

τ  ¬〈M〉(σ1,...,σk)

¬∃y1...yk
(
AccessM(x, y1, ..., yk)

∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)
)
,

and

χτ (x) := Pτ ′(x) ∧ χ+
τ (x) ∧ χ−τ (x),

where τ ′ is the unique type in TPn
ψ such that τ  τ ′.

Let k ∈ {1, ...,m− 1} and A ⊆ ATPψ(k + 1), where A 6= ∅. Let

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ )k.

The next formula encodes information about the set of (k + 1)-ary access
types that connect an element of the domain of a V ψ-model to k-tuples of
elements (u1, ..., uk) such that for all i, the element ui satisfies the type βi.
We define

ψ(A, β )(x) :=
∧
M ∈ A

∃y1...yk
(
AccessM(x, y1, ..., yk)

∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)
)
.

Our next aim is to define formulae ψcons and ψ′cons that ensure that in-
formation about extensions of the access types over V ψ is always consistent
with interpretation of the access types over V ψ \ Qψ, i.e., the access types
describing non-quantified accessibility relations.

Let k be an integer such that 1 ≤ k ≤ m − 1. Fix a linear order on
ATPψ(k + 1). For each set S ⊆ ATPψ(k + 1), let S(i) denote the i-th
member of the set S with respect to the linear order. Let A ⊆ ATPψ(k + 1)
be a nonempty set of access types. For each i ∈ {1, ..., |A|}, define a k-tuple
yi = (yi1 , ..., yik) of variable symbols. Fix the collection of tuples so that no
variable symbol is used twice. Let yj 6= yl denote the formula∨

n ∈ {1,..., k}

(¬ yjn = yln).
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Let χA(i)(x, yi) denote a first-order formula stating that the (k + 1)-tuple
(x, yi) is connected according to the unique (k + 1)-ary access type over
V ψ \Qψ that is consistent with the access type A(i) ∈ A. Let β = (β1, ..., βk)

be a k-tuple of types in TP
Md(ψ)−1
ψ . We let

χ(A, β )(x) := ∃y1...y|A|
( ∧

j, l ∈ {1 ,..., |A|},
j 6= l

yj 6= yl ∧

∧
i ∈ {1 ,..., |A|}

(
χA(i)(x, yi) ∧ Pβ1(yi1) ∧ ... ∧ Pβk(yik)

) )
.

We define

ψcons := ∀x
( ∧

k ∈ {1,...,m−1},
A ⊆ ATPψ(k+1), A 6= ∅,

β ∈ (TP
Md(ψ)−1
ψ )k

(
ψ(A, β )(x) → χ(A, β )(x)

) )
.

Let R ∈ ATPV ψ\Qψ(k + 1), i.e., R is a (k + 1)-ary access type over
V ψ \ Qψ. We let C(R) denote the set of (k + 1)-ary access types over V ψ

that are consistent with R. Let χR(x, y1, ..., yk) denote a first-order formula
stating that the (k+1)-tuple (x, y1, ..., yk) is connected according to the access

type R. Let β = (β1, ..., βk) be a k-tuple of types in TP
Md(ψ)−1
ψ . Let M be

(k + 1)-ary access type over V ψ. We let

χ(R, β )(x) := ∃y1...yk
(
χR(x, y1, ..., yk) ∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)

)
and

ψ(M, β )(x) := ∃z1...zk
(
AccessM(x, z1, ..., zk) ∧ Pβ1(z1) ∧ ... ∧ Pβk(zk)

)
.

We define

ψ′cons := ∀x
( ∧

k ∈ {1,...,m−1},
R ∈ ATP

V ψ\Qψ (k+1),

β ∈ (TP
Md(ψ)−1
ψ )k

(
χ(R, β )(x) →

∨
M ∈ C(R)

ψ(M, β )(x)
))
.
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Finally, we define

δψ := ψuniq ∧ ψpack ∧ ψcons ∧ ψ′cons ∧
∧

τ ∈ TPψ

∀x
(
Pτ (x)↔ χτ (x)

)
and

ϕ∗(x) := Q
∗
(

δψ ∧
∨

α ∈ TP
Md(ψ)
ψ ,

α  ψ

Pα(x)
)
.

We then fix an arbitrary pointed model (M,w) of the vocabulary V ψ\Qψ.
In the next two subsections we establish that

(M,w)  ϕ ⇔ M,
w

x
|= ϕ∗(x).

4.2 Proving that Σ1
1(PBML=) ≤ ∃MSO : part one

In this subsection we show that (M,w)  ϕ implies M, w
x
|= ϕ∗(x). Thus

we assume that (M,w)  ϕ. Therefore there exists some expansion Mh of
M by interpretations of the symbols in Qψ such that (Mh, w)  ψ. The
subscript “h ” in Mh stands for the word “higher” and indicates that Mh

is an expansion of M by interpretations of symbols of arity one and higher
arities.

We then define an expansion M1 of M by interpreting the unary symbols
in Qψ

1 and also the unary symbols of the type Pτ and P(M, β ), where τ is a

type in TPψ, and where M ∈ ATPψ(k + 1) and β ∈ (TP
Md(ψ)−1
ψ )k for some

k ∈ {1, ...,m− 1}.
For each P ∈ Qψ

1 , we define PM1 = PMh . For each τ ∈ TPψ, we let
PM1
τ = ‖ τ ‖Mh . Let k ∈ {1, ...,m− 1}. Let M∈ ATPψ(k + 1) and

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ )k.

We define PM1

(M, β )
to be exactly the set of elements v ∈ Dom(M) such that

for some tuple (u1, ..., uk) ∈ (Dom(M))k, we have (v, u1, ..., uk) ∈ MMh and
ui ∈‖ βi ‖Mh for all i ∈ {1, ..., k}. In other words, we define

PM1

(M, β )
= ‖ 〈M〉(β1, ..., βk) ‖Mh .
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Next we discuss a number of auxiliary lemmata, and then establish that
M1,

w
x
|= ψ∗(x). Recall that ψ∗(x) is the first-order part of the translation

ϕ∗(x) of ϕ.
The following lemma establishes how the formula AccessM(x, y1, ..., yk)

encodes information about the action of the diamond operator 〈M〉 on Mh.

Lemma 4.1. Let n be an integer such that we have 0 ≤ n < Md(ψ). Let
k ∈ {1, ...,m − 1}, and let (τ1, ..., τk) be a tuple of types in TPn

ψ. Let M ∈
ATPψ(k + 1) and v ∈ Dom(M). We have

(Mh, v)  〈M〉(τ1, ..., τk)
⇔

M1,
v
x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Proof. Assume that (Mh, v)  〈M〉(τ1, ..., τk). Thus there exists some tuple

(u1, ..., uk) ∈ ‖ τ1 ‖Mh ×...× ‖ τk ‖Mh

such that (v, u1, ...uk) ∈MMh . Let

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ )k

be the k-tuple of types in TP
Md(ψ)−1
ψ such that we have ui ∈‖ βi ‖Mh for all

i ∈ {1, ..., k}. Thus v ∈ PM1

(M, β )
, and therefore

M1,
v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk).

As ui ∈‖ τi ‖Mh= PM1
τi

for all i ∈ {1, ..., k}, we have

M1,
v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk).

Therefore

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
,

as desired.
In order to deal with the converse direction, assume that

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.
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Therefore, for some tuple

(u1, ..., uk) ∈ PM1
τ1
× ...× PM1

τk
,

we have
M1,

v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk).

Therefore v ∈ PM1

(M, β )
for some tuple

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ )k

such that ui ∈ PM1
βi

for all i ∈ {1, ..., k}. We have Md(τi) ≤ Md(βi) for all

i ∈ {1, ..., k}. Also, by the definition of the model M1, we have PM1
σ =‖ σ ‖Mh

for all σ ∈ TPψ, so each set PM1
σ is the extension of the type σ. Therefore,

as ui ∈ PM1
βi
∩ PM1

τi
for all i ∈ {1, ..., k}, we conclude that ‖ βi ‖Mh⊆‖ τi ‖Mh

for all i ∈ {1, ..., k}. Hence

‖ β1 ‖Mh ×...× ‖ βk ‖Mh ⊆ ‖ τ1 ‖Mh ×...× ‖ τk ‖Mh .

Also, as v ∈ PM1

(M, β )
, we have (v, u′1, ..., u

′
k) ∈MMh for some tuple

(u′1, ..., u
′
k) ∈ ‖ β1 ‖Mh ×...× ‖ βk ‖Mh .

Therefore we conclude that (Mh, v)  〈M〉(τ1, ..., τk), as desired.

We then establish a link between interpretations of the formulae χτ (x)
and interpretations of the predicate symbols Pτ in the model M1.

Lemma 4.2. Let v ∈ Dom(M) and τ ∈ TPψ. We have M1,
v
x
|= Pτ (x) iff

M1,
v
x
|= χτ (x).

Proof. As ‖ P ‖Mh= PM1 for all P ∈ V ψ
1 , the claim follows directly for all

τ ∈ TP0
ψ. Therefore we may assume that τ ∈ TP≥1ψ . Throughout the proof,

we let τ ′ denote the unique type in TP
Md(τ)−1
ψ such that τ  τ ′.

Assume that M1,
v
x
|= Pτ (x). As PM1

τ = ‖ τ ‖Mh , we have (Mh, v)  τ .

As τ  τ ′, we have (Mh, v)  τ ′. Since PM1

τ ′ = ‖ τ ′ ‖Mh , we conclude that
M1,

v
x
|= Pτ ′(x).

We then establish that M1,
v
x
|= χ+

τ (x) ∧ χ−τ (x). Let k ∈ {1, ...,m − 1}
and assume that τ  〈M〉(σ1, ..., σk), where we have M∈ ATPψ(k + 1) and
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σi ∈ TP
Md(τ)−1
ψ for all i ∈ {1, ..., k}. As we have (Mh, v)  τ , we also have

(Mh, v)  〈M〉(σ1, ..., σk). Therefore, by Lemma 4.1,

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Similarly, if τ  ¬〈M〉(σ1, ..., σk), we conclude by Lemma 4.1 that

M1,
v

x
|= ¬∃y

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Thus M1,
v
x
|= χ+

τ (x) ∧ χ−τ (x), as desired.
For the converse, assume that M1,

v
x
|= χτ (x). In order to show that

M1,
v
x
|= Pτ (x), we will establish that (Mh, v)  τ . As PM1

τ = ‖ τ ‖Mh , this
suffices.

As M1,
v
x
|= Pτ ′(x) and PM1

τ ′ = ‖ τ ′ ‖Mh , we immediately observe that
(Mh, v)  τ ′.

Let τ  〈M〉(σ1, ..., σk), where M ∈ ATPψ and σi ∈ TP
Md(τ)−1
ψ for all

i ∈ {1, ..., k}. As M1,
v
x
|= χ+

τ (x), we have

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
,

and therefore (Mh, v)  〈M〉(σ1, ..., σk) by Lemma 4.1. Similarly, if we have
τ  ¬〈M〉(σ1, ..., σk), then, as M1,

v
x
|= χ−τ (x), we conclude that

M1,
v

x
|= ¬∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
,

and therefore (Mh, v)  ¬〈M〉(σ1, ..., σk) by Lemma 4.1. Thus (Mh, v)  τ ,
and hence M1,

v
x
|= Pτ (x), as desired.

We then conclude the first direction of the proof of the claim that (M,w) 
ϕ iff M, w

x
|= ϕ∗(x).

Lemma 4.3. Under the assumption (M,w)  ϕ, we have M, w
x
|= ϕ∗(x).

Proof. We have assumed that (M,w)  ϕ and thereby concluded that there
exists a model Mh such that (Mh, w)  ψ. We have then defined the model
M1, and we now establish the claim of the current lemma by proving that
M1,

w
x
|= ψ∗(x). Recall that ψ∗(x) is the formula

δψ ∧
∨

α ∈ TP
Md(ψ)
ψ ,

α  ψ

Pα(x) ,
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where δψ denotes the formula

ψuniq ∧ ψpack ∧ ψcons ∧ ψ′cons ∧
∧

τ ∈ TPψ

∀x
(
Pτ (x)↔ χτ (x)

)
.

Let ψ′ denote a disjunction of exactly all the types α ∈ TP
Md(ψ)
ψ such that

α  ψ. As ψ and ψ′ are V ψ-equivalent (and in fact uniformly equivalent), we

have (Mh, w)  ψ′. Therefore (Mh, w)  α for some α ∈ TP
Md(ψ)
ψ occurring

in the disjunction. Hence, as ‖ α ‖Mh= PM1
α , we conclude that M1,

w
x
|=

Pα(x).
We then show that M1 |= ψcons. Let v ∈ Dom(M) and assume that

M1,
v
x
|= ψ(A, β )(x) for some nonempty A ⊆ ATPψ(k + 1) and some tuple of

types
(β1, ..., βk) = β ∈ (TP

Md(ψ)−1
ψ )k.

Recall that A(i) denotes the i-th access type in A with respect to the linear
ordering of ATPψ(k + 1) we fixed. As M1,

v
x
|= ψ(A, β )(x), we conclude by

Lemma 4.1 that (Mh, v)  〈A(i)〉(β1, ..., βk) for each i ∈ {1, ..., |A|}. Thus
there must exist |A| distinct k-tuples

u1, ... , u|A| ∈ ‖ β1 ‖Mh ×...× ‖ βk ‖Mh = PM1
β1
× ...× PM1

βk

such that (v, ui) ∈ (A(i))Mh for each i. Let Ri denote the access type over
V ψ \Qψ consistent with A(i). Recall that χA(i)(x, yi) is a first-order formula
stating that the tuple (x, yi) is connected according to the access type Ri.
We have (v, ui) ∈ RMh

i = RM1
i for each i, and thus

M1,
v

x

ui1
yi1
...
uik
yik
|= χA(i)(x, yi1 , ..., yik) ∧ Pβ1(yi1) ∧ ... ∧ Pβk(yik)

for each i.
We then establish that M1 |= ψ′cons. Let k ∈ {1, ...,m− 1} and let R be

a (k + 1)-ary access type over V ψ \Qψ. Let v ∈ Dom(M) and assume that

M1,
v

x

u1
y1
...
uk
yk
|= χR(x, y1, ..., yk) ∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)

for some u1, ..., uk ∈ Dom(M). LetM be the (k+1)-ary access type such that
(v, u1, ..., uk) ∈ MMh . Thus (Mh, v)  〈M〉(β1, ..., βk), whence by Lemma
4.1, we have

M1,
v

x
|= ∃z1...zk

(
AccessM(x, z1, ..., zk) ∧ Pβ1(z1) ∧ ... ∧ Pβk(zk)

)
.
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Clearly M is consistent with R and hence we have M ∈ C(R). Therefore
M1 |= ψ′cons.

We have M1 |= ψuniq ∧ ψpack directly by properties of types. Therefore,
in order to conclude the proof, we only need to establish that for each type
τ ∈ TPψ and each v ∈ Dom(M), M1,

v
x
|= Pτ (x) ↔ χτ (x). This follows

directly by Lemma 4.2.

4.3 Proving that Σ1
1(PBML=) ≤ ∃MSO : part two

In this subsection we show that M, w
x
|= ϕ∗(x) implies (M,w)  ϕ. Thus we

assume that M, w
x
|= ϕ∗(x). Therefore there exists an expansion M ′

1 of M by
interpretations of the unary symbols Pτ and P(M, β ), and also the symbols

P ∈ Qψ
1 , such that M ′

1,
w
x
|= ψ∗(x).

We define an expansion of M by interpreting all the relation symbols
in Qψ. We call the resulting expansion M ′

h. For each P ∈ Qψ
1 , we define

PM ′h = PM ′1 . Let v ∈ Dom(M) and k ∈ {1, ...,m− 1}. Let

β = (β1, ..., βk) ∈ (TP
Md(ψ)−1
ψ )k.

Let Ak+1 ⊆ ATPψ(k + 1) be the set of access types M ∈ ATPψ(k + 1) such
that for some tuple

(u1, ..., uk) ∈ P
M ′1
β1
× ...× PM ′1

βk
,

we have
M ′

1,
v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk).

As M ′
1 satisfies the formula ψcons, we see that there exists a bijection f from

the set Ak+1 to a set

B ⊆ P
M ′1
β1
× ...× PM ′1

βk

such that for all M ∈ Ak+1, we have
(
v, f(M)

)
∈ RM ′1

M , where RM is the

access type in ATPV ψ\Qψ(k+1) consistent withM. Let S ∈ Qψ
h be a relation

symbol of the arity k + 1. We define, for each M∈ Ak+1,(
v, f(M)

)
∈ SM

′
h iff S ∈M.

Recall that we write S ∈ M if S occurs in the type M (i.e., ¬S does not
occur in M). We then consider the k-tuples in the set

(P
M ′1
β1
× ...× PM ′1

βk
) \ B.
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Let the tuple (u1, ..., uk) belong to this set. Let R be the access type in
ATPV ψ\Qψ(k + 1) such that (v, u1, ..., uk) ∈ RM ′1 . As M ′

1 satisfies ψ′cons, we
observe that there exists some M ∈ ATPψ(k + 1) consistent with R and
some tuple

(u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM ′1

βk

such that

M ′
1,
v

x

u′1
y1
...
u′k
yk
|= AccessM(x, y1, ..., yk).

Again let S ∈ Qψ
h be a relation symbol of the arity k + 1. We define

(v, u1, ..., uk) ∈ SM
′
h iff S ∈M.

For each v ∈ Dom(M) and k ∈ {1, ...,m− 1}, we go through each tuple

β ∈ (TP
Md(ψ)−1
ψ )k, and construct the extensions SM

′
h of the (k+ 1)-ary sym-

bols S ∈ Qψ
h in the described way. This procedure defines the expansion M ′

h

of M . As the model M ′
1 satisfies ψuniq, the model M ′

h is well defined.
Next we discuss a number of auxiliary lemmata and then establish that

(M ′
h, w)  ψ. The following lemma is a direct consequence of the way we

define the extensions SM
′
h of the relation symbols S ∈ Qψ

h .

Lemma 4.4. Let v ∈ Dom(M). Let k ∈ {1, ...,m − 1}, M ∈ ATPψ(k + 1)

and (β1, ..., βk) ∈ (TP
Md(ψ)−1
ψ )k. Then

(v, u1, ..., uk) ∈MM ′h

for some (u1, ..., uk) ∈ P
M ′1
β1
× ...× PM ′1

βk
if and only if we have

M ′
1,
v

x

u′1
y1
...
u′k
yk
|= AccessM(x, y1, ...yk)

for some (u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM ′1

βk
.

The diamond 〈M〉 encodes information about the relation that the for-
mula AccessM(x, y1, ..., yk) defines over M ′

1. The next lemma establishes this
link.

Lemma 4.5. Let n be an integer such that 0 ≤ n < Md(ψ), and let
k ∈ {1, ...,m− 1}. Let (τ1, ..., τk) ∈ (TPn

ψ)k and M∈ ATPψ(k+ 1). Assume

that ‖ τi ‖M
′
h= P

M ′1
τi for all i ∈ {1, ..., k}. Let v ∈ Dom(M). Then

(M ′
h, v)  〈M〉(τ1, ..., τk)
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if and only if

M ′
1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Proof. Assume that (M ′
h, v)  〈M〉(τ1, ..., τk). Thus (v, u1, ..., uk) ∈ MM ′h

for some tuple

(u1, ..., uk) ∈‖ τ1 ‖M
′
h ×...× ‖ τk ‖M

′
h= PM ′1

τ1
× ...× PM ′1

τk
.

As M ′
1 |= ψuniq, we observe that for each i ∈ {1, ..., k}, there exists exactly

one type βi ∈ TP
Md(ψ)−1
ψ such that ui ∈ P

M ′1
βi

. Therefore, by Lemma 4.4, we
have

M ′
1,
v

x

u′1
y1
...
u′k
yk
|= AccessM(x, y1, ..., yk)

for some (u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM ′1

βk
. Pick an arbitrary j ∈ {1, ..., k}.

1. If n = Md(ψ)− 1, then, as M ′
1 |= ψuniq and uj ∈ P

M ′1
βj
∩ PM ′1

τj , we have

βj = τj, and thus u′j ∈ P
M ′1
τj .

2. If n < Md(ψ)− 1, then, since M ′
1 |= ψpack and as uj ∈ P

M ′1
τj ∩ P

M ′1
βj

and

u′j ∈ P
M ′1
βj

, we again have u′j ∈ P
M ′1
τj .

Therefore

M ′
1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
,

as required.
For the converse, assume that

M ′
1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Therefore
M ′

1,
v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk)

for some tuple

(u1, ..., uk) ∈ PM ′1
τ1
× ...× PM ′1

τk
= ‖ τ1 ‖M

′
h ×...× ‖ τk ‖M

′
h .

28



As M ′
1 |= ψuniq, we infer that for each ui, there exists a type βi ∈ TP

Md(ψ)−1
ψ

such that ui ∈ P
M ′1
βi

. By Lemma 4.4, we therefore have

(v, u′1, ..., u
′
k) ∈ MM ′h

for some tuple

(u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM ′1

βk
.

Pick an arbitrary j ∈ {1, ..., k}. As above, we have the following cases.

1. If n = Md(ψ)− 1, then, as M ′
1 |= ψuniq and uj ∈ P

M ′1
βj
∩ PM ′1

τj , we have

βj = τj, and thus u′j ∈ P
M ′1
τj .

2. If n < Md(ψ)− 1, then, since M ′
1 |= ψpack and as uj ∈ P

M ′1
τj ∩ P

M ′1
βj

and

u′j ∈ P
M ′1
βj

, we again have u′j ∈ P
M ′1
τj .

Therefore, as we have assumed that P
M ′1
τi =‖ τi ‖M

′
h for all i ∈ {1, ..., k}, we

conclude that (M ′
h, v) |= 〈M〉(τ1, ..., τk), as desired.

The next lemma establishes that extensions of the types τ ∈ TPψ and
interpretations of the predicate symbols Pτ coincide.

Lemma 4.6. Let τ ∈ TPψ and v ∈ Dom(M). Then (M ′
h, v)  τ if and only

if M ′
1,

v
x
|= Pτ (x).

Proof. We prove the claim by induction on the modal depth of τ . If τ ∈ TP0
ψ,

then, as M ′
1 |= ∀x(Pτ (x)↔ χτ (x)), the claim follows immediately.

Assume that (M ′
h, v)  τ for some τ ∈ TPn+1

ψ , where 0 ≤ n < Md(ψ).
We will show that

M ′
1,
v

x
|= Pτ ′(x) ∧ χ+

τ (x) ∧ χ−τ (x),

where τ ′ is the type of the modal depth n such that τ  τ ′. This directly
implies that M ′

1,
v
x
|= Pτ (x), since M ′

1 |= ∀x(Pτ (x)↔ χτ (x)).
As τ  τ ′, we have (M ′

h, v)  τ ′. Therefore M ′
1,

v
x
|= Pτ ′(x) by the

induction hypothesis. In order to establish that M ′
1,

v
x
|= χ+

τ (x) ∧ χ−τ (x),
let τ  〈M〉(σ1, ..., σk), where M ∈ ATPψ(k + 1), k ∈ {1, ...,m − 1} and
σi ∈ TPn

ψ for all i ∈ {1, ..., k}. Therefore (M ′
h, v)  〈M〉(σ1, ..., σk). Since
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by the induction hypothesis we have ‖ σi ‖M
′
h= P

M ′1
σi for all i ∈ {1, ..., k}, we

conclude by Lemma 4.5 that

M ′
1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Similarly, if τ  ¬〈M〉(σ1, ..., σk), then we have

M ′
1,
v

x
|= ¬∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
by the induction hypothesis and Lemma 4.5. Thus M ′

1,
v
x
|= χ+

τ (x) ∧ χ−τ (x),
and hence M ′

1,
v
x
|= Pτ (x), as desired.

For the converse, assume that M ′
1,

v
x
|= Pτ (x), where τ ∈ TPn+1

ψ . Now,
since M ′

1 |= ∀x(Pτ (x)↔ χτ (x)), we conclude that M ′
1,

v
x
|= χτ (x). Therefore

M ′
1,

v
x
|= Pτ ′(x), where τ ′ is the type of the modal depth n such that τ  τ ′.

Thus (M ′
h, v)  τ ′ by the induction hypothesis.

Let k ∈ {1, ...,m − 1} and M ∈ ATPψ(k + 1). Assume that we have
τ  〈M〉(σ1, ..., σk) for some σ1, ..., σk ∈ TPn

ψ. As M ′
1,

v
x
|= χτ (x), we have

M ′
1,

v
x
|= χ+

τ (x), and therefore

M ′
1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Hence, as we have ‖ σi ‖M
′
h= P

M ′1
σi for all i ∈ {1, ..., k} by the induction

hypothesis, we conclude that (M ′
h, v)  〈M〉(σ1, ..., σk) by Lemma 4.5. Sim-

ilarly, if τ  ¬〈M〉(σ1, ..., σk), we conclude that (M ′
h, v)  ¬〈M〉(σ1, ..., σk)

by the induction hypothesis and Lemma 4.5. We have therefore established
that (M ′

h, v)  τ , as required.

We then finally conclude the proof of the claim that M, w
x
|= ϕ∗(x) if and

only if (M,w)  ϕ.

Lemma 4.7. Under the assumption M, w
x
|= ϕ∗(x), we have (M,w)  ϕ.

Proof. We have assumed that M, w
x
|= ϕ∗(x) and thereby concluded that

there exists a model M ′
1 such that M ′

1,
w
x
|= ψ∗(x). We have then defined the

model M ′
h, and we now establish the claim of current the lemma by showing

that (M ′
h, w)  ψ.

As M ′
1,

w
x
|= ψ∗(x), we have M ′

1,
w
x
|= Pα(x) for some type α ∈ TPMd(ψ)

such that α  ψ. Therefore (M ′
h, w)  α by Lemma 4.6. As α  ψ, we have

(M ′
h, w)  ψ, as desired.
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The following theorem now follows directly by virtue of Lemmata 4.3 and
4.7.

Theorem 4.8. Each formula of Σ1
1(PBML=) translates to a uniformly equiv-

alent formula of ∃MSO. The translation is effective.

The following corollary is immediate.

Corollary 4.9. Each formula of Π1
1(PBML=) translates to a uniformly

equivalent formula of ∀MSO. The translation is effective.

Theorem 4.8 implies a range of decidability results.

Theorem 4.10. Let V and U ⊆ V be sets of indices. Let D be a class of
Kripke frames (W, {Rj}j∈U) with binary relations Ri. Define the class

C = { (W, {Ri}i∈V ) | Ri ⊆ W ×W, (W, {Rj}j∈U) ∈ D }

of Kripke frames. Now, if the ∀MSO theory of D is decidable, then the
satisfiability problem for BML= w.r.t. C is decidable.

Proof. Given a formula ψ of BML=, we existentially quantify all the relation
symbols (unary and binary) occurring ψ, except for those in {Rj}j∈U . We
end up with a Σ1

1(BML=) formula ϕ, which we then effectively translate to a
uniformly equivalent ∃MSO formula ϕ∗(x), applying our translation above.
We then modify this formula to an ∃MSO sentence χ, which is uniformly
equivalent to the sentence ∃xϕ∗(x). Let χ′ denote a sentence of ∀MSO
uniformly equivalent to ¬χ. Using the decision procedure for the ∀MSO
theory of D, we then check whether the sentence χ′ is valid over D. If it is,
then ψ is not satisfiable w.r.t. C, and if χ′ is not valid over D, then ψ is
satisfiable w.r.t. C.

We describe one possible application of Theorem 4.10. Let C be the class
of countably infinite multimodal frames (W, {Ri}i∈N), where R0 is a built-in
dense linear ordering of W without endpoints. In other words,

C = { (W, {Ri}i∈N) | Ri ⊆ W ×W, (W,R0) ∈ D },

where D is the class of countably infinite Kripke frames (W,R0) such that
R0 is a dense linear ordering of W without endpoints. Assume we would
like to know whether the satisfiability problem of multimodal logic—perhaps
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extended with, say, the difference modality—is decidable with respect to C.
By Theorem 4.10, we directly see that, indeed, it is decidable due to the
following immediate observation. The MSO theory of (Q, <Q) is known to
be decidable [27], and therefore the ∀MSO theory of D is decidable.

Theorem 4.10 implies a wide range of decidability results for multimodal
logic. There exists a large body of knowledge concerning structures and
classes of structures with a decidable MSO (and therefore ∀MSO) theory, see
[29] for example.

5 Conclusions

In this article we have investigated the expressive power of modal logics with
existential prenex quantification of accessibility relations. We have shown
that Σ1

1(PBML=) translates into ∃MSO, and also that Σ1
1(ML) translates

into monadic Σ1
1(MLE). These results directly imply that Π1

1(PBML=) trans-
lates into ∀MSO and Π1

1(ML) into monadic Π1
1(MLE). As corollaries of the

translations, we have obtained results that can be used in order to estab-
lish decidability results for (extensions of) multimodal logics with respect to
classes of frames with built-in relations.

In the future we expect to strengthen the obtained results. The main
objective is to try to understand for what kinds fragments L of first-order
logic the extension Σ1

1(L) collapses into ∃MSO. The next planned step in-
volves considering graded (polyadic) modalities. While directly interesting,
investigations along these kinds of lines could elucidate the role the arities
of existentially quantified relations play in making the expressive power of
(existential) second-order logic.

It also remains to be seen whether our investigations provide a stepping
stone towards answering the question about existence of a class of finite
directed graphs definable in Σ1

1(FO2) but not definable in ∃MSO. To show
that Σ1

1(FO2) is contained in ∃MSO, one would have to extend the translation
from Σ1

1(BML=) into ∃MSO such that it takes into account the possibility of
using the converse operation.
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