Relation-Changing Logics as Fragments of Hybrid Logics

Carlos Areces Raul Fervari Guillaume Hoffmann
Universidad Nacional de Cérdoba, Universidad Nacional de Cérdoba, Universidad Nacional de Cérdoba,
Argentina Argentina Argentina
CONICET, Argentina CONICET, Argentina CONICET, Argentina

Mauricio Martel

Universitdt Bremen, Germany

Relation-changing modal logics are extensions of the basic modal logic that allow changes to the
accessibility relation of a model during the evaluation of a formula. In particular, they are equipped
with dynamic modalities that are able to delete, add, and swap edges in the model, both locally and
globally. We provide translations from these logics to hybrid logic along with an implementation.
In general, these logics are undecidable, but we use our translations to identify decidable fragments.
We also compare the expressive power of relation-changing modal logics with hybrid logics.

1 Introduction

Modal logics [10, 11] were originally conceived as logics of necessary and possible truths. They are now
viewed, more broadly, as logics that explore a wide range of modalities, or modes of truth: epistemic (‘“‘it
is known that”), doxastic (“it is believed that”), deontic (“‘it ought to be the case that”), or temporal (“it has
been the case that”), among others. From a model-theoretic perspective, the field evolved into a discipline
that deals with languages interpreted on various kinds of relational structures or graphs. Nowadays,
modal logics are actively used in areas as diverse as software verification, artificial intelligence, semantics
and pragmatics of natural language, law, philosophy, etc.

As we just mentioned, from an abstract point of view, modal logics can be seen as formal languages
to navigate and explore properties of a given relational structure. If we are interested, on the other hand,
in describing how a given relational structure evolves (through time or through the application of certain
operations) then classical modal languages seem a priori to fall short of the mark. Of course, it is always
possible to model the whole space of possible transformations as a graph, and use modal languages at
that level, but this soon becomes unwieldy. It would be more elegant to use dynamic modalities that
mimic the changes the structure will undergo.

There exist several dynamic modal operators that fit in this approach. A clear example are the dy-
namic operators introduced in dynamic epistemic logics (see, e.g., [15]). These operators are used to
model changes in the epistemic state of an agent by removing edges from the graph that represents the
information states the agent considers possible. A less obvious example is given by hybrid logics [2, 12]
equipped with the down arrow operator | which is used to ‘rebind’ names for states to the current point
of evaluation. Finally, a classical example is Sabotage Logic introduced by van Benthem in [9]. The
sabotage operator deletes individual edges in a graph and was introduced to solve the sabotage game.
This game is played on a graph by two players, Runner and Blocker. Runner can move on the graph
from node to accessible node, starting from a designated point, and with the goal of reaching a given
final point. Blocker, on the other hand, can delete one edge from the graph every time it is his turn.
Runner wins if he manages to move from the origin to the final point, while Blocker wins otherwise. Van

D. Cantone and G. Delzanno (Eds.): Seventh Symposium on © Areces, Fervari, Hoffmann and Martel
Games, Automata, Logics and Formal Verification (GandALF’16) This work is licensed under the
EPTCS 226, 2016, pp. 16-29, doi:10.4204/EPTCS.226.2 Creative Commons Attribution License.

http://dx.doi.org/10.4204/EPTCS.226.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Areces, Fervari, Hoffmann and Martel 17

Benthem turns the sabotage game into a modal logic, where the (global) sabotage operator (gsb) models
the moves of Blocker, and is interpreted on a graph .# at a point w as:

A ,w = (gsb)@ iff there is a pair (u,v) of .# such that //l(;_v),w =o

where ///(;V is identical to .# except that the edge (u,v) has been removed. The moves of Runner, on
the other hand, can be modeled using the standard ¢ operator of classical modal logics.

More recently, Sabotage Logic was proposed as a formalism for reasoning about formal learning
theory [18]. Learning can be seen as a game with two players, Teacher and Learner, where Learner
changes his information state through a step-by-step process. The process is successful if he eventually
reaches an information state describing the real state of affairs. The information that Teacher provides
can be interpreted as feedback about Learner’s conjectures about the current state of affairs, allowing
him to discard inconsistent hypotheses. It should be clear that from this game-theoretical perspective,
the interaction between Teacher and Learner can be modeled using Sabotage Logic.

The dynamic approach seems appealing and very flexible: it is easy to come up with situations that
nicely fit and extend the examples we just mentioned. Discovering alternative routes for Runner in van
Benthem’s sabotage game, or possible shortcuts that Learner can take in learning theory can be modeled
by adding new edges to the graph. Swapping an edge can be used to represent other scenarios such as
changing the direction of a route, or allowing Learner to return to a previous information state. All these
primitives can also be turned into a modal logic in the same way as Sabotage Logic, in order to get a
formal language for reasoning about the games.

Motivated by scenarios like the ones we just described, we investigate three dynamic primitives that
can change the accessibility relation of a model: sabotage (deletes edges from the model), bridge (adds
edges to a model), and swap (turns around edges), both in a global version (performing changes anywhere
in the model) and local (changing adjacent edges from the evaluation point). We have chosen these
relation-changing operators with the intention of covering a sufficiently varied sample of alternatives,
as it is done in previous works. In [5] we first introduced the primitives, and we investigated their
expressive power and model checking problem. We introduced tableaux methods for relation-changing
modal logics in [6]. In [7] we studied local swap logic, in particular its decidability problem and its
relation with first-order and hybrid logics. In [8] a general framework for representing model updates is
defined, and connections with dynamic epistemic logic were introduced in [3, 4]. Finally, we know that
the satisfiability problem for the six relation-changing logics considered is undecidable [21, 16, 7, 22].

In this article, we show that relation-changing logics can be seen as fragments of hybrid logics.
We consider hybrid logics because it is the best known modal logic that can simulate the semantics of
relation-changing operators. We introduce translations to 77.%(E,), the basic modal logic extended
with nominals, the down arrow binder |, and the universal modality E (in some cases the translations fall
into the less expressive hybrid logic 5 .£(:,]), i.e., with the satisfiability operator : instead of E). We
also show that relation-changing logics are strictly less expressive than the hybrid logics they are trans-
lated into. Then, we discuss how we can benefit from known decidable fragments of 5 .Z(E,) to find
decidable fragments of relation-changing modal logics. Finally, we have implemented these translations
into the hybrid logic prover HTab [20] so that it can now reason on relation-changing formulas.

The article is organized as follows. In Section 2 we introduce the syntax and semantics of relation-
changing modal logics. Section 3 introduces different hybrid extensions of modal logic which are used
in Section 4 to encode relation-changing operators. An implementation is described in Section 5 with
some examples. Then, in Section 6 we discuss decidability results, and in Section 7 we compare the
expressivity of relation-changing logics and hybrid logics. Finally, we conclude with some remarks and
future work in Section 8.

18 Relation-Changing Logics as Fragments of Hybrid Logics

2 Relation-Changing Modal Logics

In this section, we formally introduce extensions of the basic modal logic with relation-changing opera-
tors. For more details, we direct the reader to, e.g., [16].

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional symbols. The set FORM
of formulas over PROP is defined as:

FORM:=L1L|p|=@o| oAy |00 |40,

where p € PROP, € {(sb), (br), (sw), (gsb), (gbr), (gsw)}, and ¢,y € FORM. Other operators are
defined as usual.

Let M Z (the basic modal logic) be the logic without the {(sb), (br), (sw), (gsb), (gbr), (gsw) } oper-
ators, and M L (#) the extension of # £ allowing also ¥, for 4 € {(sb), (br), (sw), (gsb), (gbr), (gsw)}.
In particular, #Z((sb),(gsb)), .#Z({br),(gbr)), and 4L ((sw),(gsw)) will be called Sabotage
Logic, Bridge Logic, and Swap Logic, respectively.

Semantically, formulas are evaluated in standard relational models, and the meaning of the operators
of the basic modal logic remains unchanged (see [11] for details). When we evaluate formulas containing
relation-changing operators, we will need to keep track of the edges that have been modified. To that
end, let us define precisely the models that we will use.

Definition 2 (Models and model updates). A model .# is a triple #4 = (W,R,V), where W is a non-
empty set whose elements are called points or states; R C W xW is the accessibility relation; and V :
PROP — Z(W) is a valuation. We define the following notations:

(sabotaging) .My = (W,R,V), withRg =R\S, S CR.

(bridging) //ﬁ (W,R{, V), with R =RUS, S C (WxW)\R.

(swapping) //zs = (W,R%,V), with Ry = (R\S"1)US, S C R™!

Intuitively, .# is obtained from .# by deleting the edges in S, and similarly ./ adds the edges
in S to the accessibility relation, and .#{ adds the edges in S as inverses of edges previously in the
accessibility relation.

Let w be a state in ., the pair (.#,w) is called a pointed model; we will usually drop parenthesis
and write . ,w instead of (.#,w). In the rest of this article, we will use wv as a shorthand for {(w,v)}
or (w,v); context will always disambiguate the intended use.

Definition 3 (Semantics). Given a pointed model .# ,w and a formula @, we say that .4 ,w satisfies @,
and write M ,w |= @, when

M w = p ifft weV(p)
MW= iff AwiEe
MwEQNY iff M wEQand M ,wiEY

MW= Q@ iff forsomeveW s.t. (w,yv)ER, M, vE @
M w = (sb)yo iff forsomeveW st (w,)GR M,V E @
MowE(br)e iff forsomeveW st (wyv)€R, M, vE@
AMow = (sw)e iff forsomev W s.t. (w v)ER M,V E @

vu
M,w = (gbryo iff forsomevu e W, s.t. (vou) & R, M5 w = @
v, u

(
(
M ,w = (gsb)e iff forsomev,ueW, s.t. (vu) €ER, M,,,wE @
(
{) ER, MW = @

M ,w = (gsw)Q iff for somevu e W, s.t. (

We say that ¢ is satisfiable if for some pointed model .4 ,w we have M ,w = @.

Areces, Fervari, Hoffmann and Martel 19

The meaning of the relation-changing operators (sb) (local sabotage), (br) (local bridge), (sw) (local
swap), (gsb) (global sabotage), (gbr) (global bridge) and (gsw) (global swap) should be clear from
the semantic conditions above. The local operators alter one arrow which is adjacent to the point of
evaluation (deleting, adding and swapping it, respectively) while the global versions can change an arrow
anywhere in the model.

3 Extensions of Modal Logic and Hybrid Logic

In this section, we present several extensions of the basic modal logic .Z.%. The existential modal-
ity [19], written E@, extends .Z.Z in the following way:

AM,wE=EQ iff forsomeveW, #,vE=o.

In words, E@ is true at a state w if ¢ is true somewhere in the model. The E operator, with its dual A, has
been extensively investigated in classical modal logic [25].

Now we consider several traditional ‘hybrid’ operators (see [2] for details): nominals, the satisfaction
operator, and the down-arrow binder. The basic hybrid logic 7% is obtained by adding nominals to
A L. A nominal is a propositional symbol that is true at exactly one state in a model. Fix the signature
(PROP,NOM), with NOM C PROP. For n € NOM, we require that its valuation is a singleton set, i.e.,
there is a single state w such that V (n) = {w}. In addition to nominals, hybrid logic typically involves the
satisfaction operator. Given a nominal n and a formula ¢, the satisfaction operator is written n : ¢. The
intended meaning is “¢ is true at the state named by n”. Its semantics is given by the following clause:

MwkE=En:@ iff v @ whereV(n)={v}.

Observe that if the language has the E operator and nominals, then 7 : ¢ is definable because n : @ is
equivalent to E(n A @).

Finally, consider the down-arrow binder operator, written |. Let the valuation V" be defined by
V¥ (n) ={w} and VY (m) = V(m), when n # m. The semantic condition for | is the following:

(W.R,V),w=ln.@ iff (WRVY) wkE .

The language 7.2 (:,]) is a reduction class of first-order logic, and is thus undecidable [12, 13]. It
remains undecidable even with a single accessibility relation, no satisfaction operator, and only nominal
propositional symbols [1]. 77.Z(E,]) is equivalent to first-order logic, since | can define the operators
3 and V when combined with E and A.

Contrary to relation-changing modal logics, the logic ##°.Z(E,) is not able to modify the accessi-
bility relation of a model. However, it can use the binder to name as many states as needed. Being able
to name states implies that we can also name specific edges in the model. This is what the translations
introduced in the next section will exploit.

4 Translations to Hybrid Logics

Relation-changing (RC) logics and hybrid logics with the binder | are two families of logics that are
dynamic in their own way. The dynamicity of RC logics is quite obvious: they are able to modify the
accessibility relation in a model in an explicit way. On the other hand, hybrid logics carefully move

20 Relation-Changing Logics as Fragments of Hybrid Logics

nominals around, avoiding to touch anything else in the model. If we consider both formalisms, it would
seem that hybrid logics are the gentler and weaker of both. However, this is not true. Hybrid logics have
the advantage of surgical precision over RC logics. Being able to name states of the model and use these
names turns out to be a crucial advantage. As we will see now, naming can be used to manipulate edges
by naming pairs of states using the pattern |x.QJy.¢. We use this naming technique to simulate edge
deletion, addition, and swapping.

Our translations are parametrized over a set of pair of nominals S € NOM x NOM. For a given
RC formula ¢, we write its translation as a hybrid formula (¢)5. When translating a formula, S will
originally be empty and it will store pairs of nominals that we will use to simulate the edges affected by
the relation-changing operators we encounter during the translation.

Intuitively, given that the hybrid operators cannot affect the accessibility relation, we have to simulate
the updates by recording possible affected edges using nominals and |. Notice that as a result, in all the
relation-changing logics we will consider, the RC formula ¢y cannot be simply translated into a hybrid
formula O(y)§, even though we have ¢ at our disposition in the hybrid language, because in the source
language ¢ is interpreted over the updated accessibility relation. Instead, diamond-formulas need to
be translated in a way that takes into account the edges that should be considered deleted, added, or
swapped. This is why the translation of diamond-formulas involve the {) operator mixed with specific
considerations about the set of altered edges S.

Consider Sabotage Logic with either the local or global operator. We use the set S C NOM x NOM
to represent sabotaged edges, i.e., edges that have been deleted in a given updated model.

Definition 4 (Sabotage to Hybrid Logic). Let S € NOM x NOM and n € NOM. We define the translation
() from formulas of A4 £ ((sb),(gsb)) to formulas of # £ (E,|) as:

(P)s= p
(~@)s= —(9);
(@AW)s= (95 (W)
(0@)s = In.O(—belongs(n,S) A (@)s)
(<Sb>(p>_/5‘ = in.(}(—'belongs(n,S) /\J/m((p).’S’Unm)
((gsby)s = Lk.Eln.O(—belongs(n,S) A lm.k:(@)s m)

where n, m and k are nominals that do not appear in S, and:

belongs(n,S) = \/ (y A nx)

xyeS

A few comments are in order to understand the translation. First, given some model .# = (W,R,V)
and some set S C NOM x NOM, the formula |n.Q(—belongs(n,S)) is true at some state w € W if there
exists some state v such that (w,v) € R and there is no pair of nominals (x,y) € S such that (V(x),V(y)) =
(w,v). Then, observe that the cases for (sb) and (gsb) modify the set of deleted pairs in the recursive call
to the translation, in both cases by adding an edge named nm. In the (sb) case, n names the evaluation
state of the formula, while in the (gsb) case, n names some state anywhere in the model.

Finally, all nominals introduced by the translation are bounded exactly once. Then we can define the
following unequivocal notation: let S C NOM x NOM, we define S = {(%,7) | (x,y) € S}, where 7 is the
state named by the nominal n € NOM under the current valuation of a model.

When considering the translated formula (@)% and its truth in some model .# = (W,R,V), one
question that may arise is what should be the initial valuation of the nominals that appear in (¢)5. By
definition of models for hybrid logics, nominals must be true at some state. This is not problematic: in

Areces, Fervari, Hoffmann and Martel 21

()5, nominals are immediately bounded by the | operator, so the truth value of (@)’ does not depend
on their initial valuation. Hence, we can choose some state w € W and say that all nominals are bounded
to it. This enables us to talk about equivalence preservation of the translation: the same model .# can
be used for ¢ and its translation (¢)§ modulo the addition of the set of nominals that appear in (¢)§ and
their valuation to some arbitrary state. Then, we can state:

Theorem 1. For .# = (W,R,V) a model, w € W, and ¢ € .4 L ((sb), (gsb)) we have:
MW= iff A ()

Proof. We use structural induction on the relation-changing formula, the inductive hypothesis being:

My we @ (WRV') W (9

with § € NOM x NOM, and V"’ is exactly as V except that for all (x,y) € S, there are v,u € W such that
V/(x) = v and V'(y) = u. Boolean cases are straightforward, so we only prove the non-trivial inductive
cases.

¢ = Qy: For the left to right direction, suppose .Zg ,w = Q. Then there is some v € W such that
(w,v) € Ry and A ,v |= y. Because (w,v) ¢ S, then there is no (x,y) € S such that (%,7) = (w,v). By
inductive hypothesis, we have .#,v |= (y)§, and because we can name w with a fresh nominal n, we
obtain (W,R,V,"),v |= —belongs(n,S) A (y)s. Therefore, we have .# ,w |= {n.O(—belongs(n,S) A (y)5),
and as a consequence we get .Z ,w = (V).

For the other direction, suppose .#,w |= (y)s, i.e., 4, w |= [n.O(—belongs(n,S) A (y)s). Then
we have (W,R,V,"),w |= O(—belongs(n,S) A (y)§), and, by definition, there is some v € W such that
(w,v) €RR, (W,R,V,)),v |= —belongs(n,S) and (W,R,V,),v = (y). Because we have —belongs(n,S),
there is no (x,y) € S such that (¥, 3) = (w,v), which implies (w,v) € R if and only if (w,v) € R;. On the
other hand, by inductive hypothesis we have ./ ,v = y, then we have ./Z; ,w |= Q.

¢ = (sb)y: For the left to right direction, suppose .#; ,w |= (sb)y. Then there is some v € W such that
(w,v) € Ry and (A5),,,,v = w. This is equivalent to say .45 v = y. Because (w,v) ¢ S, then there
is no (x,y) € S such that (£,y) = (w,v) (®). By inductive hypothesis we have (W,R,((V')/))),v =
(W) sUnm» Where V' is exactly as V but it binds all the nominals which appear in S. By definition, we get
(W, R, (V/)2)),v = L. () and by () we have (W,R, (V')2)),v = —belongs(, $) A L. ()i ..
Then (by definition) (W,R,V’),v |= {n.O(—belongs(n,S) Alm.(y)§) and, as a consequence, we have
W.R V'), = ()}

For the other direction, suppose (W,R,V'),w |= (y)§, i.e., (W,R,V'),w = [n.O(—belongs(n,S) A
Im.(¥)5,m)> Where V' is exactly as V but it binds all the nominals which appear in S. Then, we have
(W.R,(V")\),w = O(—belongs(n,S) A lm.(W)§ ,m)» and, by definition, there is some v € W such that
(w,v) €R, (W,R,V,}),v |= —belongs(n,S) and (W,R,V,}'),v = Im.(W¥) s m- Then, (W.R, (V')¥)h),v =
(W) §Umm- Because we have —belongs(n,S), there is no (x,y) € S such that (%,5) = (w,v), which implies
(w,v) € Rif and only if (w,v) € R;. On the other hand, by inductive hypothesis we have .Z; v [v,

and thus we have .Z; ,w = (sb) y.

¢ = (gsb) y: this case is very similar to the previous one. O

For Bridge Logic, we use the set B C NOM x NOM to represent the new edges. New edges present
in B mean that the translation of the modality ¢ should be able to take them. This explains why the
translation of ¢ does not look like a { with an extra condition, but like an E with two possibilities: we
traverse an edge that is either in the original model or an edge from the B set.

22 Relation-Changing Logics as Fragments of Hybrid Logics

Definition 5 (Bridge to Hybrid Logic). Let B C NOM x NOM. We define ()y from formulas of
ML ((br), (gbr)) to formulas of 7 £ (E,|) as:

(P)p= P
(9= —()p
(@AY= ()N (W),
(0@)y = LnElm((:0m belongs(n,B)) A (9)p)
((bry@)y = In.E{m.(—n:Om A —belongs(n,B) A (@) m)
((gbr)@)p = Jk.Eln.Elm.(—=n:Om A —belongs(n,B) Ak:(®)5 m)

where n, m and k are nominals that do not appear in B, and belongs is defined as in Definition 4.

Theorem 2. For .# = (W,R,V) a model, w € W, and ¢ € .4 L (({br), (gbr)), we have:
M= @ Uff AW (9)p-
Proof. A similar reasoning can be done with the following inductive hypothesis:
My w i@ iff (WR V') w= ()

with BC NOM x NOM, and V' is exactly as V except that for all (x,y) € B, there are v,u € W such that
V/(x)=vand V'(y) = u. O

We finish with the case of Swap Logic. We presented a different translation in [7] for the local case
only. As we did for Sabotage Logic, we use S C NOM x NOM to represent the set of deleted edges,
i.e., the edges that should not be possible to traverse in a given updated model. Indeed, swapping a
non-reflexive edge of a model has the effect of deleting it, along with adding its inverse. This implies
that S~! is a set of edges that we can currently traverse. All of this requires that S do not contain any
reflexive edge, since a swapped reflexive edge is not deleted. Neither can it contain a pair of symmetric
edges since that would be contradictory.

To ensure this, the translation gets more cautious when handling (sw) and (gsw). When swapping
occurs, three possible cases are taken into account. The first one is when a reflexive edge is swapped.
In that case, the translation continues with the set S left unchanged, but we require some reflexive edge
to be present, be it at the current state for (sw) with |n.Qn, or anywhere in the model for (gsw) with
Eln.On.

The second case is when we swap an irreflexive edge that has never been swapped before. Hence we
ensure that this edge is present in the model, that it is irreflexive, and that neither this edge nor its inverse
is in S. We then add the nominals that name it to S before moving on with the translation.

The last case is when we traverse an already swapped edge. That is, for some xy € S, we traverse
the edge referred to by the nominals yx. In this case, we do not need to require the presence of any new
edge in the model. We assume to be standing at the state named by y and that the rest of the formula is
satisfied at x, with the modification that we remove xy from § and add yx to it.

An attentive reader would object: why not just remove xy from the set S since swapping some
edge twice just makes it return to its configuration in the original model? The answer is that there is
a corner case when some edge and its symmetric are both present in the initial model. Then, the action
of swapping it twice is not supposed to restore its symmetric. This is what we do by adding yx to the set
S: we ensure the former symmetric edge is no longer present.

Areces, Fervari, Hoffmann and Martel 23

Definition 6 (Swap to Hybrid Logic). Ler S C NOM x NOM. We define ()§ from formulas of
ML ((sw), (gsw)) to formulas of 7L (E,]) as

(P)s= p

(—@)s= —(9)s
(AY)s= (9)sA(Y)s

(0@)s = (In.O(—belongs(n,S) A (9)s)) V isSat(S~",(9)§)
(sw)@)s= (In.On A (@)5)

V {n.O(—n A —belongs(n,S) A —belongs(n,S™1) A lm.(@)5)
. /
\ xy\és(y AX: (‘P)(s\xy)uyx)

((esw)@)s= (ElnOn A (9)s)
V Jk.Eln.Q(=n A —belongs(n,S) A =belongs(n,S™1) A Lm.k: (€)% um)

Vv \/()S\ny)x

where n, m and k are nominals that do not appear in S, belongs is defined as in Definition 4, and

isSat(S,) = \/ (xAy:0).

xyeS

The formula isSat(S, (¢)%) says that the translation of ¢ is satisfiable at the end of some of the edges
belonging to S. Note that the translation maps formulas of .Z.Z ({sw)) to the less expressive £ (:,]),
i.e., the E operator is not required.

Theorem 3. For .# = (W,R,V) amodel, w e W and ¢ € 4L ((sw), (gsw)) we have:

MW= @ iff M ow = ()

Proof. Again, a similar reasoning can be done with the following inductive hypothesis:

‘/15*51 W): (2 iff <W7R7V/>7W ': ((P)./S'

with § € NOM x NOM, and V’ is exactly as V except that for all (x,y) € S, there are v,u € W such that
V/(x)=vand V'(y) = u. O

S Implementation and Examples

We have implemented these translations as a new feature of the tableaux-based theorem prover HTab [20].
Its version 1.7.1 can be downloaded from http://hub.darcs.net/gh/htab along with example for-
mulas. Instructions are provided, explaining how to use HTab to check satisfiability of some relation-
changing formula and to generate a model from an open tableau.

HTab originally handles the hybrid logic .77.%(:,E,), and guarantees termination of any fragment
that lacks the | binder. As part of the work presented in this article, we added the following feature:
when passed the --translate flag, HTab interprets the input formula as a relation-changing one. It first
translates it to the corresponding 7. (E,) formula (or more precisely, 5#.Z(:,]) formula in the case
of local sabotage and local swap), and then runs its internal hybrid tableaux calculus on the translation.

Since the translation uses the | binder, HTab may never terminate on some specific relation-changing
formulas. Even in the terminating cases, the size of the translated formula (in particular for swap logic)

http://hub.darcs.net/gh/htab

24 Relation-Changing Logics as Fragments of Hybrid Logics

can make HTab run for a very long time before giving an answer. However, there are several possible
workarounds. First, a time limit in seconds can be given with the flag -t. Also, it may be useful to
disable the semantic branching optimization by passing --sembranch=no. Tweaking unit propagation
can also be useful for certain formulas, in some cases by disabling it (with ——-no-unit-prop), and in
others, by making it more aggressive (with --eager). The flag -~-minimal makes HTab try reusing
existing states in the model instead of systematically generating new ones. This introduces many more
branches in the tableau, making it slower, but it can be crucial to make some cases terminate. Finally, the
flag --random uses pseudorandomness to select the next disjunct formula to expand in the tableau, and
also shuffles the order in which the branches are explored, including those introduced by ——minimal.
The advantage is that some pseudorandom run of HTab on a given input formula could terminate quickly
by doing the right choices. Then, this run can be reproduced by setting the pseudorandom seed of HTab
with the --seed flag. More information is available by running htab --help.

For all three translations, the implementation has the following particular case:

(09)p = O(@)y

This avoids introducing unnecessary nominals and makes the translated formula more readable. The
generated hybrid formula can be seen by using the -—showformula flag.

Since the translations are equivalence-preserving, the models built by HTab satisfy the input RC
formula. Let us see a few examples. We present the formulas in multi-line way, each line is a conjunct
of the whole formula. Also, some new logical connectors are used in the expected way.

Input .# ¥ (sb) formula: Translated hybrid formula: Model found by HTab:

O(AN—=BAOOQA) O(AN-BAOOA) o
O(BA-ANOOB) O(BA=ANOOB) I\
[Sb] (A — DD—!A) in().D(\[,l’ll (—\A

[sb](B — OOO-B) Vnp .O((n1 Ana 2 ng) a e

(n
\/¢n3 O((n1 Ans :np)
—A))))
J,l’l() Dum (—\B
V |n,. D((nyAnp: no)
\/i,ngJ Il (I’l] Anz: l’lo

(
~B))))

Input .#Z £ (gsb) formula: Translated hybrid formula: Model found by HTab:
O(AN-BAGOA) O(AN=BAOOA) CeD
O(BA—-ANOOB) O(BA-ANOOB)

O0(C A D-0) O0(CAD0) G ()
<ng>DDDJ_ \LHO-E\LHI <>(\Ll’l2.
noy : (ing.D((nz/\ng :nl) e

V ng .O((np Ang :ny)

V InsO((na Ans 1)) ()

Areces, Fervari, Hoffmann and Martel 25

Input .# % (sw) formula: Translated hybrid formula: Model found by HTab:
O(AAN—B)
O(BA-A) 0
aoT ... too big to be displayed . ..
ole
[sw]O[sw]OOL
Ofsw]O0OL o
(sw) (sw) QOO0 T

More formulas from the six RC logics are available in the ./rc/ directory of the HTab source
code. This implementation is useful to check the correctness of the translations, just by checking the
satisfiable/unsatisfiable output of the prover for known RC formulas. It is also useful for checking that
RC formulas build models in the expected way, such as non-tree or diamond-shaped models.

6 Decidable Fragments

Interesting decidable fragments of hybrid logics with binders have been found over time. Such decidable
fragments are convenient for our relation-changing logics in the light of the (computable) translations
presented in Section 4. First, let us consider restricting the satisfiability problem over certain classes of
models. The following logics are known to be decidable over the indicated classes:

- L (E,]) over linear frames (i.e., irreflexive, transitive, and trichotomous frames) [17, 24] (this
includes (N, <)),

- L (E,]) over models with a single, transitive tree relation [24],
- L (E,]) over models with a single, S5, or complete relation [24],

- AL (:,]) over models with a single relation of bounded finite width [14]; as a corollary, also over
finite models.

Since the translations preserve equivalence, we get:

Corollary 1. The satisfiability problem for all relation-changing modal logics over linear, transitive
trees, S5, and complete frames is decidable.

Corollary 2. The satisfiability problem for local sabotage and local swap logics over models of bounded
width is decidable.

Curiously, these results mean that relation-changing modal logics are decidable over certain classes
of models, even if the modifications implied by evaluating RC formulas yield models that do not belong
to such class. For instance, these two facts are simultaneously true: sabotage logic is decidable on the
class of S5 models, and deleting edges in an S5 model can yield a non-S5 model.

Now, let us turn to syntactical definitions of decidable fragments. We recall that local sabotage and
local swap can be translated to .7°.Z(:,]). Consider formulas of .7.Z(:,]) in negation normal form.
AL (:,1)\ 04O is the fragment obtained by removing formulas that contain a nesting of [J, | and again
Ll. This fragment is decidable [14].

Our translations do use the | binder in many places, but we can make them a little more economical
in that sense, at the expense of losing succinctness.

26 Relation-Changing Logics as Fragments of Hybrid Logics

Take the following case for .# % ({sw)):

(O@)s = In.O(~belongs(n,S) A(@)y)-

Instead of using the down-arrow binder and later ensuring that we did not take a deleted edge by using
—belongs(n, S), we can do the following. For all pairs of nominals (x,y) € S, the current state w satisfies
one combination of the truth values of the nominals x. Let X be the set of true nominals x at w. Then,
(@)’ should be true at some accessible state v that should not satisfy any of the corresponding y nominals
for all x € X.

Then, the translation becomes:

Qe)s= V. (AxAAxAO(A —yA(Q)F))

XCfst(S) x€X x¢X yesnd(S,X)
where fst(S) = {x | (x,y) € S} and snd(S,X) = {y | (x,y) € S,x € X }.
In the case of .#Z £ ((sw)) we can do the same. We recall that the case introduced in Section 4 was:

(0@)s = (In.O(~belongs(n,S) A (9)s)) V isSat(S™",(¢)s).

Here the isSat(S™!, (¢)) disjunct does not use the | binder, while the first disjunct is similar to the case
of local sabotage, and can be replaced accordingly:

(0o)s = Vo (AXAAXAOC A —vA(9)5))

XCfst(S) x€X x¢X yesnd(S,X)
Vv isSat(S7L, (9)5).

Let 4 be either (sb) or (sw) and B be either [sb] or [sw]. The following patterns in RC formulas provoke
the following patterns in the hybrid formula produced by the translations:

RC pattern | Produced pattern
] U
¢ 1
] Jad

By considering these new versions of the translations, and by taking into account the syntactic de-
cidable fragment of .77.%(:,|) mentioned above, we can establish the following result:

Corollary 3. The following fragments are decidable on the class of all relational models:
- AL ((sb))\ {HEEC, W meNm}
- AL ((sw))\ {HEEBO, Ol mem}

where W is either U] or B

7 Comparing Expressive Power

We have introduced translations for the six relation-changing modal logics from Section 2 into hybrid
logic. In some cases (for the local version of swap and sabotage), the obtained formulas fall into the
fragment 7% (:,]). On the other hand, for encoding the rest of the logics we need also to use the
universal modality E. An interesting question is whether we can obtain translations from hybrid to
relation-changing logics, i.e., if some of the relation-changing logics considered in this article are as
expressive as some hybrid logic. Let us define first, the expressive power comparisons we will use.

Areces, Fervari, Hoffmann and Martel 27

Definition 7 (£ < .¢’). We say that " is at least as expressive as .Z (notation ¥ < ') if there is a
function Tr between formulas of £ and &' such that for every model .# and every formula @ of £ we
have that

Mg @iff M =g Tr().
M is seen as a model of £ on the left and as a model of ' on the right, and we use in each case the
appropriate semantic relation | =g or |=. as required.

L' is strictly more expressive than £ (£ < L") if & < &' but not ' < ¥. Finally, we say that
& and ' are incomparable if £ & &' and L' & L.

In [5, 7, 16, 8] we discussed the expressive power of relation-changing modal logics by introducing
their corresponding notions of bisimulations and using them to compare the logics among each other.
We concluded that they are all incomparable in expressive power." As a consequence, we conclude that
it is not possible that two of them capture the same fragment of hybrid logic. In fact, we will prove that
all the relation-changing logics considered here are strictly less expressive than the corresponding hybrid
logic in which they are translated.

Theorem4. Let 4 € {(sb), (sw)}, we have # L (4,) < I L (:,]). For 4, € {(gsb), (gsw), (br), (gbr)},
we have ML (#,) < # L (E,).

Proof. For any of the logics mentioned above, we have translations into the corresponding hybrid logic.
Now we need to prove that these translations do not cover their entire target language (modulo equiva-
lence). In order to do that, we provide bisimilar models for relation-changing modal logics which can
be distinguished by some hybrid formula. In Figure 1, we show two pairs of models already introduced
in [8] that cover all possibilities of bisimilarity.

’ MW \ MW ‘ Bisimilar for ‘
ML ((sw))
Q) X ML ((br))
w W ML ((gsw))
ML ((gbr))

w /

o — >0

N -

Figure 1: Bisimilar models

The two models in the first row can be distinguished by the formula |n.n, which establishes that
the only successor of the evaluation point is itself. This formula is true at .#,w and false at .Z',w'.
Models in the second row can be distinguished by the formula |n.Qm.n:QOm, which says that from the
evaluation point it is possible to arrive to the same state in one or two steps. This is true at .# , w but false
at A w'. O

Notice that both hybrid formulas we introduced above belong to the fragment 77 .%(:,), i.e., it was
not necessary to use the E operator. This means that even though we use E in some of the translations
(and we strongly believe that it is essential for some encodings) there are fragments of J7.Z(:,]) that
cannot be captured by relation-changing modal logics.

'Except for the local and global swap operators, which is still open in one direction.

28 Relation-Changing Logics as Fragments of Hybrid Logics

8 Final Remarks

In this article, we introduced equivalence-preserving translations from six logics we named relation-
changing to a very expressive hybrid logic. We considered three kinds of modifications: deleting, adding,
and swapping edges, that can be performed both globally (anywhere in the model) and locally (modifying
adjacent edges from the evaluation point). On the other hand, hybrid logic has operators to rename states
in a model with some particular atomic symbols named nominals. We use the down-arrow operator |, to
name pairs of states that represent modified states. In this way, we keep track of the evolution of a model.

It is known that the hybrid logic 77.Z(E,]) has the same expressive power as .% 0.%, and we intro-
duced standard translations from relation-changing logics to .# ¢ in [8]. However, by giving explicit
translations to hybrid logic we can benefit from its decidable fragments to find decidable fragments of
relation-changing modal logics. Also, these translations are useful to analyze expressive power. We
showed that the six logics we considered are strictly less expressive than 7% (E,]). In fact, despite we
used the modality E in some translations, all relation-changing logics we considered here cannot capture
the full fragment 7 %(:,|) (which is less expressive than 5 £ (E,|)). In summary, we learned that
relation-changing modal logics are languages that enable to talk directly and succinctly about distinct
kinds of model modifications, but with a little effort they can be simulated by hybrid logics.

Translating to 5% (E,) also enabled us to easily obtain an implementation for relation-changing
modal logics, by extending the hybrid logic theorem prover HTab. Satisfiability checking and model
building can thus be automated and were useful to empirically verify our translations on concrete cases.
However, we did not implement the changes of Section 6. Indeed, although in some cases they provide
a way to avoid using the down-arrow binder in the translations (which is a source of undecidability for
hybrid logic), they also make the generated formulas impractically bigger.

We studied six relation-changing modal logics with the goal of covering a sufficiently varied sample
of alternatives. Clearly, other operators could have been included in this exploration, and actually some
alternative choices have been already investigated in the literature, e.g., the adjacent sabotage operator
discussed in [23], or the more generic approach investigated in [8].

Even though relation-changing modal logics have been extensively investigated [16, 8], there are still
many interesting questions to be answered. The hybrid perspective we introduced in this article, as well
as in [6], gives us a new way to think of the relation-changing framework. As an example, we can use
hybridization techniques (a very standard technique in modal logic [11]) to find complete axiomatizations
or compute interpolants for relation-changing modal logics.

Acknowledgments: This work was partially supported by grant ANPCyT-PICT-2013-2011, DFG grant
LU 1417/2-1, and the Laboratoire International Associé “INFINIS”.

References

[1] C. Areces, P. Blackburn & M. Marx (1999): A Road-map on Complexity for Hybrid Logics. In J. Flum
& M. Rodriguez-Artalejo, editors: Computer Science Logic, Lecture Notes in Computer Science 1683,
Springer, Madrid, Spain, pp. 307-321, doi:10.1007/3-540-48168-0_22.

[2] C. Areces & B. ten Cate (2007): Hybrid Logics. In P. Blackburn, F. Wolter & J. van Benthem, editors:
Handbook of Modal Logic, Elsevier, pp. 821-868, doi:10.1016/s1570-2464(07)80017-6.

[3] C. Areces, H. van Ditmarsch, R. Fervari & F. Schwarzentruber (2014): Logics with Copy and Remove. In:
Logic, Language, Information, and Computation, Lecture Notes in Computer Science 8652, Springer, pp.
51-65, doi: 10.1007/978-3-662-44145-9 4.

http://dx.doi.org/10.1007/3-540-48168-0_22
http://dx.doi.org/10.1016/s1570-2464(07)80017-6
http://dx.doi.org/10.1007/978-3-662-44145-9_4

Areces, Fervari, Hoffmann and Martel 29

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

C. Areces, H. van Ditmarsch, R. Fervari & F. Schwarzentruber (2015): The Modal Logic of Copy and Remove.
To Appear in Information and Computation, special issue of WoLLIC 2014.

C. Areces, R. Fervari & G. Hoffmann (2012): Moving Arrows and Four Model Checking Results. In: Logic,
Language, Information and Computation, Lecture Notes in Computer Science 7456, Springer, pp. 142—153,
doi:10.1007/978-3-642-32621-9_11.

C. Areces, R. Fervari & G. Hoffmann (2013): Tableaux for Relation-Changing Modal Logics. In: Frontiers of
Combining Systems, Lecture Notes in Computer Science 8152, pp. 263-278, doi:10.1007/978-3-642-40885-
4_19.

C. Areces, R. Fervari & G. Hoffmann (2014): Swap Logic. Logic Journal of the IGPL 22(2), pp. 309-332,
doi: 10.1093/jigpal/jzt030.

C. Areces, R. Fervari & G. Hoffmann (2015): Relation-Changing Modal Operators. Logic Journal of the
IGPL 23(4), pp. 601-627, doi:10.1093/jigpal/jzv020.

J. van Benthem (2005): An Essay on Sabotage and Obstruction. In: Mechanizing Mathematical Reasoning,
pp- 268-276, doi:10.1007/978-3-540-32254-2_16.

P. Blackburn & J. van Benthem (2007): Modal Logic: A Semantic Perspective. In: Handbook of Modal
Logic, Elsevier, pp. 1-84, doi:10.1016/s1570-2464(07)80004-8.

P. Blackburn, M. de Rijke & Y. Venema (2001): Modal Logic. Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, doi:10.1017/CBO9781107050884.

P. Blackburn & J. Seligman (1995): Hybrid Languages. Journal of Logic, Language and Information 4(3),
pp- 251-272, doi: 10.1007/BF01049415.

B. ten Cate (2005): Model theory for extended modal languages. Ph.D. thesis, University of Amsterdam.
ILLC Dissertation Series DS-2005-01.

B. ten Cate & M. Franceschet (2005): On the complexity of hybrid logics with binders. Lecture Notes in
Computer Science 3634, Springer Verlag, pp. 339-354, doi:10.1007/11538363_24.

H. van Ditmarsch, W. van der Hoek & B. Kooi (2007): Dynamic Epistemic Logic. Synthese Library, Springer,
doi:10.1007/978-1-4020-5839-4.

R. Fervari (2014): Relation-Changing Modal Logics. Ph.D. thesis, Universidad Nacional de Cérdoba, Ar-
gentina.

M. Franceschet, M. de Rijke & B. Schlingloff (2003): Hybrid Logics on Linear Structures: Ex-
pressivity and Complexity. In: TIME-ICTL 2003, Cairns, Queensland, Australia, pp. 166-173,
doi:10.1109/time.2003.1214893.

N. Gierasimczuk, L. Kurzen & F. R. Veldzquez-Quesada (2009): Learning and Teaching as a Game: A Sab-
otage Approach. In Xiangdong He, John F. Horty & Eric Pacuit, editors: LORI, Lecture Notes in Computer
Science 5834, Springer, pp. 119-132, doi: 10.1007/978-3-642-04893-7_10.

V. Goranko & S. Passy (1992): Using the Universal Modality: Gains and Questions. Journal of Logic and
Computation 2(1), pp. 5-30, doi: 10.1093/logcom/2.1.5.

G. Hoffmann & C. Areces (2009): HTab: A Terminating Tableaux System for Hybrid Logic. Electronic Notes
in Theoretical Computer Science 231, pp. 3—19, doi: 10.1016/j.entcs.2009.02.026.

C. Loding & P. Rohde (2003): Model Checking and Satisfiability for Sabotage Modal Logic. Lecture Notes
in Computer Science 2914, pp. 302-313, doi:10.1007/978-3-540-24597-1_26.

M. Martel (2015): On the Undecidability of Relation-Changing Logics. Master’s thesis, Universidad Na-
cional de Rio Cuarto, Argentina.

P. Rohde (2006): On games and logics over dynamically changing structures. Ph.D. thesis, RWTH Aachen.

T. Schneider (2007): The Complexity of Hybrid Logics over Restricted Frame Classes. Ph.D. thesis, Univer-
sity of Jena.

E. Spaan (1993): Complexity of modal logics. Ph.D. thesis, ILLC, University of Amsterdam.

http://dx.doi.org/10.1007/978-3-642-32621-9_11
http://dx.doi.org/10.1007/978-3-642-40885-4_19
http://dx.doi.org/10.1007/978-3-642-40885-4_19
http://dx.doi.org/10.1093/jigpal/jzt030
http://dx.doi.org/10.1093/jigpal/jzv020
http://dx.doi.org/10.1007/978-3-540-32254-2_16
http://dx.doi.org/10.1016/s1570-2464(07)80004-8
http://dx.doi.org/10.1017/CBO9781107050884
http://dx.doi.org/10.1007/BF01049415
http://dx.doi.org/10.1007/11538363_24
http://dx.doi.org/10.1007/978-1-4020-5839-4
http://dx.doi.org/10.1109/time.2003.1214893
http://dx.doi.org/10.1007/978-3-642-04893-7_10
http://dx.doi.org/10.1093/logcom/2.1.5
http://dx.doi.org/10.1016/j.entcs.2009.02.026
http://dx.doi.org/10.1007/978-3-540-24597-1_26

	Introduction
	Relation-Changing Modal Logics
	Extensions of Modal Logic and Hybrid Logic
	Translations to Hybrid Logics
	Implementation and Examples
	Decidable Fragments
	Comparing Expressive Power
	Final Remarks

